September 23, 2002

The noncommutative cylinder and its K-theory

W.D. van Suijlekom

Korteweg-de Vries Institute for Mathematics, University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
wdvslkom@science.uva.nl

Abstract

We prove that the cylinder has rigid K-theory under deformation quantization. This
means that the noncommutative cylinders, defined by strict deformation quantization of
the cylinder R? x T¢, have the same K-groups as the ordinary cylinder. Two old examples
of this phenomenon are revisited: Euclidean space R?" and the torus T¢. We construct
an isomorphism between the noncommutative cylinder and the crossed product algebra
C(T%) x R?, enabling us to calculate the K-groups of the noncommutative cylinder. We
discuss simplicity of the noncommutative cylinders and compare with the two old examples.

1 Introduction

The quantization of the phasespace R*", which plays an essential role in the formulation
of basic quantum mechanics, has been understood since the 1930’s (cf. [6] and references
therein). More recently, there has been increasing interest in the quantization of other
manifolds. An example is the torus, which plays a role in string theory and M(atrix)
theory. Its quantization is called the noncommutative torus [10, 12].

String theory offers even more examples of noncommutative geometries. In 1998
Polchinski argued that these play an important role in the dynamics of D-branes in the
presence of constant magnetic fields on the branes ([9]). A more string-theoretic view
of this is given by Seiberg and Witten in [15]. They considered open strings in the
presence of a magnetic field and showed that the effective action is described by making
spacetime noncommutative.

In string theory, spacetime is a manifold of dimension higher than four. This di-
mension follows from certain consistency conditions (see Polchinski [9]). For example,
the superstring can only be defined in a ten-dimensional background, say R!®. It is
usually toroidally compactified to R* x T®, in order for the theory to make sense. This
means that 6 dimensions are rolled up to the 6-torus T®. To describe a noncommutative
background for a superstring, one needs to quantize the (generalized) cylinder R* x T®.

Another motivation to quantize the cylinder comes from an idea of Kamani. In [5], he
studied the worldsheet of a superstring in a D-brane background as a noncommutative
geometry. In this case, one quantizes the worldsheet, which is an ordinary cylinder
R x T.



Apart from such physical arguments, the quantization of the cylinder is also inter-
esting from a mathematical point of view. It turns out that the C*-algebras occuring
in the quantization of the plane and of the torus are rather different. As the cylinder
in some sense lies in between the plane and the torus, it will be interesting to examine
the C*-algebras occuring in its quantization. Furthermore, the noncommutative cylin-
der provides another example in the scarce list of finite-dimensional noncommutative
geometries.

In this paper we first summarize the strict deformation quantization of Euclidean
space R?™ and of the torus T¢. This requires a real parameter /i and a skew-symmetric
matrix 6, and will lead to the definition of two families of C*-algebras, the noncommu-
tative Euclidean spaces {R2"} and the noncommutative tori {T%,}. These families are
parametrized by & € R. Following Rieffel ([11, 12, 13]), we relate these to the theory
of crossed product algebras, and use this to discuss simplicity and K-theory of the non-
commutative plane and torus. In both cases, it turns out that K-theory is rigid under
quantization, that is, independent of A, including A = 0.

Subsequently, we give the strict deformation quantization of the generalized cylinder
R" x T¢. Once again, this will lead to a family of C*-algebras, the noncommutative
cylinders {Cf(lg’d)}, parametrized by h. For the special case of n = d we prove that

C'%d = C’,%d’d) is isomorphic to the crossed product algebra C(T¢) x R?. We use this to
discuss simplicity and to show that for all & one has
Ko(C24) = KO(R? x T4) 2 727",

2d—1

K (C24) = KL(RY x TY) = 72",

and conclude that the K-theory of the cylinder is rigid under quantization as well.

2 Old examples

We start with a brief recapitulation of the definition of strict deformation quantization.
Subsequently, we review the strict deformation quantization of Euclidean space and of
the torus, both due to Rieffel [10, 11, 12, 13].

Definition 1 Let M be a manifold with Poisson bracket { , } and let .4 be a dense
x-subalgebra of Cy(M). A strict deformation quantization of M in the direction of
{', }, consists of an open interval I C R with 0 as an accumulation point, together with,
for each h € I, an associative product *p, an involution *», and a C*-norm || || (for *p
and **) on A, which for h = 0 are the original pointwise product, complex conjugation
involution, and supremum norm, such that

1. The family {Ap}rer forms a continuous field of C*-algebras over I. Here Ap
denotes the C*-completion of A with respect to || ||5-

2. For every f,g € A,
I(f *n g — g *n f)/ih = {f, g}|n



converges to 0 as h goes to 0. (Dirac’s condition)

2.1 Weyl quantization

We consider even-dimensional Euclidean space R?". Let S(R?*") denote the algebra of
Schwartz functions on R*?. The pointwise product in this algebra is deformed to the
Moyal star product, which reads in Fourier space for any 7 € R

(6 ¥)(p,q) = /Rzn d"p’ d*q' ¢, ¢ ) —p'sq— g )e PP, (1)

The involution we use on S(R?") is defined by ¢*(p, ¢) = #(—p, —q), which is independent
of h. We let 7; denote the left regular representation of S(R?®) on L2(R?") via *p, i.e.
for ¢ € S(R?*™) and ¥ € L?(R*"),

Th(P) W := ¢ *p W.

We define a norm || ||z on S(R?") as the operator norm for this representation. The
completion of S(R?") with respect to this norm is a C*-algebra, denoted by R2". By
rewriting formula (1) in terms of partial Fourier transforms, one can show the following.

Proposition 2 The C*-algebra ]R%" 18 1somorpic to the crossed product algebra
C()(Rn) A Rn,
where R acts on R" by translation, v — x + hy (z,y € R*). O

Theorem 3 The C*-algebra R:" is isomorphic to By(L*(R")), the C*-algebra of com-
pact operators on L%(R™).

Proof. We define the map Q)Y : S(R*") — B(L?(R")) by its action on L?*(R"),

QY (@)= [ T e, o))

R2n (27Th)n
where x € L%(R"). This map is known as Weyl quantization, and satisfies
Qr (¢ v) = Q1 (AQK ().

Furthermore, Q)Y (¢)x(z) can be written as an integral operator with kernel in S(R*")
(see [6]). Thus, QY maps S(R?™) onto Bo(L?(R™), the algebra of Hilbert-Schmidt
operators on L?(R"). The following lemma completes the proof.

Lemma 4 Let A and B be C*-algebras. Let E and F be dense *-subalgebras of A and
B, respectively. If E = F as pre-C*-algebras, then A = B as C*-algebras. O



For h = 0, formula (1) reduces to the ordinary convolution product. The closure
of S(R?™) with this product in the operator norm, is R2". With Lemma 4, we have
RZ" = Cy(R?™). The Weyl maps @}V then define a strict deformation quantization of
R?" [11, 13] (also cf. [6]). With Proposition 2 above, continuity of the field {R2"} follows
from Lemma 1 in [7].

The following corollaries are immediate.

Corollary 5 The C*-algebras ]R%" (h # 0) are simple algebras, and are all isomorphic
to each other. O

Corollary 6 FEuclidean space R*" has rigid K-theory under quantization, i.e., for all h
one has

2.2 Noncommutative tori

Let T? be the d-dimensional torus, and let § be a real skew-symmetric d X d matrix.
Instead of deforming the pointwise product in the space of smooth functions on T%, we
deform the product in its Fourier space S(Z9). For h € R, the star product reads

(@*n)(n) = Y d(m)ydp(n —m)em M0, (2)

meZ3

Here 6 is the skew bilinear form defined by

O(m,n) = Z Ok jng. (3)
.k

We set ¢*(n) := ¢(—n), which is independent of h. We let S(Z9) act on L?*(Z?) by left
multiplication via . The completion of S(Z%) with respect to the operator norm || ||,
equipped with this star product is the noncommutative torus, denoted by 'JI'%O. For
fixed 6, the family {T¢,} provides a strict deformation quantization of T¢ [10]. When
d = 2, the skew-symmetric matrix # is just determined by a real number, denoted by 6
as well. From [12] we take the following.

Proposition 7 The noncommutative torus ']I‘g s 1somorphic to the crossed product al-
gebra C(T) xq Z, where o(f)(t) := f(t+0). O

Proposition 8 The C*-algebra T is simple if and only if 6 is irrational. If 0 # 0',
both irrational with 0 < 6,6' < 3, then T3 2 Tp,. O

It came as a surprise that the K-groups of ’]I‘g do not depend on 6.



Proposition 9 The torus T¢ has rigid K-theory under quantization, i.e., for all I one
has

~ ~ d—1
KO(T9) = Ko(Td,) = 22,
K (T9) 2 oy (Td,) = 227

Proof.  For the calculation of Ko(T¢%,) and Ki(T¢%,) we refer to a note at the end of
Chapter 12 in [3]. For the K-groups of T¢, we note that

Ko(C(T,A)) 2 K1(C(T,A)) = Ko(A) & Ki(A)

for any C*-algebra A (cf. Exercise 10.1 in [14]). Since C(T%) = C(T,C(T¢!)), this
yields by induction
Ko(C(T) & Ky (C(T?) = 277

3 Deformation quantization of cylinders

We consider the cylinder in a generalized form. The (n, d)-dimensional cylinder C("%)

is defined as
cd .= R x T¢. (4)

In the case n = d = 1 we obtain C := R x S, which is of course the familiar two-
dimensional cylinder.

Let A be a Poisson structure on R* x T¢. For j =1,--- ,n +d, let 0y, denote the
vector field on R* x T? corresponding to differentiation in the j* direction. We can
write the Poisson structure as

A=—7"> 005 A Oy, (5)

1<j

The factor 7! has been included for later convenience. Here 6;; is a real skew-symmetric
matrix. For later use, we define a skew bilinear form # on R* x Z¢,

0(,k) = Oilik;,  (IL,k € R* x Z9). (6)
,J

Let A\ denote Lebesgue measure on R? x T¢. The Fourier transform f of a Schwartz
function f € S(R* x T¢) is given by

fo = [ ax@e ). (7

Fori=1,...,n we have k; € R, fori =n +1,...,n + d we have k; € Z. Furthermore,
we have the following result.



Lemma 10 The Fourier transform maps S(R™ x T?) isomorphically to S(R* x Z4). O

To integrate over R" and sum over Z¢ in the product R” x Z¢% we introduce the
measure g on R? x Z% defined as the product of Lebesgue measure on R* and the
counting measure on Z%.

For functions in Fourier space, the Poisson bracket is given by

@0k = an [ ) 305t~ ok -] Q
X ’L,]

= an / au(l) p(0)(k — 1O k)
Rr xZ4d

where k,1 € R* x Z¢ and 6 is the bilinear form defined in equation (6).
We define a bicharacter o on R* x Z<¢ by

O'h(l,k?) — eQﬂ'ifw(l,k), (9)

where % € R, and introduce a star product *; on S(R* x Z9) by,
s ) = [ du) otk ~ Dol ) (10)
LD

We define an involution on S(R® x Z%) by ¢*(k) := #(—k), independent of h. We
represent S(R" x Z?) on L*(R® x Z%) by star product multiplication, and define the
noncommutative cylinder as the completion of S(R® x Z9) in the operator norm
Il |5, equipped with product *p. This C*-algebra is denoted by C’;LZ’d).

We could equally well define the noncommutative cylinder as the (completion of)
the algebra S(R™ x T¢) with product, involution and norm obtained by pulling back the
product *p, involution * and norm || || through the inverse Fourier transform. Even
though this makes the differences with the ordinary cylinder more clear, we will continue
in Fourier space to avoid expressions involving many derivatives.

Theorem 11 For fixed 0, the family {C’;{;’d)} provides a strict deformation quantization
of R* x T? in the direction of { , }.

Proof. 'We verify Dirac’s condition

(¢ %Y — ¥ * @) /ih —{¢,9}]n =+ 0 as h—0, (11)
where ¢, € S(R* x Z%). We define

Ap = (¢ *n ¥ — ¢ *p ¢)[/ih — {¢,¢}.
With formulae (8) and (10), this reads

M) = [ au@) otk =) ((on(t. k) = on(k.D)/ih = 4700, F).

6



Similar to Rieffel in [10], we can estimate the expression inside ( ) so that,

Aa® <R [ au) o) ok~ DINPIE =1

for some constant M. This last expression is just (proportional to) the convolution
product of two functions ¢ and i where

d(k) := [k[*|g(R)], (k) := K[| (F)].
As the L'-norm dominates the norm || ||, we have
|ArllA < BM |G % |1

It follows that ||Ax|lp — 0 as h — 0.

Continuity of the field {C’,(iZ’d)} follows from Lemma 1 in [11], in combination with
Proposition 12 below. [

4 Properties of noncommutative cylinders

In this section, we want to discuss the algebraic properties of the noncommutative
cylinder. First, we connect with the theory of crossed product algebras. Then, we
discuss the K-theory of noncommutative cylinders.

When one observes the major differences between ]R,Qi" and ’I[‘;lw, one is led to the
questions if the noncommutative cylinders are simple and if they are all isomorphic. We
take the noncommutative cylinder for n = d, and denote it by C%d. We let | = (z,n)
and k = (y,m), where z,y € R and n,m € Z¢, and choose the following special form
of the skew bilinear form on R? x Z¢,

d
1
o(l, k) = 7 E Yili — M;T;. (12)
=1

We want to rewrite the star product (10) in terms of partial Fourier transforms, defined
by
Sl t) =) ¢lzm)e™  (teT), (13)

nezd

which is a function on R? x T¢. The star product on S(R? x T?) then reads
e d)at) = [ dy ot + by - ) bl = pit+ ) (1)

as can be easily verified. We introduce an action 3 of R? on T¢ defined by 8, (t) = t+ ha,
and write

(5 0)(e.t) = [ dy 90 By-s(0) (o = y.5,(0) (15)



This formulation of the star product in terms of an action 8 of R? on T? goes back to
Rieffel. As is done in the examples in his paper [13], we relate this to crossed product
algebras. For more details on the theory of these algebras, we refer to Pedersen [8]. Let
C(T%) xp R? denote the crossed product algebra for the i-dependent action B,. Then
S(R?,C°(T?)) is a dense *-subalgebra of this crossed product algebra. Define a map
Q: SR x T¢) — S(RY, C®(T?)) by

Q) (1) := d(x, Bu(t)). (16)

Note that S(R? x T¢) is a dense *-subalgebra of C?Ld. Clearly, () is an isomorphism, in
that

QP *nP)(m,t) = (6xnt)(x,Ba(D)) (17)
= [ 40 608y Bult) Wz — 3.5y o Bult)
= [, Q@)1 Q) — y.Bac(t)
= Q) *QY)-
In the case of the noncommutative cylinder, Lemma 4 now yields the following.

Proposition 12 The noncommutative cylinder C’%d (h # 0) is isomorphic to the crossed
product C(T%) xp RE. O

This allows us to use known results on crossed product algebras.
Theorem 13 The C*-algebra C3? is isomorphic to Bo(L?(T?)) ® C*(Z4).
Proof. We note that C(T¢%) xp R? 22 O(T?) xp R? for h, i # 0. In particular,
C(T?4) x5 R? = C(T¢) x R?
for h # 0. Proposition 12 above and Corollary 2.8 of Green [4] complete the proof. (]
With the isomorphism C*(Z%) = C(T%), we have the following.
Corollary 14 The noncommutative cylinders C%d (h # 0) are nonsimple C*-algebras.C]
It is well known that any C*-algebra A is Morita equivalent to its stabilization
As:=By(H)® A

for some Hilbert space 7. In particular, Bo(L?(T?)) @ C(T?) is Morita equivalent to
C(T?). Since Morita-equivalent C*-algebras have isomorphic K-groups, we have the
following.



Corollary 15 For the noncommutative cylinder C’%d one has for all h # 0,

2d71

Ko(C3) = K, (C34) =~ 7

Proof. We note that these K-groups are isomorphic to K°(T¢) = K (T¢) = 72 by
the above comments and the proof of Proposition 9. O

In order to compare this with the K-groups of the original cylinder R? x T¢ we need
the following Lemma.

Lemma 16 For the cylinder R x T% the K-groups are
KOR? x T4) =~ K} (R x T) = 227",

Proof. The proof of Proposition 9 can be adopted to show by induction that
Ko(Co(RE x T4)) = K1 (Cy(R? x T4)) = 727"
Here, one uses Ko(Co(R%)) @ K1(Co(RY)) =2 Z.
An alternative and more elegant proof can be constructed using Bott periodicity
directly:
KO(T?) (d even) i1
0 /mpd dy o~ d ~ 72
KORY x T9) = K T9) = {K(’ﬂ‘d)(dodd) ~ 7
KY(

(d even) -1
K (R*xT¢ = K*(T%) 0 dodd) }_—Z

O

Proposition 17 The cylinder R* x T¢ has rigid K-theory under quantization, i.e., for
all h one has

2d—1

K%R? x T?) = Ko(C3) = 72" 7
K'(RY x T) = K, (C24) = 72",
O

Note that these groups are the same as the K-groups of the torus 'ﬂ‘%a. This is a conse-
quence of Bott periodicity, cf. the above proof of Lemma, 16.

5 Conclusions and Outlook

In this paper, we have discussed the strict deformation quantization of Euclidean space
R?" and the torus T¢. This led to the definition of two families of C*-algebras {R2"}
and {']I‘ge}, parametrized by h. We related both ]R,Z-l" and Tﬁlw to crossed product algebras
and used this to discuss simplicity and K-theory of these C*-algebras. It turned out in



both cases that K-theory is rigid under quantization, that is, independent of £, including
h=0.

We considered strict deformation quantization of the cylinder R* x T¢. This led
to a family of C*-algebras {C,%Z’d)}, the noncommutative cylinders. We related the
noncommutative cylinder to a crossed product algebra by showing that

3 = (T x Re.

We used some theory on crossed product algebras to discuss simplicity and K-theory
and showed that K-theory of the cylinder is rigid under quantization.

It would be interesting to describe the noncommutative cylinder as a noncommuta-
tive geometry, as defined by Connes [1]. This involves the notion of a spectral triple
(A,H,D). In the case of the noncommutative cylinder, one needs to construct an
unbounded operator D, which is the analogue of the Dirac operator on the ordinary
cylinder. The spectral triple (C2%, L*(R? x T?), D) then describes the noncommutative
geometry of the noncommutative cylinder. This spectral triple can be compared to the
spectral triple that describes the noncommutative torus [1] and to the spectral triple
that describes the noncommutative 4-sphere Sj [2].

Furthermore, the C*-algebra C,(ln’d) should be studied in the case n # d. One can
show that if n and d are both even-dimensional, we have,

C,%n’d) o CO(]Rn/Q « Td/2) v (Rn/Z % Zd/2>.

Here the matrix 6 has a skew diagional form,

An analogue of Theorem 13, however, does not hold in this case, because Corollary 2.8 of
Green is not applicable. In order to discuss for example K-theory of this noncommutative
cylinder, we need another approach.
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