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Abstract. We discuss the local index formula of Connes–Moscovici for the isospectral non-
commutative geometry that we have recently constructed on quantum SU(2). We work
out the cosphere bundle and the dimension spectrum as well as the local cyclic cocycles
yielding the index formula.
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1. Introduction

Recent investigations show that the “quantum space” underlying the quan-
tum group SUq(2) is an important arena for testing and implementing
ideas coming from noncommutative differential geometry. In [8] it has been
endowed with an isospectral tridimensional geometry via a bi-equivariant
3+-summable spectral triple (A(SUq(2)),H,D). Earlier, a “singular” (in the
sense of not admitting a commutative limit) spectral triple was constructed
in [2]. The latter geometry was put in the general theory of Connes–
Moscovici [7] by a systematic discussion of the local index formula [5]. In
this paper, we present a similar analysis for the former geometry. It turns
out that most of the results coincide with those of Connes [5].

The main idea of that paper is to construct a (quantum) cosphere bun-
dle S

∗
q on SUq(2), that considerably simplifies the computations concerning

the local index formula. Essentially, with the operator derivation δ defined
by δ(T ) := |D|T − T |D|, one considers an operator x in the algebra B =⋃∞
n=0 δ

n(A) up to smoothing operators; these give no contribution to the
residues appearing in the local cyclic cocycle giving the local index for-
mula. The removal of the irrelevant smoothing operators is accomplished
by introducing a symbol map from SUq(2) to the cosphere bundle S

∗
q . The
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latter is defined by its algebra C∞(S∗
q) of “smooth functions” which is, by

definition, the image of a map

ρ: B →C∞(D2
q+ ×D2

q− ×S
1),

where D2
q± are two quantum disks. One finds that an element x in the alge-

bra B can be determined up to smoothing operators by ρ(x).
In our present case, the cosphere bundle coincides with the one obtained

in [5]; the same being true for the dimension spectrum. Indeed, using this
much simpler form of operators up to smoothing ones, it is not difficult
to compute the dimension spectrum and obtain simple expressions for the
residues appearing in the local index formula. We find that the dimension
spectrum is simple and given by the set {1,2,3}.

The cyclic cohomology of the algebra A(SUq(2) has been computed
explicitly in [10], where it was found to be given in terms of a single gen-
erator. We express this element in terms of a single local cocycle similarly
to the computations in [5]. But contrary to the latter, we get an extra term
involving P |D|−3 which drops in [5], being traceclass for the case consid-
ered there. Here P = 1

2(1+F) with F =SignD, the sign of the operator D.
Finally as a simple example, we compute the Fredholm index of D cou-

pled with the unitary representative of the generator of K1(A(SUq(2))).

2. The Isospectral Geometry of SUq(2)SUq(2)SUq(2)

We recall the construction of the spectral triple (A(SUq(2)),H,D) of
Da̧browski et al. [8]. Let A = A(SUq(2)) be the ∗-algebra generated by a

and b, subject to the following commutation rules:

ba=qab, b∗a=qab∗, bb∗ =b∗b,

a∗a+q2b∗b=1, aa∗ +bb∗ =1. (2.1)

In the following we shall take 0 < q < 1. Note that we have exchanged
a↔a∗, b↔−b with respect to the notation of Chakraborty and Pal [2] and
Connes [5].

The Hilbert space of spinors H has an orthonormal basis labelled as
follows. For each j = 0, 1

2 ,1, . . . , we abbreviate j+ = j + 1
2 and j− = j − 1

2 .
The orthonormal basis consists of vectors |jµn ↑〉 for j = 0, 1

2 ,1, . . . ,
µ=−j, . . . , j and n=−j+, . . . , j+; together with |jµn↓〉 for j = 1

2 ,1, . . . ,µ=
−j, . . . , j and n=−j−, . . . , j−. We adopt a vector notation by juxtaposing
the pair of spinors

|jµn〉〉 :=
(|jµn↑〉

|jµn↓〉

)

(2.2)
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and with the convention that the lower component is zero when n=±(j + 1
2)

or j = 0. In this way, we get a decomposition H =H↑ ⊕H↓ into subspaces
spanned by the “up” and “down” kets, respectively.

The spinor representation is the ∗-representation π of A on H –
denoted by π ′ in [8] – defined as follows. We set π(a) := a+ + a− and
π(b) :=b+ +b−, where a± and b± are the following operators in H:

a+ |jµn〉〉 :=q(µ+n− 1
2 )/2[j +µ+1]1/2 ×

×
⎛

⎝
q−j− 1

2
[j+n+ 3

2 ]1/2

[2j+2] 0

q1/2 [j−n+ 1
2 ]1/2

[2j+1] [2j+2] q−j [j+n+ 1
2 ]1/2

[2j+1]

⎞

⎠ |j+µ+n+〉〉,

a− |jµn〉〉 :=q(µ+n− 1
2 )/2[j −µ]1/2 ×

×
⎛

⎝
qj+1 [j−n+ 1

2 ]1/2

[2j+1] −q1/2 [j+n+ 1
2 ]1/2

[2j ] [2j+1]

0 qj+
1
2

[j−n− 1
2 ]1/2

[2j ]

⎞

⎠ |j−µ+n+〉〉,

b+ |jµn〉〉 :=q(µ+n− 1
2 )/2[j +µ+1]1/2 ×

×
⎛

⎝

[j−n+ 3
2 ]1/2

[2j+2] 0

−q−j−1 [j+n+ 1
2 ]1/2

[2j+1] [2j+2] q− 1
2

[j−n+ 1
2 ]1/2

[2j+1]

⎞

⎠ |j+µ+n−〉〉,

b− |jµn〉〉 :=q(µ+n− 1
2 )/2[j −µ]1/2 ×

×
⎛

⎝
−q− 1

2
[j+n+ 1

2 ]1/2

[2j+1] −qj [j−n+ 1
2 ]1/2

[2j ] [2j+1]

0 − [j+n− 1
2 ]1/2

[2j ]

⎞

⎠ |j−µ+n−〉〉. (2.3)

Here [N ] := (q−N −qN)/(q−1 −q) is a “q-integer”.
The Dirac operator D that was exhibited in [8] is diagonal in the given

orthonormal basis of H, and is one of a family of self-adjoint operators of
the form

D|jµn〉〉=
(
d↑j + c↑ 0

0 d↓j + c↓
)

|jµn〉〉, (2.4)

where d↑, d↓, c↑, c↓ are real numbers not depending on j,µ,n. In order
that the sign of D be nontrivial we need to assume d↓d↑< 0, so we may
as well take d↑>0 and d↓<0.

Apart from the issue of their signs, the particular constants that appear
in (2.4) are fairly immaterial: c↑ and c↓ do not affect the index calculations
later on while d↑ and |d↓| yield scaling factors on some noncommutative
integrals. Thus little generality is lost by making the following choice,

D|jµn〉〉=
(

2j + 3
2 0

0 −2j − 1
2

)

|jµn〉〉 (2.5)
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whose spectrum (with multiplicity!) coincides with that of the classical
Dirac operator of the sphere S

3 equipped with the round metric (indeed,
the spin geometry of the 3-sphere can now be recovered by taking q=1).

We let D=F |D| be the polar decomposition of D where |D| := (D2)1/2

and F =SignD. Explicitly, we see that

F |jµn〉〉=
(

1 0
0 −1

)

|jµn〉〉, |D| |jµn〉〉=
(

2j + 3
2 0

0 2j + 1
2

)

|jµn〉〉.

Clearly, P ↑ := 1
2(1 + F) and P ↓ := 1

2(1 − F)= 1 − P ↑ are the orthogonal
projectors whose range spaces are H↑ and H↓, respectively.

PROPOSITION 2.1. The triple (A(SUq(2)),H,D) is a regular 3+-summable
spectral triple.

Proof. It was already shown in [8] that this spectral triple is 3+-summa-
ble: indeed, this follows easily from the growth of the eigenvalues in (2.5).
The remaining issue is its regularity. Recall [1, 7, 9] that this means that the
algebra generated by A and [D,A] should lie within the smooth domain⋂∞
n=0 Dom δn of the operator derivation δ(T ) :=|D|T −T |D|.
Since 2j + 3

2 = 2j+ + 1
2 and 2j + 1

2 = 2j− + 3
2 and due to the triangular

forms of the matrices in (2.3), the off-diagonal terms vanish in the 2 × 2-
matrix expressions for δ(a+) and δ(a−). Indeed one finds,

δ(a+)|jµn〉〉=
(

2j + 5
2 0

0 2j + 3
2

)

a+|jµn〉〉−a+

(
2j + 3

2 0
0 2j + 1

2

)

|jµn〉〉,

δ(a−)|jµn〉〉=
(

2j + 1
2 0

0 2j − 1
2

)

a−|jµn〉〉−a−

(
2j + 3

2 0
0 2j + 1

2

)

|jµn〉〉.

In both cases we obtain

δ(a+)=P ↑a+P ↑ +P ↓a+P ↓, δ(a−)=−P ↑a−P ↑ −P ↓a−P ↓. (2.6)

Replacing a by b, the same triangular matrix structure leads to

δ(b+)=P ↑b+P ↑ +P ↓b+P ↓, δ(b−)=−P ↑b−P ↑ −P ↓b−P ↓. (2.7)

Thus δ(π(a))=δ(a+)+δ(a−) is bounded, with ‖δ(π(a))‖�‖π(a)‖; and like-
wise for π(b). Next, δ([D,a+])= [D,δ(a+)], so that

δ([D,a+])|jµn〉〉=
(

2j + 5
2 0

0 −2j − 3
2

)

δ(a+)|jµn〉〉−

−δ(a+)
(

2j + 3
2 0

0 −2j − 1
2

)

|jµn〉〉,

since all matrices appearing are diagonal. This, together with the analogous
calculation for δ([D,a−]), shows that
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δ([D,a+])=P ↑a+P ↑ −P ↓a+P ↓,

δ([D,a−])=P ↑a−P ↑ −P ↓a−P ↓. (2.8)

A similar argument for b gives

δ([D,b+])=P ↑b+P ↑ −P ↓b+P ↓,

δ([D,b−])=P ↑b−P ↑ −P ↓b−P ↓. (2.9)

Combining (2.6), (2.8), and the analogous relations with a replaced by b,
we see that both A and [D,A] lie within Dom δ. An easy induction shows
that they also lie within Dom δk for k=2,3, . . . .

This proposition continues to hold if we replace A(SUq(2)) by a suitably
completed algebra, which is stable under the holomorphic function calculus.

Let �0(A) be the algebra generated by δk(A) and δk([D,A]) for all k�0
(the notation suggests that, in the spirit of Connes and Moscovici [7] one
thinks of it as an “algebra of pseudodifferential operators of order 0”).
Since, for instance,

P ↑π(a)P ↑ = 1
2δ

2(π(a))+ 1
2δ([D,π(a)]),

P ↑a+P ↑ = 1
2P

↑π(a)P ↑ + 1
2P

↑δ(π(a))P ↑,

we see that �0(A) is in fact generated by the diagonal-corner operators
P ↑a±P ↑, P ↓a±P ↓, P ↑b±P ↑, P ↓b±P ↓ together with the other-corner oper-
ators P ↓a+P ↑, P ↑a−P ↓, P ↓b+P ↑ and P ↑b−P ↓. Following [5], let B be the
algebra generated by all δn(A) for n� 0. It is a subalgebra of �0(A) and
it is generated by the diagonal operators

ã± :=±δ(a±)=P ↑a±P ↑ +P ↓a±P ↓,
(2.10)

b̃± :=±δ(b±)=P ↑b±P ↑ +P ↓b±P ↓,

and by the off-diagonal operators P ↓a+P ↑ + P ↑a−P ↓ and P ↓b+P ↑ +
P ↑b−P ↓.

For later convenience we shall introduce an approximate representation
π found in [8], which coincides with π up to compact operators. Note first,
that the off-diagonal coefficients in (2.3) give rise to smoothing operators
in OP−∞ (see Appendix A), due to the terms appearing in their denomi-
nators; we can furthermore simplify the diagonal terms.

We set π(a) := a+ + a− and π(b) := b+ + b− with the following
definitions:
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a+ |jµn〉〉 :=
√

1−q2j+2µ+2

(√
1−q2j+2n+3 0

0
√

1−q2j+2n+1

)

|j+µ+n+〉〉,

a− |jµn〉〉 :=q2j+µ+n+ 1
2

(
q 0
0 1

)

|j−µ+n+〉〉,

b+ |jµn〉〉 :=qj+n− 1
2

√
1−q2j+2µ+2

(
q 0
0 1

)

|j+µ+n−〉〉,

b− |jµn〉〉 :=−qj+µ
(√

1−q2j+2n+1 0
0

√
1−q2j+2n−1

)

|j−µ+n−〉〉. (2.11)

These formulas can be obtained from (2.3) by truncation, using the pair of
estimates
(
(q−1 −q)[n]

)−1 −qn=q3n+O(q5n), 1−
√

1−qα�qα, for any α�0.

The operators π(x) − π(x) are given by sequences of rapid decay, and
hence are elements in OP−∞ (as defined in Appendix A). Therefore, we
can replace π by π when dealing with the local cocycle in the local index
theorem in the next section.

Remark 1. These operators differ slightly from the approximate repre-
sentation given in [8]. Using the inequality 1 −√

1−qα � qα, they can be
seen to differ from the operators therein by a compact operator in the
principal ideal Kq generated by the operator Lq : |jµn〉〉 �→ qj |jµn〉〉. Note
that Kq ⊂OP−∞.

Now, observe that

[|D|, π(a)]=a+ −a−, [D,π(a)]=F(a+ −a−),

[|D|, π(b)]=b+ −b−, [D,π(b)]=F(b+ −b−) (2.12)

and also that F commutes with a± and b±. The operators a± and b± have
a simpler expression if we use the following relabelling of the orthonormal
basis of H,

v
j

xy↑ :=|j, x− j, y− j − 1
2 ,↑〉, for x=0, . . . ,2j ; y=0, . . . ,2j +1,

v
j

xy↓ :=|j, x− j, y− j + 1
2 ,↓〉, for x=0, . . . ,2j ; y=0, . . . ,2j −1.

(2.13)

We again employ the pairs of vectors

vjxy :=
(
v
j

xy↑
v
j

xy↓

)

,
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where the lower component is understood to be zero if y=2j or 2j+1, or
if j =0. The simplification is that on these vector pairs, all the 2×2 matri-
ces in (2.11) become scalar matrices,

a+v
j
xy =

√
1−q2x+2

√
1−q2y+2 v

j+
x+1,y+1,

a−v
j
xy =qx+y+1 vj

−
xy ,

(2.14)
b+v

j
xy =qy

√
1−q2x+2 v

j+
x+1,y,

b−v
j
xy =−qx

√
1−q2y v

j−
x,y−1.

These formulas coincide with those found in [5, Section 6] up to a dou-
bling of the Hilbert space and the change of conventions a↔a∗, b↔−b.
Indeed, since the spin representation is isomorphic to a direct sum of two
copies of the regular representation, the formulas in (2.14) exhibit the same
phenomenon for the approximate representations.

3. The Cosphere Bundle

In [5], Connes constructs a “cosphere bundle” using the regular represen-
tation of A(SUq(2)). In view of (2.14), the same cosphere bundle may be
obtained directly from the spin representation by adapting that construc-
tion, as we now proceed to do. In what follows, we use the algebra A =
A(SUq(2)), but we could as well replace it with its completion C∞(SUq(2)),
which is closed under holomorphic functional calculus (see Appendix A).

We recall two well-known infinite dimensional representations π± of
A(SUq(2)) by bounded operators on the Hilbert space �2(N). On the stan-
dard orthonormal basis { εx :x ∈N }, they are given by

π±(a) εx :=
√

1−q2x+2 εx+1, π±(b) εx :=±qx εx. (3.1)

We may identify the Hilbert space H spanned by all vjxy↑ and vjxy↓ with the
subspace H′ of �2(N)x ⊗�2(N)y ⊗�2(Z)2j ⊗C

2 determined by the parameter
restrictions in (2.13). Thereby, we get the correspondence

a+ ↔π+(a)⊗π−(a)⊗V ⊗12,

a− ↔−q π+(b)⊗π−(b∗)⊗V ∗ ⊗12,

b+ ↔−π+(a)⊗π−(b)⊗V ⊗12,

b− ↔−π+(b)⊗π−(a∗)⊗V ∗ ⊗12, (3.2)

where V is the unilateral shift operator ε2j �→ ε2j+1 in �2(Z). This again,
apart from the 2 × 2 identity matrix 12, coincides with the formula (204)
in [5], up to the aforementioned exchange of the generators.
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The shift V in the action of the operators a± and b± on H can be
encoded using the Z-grading coming from the one-parameter group of
automorphisms γ (t) generated by |D|,

γ (t)=
(
γ↑↑(t) γ↑↓(t)
γ↓↑(t) γ↓↓(t)

)

,

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ↑↑(t): P ↑T P ↑ �→P ↑eit |D|T e−it |D|P ↑,
γ↑↓(t):P ↑T P ↓ �→P ↑eit |D|T e−it |D|P ↓,
γ↓↑(t):P ↓T P ↑ �→P ↓eit |D|T e−it |D|P ↑,
γ↓↓(t):P ↓T P ↓ �→P ↓eit |D|T e−it |D|P ↓

(3.3)

for any operator T on H. On the subalgebra of “diagonal” operators T =
P ↑T P ↑ +P ↓T P ↓, the compression γ↑↑ ⊕ γ↓↓ detects the shift of j of the
restrictions of T to H↑ and H↓, respectively. For example, γ↑↑(t)⊕ γ↓↓(t):
a± �→ e±it a±, so that the Z-grading encodes the correct shifts j → j ± 1

2 in
the formulas for a±; and likewise for b±.

From Equation (3.1) it follows that b−b∗ ∈kerπ±, and so the represen-
tations π± are not faithful on A(SUq(2)). We define two algebras A(D2

q±)
to be the corresponding quotients,

0→kerπ± →A(SUq(2)) r±−→A(D2
q±)→0. (3.4)

We elaborate a little on the structure of the algebras A(D2
q±). For conve-

nience, we shall omit the quotient maps r± in this discussion. Then b=b∗

in A(D2
q±), and from the defining relations (2.1) of A(SUq(2)), we obtain

ba=q ab, a∗b=q ba∗,

a∗a+q2b2 =1, aa∗ +b2 =1. (3.5)

These algebraic relations define two isomorphic quantum 2-spheres S
2
q+ �

S
2
q− =:S2

q which have a classical subspace S
1 given by the characters b �→0,

a �→ λ with |λ| = 1. A substitution q �→ q2, followed by b �→ q−2b shows
that S

2
q is none other than the equatorial Podleś sphere [11]. Thus, the

above quotients of A(SUq(2)) with respect to kerπ± either coincide with
A(S2

q) or are quotients of it. Now, from (3.1) one sees that the spectrum
of π±(b) is either real positive or real negative, depending on the ± sign.
Hence, the algebras A(D2

q+) and A(D2
q−) describe the two hemispheres of

S
2
q and may be thought of as quantum disks, thus justifying the notation
Dq±.

There is a symbol map σ : A(D2
q±)→ A(S1) that maps these “noncom-

mutative disks” to their common boundary S
1, which is the equator of

the equatorial Podleś sphere S
2
q . Explicitly, the symbol map is given as a

∗-homomorphism on the generators of A(D2
q,±) by
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σ(r±(a)) :=u; σ(r±(b)) :=0, (3.6)

where u is the unitary generator of A(S1).
Recall the algebra B defined around (2.11) with generators ã±, b̃±

and P ↓a+P ↑ +P ↑a−P ↓, P ↓b+P ↑ +P ↑b−P ↓. The following result emulates
Proposition 4 of Connes [5] and establishes the correspondence (3.2). The
results of Da̧browski et al. [8] on the approximate representation are cru-
cial to its proof.

PROPOSITION 3.1. There is a ∗-homomorphism

ρ:B →A(D2
q+)⊗A(D2

q−)⊗A(S1) (3.7)

defined on generators by

ρ(ã+) := r+(a)⊗ r−(a)⊗u, ρ(ã−) :=−q r+(b)⊗ r−(b∗)⊗u∗,
ρ(b̃+) :=−r+(a)⊗ r−(b)⊗u, ρ(b̃−) :=−r+(b)⊗ r−(a∗)⊗u∗,

while the off-diagonal operators P ↓a+P ↑ +P ↑a−P ↓ and P ↓b+P ↑ +P ↑b−P ↓

are declared to lie in the kernel of ρ.
Proof. First note that the j -dependence of the operators in B is taken

care of by the factor u. Thus, it is enough to show that the following pre-
scription,

ρ1(ã+):=π+(a)⊗π−(a), ρ1(ã−):=−q π+(b)⊗π−(b∗),
ρ1(b̃+):=−π+(a)⊗π−(b), ρ1(b̃−):=−π+(b)⊗π−(a∗),

together with ρ1(P
↓a+P ↑ +P ↑a−P ↓)=ρ1(P

↓b+P ↑ +P ↑b−P ↓):= 0, defines
a ∗-homomorphism ρ1 : B → A(D2

q+)⊗ A(D2
q−). In the notation, we have

replaced the representations π± of A(SUq(2)) by corresponding faithful
representations of A(D2

q±) (omitting the maps r±).
We define a map �:H→ (�2(N)⊗ �2(N))⊗C

2, which simply forgets the
j -index on the basis vectors vjxy :

� :vjxy =
(
v
j

xy↑

v
j

xy↓

)

�→ εxy :=
(
εxy↑

εxy↓

)

,

where εxy↑ := εx ⊗ εy and εxy↓ := εx ⊗ εy in the two respective copies of
�2(N)⊗�2(N) in its tensor product with C

2.
For any operator T in B, we define the map ρ1 by

ρ1(T )εxy = lim
j→∞

�(T vjxy). (3.8)

This map is well defined, since T is a polynomial in the generators of
B. Each such generator shifts the indices x, y, j by ± 1

2 , with a coefficient
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matrix that can be bounded uniformly in x, y and j (cf. [8]) so that the
limit j→∞ exists.

First of all, it can be directly verified, using estimates given in Section
7 [8], that the off-diagonal operators P ↓a+P ↑ + P ↑a−P ↓ and P ↓b+P ↑ +
P ↑b−P ↓ are in the kernel of ρ1. Next, the difference between the generators
and approximate generators a± − ã± (and similarly b̃± −b±) lie in the kernel
of ρ1, as well. Hence we can replace ã± and b̃± by a± and b±, respectively.
Since the coefficients in the definition of a± and b± (Equation (2.14)) are
j -independent, we conclude that ρ1 is of the desired form. For example, we
compute:

ρ1(ã+)εxy =ρ1(a+)εxy = lim
j→∞

√
1−q2x+2

√
1−q2y+2�(v

j+
x+1,y+1)

=
√

1−q2x+2
√

1−q2y+2εx+1,y+1 = (π+(a)⊗π−(a)⊗12)εxy.

Since a product of the operators a± and b± still does not contain
j -dependent coefficients, ρ1 respects the multiplication in B. By linearity of
the limit, ρ1 is an algebra map.

DEFINITION 3.2. The cosphere bundle on SUq(2) is defined as the range
of the map ρ in A(D2

q+)⊗A(D2
q−)⊗A(S1) and is denoted by A(S∗

q).

Note that S
∗
q coincides with the cosphere bundle defined in [5, 6], where

it is regarded as a noncommutative space over which D2
q+ ×D2

q− ×S
1 is fi-

bred.
The symbol map ρ rectifies the correspondence (3.2). Denote by Q the

orthogonal projector on �2(N)⊗�2(N)⊗�2(Z)⊗C
2 with range H′, which is

the Hilbert subspace previously identified with H just before (3.2). Using
(3.2) in combination with Proposition 3.1, we conclude that

T −Q(ρ(T )⊗12)Q∈OP−∞, for all T ∈B. (3.9)

Here, the action of ρ(T ) on �2(N)⊗�2(N)⊗�2(Z) is determined by regard-
ing �2(Z) as the Hilbert space of square-summable Fourier series on S

1.

4. The Dimension Spectrum

We again follow [5] for the computation of the dimension spectrum. We
define three linear functionals τ↑

0 , τ↓
0 and τ1 on the algebras A(D2

q±). Since
their definitions for both disks D2

q+ and D2
q− are identical, we shall omit

the ± for notational convenience.
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For x ∈A(D2
q) we define,

τ1(x) := 1
2π

∫

S1
σ(x),

τ
↑
0 (x) := lim

N→∞
TrN π(x)− (N + 3

2)τ1(x),

τ
↓
0 (x) := lim

N→∞
TrN π(x)− (N + 1

2)τ1(x),

where σ is the symbol map (3.6), and TrN is the truncated trace

TrN(T ) :=
N∑

k=0

〈εk |T εk〉.

The definition of the two different maps τ↑
0 and τ

↓
0 is suggested by the

constants 3
2 and 1

2 appearing in our choice of the Dirac operator; it will
simplify some residue formulas later on. We find that

TrN(π(a))= (N + 3
2)τ1(a)+ τ↑

0 (a)+O(N−k)

= (N + 1
2)τ1(a)+ τ↓

0 (a)+O(N−k) for all k>0.

Let us denote by r the restriction homomorphism from A(D2
q+)⊗A(D2

q−)⊗
A(S1) onto the first two legs of the tensor product. In particular, we will
use it as a map

r:A(S∗
q)→A(D2

q+)⊗A(D2
q−).

In the following, we adopt the notation [7]:
∫

− T :=Resz=0 Tr T |D|−z.

THEOREM 4.1. The dimension spectrum of the spectral triple (A(SUq(2)),H,D)
is simple and given by {1,2,3}; the corresponding residues are

∫

− T |D|−3 =2(τ1 ⊗ τ1)
(
rρ(T )0

)
,

∫

− T |D|−2 = (τ1 ⊗ (τ↑
0 + τ↓

0 )+ (τ↑
0 + τ↓

0 )⊗ τ1
)(
rρ(T )0

)
,

∫

− T |D|−1 = (τ↑
0 ⊗ τ↓

0 + τ↓
0 ⊗ τ↑

0 )
(
rρ(T )0

)

with T ∈�0(A).
Proof. If we identify H′ ⊂ �2(N)⊗ �2(N)⊗ �2(Z)⊗ C

2 with H as above,
the one-parameter group of automorphisms γ (t) induces a Z-grading on
A(S∗

q), in its representation on H′. We denote by ρ(T )0 the degree-zero
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part of the diagonal operator ρ(T ), for T ∈ B. For the calculation of the
dimension spectrum we need to find the poles of the zeta function ζT (z) :=
Tr(T |D|−z) for all T ∈�0(A). From our discussion of the generators of
�0(A), we see that we only need to adjoin P ↑B to B.

In the zeta function ζT (z) for T ∈ B, we can replace T by Q(ρ(T )⊗
12)Q since their difference is a smoothing operator by (3.9). The operator
Q(ρ(T )⊗12)Q commutes with the projector P ↑ so we can first calculate

Tr(P ↑Q(ρ(T )⊗12)Q |D|−z)
=

∞∑

2j=0

(2j + 3
2)

−z(Tr2j ⊗Tr2j+1)(rρ(T )
0)

= (τ1 ⊗ τ1)(rρ(T )
0) ζ(z−2)+ (τ1 ⊗ τ↓

0 + τ↑
0 ⊗ τ1)(rρ(T )

0) ζ(z−1)+
+(τ↑

0 ⊗ τ↓
0 )(rρ(T )

0) ζ(z)+f↑(z), (4.1)

where f↑(z) is holomorphic in z∈C. Similarly,

Tr(P ↓Q(ρ(T )⊗12)Q |D|−z)
=

∞∑

2j=0

(2j + 3
2)

−z(Tr2j+1 ⊗Tr2j )(rρ(T )
0)

= (τ1 ⊗ τ1)(rρ(T )
0) ζ(z−2)+ (τ1 ⊗ τ↑

0 + τ↓
0 ⊗ τ1)(rρ(T )

0) ζ(z−1)+
+(τ↓

0 ⊗ τ↑
0 )(rρ(T )

0) ζ(z)+f↓(z), (4.2)

where f↓(z) is holomorphic in z. Since ζ(z) has a simple pole at z=1, we
see that the zeta function ζT has simple poles at 1, 2 and 3.

From the above proof, we derive the following formulas which will be
used later on:

∫

− P ↑T |D|−3 = (τ1 ⊗ τ1)
(
rρ(T )0

)
,

∫

− P ↑T |D|−2 = (τ1 ⊗ τ↓
0 + τ↑

0 ⊗ τ1
)(
rρ(T )0

)
,

∫

− P ↑T |D|−1 = (τ↑
0 ⊗ τ↓

0 )
(
rρ(T )0

)
(4.3)

with T any element in �0(A).

5. Local Index Formula (d=3d=3d=3)

We begin by discussing the local cyclic cocycles giving the local index
formula, in the general case when the spectral triple (A,H,D) has simple
discrete dimension spectrum not containing 0 and bounded above by 3.
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Let us recall that with a general (odd) spectral triple (A,H,D) there
comes a Fredholm index of the operator D as an additive map ϕ:K1(A)→
Z defined as follows. If F = SignD and P is the projector P = 1

2(1 +F)

then

ϕ([u])= Index(PuP ) (5.1)

with u ∈ Matr (A) a unitary representative of the K1 class (the operator
PuP is automatically Fredholm). The above map is computed by pairing
K1(A) with “nonlocal” cyclic cocycles χn given in terms of the operator F
and of the form

χn(a0, . . . , αn)=λn Tr(a0 [F,a1] . . . [F,an]), for all aj ∈A, (5.2)

where λn is a suitable normalization constant. The choice of the inte-
ger n is determined by the degree of summability of the Fredholm mod-
ule (H,F ) over A; any such module is declared to be p-summable if
the commutator [F,a] is an element in the pth Schatten ideal Lp(H),
for any a ∈ A. The minimal n in (5.2) needs to be taken such that
n�p.

On the other hand, the Connes–Moscovici local index theorem [7]
expresses the index map in terms of a local cocycle φodd in the (b,B)

bicomplex of A which is a local representative of the cyclic cohomol-
ogy class of χn (the cyclic cohomology Chern character). The cocy-
cle φodd is given in terms of the operator D and is made of a finite
number of terms φodd = (φ1, φ3, . . . ); the pairing of the cyclic cohomol-
ogy class [φodd] ∈ HCodd(A) with K1(A) gives the Fredholm index (5.1)
of D with coefficients in K1(A). The components of the cyclic cocy-
cle φodd are explicitly given in [7]; we shall presently give them for our
case.

We know from Proposition 2.1 that our spectral triple (A,H,D) with
A = A(SUq(2)) has metric dimension equal to 3. As for the correspond-
ing Fredholm module (H,F ) over A = A(SUq(2)), it is 1-summable since
all commutators [F,π(x)], with x ∈ A, are off-diagonal operators given
by sequences of rapid decay. Hence each [F,π(x)] is trace-class and
we need only the first Chern character χ1(a0, a1) = Tr(a0 [F,a1]), with
a1, a2 ∈ A (we shall omit discussing the normalization constant for the
time being and come back to it in Section 6). An explicit expression
for this cyclic cocycle on the PBW-basis of SUq(2) was obtained in
[10].

The local cocycle has two components, φodd = (φ1, φ3), the cocycle condi-
tion (b+B)φodd =0 reading Bφ1 =0, bφ1 +Bφ3 =0, bφ3 =0 (see Appendix
A); it is explicitly given by
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φ1(a0, a1) :=
∫

− a0 [D,a1] |D|−1 − 1
4

∫

− a0 ∇([D,a1]) |D|−3 +

+1
8

∫

− a0 ∇2([D,a1]) |D|−5,

φ3(a0, a1, a2, a3) := 1
12

∫

− a0 [D,a1] [D,a2] [D,a3] |D|−3,

where ∇(T ) := [D2, T ] for any operator T on H. Under the assumption that
[F,a] is traceclass for each a∈A, these expressions can be rewritten as fol-
lows:

φ1(a0, a1)=
∫

− a0 δ(a1)F |D|−1 − 1
2

∫

− a0 δ
2(a1)F |D|−2 +

+1
4

∫

− a0 δ
3(a1)F |D|−3,

φ3(a0, a1, a2, a3)= 1
12

∫

− a0 δ(a1) δ(a2) δ(a3)F |D|−3. (5.3)

We now quote Proposition 2 of Connes [5], referring to that paper for
its proof.

PROPOSITION 5.1. Let (A,H,D) be a spectral triple with discrete simple
dimension spectrum not containing 0 and bounded above by 3. If [F,a] is
trace-class for all a∈A, then the Chern character χ1 is equal to φodd − (b+
B)φev where the cochain φev = (φ0, φ2) is given by

φ0(a) :=Tr(Fa |D|−z)∣∣
z=0,

φ2(a0, a1, a2) := 1
24

∫

− a0 δ(a1) δ
2(a2)F |D|−3.

The absence of 0 in the dimension spectrum is needed for the definition
of φ0. The cochain φev = (φ0, φ2) was named η-cochain in [5]. In compo-
nents, the equivalence of the characters means that

φ1 =χ1 +bφ0 +Bφ2, φ3 =bφ2.

The following general result, in combination with Proposition 5.1,
shows that χ1 can be given (up to coboundaries) in terms of one single
(b,B)-cocycle ψ1.

PROPOSITION 5.2. Let (A,H,D) be a spectral triple with discrete simple
dimension spectrum not containing 0 and bounded above by 3. Assume that
[F,a] is trace class for all a∈A, and set P := 1

2(1+F). Then, the local Chern
character φodd is equal to ψ1 − (b+B)φ′

ev, where
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ψ1(a0, a1) :=2
∫

− a0 δ(a1)P |D|−1 −
∫

− a0 δ
2(a1)P |D|−2 +

+2
3

∫

− a0 δ
3(a1)P |D|−3

and φ′
ev = (φ′

0, φ
′
2) is given by

φ′
0(a) :=Tr(a |D|−z)∣∣

z=0,

φ′
2(a0, a1, a2) :=− 1

24

∫

− a0 δ(a1) δ
2(a2)F |D|−3.

Proof. One needs to verify the following equalities between cochains in
the (b,B) bicomplex:

φ1 +bφ′
0 +Bφ′

2 =ψ1,

φ3 +bφ′
2 =0.

The second equality follows from a direct computation of bφ′
2 and compar-

ing with Equation (5.3). Note that this identity proves that ψ1 is indeed a
cyclic cocycle. One also shows that

Bφ′
2(a0, a1)= 1

12

∫

− a0 δ
3(a1)F |D|−3.

Then, using the asymptotic expansion [7]:

|D|−za∼
∑

k�0

(−z
k

)

δk(a) |D|−z−k

modulo very low powers of |D|, one computes

bφ′
0(a0, a1)=

∫

− a0 δ(a1)|D|−1 − 1
2

∫

− a0 δ
2(a1)|D|−2 + 1

3

∫

− a0 δ
3(a1)|D|−3

and it is now immediate that φ1 +bφ′
0 +Bφ′

2 gives the cyclic cocycle ψ1.

Remark 2. The term involving P |D|−3 would vanish if the latter were
traceclass, which is the case in [5] (this is the statement that the metric
dimension of the projector P is 2).

Combining these two propositions, it follows that the cyclic 1-cocycles
χ1 and ψ1 are related as:

χ1 =ψ1 −bβ, (5.4)

where β(a)=2 Tr(Pa |D|−z)∣∣
z=0.
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6. The Pairing Between HC1HC1HC1 and K1K1K1

In this section, we shall calculate the value of the index map (5.1) when U
is the unitary operator representing the generator of K1(A(SUq(2))),

ϕ([U ])= Index(PUP ) :=dim kerPUP −dim kerPU ∗P

with

U =
(

a b

−qb∗ a∗

)

(6.1)

acting on the doubled Hilbert space H⊗C
2 via the representation π ⊗ 12.

The projector P was denoted P ↑ in Section 2. One expects this index to
be nonzero, since the K-homology class of (A,H,D) is nontrivial. This has
been remarked also in [3], where our spectral triple is decomposed in terms
of the spectral triple constructed in [2].

We first compute the above index directly, which is possible due to the
simple nature of this particular example. A short computation shows that
the kernel of the operator PU ∗P is trivial, whereas the kernel of PUP
contains only elements proportional to the vector

( |0,0,− 1
2 ,↑〉

−q−1|0,0, 1
2 ,↑〉

)

leading to ϕ([U ])= Index(PUP )=1.
Recall that for A = A(SUq(2)), our Fredholm module (H,F ) over

A(SUq(2)) is 1-summable. From Section 5, we know that Index(PUP ) can
be computed using the local cyclic cocycle ψ1 (see Equation (5.4)). To pre-
pare for this index computation via ψ1, we recall the following lemma [4,
IV.1.γ ], which fixes the normalization constant in front of χ1. For com-
pleteness we recall the proof.

LEMMA 6.1. Let (H,F ) be a 1-summable Fredholm module over A with
P = 1

2(1 +F); let u∈ Matr (A) be unitary with a suitable r. Then PuP is a
Fredholm operator on PH and

Index(PuP )=− 1
2 Tr(u∗[F,u])=− 1

2χ1(u
∗, u).

Proof. We claim that Pu∗P is a parametrix for PuP , that is, an inverse
modulo compact operators on PH. Indeed, since P − u∗Pu= − 1

2u
∗ [F,u]

is traceclass by 1-summability, by composing it from both sides with P it
follows that P −Pu∗PuP is traceclass. Therefore,

Index(PuP )=Tr(P −Pu∗PuP )−Tr(P −PuPu∗P) (6.2)

and the identities P −Pu∗PuP =− 1
2Pu

∗ [F,u]P and [F,u]u∗ +u [F,u∗]=0,
together with [F, [F,u]]+ =0, imply the statement.
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Thus, the index of PUP , for the U of (6.1) is given, up to an overall
− 1

2 factor, by

ψ1(U
−1,U)=2

∫

− U ∗
kl δ(Ulk)P |D|−1 −

∫

− U ∗
kl δ

2(Ulk)P |D|−2 +

+2
3

∫

− U ∗
kl δ

3(Ulk)P |D|−3

with summation over k, l = 0,1 understood. We compute this expression
using Equation (4.3). First note that since the entries of U are generators
of A(SUq(2)), we see from (2.6) and (2.7) that ρ(δ2(Ukl))=ρ(Ukl), a rela-
tion that simplifies the above formula. We compute the degree 0 part of
ρ(U ∗

kl δ(Ulk)) with respect to the grading coming from γ (t) – the only part
that contributes to the trace – using the algebra relations of A(D2

q±),

ρ(U ∗
kl δ(Ulk))

0 =2(1−q2)1⊗ r−(b)2.

Using the basic equalities

τ1(1)=1, τ1(r±(b)n)=0, τ
↑
0 (1)=−τ↓

0 (1)=− 1
2 ,

τ
↑
0 (r±(b)

n)= τ↓
0 (r±(b)

n)= (±1)n

1−qn ,

we find that

ψ1(U
−1,U)=2(1−q2)(2τ↑

0 ⊗ τ↓
0 + 2

3τ1 ⊗ τ1)
(
1⊗ r−(b)2

)−
−(τ1 ⊗ τ↓

0 + τ↑
0 ⊗ τ1)

(
1⊗1

)=−2.

Taking the proper coefficients, we finally obtain

Index(PUP )=− 1
2ψ1(U

−1,U)=1.

Appendix A. Pseudodifferential Calculus and Cyclic Cohomology

Recall [1, 7, 9] that a spectral triple (A,H,D) is regular (or smooth, or
QC∞) if the algebra generated by A and [D,A] lies within the smooth
domain

⋂∞
n=0 Dom δn of the operator derivation δ(T ) :=|D|T −T |D|. This

condition permits to introduce the analogue of Sobolev spaces Hs :=
Dom(1+D2)s/2 for s∈R. Let H∞ :=⋂s�0H

s , which is a core for |D|. Then
T : H∞ → H∞ has analytic order � k if T extends to a bounded operator
from Hk+s to Hs for all s�0. It turns out that A(H∞)⊂H∞.

Assume that |D| is invertible – which is a generic case of the D used in
this paper (for a careful treatment of the noninvertible case, see [1]). The
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space OPα of operators of order � α consists of those T : H∞ → H∞ such
that

|D|−αT ∈
∞⋂

n=1

Dom δn.

(Operators of orderα have analytic orderα.) In particular, OP0 =⋂∞
n=1 Dom δn,

the algebra of operators of order � 0 includes A ∪ [D,A] and their iter-
ated commutators with |D|. Moreover, [D2,OPα] ⊂ OPα+1 and OP−∞ :=⋂
α�0 OPα is a two-sided ideal in OP0.
The algebra structure can be read off in terms of an asymptotic expan-

sion: T ∼∑∞
j=0 Tj whenever T and each Tj are operators from H∞ to H∞;

and for each m∈ Z, there exists N such that for all M >N , the operator
T −∑M

j=1 Tj has analytic order �m. For instance, for complex powers of
|D| (defined by the Cauchy formula) there is a binomial expansion:

[|D|z, T ]∼
∞∑

k=1

(
z

k

)

δk(T ) |D|z−k.

Thus far, we have employed finitely generated algebras A(X), where X=
SUq(2), D2

q±, S
1 or S

2
q . In each case, we can enlarge them to algebras

C∞(X) by replacing polynomials in the generators (given in a prescribed
order) by series with coefficients of rapid decay: this is clear when X =
S

1, where smooth functions have rapidly decaying Fourier series. Using the
symbol maps (3.4), (3.6) and (3.7) together with Lemma 2 of Connes [6],
we can check that each such C∞(X) is closed under holomorphic func-
tional calculus. The foregoing results apply, mutatis mutandis, to the reg-
ular spectral triple (C∞(SUq(2)),H,D).

For convenience, we also summarize here the cyclic cohomology of the
algebra A(SUq(2)). A cyclic n-cochain on an algebra A is an element ϕ ∈
Cnλ(A), the collection of (n+ 1)-linear functionals on A which in addition
are cyclic, λϕ=ϕ, with

λϕ(a0, a1, . . . , an)= (−1)nϕ(an, a0, . . . , an−1).

There is a cochain complex (C•
λ(A) = ⊕

n C
n
λ(A), b) with (Hochschild)

coboundary operator b : Cn(A)→Cn+1(A) defined by

bϕ(a0, a1, . . . , an+1) :=
n∑

j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . , an+1)+

+(−1)n+1ϕ(an+1a0, a1, . . . , an).

The cyclic cohomology HC•(A) of the algebra A is the cohomology of this
complex,

HCn(A) :=Hn(C•
λ(A), b).
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Equivalently, HC•(A) can be described [4, 9] by using the second filtration
of a (b,B) bicomplex of arbitrary (i.e., noncyclic) cochains on A. Here the
operator B decreases the degree B:Cn(A)→Cn−1(A), and is defined as B=
NB0, with

(B0ϕ)(a0, . . . , an−1) :=ϕ(1, a0, . . . , an−1)− (−1)nϕ(a0, . . . , an−1,1),

(Nψ)(a0, . . . , an−1) :=
n−1∑

j=0

(−1)(n−1)jψ(aj , . . . , an−1, a0, . . . , aj−1).

It is straightforward to check that B2 = 0 and that bB+Bb= 0; thus (b+
B)2 = 0. By putting together these two operators, one gets a bicomplex
(C•(A), b,B) with Cp−q(A) in bidegree (p, q). To a cyclic n-cocycle one
associates the (b,B) cocycle ϕ, (b+B)ϕ=0, having only one nonvanishing
component ϕn,0 given by ϕn,0 := (−1)�n/2�ψ .

The cyclic cohomology of the algebra A(SUq(2)) was computed in [10].
The even components vanish while the odd ones were found to be one-
dimensional and generated by the cyclic 1-cocycle τodd ∈HC1(A(SUq(2))),
which was obtained as a character of a 1-summable Fredholm module,

τodd(a
lbm(b∗)n, al

′
bm

′
(b∗)n

′
)

=

⎧
⎪⎨

⎪⎩

0 if l+ l′ �=0,

(n−m)q
l(m′+n′)∏l

i=1(1−q2i)
∏l
i=0(1−q2i+2n+2n′

)
δn+n′,m+m′δl,−l′ otherwise,

where we use the notation a−l = (a∗)l for l > 0. Since HC1(A(SUq(2)))
is one-dimensional, the characters of the 1-summable Fredholm modules
found in [5] and in this paper, are all cohomologous to this cyclic cocycle.
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