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Abstract: We construct a 3+-summable spectral triple (A(SUq(2)),H,D) over the
quantum group SUq(2) which is equivariant with respect to a left and a right action
of Uq(su(2)). The geometry is isospectral to the classical case since the spectrum of
the operator D is the same as that of the usual Dirac operator on the 3-dimensional
round sphere. The presence of an equivariant real structure J demands a modification in
the axiomatic framework of spectral geometry, whereby the commutant and first-order
properties need be satisfied only modulo infinitesimals of arbitrary high order.

1. Introduction

In this paper, we show how to successfully construct a (noncommutative) 3-dimensional
spectral geometry on the manifold of the quantum group SUq(2). This is done by build-
ing a 3+-summable spectral triple (A(SUq(2)),H,D)which is equivariant with respect
to a left and a right action of Uq(su(2)). The geometry is isospectral to the classical case
in the sense that the spectrum of the operator D is the same as that of the usual Dirac
operator on the 3-sphere S

3 � SU(2), with the “round” metric.
The possibility of such an isospectral deformation was suggested in [10] where

the operator D was named the “true Dirac” operator. Subsequent investigations [13]
seemed to rule out this deformation because some of the commutators [D, x], with
x ∈ A(SUq(2)), failed to extend to bounded operators, a property which is essential to
the definition of a spectral triple [7].

These difficulties are overcome here by constructing on a Hilbert space of spinors
H a spin representation of the algebra A(SUq(2)) which differs slightly from the one
used in [13]. Our spin representation is determined by requiring that it be equivariant
with respect to a left and a right action of Uq(su(2)), a condition which is not present in
� Partially supported by Polish State Committee for Scientific Research (KBN) under grant 2 P03B

022 25.
�� Regular Associate of the Abdus Salam ICTP, Trieste.
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the previous approach. The role of Hopf-algebraic equivariance in producing interesting
spectral triples has already met with some success [5, 12]; for a programmatic viewpoint,
see [30].

Our construction of an isospectral noncommutative geometry on the manifold of
SUq(2), which deforms the usual geometry on the 3-dimensional sphere, belongs to an
interesting terrain where noncommutative geometry meets the underlying “spaces” of
quantum groups. Recent examples [11, 12, 26, 29] are concerned with the “two-dimen-
sional” spheres of Podleś [27] and more general flag manifolds [22]. The left-equivariant
spectral triple on SUq(2) constructed in [5] and fully analyzed in [9] is not isospectral
and does not have a good limit at the classical value of the deformation parameter.

After a brief review in Sect. 2 of SUq(2) and its symmetries, mainly to fix notation,
we construct its left regular representation in Sect. 3 via equivariance, and transfer that
construction to spinors in Sect. 4. On the Hilbert space of spinors, we consider in Sect. 5
a class of equivariant “Dirac” operators D. For such an operator D having a classical
spectrum, that is, with eigenvalues depending linearly on “total angular momentum”,
we prove boundedness of the commutators [D, x], for all x ∈ A(SUq(2)). In fact, this
equivariant Dirac operator is essentially determined by a modified first-order condition,
as is shown later on.

Since the spectrum is classical, the deformation –from SU(2) to SUq(2)– is isospec-
tral, and in particular the metric dimension of the spectral geometry is 3.

The new feature of the spin geometry of SUq(2) is the nature of the real structure
J , whose existence is addressed in Sect. 6. An equivariant J is constructed by suitably
lifting to the Hilbert space of spinors H the antiunitary Tomita conjugation operator for
the left regular representation of A(SUq(2)). However, this J is not the Tomita operator
for the spin representation; for if it were, the spectral triple would inherit equivariance
under the co-opposite symmetry algebra U1/q(su(2)), forcing it to be trivial. Therefore,
the equivariant J we shall use does not intertwine the spin representation of A(SUq(2))
with its commutant, and it is not possible to satisfy all the desirable properties of a real
spectral triple as set forth in [8, 15]. This rupture was already observed in [11]; just as
in that paper, we must also weaken the first-order requirement on D.

In Sect. 7, we rescue the formalism by showing that the commutant and first-order
properties nevertheless do hold, up to infinitesimals of arbitrary high order. For that,
we identify an ideal of trace-class operators containing all commutation defects; these
defects vanish in the classical case. An appropriately modified first-order condition is
given, which distinguishes Dirac operators with classical spectra.

A discussion of the Connes–Moscovici local index formula for the spectral geom-
etry presented in this paper is currently under investigation and will be soon reported
elsewhere.

2. Algebraic Preliminaries

Definition 2.1. Let q be a real number with 0 < q < 1, and let A = A(SUq(2)) be the
∗-algebra generated by a and b, subject to the following commutation rules:

ba = qab, b∗a = qab∗, bb∗ = b∗b,
a∗a + q2b∗b = 1, aa∗ + bb∗ = 1.

(2.1)

As a consequence, a∗b = qba∗ and a∗b∗ = qb∗a∗. This becomes a Hopf ∗-algebra
under the coproduct
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�a := a ⊗ a − q b ⊗ b∗,
�b := b ⊗ a∗ + a ⊗ b,

counit ε(a) = 1, ε(b) = 0, and antipode Sa = a∗, Sb = −qb, Sb∗ = −q−1b∗,
Sa∗ = a.

Remark 2.2. Here we follow Majid’s “lexicographic convention” [23, 24] (where, with
c = −qb∗, d = a∗, a factor of q is needed to restore alphabetical order). Another
much-used convention is related to ours by a ↔ a∗, b ↔ −b; see, for instance, [5, 9].

Definition 2.3. The Hopf ∗-algebra U = Uq(su(2)) is generated as an algebra by ele-
ments e, f, k, with k invertible, satisfying the relations

ek = qke, kf = qf k, k2 − k−2 = (q − q−1)(f e − ef ), (2.2)

and its coproduct � is given by

�k = k ⊗ k, �e = e ⊗ k + k−1 ⊗ e, �f = f ⊗ k + k−1 ⊗ f.

Its counit ε, antipode S, and star structure ∗ are given respectively by

ε(k) = 1, Sk = k−1, k∗ = k,

ε(f ) = 0, Sf = −qf, f ∗ = e,

ε(e) = 0, Se = −q−1e, e∗ = f.

There is an automorphism ϑ of Uq(su(2)) defined on the algebra generators by

ϑ(k) := k−1, ϑ(f ) := −e, ϑ(e) := −f. (2.3)

Remark 2.4. We recall that there is another convention for the generators of Uq(su(2)) in
widespread use: see [19], for instance. The handy compendium [21] gives both versions,
denoting by Ŭq(su(2)) the version which we adopt here. However, the parameter q of
this paper corresponds to q−1 in [21], or alternatively, we keep the same q but exchange
e and f of that book; the equivalence of these procedures is immediate from the above
formulas (2.2).

The older literature uses the convention which we follow here, with generators usually
written as K = k, X+ = f , X− = e.

We employ the so-called “q-integers”, defined for each n ∈ Z as

[n] = [n]q := qn − q−n

q − q−1 provided q �= 1. (2.4)

Definition 2.5. There is a bilinear pairing between U and A, defined on generators by

〈k, a〉 = q
1
2 , 〈k, a∗〉 = q− 1

2 , 〈e,−qb∗〉 = 〈f, b〉 = 1,

with all other couples of generators pairing to 0. It satisfies

〈(Sh)∗, x〉 = 〈h, x∗〉, for all h ∈ U, x ∈ A. (2.5)

We regard U as a subspace of the linear dual of A via this pairing. There are canonical
left and right U-module algebra structures on A [32] such that

〈g, h 	 x〉 := 〈gh, x〉, 〈g, x 
 h〉 := 〈hg, x〉, for all g, h ∈ U, x ∈ A.
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They are given by h 	 x := (id ⊗h)�x and x 
 h := (h⊗ id)�x, or equivalently by

h 	 x := x(1) 〈h, x(2)〉, x 
 h := 〈h, x(1)〉 x(2), (2.6)

using the Sweedler notation �x =: x(1) ⊗ x(2) with implicit summation.

The right and left actions of U on A are mutually commuting:

(h 	 a) 
 g = (a(1) 〈h, a(2)〉) 
 g
= 〈g, a(1)〉 a(2) 〈h, a(3)〉 = h 	 (〈g, a(1)〉 a(2)) = h 	 (a 
 g),

and it follows from (2.5) that the star structure is compatible with both actions:

h 	 x∗ = ((Sh)∗ 	 x)∗, x∗ 
 h = (x 
 (Sh)∗)∗, for all h ∈ U, x ∈ A.
On the generators, the left action is given explicitly by

k 	 a = q
1
2 a, k 	 a∗ = q− 1

2 a∗, k 	 b = q− 1
2 b, k 	 b∗ = q

1
2 b∗,

f 	 a = 0, f 	 a∗ = −qb∗, f 	 b = a, f 	 b∗ = 0,
e 	 a = b, e 	 a∗ = 0, e 	 b = 0, e 	 b∗ = −q−1a∗,

(2.7)

and the right action is likewise given by

a 
 k = q
1
2 a, a∗ 
 k = q− 1

2 a∗, b 
 k = q
1
2 b, b∗ 
 k = q− 1

2 b∗,
a 
 f = −qb∗, a∗ 
 f = 0, b 
 f = a∗, b∗ 
 f = 0,
a 
 e = 0, a∗ 
 e = b, b 
 e = 0, b∗ 
 e = −q−1a.

(2.8)

We remark in passing that since A is also a Hopf algebra, the left and right actions
are linked through the antipodes:

S(Sh 	 x) = Sx 
 h.
Indeed, it is immediate from (2.6) and the duality relation 〈Sh, y〉 = 〈h, Sy〉 that

S(Sh 	 x) = S(x(1)) 〈Sh, x(2)〉 = S(x(1)) 〈h, S(x(2))〉 = (Sx)(2) 〈h, (Sx)(1)〉 = Sx 
 h.
As noted in [14], for instance, the invertible antipode of U serves to transform the

right action 
 into a second left action of U on A, commuting with the first. Here we
also use the automorphism ϑ of (2.3), and define

h · x := x 
 S−1(ϑ(h)).

Indeed, it is immediate that

g · (h · x) = (x 
 S−1(ϑh)) 
 S−1(ϑg)

= x 
 (S−1(ϑh)S−1(ϑg)) = x 
 (S−1(ϑ(gh)) = gh · x,
i.e., it is a left action. We tabulate this action directly from (2.8):

k · a = q
1
2 a, k · a∗ = q− 1

2 a∗, k · b = q
1
2 b, k · b∗ = q− 1

2 b∗,
f · a = 0, f · a∗ = qb, f · b = 0, f · b∗ = −a,
e · a = −b∗, e · a∗ = 0, e · b = q−1a∗, e · b∗ = 0.

(2.9)
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In the “classical” case q = 1, we use the well-known identifications SU(2) ≈ S
3 ≈

Spin(4)/Spin(3) = (SU(2)× SU(2))/SU(2); on quotienting out the diagonal SU(2)
subgroup of Spin(4), we realize SU(2) as the base space of the principal spin bundle
Spin(4) → S

3, with projection map (g, h) → gh−1. The action of Spin(4) on SU(2)
is given by (g, h) · x := gxh−1, and the stabilizer of 1 is the diagonal SU(2) subgroup.
We may choose to regard this as a pair of commuting actions of SU(2) on the base space
SU(2), apart from the nuance of switching one of them from a right to a left action
via the group inversion map. The foregoing pair of actions of Uq(su(2)) on A(SUq(2))
extends this scheme to the case q �= 1.

We recall [21] that A has a vector-space basis consisting of matrix elements of its
irreducible corepresentations, { t lmn : 2l ∈ N, m, n = −l, . . . , l − 1, l }, where

t000 = 1, t
1
2
1
2 ,

1
2

= a, t
1
2
1
2 ,− 1

2
= b.

The coproduct has the matricial form�tlmn = ∑
k t
l
mk⊗t lkn, while the product is given by

t
j
rs t

l
mn =

j+l∑

k=|j−l|
Cq

(
j l k

r m r +m

)

Cq

(
j l k

s n s + n

)

tkr+m,s+n, (2.10)

where the Cq(−) factors are q-Clebsch–Gordan coefficients [3, 20].
The Haar state on the C∗-completion C(SUq(2)), which we shall denote by ψ , is

faithful, and it is determined by setting ψ(1) := 1 and ψ(tlmn) := 0 if l > 0. (The Haar
state is usually denoted by h, but here we use h for a generic element of U instead.) Let
Hψ = L2(SUq(2), ψ) be the Hilbert space of its GNS representation; then the GNS
map η : C(SUq(2)) → Hψ is injective and satisfies

‖η(t lmn)‖2 = ψ((t lmn)
∗ t lmn) = q−2m

[2l + 1]
, (2.11)

and the vectors η(t lmn) are mutually orthogonal. From the formula

Cq

(
l l 0

−m m 0

)

= (−1)l+m
q−m

[2l + 1]
1
2

,

we see that the involution in C(SUq(2)) is given by

(t lmn)
∗ = (−1)2l+m+nqn−m tl−m,−n. (2.12)

In particular, t
1
2

− 1
2 ,

1
2

= −qb∗ and t
1
2

− 1
2 ,− 1

2
= a∗, as expected.

An orthonormal basis of Hψ is obtained by normalizing the matrix elements, us-
ing (2.11):

|lmn〉 := qm [2l + 1]
1
2 η(t lmn). (2.13)
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3. Equivariant Representation of A(SUq (2))

Let U be a Hopf algebra and let A be a left U-module algebra. A representation of A on
a vector space V is called U-equivariant if there is also an algebra representation of U
on V , satisfying the following compatibility relation:

h(xξ) = (h(1) 	 x)(h(2)ξ ), h ∈ U, x ∈ A, ξ ∈ V,
where 	 denotes the Hopf action of U on A. If A is instead a right U-module algebra,
the appropriate compatibility relation is x(hξ) = h(1)((x 
 h(2))ξ). Also, if A is an
U-bimodule algebra (carrying commuting left and right Hopf actions of U), one can
demand both of these conditions simultaneously for the pair of representations of A
and U on the same vector space V .

In the present case, it turns out to be simpler to consider equivariance under two
commuting left Hopf actions, as exemplified in the previous section. We shall first work
out in detail a construction of the regular representation of the Hopf algebra A(SUq(2)),
showing how it is determined by its equivariance properties.

We begin with the known representation theory [21] of Uq(su(2)). The irreducible
finite dimensional representations σl of Uq(su(2)) are labelled by nonnegative half-inte-
gers l = 0, 1

2 , 1, 3
2 , 2, . . . , and they are given by

σl(k) |lm〉 = qm |lm〉,
σl(f ) |lm〉 =

√
[l −m][l +m+ 1] |l, m+ 1〉, (3.1)

σl(e) |lm〉 =
√

[l −m+ 1][l +m] |l, m− 1〉,
where the vectors |lm〉, form = −l,−l+1, . . . , l−1, l, form a basis for the irreducible
U-module Vl , and the brackets denote q-integers as in (2.4). Moreover, σl is a ∗-repre-
sentation of Uq(su(2)), with respect to the hermitian scalar product on Vl for which the
vectors |lm〉 are orthonormal.

Remark 3.1. The irreducible representations (3.1) coincide with those of Ŭq(su(2)) in
[21], after exchange of e and f (see Remark 2.4). Further results on the representation
theory of Uq(su(2)) are taken from [21, Chap. 3] without comment; in particular we
use the q-Clebsch–Gordan coefficients found therein for the decomposition of tensor
product representations. An alternative source for these coefficients is [3], although their

q
1
2 is our q.

Definition 3.2. Let λ and ρ be mutually commuting representations of the Hopf algebra
U on a vector spaceV . A representationπ of the ∗-algebra A onV is (λ, ρ)-equivariant
if the following compatibility relations hold:

λ(h) π(x)ξ = π(h(1) · x) λ(h(2))ξ,
ρ(h) π(x)ξ = π(h(1) 	 x) ρ(h(2))ξ, (3.2)

for all h ∈ U , x ∈ A and ξ ∈ V .

We shall now exhibit an equivariant representation of A(SUq(2)) on the preHilbert
space which is the (algebraic) direct sum

V :=
∞⊕

2l=0

Vl ⊗ Vl.
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The two Uq(su(2)) symmetries λ and ρ will act on the first and the second leg of the
tensor product respectively; both actions will be via the irreps (3.1). In other words,

λ(h) = σl(h)⊗ id, ρ(h) = id ⊗σl(h) on Vl ⊗ Vl.

We abbreviate |lmn〉 := |lm〉 ⊗ |ln〉, for m, n = −l, . . . , l − 1, l; these form an ortho-
normal basis for Vl ⊗ Vl , for each fixed l. (As we shall see, this is consistent with our
labelling (2.13) of the orthonormal basis of Hψ in the previous section.) Also, we adopt
a shorthand notation:

l± := l ± 1
2 , m± := m± 1

2 , n± := n± 1
2 .

Proposition 3.3. A (λ, ρ)-equivariant ∗-representation π of A(SUq(2)) on the Hilbert
space V of (3.3) must have the following form:

π(a) |lmn〉 = A+
lmn|l+m+n+〉 + A−

lmn|l−m+n+〉,
π(b) |lmn〉 = B+

lmn|l+m+n−〉 + B−
lmn|l−m+n−〉,

π(a∗) |lmn〉 = Ã+
lmn|l+m−n−〉 + Ã−

lmn|l−m−n−〉, (3.3)

π(b∗) |lmn〉 = B̃+
lmn|l+m−n+〉 + B̃−

lmn|l−m−n+〉,
where the constantsA±

lmn andB±
lmn are, up to phase factors depending only on l, given by

A+
lmn = q(−2l+m+n−1)/2

(
[l +m+ 1][l + n+ 1]

[2l + 1][2l + 2]

) 1
2

,

A−
lmn = q(2l+m+n+1)/2

(
[l −m][l − n]

[2l][2l + 1]

) 1
2

,

B+
lmn = q(m+n−1)/2

(
[l +m+ 1][l − n+ 1]

[2l + 1][2l + 2]

) 1
2

, (3.4)

B−
lmn = −q(m+n−1)/2

(
[l −m][l + n]

[2l][2l + 1]

) 1
2

,

and the other coefficients are complex conjugates of these, namely,

Ã±
lmn = (A∓

l±m−n−)
�, B̃±

lmn = (B∓
l±m−n+)

�. (3.5)

Proof. First of all, notice that hermiticity of π entails the relations (3.5). We now use
the covariance properties (3.2). When h = k, they simplify to

λ(k) π(x) ξ = π(k · x) λ(k) ξ, ρ(k) π(x) ξ = π(k 	 x) ρ(k) ξ. (3.6)

Thus, for instance, when x = a we find the relations

λ(k) π(a) |lmn〉 = π(q
1
2 a)

(
qm|lmn〉) = qm+ 1

2π(a) |lmn〉,
ρ(k) π(a) |lmn〉 = π(q

1
2 a)

(
qn|lmn〉) = qn+

1
2π(a) |lmn〉,

where we have invoked k ·a = k	a = q
1
2 a. We conclude that π(a) |lmn〉 must lie in the

closed span of the basis vectors |l′m+n+〉. A similar argument with x = b in (3.6) shows

that π(b) increments n and decrements m by 1
2 , since k · b = q

1
2 b while k 	 b = q− 1

2 b.
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The analogous behaviour for x = a∗ and x = b∗ follows in the same way from (2.7)
and (2.9).

Thus, π(a)|lmn〉 is a (possibly infinite) sum

π(a) |lmn〉 = ∑
l′ Cl′lmn |l′m+n+〉, (3.7)

where the sum runs over nonnegative half-integers l′ = 0, 1
2 , 1, 3

2 , . . . .
Next, we call on (3.2) with h = f , x = a, to get

λ(f ) π(a)ξ = π(f · a) λ(k)ξ + π(k−1 · a) λ(f )ξ = q− 1
2π(a) λ(f )ξ,

on account of (2.7). Consequently, λ(f )rπ(a) = q−r/2π(a) λ(f )r for r = 1, 2, 3, . . . .
On applying λ(f )r to both sides of (3.7), we obtain on the left-hand side a multiple of
π(a) |l, m + r, n〉, which vanishes for m + r > l; and on the right-hand side we get∑
l′ Cl′lmn Dl′mr |l′,m+ + r, n+〉, where Dl′mr �= 0 as long as m + r + 1

2 ≤ l′. We
conclude that Cl′lmn = 0 for l′ > l + 1

2 , by linear independence of these summands.
To get a lower bound on the range of the index l′ in (3.7), we consider the

analogous expansion π(a∗) |lmn〉 = ∑
l′ C̃l′lmn |l′m−n−〉. Now λ(e)rπ(a∗) |lmn〉 =

qr/2π(a∗) λ(e)r |lmn〉 ∝ π(a∗) |l, m − r, n〉 vanishes for m − r < −l; while
λ(e)r |l′m−n−〉 = Fl′mr |l′,m− − r, n−〉 with Fl′mr �= 0 for m − r − 1

2 ≥ −l′. Again
we conclude that C̃l′lmn = 0 for l′ > l + 1

2 . However, since π is a ∗-representation, the
matrix element 〈l′m′n′ | π(a) | lmn〉 is the complex conjugate of 〈lmn | π(a∗) | l′m′n′〉,
which vanishes for l > l′ + 1

2 , so that the indices in (3.7) satisfy l − 1
2 ≤ l′ ≤ l + 1

2 .
Clearly, l′ = l is ruled out because l −m and l′ −m± 1

2 must both be integers.
Therefore, π(a) and also π(a∗) have the structure indicated in (3.3). A parallel argu-

ment shows the corresponding result for π(b) and π(b∗).
The coefficients which appear in (3.4) may be determined by further application of

the equivariance relations. Since f 	 a = 0 and e 	 b = 0, then by applying ρ(f ) and
ρ(e) to the first two relations of (3.3), we obtain the following recursion relations for
the coefficients A±

lmn, B±
lmn:

A+
lmn[l + n+ 2]

1
2 = q− 1

2A+
lm,n+1[l + n+ 1]

1
2 ,

A−
lmn[l − n− 1]

1
2 = q− 1

2A−
lm,n+1[l − n]

1
2 ,

B+
lmn[l − n+ 2]

1
2 = q

1
2B+

lm,n−1[l − n+ 1]
1
2 ,

B−
lmn[l + n− 1]

1
2 = q

1
2B−

lm,n−1[l + n]
1
2 .

Then, applying λ(f ) to the same pair of equations, we further find that

A+
lmn[l +m+ 2]

1
2 = q− 1

2A+
l,m+1,n[l +m+ 1]

1
2 ,

A−
lmn[l −m− 1]

1
2 = q− 1

2A−
l,m+1,n[l −m]

1
2 ,

B+
lmn[l +m+ 2]

1
2 = q− 1

2B+
l,m+1,n[l +m+ 1]

1
2 , (3.8a)

B−
lmn[l −m− 1]

1
2 = q− 1

2B−
l,m+1,n[l −m]

1
2 .
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These recursions are explicitly solved by

A+
lmn = q(m+n)/2[l +m+ 1]

1
2 [l + n+ 1]

1
2 a+

l ,

A−
lmn = q(m+n)/2[l −m]

1
2 [l − n]

1
2 a−

l ,

B+
lmn = q(m+n)/2[l +m+ 1]

1
2 [l − n+ 1]

1
2 b+

l , (3.8b)

B−
lmn = q(m+n)/2[l −m]

1
2 [l + n]

1
2 b−

l ,

where a±
l , b±

l depend only on l.
Once more, we apply the equivariance relations (3.2); this time, we use

ρ(e)π(a) = π(e 	 a)ρ(k)+ π(k−1 	 a)ρ(e) = π(b)ρ(k)+ q− 1
2π(a)ρ(e). (3.9)

Applied to |lmn〉, it yields an equation between linear combinations of |l+m+n−〉 and
|l−m+n−〉; equating coefficients, we find

b+
l = qla+

l , b−
l = −q−l−1a−

l .

Furthermore, applying also to |lmn〉 the relation

λ(e)π(b) = π(e · b)λ(k)+ π(k−1 · b)λ(e)
= q−1π(a∗)λ(k)+ q− 1

2π(b)λ(e),
(3.10)

we get, after a little simplification and use of (3.5),

(a−
l+ 1

2
)� = q2l+ 3

2 a+
l .

It remains only to determine the parameters a+
l . We turn to the algebra commutation

relation ba = qab and compare coefficients in the expansion of π(b)π(a) |lmn〉 =
q π(a)π(b) |lmn〉. Those of |l+ 1,m+ 1, n〉 and |l− 1,m+ 1, n〉 already coincide; but
from the |l, m+ 1, n〉 terms, we get the identity

q[2l + 2] |a+
l |2 = [2l] |a+

l− 1
2
|2.

This can be solved immediately, to give

a+
l = Cζl q

−l

[2l + 1]
1
2 [2l + 2]

1
2

,

where C is a positive constant, and ζl is a phase factor which can be absorbed in the
basis vectors |lmn〉; hereinafter we take ζl = 1 (we comment on that choice at the end
of the section).

Finally, from the relation a∗a + q2b∗b = 1 we obtain

1 = 〈000 | π(a∗a + q2b∗b) | 000〉 = |a+
0 |2 + q2|b+

0 |2 = (1 + q2)C2/[2] = q C2,
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and thus C = q− 1
2 . We therefore find that

a+
l = q−l− 1

2

[2l + 1]
1
2 [2l + 2]

1
2

, a−
l = ql+

1
2

[2l]
1
2 [2l + 1]

1
2

,

b+
l = q− 1

2

[2l + 1]
1
2 [2l + 2]

1
2

, b−
l = − q− 1

2

[2l]
1
2 [2l + 1]

1
2

,

and substitution in (3.8b) yields the coefficients (3.4). ��
It is easy to check that the formulas (3.3) give precisely the left regular representa-

tion πψ of A(SUq(2)). Indeed, that representation was implicitly given already by the
product rule (2.10). From [3, (3.53)] we obtain

Cq

( 1
2 l l+
1
2 m m+

)

= q− 1
2 (l−m) [l +m+ 1]

1
2

[2l + 1]
1
2

,

Cq

( 1
2 l l+

− 1
2 m m−

)

= q
1
2 (l+m) [l −m+ 1]

1
2

[2l + 1]
1
2

,

Cq

(
1
2 l l−
1
2 m m+

)

= q
1
2 (l+m+1) [l −m]

1
2

[2l + 1]
1
2

, (3.11)

Cq

( 1
2 l l−

− 1
2 m m−

)

= −q− 1
2 (l−m+1) [l +m]

1
2

[2l + 1]
1
2

.

By setting j = r = s = 1
2 in (2.10), we find

πψ(a)η(t
l
mn) =

∑

±
Cq

(
1
2 l l±
1
2 m m+

)

Cq

(
1
2 l l±
1
2 n n

+

)

η(t l
±
m+n+).

Taking the normalization (2.13) into account, this becomes

πψ(a)|lmn〉 = q− 1
2

[2l + 1]
1
2

[2l + 2]
1
2

Cq

( 1
2 l l+
1
2 m m+

)

Cq

( 1
2 l l

+
1
2 n n

+

)

|l+m+n+〉

+q− 1
2

[2l + 1]
1
2

[2l]
1
2

Cq

( 1
2 l l−
1
2 m m+

)

Cq

( 1
2 l l

−
1
2 n n

+

)

|l−m+n+〉

= q
1
2 (−2l+m+n−1) [l +m+ 1]

1
2 [l + n+ 1]

1
2

[2l + 1]
1
2 [2l + 2]

1
2

|l+m+n+〉

+q 1
2 (2l+m+n+1) [l −m]

1
2 [l − n]

1
2

[2l]
1
2 [2l + 1]

1
2

|l−m+n+〉

= π(a)|lmn〉.
A similar calculation, using (3.11) again, shows that π(b) = πψ(b). Since a and b
generate A as a ∗-algebra, we conclude that π = πψ . (It should be noted that πψ has
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already been exhibited in [5] in the same way, albeit with a different convention for the
algebra generators.)

The identification (2.13) embeds the prehilbert space V densely in the Hilbert space
Hψ , and the representation πψ extends to the GNS representation ofC(SUq(2)) on Hψ ,
as described by the Peter-Weyl theorem [21, 32]. In like manner, all other representations
of A exhibited in this paper extend to C∗-algebra representations of C(SUq(2)) on the
appropriate Hilbert spaces.

The only lack of uniqueness in the proof of Proposition 3.3 involved the choice of the
phase factors ζl ; ifZ is the linear operator on V which multiplies vectors in Vl⊗Vl by ζl ,
then Z commutes with each λ(h) and ρ(g), and extends to a unitary operator on Hψ .
In other words, any (λ, ρ)-equivariant representation π extends to Hψ and is unitarily
equivalent to the left regular representation. The (standard) choice ζl = 1 ensures that
all coefficientsA±

lmn and B±
lmn are real: it is indeed an extension of the Conden-Shortley

phase convention [4].

4. The Spin Representation

The left regular representation π of A, constructed in the previous section, can be ampli-
fied toπ ′ = π⊗id onV ⊗ C

2. In the commutative case whenq = 1, this yields the spinor
representation of SU(2), because the spinor bundle is parallelizable: S � SU(2)× C

2,
although one needs to specify the trivialization. The representation theory of U (and
the corepresentation theory of A) follows the same pattern; only the Clebsch–Gordan
coefficients need to be modified [20] when q �= 1.

To fix notations, we take

W := V ⊗ C
2 = V ⊗ V 1

2
,

and its Clebsch–Gordan decomposition is the (algebraic) direct sum

W =
( ∞⊕

2l=0

Vl ⊗ Vl

)

⊗ V 1
2

� V 1
2

⊕
∞⊕

2j=1

(Vj+ 1
2

⊗ Vj )⊕ (Vj− 1
2

⊗ Vj ). (4.1)

We rename the finite-dimensional spaces on the right-hand side as

W = W
↑
0 ⊕

⊕

2j≥1

W
↑
j ⊕W

↓
j , (4.2)

where W↑
j � Vj+ 1

2
⊗ Vj and W↓

j � Vj− 1
2

⊗ Vj , so that

dimW
↑
j = (2j + 1)(2j + 2), for j = 0, 1

2 , 1, 3
2 , . . . ,

dimW
↓
j = 2j (2j + 1), for j = 1

2 , 1, 3
2 , . . . .

(4.3)

Definition 4.1. We amplify the representation ρ of U onV to ρ′ =ρ⊗id onW =V⊗C
2.

However, we replace λ on V by its tensor product with σ 1
2

on C
2:

λ′(h) := (λ⊗ σ 1
2
)(�h) = λ(h(1))⊗ σ 1

2
(h(2)).
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It is straightforward to check that the representations λ′ and ρ′ onW commute, and that
the representation π ′ of A on W is (λ′, ρ′)-equivariant:

λ′(h) π ′(x)ψ = π ′(h(1) · x) λ′(h(2))ψ,
ρ′(h) π ′(x)ψ = π ′(h(1) 	 x) ρ′(h(2))ψ,

(4.4)

for all h ∈ U , x ∈ A and ψ ∈ W .

To determine an explicit basis for W which is well-adapted to (λ′, ρ′)-equivariance,
consider the following vectors in V ⊗ C

2:

clm |lmn〉 ⊗ | 1
2 ,− 1

2 〉 + slm |l, m− 1, n〉 ⊗ | 1
2 ,+ 1

2 〉,
−slm |lmn〉 ⊗ | 1

2 ,− 1
2 〉 + clm |l, m− 1, n〉 ⊗ | 1

2 ,+ 1
2 〉,

where

clm := q−(l+m)/2 [l −m+ 1]
1
2

[2l + 1]
1
2

, slm := q(l−m+1)/2 [l +m]
1
2

[2l + 1]
1
2

are the q-Clebsch–Gordan coefficients corresponding to the above decomposition (4.1),
satisfying c2

lm + s2
lm=1.These are eigenvectors forλ′(Cq), whereCq := qk2+q−1k−2+

(q − q−1)2ef is the Casimir element of U , with respective eigenvalues q2l+2 + q−2l−2

and q2l + q−2l . Thus, to get a good basis, one should offset the index l by ± 1
2 (as is also

suggested by the decomposition (4.2) of W ).
For j = l + 1

2 , µ = m− 1
2 , with µ = −j, . . . , j and n = −j−, . . . , j−,

let

|jµn↓〉 := Cjµ |j−µ+n〉 ⊗ | 1
2 ,− 1

2 〉 + Sjµ |j−µ−n〉 ⊗ | 1
2 ,+ 1

2 〉; (4.5a)

and for j = l − 1
2 , µ = m− 1

2 , with µ = −j, . . . , j and n = −j+, . . . , j+,
let

|jµn↑〉 := −Sj+1,µ |j+µ+n〉 ⊗ | 1
2 ,− 1

2 〉 + Cj+1,µ |j+µ−n〉 ⊗ | 1
2 ,+ 1

2 〉, (4.5b)

where the coefficients are now

Cjµ := q−(j+µ)/2 [j − µ]
1
2

[2j ]
1
2

, Sjµ := q(j−µ)/2
[j + µ]

1
2

[2j ]
1
2

. (4.5c)

Notice that there are no ↓ vectors for j = 0. It is now straightforward, though tedious, to
verify that these vectors are orthonormal bases for the respective subspacesW↓

j andW↑
j .

The Hilbert space of spinors is H := Hψ ⊗ C
2, which is just the completion of the

algebraic direct sum (4.2). We may decompose it as H = H↑ ⊕ H↓, where H↑ and H↓

are the respective completions of
⊕

2j≥0W
↑
j and

⊕
2j≥1W

↓
j .

Lemma 4.2. The basis vectors |jµn↑〉 and |jµn↓〉 are joint eigenvectors for λ′(k) and
ρ′(k), and e, f are represented on them as ladder operators:

λ′(k)|jµn↑〉 = qµ|jµn↑〉, ρ′(k)|jµn↑〉 = qn|jµn↑〉,
λ′(k)|jµn↓〉 = qµ|jµn↓〉, ρ′(k)|jµn↓〉 = qn|jµn↓〉. (4.6a)
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Moreover,

λ′(f )|jµn↑〉 = [j − µ]
1
2 [j + µ+ 1]

1
2 |j, µ+ 1, n↑〉,

λ′(e)|jµn↑〉 = [j + µ]
1
2 [j − µ+ 1]

1
2 |j, µ− 1, n↑〉,

λ′(f )|jµn↓〉 = [j − µ]
1
2 [j + µ+ 1]

1
2 |j, µ+ 1, n↓〉, (4.6b)

λ′(e)|jµn↓〉 = [j + µ]
1
2 [j − µ+ 1]

1
2 |j, µ− 1, n↓〉,

and

ρ′(f )|jµn↑〉 = [j − n+ 1
2 ]

1
2 [j + n+ 3

2 ]
1
2 |jµ, n+ 1,↑〉,

ρ′(e)|jµn↑〉 = [j + n+ 1
2 ]

1
2 [j − n+ 3

2 ]
1
2 |jµ, n− 1,↑〉,

ρ′(f )|jµn↓〉 = [j − n− 1
2 ]

1
2 [j + n+ 1

2 ]
1
2 |jµ, n+ 1,↓〉, (4.6c)

ρ′(e)|jµn↓〉 = [j + n− 1
2 ]

1
2 [j − n+ 1

2 ]
1
2 |jµ, n− 1,↓〉.

The representation π ′ can now be computed in the new spinor basis by conjugating
the form of π ⊗ id found in Proposition 3.3 by the basis transformation (4.5). However,
it is more instructive to derive these formulas from the property of (λ′, ρ′)-equivariance.
First, we introduce a handy notation.

Definition 4.3. For j = 0, 1
2 , 1, 3

2 , . . . , withµ = −j, . . . , j andn = −j− 1
2 , . . . , j+ 1

2 ,
we juxtapose the pair of spinors

|jµn〉〉 :=
(|jµn↑〉

|jµn↓〉

)

,

with the convention that the lower component is zero when n = ±(j + 1
2 ) or j = 0.

Furthermore, a matrix with scalar entries,

A =
(
A↑↑ A↑↓
A↓↑ A↓↓

)

,

is understood to act on |jµn〉〉 by the rule:

A|jµn↑〉 = A↑↑|jµn↑〉 + A↓↑|jµn↓〉,
A|jµn↓〉 = A↓↓|jµn↓〉 + A↑↓|jµn↑〉. (4.7)

Proposition 4.4. The representation π ′ := π ⊗ id of A is given by

π ′(a) |jµn〉〉 = α+
jµn|j+µ+n+〉〉 + α−

jµn|j−µ+n+〉〉,
π ′(b) |jµn〉〉 = β+

jµn|j+µ+n−〉〉 + β−
jµn|j−µ+n−〉〉,

π ′(a∗) |jµn〉〉 = α̃+
jµn|j+µ−n−〉〉 + α̃−

jµn|j−µ−n−〉〉, (4.8)

π ′(b∗) |jµn〉〉 = β̃+
jµn|j+µ−n+〉〉 + β̃−

jµn|j−µ−n+〉〉,



742 L. Da̧browski, G. Landi, A. Sitarz, W. van Suijlekom, J. C. Várilly

where α±
jµn and β±

jµn are, up to phase factors depending only on j , the following trian-
gular 2 × 2 matrices:

α+
jµn = q(µ+n− 1

2 )/2[j + µ+ 1]
1
2





q−j− 1

2
[j+n+ 3

2 ]1/2

[2j+2] 0

q
1
2

[j−n+ 1
2 ]1/2

[2j+1] [2j+2] q−j [j+n+ 1
2 ]1/2

[2j+1]




 ,

α−
jµn = q(µ+n− 1

2 )/2[j − µ]
1
2





qj+1 [j−n+ 1

2 ]1/2

[2j+1] −q 1
2

[j+n+ 1
2 ]1/2

[2j ] [2j+1]

0 qj+
1
2

[j−n− 1
2 ]1/2

[2j ]




 ,

β+
jµn = q(µ+n− 1

2 )/2[j + µ+ 1]
1
2






[j−n+ 3
2 ]1/2

[2j+2] 0

−q−j−1 [j+n+ 1
2 ]1/2

[2j+1] [2j+2] q
− 1

2
[j−n+ 1

2 ]1/2

[2j+1]




 , (4.9)

β−
jµn = q(µ+n− 1

2 )/2[j − µ]
1
2






−q− 1
2

[j+n+ 1
2 ]1/2

[2j+1] −qj [j−n+ 1
2 ]1/2

[2j ] [2j+1]

0 − [j+n− 1
2 ]1/2

[2j ]




 ,

and the remaining matrices are the hermitian conjugates

α̃±
jµn = (α∓

j±µ−n−)
†, β̃±

jµn = (β∓
j±µ−n+)

†.

Proof. The proof of Proposition 3.3 applies with minor changes. From the analogues of

(3.6) and the relationsλ′(f )π ′(a) = q− 1
2π ′(a) λ′(f ) andλ′(e)π ′(a∗) = q

1
2π ′(a∗) λ′(e),

applied to the spinors |jµn〉〉, together with the formulas (4.6a) and (4.6b), we determine
that π ′(a) has the indicated form, where the α±

jµn are 2 × 2 matrices. The other cases of
(4.8) are handled similarly.

To compute these matrices, we again use the commutation relations of λ′(f ) with
π ′(a) and π ′(b) to establish recurrence relations, analogous to (3.8a), which yield

α+
jµn = q(µ+n− 1

2 )/2[j + µ+ 1]
1
2 A+

jn, α−
jµn = q(µ+n− 1

2 )/2[j − µ]
1
2 A−

jn,

β+
jµn = q(µ+n− 1

2 )/2[j + µ+ 1]
1
2 B+

jn, β−
jµn = q(µ+n− 1

2 )/2[j − µ]
1
2 B−

jn.

The new matrices A±
jn, B±

jn may be further refined by using commutation relations

involving ρ′(f ) and ρ′(e). For instance, ρ′(f )π ′(a) = q− 1
2π ′(a) ρ′(f ) entails

(
[j − n+ 1

2 ]
1
2 [j + n+ 5

2 ]
1
2 0

0 [j − n− 1
2 ]

1
2 [j + n+ 3

2 ]
1
2

)

A+
jn

= A+
j,n+1

(
[j − n+ 1

2 ]
1
2 [j + n+ 3

2 ]
1
2 0

0 [j − n− 1
2 ]

1
2 [j + n+ 1

2 ]
1
2

)

.

This yields four recurrence relations for the entries of A+
jn, one of which has only the

trivial solution; we conclude that

A+
jn =

(
[j + n+ 3

2 ]
1
2 a+
j↑↑ 0

[j − n+ 1
2 ]

1
2 a+
j↓↑ [j + n+ 1

2 ]
1
2 a+
j↓↓

)

,
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where the a+
j�� are scalars depending only on j . In a similar fashion, we arrive at

A−
jn =

(
[j − n+ 1

2 ]
1
2 a−
j↑↑ [j + n+ 1

2 ]
1
2 a−
j↑↓

0 [j − n− 1
2 ]

1
2 a−
j↓↓

)

,

B+
jn =

(
[j − n+ 3

2 ]
1
2 b+
j↑↑ 0

[j + n+ 1
2 ]

1
2 b+
j↓↑ [j − n+ 1

2 ]
1
2 b+
j↓↓

)

,

B−
jn =

(
[j + n+ 1

2 ]
1
2 b−
j↑↑ [j − n+ 1

2 ]
1
2 b−
j↑↓

0 [j + n− 1
2 ]

1
2 b−
j↓↓

)

.

The analogue of (3.9) leads quickly to the relations

b+
j↑↑ = qj+

1
2 a+
j↑↑, b+

j↓↑ = −q−j− 3
2 a+
j↓↑, b+

j↓↓ = qj−
1
2 a+
j↓↓,

b−
j↑↑ = −q−j− 3

2 a−
j↑↑, b−

j↑↓ = qj−
1
2 a−
j↑↓, b−

j↓↓ = −q−j− 1
2 a−
j↓↓.

(4.10)

Next, from the analogue of (3.10) we get

(a−
j+ 1

2 ,↑↑)
� = q2j+2a+

j↑↑, (a−
j+ 1

2 ,↑↓)
� = −a+

j↓↑, (a−
j+ 1

2 ,↓↓)
� = q2j+1a+

j↓↓.

The a+
j�� parameters may be determined from π ′(b)π ′(a) |jµn〉〉 = q π ′(a)π ′(b)

|jµn〉〉. The coefficients of |j ± 1, µ+ 1, n〉〉 yield only the relation

[2j + 1] a+
j+ 1

2 ,↓↓a
+
j↓↑ = [2j + 3] a+

j+ 1
2 ,↓↑a

+
j↑↑. (4.11)

From the |j, µ+ 1, n〉〉 terms, we obtain

B−
j+n+A

+
jn + B+

j−n+A
−
jn = q

1
2 (A−

j+n−B
+
jn + A+

j−n−B
−
jn).

Comparison of the diagonal entries on both sides gives two more relations:

[2j + 1] |a+
j↓↑|2 = q2j+1([2j + 1] |a+

j− 1
2 ,↑↑|2 − q[2j + 3] |a+

j↑↑|2),
[2j + 1] |a+

j− 1
2 ,↓↑|2 = q2j (q[2j + 1] |a+

j↓↓|2 − [2j − 1] |a+
j− 1

2 ,↓↓|2).

Finally, the expectation of π ′(a∗a + q2b∗b) = 1 in the vector states for |jµn↑〉 and
|jµn↓〉 leads to the relations

q2j [2j + 1]2|a+
j− 1

2 ,↑↑|2 = 1, q2j [2j + 1]2|a+
j↓↓|2 = 1.

Thus all coefficients are now determined, up to a few j -dependent phases:

a+
j↑↑ = ζj

q−j− 1
2

[2j + 2]
, a+

j↓↑ = ηj
q

1
2

[2j + 1] [2j + 2]
, a+

j↓↓ = ξj
q−j

[2j + 1]
, (4.12)

with |ζj | = |ηj | = |ξj | = 1. The relation (4.11) also implies ζj+ 1
2
ηj = ηj+ 1

2
ξj .

As before, we may reset these phases to 1 by redefining |jµn↑〉 and |jµn↓〉, without
breaking the (λ′, ρ′)-equivariance. Substituting (4.12) back in previous formulas then
gives (4.9). ��
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As already mentioned, formulas (4.9) for the matrices α±
jµn and β±

jµn could have been
obtained also from a direct but tedious computation using Eqs. (4.5) and their inverses.

Remark 4.5. Were we to consider a representation of A that need not be (λ′, ρ′)-equi-
variant, we could as well have defined our spinor space, like in [13], as C

2 ⊗V , instead
of V ⊗ C

2. The Clebsch–Gordan decomposition of C
2 ⊗ V would be that of Eq. (4.1),

but the q-Clebsch–Gordan coefficients appearing in (4.5a) and (4.5b) would be different
due to the rule for exchanging the first two columns in q-Clebsch–Gordan coefficients
[21]:

Cq

(
j l m

r s t

)

= Cq

(
l j m

−s −r −t
)

,

which results in a substitution of q by q−1 in (4.5c).
However, this is not the correct lifting of the (λ, ρ)-equivariant representation π of

A to a (λ′, ρ′)-equivariant representation of A on spinor space. We already noted that π ′
as defined by π⊗ id on V ⊗C

2 is (λ′, ρ′)-equivariant, directly from (λ, ρ)-equivariance
of π . One checks, simply by working out both sides of Eq. (4.4), that the noncocommut-
ativity of Uq(su(2)) spoils (λ′′, ρ′′)-equivariance of the representation π ′′ := id ⊗π of
A on the tensor product C

2 ⊗ V , where we now define ρ′′ := id ⊗ρ, and

λ′′(h) := (σ 1
2

⊗ λ)(�h) = σ 1
2
(h(1))⊗ λ(h(2)).

5. The Equivariant Dirac Operator

Recall the central Casimir element Cq = qk2 + q−1k−2 + (q − q−1)2ef ∈ U . The
symmetric operators λ′(Cq) and ρ′(Cq) on H, initially defined with dense domain W ,

extend to selfadjoint operators on H. The finite-dimensional subspacesW↑
j andW↓

j are
their joint eigenspaces:

λ′(Cq)|jµn↑〉 = (q2j+1 + q−2j−1) |jµn↑〉, ρ′(Cq)|jµn↑〉 = (q2j+2 + q−2j−2)

×|jµn↑〉,
λ′(Cq)|jµn↓〉 = (q2j+1 + q−2j−1) |jµn↓〉, ρ′(Cq)|jµn↓〉 = (q2j + q−2j )|jµn↓〉,
directly from (4.6).

Let D be a selfadjoint operator on H which commutes strongly with λ′(Cq) and

ρ′(Cq); then the finite-dimensional subspaces W↑
j and W↓

j reduce D. We look for the
general form of such a selfadjoint operatorD which is moreover (λ′, ρ′)-invariant in the
sense that it commutes with λ′(h) and ρ′(h), for each h ∈ Uq(su(2)).

Lemma 5.1. The subspaces W↑
j and W↓

j are eigenspaces for D.

Proof. We may restrict to either the subspace W↑
j or W↓

j . Since λ′(k) and ρ′(k) are
required to commute with D and moreover have distinct eigenvalues on these subspac-
es, it follows thatD has a diagonal matrix with respect to the basis |jµn↑〉, respectively
|jµn↓〉. If we provisionally write D|jµn↑〉 = d

↑
jµn |jµn↑〉, then the vanishing of

[D,λ′(f )] |jµn↑〉 = (d
↑
j,µ+1,n − d

↑
jµn) [j − µ]

1
2 [j + µ+ 1]

1
2 |j, µ+ 1, n↑〉,
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for µ = −j, . . . , j − 1, shows that d↑
jµn is independent of µ; and [D, ρ′(f )] = 0

likewise shows that d↑
jµn does not depend on n. The same goes for d↓

jµn, too. Thus we
may write

D|jµn↑〉 = d
↑
j |jµn↑〉, D|jµn↓〉 = d

↓
j |jµn↓〉, (5.1)

where d
↑
j and d

↓
j are real eigenvalues of D. The respective multiplicities are

(2j + 1)(2j + 2) and 2j (2j + 1), in view of (4.3). ��
One of the conditions for the triple (A,H,D) to be a spectral triple, is boundedness

of the commutators [D,π ′(x)] for x ∈ A. This naturally imposes certain restrictions on
the eigenvalues d↑

j , d
↓
j of the operator D.

For convenience, we recall the representation π ′ of a in the basis |jµn〉〉, written
explicitly on |jµn↑〉 and |jµn↓〉 as in (4.7):

π ′(a)|jµn↑〉 =
∑

±
α±
jµn↑↑|j±µ+n+↑〉 + α+

jµn↓↑|j+µ+n+↓〉,

π ′(a)|jµn↓〉 =
∑

±
α±
jµn↓↓|j±µ+n+↓〉 + α−

jµn↑↓|j−µ+n+↑〉.

Then, a straightforward computation shows that

[D,π ′(a)] |jµn↑〉 =
∑

±
α±
jµn↑↑(d

↑
j± − d

↑
j )|j±µ+n+↑〉

+α+
jµn↓↑(d

↓
j+ − d

↑
j )|j+µ+n+↓〉,

[
D,π ′(a)

] |jµn↓〉 =
∑

±
α±
jµn↓↓(d

↓
j± − d

↓
j )|j±µ+n+↓〉

+α−
jµn↑↓(d

↑
j− − d

↓
j )|j−µ+n+↑〉. (5.2)

Recall that the standard Dirac operatorD/ on the sphere S
3, with the round metric, has

eigenvalues (2j + 3
2 ) for j = 0, 1

2 , 1, 3
2 , with respective multiplicities (2j +1)(2j +2);

and −(2j + 1
2 ) for j = 1

2 , 1, 3
2 , with respective multiplicities 2j (2j + 1): see [1, 18],

for instance. Notice that its spectrum is symmetric about 0.
In [2] a “q-Dirac” operator D was proposed, which in our notation corresponds to

taking d↑
j = 2[2j +1]/(q+q−1) and d↓

j = −d↑
j ; these are q-analogues of the classical

eigenvalues ofD/ − 1
2 . For this particular choice of eigenvalues, it follows directly from

the explicit form (4.9) of the matricesα±
jµn that then the right-hand sides of (5.2) diverge,

and therefore [D,π ′(a)] is unbounded. This was already noted in [10] and it was sug-
gested that one should instead consider an operator D whose spectrum matches that of
the classical Dirac operator. In fact, Proposition 7.3 below shows that this is essentially
the only possibility for a Dirac operator satisfying a (modified) first-order condition.

Let us then consider any operator D given by (5.1) –that is, a bi-equivariant one–
with eigenvalues of the following form:

d
↑
j = c

↑
1 j + c

↑
2 , d

↓
j = c

↓
1 j + c

↓
2 , (5.3)
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where c↑1 , c↑2 , c↓1 , c↓2 are independent of j . For brevity, we shall say that the eigenvalues
are “linear in j”. On the right-hand side of (5.2), the “diagonal” coefficients simplify to

α±
jµn↑↑(d

↑
j± − d

↑
j ) = 1

2α
±
jµn↑↑c

↑
1 , α±

jµn↓↓(d
↓
j± − d

↓
j ) = 1

2α
±
jµn↓↓c

↓
1 , (5.4)

which can be uniformly bounded with respect to j –see expressions (4.9). For the off-
diagonal terms, involving α+

jµn↓↑ and α−
jµn↑↓, the differences between the “up” and

“down” eigenvalues are linear in j . Since 0 < q < 1, it is clear that [N ] ∼ (q−1)N−1

for large N , and thus α+
jµn↓↑ ∼ q3j+n+ 3

2 ≤ q2j+1 for large j . Similar easy estimates
yield

α+
jµn↓↑ = O(q2j+1), β+

jµn↓↑ = O(q2j+ 1
2 ),

α−
jµn↑↓ = O(q2j ), β−

jµn↑↓ = O(q2j+ 1
2 ), as j → ∞.

(5.5)

We therefore arrive at

|α+
jµn↓↑(d

↓
j+ − d

↑
j − 1)| ≤ Cjq2j , |α−

jµn↑↓(d
↑
j− − d

↓
j − 1)| ≤ C′jq2j , (5.6)

for some C > 0, C′ > 0, independent of j ; and similar estimates hold for the off-diag-
onal coefficients of π ′(b).

Proposition 5.2. Let D be any selfadjoint operator with eigenspaces W↑
j and W↓

j , and

eigenvalues (5.1). If the eigenvalues d↑
j and d↓

j are linear in j as in (5.3), then [D,π ′(x)]
is a bounded operator for all x ∈ A.

Proof. Since a and b generate A as a ∗-algebra, it is enough to consider the cases x = a

and x = b. For x = a and any ξ ∈ H, the relations (5.2) and (5.4), together with the
Schwarz inequality, give the estimate

‖[D,π ′(a)] ξ‖2 ≤ 1
4 max{(c↑1 )2, (c↓1 )2} ‖π ′(a)ξ‖2 + ‖ξ‖2‖η‖2,

where η is a vector whose components are estimated by (5.6), which establishes finite-
ness of ‖η‖ since 0 < q < 1. Therefore, [D,π ′(a)] is norm bounded. In the same way,
we find that [D,π ′(b)] is bounded. ��

Now, if D is a selfadjoint operator as in Proposition 5.2, and if the eigenvalues of D
satisfy (5.3) and, moreover,

c
↓
1 = −c↑1 , c

↓
2 = −c↑2 + c

↑
1 , (5.7)

then the spectrum ofD coincides with that of the classical Dirac operatorD/ on the round
sphere S

3, up to rescaling and addition of a constant. Thus, we can regard our spectral
triple as an isospectral deformation of (C∞(S3),H,D/ ), and in particular, its spectral
dimension is 3. We summarize our conclusions in the following theorem.

Theorem 5.3. The triple (A(SUq(2)),H,D), where the eigenvalues of D satisfy (5.3)
and (5.7), is a 3+-summable spectral triple. ��
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At this point, it is appropriate to comment on the relation of our construction with that
of [13]. There, a spinor representation is constructed by tensoring the left regular rep-
resentation of A(SUq(2)) by C

2 on the left. This spinor space is then decomposed into
two subspaces, similar to our “up” and “down” subspaces, on which D acts diagonally
with eigenvalues linear in the total spin number j . The corresponding decomposition of
the representation π ′ of A(SUq(2)) on spinor space is obtained by using the appropriate
Clebsch–Gordan coefficients. However, contrary to what we have established above,
in [13] it is found that a certain commutator [D,π ′(x)] is an unbounded operator. In
particular, the off-diagonal terms in the representation of [13] do not have the compact
nature we encountered in (5.5). They can be bounded from below by a positive constant,
which leads, when multiplied by a term linear in j , to an unbounded operator.

The origin of this notable contrast is the following. Since in [13] no condition of
Uq(su(2))-equivariance is imposed a priori on the representation of A(SUq(2)), the
spinor space W could be identified either with V ⊗ C

2 or C
2 ⊗ V , according to conve-

nience. However, as we noted in Remark 4.5, the choice of C
2 ⊗ V is not allowed by

the condition of (λ′, ρ′)-equivariance, because Uq(su(2)) is not cocommutative. Indeed,
repeating the construction of a spinor representation and Dirac operator on the spinor
space C

2 ⊗ V instead of V ⊗ C
2 –hence ignoring equivariance– results eventually in

unbounded commutators.

6. The Real Structure

The next issue we address is the real structureJ on the spectral triple (A(SUq(2)),H,D).
We shall see that by requiring equivariance of J it is not possible to satisfy all the usual
properties of a real spectral triple like in [8] or [15].Among other things, these conditions
entail for J that it intertwine a left action and a commuting right action of the algebra on
the Hilbert space, which then gets a bimodule structure (the commutant property); and
that the bounded commutators [D, a], for any element a in the algebra, commute with
the opposite action by any b in the algebra (the first order condition on D). However,
we shall be able to satisfy these two conditions only up to certain compact operators.

6.1. The Tomita operator of the regular representation. On the GNS representation
space Hψ , there is a natural involution Tψ : η(x) → η(x∗), with domain η(C(SUq(2))),
which may be regarded as an unbounded (antilinear) operator on Hψ . The Tomita–Take-
saki theory [31] shows that this operator is closable (we denote its closure also by Tψ ) and

that the polar decompositionTψ =: Jψ�
1/2
ψ defines both the positive “modular operator”

�ψ and the antiunitary “modular conjugation” Jψ . It has already been noted by Chakr-
aborty and Pal [6] that this Jψ has a simple expression in terms of the matrix elements of
our chosen orthonormal basis for Hψ . Indeed, it follows immediately from (2.12) and
(2.13) that

Tψ |lmn〉 = (−1)2l+m+nqm+n |l,−m,−n〉.
One checks, using (3.3), that

Tψπ(a) |000〉 = π(a∗) |000〉, Tψπ(b) |000〉 = π(b∗) |000〉.
Since π is the GNS representation for the state ψ , this is enough to conclude that

Tψη(x) = η(x∗) for all x ∈ A. (6.1)
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The adjoint antilinear operator, satisfying 〈η | T ∗
ψ | ξ〉 = 〈ξ | Tψ | η〉, is given by

T ∗
ψ |lmn〉 = (−1)2l+m+nq−m−n |l,−m,−n〉, and since�ψ = T ∗

ψTψ , we see that every

|lmn〉 lies in Dom�ψ with �ψ |lmn〉 = q2m+2n |lmn〉. Consequently,

Jψ |lmn〉 = (−1)2l+m+n |l,−m,−n〉. (6.2)

It is clear that J 2
ψ = 1 on Hψ .

Definition 6.1. Let π◦(x) := Jψ π(x
∗) J−1

ψ , so that π◦ is a ∗-antirepresentation of A
on Hψ . Equivalently, π◦ is a ∗-representation of the opposite algebra A(SU1/q(2)). By
Tomita’s theorem [31], π and π◦ are commuting representations.

As an example, we compute

π◦(a) |lmn〉 = (−1)2l+m+nJψπ(a∗) |l,−m,−n〉
= (−1)2l+m+nJψ

(
Ã+
l,−m,−n|l+,−m+,−n+〉+Ã−

l,−m,−n|l−,−m+,−n+〉)

= Ã+
l,−m,−n|l+m+n+〉 + Ã−

l,−m,−n|l−m+n+〉
= A−

l+,−m+,−n+|l+m+n+〉 + A+
l−,−m+,−n+|l−m+n+〉,

where, explicitly,

A−
l+,−m+,−n+ = q(2l−m−n+1)/2

(
[l +m+ 1][l + n+ 1]

[2l + 1][2l + 2]

) 1
2

,

A+
l−,−m+,−n+ = q−(2l+m+n+1)/2

(
[l −m][l − n]

[2l][2l + 1]

) 1
2

.

A glance back at (3.4) shows that these coefficients are identical with those ofπ(a) |lmn〉,
after substituting q → q−1.A similar phenomenon occurs with the coefficients ofπ◦(b).
We find, indeed, that

π◦(a) |lmn〉 = A◦+
lmn|l+m+n+〉 + A◦−

lmn|l−m+n+〉,
π◦(b) |lmn〉 = B◦+

lmn|l+m+n−〉 + B◦−
lmn|l−m+n−〉,

where

A◦±
lmn(q) = A±

lmn(q
−1), B◦±

lmn(q) = q−1B±
lmn(q

−1). (6.3)

We can now verify directly that the representations π and π◦ commute, without need
to appeal to the theorem of Tomita. For instance,

〈l + 1,m+ 1, n+ 1 | [π(a), π◦(a)] | lmn〉 = A◦+
l+m+n+A

+
lmn − A+

l+m+n+A
◦+
lmn

= Q

(
[l +m+ 1][l +m+ 2][l + n+ 1][l + n+ 2]

[2l + 1][2l + 2]2[2l + 3]

) 1
2

,

where

Q = q
1
2 (2l

+−m+−n++1)q
1
2 (−2l+m+n−1) − q

1
2 (−2l++m++n+−1)q

1
2 (2l−m−n+1) = 0.

Likewise, 〈l−1,m+1, n+1 | [π(a), π◦(a)] | lmn〉 = 0, and one checks that the matrix
element 〈l, m+ 1, n+ 1 | [π(a), π◦(a)] | lmn〉 vanishes, too.

The (λ, ρ)-equivariance of π is reflected in an analogous equivariance condition
for π◦. We now identify this condition explicitly.
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Lemma 6.2. The symmetry of the antirepresentation π◦ of A on Hψ is given by the
equivariance conditions:

λ(h) π◦(x)ξ = π◦(h̃(2) · x) λ(h(1))ξ,
ρ(h) π◦(x)ξ = π◦(h̃(2) 	 x) ρ(h(1))ξ, (6.4)

for all h ∈ U , x ∈ A and ξ ∈ V , and h → h̃ is the automorphism of U determined on
generators by k̃ := k, f̃ := q−1f , and ẽ := qe.

Proof. We work only on the dense subspace V . From (3.1) and (6.2), we get at once

Jψλ(k)
∗J−1
ψ = λ(k−1), Jψλ(f )

∗J−1
ψ = −λ(f ), Jψλ(e)

∗J−1
ψ = −λ(e), (6.5)

and identical relations with ρ instead of λ. Write α for the antiautomorphism of U deter-
mined by α(k) := k−1, α(f ) := −f , and α(e) := −e; so that Jψλ(h)∗J−1

ψ = λ(α(h))

for h ∈ U , and similarly with ρ instead of λ.
Next, the first relation of (3.2) is equivalent to

π(x) λ(Sh) = λ(Sh(1)) π(h(2) · x). (6.6)

Indeed, the left-hand side can be expanded as

π(x) λ(ε(h(1)) Sh(2)) = λ(Sh(1) h(2)) π(x) λ(Sh(3))

= λ(Sh(1)) π(h(2) · x) λ(h(3)) λ(Sh(4))
on applying (3.2); and the rightmost expression equals the right-hand side of (6.6).
Taking hermitian adjoints and conjugating by Jψ , we get

λ(α(Sh)) π◦(x) = π◦(h(2) · x) λ(α(Sh(1))).
It remains only to note that Sα = αS is an automorphism of U , whose inverse is the
map h → h̃ above; and to repeat the argument with ρ instead of λ, changing only the
left action of U in concordance with (3.2). ��

An independent check of (6.4) is afforded by the following argument. We may ask
which antirepresentations π◦ of Hψ satisfy these equivariance conditions. It suffices to
run the proof of Proposition 3.3, mutatis mutandis, to determine the possible form of
such a π◦ on the basis vectors |lmn〉. For instance, (3.9) is replaced by

ρ(e)π◦(a) = π◦(ẽ 	 a)ρ(k−1)+ π◦(k̃ 	 a)ρ(e) = q π◦(b)ρ(k−1)+ q
1
2π◦(a)ρ(e).

One finds that all formulas in that proof are reproduced, except for changes in the powers
of q that appear; and, apart from the aforementioned phase ambiguities, one recovers
precisely the form of π◦ given by (6.3).

Before proceeding, we indicate also the symmetry of the Tomita operator Tψ , analo-
gous to (6.5) above. Combining (6.1) with (3.2), and recalling that η(x) = π(x) |000〉,
we find that for generators h of U ,

Tψλ(h)π(x) |000〉 = π(x∗ 
 ϑ(h)∗) |000〉.
On the other hand,

λ(ϑ−1S(ϑ(h∗)))Tψπ(x) |000〉 = π(x∗ 
 ϑ(h)∗) |000〉.
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One checks easily on generators that ϑ−1S(ϑ(h)∗) = S(h)∗. Since the vector |000〉 is
separating for the GNS representation, we conclude that

Tψ λ(h) T
−1
ψ = λ(Sh)∗.

Similarly, we find that

Tψ ρ(h) T
−1
ψ = ρ(Sh)∗.

In other words, the antilinear involutory automorphism h → (Sh)∗ of the Hopf ∗-alge-
bra U is implemented by the Tomita operator for the Haar state of the dual Hopf ∗-algebra
A. This is a known feature of quantum-group duality in the C∗-algebra framework; for
this and several other implementations by spatial operators, see [25].

6.2. The real structure on spinors. We are now ready to come back to spinors. Notice
that Jψ does not appear explicitly in the equivariance conditions (6.4) for the right
regular representation π◦ of A on Hψ . Thus, we are now able to construct the “right
multiplication” representation of A on spinors from its symmetry alone, and to deduce
the conjugation operator J on spinors after the fact.

Proposition 6.3. Let π ′◦ be an antirepresentation of A on H = Hψ ⊕ Hψ satisfying
the following equivariance conditions:

λ′(h) π ′◦(x)ξ = π ′◦(h̃(2) · x) λ′(h(1))ξ,

ρ′(h) π ′◦(x)ξ = π ′◦(h̃(2) 	 x) ρ′(h(1))ξ.
(6.7)

Then, up to some phase factors depending only on the index j in the decomposition (4.2),
π ′◦ is given on the spinor basis by

π ′◦(a) |jµn〉〉 = α◦+
jµn|j+µ+n+〉〉 + α◦−

jµn|j−µ+n+〉〉,
π ′◦(b) |jµn〉〉 = β◦+

jµn|j+µ+n−〉〉 + β◦−
jµn|j−µ+n−〉〉,

π ′◦(a∗) |jµn〉〉 = α̃◦+
jµn|j+µ−n−〉〉 + α̃◦−

jµn|j−µ−n−〉〉, (6.8)

π ′◦(b∗) |jµn〉〉 = β̃◦+
jµn|j+µ−n+〉〉 + β̃◦−

jµn|j−µ−n+〉〉,

where α◦±
jµn and β◦±

jµn are the triangular 2 × 2 matrices, given by α◦±
jµn(q) = α±

jµn(q
−1)

and β◦±
jµn(q) = q−1β±

jµn(q
−1), with α±

jµn and β±
jµn given by (4.9).

Proof. We retrace the steps of the proof of Proposition 4.4, mutatis mutandis. Since

k̃ · a = k · a = q
1
2 a, the relations involving λ′(k) and ρ′(k) are unchanged. We quickly

conclude that π ′◦ must have the form (6.8), and it remains to determine the coefficient
matrices.

The commutation relations of λ′(f ) with π ′◦(a) and π ′◦(b) give:

α◦+
jµn = q− 1

2 (µ+n− 1
2 )[j + µ+ 1]

1
2 A◦+

jn , α◦−
jµn = q− 1

2 (µ+n− 1
2 )[j − µ]

1
2 A◦−

jn ,

β◦+
jµn = q− 1

2 (µ+n− 1
2 )[j + µ+ 1]

1
2 B◦+

jn , β◦−
jµn = q− 1

2 (µ+n− 1
2 )[j − µ]

1
2 B◦−

jn .
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The matrices A◦±
jn , B◦±

jn may be determined, as before, by the commutation relations

involving ρ′(f ) and ρ′(e). One finds that the n-dependent factors such as [j + n+ 3
2 ]

1
2

and so on, are the same as the respective entries of A±
jn, B±

jn; let a◦+
j↑↑, etc., be the

remaining factors which depend on j only. Then (4.10) is replaced by

b◦+
j↑↑ = q−j− 3

2 a◦+
j↑↑, b◦+

j↓↑ = −qj+ 1
2 a◦+
j↓↑, b◦+

j↓↓ = q−j− 1
2 a◦+
j↓↓,

b◦−
j↑↑ = −qj+ 1

2 a◦−
j↑↑, b◦−

j↑↓ = q−j− 1
2 a◦−
j↑↓, b◦−

j↓↓ = −qj− 1
2 a◦−
j↓↓.

Next, we find

(a◦−
j+ 1

2 ,↑↑)
� = q−2j−2a◦+

j↑↑, (a◦−
j+ 1

2 ,↑↓)
� = −a◦+

j↓↑, (a◦−
j+ 1

2 ,↓↓)
� = q−2j−1a◦+

j↓↓.

Since π ′◦ is an antirepresentation, ab = q−1ba implies π ′◦(b)π ′◦(a) = q−1 π ′◦(a)
π ′◦(b). The matrix elements of both sides lead to three relations:

[2j + 1] a◦+
j+ 1

2 ,↓↓a
◦+
j↓↑ = [2j + 3] a◦+

j+ 1
2 ,↓↑a

◦+
j↑↑, (6.9)

which is formally identical to (4.11), and

[2j + 1] |a◦+
j↓↑|2 = q−2j−1([2j + 1] |a◦+

j− 1
2 ,↑↑|2 − q−1[2j + 3] |a◦+

j↑↑|2),
[2j + 1] |a◦+

j− 1
2 ,↓↑|2 = q−2j (q−1[2j + 1] |a◦+

j↓↓|2 − [2j − 1] |a◦+
j− 1

2 ,↓↓|2).

Finally, the relation aa∗ + bb∗ = 1 yields π ′◦(a∗)π ′◦(a) + π ′◦(b∗)π ′◦(b) = 1; its
diagonal matrix elements gives the last two relations:

q−2j [2j + 1]2|a◦+
j− 1

2 ,↑↑|2 = 1, q−2j [2j + 1]2|a◦+
j↓↓|2 = 1.

All coefficients are now determined except for their phases:

a◦+
j↑↑ = ζ ◦

j

qj+
1
2

[2j + 2]
, a◦+

j↓↑ = η◦
j

q− 1
2

[2j + 1] [2j + 2]
, a◦+

j↓↓ = ξ◦
j

qj

[2j + 1]
, (6.10)

and (6.9) also entails the phase relations ζ ◦
j η

◦
j+ 1

2
= η◦

j ξ
◦
j+ 1

2
. Once more, we choose all

phases to be +1 by convention. Substituting (6.10) back in previous formulas, we find

α◦±
jµn(q) = α±

jµn(q
−1), β◦±

jµn(q) = q−1β±
jµn(q

−1) (6.11)

in perfect analogy with (6.3). ��
Definition 6.4. The conjugation operator J is the antilinear operator on H which is
defined explicitly on the orthonormal spinor basis by

J |jµn↑〉 := i2(2j+µ+n) |j,−µ,−n,↑〉,
J |jµn↓〉 := i2(2j−µ−n) |j,−µ,−n,↓〉. (6.12)

It is immediate from this presentation that J is antiunitary and that J 2 = −1, since each
4j ± 2(µ+ n) is an odd integer.
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Proposition 6.5. The invariant operator D of Sect. 5 commutes with the conjugation
operator J :

JDJ−1 = D. (6.13)

Proof. This is clear from the diagonal form of both D and J on their common eigen-
spaces W↑

j and W↓
j , given by the respective Eqs. (5.1) and (6.12). ��

Remark 6.6. Proposition 6.5 is a minimal requirement for (A(SUq(2)),H,D, J ) to con-
stitute a real spectral triple. However, here is where we part company with the axiom
scheme for real spectral triples proposed in [8]. Indeed, the conjugation operator J that
we have defined by (6.12) is not the modular conjugation for the spinor representation of
A. That modular operator is Jψ⊕Jψ , which does not have a diagonal form in our chosen
spinor basis (unless q = 1). It is clear that conjugation of π ′(A(SUq(2)) by the modu-
lar operator would yield a representation of the opposite algebra A(SU1/q(2)), and the
commutation relation analogous to (6.13) would then forceD to be equivariant under the
corresponding symmetry ofU1/q(su(2)), denoted by (λ′′, ρ′′) in our earlier Remark 4.5.
It is not hard to check that this extra equivariance condition would forceD to be merely
a scalar operator, thereby negating the possibility of an equivariant 3+-summable real
spectral triple based on A(SUq(2)) with the modular conjugation operator. This result
is consonant with the “no-go theorem” of Schmüdgen [28] for nontrivial commutator
representations of Woronowicz differential calculi on SUq(2).

The remedy that we propose here is to modify J , in keeping with the symmetry of the
spinor representation, to a non-Tomita conjugation operator. We shall see, however, that
the expected properties of real spectral triples do hold “up to compact perturbations”.

It should be noted that J satisfies the analogue of (6.5) for the representations λ′
and ρ′:

Jλ′(k)J−1 = λ′(k−1), Jλ′(e)J−1 = −λ′(f ),
Jρ′(k)J−1 = ρ′(k−1), Jρ′(e)J−1 = −ρ′(f ),

(6.14)

which follows directly from the definition (6.12) and the relations (4.6).

Proposition 6.7. The antiunitary operator J intertwines the left and right spinor repre-
sentations:

J π ′(x∗) J−1 = π ′◦(x), for all x ∈ A. (6.15)

Proof. It follows directly from the proof of Lemma 6.2, using the relations (6.14) instead
of (6.5), that the antirepresentation x → J π ′(x∗) J−1 complies with the equivariance
conditions (6.7). By Proposition 6.3, it coincides with π ′◦ up to an equivalence obtained
by resetting the phase factors in (6.10). It remains only to check that ζ ◦

j = η◦
j = ξ◦

j = 1
for the aforementioned antirepresentation. This check is easily effected by calculating
J π ′(a∗) J−1 directly on the basis vectors |jµn↑〉. We compute
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Jπ ′(a∗)J−1 |jµn↑〉
= i−2(2j−µ−n)Jπ ′(a∗) |j,−µ,−n,↑〉
= i−2(2j−µ−n)J

(
α̃+
j,−µ,−n,↑↑ |j+,−µ+,−n+↑〉 + α̃+

j,−µ,−n,↓↑ |j+,−µ+,−n+↓〉
+ α̃−

j,−µ,−n,↑↑ |j−,−µ+,−n+↑〉)

= α̃+
j,−µ,−n,↑↑ |j+µ+n+↑〉 − α̃+

j,−µ,−n,↓↑ |j+µ+n+↓〉 + α̃−
j,−µ,−n,↑↑ |j−µ+n+↑〉

= α−
j+,−µ+,−n+,↑↑ |j+µ+n+↑〉 − α−

j+,−µ+,−n+,↓↑ |j+µ+n+↓〉
+ α+

j−,−µ+,−n+,↑↑ |j−µ+n+↑〉

= q− 1
2 (µ+n− 1

2 )

(

qj+
1
2

[j + µ+ 1]
1
2 [j + n+ 3

2 ]
1
2

[2j + 2]
|j+µ+n+↑〉

+ q− 1
2

[j + µ+ 1]
1
2 [j − n+ 1

2 ]
1
2

[2j + 1][2j + 2]
|j+µ+n+↓〉

+ q−j−1 [j − µ]
1
2 [j − n+ 1

2 ]
1
2

[2j + 1]
|j−µ+n+↑〉

)

= α◦+
jµn↑↑ |j+µ+n+↑〉 + α◦+

jµn↓↑ |j+µ+n+↓〉 + α◦−
jµn↑↑ |j−µ+n+↑〉

= π ′◦(a) |jµn↑〉,

where the α◦±
jµn coefficients are taken according to (6.11).

In the same way, one finds that Jπ ′(b∗)J−1 |jµn↑〉 = π ′◦(b) |jµn↑〉, again using
(6.11) for β◦±

jµn; and similar calculations show that both sides of (6.15) coincide on the
basis vector |jµn↓〉. (These four calculations, taken together, afford a direct proof of
(6.15) without need to consider the symmetries of J .) ��

7. Algebraic Properties of the Spectral Triple

In this section, we discuss the properties of the real spectral triple (A(SUq(2)),H,D, J ),
in particular its commutant property and its first-order condition. We will see that these
are only satisfied up to certain compact operators, quite similarly to [11].

We can simplify our discussion somewhat by replacing the spinor representation
π ′ of A = A(SUq(2)) of Proposition 4.4 by a so-called approximate representation
π ′ : A → B(H), such that π ′(x)−π ′(x) is a compact operator for each x ∈ A. In other
words, although π ′ need not preserve the algebra relations of A, the mappings π ′ and
π ′ have the same image in the Calkin algebra B(H)/K(H), that is, they define the same
∗-homomorphism of A into the Calkin algebra.

We denote by Lq the positive trace-class operator given by

Lq |jµn〉〉 := qj |jµn〉〉 for j ∈ 1
2 N,

and let Kq be the two-sided ideal of B(H) generated by Lq ; it consists of trace-class
operators. The ideal Kq is indeed contained in the ideal of infinitesimals of order α, that
is, compact operators whose nth singular valueµn satisfiesµn = O(n−α), for all α > 0.
Thus the following analysis holds modulo infinitesimals of arbitrary high order.
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Proposition 7.1. The following equations define a mapping π ′ : A → B(H) on gener-
ators, which is a ∗-representation modulo Kq , and is approximate to the spin represen-
tation π ′ of Proposition 4.4 in the sense that π ′(x)− π ′(x) ∈ Kq for each x ∈ A:

π ′(a) |jµn〉〉 = α+
jµn|j+µ+n+〉〉 + α−

jµn|j−µ+n+〉〉,
π ′(b) |jµn〉〉 = β+

jµn
|j+µ+n−〉〉 + β−

jµn
|j−µ+n−〉〉,

π ′(a∗) |jµn〉〉 = α̃+
jµn|j+µ−n−〉〉 + α̃−

jµn|j−µ−n−〉〉, (7.1)

π ′(b∗) |jµn〉〉 = β̃
+
jµn

|j+µ−n+〉〉 + β̃
−
jµn

|j−µ−n+〉〉,

where

α+
jµn :=

√

1 − q2j+2µ+2

(√
1 − q2j+2n+3 0

0
√

1 − q2j+2n+1

)

,

α−
jµn := q2j+µ+n+ 1

2

√

1 − q2j−2µ

(
q
√

1 − q2j−2n+1 0
0

√
1 − q2j−2n−1

)

,

β+
jµn

:= qj+n−
1
2

√

1 − q2j+2µ+2

(
q
√

1 − q2j−2n+3 0
0

√
1 − q2j−2n+1

)

, (7.2)

β−
jµn

:= −qj+µ
√

1 − q2j−2µ

(√
1 − q2j+2n+1 0

0
√

1 − q2j+2n−1

)

,

and

α̃±
jµn = α∓

j±µ−n− , β̃
±
jµn

= α∓
j±µ−n+ . (7.3)

Proof. First of all, we claim that the defining relations (2.1) are preserved by π ′ modulo
the ideal Kq of B(H), that is, π ′(b)π ′(a) − q π ′(a)π ′(b) ∈ Kq , and so on. Indeed,
it can be verified by a direct but tedious check on the spinor basis that π ′(b)π ′(a) −
q π ′(a)π ′(b) = L4

qA, where A is a bounded operator; the same is true for each of the
other relations listed in (2.1).

It is well known, and easily checked from (2.1), that A is generated as a vector space
by the products akblb∗m and blb∗ma∗n, for k, l,m, n ∈ N. We may thus define π ′(x)
for any x ∈ A by extending (7.1) multiplicatively on such products, and then extending
further by linearity. With this convention, we conclude that

π ′(xy)− π ′(x)π ′(y) ∈ Kq for all x, y ∈ A. (7.4)

The defining formulas also entail that π ′(x)∗ = π ′(x∗) for each x ∈ A.
If π ′(x)− π ′(x) ∈ Kq and π ′(y)− π ′(y) ∈ Kq , then

π ′(xy)− π ′(x)π ′(y) = π ′(x)
(
π ′(y)− π ′(y)

)+ (
π ′(x)− π ′(x)

)
π ′(y) ∈ Kq,

and therefore π ′(xy)− π ′(xy) lies in Kq also; thus, it suffices to verify this property in
the cases x = a, b.
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On comparing the coefficients (7.2) with the corresponding ones of π ′(a) and π ′(b)
from (4.9), we get, for instance,

α+
jµn↑↑ − α+

jµn↑↑ = q4j+4
√

1 − q2j+2µ+2
√

1 − q2j+2n+3

1 − q4j+4 = q4j+4 α+
jµn↑↑,

α+
jµn↓↓ − α+

jµn↓↓ = q4j+2
√

1 − q2j+2µ+2
√

1 − q2j+2n+1

1 − q4j+2 = q4j+2 α+
jµn↓↓,

(7.5a)

and similarly,

α−
jµn↑↑ − α−

jµn↑↑ = q4j+2 α−
jµn↑↑, α−

jµn↓↓ − α−
jµn↓↓ = q4j α−

jµn↓↓. (7.5b)

We estimate the off-diagonal terms, using the inequalities q±µ ≤ q−j , q±n ≤ q−j− 1
2

and [N ]−1 < qN−1:

|α+
jµn↓↑| = q(µ+n+ 1

2 )/2
[j + µ+ 1]

1
2 [j − n+ 1

2 ]
1
2

[2j + 1] [2j + 2]
≤ q−2j−2

[2j + 1] [2j + 2]
< q2j−1,

|α−
jµn↑↓| = q(µ+n+ 1

2 )/2
[j − µ]

1
2 [j + n+ 1

2 ]
1
2

[2j ] [2j + 1]
≤ q−2j−1

[2j ] [2j + 1]
< q2j−2.

On account of (7.5) and analogous relations for the coefficients of π ′(b), we find that

π ′(a)− π ′(a) ≡ T π ′(a)T mod Kq,

π ′(b)− π ′(b) ≡ T π ′(b)T mod Kq,

where T is the operator defined by

T |jµn〉〉 :=
(
q2j+ 3

2 0

0 q2j+ 1
2

)

|jµn〉〉 =
(
q

3
2 0

0 q
1
2

)

L2
q |jµn〉〉. (7.6)

Clearly, T ∈ Kq , so that by boundedness of π ′(x) it follows that π ′(x) − π ′(x) ∈ Kq

for x = a, b. ��
Using the conjugation operator J , we can also define an approximate antirepresen-

tation of A by π ′◦(x) := Jπ ′(x)J−1. It is immediate that π ′◦(x)− π ′◦(x) ∈ Kq , with
π ′◦ as defined in Proposition 6.3. Explicitly, we can write

π ′◦(a) |jµn〉〉 = α◦+
jµn|j+µ+n+〉〉 + α◦−

jµn|j−µ+n+〉〉,
π ′◦(b) |jµn〉〉 = β◦+

jµn
|j+µ+n−〉〉 + β◦−

jµn
|j−µ+n−〉〉,

π ′◦(a∗) |jµn〉〉 = α̃◦+
jµn|j+µ−n−〉〉 + α̃◦−

jµn|j−µ−n−〉〉,

π ′◦(b∗) |jµn〉〉 = β̃
◦+
jµn

|j+µ−n+〉〉 + β̃
◦−
jµn

|j−µ−n+〉〉,
where

α◦±
jµn = α̃±

j,−µ,−n, α̃◦±
jµn = α±

j,−µ,−n, β◦±
jµn

= −β̃±
j,−µ,−n, β̃

◦±
jµn

= −β±
j,−µ,−n.

It turns out that the approximate representations π ′ and π ′◦ almost commute, in the
following sense.
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Proposition 7.2. For each x, y ∈ A, the commutant [π ′◦(x), π ′(y)] lies in Kq .

Proof. In view of our earlier remarks on the almost-multiplicativity of π ′, and thus also
of π ′◦, it is enough to check this for the cases x, y = a, a∗, b, b∗. We omit the detailed
calculation, which we have performed with a symbolic computer program. In each case,
the commutator [π ′◦(x), π ′(y)] decomposes as a direct sum of operators in the subspac-
esW↑

j andW↓
j separately, in view of (7.2) and (6.12), and the explicit calculation shows

that for each pair of generators x, y, we obtain [π ′◦(x), π ′(y)] = L2
qA, where A is a

bounded operator. ��
If we further impose the first-order condition up to compact operators in the ideal

Kq , it turns out that this (almost) determines the Dirac operator.

Proposition 7.3. Up to rescaling, adding constants, and adding elements of Kq , there is
only one operatorD of the form (5.1) which satisfies the first order condition modulo Kq ,
that is, each [D,π ′(y)] is bounded, and

[π ′◦(x), [D,π ′(y)]] ∈ Kq for all x, y ∈ A. (7.7)

This operator D has eigenvalues that are linear in j .

Proof. Suppose first thatD is an equivariant selfadjoint operator of the type considered
in Sect. 5, with eigenvalues linear in j ; that is,D is determined by (5.1) and (5.3). Since
each operator appearing in (7.7) decomposes into a pair of operators on the “up” and
“down” spinor subspaces, it is clear that the nested commutators are independent of the
parameters c↑2 and c↓2 ; and that c↑1 and c↓1 are merely scale factors on both subspaces.
Again we take x and y to be generators: explicit calculations show that in each case,
[π ′◦(x), [D,π ′(y)]] = L2

qB with B a bounded operator.
To prove the converse, assume only thatD satisfies the equivariance condition (5.1),

and that [D,π ′(a)] and [D,π ′(b)] are bounded.
We may decompose π ′(a) = π ′(a)+ + π ′(a)− according to whether the index j in

(7.1) is raised or lowered; and similarly for π ′(b), π ′◦(a), and π ′◦(b). Proposition 7.2
shows that, modulo Kq :

π ′(a)+π ′◦(a)+ ≡ π ′◦(a)+π ′(a)+,
π ′(a)−π ′◦(a)− ≡ π ′◦(a)−π ′(a)−,

π ′(a)+π ′◦(a)− + π ′(a)−π ′◦(a)+ ≡ π ′◦(a)+π ′(a)− + π ′◦(a)−π ′(a)+.

By (7.2), the operators π ′(a) and π ′(b), as well asD, are diagonal for the decomposition
H = H↑ ⊕ H↓. On the subspace H↑, we obtain

[[D,π ′(a)], π ′◦(a)] |jµn↑〉
= (

Dπ ′(a)π ′◦(a)+ π ′◦(a)π ′(a)D − π ′(a)Dπ ′◦(a)− π ′◦(a)Dπ ′(a)
) |jµn↑〉

=
(
(d

↑
j+1 + d

↑
j − 2d↑

j+) π
′(a)+π ′◦(a)+ + (d

↑
j−1 + d

↑
j − 2d↑

j−) π
′(a)−π ′◦(a)−

+ 2d↑
j (π

′(a)+π ′◦(a)− + π ′(a)−π ′◦(a)+)− d
↑
j+(π

′(a)−π ′◦(a)+

+π ′◦(a)−π ′(a)+)− d
↑
j−(π

′(a)+π ′◦(a)− + π ′◦(a)+π ′(a)−)+ R
)

|jµn↑〉,
(7.8)
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where R ∈ Kq . On the subspace H↓, we get the precisely analogous expression with
the arrows reversed.

In order that the expression on the right-hand side of (7.8) come from an element of
Kq applied to |jµn↑〉, and likewise for |jµn↓〉, it is necessary and sufficient that the
scalars

w
↑
j := d

↑
j+1 + d

↑
j − 2d↑

j+ , w
↓
j := d

↓
j+1 + d

↓
j − 2d↓

j+ (7.9)

satisfy w↑
j = O(qj ) and w↓

j = O(qj ) as j → ∞.

In the particular case where w↑
j = 0 and w↓

j = 0 for all j , (7.9) gives elementary

recurrence relations for d↑
j and d↓

j , whose solutions are precisely the expressions (5.3)
that are linear in j , namely,

d
↑
j = c

↑
1 j + c

↑
2 , d

↓
j = c

↓
1 j + c

↓
2 .

The general case gives a pair of perturbed recurrence relations, that may be treated by
generating-function methods [16]; their solutions differ from the linear case by terms
that are O(qj ) as j → ∞. Thus, the corresponding operator D differs from one whose
eigenvalues are linear in j by an element of Kq . ��

We finish by summarizing the implications of the above Propositions 7.1, 7.2 and 7.3
for the spectral triple (A(SUq(2)),H,D, J ), where A(SUq(2)) acts on H via the spinor
representation π ′.

The representations π ′ and π ′◦ do not commute, since the conjugation operator J
differs from the Tomita conjugation for π ′. However, we do obtain commutation “up to
infinitesimals”; since [π ′◦(x), π ′(y)] ≡ [π ′◦(x), π ′(y)] mod Kq , Proposition 7.2 entails
the analogous result for the exact representations:

[π ′◦(x), π ′(y)] ∈ Kq for all x, y ∈ A.

To examine the first-order property, we note first if x, y ∈ A and [D,π ′(y)−π ′(y)]
lies in Kq , then

[π ′◦(x), [D,π ′(y)]] = [
π ′◦(x)+ (π ′◦(x)− π ′◦(x)), [D,π ′(y)+ (π ′(y)− π ′(y))]

]

≡ [π ′◦(x), [D,π ′(y)]] ≡ 0 mod Kq . (7.10)

Since D commutes with the positive operator T defined in (7.6), we find in the case of
a generator y = a, a∗, b or b∗, that

[D,π ′(y)− π ′(y)] = [D, T π ′(y)T ] = T [D,π ′(y)]T ,

which lies in Kq since [D,π ′(y)] is bounded, by Proposition 5.2. Thus, [D,π ′(y)]
is bounded, too –as required by Proposition 7.3. The general case of [D,π ′(y) −
π ′(y)] ∈ Kq then follows from (7.4). Thus (7.10) holds for general x, y ∈ A. Combin-
ing that with Proposition 7.3, we arrive at the following characterization of our spectral
triple over A(SUq(2)).
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Theorem 7.4. The real spectral triple (A(SUq(2)),H,D, J ) defined here, with
A(SUq(2)) acting on H via the spinor representation π ′, satisfies both the commu-
tant property and the first order condition up to infinitesimals:

[π ′◦(x), π ′(y)] ∈ Kq,

for all x, y ∈ A(SUq(2)).[
π ′◦(x), [D,π ′(y)]

] ∈ Kq,

In [17] it was argued that there are obstructions to the construction of “deformed spec-
tral triples” satisfying a type of first order condition for the Dirac operator. Theorem 7.4
above shows a way to overcome these obstructions.
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