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Abstract

Given z ∈ (0,∞) Connes and Marcolli showed in [9] that it is possible to construct a
space of dimension z. Such spaces are given by semifinite spectral triples, a generalisation
of spectral triples which in turn are a generalisation of manifolds. We will investigate
these z-dimensional spaces and give applications in physics to dimensional regularisation
and zeta regularisation. For these applications the product of semifinite spectral triples is
necessary. We will prove in the general case that the product of two semifinite spectral
triples again yields a semifinite triple. Also we will establish that these products preserve
finite summability and regularity.
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Introduction

As the title suggests, this thesis deals with z-dimensional spaces where z is a positive real number.
At first thought it might seem absurd that it is possible for spaces to have a dimension which is
not an integer, because the spaces one comes across in linear algebra or differential geometry all
have integer dimension. But people who are acquainted with fractals or with noncommutative ge-
ometry know that it is possible to define a notion of dimension which extends the dimension with
whom everybody is familiar and which attains noninteger values. The framework which we shall
use to define these spaces is noncommutative geometry [6]. Geometric spaces in noncommutative
geometry are different from spaces in for example linear algebra, topology or differential geom-
etry. In noncommutative geometry spaces are not given by a collection of points, but they are
described by a spectral triple: a tuple consisting of an algebra, a Hilbert space and a self-adjoint
operator. The motivation to look at such spectral triples comes from the Gelfand duality [16]
which relates topology and operator algebras. This duality consists of an isomorphism between
compact Hausdorff topological spaces and commutative unital C∗-algebras. For manifolds there
exists an analogous construction, namely it is possible to construct a spectral triple. If you start
with a manifold, the algebra of the triple is commutative. The converse is also true if the algebra
of the triple is commutative and the triple satisfies some other technical conditions, then the
triple corresponds to a compact manifold [7]. Therefore generalising from commutative algebras
to noncommutative algebras leads to a new kind of geometry: Noncommutative Geometry. This
is precisely the geometry we are interested in and with the tools from noncommutative geometry
we are able to actually define the spaces we are looking for.

Before I started with this project I had no background in noncommutative geometry. When I first
heard about noncommutative geometry and in particular about this topic, I became interested
in it. I wanted to know how this machinery works and that it is actually useful in applications. I
spent more than half a year on this project and I enjoyed it. I hope this text will give the reader
insight in noncommutative geometry and in particular in these z-dimensional spaces. But also I
hope that this text convinces the reader that such spaces are more than abstract nonsense and
that they actually have useful applications.

This thesis roughly consists of three parts. We start with reviewing the basics from functional
analysis, we will show how noncommutative geometry is a generalisation of differential geometry
and give an overview of the concepts of noncommutative geometry which will be used in the
rest of the thesis. In particular we will explain how the notion of dimension and the smooth
structure of a manifold can be extended to spectral triples: the noncommutative manifolds.
In the second part we will consider the generalisation of spectral triples to semifinite spectral
triples. An important tool which will be needed when we look at the applications is the product
of semifinite spectral triples. When we have all the prerequisites we will eventually construct the
spaces of real dimension, this construction is based on the work of Connes and Marcolli in [9].
We will investigate these spaces in detail and actually prove that they are z-dimensional. In the
last part we will give applications in physics of these spaces. We will describe how the spaces
can be used in dimensional regularisation [21] and zeta function regularisation [20]. These are
procedures which are commonly used in physics to deal with divergent integrals.

This text is aimed at master students in mathematics who have a good background in functional
analysis. The results from functional analysis which will be used are stated in the preliminaries,
but familiarity with it is convenient. Knowledge of noncommutative geometry is not necessary,
that theory will gradually be recalled.

Acknowledgements

Since after completion of this thesis I am finished with my master in mathematics and therefore
with my study in Nijmegen, I would like to thank some people. First of all I would like to
thank Walter for supervising me in this master’s thesis project. The help he gave me and the

1



ACKNOWLEDGEMENTS

discussions we had were very valuable for me to solve the problems I encountered. Next I would
like to mention Erik Koelink for being the second reader and Gert Heckman, Ronald Kortram
and Adam Rennie for helping me with various questions.

I also want to thank my friends and fellow students for the good times we had during these
five years in Nijmegen and I am also very grateful to my family who always supported me and
showed interest in what I did during my study. Thanks!

2



1 Preliminaries

In this section we will give a concise overview of the mathematical tools we will use during this
thesis and we will also introduce the notion which will be used. Most results will be stated
without proof, but we will give references. We start with the basics from measure theory. We
continue with functional analysis and finally we will combine the theory of traces on von Neumann
algebras with measure theory.

1.1 Measure theory

Now we will recall some notions from measure theory which we will need later on. The books
[3, 4] give together a very good overview of measure theory.

Definition 1.1. Suppose X is a set. A σ-algebra on X is Σ ⊂ P(X) is a class of subsets of X,
which satisfies the properties

1. X, ∅ ∈ Σ;

2. if A,B ∈ Σ, then A ∩B, A ∪B, A \B ∈ X;

3. if (An)n∈N ⊂ Σ, then ∪n∈NAn ∈ Σ,

If Σ is a σ-algebra on a set X, we call (X,Σ) a measurable space. If (X, τ) is a topological space,
the smallest σ-algebra Σ which contains τ is called the Borel σ-algebra of X, we denote this
σ-algebra by B(X) (if it is clear which topology is involved).

Definition 1.2. Suppose Σ is a σ-algebra on X. We call f : X → C a simple function if there
exists A1, . . . , An ∈ Σ and a1, . . . , an ∈ C, such that f =

∑n
j=1 an1Aj . Note that we can always

select the A1, . . . , An as disjoint sets.
We call f measurable if f−1(U) ∈ Σ for all U ∈ B(C). More generally for measurable spaces
(X1,Σ1) and (X2,Σ2) we call f : X1 → X2 a measurable function if f−1(B) ∈ Σ1 for all B ∈ Σ2.
We call f Borel measurable if it is measurable with respect to the Borel σ-algebras on X1 and
X2.

Theorem 1.3. [3, Thm. 2.1.5] Suppose f , g, fn for n ∈ N are measurable functions with respect
to (X,Σ) and suppose c, d are scalars. Then

(i) if φ : C → C is Borel-measurable, then φ ◦ f is Σ-measurable;

(ii) the functions cf + dg and fg are measurable with respect to Σ;

(iii) if g(x) ̸= 0 for all x, then the function f/g is measurable with respect to Σ;

(iv) if for all x there exists a finite limit f0(x) := limn→∞ fn(x), then the function f0 is mea-
surable with respect to Σ;

(v) if the functions supn fn(x) and infn fn(x) are finite for all x, then they are measurable with
respect to Σ.

Definition 1.4. Suppose (X,Σ) is a measurable space. A measure on (X,Σ) is a map µ : Σ →
[0,∞] such that µ(∅) = 0 and µ(

∪
nEn) =

∑
n µ(En) for each disjoint sequence (En)n ⊂ Σ. In

this case (X,Σ, µ) is called a measure space.
We call µ a finite measure or (X,Σ, µ) a finite measure space if µ(X) <∞ and we call µ σ-finite
if there exist a sequence (En)n ⊂ Σ such that µ(En) <∞ for all n and

∪
nEn = X.

Remark 1.5. From a measure one can construct an integral, we will describe that procedure
here. Suppose (X,Σ, µ) is a measure space. For a simple function f =

∑N
n=1 an1An we define∫

X
f dµ :=

∑N
n=1 anµ(An). One can check that this definition is independent of the chosen

representation of f .
Suppose f : X → [0,∞) is a measurable function, then we define∫

X

f dµ := sup
{∫

X

g dµ : g ≤ f and g is simple
}
.
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1. PRELIMINARIES

Now if f is measurable, we can split f = f+ − f− where the function f+, f− are nonnegative. If∫
X
f+ dµ <∞ or

∫
X
f− dµ <∞, we define∫

X

f dµ :=

∫
X

f+ dµ−
∫
X

f− dµ.

If both
∫
X
f+ dµ < ∞ and

∫
X
f− dµ < ∞, we call f integrable. We denote the integrable

functions by L1(X,Σ, µ) or sometimes simply by L1(X) if no confusion is possible. We also
define for 1 < p <∞ the space

Lp(X,Σ, µ) := {f : X → C : f is Σ-measurable,

∫
X

|f |p dµ <∞}.

We will deal with the case p = ∞ later.

Definition 1.6. Note that if f, g are functions on X and µ({x ∈ X : f(x) ̸= g(x)}) = 0, then∫
X
f dµ =

∫
X
g dµ. Let N (X,Σ, µ) := {f : f is measurable

∫
X
f dµ = 0}. Define the quotient

spaces
Lp(X,Σ, µ) := Lp(X,Σ, µ)/N .

On such a space there is a norm ∥ · ∥p : Lp(X) → C, ∥f∥p :=
( ∫

X
|f |p dµ

)1/p
. The case when

p = ∞ is a little more tricky. By definition f ∈ L∞(X,Σ, µ) if there exists N ∈ Σ such that
µ(N) = 0 and f1X\N is a bounded function.

∥f∥∞ := inf
{
sup
x∈X

|f1X\N (x)| : N ∈ Σ, µ(N) = 0
}

The quantity ∥f∥∞ is the essential supremum of |f |. Again

L∞(X,Σ, µ) := L∞(X,Σ, µ)/N .

We will not distinguish between Lp(X) and Lp(X), although in the second space we are working
with equivalence classes instead of functions. We say a property P holds almost everywhere if
there exists a set N such that µ(N) = 0 and P holds on X \ N . For example f = g almost
everywhere if there exists N such that µ(N) = 0 and f(x) = g(x) for all x /∈ N .

Proposition 1.7. The vector space (Lp(X), ∥ · ∥p) is a Banach space. If p = 2, it is a Hilbert-
space (cf. Definition 1.14) with inner product given by ⟨f, g⟩ :=

∫
X
fg dµ.

The following inequality holds (it is known as Hölder’s inequality). If p, q ∈ [1,∞], 1
p + 1

q = 1,

f ∈ Lp(X) and g ∈ Lq(X), then ∥fg∥1 ≤ ∥f∥p∥g∥q.

Theorem 1.8 (Monotone convergence theorem). . Let (fn)n be a sequence of measurable func-
tions such that fn ≥ 0 for all n and fn ≤ fn+1 almost everywhere, then

lim sup
n→∞

∫
X

f dµ =

∫
X

lim sup
n→∞

fn dµ ≤ ∞.

Theorem 1.9 (Dominated convergence theorem). Let (fn)n ⊂ L1(X) and suppose there exists
h ∈ L1(X) such that |fn| ≤ h almost everywhere and f := limn→∞ fn exists almost everywhere,
then

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Theorem 1.10 (Fubini’s theorem). Suppose for i = 1, 2 the tuples (Xi,Σi, µi) are measure
spaces. Let X := X1 × X2 and Σ be the σ-algebra generated by Σ1 × Σ2. Then there exists a
unique measure µ on Σ such that µ(A1 ×A2) = µ1(A1)µ2(A2) for all Ai ∈ Σi. Furthermore if f
is a non-negative Σ-measurable function, then∫

X1

∫
X2

f dµ2 dµ1 =

∫
X2

∫
X1

f dµ1 dµ2 =

∫
X

f dµ ≤ ∞. (1.1)

If f ∈ L1(X,Σ, µ) then (1.1) also holds for f and
∫
X
f dµ ∈ R.
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1.2. Functional analysis

1.2 Functional analysis

In this subsection we will start with Hilbert spaces and bounded operators on such spaces. Then
we will review the unbounded operators including the spectral theorems and functional calculus
and we will finish with von Neumann algebras. We will follow the books [11], [26], [30].

Notation 1.11. Let V be a vector space and S ⊂ V a subset. Denote by

span(S) :=
{ n∑

i=1

λisi : n ∈ N, λi ∈ C, si ∈ S
}

the linear span of S.

Definition 1.12. Let E be a vector space. ⟨·, ·⟩ : E × E → C is called an inner product if

1. x 7→ ⟨x, a⟩ is linear for all a ∈ E;

2. ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ E;

3. ⟨x, x⟩ ∈ [0,∞) for all x ∈ E.

4. ⟨x, x⟩ = 0 if and only if x = 0.

We call E an inner product space if there exists an inner product ⟨·, ·⟩ : E × E → C on E. Note
that we adopt the convention from mathematics: the inner product is linear in the first entry
and conjugate linear in the second entry.

Remark 1.13. We can define a norm on an inner product space by ∥x∥ :=
√
⟨x, x⟩. So in

particular inner product spaces are normed vector spaces.

Definition 1.14. A Hilbert space is an inner product space which is complete relative to the
topology induced by its inner product norm. We usually denote a Hilbert space by H or K. If
we want to be more specific we use (H, ⟨·, ·⟩) to denote the inner product.

We know from linear algebra that finite dimensional vector spaces always have an (orthonormal)
basis. We can also define a basis for Hilbert spaces.

Definition 1.15. Let (H, ⟨·, ·⟩) be a Hilbert space. We call a subset {ej : j ∈ J} ⊂ H orthonor-
mal if ⟨ei, ej⟩ = δi,j for all i, j ∈ J . Furthermore if the linear span span({ej : j ∈ J}) is dense in
H, we call the set {ej : j ∈ J} an orthonormal basis. If H admits a countable orthonormal basis
we call this space separable.

Lemma 1.16. Every Hilbert space H admits an orthonormal basis and if a set E ⊂ H is or-
thonormal then there exists an orthonormal basis E ′ ⊃ E.

Proof. The first statement follows from the second one by picking a vector h ∈ H of norm 1
and extending {h} to an orthonormal basis. The second statement can be proved using Zorn’s
lemma. �

The inner product behaves as expected with orthonormal bases.

Lemma 1.17. If H is a separable Hilbert space with orthonormal basis (en)n, h ∈ H and
(cn)n ⊂ C such that

∑
n |cn|2 <∞, then

∑∞
n=0 cnen ∈ H and the equality

∞∑
n=0

cn⟨en, h⟩ =
⟨ ∞∑

n=0

cnen, h
⟩

holds.
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1. PRELIMINARIES

Proof. From the assumptions it follows limN→∞
∑∞

n=N |cn|2 = 0 and limN→∞ ∥
∑∞

n=N cnen∥ =
0. For N ∈ N it holds∣∣∣⟨ ∞∑

n=0

cnen, h⟩ −
∞∑

n=0

cn⟨en, h⟩
∣∣∣ = ∣∣∣⟨ ∞∑

n=N

cnen, h⟩ −
∞∑

n=N

cn⟨en, h⟩
∣∣∣

≤
∣∣∣⟨ ∞∑

n=N

cnen, h⟩
∣∣∣+ ∣∣∣ ∞∑

n=N

cn⟨en, h⟩
∣∣

≤
∥∥∥ ∞∑

n=N

cnen

∥∥∥∥h∥+ ( ∞∑
n=N

|cn|2
)− 1

2
( ∞∑

n=N

|⟨en, h⟩|2
)− 1

2

≤ ∥h∥
(∥∥∥ ∞∑

n=N

cnen

∥∥∥+ ( ∞∑
n=N

|cn|2
)− 1

2
)
,

which tends to 0 as N → ∞. �

Now we will review operators between Hilbert spaces, usually we will only consider operators
on a single Hilbert space. We start with the bounded operators because they are a lot easier to
work with, later we will continue with the unbounded ones. In this section H and K will denote
Hilbert spaces.

Definition 1.18. A linear map T : H → K is a bounded operator if the norm of T

∥T∥ := sup{∥Th∥ : h ∈ H, ∥h∥ = 1} <∞.

By B(H,K) we denote the bounded operators from H in K. We use the shorthand notation
B(H) := B(H,H).

Proposition 1.19. [11, Prop. II.2.1] If T : H → K is a linear map, then the following are
equivalent

(i) T ∈ B(H,K);

(ii) T is continuous.

Definition 1.20. We call T ∈ B(H,K) invertible if there exists T−1 ∈ B(K,H) such that
TT−1 = IK and T−1T = IH. The resolvent set of T is the set ρ(T ) := {λ ∈ C : T −
λ is invertible}. The spectrum of T equals σ(T ) := C \ ρ(T ). The function

R : ρ(T ) → B(H), λ 7→ (T − λ)−1

is called the resolvent of T . We define the spectral radius of T by r(T ) := sup{|λ| : λ ∈ σ(T )}.

Theorem 1.21. [27, Thm. VI.5, VI.6] If T ∈ B(H), then σ(T ) is compact and nonempty,
r(T ) = limn→∞ ∥Tn∥1/n and the resolvent identity

(T − λ)−1 − (T − µ)−1 = (µ− λ)(T − µ)−1(T − λ)−1 for λ, µ ∈ ρ(T )

holds. In particular (T − λ)−1 and (T − µ)−1 commute for λ, µ ∈ ρ(T ).

Theorem 1.22. [26, Thm. 3.2.3] For every T ∈ B(H,K) there exists an operator T ∗ ∈ B(K,H)
such that

⟨Th, k⟩ = ⟨h, T ∗k⟩ for all h ∈ H, k ∈ K.

Definition 1.23. We call the operator T ∗ corresponding to T obtained from Theorem 1.22 the
adjoint of T . If T ∈ B(H) and T = T ∗, then T is called self-adjoint. If TT ∗ = T ∗T , then T is
called normal.
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1.2. Functional analysis

Self-adjoint and normal operators play a very important role, because for these operators one
can construct a very import tool, the so called functional calculus. We will tell more about that
later. First some elementary results of the definition.

Theorem 1.24. [26, Thm. 3.2.3] If T ∈ B(H), then ∥T∥ = ∥T ∗∥ = ∥TT ∗∥1/2 (this implies
that B(H) is a C∗-algebra, but more about that later). The map T 7→ T ∗ is conjugate linear,
(T ∗)∗ = T , (TS)∗ = S∗T ∗ and if T is invertible then (T ∗)−1 = (T−1)∗

Definition 1.25. An operator T ∈ B(H,K) is called a finite rank operator if the space T (H) ⊂ K
is finite dimensional.

Theorem 1.26. [11, Thm. II.4.4] Let T ∈ B(H). Denote B := {h ∈ H : ∥h∥ ≤ 1} the closed
unit ball in H. Then the following are equivalent:

(i) T (B) ⊂ H is compact;

(ii) T is the norm-limit of finite rank operators;

(iii) T ∗ is the norm-limit of finite rank operator.

Definition 1.27. An operator T ∈ B(H) which satisfies one of the conditions (and hence all)
of the previous theorem is called a compact operator. We denote the compact operators on H by
K(H).

Lemma 1.28. K(H) ⊂ B(H) is a two-sided ideal.

Proof. The only non trivial fact we have to check is that if K ∈ K(H) and T ∈ B(H) then
TK and KT are compact. We establish the first, the second is analogous. Suppose (Kn)n is
a sequence of finite rank operators such that ∥K −Kn∥ → 0. Then TKn is of finite rank and
∥TK − TKn∥ ≤ ∥T∥ ∥Kn −K∥ → 0. So TK is compact. �

We obtain directly from this lemma and Theorems 1.21 and 1.24 the following results.

Corollary 1.29. If for some λ ∈ ρ(T ) the operator (T − λ)−1 is compact then for any µ ∈ ρ(T )
the operator (T − µ)−1 is compact. If T is self-adjoint for the spectral radius it holds that
r(T ) = ∥T∥.

We will now state the spectral theorem for compact self-adjoint operators. Later we will give
also a spectral theorem unbounded normal operators (cf. Theorem 1.70).

Theorem 1.30 (Spectral theorem). [11, Thm. II.5.1] If T ∈ B(H) is a compact self-adjoint
operator, then T has at most a countable number of distinct eigenvalues, say {λn, n ∈ N}. Then
λn ∈ R for all n ∈ N. Denote by Pn ∈ B(H) the projection onto ker(T − λn), which is a finite
dimensional subspace. Then PnPm = PmPn = 0 if n ̸= m and

T =
∞∑

n=0

λnPn,

where the series is norm-convergent in B(H).

Now we will give an short overview of von Neumann algebras after that we will continue with
the unbounded operators.

Definition 1.31. Let H be a Hilbert space and S ⊂ B(H) be a subset. The commutant of S,
denoted by S′, is defined as

S′ := {b ∈ B(H) : ab = ba for all a ∈ S}.

On B(H) one can define a lot of different topologies, the most common one is the norm topology,
but among others we have the weak and strong operator topology.

7



1. PRELIMINARIES

Definition 1.32. The weak operator topology (WOT) is the weakest topology on B(H) such that
T 7→ ⟨Tx, y⟩ is continuous for all x, y ∈ H. The strong operator topology (SOT) is the weakest
topology on B(H) such that T 7→ ∥Tx∥ is continuous for all x ∈ H.
So a net (ai)i ⊂ B(H) converges SOT to a ∈ B(H) if and only if ∥(ai − a)x∥ → 0 for all x ∈ H.
Similary, a net (ai)i ⊂ B(H) converges WOT to a ∈ B(H) if and only if ⟨(ai − a)x, y⟩ → 0 for
all x, y ∈ H.

Remark 1.33. Note that the WOT is weaker than the SOT which in turn is weaker than the
norm-topology. So if ai → a in norm, then it converges to a in SOT as well. And if ai → a in
SOT then it converges also to a in WOT.

The double commutant theorem of von Neumann relates the algebraic notion of the commutant
with the analytic notion of a topology to each other.

Theorem 1.34 (Double commutant theorem, von Neumann). [23] Suppose M ⊂ B(H) is a
unital ∗-subalgebra, then the following are equivalent:

(i) M′′ = M;

(ii) M is closed in the weak operator topology;

(iii) M is closed in the strong operator topology.

Definition 1.35. A unital ∗-subalgebraM ⊂ B(H) is called a von Neumann algebra if it satisfies
one and therefore all conditions of the double commutant theorem. The algebra M∩M′ is called
the center of M. If the center equals C, then M is called a factor.

Now we consider the projections of M. The projections say a lot about the von Neumann
algebra, so we will elaborate on this subject. We will follow [30].

Definition 1.36. A projection p ∈ M is an element satisfying p = p∗ = p2. Let P(M) denote
the projections of M. If p ∈ M∩M′, it is called a central projection.
Define the partial ordering ≤ on the projections by p ≤ q if pH ⊂ qH. We can define an
equivalence relation on the projections by p ∼ q if there exists u ∈ M such that p = u∗u and
q = uu∗. These two together define a partial ordering 4 on the projections by p 4 q if and only
if there exists a projection p′ such that p ∼ p′ ≤ q.
A projection p is said to be finite if p ∼ q ≤ p implies p = q. Otherwise p is called infinite. A
projection p is purely infinite if q ≤ p and q is finite implies q = 0. p is called abelian if the
algebra pMp is abelian. The projection p is minimal if q ≤ p implies q = 0 or q = p.

Observe that in a factor the projection 1 is the only nonzero central projection.

Definition 1.37. A von Neumann algebra M is called finite, infinite, purely infinite if the
projection 1 has this property.

Definition 1.38. A von Neumann algebra M is of type I if for every central projection p there
exists a nonzero projection q such that q ≤ p.
If M does not admit any finite projections, then M is of type III. Equivalently we could have
demanded that 1 is purely infinite.
If M has no nonzero abelian projections and for every nonzero central projection p there exists
q nonzero finite projection such that q ≤ p, then M is of type II. If M is of type II and finite
then it is of type II1. If M is of type II and has no nonzero finite projection, then it is of type
II∞.

Theorem 1.39. [30, Thm. V.2.19] Let M be a von Neumann algebra. Then there is a unique
direct sum decomposition

M = MI ⊕MII1 ⊕MII∞ ⊕MIII (1.2)

Definition 1.40. Suppose M is decomposed as in (1.2). If MIII = 0, the algebra M is called
semifinite.
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1.2. Functional analysis

Definition 1.41. A trace τ on a von Neumann algebra M is a map τ : M+ → [0,∞] which
satisfies:

• τ(a+ b) = τ(a) + τ(b) for all a, b ∈ M+;

• τ(λa) = λτ(a) for all a ∈ M+, λ ≥ 0;

• τ(aa∗) = τ(a∗a) for all a ∈ M.

If τ(I) = ∞, we call τ an infinite trace. If for all nonzero x ∈ M+ there exists a nonzero y ∈ M+

such that y ≤ x and τ(y) < ∞, the trace τ is called semifinite. If τ(a) = 0 implies a = 0, τ is
called a faithful trace. If τ(a) = lim τ(ai) for each increasing net (ai)i ⊂ M+ with lim ai = a in
the strong operator topology, τ is called normal.

Example 1.42. The trace Tr on B(H) for some Hilbert space H is a faithful normal trace. Tr
is semifinite and it is finite if and only if H is finite dimensional.
The linear mapping f 7→

∫
(a,b)

f(x) dx yields a trace on the von Neumann algebra L∞(a, b). This

trace is finite if and only if a and b are finite. It is semifinite, normal (because of the monotone
convergence theorem) and faithful.

Theorem 1.43. For a von Neumann algebra M the following are equivalent

(i) M is semifinite;

(ii) M admits a semifinite faithful normal trace.

Proof. See [30, Theorem V.2.15]. �

Lemma 1.44. Let M be a type I factor. Let p be a nonzero minimal projection in M and let τ
be a faithful (semi-)finite trace on M. Then for all projections q ∈ M we have τ(q) ∈ {n τ(p) :
n ∈ N} ∪ {∞}.

Proof. Suppose q ∈ P(M). We have three cases:

1. τ(q) = ∞ then we are done.

2. τ(q) = 0 then we are done as well.

3. 0 < τ(q) < ∞. In this case there exists m ∈ N such that mτ(p) > τ(q). If q ∼ p, then by
definition there exists a u ∈ M such that q = u∗u and p = uu∗ hence τ(q) = τ(u∗u) =
τ(uu∗) = τ(p). So suppose p ≺ q. Let q1 ∈ P(M) such that q ∼ q1 > p. Then since
q1 − p > 0 and p are orthogonal

τ(q) = τ(q1) = τ(q1 − p+ p) = τ(q1 − p) + τ(p).

Thus τ(q1 − p) = τ(q)− τ(p). In particular (m− 1)τ(p) > τ(q1). Now q1 is again in case 2
or 3. If we are in case 2, then τ(q1) = 0 and hence τ(q) = τ(p). If we are in case 3, we can
apply the same reasoning to q1, we obtain q2 such that τ(q2) = τ(q1)−τ(p) = τ(q)−2τ(p).
Repeating this argument at most m times gives a sequence of projection q, q1, . . . , qm such
that τ(qj) = τ(q)− jτ(p). By the choice of m there exists an i such that 0 ≤ τ(qi) < τ(p).
However 0 < τ(qi) < τ(p) is not possible, because of minimality of p. Hence τ(qi) = 0 and
τ(q) = iτ(p).

This concludes the proof. �

Lemma 1.45. If M is a finite von Neumann algebra, then M admits a finite normal trace. In
particular if M is a factor all semifinite normal traces on M are finite.
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1. PRELIMINARIES

Proof. The first statement is immediate from [30, Thm. V.2.4]. The other assertion follows
from the first one and the fact that any two traces on a semifinite factor are proportional ([30,
Cor V.2.32]). �

A trace on a von Neumann algebra can be considered as a noncommutative integral. For integrals
we have the Hölder inequality and Fubini’s theorem. We therefore expect that such results
generalise to traces, such a generalisation is true if one assumes some regularity conditions on
the trace.

Proposition 1.46. [31, Thm. IX.2.13] If M is a semifinite von Neumann algebra with a faithful,
semifinite, normal trace τ , one can define a measure topology on M (consult [31, §IX.2] for
the details). Denote the completion of M in this topology by M(M). For x ∈ M(M) put
∥x∥p := τ(|x|p)1/p. Then the following holds

∥ax∥1 ≤ ∥a∥ ∥x∥1 for x ∈ M(M), ∥x∥1 <∞ and a ∈ M.

In particular since M ⊂ M(M) for all x, y ∈ M it holds that

τ(|xy|) ≤ ∥x∥ τ(|y|). (1.3)

A lot more can be said about projections and traces in von Neumann algebras, but here we only
state the results we need. Now we will continue with unbounded operators. The difficulty with
these operators is that they are no longer continuous and that they are not defined on the whole
space.

Definition 1.47. If H and K are Hilbert spaces, a linear operator is a pair (T,Dom(T )) where
Dom(T ) ⊂ H is a linear space and T : Dom(T ) → K is a linear operator. We call Dom(T )
the domain of T . We say (T,Dom(T )) is densely defined if Dom(T ) ⊂ H is dense. We say
(S,Dom(S)) is an extension of T if Dom(T ) ⊂ Dom(S) and Sx = Tx for all x ∈ Dom(T ), we
denote this by T ⊂ S. Thus T = S is by definition T ⊂ S and T ⊃ S, thus for two operators
to be equal it is necessary that the domains coincide. We say (T,Dom(T )) is bounded if there
exists a constant c > 0 such that ∥Tx∥ ≤ c∥x∥ for all x ∈ Dom(T ).

Note that if (T,Dom(T )) is a bounded operator we can continuously extend T to a bounded
operator on Dom(T ). It has become more difficult to take the sum of two operators, the product
or the inverse, because we have to deal with the domains. Outside of the domains the operators
are undefined.

Definition 1.48. Suppose (S,Dom(S)) and (T,Dom(T )) are linear operators, then

(S + T,Dom(S) ∩Dom(T )), (ST,Dom(T ) ∩ T−1(Dom(S))), (T−1, T (Dom(T )))

are linear operators. These are the sum, product and inverse of S and T .

Note that it is not necessary that the sum or product of two densely defined operators is again
densely defined. It is even possible that if (S,Dom(S)) and (T,Dom(T )) are densely defined, but
Dom(S) ∩Dom(T ) = {0}.
Unbounded operators are no longer continuous (cf. Proposition 1.19), but there is a class of
operators which still have a proper behaviour with respect to limits. These operators are the
closed operators.

Definition 1.49. An operator (T,Dom(T )) : H → K is called closed if its graph G(T ) defined
by,

G(T ) := {x⊕ Tx : x ∈ Dom(T )} ⊂ H ⊕K,

is closed in H ⊕ K. We call an operator T closable if there exists a closed extension of T . One
can show that an operator is closable if and only if the closure G(T ) is again a graph of some
operator. We call the (unique) operator which has graph G(T ), the closure of T . We denoted
the closure by T .
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1.2. Functional analysis

Note that the closed graph theorem implies that a closed operator with domain the whole Hilbert
space is necessarily a bounded operator. The following lemma explains the controlled behaviour
of limits.

Lemma 1.50. For an operator (T,Dom(T )), the following are equivalent:

(i) T is closed;

(ii) If (xn)n ⊂ Dom(T ), xn → x and Txn → y for some x ∈ H and y ∈ K, then x ∈ Dom(T )
and Tx = y.

We also want to construct an adjoint operator, again this is more difficult than in the bounded
case. In this construction we apply the Riesz representation theorem, for this it is necessary that
T is densely defined.

Definition 1.51. Suppose (T,Dom(T )) is a densely defined operator. We put

Dom(T ∗) := {x ∈ K : y 7→ ⟨Ty, x⟩ is a bounded functional on Dom(T )}.

Because Dom(T ) ⊂ H dense, the map φ : y 7→ ⟨Ty, x⟩ extends to a continuous functional on H.
By the Riesz representation theorem there exists a unique vector z ∈ K such that φ(y) = ⟨y, z⟩.
We define T ∗(x) := z, then (T ∗,Dom(T ∗)) is a linear operator.

Remark 1.52. From the definitions it follows that if S ⊂ T , then T ∗ ⊂ S∗ and

S∗ + T ∗ ⊂ (S + T )∗, T ∗S∗ ⊂ (ST )∗,

provided that S, T, S + T and ST are all densely defined.

Proposition 1.53. [11, Prop. X.1.6] If (T,Dom(T )) : H → K is a densely defined operator,
then

(i) T ∗ is closed;

(ii) T ∗ is densely defined if and only if T is closable;

(iii) If T is closable, then T = T ∗∗.

From now on we will only consider densely defined operators fromH inH, unless stated otherwise.

Definition 1.54. An operator (T,Dom(T )) is called symmetric if

⟨Tx, y⟩ = ⟨x, Ty⟩ for all x, y,∈ Dom(T ).

If T = T ∗, thus in particular it is required that Dom(T ) = Dom(T ∗), then (T,Dom(T )) is called
self-adjoint. If T is symmetric we say T is essentially self-adjoint if T ∗ is self-adjoint. An operator
T is called normal if T is closed, densely defined and N∗N = NN∗.

Note that if T is densely defined and symmetric, then T ∗ is the closure of T . So an equivalent
definition of essentially self-adjointness would be that T has a unique self-adjoint extension.

Definition 1.55. Suppose T is an (unbounded) operator. Denote Dom∞(T ) :=
∩∞

n=1 Dom(Tn).
If x ∈ Dom∞(T ) and there exists a constant B > 0 (dependent on x) such that ∥Tnx∥ ≤ Bn for
all n, then x is called a bounded vector. If there exists a constant C > 0 such that ∥Tnx∥ ≤ Cnn!
for all n, then x is called an analytic vector. We denote all bounded vectors of T by Domb(T )
and all analytic vectors by Doma(T ). It is clear that Domb(T ) and Doma(T ) are linear subspaces
and Domb(T ) ⊂ Doma(T ).

Proposition 1.56. Suppose T is an unbounded operator on H with domain Dom(T ). The
following holds:

11



1. PRELIMINARIES

(i) if T is self-adjoint, then Domb(T ) ⊂ H dense;

(ii) (Nelson’s theorem) if T is symmetric and Doma(T ) ⊂ H is dense, then T is essentially
self-adjoint;

(iii) if T is closed and symmetric, then T is self-adjoint if and only if Doma(T ) ⊂ H dense.

Proof. Item (i) is [29, Lemma 7.13]. Item (ii) is Nelson’s theorem, [29, Theorem 7.16]. Assertion
(iii) follows directly from (i) and (ii) with the observation that Domb(T ) ⊂ Doma(T ). �

Definition 1.57. If (T,Dom(T )) : H → K is a linear operator, we call T boundedly invertible if
there exists a bounded linear operator S : K → H such that TS = 1 and ST ⊂ 1.

Proposition 1.58. [11, Prop. X.1.15] Let (T,Dom(T )) be a linear operator. Then

(i) T is boundedly invertible if and only if ker(T ) = {0}, ran(T ) = K and T is closed;

(ii) If T is boundedly invertible, the inverse is unique. We denote this inverse by T−1.

As we did before for bounded operators, we can introduce the spectrum and resolvent set for
unbounded operators.

Definition 1.59. For a linear operator (T,Dom(T )) : H → K we define the resolvent set ρ(T ) :=
{λ ∈ C : λ− T is boundedly invertible }. We define the spectrum as before σ(T ) := C \ ρ(T ).

Theorem 1.60. [11, Prop. X.1.15] If (T,Dom(T )) is a closed symmetric operator, then precisely
one of the following possibilities occurs

(i) σ(T ) = C;

(ii) σ(T ) = {λ ∈ C : Im(λ) ≥ 0};

(iii) σ(T ) = {λ ∈ C : Im(λ) ≤ 0};

(iv) σ(T ) ⊂ R.

Furthermore (iv) holds if and only if (T,Dom(T )) is self-adjoint.

The spectrum of operators will be of importance later when we state the spectral theorems.

Theorem 1.61. [27, Thm. VIII.2] Let (T,Dom(T )) be a closed densely defined linear operator.
Then ρ(T ) ⊂ C open subset and

ρ(T ) → B(H), λ 7→ (λ− T )−1

is an analytic operator valued function. Furthermore the first resolvent identity

(T − λ)−1 − (T − µ)−1 = (µ− λ)(T − µ)−1(T − λ)−1 for λ, µ ∈ ρ(T ) (1.4)

holds. In particular {(λ− T )−1 : λ ∈ ρ(T )} is a commuting family of bounded operators.

Note that the difference with the above theorem and Theorem 1.21 is that now we do not assume
that T is bounded.
If a separable Hilbert space admits an orthonormal basis consisting of eigenvectors of a linear
operator D, then it is easy to check wether D is self-adjoint and if the resolvent is compact.

Theorem 1.62. Suppose H is a separable Hilbert space and D : Dom(D) → H is an (unbounded)
linear operator, such that H has an orthonormal basis (en)n consisting of eigenvectors of D with
corresponding eigenvalues (λn)n. If λn ∈ R for all n ∈ N, then D is self-adjoint on the domain
Dom(D) := {h =

∑
n anen ∈ H :

∑
n |an|2 <∞ and

∑
n λ

2
n|an|2 <∞}.

If in addition limn→∞ |λn| = ∞, then σ(D) = {λn : n ∈ N} and for α ∈ ρ(D) the operator
(α−D)−1 is compact.
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1.2. Functional analysis

Proof. For h ∈ H we write an := ⟨h, en⟩, then h =
∑

n anen in ∥ · ∥2-norm. Observe that for
h =

∑
n anen ∈ Dom(D) we have Dh =

∑
n λnanen, because

∑
n λ

2
n|an|2 < ∞ it follows that

Dh ∈ H. Since en ∈ Dom(D) for all n ∈ N, span({en : n ∈ N}) ⊂ Dom(D). The vector space
span({en : n ∈ N}) is dense in H, so Dom(D) ⊂ H dense. Therefore D is densely defined.
Now suppose f, g ∈ Dom(D). Write f =

∑
n anen and g =

∑
n bnen. Then because λn ∈ R

⟨Df, g⟩ =
∑
n,m

λnanbm⟨en, em⟩ =
∑
n

λnanbn⟨en, en⟩ =
∑
n,m

anλmbm⟨en, em⟩ = ⟨f,Dg⟩.

The first and the last equalities hold, because of Lemma 1.17. This shows D is symmetric.
Now we will show Dom(D) = Dom(D∗). It is trivial that Dom(D) ⊂ Dom(D∗), so we have to
establish the converse inclusion. Suppose h /∈ Dom(D). Then

∑
n |an|2 <∞, but

∑
n λ

2
n|an|2 =

∞. Put fN :=
∑N

n=1 λnanen. Since fN is given as a finite linear combination of en it is obvious
that fN ∈ Dom(D). Now

⟨DfN , h⟩ =
N∑

m=1

⟨λ2namem,
∞∑

n=1

anen⟩ =
N∑

m=1

∞∑
n=1

λ2maman⟨em, en⟩ =
N∑

m=1

λ2m|am|2.

Since h is not in the domain of D∗, this becomes arbitrarily large as N → ∞. Hence the
linear map Dom(D) → C, f 7→ ⟨Af, h⟩ cannot be bounded. This implies h /∈ Dom(D∗), thus
Dom(D) ⊃ Dom(D∗) and (D,Dom(D)) is self-adjoint.
Assume limn→∞ |λn| = ∞. Fix α ∈ C \ {λn : n ∈ N}. Define T : H → Dom(D) and for n ∈ N
the maps Tn : H → Dom(D) on the orthonormal basis by T (em) := 1

α−λm
em and

Tn(em) :=

{
1

α−λm
em if m ≤ n

0 if m > n

and extend them linearly to H. Then all maps Tn have finite rank and map into Dom(D). To
show that T maps into Dom(D) we use the fact that limn→∞ |λn| = ∞, so {λn : n ∈ N} has
no accumulation points and therefore this set is closed. Let δ > 0 be such that Bδ(α) ∩ {λn :
n ∈ N} = ∅, then 1

|α−λn| <
1
δ for all n. Furthermore it holds that limn→∞

∣∣ λn

α−λn

∣∣ = 1, thus

there exists C > 0 such that
∣∣ λn

α−λn

∣∣ < C for all n. Suppose f ∈ H, write f =
∑

n anen, then
Tf =

∑
n

an

α−λn
en. So ∑

n

∣∣ an
α− λn

∣∣2 ≤ 1

δ2

∑
n

|an|2 <∞∑
n

∣∣ an
α− λn

∣∣2λ2n ≤ C
∑
n

|an|2 <∞.

Hence Tf ∈ Dom(D).
We will show that T is the norm-limit of the finite rank operators Tn. This will imply that T is
compact. Since limn→∞ |λn| = ∞ and |α − λn| > δ for all n ∈ N, we have limn→∞

1
|α−λn| = 0.

Let ε > 0, pick M ∈ N such that for all m > M it holds | 1
α−λm

| < ε. Let f ∈ H with ∥f∥ = 1,
write f =

∑
n anen, then for m > M we have

∥Tf − Tmf∥ =
∥∥∥ ∞∑

n=m+1

1

α− λn
anen

∥∥∥ < ε
∥∥∥ ∞∑

n=m+1

anen

∥∥∥ ≤ ε∥f∥ = ε.

So limm→∞ ∥T − Tm∥ = 0, hence T is compact. Since T (α − D)en = (D − α)Ten = en
and T (H) ⊂ Dom(D) we obtain T (α − D) ⊂ 1 and (α − D)T = 1. So α ∈ ρ(D). Clearly
{λn : n ∈ N} ⊂ σ(D). Thus we have σ(D) = {λn : n ∈ N} and (α −D)−1 is compact for all
α ∈ ρ(D). �

The converse of this theorem does not need to hold, it is possible that a self-adjoint operator
D does not have any eigenvectors. However a generalisation is true, this will be the spectral
theorem see Theorem 1.70.
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1.3 Spectral theory

Here we will describe the importance of the spectrum of an operator. We will state the spectral
theorem and the functional calculus of self-adjoint operators.

Definition 1.63. Suppose (X,Σ) is a measurable space and H a Hilbert space. A mapping
E : Σ → B(H) is called a spectral measure if it satisfies the following conditions:

(i) E(A) is a projection for each A ∈ Σ;

(ii) E(∅) = 0, E(X) = 1;

(iii) E(A ∩B) = E(A)E(B), for all A,B ∈ Σ;

(iv) if (An)n ⊂ Σ is a sequence of disjoint measurable sets, then

E
( ∞∪

n=1

An

)
=

∞∑
n=1

E(An).

Notation 1.64. If E : B(X) → B(H) is a spectral measure, each pair x, y ∈ H defines a finite
complex measure on B(X) by Ex,y(A) := ⟨P (A)x, y⟩. That Ex,y is a finite complex measure can
directly be verified from the properties of a spectral measure.

With a spectral measure we can integrate functions to obtain operators. The following proposi-
tion gives the precise relation for bounded functions.

Proposition 1.65. [11, Prop. IX.1.10] If E : Σ → B(H) is a spectral measure and φ : X → C
is a bounded Σ-measurable function, then there exists a unique normal operator T ∈ B(H) such
that if ε > 0 and {A1, . . . , An} is a Σ-partition of X with the property that for all k

sup{|φ(x)− φ(x′)| : x, x′ ∈ Ak} < ε,

it holds that for all xk ∈ Ak ∥∥∥T −
n∑

k=1

φ(xk)E(Ak)
∥∥∥ < ε.

Notation 1.66. The operator T of Proposition 1.65 obtained from E and φ is called the integral
of φ with respect to E. We denote T :=

∫
φdE.

With some efforts it is possible to extend this result to unbounded operators. The idea is to
write an unbounded function as a sum of bounded functions and apply the construction on these
bounded functions. One only needs to specify the domain of the operator.

Definition 1.67. Suppose φ : X → C is a Σ-measurable function and E a spectral measure. For
n ∈ N define An := {x ∈ X : n− 1 ≤ φ(x) < n}. Then φn := 1Anφ is bounded and En defined
by En(A) := E(A∩An) is a spectral measure. Hence the operator

∫
φn dEn is well-defined. Let

Dφ :=
{
h ∈ H :

∞∑
n=1

∥∥∥(∫ φn dEn

)
En(An)h

∥∥∥2 <∞
}

and for h ∈ Dφ put

Th :=

∞∑
n=1

(∫
φn dEn

)
En(An)h.

For each h ∈ Dφ his series converges in norm. It appears that T is a normal operator with
domain Dφ. Again we call T the integral of φ with respect to E. We also denote T :=

∫
φdE.

In this thesis we will often use the functional calculus for unbounded self-adjoint operators. We
will state here the properties for normal operators [11, Theorem 4.7, 4.10, 4.11], this is a little
bit more general than we will need.
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1.3. Spectral theory

Theorem 1.68. [11, Thm. X.4.7] If Σ is a σ-algebra of Ω, E : Σ → P(H) is a spectral measure
and φ : Ω → C is Σ-measurable. Then the following holds

(i) The operator
∫
φdE is normal, thus in particular closed;

(ii) The operator
∫
φdE has domain Dom

( ∫
φdE

)
=
{
h ∈ H :

∫
|φ|2 dEh,h <∞

}
;

(iii)
⟨( ∫

φdE
)
h, g
⟩
=
∫
φdEh,g;

(iv)
∥∥∥( ∫ φdE)h∥∥∥2 =

∫
|φ|2 dEh,h.

Theorem 1.69. [11, Thm. X.4.10] Under the same assumptions as in Theorem 1.68. Denote
by Σ the collection of all Σ-measurable functions φ : Ω → C and consider the map ρ : Σ → C(H)
of measurable functions into the closed operators given by ρ(φ) :=

∫
φdE. Then for φ,ψ ∈ Σ

(i) ρ(φ)∗ = ρ(φ);

(ii) ρ(φψ) ⊃ ρ(φ)ρ(ψ), Dom(ρ(φ)ρ(ψ)) = Dom(ρ(ψ)) ∩Dom(ρ(φψ));

(iii) If ψ is bounded, ρ(φ)ρ(ψ) = ρ(ψ)ρ(φ) = ρ(φψ);

(iv) ρ(φ)∗ρ(φ) = ρ(|φ|2).

Theorem 1.70 (Spectral theorem). [11, Thm. X. 4.11] If N is a normal operator on H, then
there exists a unique spectral measure E : B(C) → P(H) such that

(i) N =
∫
z dE(z);

(ii) E(B) = 0 if B ∩ σ(N) = ∅;

(iii) if U ⊂ C open and U ∩ σ(N) ̸= ∅, then E(U) ̸= 0;

(iv) if A ∈ B(H) such that AN ⊂ NA, then A(
∫
φdE) ⊂ (

∫
φdE)A for all φ Borel measurable.

The relation between N and its spectral measure E is sometimes expressed by “assume N has
spectral decomposition N =

∫
z dE” or “suppose N has spectral measure E”.

For unbounded operators which can be diagonalized as in Theorem 1.62 the functional calculus
(for unbounded operators) has an appealing form. This is the content of the next theorem

Theorem 1.71. Let (D,Dom(D)) be a self-adjoint operator on a separable Hilbert space H and
let (en)n be an orthonormal basis consisting of eigenvectors for D with corresponding eigenvalues
(λn)n. Then for φ ∈ C(σ(D),C) the functional calculus is given by

φ(D)f =
∑
n

φ(λn)⟨f, en⟩en, (f ∈ Dom(φ(D)),

where Dom(φ(D)) := {f ∈ H :
∑

n |φ(λn)⟨f, en⟩|2 <∞}.

Proof. By assumption the operatorD is given byDf =
∑

n λn⟨f, en⟩en, for f ∈ Dom(D) = {f ∈
H :

∑
n |λn⟨f, en⟩|2 <∞}. Another way to write D is by using spectral measures. Observe that

σ(D) = {λn : n ∈ N}. Denote by En the projection on en. Define E(Ω) :=
∑

{En : λn ∈ Ω},
a sum of orthogonal projections, then E is a spectral measure for D. We write D =

∫
λ dE(λ)

and φ(D) =
∫
φdE.
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Observe f ∈ Dφ if and only if
∫
|φ|2 dEf,f <∞. Since σ(D) is countable∫

σ(D)

|φ|2 dEf,f =
∑
n∈N

|φ(λn)|2Ef,f (λn)

=
∑
n∈N

|φ(λn)|2⟨Enf, f⟩

=
∑
n∈N

|φ(λn)|2⟨⟨f, en⟩en, f⟩

=
∑
n

|φ(λn)⟨f, en⟩|2.

Hence Dom(φ(D)) := {f ∈ H :
∑

n |φ(λn)⟨f, en⟩|2 <∞}. Using lemma 1.17 we have for f ∈ Dφ

and h ∈ H the following equalities⟨∑
n

φ(λn)⟨f, en⟩en, h
⟩
=
∑
n∈N

φ(λn)⟨⟨f, en⟩en, h⟩

=
∑
n∈N

φ(λn)Ef,h(λn)

=

∫
φdEf,h.

Thus for all h ∈ H

⟨φ(D)f, h⟩ =
∫
φdEf,h =

⟨∑
n

φ(λn)⟨f, en⟩en, h
⟩

and we conclude φ(D)f =
∑

n φ(λn)⟨f, en⟩en. �

We cannot expect that an unbounded operator is an element of a von Neumann algebra. But we
can introduce a notion which is similar. For a von Neumann algebra M we have by definition
M′′ = M. So observe x ∈ M, if and only if {x}′′ ⊂ M.

Definition 1.72. If S is an unbounded operator on H and T ∈ B(H) we say that S and T
commute if TS ⊂ ST . Denote by {S}′ := {T ∈ B(H) : T commutes with S}. Then {S}′ is an
algebra in B(H). If S is densely defined and closed, then {S}′ is closed.
Put W ∗(S) := ({S}′ ∩ {S∗}′)′. If S is bounded, then W ∗(S) is precisely the von Neumann
algebra generated by S. We say S is affiliated with a von Neumann algebra M if W ∗(S) ⊂ M.
Or equivalently if {S}′ ∩ {S∗}′ ⊃ M′.

For self-adjoint operators it is possible to prove the spectral theorem via the Cayley transform.
This transform maps (unbounded) self-adjoint operators to unitary operators and vice-versa [26,
Prop. 5.2.5]. One can then prove the spectral theorem for unbounded self-adjoint operators
via the spectral theorem of bounded unitary operators. However the spectral theorem as stated
above for normal operators cannot be proved via this method. But we have another reason to be
interested in the Cayley transform, see the lemmas below. We are only interested in self-adjoint
operators, so we will not define it for symmetric operators.

Definition 1.73. Let (T,Dom(T )) be a self-adjoint operator in H. The Cayley transform of T
is defined as the operator κ(T ) := (T − i)(T + i)−1.

Lemma 1.74. [26, Lemma 5.2.8] Suppose (T,Dom(T )) is an unbounded self-adjoint operator on
H, then T affiliated to N if and only κ(T ) ∈ N .

We have another equivalent formulation when an operator is affiliated to a von Neumann algebra.
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1.3. Spectral theory

Lemma 1.75. Suppose (T,Dom(T )) is an (unbounded) self-adjoint operator on H with spectral
decomposition T =

∫
λ dE and suppose N ⊂ B(H) is a von Neumann algebra. Then T is

affiliated to N if and only if E(A) ∈ N for all A ∈ B(σ(T )).

Proof. First assume T is affiliated with N . Then E(A) = 1A(T ) and by the spectral theorem
if T and B commute, so do 1A(T ) and B. Thus {T}′ ⊂ {E(A) : A ∈ B(σ(T ))}′. Hence

N = N ′′ ⊃ {T}′′ ⊃ {E(A) : A ∈ B(σ(T ))}′′ ⊃ {E(A) : A ∈ B(σ(T ))}.

For the converse implication we will use lemma 1.74, thus that a self-adjoint operator T is
affiliated to N if and only if the Cayley transform κ(T ) ∈ N . Observe

κ(T ) =

∫
f dE, where f(x) =

i− x

i+ x
.

Then f(σ(T )) ⊂ {z ∈ C : |z| = 1}, f is continuous and f is bounded. Write f =
∑3

j=0 i
jf (j),

where each function f (j) is positive. There exists sequences of simple functions (f
(j)
n )n such that

f
(j)
n ↑ f (j) as n→ ∞. By the monotone convergence theorem we have∥∥∥(∫ f (j) dE

)
x−

(∫
f (j)n dE

)
x
∥∥∥2 =

∫
|f (j) − f (j)n |2 dEx,x → 0. (1.5)

Because f
(j)
n are simple functions the operators

∫
f
(j)
n dE are linear combinations of the spectral

projections E(A). By assumption each projection E(A) commutes with all B ∈ N ′. Thus the

operators
∫
f
(j)
n dE commute with all B ∈ N ′. Since κ(T ) is bounded, Dom(κ(T )) = H. Now

let x ∈ H and ε > 0. Let J be large such that (1.5) < ε for all j ≥ J , then∥∥∥(∫ f (j) dE
)
Bx−B

(∫
f (j) dE

)
x
∥∥∥

≤
∥∥∥(∫ f (j) dE

)
Bx−

(∫
f (j)n dE

)
Bx
∥∥∥+ ∥∥∥(∫ f (j)n dE

)
Bx−B

(∫
f (j)n dE

)
x
∥∥∥

+
∥∥∥B(∫ f (j)n dE

)
x−B

(∫
f (j) dE

)
x
∥∥∥

≤ ε+ 0 + ∥B∥
∥∥∥(∫ f (j)n dE

)
x−

(∫
f (j) dE

)
x
∥∥∥

≤ ε(1 + ∥B∥).

So
( ∫

f (j) dE
)
Bx = B

( ∫
f
(j)
n dE

)
x. Thus κ(T ) =

∑3
j=0 i

jf (j)(T ) commutes with N ′. Hence

κ(T ) ∈ N ′′ = N and T is affiliated with N . �

We introduce some notation.

Notation 1.76. Let L(X,Σ, E) be the Σ-measurable functions. Denote by

N :=
{
f ∈ L(X,Σ, E) :

∫
f dE = 0

}
,

the E-null functions. Then we can define the equivalence classes of measurable functions
L(X,Σ, E) := L(X,Σ, E)/N .

With the Theorems 1.68, 1.69 and 1.70 the following functional calculus is immediate.

Theorem 1.77. [26, Thm. 5.3.8] Suppose (D,Dom(D)) is a self-adjoint operator on H with
spectral measure E. Then the map

L(σ(D),B(σ(D)), E) → {S : S is affiliated with W ∗(D)}, f 7→
∫
f dE

is an essential ∗-isomorphism. In particular Idσ(D)(D) = D and 1(D) = IdH.
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1. PRELIMINARIES

Definition 1.78. Suppose (S,Σ, ν) is a finite measure space, M ⊂ B(H) a semifinite von
Neumann algebra and ρ a semifinite faithful normal trace on M. We denote

L1(M, ρ) := {T : Dom(T ) → H : T affiliated with M, ρ(|T |) <∞}.

L1(M, ρ) := L1(M, ρ) ∩M, i.e. the bounded trace class operators.
A bounded function f : S → L1(M, ρ) is ∗-measurable if for all h ∈ H the functions f(·)h : S → H
and f(·)∗h : S → H are measurable. Define

Lso∗

∞
(
S, ν,L1(M, ρ)

)
:= {f : S → L1(M, ρ) : f is ∥ · ∥-bounded , ∗-measurable}.

Proposition 1.79. [1, Lemma 3.10] Let M ⊂ B(H) be a semifinite von Neumann algebra
with semifinite faithful normal trace ρ and (S,Σ, ν) a finite measure space. Assume that f ∈
Lso∗

∞ (S, ν;L1(M, ρ)) and f is uniformly L1(M, ρ)-bounded (i.e. there exists C > 0 such that
ρ(|f(s)|) < C for all s ∈ S), then

∫
S
f(s) dν ∈ L1(N , ρ), the function ρ(f( · )) is measurable with

respect to the σ-algebra Σ and

τ
(∫

S

f(s) dν(s)
)
=

∫
S

τ(f(s)) dν(s).

1.4 Relations between traces and measures

In this subsection we will dive into the relation between traces and (spectral) measures. We
will see that we can combine measure theory and spectral theory. First we will show that the
combination of a trace and a spectral measure defines an ordinary measure on the sigma algebra
on which the spectral measure is defined. Then we will integrate with respect to that measure.
In the second part of this subsection we will give a generalisation of compact operators.

Lemma 1.80. Let Σ be a σ-algebra on a set Ω. Let N be a von Neumann algebra and τ : N →
[0,∞] be a normal trace. Suppose E : Σ → P(H) is a spectral measure such that E(A) ∈ N for
all A ∈ Σ. Then

µτ,E(A) := τ(E(A)) (1.6)

defines a measure on Σ. If τ is a finite trace, then µτ,E is a finite measure.

Proof. First observe that µτ,E is well defined since E(A) ∈ N+ for all A ∈ Σ, therefore µτ,E

maps indeed into [0,∞]. It remains to show we have σ-additivity. Let (An)n be a sequence of
disjoint Σ-measurable sets. Then, by definition of µτ,E , the fact that E is a spectral measure
and that τ is normal, we have

µτ,E

(∪
n

An

)
= τ

(
E
(∪

n

An

))
= τ

(∑
n

E(An)
)
=
∑
n

τ(E(An)) =
∑
n

µτ,E(An).

Hence µτ,E is a measure. �

Recall that if µ is a measure, a function f : Ω → C is called µ-essentially bounded if there exists
a measurable set A and a constant C such that µ(A) = 0 and |f(y)| < C for all y ∈ Ω \ A. We
can generalise this definition to spectral measures and relate it to general measures.

Definition 1.81. Let Σ be a σ-algebra of Ω, E : Σ → P(H) be a spectral measure and f : Ω → C
be a Σ-measurable function. We call f E-essentially bounded if there exists an A ∈ Σ and a
constant C > 0 such that the projection E(A) = 0 and |f(y)| < C for all y ∈ Ω\A. By L∞(Ω, E)
we denote all the E-essentially bounded functions on Ω. We can equip this space with the norm

∥f∥∞,E := inf{sup
x/∈A

|f(x)| : A ∈ Σ, E(A) = 0}

= inf{a ∈ R : E({y : |f(y)| > a}) = 0}.
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1.4. Relations between traces and measures

Lemma 1.82. Let Σ be a σ-algebra of Ω, E : Σ → B(H) be a spectral measure and f : Ω → C
be a Σ-measurable function. Then the following are equivalent:

(i) f is E-essentially bounded;

(ii) for all x ∈ H the function f is Ex,x-essentially bounded;

(iii) Dom(
∫
f dE) = H.

Proof. Assume (i), then select A and C from the definition of E-essentially boundedness. If
x ∈ H, clearly E(A)x = 0. Hence Ex,x(A) = ⟨E(A)x, x⟩ = ⟨0, x⟩ = 0. Hence f is Ex,x-essentially
bounded. So (ii) holds.
Now assume (ii). Let x ∈ H. Select A ∈ Σ and C > 0 such that Ex,x(A) = 0 and |f(y)| < C for
all y ∈ Ω \A. Then we have∫

Ω

|f |2 dEx,x =

∫
Ω\A

|f |2 dEx,x +

∫
A

|f |2 dEx,x

≤
∫
Ω\A

C2 dEx,x + 0

= C2⟨E(Ω \A)x, x⟩
≤ C2∥x∥2.

Hence
∫
Ω
|f |2 dEx,x <∞, so x ∈ Dom(

∫
f dE). Hence (iii) holds.

Now we will show that (iii) implies assertion (i). According to Theorem 1.68
∫
f dE is a closed

operator. Now if Dom(
∫
f dE) = H, the closed graph theorem implies that

∫
f dE is a bounded

operator. Denote fn := f 1{x∈Ω : |f(x)|≤n}. Then ∥fn∥∞,E ≤ n. Using Theorem 1.77 it follows
that the map L∞(Ω, E) → B(H), g 7→

∫
g dE is norm preserving. Hence for all n we have

∥fn∥∞,E =
∥∥∥∫ fn dE

∥∥∥ ≤
∥∥∥∫ f dE

∥∥∥ <∞.

Thus also ∥f∥∞,E <∞. So (i) holds. �

In general from a measure we can construct an integral. In the case the spectral measure is given
as the spectral decomposition of a self-adjoint operator we obtain the following link between the
functional calculus and integration with respect to the measure µτ,E constructed above (1.6).

Theorem 1.83. Suppose T is a self-adjoint operator on a Hilbert space H with spectral de-
composition T =

∫
σ(T )

λ dE. Let N ⊂ B(H) be a von Neumann algebra, with a normal trace

τ : N+ → [0,∞] and assume that T is affiliated with N . If f : σ(T ) → C is a Borel-measurable
function such that f ≥ 0 or f ∈ L1(σ(T ),B(σ(T )), µτ,E) then,∫

σ(T )

f dµτ,E = τ(f(T )). (1.7)

Proof. To prove this theorem we will apply the standard machine of measure theory. So first
suppose f = 1A for some A ∈ B(σ(T )). Then since T is affiliated with N by Lemma 1.75 we
have E(A) ∈ {T}′′ ⊂ N . Because E(A) is a projection it is positive, hence E(A) ∈ N+. Then
we obtain∫

σ(T )

f dµτ,E =

∫
σ(T )

1A dµτ,E = µτ,E(A) = τ(E(A)) = τ
(∫

1A dE
)
= τ(1A(T )) = τ(f(T )).

Now if f is a simple function, say f
∑N

n=1 αnAn we obtain by linearity of the integral, the trace
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and the functional calculus

τ(f(T )) = τ
( N∑

n=1

αnAn(T )
)

=

N∑
n=1

αnτ(An(T ))

=
N∑

n=1

αn

∫
σ(T )

1An dµτ,E

=

∫
σ(T )

N∑
n=1

αn1An dµτ,E

=

∫
σ(T )

f dµτ,E .

If f is a positive measurable function, then there exists a sequence of simple functions (fn)n with
fn ↑ f pointwise. Theorem 1.68 implies that

⟨(fn(T )− f(T ))x, y⟩ =
∫
fn − f dEx,y,

which tends to 0 as n → ∞ because of the monotone convergence theorem (Theorem 1.8). By
construction the operators fn(T ) ∈ N . Since N is a von Neumann algebra it is WOT-closed,
hence f(T ) ∈ N . Clearly f(T ) is positive because f is, so f(T ) ∈ N+. Using the fact that τ is
a normal trace gives τ(fn(T )) → τ(f(T )). Again an application of the monotone convergence
theorem yields

τ(f(T )) = lim
n→∞

τ(fn(T )) = lim
n→∞

∫
σ(T )

fn dµτ,E =

∫
σ(T )

lim sup
n→∞

fn dµτ,E =

∫
σ(T )

f dµτ,E . (1.8)

This proves the proposition in the case that f is positive.
If f is not necessarily positive, but f ∈ L1(σ(T ),B(σ(T )), µτ,E), then

∫
σ(T )

|f | dµτ,E < ∞.

We split up f in four parts, f = Re(f)+ − Re(f)− + i Im(f)+ − i Im(f)− and apply the pre-
vious equality (1.8) to each of the four summands. It follows that

∫
σ(T )

Re(f)+ dµτ,E < ∞
and for Re(f)−, Im(f)+, Im(f)− as well. By linearity of the integral and trace we obtain∫
σ(T )

f dµτ,E = τ(f(T )), as desired. �

The aim of the rest of this section is use spectral measures and the classical trace to give an
equivalent formulation of a compact operator. Thereafter it will be generalised to semifinite
traces to obtain a generalised notion of a compact operator.

Lemma 1.84. If A ∈ B(R), f : A→ C is a bounded measurable function and T has the spectral
decomposition T =

∫
λ dE, then

∥∥∥( ∫
A

f dE
)
x
∥∥∥ ≤ ∥f∥∞ ∥E(A)x∥ ≤ ∥f∥∞ ∥x∥,

for x ∈ Dom(f(T )) := {x ∈ H :
∫
|f |2 dEx,x <∞}.

Proof. By Hahn-Banach, for all z ∈ H there exists z′ ∈ H, ∥z′∥ = 1 such that ∥z∥ = ⟨z, z′⟩ =
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1.4. Relations between traces and measures

sup∥y∥=1⟨z, y⟩. Let z be such that ∥
∫
A
f dE x∥ = ⟨

∫
A
f dE, x, z⟩. Then we have∥∥∥( ∫

A

f dE
)
x
∥∥∥ =

⟨( ∫
A

f dE
)
x, z
⟩

=

∫
A

f dEx,z

≤ ∥f∥∞ |Ex,z(A)|
≤ ∥f∥∞ sup

∥y∥=1

|⟨E(A)x, y⟩|

= ∥f∥∞ ∥E(A)x∥
≤ ∥f∥∞ ∥x∥.

The second last equality also follows by Hahn-Banach. �

Proposition 1.85. Let H be an infinite dimensional Hilbert space. Let T be an (unbounded)
self-adjoint operator with spectral decomposition T =

∫
λ dE. Then the following are equivalent:

(i) for all λ /∈ σ(T ), (T − λ)−1 ∈ K(H);

(ii) there exists a λ0 /∈ σ(T ) such that (T − λ0) ∈ K(H);

(iii) for all λ ∈ R, Tr(E([−λ, λ])) <∞.

Proof. Clearly (i) implies (ii). For the converse we use the so called first resolvent formula (1.4).
For λ ∈ R, λ ̸= λ0 we then have (T − λ)−1 = (T − λ0)

−1 + (λ0 − λ)(T − λ0)
−1(T − λ)−1. Since

K(H) is an ideal in B(H) it follows that (T − λ)−1 ∈ K(H).
Now we will show (iii) implies (i). For n ∈ N consider Sn :=

∫
[−n,n]

1
λ−λ0

dE. Let Qn : H → H
be the orthogonal projection of H onto Sn(H). Then by construction Qn(H) ⊂ E([−n, n])(H).
By assumption Tr(E([−n, n])) < ∞, so Tr(Qn) < ∞. Therefore Sn is a finite rank operator. It
remains to show that (Sn)n converges to (T − λ0)

−1 in norm.
Observe that for the function f : R → C, λ 7→ 1

λ−λ0
we have Dom(f(T )) = H. This holds

because for A ∈ B(R), we have E(A) = E(A ∩ σ(T )) and by assumption λ0 /∈ σ(T ) and σ(T ) is
closed. So there exists δ > 0 such that Bδ(λ0) ∩ σ(T ) = ∅. But then∫

R

∣∣∣ 1

λ− λ0

∣∣∣2 dEx,x ≤ 1

δ2

∫
R
dEx,x =

1

δ2
⟨E(R)x, x⟩ <∞.

So indeed H = Dom(f(T )). Now let ε > 0. Select N ∈ N such that | 1
N−λ0

|, | 1
−N−λ0

| < ε. Then
for n > N and x ∈ H, we have by Lemma 1.84

∥Snx− (T − λ0)
−1x∥ =

∥∥∥( ∫
[−n,n]

1

λ− λ0
dE
)
x−

( ∫
R

1

λ− λ0
dE
)
x
∥∥∥

=
∥∥∥( ∫

(−∞,−n)∪(n,∞)

1

λ− λ0
dE
)
x
∥∥∥

≤ ε∥x∥. (1.9)

This establishes (i).
Now suppose (i) holds we will show (iii) is true. Because σ(T ) ⊂ R, the operator (T − i)−1 is
compact. So there exists a sequence of finite rank operators (Sn)n such that Sn converges to
(T − i)−1 in norm. Since (T − i)−1 =

∫
R(λ− i)−1 dE, for all ε > 0 there exist N ∈ N and ν0 > 0

such that for all n > N and ν > ν0 it holds that∥∥∥Sn−
∫
[−ν,ν]

1

λ− i
dE
∥∥∥ ≤

∥∥Sn−(T−i)−1
∥∥+∥∥∥(T−i)−1−

∫
[−ν,ν]

1

λ− i
dE
∥∥∥ ≤ ε/2+ε/2 = ε. (1.10)
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Now suppose that Tr(E([−µ0, µ0])) = ∞. Let ε := 1
µ2
0+1

and select corresponding N and ν0.

Note that because Tr(E([−µ0, µ0])) = ∞, the range of E([−µ0, µ0]) is infinite dimensional. Let
n > N , since Sn is finite rank there exists x ∈ ker(Sn) ∩ E([−µ0, µ0])H, x ̸= 0. Fix such an
element x of norm 1. Then for this x and for ν > max{ν0, µ0} the following equality holds(∫

[−ν,ν]

1

λ− i
dE
)
x =

(∫
[−µ0,µ0]

1

λ− i
dE
)
x.

This implies that∥∥∥Snx−
( ∫

[−ν,ν]

1

λ− i
dE
)
x
∥∥∥ =

∥∥∥( ∫
[−µ0,µ0]

1

λ− i
dE
)
x
∥∥∥

= sup
∥y∥=1

∣∣∣⟨( ∫
[−µ0,µ0]

1

λ− i
dE
)
x, y
⟩∣∣∣

≥
∣∣∣⟨( ∫

[−µ0,µ0]

1

λ− i
dE
)
x, x

⟩∣∣∣
=
∣∣∣ ∫

[−µ0,µ0]

λ+ i

λ2 + 1
dEx,x

∣∣∣
≥
∣∣∣ Im ( ∫

[−µ0,µ0]

λ+ i

λ2 + 1
dEx,x

)∣∣∣
=
∣∣∣ ∫

[−µ0,µ0]

1

λ2 + 1
dEx,x

∣∣∣
> ε |Ex,x([−µ0, µ0])|
= ε ⟨E([−µ0, µ0])x, x⟩
= ε.

But this is a contradiction with equation (1.10). Hence we established (iii). �

A converse of theorem 1.62 holds, but we need to assume that the resolvent is compact.

Proposition 1.86. Suppose T is a self-adjoint operator and (T − λ)−1 compact for some λ /∈
σ(T ), then H has an orthonormal basis consisting of eigenvectors of T .

Proof. Let λ ∈ ρ(T ) and assume that the operator (T − λ)−1 is compact. By [27, Thm. VI.15]
the spectrum σ((T −λ)−1) is discrete. Therefore σ(T ) is discrete. Select λ0 ∈ R\σ(T ). Then by
the first resolvent (1.4) (T −λ0)−1 is compact and since λ0 ∈ R the operator is self-adjoint. Thus
by [27, Thm. VI.16] (T−λ0)−1 admits an orthonormal basis (en)n consisting of eigenvectors with
eigenvalues (µn)n for (T − λ0)

−1. But then (en)n is also an orthonormal basis of eigenvectors
with eigenvalues (µ−1

n + λ0)n for T . �

We can easily generalise Proposition 1.85 to semifinite infinite traces on a type II von Neumann
algebra. This will be the content of Theorem 1.90. To obtain such a similar result we first
need to introduce some terminology. Note that for a projection P : H → H we have Tr(P ) =
dim(ran(P )), the following is a straightforward generalisation of this fact.

Notation 1.87. Let M be a von Neumann algebra acting on H and τ be a trace on M. We
denote
P(M) := {P ∈ M : P is a projection}, the projections;
Pf(M, τ) := {P ∈ P(M) : τ(P ) <∞}, the τ -finite projections;
R(M, τ) := span(Pf(M, τ)), the τ -finite rank operators;
K(M, τ) := clo(R(M, τ)), the τ -compact operators. Here the closure is taken in the norm topol-
ogy.
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Lemma 1.88. Let A be a Banach algebra and I ⊂ A an ideal. Then I ⊂ A is a closed ideal.

Proof. That I is a linear subspace and that it is closed, is by construction. Remains to show
that it is an ideal. So let x ∈ I and a ∈ A. Pick a net (xi)i ⊂ I such that ∥x− xi∥ → 0. Then
∥xa− xia∥ ≤ ∥x− xi∥∥a∥ → 0. But xia ∈ I ⊂ I for all i. By closedness xa ∈ I. Similarly for x∗

we have ∥x∗i − x∗∥ → 0 and x∗i ∈ I ⊂ I for all i, by closedness x∗ ∈ I. �

As a direct corollary of this lemma we obtain.

Corollary 1.89. Let M be a von Neumann algebra acting on H and τ be a trace on M, then
K(M, τ) is a closed ideal in B(H) in the norm topology. Furthermore K(M, τ) equals the closed
ideal generated by the τ -finite projections.

Theorem 1.90. Let M be an infinite, semi-finite von Neumann algebra acting on H, equipped
with a normal, faithful trace τ . Suppose T is a self-adjoint M-affiliated (unbounded) operator on
H with spectral decomposition T =

∫
λ dE. Then the following are equivalent:

(i) for all λ /∈ σ(T ), (T − λ)−1 ∈ K(M, τ);

(ii) there exists a λ0 /∈ σ(T ) such that (T − λ0) ∈ K(M, τ);

(iii) for all λ ∈ R, τ(E([−λ, λ])) <∞.

Proof. We can copy most of the proof of Proposition 1.85 by replacing Tr by τ . Equivalence of
(i) and (ii) remains the same.
In the proof of (iii) implies (i) it remains to show that the constructed operators Sn are elements
of M. But this follows from 1.77, because the function

f : σ(T ) → C, λ 7→ 1

λ− λ0

is continuous and bounded (σ(T ) is closed and λ0 /∈ σ(T )). And therefore the functions fn :=
f1[−n,n] are Borel-measurable and bounded. So Sn are bounded normal operators affiliated with
W ∗(T ), hence Sn ∈W ∗(T ) ⊂ M. Let Qn be the orthogonal projection of H on Sn(H). Then by
the same argument as before we can show that τ(Qn) <∞, so Sn ∈ R(H, τ). And the estimate
(1.9) shows Sn → (T − λ0)

−1 in norm.
In the implication (i) to (iii) we again argue by contradiction. Suppose τ(E([−µ0, µ0])) = ∞.
The proof is almost the same as in 1.85, the only extra thing we have to check is that we can find
an element x ∈ ker(Sn)∩E([−µ0, µ0]). This can be done. Namely let Qn be again the projection
on the range of Sn. By orthogonality of Qn and 1−Qn we obtain

τ(E([−µ0, µ0])) = τ(E([−µ0, µ0] ∧Qn + E([−µ0, µ0]) ∧ (1−Qn))

= τ(E([−µ0, µ0] ∧Qn)) + τ(E([−µ0, µ0]) ∧ (1−Qn))

≤ τ(Qn) + τ(E([−µ0, µ0]) ∧ (1−Qn)).

Since τ(Qn) <∞ for all n

τ(E([−µ0, µ0]) ∧ (1−Qn)) ≥ τ(E([−µ0, µ0]))− τ(Qn) = ∞.

Hence (E([−µ0, µ0])∧ (1−Qn))H ̸= {0}. In other words exists an element x ∈ E([−µ0, µ0])H∩
ker(Sn), with x ̸= 0. �

Definition 1.91. If M is a semifinite von Neumann algebra acting on H, with a normal, faithful
trace τ and if T is a self-adjoint M-affiliated operator on H which satisfies one of the conditions
of Theorem 1.90, then T is called a τ -discrete operator.
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2 Essentials from noncommutative geometry

In this section we will give the basics of noncommutative geometry. In the first two subsections
we will closely follow the lecture notes by Landsman [22]. If in these subsections of a result
no proof is given, the proof can be found in those notes. In this section we will describe how
noncommutative geometry is a generalisation of differential geometry. We will use the torus as
our guiding example. We choose the torus, because its tangent bundle is trivial which makes the
differential geometry easier.

2.1 Differential geometry

In this section we will review the concepts from differential geometry which we will need later on
when we consider the spin manifolds, see e.g. [15] for more information on differential geometry.
We assume familiarity with manifolds and vector bundles. We would like to define the Dirac
operator on a spin manifold. For this we need to define the spin-bundle. We denote T2 := S1×S1

for the torus, where S1 is the circle. Equivalently we can also define T2 = R2/Z2.

Example 2.1. We have TT2 ∼= T2 × R2, i.e. the tangent bundle is trivial.

Proof. Define for i = 1, 2 the vector fields Yi(x, y) := (x, y)× ei where (ei)i=1,2 are the standard
basis vectors of R2. Then Yi are smooth and Yi(x + m, y + n) = Yi(x, y) for m,n ∈ Z. Thus
yi indeed defines a vector field on T2. In each fiber T(x,y)T2 the sections (Yi)i=1,2(x, y) form a
complete orthonormal set. Therefore [15, Thm. 1.40] implies TT2 ∼= T2 × R2. �

Definition 2.2. A metric g on a vector bundle E over M is given by a collection of inner
products {gp : Ep × Ep → C : p ∈ M}, such that for all smooth section s, s′ ∈ Γ(E) the map
p 7→ gp(sp, s

′
p) is smooth.

Example 2.3. Since the tangent bundle TT2 is trivial, we can define a metric on the tangent
bundle which is independent of the fiber. Namely define the metric g : TT2 × TT2 → R by

gx : R× R → R, gx(v, w) = v1w1 + v2w2.

Note that this is just the standard inner product in each fiber. It is clear that if s, s′ : T2 → TT2

are smooth sections of the tangent bundle, the map x 7→ gx(sx, s
′
x) is smooth.

Suppose a group acts on a manifold, if this action satisfies some nice properties the quotient
space is again a manifold. These conditions are satisfied for principal fibre bundles

Definition 2.4. Suppose P is a manifold and G a Lie group which acts on P from the right. We
let M := P/G with projection π : P → M . We say that the pair (P,G) is a principal G-bundle
if it satisfies the conditions:

(i) G acts free on P (i.e. if pg = p then g = e);

(ii) for all x ∈ M there exists U ⊂ M open and a bundle morphism P |U : π−1(U) → U × G
such that (P |U (x, h))g = P |U (x, hg), thus P |U intertwines the action of G on P with the
action of G on U ×G.

Lemma 2.5. If (P,G) is a principal fibre bundle then

(i) the quotient space M = P/G is a manifold;

(ii) the projection π : P →M is G-invariant (i.e. π(pg) = π(p)).

If the group also acts on a vector space under some conditions we can use this to define a vector
bundle on the quotient space. This will be the associated vector bundle.

Definition 2.6. Let (P,G) be a principal G-bundle and let G be acting on a vector space V .
Again denote M := P/G. Then E := P ×G V := (P × V )/G is a vector bundle over M with
fibers Ep = V . The quotient is defined by the right action of G via (p, v)g := (pg, g−1v). E is
called the associated vector bundle of V to (P,G).
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2. ESSENTIALS FROM NONCOMMUTATIVE GEOMETRY

The smooth sections of this vector bundle are related to the smooth G-invariant functions of P
to V .

Lemma 2.7. Given a principal fiber bundle (P,G) it holds that

Γ(P ×G V ) ∼= C∞(P, V )G
(
:= {f ∈ C∞(P, V ) : f(pg) = g−1f(p) for all p ∈ P, g ∈ G}

)
.

We would like to differentiate sections of vector bundles along vector fields. This is what covariant
derivatives do for us.

Definition 2.8. Denote by X(M) the smooth vector fields on M . A covariant derivative ∇ on
a vector bundle E is a bilinear map

∇ : X(M)× Γ(E) → Γ(E), (X,σ) 7→ ∇Xσ,

which for all f ∈ C∞(M), X ∈ X(M), σ ∈ Γ(E) satisfies:

(i) ∇fXσ = f∇Xσ;

(ii) ∇X(f · σ) = ∇X(σ) · f + σ · (Xf).

Definition 2.9. A connection on a vector bundle E is a linear map

∇ : Γ(E) → Γ(E)⊗C∞(M) Γ(T
∗M)

which satisfies the Leibniz rule

∇(σ · f) = (∇σ) · f + σ ⊗ df for all f ∈ C∞(M), σ ∈ Γ(E).

Here d : C∞(M) → Γ(T ∗M) is the exterior derivative.

If we have an associated vector bundle one can look at covariant derivatives in another way which
appears to be equivalent (cf. Lemma 2.11).

Definition 2.10. Suppose (P,G) is a principal G-bundle, let M := P/G. An Ehresmann
connection on P is a collection of maps {hp : Tπ(p)M → TpP : p ∈ P} which satisfies the
conditions

(i) π′(hp(σ)) = σ, for all σ ∈ TpP (here π′ is the derivative of π);

(ii) hpg = R′
g ◦ hp for all p ∈ P, g ∈ G (here Rg is the map p 7→ pg);

(iii) the vector field p 7→ hp(X) is smooth for all X ∈ X(M).

Lemma 2.11. Suppose E := P ×G V is an associated vector bundle over the manifold M and
(hp)p∈P is an Ehresmann connection on P . Then the map

∇Xσ(p) := hp(Xπ(p))σ(p) σ ∈ C∞(P, V )G ∼= Γ(P ×G V )

defines a covariant derivative on E.

There is also a converse to this construction. Given a covariant derivative, you can construct an
Ehresmann connection.

Remark 2.12. Suppose E := P ×G V is an associated vector bundle over the manifold M and
∇ : X(M) × Γ(E) → Γ(E) is a covariant derivative. Then ∇̃ is a connection where ∇̃(σ) :=
∇·σ ∈ Γ(E)⊗ T ∗M . I.e. ∇̃(σ)(X) = ∇Xσ for X ∈ X(M), σ ∈ Γ(E).
Assume we work locally such that P |U ∼= U ×G and (P ×G V )|U ∼= U ×V . Then ∇̃− d is linear,
thus because we are working locally there exists a smooth TeG-valued function A such that on
U we have ∇− d = A. Now define

hx,gσ := σ − ⟨A(x), σ⟩.

This defines an Ehresmann connection on P .

26



2.2. Towards noncommutative geometry

A special connection on the tangent space is given by the Levi-Civita connection.

Theorem 2.13. For each manifold M with metric g there exists a unique covariant derivative
∇ on the tangent bundle TM , called the Levi-Civita connection, which satisfies the following two
requirements.

(i) Xg(Y,Z) = g(∇XY, Z) + g(Y,∇XZ), for all X,Y, Z ∈ X(M);

(ii) ∇XY −∇YX − [X,Y ] = 0, for all X,Y ∈ X(M).

If a connection ∇ satisfies condition (i) it is called metric, if it satisfies condition (ii) the connec-
tion is torsion free.

Example 2.14. For X,Y ∈ Γ(TT2), write X = x1∂1 + x2∂2, Y = y1∂1 + y2∂2. Consider the

vector field ∇XY :=
∑2

i=1X(yi)∂i, then ∇ : (X,Y ) 7→ ∇XY is the Levi-Civita connection of
the torus.

Proof. Because the Levi-Civita connection exists and is unique, it is sufficient to check that ∇
is a connection and that it satisfies the conditions of the Levi-Civita connection.
It is immediate that ∇ is bilinear. Suppose X,Y, Z are vector fields on T2 and f : T2 → R a
smooth map. Then

∇fXY =
∑
i

fX(yi)∂i = f
∑
i

X(yi)∂i = f∇XY ;

∇X(fY ) =
∑
i

X(fyi)∂i =
∑
i

(X(f)yi∂i + fX(yi)∂i) = X(f)Y + f∇XY ;

Xg(Y, Z) =
∑
i

xi∂i(y1z1 + y2z2) =
∑
i,j

xi∂i(yj)zj + xiyj∂i(zj)

=
∑
i

X(yi)zi + yiX(zi) = g(∇XY, Z) + g(Y,∇XZ);

[X,Y ] =
∑
i,j

xi∂i(yj∂j)− yi∂i(xj∂j) =
∑
i,j

xi∂i(yj)∂j − yi∂i(xj)∂j +
∑
i,j

xiyj∂i∂j − yixj∂i∂j

=
∑
i,j

xi∂i(yj)∂j − yi∂i(xj)∂j = ∇XY −∇YX.

The first two computations show that ∇ is a connection, the third shows it is metric and the
fourth shows it is torsion free. Hence ∇ is the Levi-Civita connection. �

2.2 Towards noncommutative geometry

Here we will describe the spin manifolds and how these give rise to a spectral triple. We start
with some algebraic objects: Clifford algebras and spin groups. With these we will construct the
spinor bundle so that we can define a Hilbert space associated to the manifold M on which the
Dirac operator can act.

Definition 2.15. Suppose V is a vector space. The tensor algebra T (V ) :=
⊕∞

n=0 V
⊗n

. The
product of elementary tensors is given by concatenation, to be explicit

(v1 ⊗ . . . vm) · (w1 ⊗ . . . wn) := v1 ⊗ . . . vm ⊗ w1 ⊗ . . . wn.

This product can be extended with distributivity to arbitrary elements of T (V ).

Definition 2.16. Let g : Rn×Rn → R be the bilinear map given by the standard inner product
(i.e. g(v, w) := v1w1 + . . . vnwn). Denote by Ig the two-sided ideal generated by elements of
the form v ⊗ v − g(v, v). Now the algebra Cl+n := T (Rn)/Ig is called a Clifford algebra. The
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2. ESSENTIALS FROM NONCOMMUTATIVE GEOMETRY

multiplication in Cl+n is called the Clifford multiplication. There are more kinds of Clifford
algebras when one varies the bilinear map g. Since we do not need them, we will not define those
algebras.
Let Ia be the two-sided ideal generated by the elements v ⊗ v for v ∈ V . Define the exterior
algebra

∧•
V := T (V )/Ia.

It is possible to select a specific set in Cl+n which is a group. This is called the Spin group.

Definition 2.17. Let

Spin(n) := {tv1 · · · vp : p is even, t = ±1, vi ∈ Rn, g(vi, vi) = 1} ⊂ Cl+n .

Spin(n) is a group, called the spin group. Multiplication in Spin(n) is given by restricting the
multiplication of Cl+n . Define an anti-automorphism ! of Spin(n) by

(tv1 · · · vp)! := tvp · · · v1.

Using this anti-automorphism it is possible to let Spin(n) act on Rn. Again the Clifford multi-
plication is needed.

Lemma 2.18. For s ∈ Spin(n) define a linear map

λ(s) : Rn → Rn, w 7→ sws!.

It holds that λ(Spin(n)) ⊂ SO(n). This follows from the fact that for a vector v the map
w 7→ vwv is a reflection and the composition of two reflections is in SO(n). In fact the following
sequence is exact

1 // Z2
// Spin(n)

λ // SO(n) // 1 .

This map λ is called the double covering of SO(n).

Example 2.19. We have Spin(2) ∼= SO(2), but also the sequence

1 // Z2
// Spin(2)

λ // SO(2) // 1

is exact. Here the map λ : Spin(2) → SO(2) is given by λ(u)x := uxu!, where the multiplication
is in the Clifford algebra and if (u1 · · ·uk)! := uk · · ·u1.

Proof. We will only show that Spin(2) ∼= SO(2). Denote by e1, e2 the standard basis of R2.
Then a basis for the Clifford algebra Cl+2 is given by 1, e1, e2, e1⊗e2. One readily checks that the
following map given on the basis vectors extends linearly to an algebra isomorphism φ between
Cl+2 and M2(R).

1 7→
(
1 0
0 1

)
= I e1 7→

(
0 1
1 0

)
e2 7→

(
1 0
0 −1

)
e1 ⊗ e2 7→

(
0 −1
1 0

)
By definition the spin group is given by

Spin(2) = {tv1 · · · vp : p even, vi ∈ R2, g(vi, vi) = 1 for i = 1, · · · p, t = ±1}
= {tv1v2 : vi ∈ R2, g(vi, vi) = 1 for i = 1, 2, t = ±1} ∪ {±1}.

This equality holds because of the multiplication in Cl+2 . We now show that φ restricts to a group
isomorphism ψ between Spin(2) and SO(2). Let vw ∈ Spin(2). Say v = (v1, v2), w = (w1, w2)
with v21 + v22 = w2

1 + w2
2 = 1. Then a straightforward computation shows

ψ(vw) =

(
v1w1 + v2w2 −v1w2 + v2w1

v1w2 − v2w1 v1w1 + v2w2

)
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2.2. Towards noncommutative geometry

Then det(ψ(vw)) = 1 and ψ(vw)ψ(vw)t = I. So indeed ψ maps into SO(2). Since φ is an
isomorphism, ψ is an injective group homomorphism. So it remains to show surjectivity. Recall

SO(2) =

{(
cos(α) − sin(α)
sin(α) cos(α)

)
: α ∈ [0, 2π)

}
=: {rα : α ∈ [0, 2π)}.

Let rα ∈ SO(2) then ψ((cos(α), sin(α))(1, 0)) = rα. Hence we have surjectivity. The statement
about the exact sequence is Lemma 2.18. �

An oriented manifold is a manifold in which we can choose an orientation, that is we can choose
in each fiber a positively oriented basis (e1p, . . . , e

n
p ) such that for each i p 7→ eip varies in a

smooth way along the fibers. To be precise, there exists an atlas such that the Jacobians of the
transition functions are positive. In the class of oriented manifolds we can select a class with
extra structure.

Definition 2.20. Suppose M is a manifold of dimension n. We say M is a spin manifold if M
is oriented and there exists a principal Spin(n)-bundle Spin(M) with an isomorphism

Spin(M)×Spin(n) Rn ∼= TM.

We continue by computing the associated spin(2)-bundle Spin(T2) on the torus. It appears this
bundle is again trivial.

Example 2.21. The spin bundle Spin(T2) ∼= Spin(2)× T2.

Proof. The spin bundle on a spin manifold M is defined implicitly by

Spin(M)×Spin(n) Rn ∼= TM,

via the isomorphism [p, v] 7→ p(v). Thus it is sufficient to show that we have an isomorphism

(Spin(2)× T2)×Spin(2) R2 ∼= T2 × R2 = TT2.

Recall that from the construction of the associated vector bundle it is given that the group
Spin(2) acts on Spin(T2)× R2 by (p, v)g := (pg, g−1v). We define the map

φ : (Spin(2)× T2)×Spin(2) R2 → T2 × R2, [(u, p), v] 7→ (p, u(v)).

Since
φ(((u, p), v)g) = φ((ug, p)g−1v) = (p, ug(g−1v)) = (p, u(v)) = φ((u, p), v),

the map φ is well-defined. It is clear that φ restricted to a fiber is linear a linear map. So φ is a
vector bundle morphism.
Because φ((I, p), v) = (p, v), φ is surjective. It remains to show that φ is injective. Suppose
φ([(u, p), v]) = φ([(u′, p′), v′]). Then p = p′ and u(v) = u′(v′). Put g = u−1u′, which lies in
Spin(2). From this we obtain

((u, p), v)g = ((ug, p), g−1v) = ((uu−1u′, p′), u′−1uv) = ((u′, p′), v′).

Hence [(u, p), v] = [(u′, p′), v′] thus φ is injective. �

The Dirac operator on a spin manifold is a first order partial differential operator on a specific
vector bundle. On this bundle one needs to be able to multiply with elements from TM , on
the spinor bundle (to be defined later) this is possible. For this multiplication we will use the
Fock representation. To deal with (partial) derivations we need connections, the Levi-Civita
connection will be used to construct a connection on the spinor bundle.

Lemma 2.22. Given n ∈ N, there exists an irreducible faithful representations πF of Cl+n on

the vector space
∧• Cn/2 ∼= C2n/2

if n is even and on the vector space
∧• C(n−1)/2 ∼= C2(n−1)/2

if
n is odd. This representation is called the Fock representation.
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2. ESSENTIALS FROM NONCOMMUTATIVE GEOMETRY

Restricting this representation to Spin(n) ⊂ Cl+n gives a representation of Spin(n). This one
needs no longer to be irreducible. Indeed, if n is even the representation splits in two inequivalent
representations.
We will compute the Fock representation for the torus, thus for Spin(2).

Example 2.23. The Fock representation of Spin(2) on S2 is given on the generators by

1 = e1e1 = e2e2 7→
(
1 0
0 1

)
= I, e1e2 7→

(
i 0
0 −i

)
= iσ3.

This representation is reducible.

Proof. We have an (irreducible) representation πF of Cl+2 on C2 given on the generators by
e1 7→ σ1, e2 7→ σ2, e1e2 7→ iσ3, where σi are the Pauli matrices(

0 1
1 0

)
= σ1

(
0 −i
i 0

)
= σ2

(
1 0
0 −1

)
= σ3. (2.1)

This is indeed a representation of Cl+2 , because πF (e
2
i ) = πF (1) = I = σ2

i = πF (ei)
2, thus πF

preserves the relation vv = g(v, v). The representation πF is irreducible, because if it is not,
there would be a vector v ∈ C2 and scalars λi ∈ C such that σiv = λiv for i = 1, 2, 3. But it is
easily seen that this is impossible.
The restriction of πF to Spin(2) ⊂ Cl+2 gives a representation. This representation is not ir-
reducible, because it leaves the spaces C

(
1
0

)
and C

(
0
1

)
invariant. We also see that σ1 is a map

between these two invariant subspaces, σ1 is a grading operator. �

Definition 2.24. The spinor bundle Sn is defined as the vector bundle associated to the bundle
principal-Spin(n) bundle Spin(M), thus Sn := Spin(M) ×Spin(n) Sn. Here Spin(n) acts on S
via the Fock representation.
As a special case of lemma 2.7 we have the following isomorphism

C∞(Spin(M), Sn)Spin(n) ∼= Γ(Sn). (2.2)

Now we have every ingredient for the Dirac operator. In the following definition we will give the
definition of the Dirac operator on a spin manifold. We will give a local expression. For a more
detailed explanation one can consult e.g. [19, 22].

Definition 2.25. SupposeM is an oriented manifold. Given the Levi-Civita connection on TM
we can define an Ehresmann connection on SO(M) via Remark 2.12. Denote this connection
by hgp : Tπ(p)M → TpSO(M). Because of the double covering of SO(n) by Spin(n) (cf. Lemma
2.18) we have a projection π : Spin(M) → SO(M). Therefore in each fiber the tangent map

π′
p : Tp(Spin(M)) → Tπ(p)(SO(M))

is an isomorphism. We can lift the Ehresmann connection to Spin(M) via this map π. Namely
define

hSp := (π′
p)

−1 ◦ hgπ′(p) : Tπ(p)M → TpSpin(M).

Use the isomorphism (2.2) and lemma 2.11 to obtain a connection on Sn by

∇S
Xσ(p) := hSp (Xπ(p))σ(p), σ ∈ Γ(Sn), X ∈ Γ(TM).

This connection is called the spin connection of M . We now turn to the other object which is
needed for the Dirac operator. Recall the Fock representation (Definition 2.22) of the Clifford
algebra πF : Cl+n → End(Sn). Locally TM |U ∼= V × Rn, for some V ⊂ Rn. Thus in this chart
U , if (x,w) ∈ V × Rn, we can act with πF (w) on sections φ ∈ Γ(Sn). In particular let (ea)a be
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2.2. Towards noncommutative geometry

an orthonormal frame1 and ψ ∈ Γ(Sn), then πf (ea)ψ(x) is well-defined. Note that the elements
of a local frame are vector fields themselves. Now we can locally define the Dirac operator by

/Dψ(x) := −i
n∑

a=1

πF (ea)∇S
eaψ(x), (ψ ∈ Γ(Sn)),

where (ea)a is an orthonormal frame of TM , πF is the Fock represenation and ∇S
a is the spin

connection.
We will also briefly sketch the global construction. Globally /D is defined by

i /D : Sn
∇S

// Sn ⊗ Γ(T ∗M)
flip ◦ ♯ // Γ(TM)⊗ Sn

c // Sn .

Here ∇S is again the spinor connection on the spinor bundle Sn. For vector spaces the map flip
is by

flip : V ⊗W →W ⊗ V, v ⊗ w 7→ w ⊗ v.

The function ♯ gives the canonical isomorphism induced by the metric g between T ∗M and TM .
To be precise φ 7→ φ♯, where φ♯ ∈ TM is the unique element such that g(φ♯, X) = φ(X) for all
X ∈ Γ(TM). c denotes the Clifford multiplication, this is a action of TM on the spinor bundle.
Since this involves Clifford modules we will not go into details about this operator.

Finally we can compute the Dirac operator on the torus.

Example 2.26. Since the metric is independent of the coordinates (in each fiber it is the
standard inner product of R2), all the Cristoffel symbols vanish. We choose the orthonormal
frame (ei)i=1,2 of S2, where e1(x) =

(
x,
(
1
0

))
∈ S2 = C2 and e2(x) =

(
x,
(
0
1

))
∈ S2 = C2. Using

the Fock representation of Example 2.23 and the fact that in the case of the torus the spinor
connection is simply derivation in the direction of the vector field, we can locally write the Dirac
operator as

/D : Γ(S2) → Γ(S2);

/Dψ(x) = −i
∑
j=1,2

πF (xj)∂xjψ(x)

= −i(πF (e1)∂x1ψ(x) + πF (e2)∂x2ψ(x))

= −i(σ1∂x1 + σ2∂x2)ψ(x)

=

(
0 −i∂x1 − ∂x2

−i∂x1 + ∂x2 0

)(
ψ1(x1, x2)
ψ2(x1, x2)

)
.

Since every bundle we considered on the torus was trivial, in particular the spinor bundle, this
expression for /D holds globally. From now on we will write x and y instead of x1 and x2.
The Dirac operator was invented because in quantum mechanics one needed first order partial
differential operators and not second order. So the Laplacian needed to be reduced to a first
order system. Indeed, in our case of the torus /D can be considered as the square root of the
Laplacian, since

/D
2
=

(
0 −i∂x − ∂y

−i∂x + ∂y

)(
0 −i∂x − ∂y

−i∂x + ∂y

)
=

(
(−i∂x − ∂y)(−i∂x + ∂y) 0

0 (−i∂x − ∂y)(−i∂x + ∂y)

)
=

(
−∂2x − ∂2y 0

0 −∂2x − ∂2y

)
= ∆.

1sometimes also called a vielbein
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The space

L2(Sn) :=
{
f :M → Sn : f(p) ∈ Snp,

∫
|f(p)|2 dvol(p) <∞

}
.

is a Hilbert space. We will make computations in this Hilbert space for the torus. We introduce
the following constants and functions.

Notation 2.27. In this section we will use the following notations. For n,m ∈ Z and ε = ±1
define

φm,n(x, y) := e2πi(mx+ny);

cm,n :=
m+ in√
m2 + n2

;

ψm,n,ε(x, y) :=

(
1√
2
e2πi(mx+ny)

ε 1√
2

m+in√
m2+n2

e2πi(mx+ny)

)
=

(
1√
2
φm,n(x, y)

εcm,n
1√
2
φm,n(x, y)

)
=:

(
ψm,n,ε,1(x, y)
ψm,n,ε,2(x, y)

)
;

λm,n,ε := ε2π
√
m2 + n2;

λm,n := λm,n,1.

Observe cm,ncm,n = 1.

Example 2.28. The collection of spinors E := {ψm,n,ε : m,n ∈ Z, ε = ±1} forms an orthonor-
mal basis of L2(T2,C2). Furthermore ψn,m,ε where n,m ∈ Z, ε = ±1 are eigenspinors with
corresponding eigenvalues λm,n,ε := ε2π

√
m2 + n2.

Proof. Indeed, a direct computation shows that /Dψm,n,ε = λm,n,εψm,n,ε. To find these

eigenspinors one can first search for the eigenspinors of /D
2
= ∆ using separation of variables.

These eigenspinors give conditions on the eigenspinors of /D, because if /Dψ = λψ, then /D
2
ψ =

λ2ψ. The eigenspinors of /D
2
appear to be of the form

(x, y) 7→
(
ce2πi(m1x+n1y)

de2πi(m2x+n2y)

)
,

for some c, d ∈ C, m1,m2, n1, n2 ∈ Z such that m2
1 + n21 = m2

2 + n22. Once these are known, one
shows that the eigenfunctions of /D should be of the form ψm,n,ε and linear combinations thereof.
We use the Stone-Weierstrass theorem to show thatA := span(E) is dense in Γ(S2) = C∞(T2,C2).
First consider the linear space A′ := span{φm,n : m,n ∈ Z}. The torus T2 is compact and Haus-
dorff, A′ is an algebra, it separates points, is closed under complex conjugation and it contains
the unit. So the Stone-Weierstrass theorem asserts that A′ is dense in C(T2,C).
Now observe that ψm,n,+1+ψm,n−1 = (

√
2φm,n, 0) and ψm,n,+1−ψm,n,−1 = (0,

√
2 m+in√

m2+n2
φm,n).

Then since A′ is dense in C(T2,C), A is dense in C(T2,C2) in the ∥ · ∥∞-norm. But then also A
is dense in L2(T2,C2). So E is a complete system.
It remains to show independence. Recall, for n ∈ Z it holds

∫ 1

0

e2πinxdx =

{
1 if n = 0

0 if n ̸= 0
.
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Therefore

⟨ψm′,n′,ε, ψm′,n′,ε′⟩

=
1

2

∫ 1

0

∫ 1

0

φm,nφ−m′,−n′ + εε′cm,ncm′,n′ φm,nφ−m′,−n′dxdy

=
1

2

∫ 1

0

∫ 1

0

φm−m′,n−n′dxdy +
1

2
εε′cm,ncm′,n′

∫ 1

0

∫ 1

0

φm−m′,n−n′dxdy

=
1

2
(δm,m′δn,n′ + εε′cm,ncm′,n′ δm,m′δn,n′)

=

{
1 if m = m′ and n = n′ and ε = ε′

0 otherwise
.

Thus the set is orthonormal. �

Example 2.29. The spectrum of the Dirac operator /D of (C∞(T2), L2(T2,C2), /D) consists of
the eigenvalues of /D i.e. σ( /D) = {ε2π

√
m2 + n2 : ε = ±1, m, n ∈ Z}. For

Dom( /D) :=
{ ∑

m,n,ε

dm,n,εψm,n,ε :
∑
m,n,ε

|dm,n,ε|2 <∞,
∑
m,n,ε

λ2m,n,ε|dm,n,ε|2 <∞
}
,

the operator ( /D,Dom( /D)) is self-adjoint and /D has a compact resolvent.

Proof. Example 2.28 shows the conditions of Theorem 1.62 are satisfied, from which the result
follows. �

Definition 2.30. A spectral triple consists of a triple (A,H, D) where A is an involutive algebra,
H is a Hilbert space and D is a self-adjoint (unbounded) operator on H with compact resolvent,
for which there exists a faithful representation π : A → B(H) of bounded operators such that
for all a ∈ A the operator [D,π(a)] is densely defined and extends to a bounded operator on H.
If in addition there exists a grading χ : H → H such that χD = −Dχ and χπ(a) = π(a)χ for all
a ∈ A, then the tuple (A,H, D, χ) is called an even spectral triple. If no such grading exists, the
triple (A,H, D) is called an odd spectral triple.

A very important class of spectral triples is given by spin manifolds. Following the construction
outlined in this paragraph they yield commutative spectral triples, i.e. triples for which the
algebra A is commutative. It is also possible to go the other way around, given a commutative
spectral triple (which satisfies some additional requirements), then there exists a compact man-
ifold which generates this spectral triple [7]. An explicit proof of the fact that the torus admits
a spectral triple can be found below (cf. Example 2.34).

Theorem 2.31. Suppose M is a spin manifold. The previous constructions (Definition 2.24
and 2.25) yield the spinor bundle S and Dirac operator /D. The tuple (C∞(M), L2(M,S), /D) is
a spectral triple.

Proof. See [19, Thm. 11.1]. �

For the torus it appears to be convenient to do computations with vectors of L2(T2,C2) of the
form (f, 0) and (0, f), where f : T2 → C. Therefore we introduce in addition to Notation 2.27
the following functions

Notation 2.32. For n,m ∈ Z define

dm,n,1(x, y) :=

(
e2πi(mx+ny)

0

)
;

dm,n,−1(x, y) :=

(
0

e2πi(mx+ny)

)
;

em,n(x, y) := π(φm,n).
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Remark 2.33. Note that the set {dm,n,ε : m,n ∈ Z, ε = ±1} is an orthonormal basis of
L2(T2,C2). Indeed, clearly the spinors dm,n,ε are orthonormal. And the set is complete, because
ψm,n,ε =

1√
2
dm,n,1 +

1√
2
εcm,ndm,n,−1. Furthermore

ek,ldm,n,ε = dk+m,l+n,ε;

/D(dm,n,1) =

(
0 −i∂x − ∂y

−i∂x + ∂y

)(
e2πi(mx+ny)

0

)
=

(
0

2π(m+ in)e2πi(mx+ny) 0

)
= 2π(m+ in)dm,n,−1;

/D(dm,n,−1) =

(
0 −i∂x − ∂y

−i∂x + ∂y 0

)(
0

e2πi(mx+ny)

)
=

(
2π(m− in)e2πi(mx+ny)

0

)
= 2π(m− in)dm,n,1.

So /D(dm,n,ε) = 2π(m + εin)dm,n,−ε. In particular /D
2
(dm,n,ε) = 4π2(m2 + n2)dm,n,ε, so the

vectors dm,n,ε are eigenvectors for /D
2
. Also the vectors {dm,n,ε : m,n ∈ Z, ε = ±1} induce

an orthogonal decomposition H = H1 ⊕ H−1, where Hε equals the Hilbert space generated by
{dm,n,ε : m,n ∈ Z}.

Example 2.34. For A := C∞(T2), the triple (A, L2(T2,C2), /D) is a spectral triple.

Proof. We have to check several conditions.
1. It is clear that A is a ∗-algebra.
2. We have a representation π of C∞(T2) on L2(T2, S2) = L2(T2,C2) via multiplication i.e.
(π(f)g)(x) = f(x)g(x) (strictly speaking this is defined almost everywhere, because L2(T2,C2)
consists of equivalence classes). Each π(f) is bounded because ∥π(f)g∥2 ≤ ∥f∥∞∥g∥2. The
action is faithful, because if π(f1) = π(f2), then in particular for the function

g : (x, y) 7→ (1, 1) for all (x, y) ∈ T2,

we have (f1(x, y), f1(x, y)) = π(f1)g(x, y) = π(f2)g(x, y) = (f2(x, y), f2(x, y)). Thus f1 = f2 a.e.
But f1 and f2 are C∞, hence f1 = f2 everywhere.

3. /D has a compact resolvent and is self-adjoint, this has been shown in Corollary 2.29.

4. Suppose f ∈ A = C∞(T2). Then f =
∑

k,l αk,lφk,l for some double sequence of rapid decay

(αk,l)k,l. Since /D is closed we have

[ /D, π(f)]dm,n,ε = /D
(∑

k,l

αk,ldk+m,l+n,ε

)
−
∑
k,l

αk,lek,l /D(dm,n,ε)

=
∑
k,l

αk,l2π((k +m) + iε(l + n))dk+m,l+n,−ε − αk,l2π(m+ iεn)dk+m,l+n,−ε

=
(∑

k,l

αk,l2π(k + iεl)ek,l

)
dm,n,−ε

Observe that −i∂xf =
∑

k,l 2πkαk,lφk,l and ∂yf =
∑

k,l 2πilαk,lφk,l. We obtain

[ /D, π(f)]dm,n,ε = π(−i∂xf + ε∂yf)dm,n,−ε.

Therefore on span{dm,n,ε : m,n ∈ Z, ε ∈ {−1, 1}} the operator [ /D, π(f)] can be represented by
the matrix (

0 π(−i∂xf − ∂yf)
π(−i∂xf + ∂yf) 0

)
,

with respect to the decomposition H = H1 ⊕ H−1 (see remark 2.33). Since each entry of this
matrix is a bounded operator and span{dm,n,ε : m,n ∈ Z, ε ∈ {−1, 1}} is dense in L2(T2,C2)
the operator [ /D, π(f)] extends to a bounded operator. And thus (C∞(T2,C), L2(T2,C2), /D) is
a spectral triple. �
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2.3 Summability, regularity and dimension spectrum

The notion of a dimension and the smooth structure of a manifold also translates to an algebraic
counterpart for spectral triples. This will be examined in this subsection.

Definition 2.35. Suppose (A,H, D) is a spectral triple. The triple is p-summable if Tr((1 +
D2)−p/2 < ∞. The triple is p+-summable if for all ε > 0 the triple is (p + ε)-summable. The
triple is finitely summable if it is p summable for some p > 0. The metric dimension of a spectral
triple is defined to be m ∈ N if the triple is m+-summable, but not (m− 1)+-summable. We say

the triple is θ-summable if for all t > 0 it holds that Tr(e−tD2

) <∞.

Some authors define summability using |D| instead of (1 + D2)1/2. We explicitly choose the
second possibility because if D is not invertible one has to deal with ker(|D|) = ker(D) in some
way. This can for example be done as in the Remark 2.36 stated below. Because D is self-adjoint,
D2 is positive and hence 0 /∈ σ((1 +D2)1/2), therefore with (1 +D2)1/2 one does not have this
problem.

Remark 2.36. If (A,H, D) is a spectral triple and ker(D) ̸= {0}, we can define a new spectral
triple which is only slightly different. We have H = ker(D)⊥ ⊕ ker(D). Define R : ker(D) ⊕
ker(D) → ker(D)⊕ ker(D) given by the matrix decomposition

R =

(
0 1
1 0

)
.

Let ε > 0 and now define a spectral triple (A, H̃, D̃) by

H̃ := ker(D)⊥ ⊕ (ker(D)⊕ ker(D)) D̃ := D|ker(D)⊥ ⊕ εR.

The action of the algebra A on H̃ is given by a(h1 ⊕ h2 ⊕ h2) := a(h1 ⊕ h2)⊕ 0.
If the spectral triple is even with grading γ we can extend this grading to γ̃ by

γ̃ :=

(
γ 0
0 −γ|ker(D)

)
,

with respect to the decomposition H̃ = H ⊕ ker(D). Write D1 := D|ker(D)⊥ . Since γ anticom-
mutes with D we have(

γ11D1 0
γ21D1 0

)
=

(
γ11 γ21
γ12 γ22

)(
D1 0
0 0

)
= −

(
D1 0
0 0

)(
γ11 γ21
γ12 γ22

)
=

(
−D1γ11 −γ12D1

0 0

)
.

So γ12D1 = D1γ21 = 0. Since ker(D1) = 0 this implies γ21 = 0. Since D is self-adjoint, D1 is
self-adjoint and hence ran(D1)

⊥⊥ = ker(D)⊥, so ran(D1) is dense in ker(D)⊥. Hence γ12 = 0.
Thus γ̃ looks like γ11 0 0

0 γ22 0
0 0 −γ22

 ,

from which it is clear that γ̃ anticommutes with D̃ and commutes with Ã. For this reason we
will in some results assume that the Dirac operator D is invertible. If that is not the case one
can perform the above construction and then let ε tend to zero.

Locally the torus is homeomorphic to R2, so we expect that the metric dimension of the torus is
also 2. This is indeed the case, see the next example.

Example 2.37. The metric dimension of the torus T2 is 2. In particular the torus is finitely
summable.
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Proof. We will show that the triple is 2+-summable. The Dirac operator D is self-adjoint, thus

Tr
(
(1 +D2)−p/2

)
=
∑
m,n,ε

(
1 + λ2m,n,ε

)−p/2
.

So establish 2+-summability it is sufficient to show that the sequence (µn)n is O(n−(1/2)). Here
(µn)n are the eigenvalues of (1 +D2)−1/2 arranged in decreasing order and with multiplicity.
In Lemma 2.28 we computed the eigenvalues of D. These are {ε2π

√
m2 + n2}. We will ignore

the factor 2π, because this will not affect the order of growth of the eigenvalues. Observe that
0 ≤ 1

2 (m − n)2 = 1
2m

2 + 1
2n

2 − mn. So mn ≤ 1
2 (m

2 + n2), hence for m,n ≥ 0 it holds that
1
2 (m+ n)2 = 1

2 (m
2 + n2) +mn ≤ m2 + n2 ≤ (m+ n)2. So

1

2
(|m|+ |n|)2 ≤ (m2 + n2) + 1 ≤ 2(|m|+ |n|)2 for all (m,n) ∈ Z2 \ {(0, 0)}

and hence

1√
2(|m|+ |n|)

≤ 1√
1 +m2 + n2

≤
√
2

|m|+ |n|
, for all (m,n) ∈ Z2 \ {(0, 0)}.

We order the values {(|m|+ |n|)−1 : (m,n) ∈ Z2 \ {(0, 0)} }. The value 1
k appears 4k times. To

take care of ε we make a new sequence (an)n in which each number 1
k appears 8k times (again

in decreasing order). If we order the set{(
1 +

(
ε
√
m2 + n2

)2)−1/2
: ε = ±1, m, n ∈ Z

}
=
{(

1 +m2 + n2
)−1/2

: ε = ±1, m, n ∈ Z
}

of eigenvalues of (1 +D2)−1/2 in decreasing order, say (µn)n. Then 1√
2
an ≤ µn ≤

√
2an. So it

is sufficient to show that the sequence (an)n is O(n−1/2). If k = 8n(n+1)
2 , then ak = 1

n . More
generally if k = 4(x(x+ 1)), then

x =
−4±

√
16− 4 · 4 · −k
2 · 4

=
1

2
(−1±

√
1 + k).

Therefore ⌊1
2
(−1 +

√
1 + k)

⌋
≤ a−1

k ≤
⌈1
2
(−1 +

√
1 + k)

⌉
.

So ak = O(k−
1
2 ). So we conclude that D is 2+-summable and not 2-summable. Thus by defini-

tion of the metric dimension, the torus has metric dimension 2. �

The summability gives a part of the dimension of a spectral triple. But on can get more infor-
mation from the dimension spectrum, in some sense this also takes submanifolds into account.
We start with the necessary definitions and lemmas.

Definition 2.38. For a spectral triple (A,H, D) we define for a ∈ A the operator δ(a) := [|D|, a],
it is the unbounded derivation of a. We denote

Dom(δ) := {T ∈ B(H) : δ(T ) is bounded on H and T Dom(|D|) ⊂ Dom(|D|)}.

If for all a ∈ A the operators a, [D, a] ∈ Dom(δk), we call the triple a QCk-triple, or QCk for
short. If the triple is a QCk-triple for all k ≥ 1, we call it QC∞ or regular. An operator a ∈ B(H)
with a ∈ Dom(δk) for all k ∈ N is called smooth.
Also define the following subspace H∞ :=

∩
n Dom(Dn).

As the name suggests, smooth operators preserve smooth domains, therefore the following results
should be no surprise. These results are due to Connes in the paper [7].

Lemma 2.39. For a self-adjoint operator D on H, the space H∞ ⊂ H dense.
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Proof. Since D is self-adjoint, by the spectral theorem D has a spectral decomposition D =∫
R λ dE. Suppose m ∈ N and h ∈ E([−m,m]), then Dnh =

∫
[−m,m]

λn dE and hence

∥Dnh∥ =
∥∥∥( ∫

[−m,m]

λn dE
)
h
∥∥∥ ≤

∫
[−m,m]

∥λn∥ dE ∥h∥ ≤ 2mn∥h∥ <∞.

So h ∈ H∞. We conclude that span({E([−n, n]) : n ∈ N}) ⊂ H∞. But the linear space
span({E([−n, n]) : n ∈ N}) ⊂ H dense. So H∞ ⊂ H dense. �

Lemma 2.40. Let (A,H, D) be a regular spectral triple, then for an element a ∈ A it holds that
aH∞ ⊂ H∞.

Proof. See [7, Lemma 2.1]. We will first prove with induction that

|D|ma =

m∑
k=0

(
m

k

)
δk(a)|D|m−k. (2.3)

For now we will only prove this as a formal expression, later we will show that this holds as
operators on suitable domains.
In the case m = 0 there is nothing to prove. Using |D|δk(a) = [|D|, δk(a)] + δk(a)|D| we obtain

|D|m+1a =
m∑

k=0

(
m

k

)
|D|δk(a)|D|m−k

=
m∑

k=0

(
m

k

)
δk+1(a)|D|(m+1)−(k+1) + δk(a)|D|m+1−k

= |D|m+1 +

m∑
k=1

(( m

k − 1

)
+

(
m

k

))
δk(a)|D|(m+1)−k + δm+1(a)

=
m+1∑
k=0

(
m+ 1

k

)
δk(a)|D|(m+1)−k.

Now note that for a ∈ Dom(δk) it holds that δk−1(a) ∈ Dom(δ) and Dom(Dk+1) ⊂ Dom(D),
hence

δk(a)Dom(Dk+1) ⊂ δ(δk−1(a))(Dom(D)) ⊂ Dom(D). (2.4)

To finish the proof of this lemma it is sufficient to prove the following claim: if a ∈ Dom(δm), then
aDom(Dm) ⊂ Dom(Dm). For m = 0 there is nothing to prove and for m = 1 this is included in
the definition of δ, so assume m ≥ 2. Let h ∈ Dom(Dm), then |D|m−1−kh ∈ Dom(Dk+1). Hence
by (2.4) we obtain δk(a)|D|m−1−kh ∈ Dom(D). Combining this with (2.3) gives that

|D|(m−1)ah =

m−1∑
k=0

(
m− 1

k

)
δk(a)|D|m−1−kh ∈ Dom(D).

Hence ah ∈ Dom(Dm) and (2.3) holds as operators on Dom(Dm). �

In the above proof we have established the following useful result.

Corollary 2.41. If (A,H, D) is a spectral triple and a ∈ Dom(δn), then a(Dom(Dn)) ⊂
Dom(Dn).

Lemma 2.42. Suppose D is a self-adjoint operator and the operators a, δ(a) : H∞ → H are
bounded. Then a preserves Dom(|D|) = Dom(D) and on Dom(D) the bounded extension of
δ(a) = [|D|, a] and the commutator |D|T − T |D| coincide.
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Proof. See [7, Lemma 13.1]. By Lemma 2.39 it holds thatH∞ ⊂ H is dense. So let h ∈ Dom(D),
then there exists a sequence (hn)n ⊂ H∞ such that h = limn hn and |D|h = limn |D|hn. By
boundedness of a and δ(a) it follows that

lim
n
ahn = ah, lim

n
a|D|hn = a|D|h, lim

n
δ(a)hn = h.

Therefore (|D|ahn)n = (δ(a)hn − a|D|hn)n is convergent. Because |D| is closed and (ahn)n is
convergent we obtain limn |D|ahn = |D|ah. Hence ah ∈ Dom(|D|) = Dom(D). The other state-
ments of this lemma are trivial. �

Most of the times it is way more convenient to work with D2 instead of with |D|. To establish
regularity of a spectral triple the following result can be useful. We will not prove this lemma
because the proof is very technical and does not give a lot of insight.

Lemma 2.43. Suppose (A,H, D) is a spectral triple and a : H∞ → H is a bounded linear
operator. Denote δ1(a) := [D2, a](1 +D2)−1/2. Then the following holds:

(i) If δ1(a) and δ
2
1(a) are bounded, then δ(a) is bounded;

(ii) The operators δn1 (a) are bounded for all n ≥ 1 if and only if δn(a) is bounded for all n ≥ 1.

Proof. See [7, Lemma 13.2]. �

There exists another equivalent notion of smoothness of operators which is sometimes used in
the literature. Then an operator is called smooth if the map t 7→ eit|D|Te−it|D| is smooth. We
will prove the equivalence.

Lemma 2.44. Suppose (A,H, D) is a spectral triple. Then for a ∈ B(H) the following are
equivalent

(i) a ∈
∩n

k=1 Dom(δk);

(ii) the map t 7→ eit|D|ae−it|D| is in Cn(R, B(H)) with respect to the norm topology.

Proof. See also [7, Lemma 13.4]. We start by calculating the derivative of the map t 7→
eit|D|ae−it|D|. For this we will freely use the properties of groups of unitary operators see for
example [11, §X.5]. We obtain

d

dt
|t=t0e

it|D|ae−it|D|h = lim
t→0

1

t

(
ei(t0+t)|D|ae−i(t0+t)|D|h− eit0|D|ae−it0|D|h

)
= lim

t→0

1

t

(
ei(t0+t)|D|ae−it0|D|(e−it|D|h

)
− eit0|D|ae−it0|D|(eit|D|h

))
+ lim

t→0

1

t

(
eit0|D|ae−i(t0+t)|D|h− eit0|D|ae−it0|D|h

)
= lim

t→0
eit0|D| 1

t

(
eit|D| − 1

)
ae−it0|D|(e−it|D|h

)
+ lim

t→0
eit0|D|a

1

t

(
eit|D| − 1

)(
eit0|D|h

)
= eit0|D||D|ae−it0|D|h− eit0|D|a|D|e−it0|D|h

= eit0|D|δ(a)e−it0|D|h. (2.5)

Because e−it|D| is unitary and commutes with |D|, this equality holds for h ∈ H with h ∈
Dom(|D|) and ah ∈ Dom(|D|).
Assume n = 1. Suppose (i) holds, then δ(a) is bounded. Since by assumption (i) aDom(D) ⊂
Dom(D) equality (2.5) holds for h ∈ Dom(|D|) which is dense in H. Because the operator
eit0|D|δ(a)e−it0|D| is bounded, it is a bounded extension of d

dt |t=t0e
it|D|ae−it|D|. So the derivative

exists and is continuous because t 7→ eit|D| is continuous, i.e. t 7→ eit|D|ae−it|D| is in C1(R, B(H))
Conversely if (ii) holds, then (2.5) is true on Dom(|D|) ∩ a−1(Dom(|D|)). We will show, if
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h ∈ Dom(|D|), then ah ∈ Dom(|D|). Since D is self-adjoint, it holds that h ∈ Dom(|D|) if
limt→0

1
t

(
eit|D|h− h

)
exists (cf. [11, X§5]. By assumption for all h ∈ H the limit

lim
t→0

1

t

(
eit|D|ae−it|D|h− h

)
exists. Suppose h ∈ Dom(|D|), then

lim
t→0

1

t

(
eit|D|ah− ah

)
= lim

t→0

1

t

(
eit|D|ah− eit|D|ae−it|D|h

)
+ lim

t→0

1

t

(
eit|D|ae−it|D|h− ah

)
= lim

t→0
eit|D|a

1

t

(
e−it|D|h− h

)
+ lim

t→0

1

t

(
eit|D|ae−it|D|h− ah

)
. (2.6)

Both limits in (2.6) exist, the first one because h ∈ Dom(|D|), the second one by assumption
(ii). Hence ah ∈ Dom(|D|). Since Dom(|D|) ⊂ H dense, the operator δ(a) extends to a bounded
operator on H. Therefore a ∈ Dom(δ) and (i) holds.
To prove the lemma for higher orders (i.e. n > 1) one can proceed by induction. Simply replace
the operator a by δ(n−1)(a) and use Corollary 2.41. �

As we showed in Remark 2.36, invertibility of D is not a big restriction. So we will assume in
the following definition and lemmas that D is invertible.

Definition 2.45. For a spectral triple (A,H, D) we define OP 0 := {T ∈ B(H) : T is smooth}
and OP r := {T ∈ B(H) : |D|−rT ∈ OP 0}. Note that it is immediate from this definition that
T ∈ OPα if and only if |D|βT ∈ OPα+β , see also Lemma 2.47.

Notation 2.46. For an operator T denote ∇T := D2T − TD2. If there is a possibility of
confusion, we will write ∇D to indicate the dependence on D.

Lemma 2.47. Let T ∈ OP 0 and n ∈ N, then

(i) ∇n(T ) ∈ OPn;

(ii) D−2T =
∑n

k=1(−1)k−1∇k−1(T )D−2k +Rn.

Here Rn := (−1)nD−2∇n(T )D−2n ∈ OP−n−1. Furthermore we have |D|αT is smooth if and
only if T |D|α is smooth.

Proof. [9, Lemma 1.136] �

The importance of this result lies in the property that it is now possible to interchange an element
A ∈ A with factors D−2. We will use the following result a lot of times.

Lemma 2.48. If S ∈ OPα and T ∈ OP β, then ST ∈ OPα+β. And if α ≤ β, then we have an
inclusion OPα ⊂ OP β.

Proof. By assumption |D|−αS and |D|−βT are smooth. Therefore by Lemma 2.47 T |D|−β is
smooth and thus |D|−αST |D|−β is smooth. Again by this lemma ST |D|−β |D|α = ST |D|−(α+β)

is smooth. So ST ∈ OPα+β .
As before we will assume that D is invertible. Then |D|−r is bounded for all r ≥ 0 and |D|−r

commutes with |D|. Thus δn(|D|−r) extends to the zero operator, in particular |D|−r ∈ Dom(δn)
for all n ∈ N. So |D|−r is smooth. Hence 1 ∈ OP r for all r > 0. Thus by the previous result, if
S ∈ OPα, then S = S1 ∈ OPα+(β−α) = OP β . �

Lemma 2.49. Suppose (A,H, D) is a regular p-summable spectral triple. Then for an element
B ∈ OP−α with α > p the function

{z ∈ C : Re(z) > m} → C, z 7→ Tr(B|D|−z)

extends to a function which is holomorphic in z = 0.
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Proof. Suppose α > p and B ∈ OP−α. By Lemma 2.47 B|D|α ∈ OP 0. In particular B|D|α is
bounded. Note

Tr
(
B|D|−z

)
= Tr

(
(B|D|α)|D|−(z+α)

)
and z 7→ Tr(|D|−z) is holomorphic for s ∈ {z ∈ C : Re(s) > p}. Thus z 7→ Tr(B|D|−z) is
holomorphic at z = 0. �

We will need the following result a couple of times in the upcoming calculations, so we write it
down separately.

Lemma 2.50. Suppose H is a separable Hilbert Space with orthonormal basis (en)n. For k =
1, . . . ,K let Tk : H → H be a bounded operator and D > 0 a constant (independent of k), such
that ∥Tk∥ ≤ D. Let ck : N → C, k = 1, . . . ,K be complex valued functions and C > 0 a constant
such that |ck(n)| < C for all k, n. Suppose T : H → H is defined by

Tx :=

K∑
k=1

Tk

(∑
n

ck(n)⟨x, en⟩en
)
.

Then T is a bounded operator of norm ∥T∥ ≤ KCD.

Proof. Let x ∈ H, put αn := ⟨x, en⟩. Then

∥Tx∥ ≤
K∑

k=1

∥Tk(
∑
n

ck(n)αnen)∥

≤
K∑

k=1

D(∥
∑
n

ck(n)αnen∥2)1/2

=
K∑

k=1

D(
∑
n

|ck(n)αn|2)1/2

≤
K∑

k=1

DC(
∑
n

|αn|2)1/2

= KDC∥x∥.

�

Example 2.51. We will show that (C∞(T2,C), L2(T2,C2), D) is a regular triple. We will use
Lemma 2.43 because D2 is a lot easier to work with than |D|. Because dm,n,ε are eigenvectors
for D2 with eigenvalue 4π2(m2 + n2), the functional calculus for D2 (Theorem 1.71) gives us

(1 +D2)−1/2dm,n,ε = (1 + 4π2(m2 + n2))−1/2.

Then for f ∈ C∞(T2,C), f =
∑

k,l αk,lφk,l we have

δ1(π(f))dm,n,ε = [D2, π(f)](1 +D2)−1/2dm,n,ε

= (1 + 4π2(m2 + n2))−1/2
(∑

k,l

αk,l(D
2dk+m,l+n,ε − ek,lD

2dm,n,ε)
)

= (1 + 4π2(m2 + n2))−1/2
(∑

k,l

αk,l4π
2((k +m)2 + (l + n)2 − (m2 + n2))dk+m,l+n,ε

)
= (1 + 4π2(m2 + n2))−1/2

(∑
k,l

αk,l4π
2(k2 + 2km+ l2 + 2ln)ek,l

)
dm,n,ε. (2.7)
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Since ∂xf =
∑

k,l 2πikφk,l and ∂yf =
∑

k,l 2πilφk,l Equation (2.7) becomes( −1

(1 + 4π2(m2 + n2))1/2
(∂2x + ∂2y) f +

−4πmi

(1 + 4π2(m2 + n2))1/2
∂xf

+
−4πni

(1 + 4π2(m2 + n2))1/2
∂yf

)
dm,n,ε.

Observe that there exists a constant C > 0 such that for all m,n ∈ Z∣∣∣ −1

(1 + 4π2(m2 + n2))1/2

∣∣∣, ∣∣∣ −4πmi

(1 + 4π2(m2 + n2))1/2

∣∣∣, ∣∣∣ −4πni

(1 + 4π2(m2 + n2))1/2

∣∣∣ ≤ C.

Using induction

δp1(π(f))dm,n,ε =

2p∑
k,l=1

ck,l(m,n)π(∂
k
x∂

l
yf)dm,n,ε,

for some collection of uniformly bounded functions ck,l : Z×Z → C. Since span{dm,n,ε : m,n ∈
Z, ε = ±1} ⊂ L2(T2,C2) dense. It holds that

δp1(π(f))
( ∑

m,n,ε

αm,n,εdm,n,ε

)
=

2p∑
k,l=1

π(∂kx∂
l
yf)
( ∑

m,n,ε

ck,l(m,n)αm,n,εdm,n,ε

)
.

Since each of the operators π(∂kx∂
l
yf) is bounded, Lemma 2.50 implies that δp1(π(f)) is bounded.

Note that [D,π(f)] is no longer an element of C∞(T2,C), but we can show boundedness of
δp1([D,π(f)]) in a similar way. Recall from example 2.34 that

[D,π(f)]dm,n,ε = π(−i∂xf + ε∂yf)dm,n,−ε =
∑
k,l

2π(k + iεl)αk,ldk+m,l+n,−ε. (2.8)

Then

δ1([D,π(f)])dm,n,ε = [D2, [D,π(f)]](1 +D2)−1/2dm,n,ε

= (1 + 4π2(m2 + n2))−1/2(D2[D,π(f)]dm,n,ε − [D,π(f)]D2dm,n,ε)

= (1 + 4π2(m2 + n2))−1/2
(
D2
(∑

k,l

2π(k + iεl)αk,ldk+m,l+n,−ε

)
− [D,π(f)](4π2(m2 + n2)dm,n,ε)

)
= (1 + 4π2(m2 + n2))−1/2

(∑
k,l

2π(k + iεl)4π2((k +m)2 + (l + n)2)αk,ldm,n,−ε

− 4π2(m2 + n2)
∑
k,l

2π(k + iεl)αk,ldk+m,l+n,−ε

)
= (1 + 4π2(m2 + n2))−1/2

(∑
k,l

8π3(k + iεl)(k2 + l2 + 2km+ 2ln)αk,lek,l

)
dm,n,−ε

= (1 + 4π2(m2 + n2))−1/2π
(
(−i∂x + ε∂y)(−∂2x − ∂2y − 4πim∂x − 4πin∂y)f

)
dm,n,−ε

= (1 + 4π2(m2 + n2))−1/2([D,π(−∂2xf)] + [d, π(−∂2yf)] + [D,π(−4πim∂xf)]

+ [D,π(−4πin∂yf)])dm,n,ε.

Now we can use induction and the same arguments as before to obtain that δp1([D,π(f)]) is a
bounded operator for each p ∈ N. From Lemma 2.43 it follows that δn(a) is bounded for all n.
Then with Lemma 2.42 it follows that δn(a)Dom(D) ⊂ Dom(D). Hence δn(a) ∈ Dom(δ) for all
n and the torus is regular.
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Definition 2.52. Let (A,H, D) be a regular p+-summable spectral triple. Let B be the algebra
generated by δn(a) and δn([D, a]), a ∈ A, n ∈ N. For b ∈ B and z ∈ C with Re(z) > p define
ζb(z) := Tr(b(1+D2)−z). The dimension spectrum is defined as the subset Sd ⊂ C, where z ∈ Sd
if and only if there exits a b ∈ B such that (the meromorphic continuation of) ζb has a singularity
at z.
If Sd is discrete, the dimension spectrum is called discrete, if the functions ζb have only simple
poles, the dimension spectrum is called simple.

The definition of the dimension spectrum might seem arbitrary, but in fact it is very useful.
In [10] Connes and Moscovici state and prove the local index theorem. With this theorem one
can compute the index of an operator by sums of residues of zeta functions ζb. One of the
assumptions of this theorem is that the dimension spectrum is discrete and simple.
Another motivation for considering the dimension spectrum is that in case of a spin manifold
the dimension spectrum consists of {0, 1, . . . , dim(M)}, so the dimension spectrum in some sense
also sees the dimensions of the submanifolds of the original one. In some sense it can be seen as
a generalisation of the dimension of a manifold. We will use this definition of dimension when
we later define the z-dimensional spaces.

In the definition of the dimension spectrum we speak of an analytic continuation, to do so we need
a holomorphic function. So we have to prove that s 7→ Tr(b(1 + D2)−s/2) gives a holomorphic
function on an appropriate domain.

Lemma 2.53. If a spectral triple (A,H, D) is p+-summable, then the functions {ζb : b ∈ B}
are holomorphic on {z ∈ C : Re(z) > p}.

Proof. Suppose (λn)n is the collection of eigenvalues of D. Then (1 +D2)−1/2 has eigenvalues
µ′
n := (1 + λ2)−1/2. Order these eigenvalues µ′

n as a decreasing sequence say (µn)n. Then by
assumption of the metric dimension the sequence (µn)n is of order O(n1/m). Thus

|ζb(s)| =
∣∣Tr(b(1 +D2)−s/2)

∣∣ ≤ ∥b∥Tr(|(1 +D2)−s/2|) = ∥b∥
∞∑

n=0

µRe(s)
n ,

which is convergent for s with Re(s) > m. We also have

dk

dsk

( ∞∑
n=0

µs
n

)
=

∞∑
n=0

log(µn)
kµs

n,

which also converges if Re(s) > m. Thus the function ζb : {z ∈ C : Re(z) > m} → C is
holomorphic. �

Using Lemma 2.40 it is easy to prove the following result.

Corollary 2.54. If (A,H, D) is a regular spectral triple, then for b ∈ B the inclusion bH∞ ⊂ H∞
holds.

Proof. By Lemma 2.40 for an element a ∈ A the inclusion aH∞ ⊂ H∞ holds. Since D(H∞) ⊂
H∞ we have [D, a] = Da − aD where both summands exist. Then (Da − aD)H∞ ⊂ H∞. Use
induction to n and similar argument to show that δn(a) = [|D|, δn−1(a)] preserves H∞. �

Connes and Moscovici compute the dimension spectrum of spin manifolds.

Theorem 2.55. Suppose M is a closed Riemannian spin manifold of dimension p. Then the
triple (C∞(M), L2(M,S), D) has simple dimension spectrum, which is contained in the set {n ∈
N : n ≤ p}.

42



2.3. Summability, regularity and dimension spectrum

Proof. See [10, Rem. II.1]. �

We would like to compute the dimension spectrum of the torus ourselves. Because it is very hard
to deal with the explicit expressions of the operators in B we will use a different approach using
pseudo-differential operators. We start with a general remark.

Remark 2.56. Suppose A and B are (pseudo-)differential operators of order k respectively l.
Then AB and BA are (pseudo-)differential operators of order k + l and the leading symbols are
equal; σL(AB) = σL(BA). Thus the commutator [A,B] does not have a term of order k + l,
the highest order terms of AB and BA cancel. Thus [A,B] is a (pseudo-)differential operator of
order k + l − 1.

Lemma 2.57. The algebra B of a spin manifold M only contains pseudo-differential operators
of order ≤ 0.

Proof. Note that the operators in A = C∞(M) are just multiplication by smooth functions, so
they are differential operators of order 0. Also D is partial differential operator, it is of order
1. The operator |D| is a pseudo-differential operator of order 1. Thus from the previous remark

we have if b ∈ A ∪ [D,A], then b is of order ≤ 0. Note that |D| =
(
D2
)1/2

, thus |D| is a
pseudo-differential operator of order 1. Using induction it immediately follows that δn(b) is also
of order ≤ 0 if b ∈ A ∪ [D,A]. Hence the result follows. �

In Example 2.59 we will compute the dimension spectrum of the torus. In the proof we will use
a heat kernel expansion for elements of the form b(1+D2)−s. We will first give the basics about
these heat kernel expansions, a detailed treatment can be found in the book [18]. The following
remark is based [18, Ch. 1] and [19, Ch. 7].

Remark 2.58. Suppose P is an elliptic partial differential operator. It is possible to show that
e−tP has a kernel K. Thus there exists a function K such that

e−tP f(x) =

∫
M

K(t, x, y)f(y) dvol(y).

Apply this to be−tP , then

be−tP f(x) =

∫
M

bK(t, x, y)f(y) dvol(y).

Taking the trace gives

Tr(be−tP ) =

∫
M

TrVx(bK(t, x, x)) dvol(x), (2.9)

where TrVx is the trace in the fiber Vx. Therefore we would like to have an expansion of bK(t, x, y)
near x = y. Such an expansion exists: there exists coefficients en(x; b, P ) such that

(bK(t, x, y))|x=y ∼
∞∑

n=0

t(n−m−a)/den(x; b, P ), as t ↓ 0. (2.10)

Here m is the dimension of the manifold M and d and a are the orders of the operators P
respectively b. The notation

f(t) ∼
∞∑

n=0

fn(t), as t ↓ 0

is used if for all N there exists a constant CN such that |f(t) −
∑N−1

n=0 fn(t)| < CN |fN (t)| in a
neighbourhood of t = 0. Combination of (2.9) and (2.10) gives

Tr(be−tP ) ∼
∞∑

n=0

t(n−m−a)/dan(b, P ), as t ↓ 0. (2.11)

where an(b, P ) :=
∫
M

TrVx(en(x; b, P )) dvol(x).
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Example 2.59. The dimension spectrum of the torus T2 is contained in the set 2− N.

Proof. For brevity we will write in this proof P := (1 + D2). Note that the dimension of T2

is 2 and the operator P is an elliptic partial differential operator of order 2. By lemma 2.57
each b ∈ B is of order 0, thus we can apply [19, Eq. (7.56c)] to conclude that the kernel of the
operator be−tP has an asymptotic expansion given by

{KP,b(t, x, y)}|x=y ∼
∞∑
k=0

t(n−2)/2en(x; b, P ), as t ↓ 0, (2.12)

for some coefficients en(x; b, P ) depending on x, b and P . For s ∈ C, Re(s) > 0 we have by the
functional calculus

P−s =
1

Γ(s)

∫ ∞

0

ts−1e−tP dt.

Thus

bP−s =
1

Γ(s)

∫ ∞

0

bts−1e−tP dt.

Interchanging integral and trace gives for Re(s) > 2

ζb(s) = Tr(bP−s/2) =

∫ ∞

0

ts/2−1 Tr
(
be−tP

)
dt. (2.13)

This switch of integral and trace is allowed. Namely, write the trace as an infinite sum and apply
the dominated convergence theorem, because as we show below this integral converges absolutely
for Re(s) > 2.
So we have to compute the poles of the analytic continuation of s 7→

∫∞
0
ts/2−1 Tr

(
be−tP

)
dt. We

will split this integral in two parts: from 0 to 1 and 1 to ∞. The part s 7→
∫∞
1
ts/2−1 Tr

(
be−tP

)
dt

gives an entire function, because∣∣∣ ∫ ∞

1

ts/2−1 Tr
(
be−tP

)
dt
∣∣∣ ≤ ∫ ∞

1

∣∣ts/2−1 Tr
(
be−tP

)∣∣ dt ≤ ∥b∥
∫ ∞

1

tRe(s/2)−1 Tr
(
e−tP

)
dt.

(2.14)
We know that the eigenvalues λn of the operator P increase as ∼ n (see the proof of 2.37). Thus
the last integral of (2.14) converges for all s ∈ C. And therefore the first integral of (2.14) gives
a holomorphic function.
To compute the dimension spectrum it thus suffices to compute the poles of the meromorphic
extension of

s 7→
∫ 1

0

ts/2−1 Tr
(
be−tP

)
dt. (2.15)

Since we are in the situation of remark 2.58 we obtain from (2.11) and (2.12) the following heat
kernel expansion

Tr(be−tP ) ∼
∞∑

n=0

t(n−2)/2an(b, P ), as t ↓ 0.

So for s ∈ C with Re(s) > 2 we have∫ 1

0

ts/2−1 Tr(be−tP ) dt ∼
∫ 1

0

ts/2−1
( m∑

n=0

t(n−2)/2an(b, P ) + rm(t)
)
dt

=
m∑

n=0

∫ 1

0

t(n+s−2)/2−1an(b, P ) dt+

∫ 1

0

ts/2−1rm(t) dt

=
m∑

n=0

2

n+ s− 2

[
t(n+s−2)/2]t=1

t=0 an(b, P ) + qm(s)

=
m∑

n=0

2

n+ s− 2
an(b, P ) + qm(s).
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Here the function rm is the error-term of the asymptotic expansion (2.15). By definition rm is

O(t(m−2)/2). Hence qm(s) :=
∫ 1

0
ts/2−1rm(t) dt =

∫ 1

0
O(t(m+s−2)/2−1) dt = O(t(m+s−2)/2), which

is holomorphic for s ∈ C, with Re(s) > m−2. So the function (2.13) extends to the meromorphic
function

{s ∈ C : Re(s) > m} → C, s 7→
m∑

n=0

2

n+ s− 2
an(b, P ) + qm(s),

with simple poles of residue 2an(b, P ) at s = 2 − n. Thus the dimension spectrum is contained
in the set 2− N. In particular the dimension spectrum is simple and discrete. �

Note that from the above proof it follows that m ∈ 2 − N is in the dimension spectrum of the
torus if and only if there exists an b ∈ B such that an(b, P ) ̸= 0. So if we can calculate these
coefficients we know the dimension spectrum precisely.

2.4 Products of spectral triples

Given two spectral triples it is possible to construct the product of those triples. In the case of
a spin manifold taking the product of the spectral triples corresponds to taking the cartesian
product of the underlying manifolds. For the product of spectral triples we will need some
constructions using the tensor product. We will first review those.

This is a very concise overview, more information can be found in textbooks (e.g. [30, Chapter
IV]). We will assume knowledge of the (algebraic) tensor product of vector spaces. The tensor
product of vector spaces has the universal property that given two vector spaces U, V,W and a
bilinear map T : V ×W → U , there exists a unique linear map T̂ such that

V ×W
i //

T

��

V ⊗W

T̂yysss
sss

sss
ss

U

commutes. Here i : V ×W → V ⊗W denotes the inclusion i(v, w) := v ⊗ w. In fact one can
define the tensor product of vector spaces using this universal property.
For two algebras A and B we can define the algebra A⊗B as the vector space A⊗B equipped
with the product given by (a ⊗ b) · (a′ ⊗ b′) := (aa′) ⊗ (bb′) and extend this linearly and with
distributivity. Again we have a property of unique extension of bilinear maps over A⊗B when
considered as vector spaces.
For two Hilbert spaces H and K we denote H⊗alg K for the tensor product of H and K as vector
spaces. This space needs to be equipped with a inner product. Define ⟨h1 ⊗alg k1, h2 ⊗alg k2⟩ :=
⟨h1, h2⟩H⟨k1, k2⟩K for elementary tensors and by linear extension. In general (H ⊗alg K, ⟨·, ·⟩)
is not complete in the norm induced by this inner product. Therefore we let H ⊗ K be the
completion of the pre-Hilbert space H⊗alg K in the norm induced by the inner product ⟨·, ·⟩.
In the same way it is possible to extend two operators to the tensor product.

Lemma 2.60. Suppose S ∈ B(H) and T ∈ B(K) are bounded operators, then the map S ⊗ T
given on the elementary tensors by S⊗T (h⊗k) := (Sh)⊗(Tk) extends linearly and continuously
to the full Hilbert space H⊗K.

Proof. It is trivial that we an extends this operator to H ⊗alg K. To continuously extend this
operator to the whole space H ⊗ K it is sufficient to show that S ⊗ T is bounded on the dense
subspace H ⊗alg K ⊂ H ⊗ K. Indeed, let h ∈ H ⊗alg K and write h =

∑n
i=1 ei ⊗ fi, for an
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orthonormal set (ei)
n
i=1, then

∥S ⊗ T (h)∥2 =
∥∥∥ n∑

i=1

Sei ⊗ Tfi

∥∥∥2
=

n∑
i,j=1

⟨Sei, Sej⟩⟨Tfi, T fj⟩

≤
n∑

i,j=1

∥S∥2|⟨ei, ej⟩| ∥T∥2|⟨fi, fj⟩|

= ∥S∥2 ∥T∥2
n∑

i=1

|⟨ei, ei⟩| |⟨fi, fi⟩|

= ∥S∥2 ∥T∥2
∣∣∣ n∑
i=1

⟨ei, ei⟩ ⟨fi, fi⟩
∣∣∣

= ∥S∥2 ∥T∥2
∣∣∣ n∑
i,j=1

⟨ei, ej⟩ ⟨fi, fj⟩
∣∣∣

= ∥S∥2 ∥T∥2∥h∥2.

�

Using these bounded operators we can define the tensor product of von Neumann algebras.

Definition 2.61. Suppose for i = 1, 2, Mi ⊂ B(Hi) are von Neumann algebras. We define
M1⊗M2 to be the von Neumann algebra generated by the elements a1⊗a2, for ai ∈ Mi. More
precise M1 ⊗ M2 := {a1 ⊗ a2 : a1 ∈ M1, a2 ∈ M2}′′ ⊂ B(H1 ⊗ H2). This is well-defined,
because as we showed before (cf. Lemma 2.60) the operators a1⊗a2 are again bounded operators.

Lemma 2.60 has an analogy for unbounded operators. But this is more subtle because we have
to deal with the domains. We will state it as a lemma.

Lemma 2.62. Suppose (S,Dom(S)) and (T,Dom(T )) are densily defined closable operators on
H respectively K. Then there exists a densily defined closed operator S⊗T such that S⊗T (h⊗k) =
Sh⊗ Tk for all h ∈ Dom(S) and h ∈ Dom(T ).

Proof. Define the operator S ⊗alg T : Dom(S) ⊗alg Dom(T ) → H ⊗ K by S ⊗alg T (h ⊗ k) :=
(Sh) ⊗ (Tk). This is operator well-defined. Since S and T are closable Dom(S),Dom(S∗) ⊂ H
dense and Dom(T ),Dom(T ∗) ⊂ K dense. Hence Dom(S)⊗Dom(T ),Dom(S∗)⊗Dom(T ∗) ⊂ H⊗K
dense. Since clearly S∗ ⊗alg T

∗ ⊂ (S ⊗alg T )
∗, the operator (S ⊗alg T )

∗ is densely defined and
therefore S ⊗alg T is closable. We define S ⊗ T := S ⊗alg T , which satisfies the requirements. �

These constructions will be applied in the following proposition, which constructs the product
of spectral triples.

Proposition 2.63. Given an even spectral triple S1 = (A1,H1, D1, γ1) and a spectral triple
S2 = (A2,H2, D2), then the tuple S1 × S2 given by

S1 × S2 := (A1 ⊗A2,H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2)

is a spectral triple. If S2 is also even with grading γ2, then the product triple S1×S2 is even with
grading γ1 ⊗ γ2.

Proof. We will give a sketch of the proof which shows the main ideas. Later we will give a full
proof when we generalise this result to the case of semifinite spectral triples see theorem 3.10.
A very brief construction of the product can be found in [19, §10.5]. In the case H1 and H2 are
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separable a proof of this proposition can be found in the article [12], this is the proof of which
we give a sketch.
We have two faithful representations π1 : Ai → B(Hi). This yields a representation π1 ⊗ π2
on the tensor product H1 ⊗ H2 via the familiar construction. π1 ⊗ π2(a1 ⊗ a2)h1 ⊗ h2 :=
π1(a1)h1 ⊗ π2(a2)h2.
The algebra A1 ⊗A2 obeys the requirements of a spectral triple. Since for i = 1, 2 the represen-
tations πi of Ai are faithful and Ai acts by bounded operators on Hi, we have an embedding of
Ai into B(Hi). Then also A1 ⊗ A2 ⊂ B(H1) ⊗ B(H2) ∼= B(H1 ⊗ H2), where B(H1) ⊗ B(H2)
is the tensor product of the von Neumann algebras B(H1) and B(H2). Therefore A1 ⊗ A2 is
faithfully represented by π1 ⊗ π2 and acts by bounded operators. The algebra A1 ⊗ A2 has an
involution given on the elementary tensors by (a1⊗a2)∗ = a∗1 ⊗a∗2. And if both A1 and A2 have
a unit then so does A1 ⊗A2.
Now we will turn our attention to the Dirac operator. We will show that the operator D :=
D1 ⊗ 1 + γ1 ⊗D2 is densely defined, self-adjoint, ∥[D,π1 ⊗ π2(a)]∥ <∞ for all a ∈ A1 ⊗A2 and
has a compact resolvent.
It is relatively easy to show that the domains of the operators D1 ⊗ 1 and γ1 ⊗D2 are given by
Dom(D1 ⊗ 1) = Dom(D1)⊗H2 and Dom(γ1 ⊗D2) = H2 ⊗Dom(D2), (this is proved in detail in
lemma 3.13). Hence Dom(D) = Dom(D1)⊗H2 ∩H2 ⊗Dom(D2) = Dom(D1)⊗Dom(D2) which
is dense in H1 ⊗H2.
Self-adjointness and compactness of the resolvent requires some more work. In the case H1 and
H2 are separable there exist orthonormal bases of H1 and H2 consisting of eigenvectors for D1

respectively D2. From these bases it is possible (but we will not do that) to construct an or-
thonormal basis for H1 ⊗ H2 consisting of eigenvectors for D. The eigenvalues are of the form
±
√
λ2 + µ2, where λ and µ are eigenvalues of D1 respectively D2, counted with multiplicity.

Hence the eigenvalues are all real and tend to infinity. So D has a self-adjoint extension and a
compact resolvent.
Suppose a ∈ A1 ⊗A2 is of the form a = a1 ⊗ a2. Then

[D,π1 ⊗ π2(a1 ⊗ a2)] = [D1, π1(a1)]⊗ π2(a2)− π1(a1)⊗ [D2, π2(a2)].

Because [D1, π1(a1)] and [D2, π2(a2)] are densely defined and bounded and the operators π2(a2)
and π1(a1) are bounded, the commutator [D,π1 ⊗ π2(a1 ⊗ a2)] is densely defined and extends to
a bounded operator. Now for an arbitrary element a =

∑n
i=1 ai ⊗ b1 we can show boundedness

by linearity of πi and Di.
These results show that S1 × S2 is a spectral triple.

To prove the last assertion, suppose that S2 is also even with grading χ2. A direct computation
shows

(γ1 ⊗ γ2)(D1 ⊗ 1 + γ1 ⊗D2) = γ1D1 ⊗ γ2 + γ21 ⊗ γ2D2

= −D1γ1 ⊗ γ2 + γ21 ⊗ (−D2γ2)

= −(D1 ⊗ 1 + γ1 ⊗D2)(γ1 ⊗ γ2).

Similarly for an elementary tensor a1 ⊗ a2 one has

π1⊗π2(a1⊗a2)(γ1⊗γ2) = π1(a1)γ1⊗π2(a2)γ2 = γ1π1(a1)⊗γ2π2(a2) = (γ1⊗γ2)π1⊗π2(a1⊗a2).

Hence S1 × S2 is an even spectral triple if S1 and S2 are. �

We can prove results about the summability and regularity of the product triple. We will do this
later in the more general setting of semifinite spectral triples, this can be found in Section 3.2.
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3 Semifinite noncommutative geometry

The objective of the next section is to construct spectral triples which satisfy a specific re-
quirement so that they can be considered to be z-dimensional for z ∈ (0,∞). After a short
examination one easily sees that one cannot find a spectral triple with that property. Therefore
we are forced to generalise the spectral triples. This will lead to the semifinite spectral triples.
We will take a closer look at these triples in general in this section.

3.1 Semifinite spectral triples and their properties

The difference between an ordinary spectral triple and a semifinite one is that we no longer require
that the resolvent of the Dirac operator is compact, but we want it to be compact relative to a
trace on a semifinite von Neumann algebra (cf. Subsection 1.91).

Definition 3.1. A semifinite spectral triple (A,H, D;N , τ) consists of a Hilbert space H a
semifinite von Neumann algebra N acting on H with a faithful normal semifinite trace τ , an
involutive algebra A ⊂ N and a self-adjoint operator D affiliated to N . Furthermore we require
that for all a ∈ A the operator [D, a] is densely defined and extends to a bounded operator on
H and that the operator D is τ -discrete.
If in addition there exists a grading γ ∈ N such that γD = −Dγ and γa = aγ for all a ∈ A.
Then the tuple (A,H, D;N , τ, γ) is called an even semifinite spectral triple. If no such grading
exists, the tuple (A,H, D;N , τ) is called an odd semifinite spectral triple.

The reason for the requirement γ ∈ N is that we would like to be able to take the trace τ(γa)
for a ∈ A.
Most of the definitions of the classical case copy to the semifinite setting, in most cases we only
have to deal with the substitution of Tr by a trace τ .

Definition 3.2. Suppose (A,H, D;N , τ) is a semifinite spectral triple. We say the triple is
p-τ -summable if τ((1 + D2)−p/2) < ∞. The triple is τ -finitely summable if it is p-τ -summable
for some p > 0. The triple is p+-τ -summable if τ((1 +D2)−p/2+ε) <∞ for all ε > 0. The triple

is said to be θ-τ -summable if τ(e−tD2

) <∞ for any t > 0.

These different notions of τ -summability are related to one another, see the next lemma.

Lemma 3.3. Suppose (A,H, D;N , τ) is a semifinite spectral triple and q > p > 0. If the triple
is p-τ -summable, then it is p+-τ -summable, q-summable and θ-τ -summable.

Proof. Suppose 1 < p < q. Because D is affiliated to N and (1+D2)−1 is bounded, the operator
(1 +D2)−(q−p)/2 ∈ N . Thus by Proposition 1.46 the following inequality holds

τ
(
(1+D2)−q/2

)
= τ

(
(1+D2)−(q−p)/2(1+D2)−p/2

)
≤ ∥(1+D2)−(q−p)/2∥τ

(
(1+D2)−p/2

)
<∞.

and thus D is q-τ–summable. If ε > 0, put q := p+ 2ε from which p+-τ -summability follows.
For the last assertion, we know that for t > 0 and α > 0 fixed, the function gt,α : [0,∞) → R,
gt,α(x) := (1 + x2)α/2e−tx2

is bounded, say by Ct,α. Then

τ
(
e−tD2)

= τ
(
|gt,p(D)| (1 +D2)−p/2

)
≤ Ct,pτ

(
(1 +D2)−p/2

)
<∞,

so the operator is θ-τ -summable. �

Definition 3.4. A regular τ -finitely summable semifinite spectral triple (A,H, D;N , τ) is said
to have dimension spectrum Sd ⊂ C if for all b ∈ B the zeta function ζb : z 7→ τ(b(1 +D2)−z/2)
(for Re(z) large), extends analytically to C \Sd. If Sd is discrete, then (A,H, D;N , τ) is said to
have a discrete dimension spectrum. If ζb has at most simple poles, the dimension spectrum is
called simple.
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3.2 Products of semifinite spectral triples

We can generalise the construction of Proposition 2.63 of the product of two spectral triples
to a product of semifinite spectral triples. It is clear that we cannot expect the product to be
a classical spectral triple, but we do obtain a semifinite spectral triple. This is the content of
Theorem 3.10. Note that such a theorem exceeds Proposition 2.63, because a classical spectral
triple is a semifinite spectral triple with type I von Neumann algebra B(H) and trace Tr. We
start with the preparations for the proof of this theorem.

Lemma 3.5. Let H1 and H2 be two Hilbert spaces. Suppose H2 has an orthonormal basis (ei)i∈I .
Denote Ki for a copy of H1. Then the map

U :
⊕
i∈I

Ki → H1 ⊗H2, (xi)i∈I 7→
∑
i∈I

xi ⊗ ei

is an isometry.

Proof. Note that this sum is well-defined, because if (xi)i ∈
⊕

i∈I Ki at most countably many
elements xi can be non-zero. Now clearly U is bijective and it preserves the norm. Hence it is
an isometry. �

Proposition 3.6. Let M1 and M2 be semifinite von Neumann algebras, then M1 ⊗M2 is a
semifinite von Neumann algebra.

Proof. See [2, Thm. III.2.5.27]. �

Combination of 1.43 and 3.6 shows that given two semifinite von Neumann algebras M1 and
M2 with semifinite faithful normal traces τ1 and τ2 there exists a semifinite normal trace on
M1 ⊗M2. It is possible to construct such a trace from τ1 and τ2. The obvious choice is τ1 ⊗ τ2,
which indeed works.

Proposition 3.7. Suppose for i = 1, 2 Mi is a semifinite von Neumann algebra with faithful
semifinite normal trace τi, then τ := τ1 ⊗ τ2 : (M1 ⊗ M2)+ → [0,∞] is a faithful semifinite
normal trace. In particular this trace factors, thus τ1 ⊗ τ2(a1 ⊗ a2) = τ1(a1)τ2(a2).

Proof. From [31, VIII.§4] it follows that the map τ1 ⊗ τ2 is a faithful semifinite normal weight.
(A weight on a C∗-algebra is a function φ : A+ → [0,∞] such that φ(0) = 0, φ(λa) = λφ(a) for
all a ∈ A+ and λ ≥ 0 and φ(a+ b) = φ(a) + φ(b) for all a, b ∈ A+). So it remains to show that
τ has the trace property, i.e. τ(aa∗) = τ(a∗a) for all a ∈ M1 ⊗M2. Let a =

∑
n xn ⊗ yn, then

aa∗ =
(∑

n

xn ⊗ yn

)(∑
n

xn ⊗ yn

)∗
=
(∑

n

xn ⊗ yn

)(∑
n

x∗n ⊗ y∗n

)
=
∑
n

∑
m

xnx
∗
m ⊗ yny

∗
m.

Since τi is a trace we have τi(ab) = τi(ba) for all a, b ∈ Mi+ with τi(a), τi(b) < ∞. Therefore
τi extends to a linear functional on span{a ∈ M+ : τi(a) < ∞}. And if a, b ∈ span{a ∈ M+ :
τi(a) < ∞} it holds hat τi(ab) = τi(ba). Observe if τ(aa∗) = ∞ then also τ(a∗a) = ∞. So
assume τ(aa∗) <∞. In that case a =

∑
n xn ⊗ yn with |τ1(xn)| <∞ and |τ2(yn)| <∞ for all n

and hence

τ(aa∗) = τ
(∑

n

∑
m

xnx
∗
m ⊗ yny

∗
m

)
=
∑
n

∑
m

τ1(xnx
∗
m)τ2(yny

∗
m)

=
∑
n

∑
m

τ1(x
∗
mxn)τ2(y

∗
myn)

= τ
(∑

n

∑
m

x∗mxn ⊗ y∗myn

)
= τ(a∗a).
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So indeed τ1 ⊗ τ2 is a trace. �

Lemma 3.8. In the notation of Lemma 3.7 suppose for i = 1, 2 the operators Ki : Hi → Hi are
τi-compact. Then K1 ⊗K2 : H1 ⊗H2 → H1 ⊗H2 is a τ -compact operator.

Proof. Let ε > 0. Select for i = 1, 2 operators Ri ∈ B(Hi) such that ∥Ki − Ri∥ < ε, with
the property that for the projection Pi on the range of Ri the trace τi(Pi) < ∞. Then P1 ⊗ P2

is the projection on the range of R1 ⊗ R2. By the factorisation of τ (Lemma 3.7) we have
τ(P1 ⊗ P2) = τ1(P1)τ2(P2) < ∞. And by the cross-norm property of the norm on the tensor
product

∥K1 ⊗K2 −R1 ⊗R2∥ ≤ ∥K1 ⊗K2 −K1 ⊗R2∥+ ∥K1 ⊗R2 −R1 ⊗R2∥
≤ ∥K1∥ ∥K2 −R2∥+ ∥K1 −R1∥ ∥R2∥
≤ (∥K1∥+ ∥K2∥+ ε)ε.

�

Lemma 3.9. Suppose M is a von Neumann algebra acting on H1. Then (M ⊗ B(H2))
′ =

M′ ⊗ C1.

Proof. See [30, Prop. IV.1.6]. �

Theorem 3.10. Suppose S1 := (A1,H1, D1;N1, τ1, γ1) is an even semifinite spectral triple and
S2 := (A2,H2, D2;N2, τ2) is a semifinite spectral triple. Then

S := (A1 ⊗A2,H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2;N1 ⊗N2, τ1 ⊗ τ2)

is a semifinite spectral triple. If in addition also S2 is even with a grading γ2, then S is even
with grading γ1 ⊗ γ2.

Definition 3.11. The triple S is called the product of the triples S1 and S2. In accordance with
Proposition 2.63 this product triple will be denoted by S1 × S2 := S.

Remark 3.12. If we start with two even spectral triples S1 and S2, the triples S1 × S2 and
S2×S1 are related in the following way. The algebras, Hilbert spaces and von Neumann algebras
of these two triples are isomorphic and the Dirac operators D1⊗1+γ1⊗D2 and D1⊗γ2+1⊗D2

are unitarily equivalent. Namely for

U :=
1

4
(1⊗ 1 + γ1 ⊗ 1 + 1⊗ γ2 − γ1 ⊗ γ2)

it holds that [33]
U(D1 ⊗ 1 + γ1 ⊗D2)U

∗ = D1 ⊗ γ2 + 1⊗D2.

We will now prove Theorem 3.10.
Proof. The proof of this theorem is quite lengthy since we have to check several things. It
is similar to the proof of Proposition 2.63 but it involves at lot more technical difficulties in
particular the compactness of the resolvent is difficult since we no longer have a basis of the
Hilbert space consisting of eigenvectors of the Dirac operator.
For the ease of notion we introduce the following objects

A := A1⊗A2, H := H1⊗H2, N := N1⊗N2, τ := τ1⊗τ2, D := D1⊗1+γ1⊗D2.

Where Dom(D) := Dom(D1) ⊗ Dom(D2). If we have a second grading γ2 on S2 we denote
γ := γ1 ⊗ γ2. Note that we are in the special situation that D1 ⊗ 1 and γ1 ⊗D2 anti-commute
and therefore that D2 = D2

1 ⊗ 1 + 1⊗D2
2. Now we will start the actual proof.
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It is clear that N is a von Neumann algebra acting on H. By Lemma 3.6 N is a semifinite von
Neumann algebra and by Lemma 3.7 τ is a semifinite faithful normal trace.
Concerning the algebra, the tensor product of two involutive algebras is again an involutive alge-
bra. And since Ai ⊂ Ni, the inclusion A ⊂ N is obvious. If we have a grading γ2, then obviously
γ = γ1 ⊗ γ2 ∈ N1 ⊗N2.

Before we can prove self-adjointness of the operator D we will prove the next lemma.

Lemma 3.13. The operators D1 ⊗ 1 and γ1 ⊗D2 with domains respectively Dom(D1)⊗H2 and
H1 ⊗Dom(D2) are self-adjoint.

Note that Dom(D1)⊗H2 and H1⊗Dom(D1) are tensor products of vector spaces and not tensor
products of Hilbert spaces because Dom(Di) are not Hilbert spaces.

Proof. As in Lemma 3.5 let (ei)i∈I be an orthonormal basis ofH2 and let U : H1⊗H2 →
⊕

i∈I Ki

be the isometry
∑

i xi ⊗ ei 7→ (xi)i. Then

U(D1 ⊗ 1)U∗ :
⊕
i∈I

Ki →
⊕
i∈I

Ki, (xi)i 7→ (D1xi)i.

Observe U(Dom(D1)⊗H2) =
⊕

i∈I Dom(D1)i. Hence

Dom((U(D1 ⊗ 1)U∗)∗)

=
{
(yi)i ∈

⊕
i∈I

Ki :
⊕
i∈I

Dom(D1)i → C; (xi)i 7→
∑
i∈I

⟨D1xi, yi⟩ is bounded
}
.

Suppose (yi)i ∈
⊕

i∈I Ki and there exists an i0 ∈ I such that yi0 /∈ Dom(D1). Then by self-
adjointness of D1 the map

Dom(D1) → C; x 7→ ⟨D1x, yi0⟩ (3.1)

is unbounded. For an element (xi)i with xi = 0 if i ̸= i0, we have
∑

i∈I⟨D1xi, yi⟩ = ⟨xi0 , yi0⟩.
Hence (3.1) shows that for y /∈

⊕
i∈I Dom(D1)i the map⊕

i∈I

Dom(D1)i → C; (xi)i 7→
∑
i∈I

⟨D1xi, yi⟩

is unbounded. Thus Dom((U(D1⊗1)U∗)∗) ⊂
⊕

i∈I Dom(D1)i. So Dom((D1⊗1)∗) ⊂ Dom(D1)⊗
H2. For the converse inclusion let y ∈ Dom(D1) ⊗ H2, say y =

∑N
n=1 y

(n)
1 ⊗ y

(n)
2 . Then for

x =
∑M

m=1 x
(m)
1 ⊗ x

(m)
2 we have by self-adjointness of D1

⟨(D1 ⊗ 1)x, y⟩ =
⟨
(D1 ⊗ 1)

( M∑
m=1

x
(m)
1 ⊗ x

(m)
2

)
,

N∑
n=1

y
(n)
1 ⊗ y

(n)
2

⟩
=

N∑
n=1

M∑
m=1

⟨D1x
(m)
1 , y

(n)
1 ⟩⟨x(m)

2 , y
(n)
2 ⟩

=
N∑

n=1

M∑
m=1

⟨x(m)
1 , D1y

(n)
1 ⟩⟨x(m)

2 , y
(n)
2 ⟩

=
⟨ M∑

m=1

x
(m)
1 ⊗ x

(m)
2 , (D1 ⊗ 1)

( N∑
n=1

y
(n)
1 ⊗ y

(n)
2

)⟩
= ⟨x,D1 ⊗ 1y⟩. (3.2)

So Dom(D1)⊗H2 → C, x 7→ ⟨x, (D1⊗1)y⟩, is a bounded map (bounded by ∥(D1⊗1)y∥). Hence
Dom((D1 ⊗ 1)∗) = Dom(D1)⊗H2.
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Similarly we have Dom((1 ⊗D2)
∗) = H1 ⊗ Dom(D2). The map (γ1 ⊗ 1)∗ = γ∗1 ⊗ 1 = γ1 ⊗ 1 is

bounded and maps H1 ⊗Dom(D2) on itself, thus

Dom((γ1 ⊗D2)
∗) = Dom((γ1 ⊗ 1)∗(1⊗D2)

∗) = H1 ⊗Dom(D2).

The computation in (3.2) shows D1 ⊗ 1 is symmetric, and we have Dom(D1 ⊗ 1) = Dom(D1)⊗
H2 = Dom((D1 ⊗ 1)∗). So D1 ⊗ 1 is self-adjoint on the domain Dom(D1) ⊗ H2. A similar
argument applies to γ1 ⊗D2 = (γ1 ⊗ 1)(1⊗D2). �

Now we are able to prove that D is self-adjoint on the domain Dom(D1)⊗Dom(D2). The idea is
to apply Nelson’s theorem 1.56 to the operator D, from which we will obtain that D is essentially
self-adjoint and then we will show that D is closed.
From Proposition 1.56 and the fact that D1 and D2 are self-adjoint we obtain that Domb(Di) ⊂
Hi dense for i = 1, 2. Let x ∈ Domb(D1) and y ∈ Domb(D2), we will show that x ⊗ y ∈
Domb(D1 ⊗ 1 + γ1 ⊗D2). Select C > 0 such that

∥Dn
1 x∥ ≤ Cn∥x∥; ∥Dn

2 y∥ ≤ Cn∥y∥.

Observe that (D1 ⊗ 1+ γ1 ⊗D2)
2 = D2

1 ⊗ 1+ 1⊗D2
2 and that the operators D2

1 ⊗ 1 and 1⊗D2
2

commute. Hence

∥D2n(x⊗ y)∥ =
∥∥∥(D2

1 ⊗ 1 + 1⊗D2
2)

n(x⊗ y)
∥∥∥

=
∥∥∥ n∑

j=0

(
n

j

)
D2j

1 x⊗D
2(n−j)
2 y

∥∥∥
≤

n∑
j=0

(
n

j

)
∥D2j

1 x∥∥D
2(n−j)
2 y∥

≤
n∑

j=0

(
n

j

)
C2jC2(n−j)

= (2C2)n ≤ (2C)2n;

and also

∥D2n+1(x⊗ y)∥ =
∥∥∥(D1 ⊗ 1 + γ1 ⊗D2)(D

2
1 ⊗ 1 + 1⊗D2

2)
n(x⊗ y)

∥∥∥
=
∥∥∥(D1 ⊗ 1 + γ1 ⊗D2)

n∑
j=0

(
n

j

)
D2j

1 x⊗D
2(n−j)
2 y

∥∥∥
=
∥∥∥ n∑

j=0

(
n

j

)
D2j+1

1 x⊗D
2(n−j)
2 y +

(
n

j

)
γ1D

2j
1 x⊗D

2(n−j)+1
2 y

∥∥∥
≤

n∑
j=0

(
n

j

)
∥D2j+1

1 x∥∥D2(n−j)
2 y∥+

(
n

j

)
∥γ1∥∥D2j

1 x∥∥D
2(n−j)+1
2 y∥

≤
n∑

j=0

(
n

j

)
C2j+1C2(n−j) +

(
n

j

)
C2jC2(n−j)+1

=
( n∑

j=0

(
n

j

)
C2n

)
2C

= (2C2)n2C ≤ (2C)2n+1.

Hence x⊗y ∈ Domb(D). Since Domb(D) is a linear subspace and Domb(Di) ⊂ Hi dense, we have
Domb(D1) ⊗ Domb(D2) ⊂ Domb(D) ⊂ H1 ⊗ H2 dense. But since Domb(D) ⊂ Doma(D) then
clearly Doma(D) ⊂ H dense. It is also clear that D is symmetric, so D is essentially self-adjoint.
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It remains to show that D is closed on Dom(D1)⊗Dom(D2). To that end, let (xn)n be a sequence
in Dom(D1)⊗ Dom(D2) converging to x ∈ H1 ⊗H2 such that (Dxn)n is a Cauchy sequence in
H1 ⊗H2. For the moment fix m,n and write y = xn − xm. Then (D1 ⊗ 1)y ∈ H1 ⊗ Dom(D2)
and (γ1 ⊗ D2)y ∈ Dom(D1) ⊗ H2. For ease of notation write S := γ1 ⊗ D2 and T := D1 ⊗ 1.
Then STy = −TSy and thus

⟨Dy,Dy⟩ = ⟨Ty, Ty⟩+ ⟨Sy, Sy⟩+ ⟨Ty, Sy⟩+ ⟨Sy, Ty⟩
= ⟨Ty, Ty⟩+ ⟨Sy, Sy⟩+ ⟨STy, y⟩+ ⟨TSy, y⟩
= ⟨Ty, Ty⟩+ ⟨Sy, Sy⟩+ ⟨STy − STy, y⟩
= ⟨Ty, Ty⟩+ ⟨Sy, Sy⟩. (3.3)

By Lemma 3.13D1⊗1 and γ1⊗D2 are self-adjoint and hence closed on the domains Dom(D1)⊗H2

respectively H1 ⊗ Dom(D2). The fact that (Dxn)n is Cauchy combined with (3.3) gives that
(Txn)n and (Sxn)n are Cauchy. By closedness of the operators T and S we have x ∈ (Dom(D1)⊗
H2) ∩ (H1 ⊗ Dom(D2)) = Dom(D1) ⊗ Dom(D2). Also the sequences (Txn)n and (Sxn)n both
have a limit in H, say z1 respectively z2 and Tx = z1 and Sx = z2. Thus

lim
n→∞

Dxn = lim
n→∞

Txn + Sxn = z1 + z2 = Tx+ Sx = Dx

and D is closed.

To prove that the operator D is affiliated to the von Neumann algebra N , observe that by self-
adjointness of D it is sufficient to show that {D}′ ⊃ N ′. By assumption {Di}′ ⊃ N ′

i . Also
γ1 ∈ N1 hence {γ1}′ ⊃ N ′

1. Using this inclusion we have for
∑

nmk ⊗ nk ∈ N1 ⊗N2

(γ1 ⊗D2)
(∑

n

mk ⊗ nk

)
=
∑
n

γ1mk ⊗D2nk ⊃
∑
n

mkγ1 ⊗ nkD2 =
(∑

n

mk ⊗ nk

)
(γ1 ⊗D2).

Combination with Lemma 3.9 gives the inclusions

{γ1 ⊗D2}′ ⊃ (N1 ⊗N2)
′;

{D1 ⊗ 1}′ ⊃ N ′
1 ⊗B(H2) = (N1 ⊗ 1)′ ⊃ (N1 ⊗N2)

′.

Thus

{D}′ = {D1 ⊗ 1 + γ1 ⊗D2}′ ⊃ {D1 ⊗ 1}′ ∩ {γ1 ⊗D2}′ ⊃ (N1 ⊗N2)
′ = N ′

and hence D is affiliated to N .

Suppose a ∈ A1 ⊗A2. Assume a = a1 ⊗ a2. Then

[D, a1 ⊗ a2] = (D1 ⊗ 1− γ1 ⊗D2)(a1 ⊗ a2)− (a1 ⊗ a2)(D1 ⊗ 1− γ1 ⊗D2)

= D1a1 ⊗ a2 − γ1a1 ⊗D2a2 − a1D1 ⊗ a2 + a1γ1 ⊗D2a2

= (D1a1 − a1D1)⊗ a2 − a1γ1 ⊗ (D2a2 − a2D2)

= [D1, a1]⊗ a2 − a1γ1 ⊗ [D2, a2].

Because [D1, a1] and [D2, a2] are densely defined and bounded and the operators a2 and a1γ1
are bounded, the commutator [D, a1⊗a2] is densely defined and extends to a bounded operator.
Now for an arbitrary element a =

∑n
i=1 ai ⊗ b1 we can show boundedness of the commutant

[D, a] using linearity of Di and bilinearity of [·, ·]. Hence for all a ∈ A the operator [D, a] is
densely defined and extends to a bounded operator on H.

Before we will prove τ -discreteness of D we will need the two results proven in the following
lemmas 3.14 and 3.15.
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Lemma 3.14. The identity

(D+i)−1 = i(γ1⊗D2+i)
−1(D1⊗1+i)−1−(γ1⊗D2+i)

−1(D1⊗1+i)−1(γ1⊗D2)(D1⊗1)(D+i)−1

(3.4)
holds as operators on H. Moreover (γ1 ⊗D2)(D1 ⊗ 1)(D + i)−1 is bounded.

Proof. First we make a formal manipulation of the symbols. Then we have to check that the
operators involved indeed extend to the whole space H.
Again write S := γ1 ⊗D2 and T := D1 ⊗ 1. We have ST = −TS and hence

(3.4) ⇔ (S + T + i)−1 = i(S + i)−1(T + i)−1 − (S + i)−1(T + i)−1ST (S + T + i)−1

⇔ 1 = i(S + i)−1(T + i)−1(S + T + i)− (S + i)−1(T + i)−1ST

⇔ (T + i)(S + i) = i(S + T + i)− ST

⇔ TS + iS + iT − 1 = iS + iT − 1− ST.

The operators (D,Dom(D1)⊗Dom(D2)), (D1⊗1,Dom(D1)⊗H2) and (γ1⊗D2,H2⊗Dom(D2))
are self-adjoint, thus −i /∈ σ(D), σ(D1 ⊗ 1), σ(γ1 ⊗ D2). And hence (D + i)−1, (D1 ⊗ 1 + i)−1

and (γ ⊗D2 + i)−1 are bounded operators on H. Furthermore

ran((D + i)−1) = Dom(D + i) = Dom(D) = Dom(D1)⊗Dom(D2).

Also since γ1 anticommutes with D1

Dom((D1 ⊗ 1)(γ1 ⊗D2)) = Dom(γ1 ⊗D2) ∩ (γ1 ⊗D2)
−1(Dom(D1 ⊗ 1))

= H1 ⊗Dom(D2) ∩Dom(D1)⊗Dom(D2)

= Dom(D1)⊗Dom(D2).

Observe that Dom
(
((γ1 ⊗D2)(D1 ⊗ 1))∗

)
⊃ Dom(D1)⊗Dom(D2). Hence ((γ1 ⊗D2)(D1 ⊗ 1))∗

is densely defined and thus ((γ1 ⊗ D2)(D1 ⊗ 1),Dom(D1) ⊗ Dom(D2)) is closable. We have
previously shown that Dom(D + i) = Dom(D) = Dom(D1)⊗Dom(D2) and D is self-adjoint on
this domain. Hence the operator (D + i)−1 maps H into Dom(D1)⊗Dom(D2) and is bounded.
Thus (γ1 ⊗ D2)(D1 ⊗ 1)(D + i)−1 is a closed operator defined on H and hence by the closed
graph theorem it is a bounded operator. And equality (3.4) holds on H. �

Lemma 3.15. The operator (γ1 ⊗D2 + i)−1(D1 ⊗ 1+ i)−1 : H1 ⊗H2 → H1 ⊗H2 is τ -compact.

Proof. The grading γ1 induces a direct sum decomposition of H1. Write H1 = H+
1 ⊕H−

1 , where
H±

1 is the eigenspace of the eigenvalue ±1 of γ1. Then also

H1 ⊗H2
∼= (H+

1 ⊗H2)⊕ (H−
1 ⊗H2).

Now

γ2 ⊗D2 + i : H+
1 ⊗H2 → H+

1 ⊗H2, x⊗ y 7→ x⊗ (D2y + iy)

γ2 ⊗D2 + i : H−
1 ⊗H2 → H−

1 ⊗H2, x⊗ y 7→ −x⊗D2y + x⊗ iy = −x⊗ (Dy − iy).

Then the inverse of γ1 ⊗D2 + i is given in the matrix representation w.r.t. H1 = H+
1 ⊕H−

1 as

(γ1 ⊗D2 + i)−1 =

(
1 0
0 0

)
⊗ (D2 + i)−1 +

(
0 0
0 −1

)
⊗ (D2 − i)−1. (3.5)

Since D1 anti-commutes with γ1 and D1 is self-adjoint, the operator D1 can be written with
respect to the decomposition H1 = H+

1 ⊕H−
1 as

D1 =

(
0 D+

1

D−
1 0

)
,
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where D+∗
1 = D−

1 . Since (D1⊗ I+ i)−1 = ((D1+ i)⊗ I)−1 = (D1+ i)
−1⊗ I, we have to compute

the inverse of

D1 + i =

(
i D+

1

D−
1 i

)
.

Observe that(
i D+

1

D−
1 i

)(
(D−

1 )
−1 i

i (D+
1 )

−1

)
=

(
i((D−

1 )
−1 +D+

1 ) −1 +D+
1 (D

+
1 )

−1

D−
1 (D

−
1 )

−1 − 1 i(D−
1 + (D+

1 )
−1)

)
=

(
i((D−

1 )
−1 +D+

1 ) 0
0 i(D−

1 + (D+
1 )

−1)

)
.

Therefore (D1 + i)−1 is given by the matrix(
(D−

1 )
−1 i

i (D+
1 )

−1

)(
−i((D−

1 )
−1 +D+

1 )
−1 0

0 −i(D−
1 + (D+

1 )
−1)−1

)
=

(
−i(D−

1 )
−1((D−

1 )
−1 +D+

1 )
−1 (D−

1 + (D+
1 )

−1)−1

((D−
1 )

−1 +D+
1 )

−1 −i(D+
1 )

−1(D−
1 + (D+

1 )
−1)−1

)
=

(
−i(1 +D+

1 D
−
1 )

−1 (D−
1 + (D+

1 )
−1)−1

((D−
1 )

−1 +D+
1 )

−1 −i(D−
1 D

+
1 + 1)−1

)
. (3.6)

Hence (D1 ⊗ I + i)−1 = (D1 + i)−1 ⊗ I is given by(
−i(1 +D+

1 D
−
1 )

−1 (D−
1 + (D+

1 )
−1)−1

((D−
1 )

−1 +D+
1 )

−1 −i(D−
1 D

+
1 + 1)−1

)
⊗ I. (3.7)

Multiplication of (3.5) and (3.7) gives that (γ1 ⊗D2 + i)−1(D1 ⊗ 1 + i)−1 is represented as(
−i(1 +D+

1 D
−
1 )

−1 (D−
1 + (D+

1 )
−1)−1

0 0

)
⊗ (D2 + i)−1

+

(
0 0

−((D−
1 )

−1 +D+
1 )

−1 i(D−
1 D

+
1 + 1)−1

)
⊗ (D2 − i)−1. (3.8)

Because (D1 + i)−1 is τ1-compact, there exists a sequence (Fn)n of τ1-finite rank operators with
limn ∥(D + i)−1 − Fn∥ = 0. Decompose Fn as a matrix with respect to H1 = H+

1 ⊕H−
1 by

Fn =

(
F 11
n F 12

n

F 21
n F 22

n

)
.

Thus from the estimate∥∥∥((−i(1 +D+
1 D

−
1 )

−1 (D−
1 + (D+

1 )
−1)−1

0 0

)
−
(
F 11
n F 12

n

0 0

))(x
y

)∥∥∥
=
∥∥∥((−i(1 +D+

1 D
−
1 )

−1 − F 11
n )x+ ((D−

1 + (D+
1 )

−1)−1 − F 21
n )y

0

)∥∥∥
≤
∥∥∥(Fn − (D1 − i)−1)

(
x
y

)∥∥∥
and a similar one for the lower entries of the matrices we obtain

lim
n→∞

∥∥∥(−i(1 +D+
1 D

−
1 )

−1 (D−
1 + (D+

1 )
−1)−1

0 0

)
−
(
F 11
n F 12

n

0 0

)∥∥∥ = 0;

lim
n→∞

∥∥∥( 0 0
−((D−

1 )
−1 +D+

1 )
−1 i(D−

1 D
+
1 + 1)−1

)
−
(

0 0
−F 21

n −F 22
n

)∥∥∥ = 0.
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Since the range of each of the operators F ij
n is contained in the range of Fn (i, j = 1, 2) the

operators F i,j
n are τ1 compact. Therefore the operators represented by(

−i(1 +D+
1 D

−
1 )

−1 (D−
1 + (D+

1 )
−1)−1

0 0

) (
0 0

−((D−
1 )

−1 +D+
1 )

−1 i(D−
1 D

+
1 + 1)−1

)
are τ1 compact. By assumption D2 is τ2-discrete, thus (D2+ i)

−1 and (D2− i)−1 are τ2-compact.
Using Lemma 3.8 the operator given by (3.8) is τ -compact, thus (D1⊗ I + i)−1 = (D1+ i)

−1⊗ I
is τ -compact. �

Now it has become easy to prove compactness of the resolvent. Since D is self-adjoint, σ(D) ⊂ R.
According to Theorem 1.90 it is therefore sufficient to show that (D + i)−1 is τ -compact. By
Corollary 1.89 the τ -compact operators are an ideal in B(H1 ⊗H2). Combination of this corol-
lary with Lemmas 3.14 and 3.15 imply that (D + i)−1 is τ -compact.

This concludes the proof that S1 ⊗ S2 is a semifinite spectral triple.

In the case that we have a grading γ2 on the second triple, then for
∑

k n
(k)
1 ⊗ n

(k)
2 ∈ N we have

(γ1⊗γ2)
(∑

k

n
(k)
1 ⊗n(k)2

)
=
∑
k

γ1n
(k)
1 ⊗γ2n(k)2 =

∑
k

n
(k)
1 γ1⊗n(k)2 γ2 =

(∑
k

n
(k)
1 ⊗n(k)2

)
(γ1⊗γ2),

and

(γ1 ⊗ γ2)D = γ1D1 ⊗ γ2 + γ21 ⊗ γ2D2 = −D1γ1 ⊗ γ2 − γ21 ⊗D2γ2 = D(γ1 ⊗ γ2).

Hence γ is a grading on S, thus the product of two even triples is again an even semifinite spectral
triple. �

If you take the product of two manifolds say of dimension m and n, the product is of dimension
m+ n. Therefore we might expect that the product of two finitely summable semifinite spectral
triples is again finitely summable. This is indeed true.

Lemma 3.16. Suppose for i = 1, 2 the tuples (A1,Hi, Di;Ni, τi) are semifinite spectral triples
and the first triple is even with grading γ1. If the triples are pi-τi-summable, then the semifinite
product spectral triple is (p1 + p2)-τ -summable. If both spectral triples are θ-τi-summable, then
the product spectral triple is θ-τ -summable.

Proof. We start with the easiest one, the θ-τ -summability. If both triples are θ-τi-summable,
then

τ
(
e−tD2)

= τ
(
e−t(D2

1⊗1+1⊗D2
2)
)
= τ

(
e−tD2

1 ⊗ e−tD2
2
)
= τ1

(
e−tD2

1
)
τ2
(
e−tD2

2
)
<∞.

Thus the triple is θ-τ -summable. To prove the first statement, suppose that both triples are
pi-τi-summable. Note that for i = 1, 2 it holds that 1 +D2

i ≤ 1 +D2
1 +D2

2, thus

(1 +D2
1 +D2

2)
−(p1+p2)/2 ≤ (1 +D2

1)
−p1/2(1 +D2

2)
−p2/2.

The factorisation of the trace now gives

τ(1 +D2
1 +D2

2)
−(p1+p2)/2 ≤ τ1(1 +D2

1)
−p1/2τ2(1 +D2

2)
−p2/2 <∞.

�

Since the definition of a smooth element a ∈ A does not involve the trace Tr, this definition
copies from the classical case. So we obtain the following definition.
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Definition 3.17. For a semifinite spectral triple (A,H, D;N , τ) we define for a ∈ A the operator
δ(a) := [|D|, a], it is the unbounded derivation of a. We denote

Dom(δ) := {a ∈ B(H) : δ(a) is bounded on H and aDom(|D|) ⊂ Dom(|D|)}.

If for all a ∈ A the operators a, [D, a] ∈ Dom(δk), we call the triple a QCk-triple, or QCk for
short. If the triple is a QCk-triple for all k ≥ 1, we call it QC∞ or regular. An operator a ∈ B(H)
with a ∈ Dom(δk) for all k ∈ N is called smooth.

The above definition was just an example of how some results immediately apply to semifinite
triples. Other previously introduced terminology or previously proved result of spectral triples,
which without any changes apply to the semifinite spectral triples, will not be reformulated.

In the case of spectral triples it has been proved [25] that the product of two regular spectral
triples is again regular. We will now prove it in a different way (not involving pseudo-differential
operators) for semifinite spectral triples. We will use some previous results: Lemma 2.43 and
Lemma 2.44.

Theorem 3.18. Suppose that for i = 1, 2 the tupels Si := (Ai,Hi,Ni, Di, τi) are regular semifi-
nite spectral triples and S1 is even. Then the product S of these spectral triples is again regular.

Proof. We start by showing that H∞ = H1∞ ⊗H2∞. Recall

D2m = (D2
1 ⊗ 1 + 1⊗D2

2)
m =

m∑
k=0

(
m

k

)
D2k

1 ⊗D
2(m−k)
2 .

Furthermore using Lemma 3.13 one can easily show that Dom(Dn
1 ⊗ 1) = Dom(Dn

1 ) ⊗ H2, a
similar statement holds for D2. Thus by commutativity of Dk

1 ⊗ 1 and 1⊗Dj
2 we have

Dom
(
D2m

)
=

m∩
k=0

Dom
(
(D2k

1 ⊗ 1)(1⊗D
2(m−k)
2 )

)
=

m∩
k=0

Dom
(
D2k

1

)
⊗H2 ∩

(
D2k

1 ⊗ 1
)−1

(H1 ⊗Dom
(
D

2(m−k)
2

)
=

m∩
k=0

Dom
(
D2k

1

)
⊗H2 ∩Dom

(
D2k

1

)
⊗Dom

(
D

2(m−k)
2

)
= Dom

(
D2m

1

)
⊗Dom

(
D2m

2

)
.

If we now use the even case, we obtain the following result for odd powers

Dom
(
D2m+1

)
= Dom

(
(D2

1 ⊗ 1 + 1⊗D2
2)

m(D1 ⊗ 1 + γ1 ⊗D2)
)

= Dom
(
(D2

1 ⊗ 1 + 1⊗D2
2)

m(D1 ⊗ 1)
)
∩Dom

(
(D2

1 ⊗ 1 + 1⊗D2
2)

m(γ1 ⊗D2)
)

= Dom
(
D1

)
⊗H2 ∩ (D1 ⊗ 1)−1

(
Dom

(
(D2

1 ⊗ 1 + 1⊗D2
2)

m
))

∩H1 ⊗Dom
(
D2

)
∩ (γ1 ⊗D2)

−1
(
Dom

(
(D2

1 ⊗ 1 + 1⊗D2
2)

m
))

= Dom
(
D1

)
⊗Dom

(
D2

)
∩ (D−1

1 ⊗ 1)
(
Dom

(
D2m

1

)
⊗Dom

(
D2m

2

))
∩ (γ1 ⊗D−1

2 )
(
Dom

(
D2m

1

)
⊗Dom

(
D2m

2

))
= Dom

(
D1

)
⊗Dom

(
D2

)
∩Dom

(
D2m+1

1

)
⊗Dom

(
D2m

2

)
∩Dom

(
D2m

1

)
⊗Dom

(
D2m+1

2

)
= Dom

(
D2m+1

1

)
⊗Dom

(
D2m+1

2

)
.

As a result we obtain H∞ = H1∞ ⊗H2∞.
Recall A = A1 ⊗A2. Since [a1 ⊗ a2, D] = [a1, D1]⊗ a2 + γ1a1 ⊗ [a2, D2] it is sufficient to show
that a1⊗a2 is smooth if both a1 and a2 are smooth (thus ai are not necessarily from the algebra
Ai). So suppose that a1 and a2 are smooth. We have to prove that for all n ≥ 1 it holds that
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δn(a1 ⊗ a2)(Dom(D)) ⊂ Dom(D) and δn(a1 ⊗ a2) is bounded.
By regularity of the triple and Lemma 2.40, ai(Hi∞) ⊂ Hi∞. Thus

a1 ⊗ a2(H∞) = a1 ⊗ a2(H1∞ ⊗H2∞) ⊂ H1∞ ⊗H2∞ = H∞.

We will invoke Lemma 2.43 to show that δn(a1 ⊗ a2) is bounded for all n.

δ1(a1 ⊗ a2) = [D2, a1 ⊗ a2](1 +D2)−1/2

=
(
[D2

1, a1]⊗ a2 + a1 ⊗ [D2
2, a2]

)
(1 +D2)−1/2

=
(
[D1, a1](D

2
1 + 1)−1/2 ⊗ a2

) (
(D2

1 + 1)1/2 ⊗ 1
)
(1 +D2)−1/2

+
(
a1 ⊗ [D2, a2](D

2
2 + 1)−1/2

) (
1⊗ (D2

2 + 1)1/2
)
(1 +D2)−1/2

= δ1(a1)⊗ a2
(
(D2

1 + 1)1/2 ⊗ 1
)
(1 +D2)−1/2 + a1 ⊗ δ1(a2)

(
1⊗ (D2

2 + 1)1/2
)
(1 +D2)−1/2.

(3.9)

We will show that (3.9) is bounded, we will only show that the first summand is bounded, the
other one is similar. Note

D2
1 ⊗ 1 + 1 ≤ D2

1 ⊗ 1 + 1⊗D2
2 + 1 = D2 + 1,

so

1 ≤ (D2
1 ⊗ 1 + 1)−1/2(D + 1)(D2

1 ⊗ 1 + 1)−1/2;

1 ≥ (D2
1 ⊗ 1 + 1)1/2(D + 1)−1(D2

1 ⊗ 1 + 1)1/2;

1 ≥
∥∥(D2

1 ⊗ 1 + 1)1/2(D + 1)−1/2
∥∥2.

To show that higher powers δn1 (a1 ⊗ a2) are bounded one can do the same as in (3.9). If one
expands δn1 (a1 ⊗ a2), one gets a sum of products of elements of the form

δk1 (a1)⊗ δl1(a2),
(
(D2

1 + 1)1/2 ⊗ 1
)
(1 +D2)−1/2,

(
1⊗ (D2

2 + 1)1/2
)
(1 +D2)−1/2

and they are all bounded. Hence (2.43 ) δn1 (a1⊗a2) is bounded for all n ≥ 1. That the operators
δn(a1 ⊗ a2) preserve the domain of D now has become easy. Since δn(a) is bounded for all n,
it is a direct consequence of Lemma 2.42. We conclude that a ∈ Dom(δn) for all n ∈ N. So the
triple is regular. �
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4 Spaces of real dimension

This section is based on the work of Connes and Marcolli in [9, §1.19.2]. We will provide details
in their construction of a collection of semifinite spectral triples which can be considered as
noncommutative spaces of dimension z ∈ (0,∞) and we will give a slightly different construction.
In the second subsection we will compute that the dimension spectrum of such triples consists
of a single point z. We will start with the definition and some general properties.

4.1 The definition

In this subsection we will follow the lines of [9, §1.19.2]. We want to construct for each z ∈ C a
spectral triple (A,H, Dz) which has the following property

Tr
(
e−λD2

z
)
= πz/2λ−z/2, for all λ > 0. (4.1)

This requirement comes from the formula∫
Rn

e−λp2

dnp =
(π
λ

)n/2
, for n ∈ {1, 2, 3, . . .}.

Later (in subsection 5.1) we will use these spectral triples to construct a tool for dimensional
regularisation and then this property is essential. For the application to dimensional regulari-
sation we will the need products of spectral triples which we constructed in Section 3.2. The
requirement (4.1) may look like an simple one, but it appears to be a great constraint. We will
first show that we cannot find such a spectral triple if we demand an ordinary spectral triple.
We will need to look in the class of semifinite spectral triples. Later we will show that one can
only obey this requirement for z ∈ (0,∞).

Following the ideas of Connes and Marcolli, we consider a self-adjoint operator Z affiliated to a
type II∞ factor N with trace TrN . The operator Z is given by the spectral measure

τ(1E(Z)) =
1

2

∫
E

1 dx.

Existence of such an operator Z is established in [9, Rem. 3.36]. Using this operator they
construct the desired operator D̃z := ρ(z) sgn(Z)|Z|1/z. Here ρ(z) := π−1/2(Γ(z/2 + 1))1/z is a
renormalisation constant. Let us denote this triple by

(C,H, D̃z;N,TrN ) (4.2)

Later in this section we will give an alternative construction of such an operator Dz, without the
operator Z. Furthermore we will not need a type II∞ factor, but a type I von Neumann algebra.
Note that Z has spectrum σ(Z) = R. Indeed, suppose x ∈ R\σ(Z). Then, since the spectrum is
closed, there must exist an ε > 0 such that A := (x− ε, x+ ε) ∩ σ(Z) = ∅. But then 1A(Z) = 0
hence τ(1A(Z)) = 0. However 1

2

∫
A
1 dy = ε which is a contradiction.

We will give a motivation why Connes and Marcolli consider a semifinite spectral triple

(A,H, D;M, τ),

where M is a type II∞ factor. We will show why type I or type II1 factors are not sufficient for
existence of such an operator Z.

Lemma 4.1. If τ is a trace on a type I factor M (with minimal projection p), there does not
exist a Z which satisfies τ(1A(Z)) =

1
2

∫
A
1 dy for all A ∈ B(R).

Proof. Indeed, suppose such an operator Z exist. Then by Lemma 1.44 there exists a minimal
projection p. Therefore for all A ∈ B(σ(Z)) = B(R)

1

2
µ(A) =

1

2

∫
A

1 dx = τ(1A(Z)) = τ(E(A)) ∈ {nτ(p) : n ∈ N} ∪ {∞},
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4. SPACES OF REAL DIMENSION

which is a contradiction. �

This lemma implies that an ordinary spectral triple is not sufficient. Because if we have a spectral
triple, the corresponding von Neumann algebra is B(H) which is a type I factor.

Remark 4.2. It also does not work for a finite factor. Since if M is a finite factor, by lemma
1.45 any semifinite normal trace τ is finite. This would imply that τ(1) <∞ and hence

∞ =
1

2

∫
R
1 dx = τ(1R(Z)) = τ(1σ(Z)(Z)) = τ(1) <∞,

which is a contradiction.

So if we restrict ourselves to factors we at least need type II∞. However we considered factors
and not von Neumann algebras. So the requirement might be satisfied if we look to von Neumann
algebras instead of factors. This is indeed the case.

Notation 4.3. For z > 0 consider the following tuple

Tz := (Az,Hz, /Dz,Nz, τz) :=
(
C, L2(R), /Dz;L

∞(R),
1

2

∫
R
· dx

)
. (4.3)

Here λ ∈ C is identified with the map L2(R) → L2(R), h 7→ λh. Denote

fz : R → R, x 7→ ρ(z) sgn(x)|x|1/z,

where ρ(z) := π−1/2(Γ(z/2+1))1/z is a normalisation constant. Now /Dz is given by /Dzh := fzh
on the domain

Dom( /Dz) :=
{
h ∈ L2(R) :

∫
R
|fzh|2 dx <∞

}
.

We will use Tz, /Dz etcetera in the rest of this thesis to denote this triple and elements thereof.

Remark 4.4. Note that for ξ ̸= 0 we have∣∣∣ d
dξ
fz(ξ)

∣∣∣ = ∣∣∣ρ(z)|ξ|1/z−1,
1

z

∣∣∣.
Using induction for ξ ̸= 0∣∣∣ dn

dξn
fz(ξ)

∣∣∣ = ∣∣∣ρ(z)|ξ|1/z−n 1

z

(1
z
− 1
)
· · ·
(1
z
− n+ 1

)∣∣∣.
Thus ∣∣∣ dn

dξn
fz(ξ)

∣∣∣ ≤ Cn(1 + |ξ|)1/z−n, allmost everywhere.

So fz is a symbol of a pseudo-differential operator of order 1/z. Note that sgn(ξ) is the symbol of
the Hilbert transform [13, Ch. 3] and ξ1/z corresponds to the symbol of “ 1

z times differentiation”.

Proposition 4.5. For z > 0 the tuple Tz is a semifinite spectral triple, /Dz has spectrum σ( /Dz) =
R and the triple satisfies

τz
(
e−λ /D2

z
)
= πz/2λ−z/2, for all λ > 0. (4.4)

Proof. It is clear that L2(R) is a Hilbert space. The type I von Neumann algebra L∞(R) acts
on L2(R) by left-multiplication, because

( ∫
R |fh|2 dx

)1/2 ≤ ∥f∥∞
( ∫

R |h|2 dx
)1/2

.
The trace τz is faithful because if f ≥ 0, then τz(f) =

∫
R f dx, which is 0 if and only if f = 0

almost everywhere. Thus τz(f) = 0 if and only if f = 0 in L∞(R). From the monotone
convergence theorem it is immediate that τz is normal. τz is semifinite because τz(1) = ∞ and
for every nonzero f ∈ L∞(R), f ≥ 0 there exists a g ∈ L∞(R) with 0 ≤ g ≤ f and

∫
R g dx <∞.
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4.1. The definition

Since Az = C it is obvious that Az ⊂ Nz and [ /Dz, a] = 0, which thus extends to a bounded
operator on Hz.
We will now show that ( /Dz,Dom( /Dz)) is a self-adjoint operator. Since fz is real-valued /Dz is
a symmetric operator, thus Dom( /Dz) ⊂ Dom( /D

∗
z). It remains to show the converse inclusion.

Suppose g ∈ L2(R) but g /∈ Dom( /Dz). Then
∫
R |gfz|2 dx = ∞. Observe that fz is a continuous

function, so fz is bounded on compact sets. In particular for each n ∈ N there exists a constant
Cn such that |f |[−n,n]| ≤ Cn. Put gn := gfz1[−n,n]. Then |gn(x)| ≤ Cn|g(x)| and∫

R
|fzgn|2 dx =

∫
R
|fzgfz1[−n,n]|2 dx ≤ C4

n

∫
R
|g|2 dx <∞.

So gn ∈ Dom( /Dz). But

⟨Dzgn, g⟩ =
∫
R
fzgfz1[−n,n]ḡ dx =

∫ n

−n

|fzg|2 dx→ ∞ as n→ ∞.

Thus g /∈ Dom( /D
∗
z) and /Dz is self-adjoint.

Since /Dz is self-adjoint, σ( /Dz) ⊂ R. We will show that the converse inclusion also holds. Observe
that for z > 0 the function fz : R → R is continuous, bijective and strictly increasing. Since
( /Dz − λ)h = (fz − λ)h, the only possible candidate for ( /Dz − λ)−1 is given by h 7→ (fz − λ)−1h.
But if λ ∈ R the function fz−λ has a zero. By continuity of fz the function (fz−λ)−1 is therefore
not essentially bounded. Hence h 7→ (fz − λ)−1h is an unbounded map and thus /Dz − λ is not
invertible, which implies that σ( /Dz) = R.
Since /Dz is self-adjoint we can give a spectral decomposition of /Dz. From this decomposition we
can easily show that /Dz is affiliated to N and that the operator is τ -discrete (i.e. the resolvent
is compact relative to N ). Observe that the inverse of fz is given by

f−1
z (x) = sgn(x)

( |x|
ρ(z)

)z
.

Define

E : B(R) → B(L2(R)), E(A)h := 1{f−1
z (A)}h.

It is clear that E is a spectral measure. For an interval I = [fz(a), fz(b)] we have∫ fz(b)

fz(a)

fz(a) dE = fz(a)E([fz(a), fz(b)]) = fz(a)1[a,b].

If we approximate the identity map id : R → R and use the above identity, we see that /Dz =∫
x dE, thus E is the spectral measure for /Dz. For each A ∈ B(R) it holds that E(A) ∈ L∞(R) =

Nz, thus by Lemma 1.75 /Dz is affiliated with Nz. Also

τ(E([−λ, λ])) = 1

2

∫
R
1f−1

z ([−λ,λ]) dx =
1

2

∫ f−1
z (λ)

f−1
z (−λ)

1 dx <∞,

hence by Theorem 1.90, /Dz is compact relative to Nz. Thus Sz is a semifinite spectral triple.
We will now show that Sz satisfies the property (4.4). For λ > 0 we have

τ(e−λ /D2
z ) =

1

2

∫
R
e−λρ(z)2|x|2/z dx =

∫ ∞

0

e−λρ(z)2x2/z

dx

Use the substitution u = λρ(z)2|x|2/z. Then

x = ρ(z)−z
(u
λ

)z/2
,

dx

du
= ρ(z)−z z

2
λ−z/2uz/2−1.
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4. SPACES OF REAL DIMENSION

So we obtain

τ(e−λ /D2
z ) = ρ(z)−zλ−z/2 z

2

∫ ∞

0

e−uuz/2−1 du

= ρ(z)−zλ−z/2Γ(z/2 + 1)

= πz/2λ−z/2.

In the last line we inserted the defintion of ρ(z). Hence (4.4) holds. �

Of course the triple constructed by Connes and Marcolli satisfies the requirement (4.1).

Lemma 4.6. The semifinite spectral triple (4.2) fulfills equation (4.1) when Tr is replaced by
TrN and /Dz by D̃z.

Proof. The computation of this is basically the same as in the proof of Proposition 4.5. The
only difference is that TrN is not explicitly given as an integral. But Theorem 1.83 resolves this
difficulty, because the trace of Z is given as an integral.
Let µ denote the Lebesgue measure on R. The self-adjoint operator Z has a spectral measure
E given by µτ,E(A) = TrN (E(A)) = 1

2µ(A), for all A ∈ B(R). Now suppose z ∈ [0,∞) and

λ ∈ (0,∞). Then the function f : R → R, f(x) = e−λρ(z)|x|2/z is continuous and bounded by 1.
So we can apply Theorem 1.83. Then

TrN (e−λD̃2
z ) =

∫
R
e−λρ(z)2|x|2/z dµτ,E(x) =

1

2

∫
R
e−λρ(z)2|x|2/z dµ(x).

Now the calculation is the same as in Proposition 4.5. �

Remark 4.7. For z /∈ R the operator /Dz is not self-adjoint. This is easy to see because for
z /∈ R the Lebesgue measure of {x : fz(x) /∈ R} is strictly positive. Hence it does not hold that
fz = fz almost everywhere. But then /D

∗
z ̸= /Dz. So for z /∈ R the tuple Tz is not a spectral triple.

This is the reason why for example e−λ /D2
z is not in the domain of the trace τz, see Lemma 4.9.

In fact, as the next result shows, we cannot expect that any self-adjoint operator satisfies (4.1)
for z ∈ C \ (0,∞).

Proposition 4.8. Suppose N ⊂ B(H) is a semifinite von Neumann algebra, with a faithful
semifinite normal trace τ . Suppose z /∈ (0,∞). If D is a self-adjoint (unbounded) operator on H
affiliated with N , then there exists a λ > 0 such that τ

(
e−λD2) ̸= πz/2λ−z/2.

Proof. Let N , τ , z and D be as in the assumptions of the proposition. Since D is affiliated
with N it holds that

e−λD2

∈ {D}′′ ⊂ N .

Thus τ
(
e−λD2)

is well-defined. Let λ > 0 and consider the function

f : C → C, f(w) := e−λw2

.

Then f(R) ⊂ R, in particular f |σ(D) = f̄ |σ(D). By the functional calculus(
e−λD2)∗

= f(D)∗ = f̄(D) = f(D) = e−λD2

,

thus e−λD2

is self-adjoint. Since λ > 0 and f(R) ⊂ [0, 1], the spectral radius r(e−λD2

) ≤ 1,

which by Corollary 1.29 and self-adjointness imply that e−λD2

is a bounded operator. Since f is
positive, the operator e−λD2

is positive. Therefore it holds that τ
(
e−λD2) ∈ [0,∞] for all λ > 0.

Now suppose z /∈ R, then it is impossible that

πz/2λ−z/2 =
(π
λ

)z/2
∈ [0,∞] for all λ > 0.
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4.2. Dimension spectrum

This proves the statement for z ∈ C \ R. If we have z ∈ (−∞, 0], let t > s > 0. Then clearly

t−z/2 ≥ s−z/2. (4.5)

But also −tD2 < −sD2 and thus e−tD2

< e−sD2

. This gives

πz/2t−z/2 = τ
(
e−tD2)

< τ
(
e−sD2)

= πz/2s−z/2,

which is a contradiction with (4.5). �

In the proof of [9, Prop. 1.240], it is stated (but not proved) that for z ∈ C, Im(z) ̸= 0 the

operator e−λD̃2
z is not in the domain of the trace. We will prove this statement in the next

lemma for the operator /Dz.

Lemma 4.9. Let z ∈ {w ∈ C : Im(w) ̸= 0, Re(w) > 0}, then the operator e−λ /D2
z is not in the

domain of the trace τ .

Proof. Suppose z ∈ {w ∈ C : Im(w) ̸= 0, Re(w) > 0}. We will show that the map g : [0,∞) →
C, g(s) = e−λρ(z)2|s|2/z is not essentially bounded with respect to the Lebesgue measure on [0,∞).

This is sufficient, because in that case Lemma 1.82 implies that Dom(e−λ /D2
z ) = Dom(

∫
g dE) (

H. So e−λ /D2
z is unbounded and hence not in the domain of the trace.

Observe Re( 2z ) =
1
z + 1

z̄ = z+z̄
zz̄ = 2Re(z)

|z|2 . Put w := 2
z . Then the computation shows Re(w) > 0.

So etRe(w) ↑ ∞, as t → ∞. Let c := −λρ(z)2. Since Im(z) ̸= 0 for all t ∈ [0,∞), there exists
t′ > t such that et

′i Im(w)c = |c|. Now for each n ∈ N select a tn ∈ [0,∞), such that tn > tn−1,
tn > n and etni Im(w)c = |c| > 0. Then we have

lim
n→∞

Re(etnwc) = lim
n→∞

Re(etn Re(w)etni Im(w)c) = lim
n→∞

Re(etn Re(w)|c|) = ∞.

So the map h : [0,∞) → R, h(s) = Re(−λρ(z)2s2/z) = Re(−λρ(z)2elog(s)2/z) is not bounded.
But then also the function g is unbounded.
Clearly g is continuous. So if Re(g(sn)) > n, then there exists a neighborhood U of sn such
that Re(g(x)) > n− 1 for all x ∈ U . But this implies that Re(g) is not essentially bounded and
therefore g is not essentially bounded. �

A last observation about this spectral triple.

Remark 4.10. The map R → R, x 7→ −x induces an operator on the triple Tz by

γz : L2(R) → L2(R), γz(f)(x) := f(−x).

Since Az = C, the operator γz clearly commutes with A. Also it holds that

γz(Dzf)(x) = Dz(−x)f(−x) = ρ(z) sgn(−x)| − x|1/zf(−x) = −Dz(γzf)(x).

Clearly γz is bounded and that f ∈ Dom(Dz) if and only if γzf ∈ Dom(Dz). But since γz is not
given by a function, it is no element of Nz = L∞(R). So γz is not a grading as in Definition 3.1,
but it is very similar.

4.2 Dimension spectrum

In the rest of this thesis we will work with the semifinite spectral triple Tz. All the results we
obtain also hold for the spectral triple (4.2), because every time we can use the same reduction
of the trace TrN to the Lebesgue integral using Theorem 1.83 as we did in the proof of Lemma
4.6.
In this section we will establish some facts about the dimension spectrum of the triple Tz. We
will calculate in various ways the dimension spectrum because as we will see some problems occur.
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4. SPACES OF REAL DIMENSION

Remark 4.11. Connes and Marcolli use |D| in the definition of the dimension spectrum. Since

A = C they try to compute τz
(
| /Dz|−s

)
= τz

(
( /D

2
z)

−s/2
)
. Because this yields ∞ for all values

of s they make an infrared cutoff. The reason behind this problem is that fz(0) = 0 and fz is
continuous, therefore 0 ∈ σ( /Dz) and thus /Dz is not invertible. We will start by computing the
trace without a cutoff and later we will show how it works with a cutoff as Connes and Marcolli
do. Since

((fz(x))
2)−s/2 = (ρ(z)2)−s/2(sgn(x)2)−s/2((|x|1/z)2)−s/2 = ρ(z)−s|x|−s/z,

the operator ( /D
2
z)

−s/2 is given by multiplication with the function x 7→ ρ(z)−s|x|−s/z. So

τz(( /D
2
z)

−s/2) =
1

2

∫
R
ρ(z)−s|y|−s/z dy

= ρ(z)−s

∫ ∞

0

y−s/z dy

= ρ(z)−s

[
1

−s/z + 1
y−s/z+1

]y=∞

y=0

= ρ(z)−s
(

lim
y→∞

(
y(−s+z)/z z

−s+ z

)
− lim

y→0

(
y(−s+z)/z z

−s+ z

))
. (4.6)

Then for Re( sz ) > 1, we have Re(−s+z
z ) < 0. Therefore

lim
y→∞

y(−s+z)/z = 0 lim
y→0

y(−s+z)/z = ∞

and (4.6) does not converge. If Re( sz ) < 1, then Re(−s+z
z ) > 0. Thus

lim
y→∞

y(−s+z)/z = ∞ lim
y→0

y(−s+z)/z = 0

and (4.6) does not converge either. In the last case that Re( sz ) = 1, there exists c ∈ R such

that −s+z
z = ci. If c is non-zero, then limy→∞ y(−s+z)/z = limy→∞ yci which does not exist, and

limy→0 y
ci = 0, thus (4.6) again does not exist. The only possibility remaining is that s

z = 1.
But then

τz(( /D
2
z)

−s/2) = ρ(z)−s

∫ ∞

0

y−1 dy

and this integral also does not converge either.

To fix this Connes and Marcolli impose a infrared cutoff, that is they compute the integral on
the subset (−∞, 1] ∪ [1,∞). Then for Re( sz ) > 1 we have

ρ(z)−s

∫ ∞

1

y−s/z dy = ρ(z)−s
(

lim
y→∞

(
y(−s+z)/z z

−s+ z

)
− 1(−s+z)/z z

−s+ z

)
(4.7)

= 0− ρ(z)−s z

−s+ z

= ρ(z)−s z

s− z
,

The right hand side indeed only has a pole for s = z. Hence the meromorphic continuation of
the left hand side has only a simple pole at s = z.
The function h : R → [0, 1] defined by

h(x) :=

{
0 if x ≤ 0

e−1/x if x > 0
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is a smooth and strictly increasing function. Therefore the function g : [0,∞) → [0, 1] given by

g(x) :=

{
0 if x ≥ 1

2

e−1/(x− 1
2 ) if x < 1

2

,

is smooth and strictly decreasing. The interval [0, 12 ] is compact, g′ is continuous, so g′ is bounded
on [0, 12 ]. Let c > 0 be such that cg′(x) ≤ − 1

2 for all x ∈ [0, 12 ]. Now we define f : [0,∞) → [0,∞),
f(x) := x+ cg(x). Then

• f(x) = x if x ≥ 1
2

• f ′(x) ≥ 1
2 for all x ∈ [0,∞), thus f is strictly increasing

• f(0) = 0 + cg(0) > 0.

Define an operator Ez by Ezh(x) := ρ(z) sgn(x)f(|x|)1/zh(x), it is a smooth modification of /Dz

near x = 0. We have

∣∣τ(e−λ /D2
z
)
− τ
(
e−λE2

z
)∣∣ = 1

2

∣∣∣ ∫
R
e−λρ(z)2|y|2/z − e−λρ(z)2f(|y|)2/z dy

∣∣∣
=
∣∣∣ ∫ 1

2

0

e−λρ(z)2|y|2/z − e−λρ(z)2f(|y|)2/z dy
∣∣∣

≤
∫ 1

2

0

∣∣e−λρ(z)2|y|2/z − 1
∣∣+ ∣∣1− e−λρ(z)2f(|y|)2/z ∣∣ dy. (4.8)

The function s 7→ es is smooth, in particular differentiable. And e0 = 1. Thus
∣∣ es−1

s

∣∣ is bounded
for bounded |s|. This implies that there exists a constant C such that |eu − 1| < Cmax{a, b} for
all u ∈ [a, b]. Since f is strictly increasing, λ and ρ(z) are some constants, | − λρ(z)2|y|2/z| and
| − λρ(z)2|f(y)|2/z| are bounded for y ∈ [0, 12 ], there exists a constant C such that by (4.8) we
have for

R(λ, z) := τ(e−λ /D2
z )− τ(e−λE2

z )

that

|R(λ, z)| ≤ C
∣∣∣− λρ(z)2

∣∣1
2

∣∣2/z∣∣∣+ C
∣∣∣− λρ(z)2f(

∣∣1
2

∣∣)2/z∣∣∣ ≤ 2C|λρ(z)2|
∣∣∣1
2

2/z∣∣∣.
Since z 7→ ez is holomorphic, λ 7→ R(λ, z) is holomorphic on z ∈ {z : Re(z) > 0, |z| < 1}
|λ| < 2Re(z). This implies that λ 7→ τ(e−λ /D2

z ) has a pole at λ0 if and only if λ 7→ τ(e−λE2
z ) has a

pole at λ0. One can check that therefore the substitution /Dz ↔ Ez does not influence the Poles
in proposition 5.11. Also as Proposition 4.12 shows that the dimension spectrum is unaltered
by this substitution, so for this use infrared cut-off is allowed. We will not go in further details
because we will choose a different approach.

The operator Ez is very closely related to /Dz, therefore we expect that the meromorphic con-
tinuation of s 7→ τz(|Ez|−s) has the same poles as the meromorphic continuation of (4.7), the
cutoff of τz(| /Dz|−s).

Proposition 4.12. The meromorphic continuation of s 7→ τz(|Ez|−s) is holomorphic on C\{z}
and has a simple pole at s = z with residue

ress=z τz(|Ez|−s) = 2
πz/2

Γ( z2 )
.
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Proof. From the construction in the above remark 4.11, we have that

τ
(
|Ez|−s

)
=

∫ ∞

0

ρ(z)−sf(x)−s/z dx

= ρ(z)−s

∫ 1
2

0

f(x)−s/z dx+ ρ(z)−s

∫ ∞

1
2

x−s/z dx

= ρ(z)−s

∫ 1
2

0

f(x)−s/z dx+ ρ(z)−s(−s
z
+ 1)−1

[
x−s/z+1

]x=∞
x= 1

2

= ρ(z)−s

∫ 1
2

0

f(x)−s/z dx+ ρ(z)−s(−s
z
+ 1)−1

(1
2

)−s/z+1

Observe that f is continuous and non-zero, so the integral
∫ 1

2

0
f(x)−s/z dx exists for all s and

therefore does not create any singularities. The second term ρ(z)−s(− s
z + 1)−1

(
1
2

)−s/z+1
has

preceisely a simple pole at s = z.
Since (− s

z + 1)−1 = z
z−s ,

ress=z τz(|Ez|−s) = ρ(z)zz
(1
2

)−z/z+1

= πz/2z
(
Γ
(z
2
+ 1
))−1

= πz/2z
2

z

(
Γ
(z
2

))−1

= 2
πz/2

Γ( z2 )
.

�

In Theorem 4.14 we will compute the dimension spectrum of /Dz. This requires the machinery
of hypergeometric functions. We state the properties that will be used.

Notation 4.13. We will use the shorthand notation F (a, b; c; z) = 2F1(a, b; c; z) to denote the
hypergeometric function. The definition and properties of this function can be found in several
books, for example in [24, Ch. 15] or [32, Ch. 5]. We mention the properties that we are going
to use

F (0, b; c; z) = F (a, 0; c; z) = 1 for all a, b, c, z; (4.9)

F (a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−aF (a, 1− c+ a; 1− b+ a; 1/z)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−bF (b, 1− c+ b; 1− a+ b; 1/z). (4.10)

Equality (4.10) holds if the following requirements are satisfied | arg(−z)| < π and 1− b+ a, 1−
a+ b /∈ {0,−1,−2, . . .}.
The last property we will use is that the indefinite integral of f(x) = (1 + xp)q is given by

x 7→ xF
(1
p
,−q; 1 + 1

p
;−xp

)
. (4.11)

This property will need a proof.

Proof. By the binomial theorem we have

(1 + xp)q =
∞∑
k=0

(
q

k

)
xpk.

Here
(
q
k

)
for q ∈ C is defined by

(
q
k

)
:= (q)k

k! , with (q)k := q(q−1) · · · (q−k+1). Taking primitives
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on both sides yields∫
(1 + xp)q =

∞∑
k=0

(
q

k

)
1

pk + 1
xpk+1

= x

∞∑
k=0

q(q − 1) · · · (q − k + 1)

k!(pk + 1)
(xp)k

= x
∞∑
k=0

1
p (−q)(−q + 1) · · · (−q + k − 1)

(k + 1
p )k!

(−xp)k

= x
∞∑
k=0

1
p (

1
p + 1) · · · ( 1p + k − 1)(−q)(−q + 1) · · · (−q + k − 1)

( 1p + 1) · · · ( 1p + k − 1)( 1p + k)k!
(−xp)k

= xF
(1
p
,−q; 1 + 1

p
;−xp

)
,

as desired. �

Theorem 4.14. Assume z ∈ [0,∞). The triple Tz is z+-summable, regular and the dimension

spectrum is simple and consists of {z}. The residue of s 7→ τz((1 + /D
2
z)

s/2) at s = z is πz/2

Γ(z/2) .

Note that we have a factor 2 difference between the residue at s = z of s 7→ τz((1 + /D
2
z)

−s/2)
and s 7→ τz(|Ez|−s).

Proof. Since Az = C, the commutators [ /Dz, a] = [| /Dz|, a] = 0 for all a ∈ Az, thus it is
obvious that the triple is regular. For the dimension spectrum we have to compute the poles of

s 7→ τz(b(1 + /D
2
z)

−s/2). We can take b = 1, since Az = C. Thus we consider the meromorphic
function

s 7→ τz(1 + /D
2
z)

−s/2 =
1

2

∫
R

(
1 + (ρ(z) sgn(x)|x|1/z)2

)−s/2

=

∫ ∞

0

(1 + ρ(z)2x2/z)−s/2 dx

= ρ(z)−z

∫ ∞

0

(1 + y2/z)−s/2 dy.

The last equality follows from the substition y = ρ(z)zx. Note that the constant ρ(z)z does not
affect the location of the poles. By Equation (4.11) we have∫ ∞

0

(1 + x2/z)−s/2 dx = lim
x→∞

xF
(z
2
,
s

2
; 1 +

z

2
;−x2/z

)
.

Since 2/z ∈ [0,∞), for every x > 0 we have −x2/z < 0. So | arg(−−x2/z)| = | arg(x2/z)| = 0 < π.
Therefore if 1− z/2 + s/2 /∈ {0,−1,−2, . . .}, i.e. if s /∈ {−2 + z,−4 + z, . . .} we can apply (4.10)
and (4.9) to obtain

lim
x→∞

xF
(z
2
,
s

2
; 1 +

z

2
;−x2/z

)
(4.12)

= lim
x→∞

(
x
Γ(1 + z

2 )Γ(
s
2 − z

2 )

Γ( s2 )Γ(1)
(x2/z)−z/2F

(z
2
, 0; 1− s

2
+
z

2
; (−x2/z)−1

)
.

+ x
Γ(1 + z

2 )Γ(
z
2 − s

2 )

Γ( z2 )Γ(1 +
z
2 − s

2 )
(x2/z)−s/2F

(s
2
,−z

2
+
s

2
; 1− z

2
+
s

2
; (−x2/z)−1

))
=

Γ(1 + z
2 )Γ(

s
2 − z

2 )

Γ( s2 )

+ lim
x→∞

Γ(1 + z
2 )Γ(

z
2 − s

2 )

Γ( z2 )Γ(1 +
z
2 − s

2 )
x−s/z+1 F

(s
2
,−z

2
+
s

2
; 1− z

2
+
s

2
;−x−2/z

)
. (4.13)
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Now suppose s ∈ C such that Re(s) > z, then Re(−s/z + 1) < 0. On the disk {z ∈ C : |z| < 1}
the function z 7→ F (a, b; c; z) is holomorphic. Since F (a, b; c; 0) = 1 we have

lim
x→∞

x−s/z+1 F
(s
2
,−z

2
+
s

2
; 1− z

2
+
s

2
;−x−2/z

)
= 0. (4.14)

Inserting (4.14) in (4.13) gives for Re(s) > z

lim
x→∞

xF
(z
2
,
s

2
; 1 +

z

2
;−x2/z

)
=

Γ(1 + z
2 )Γ(

s
2 − z

2 )

Γ( s2 )
.

By analytic continuation this holds for any s ∈ C \ {−2 + z,−4 + z, . . .}. Recall that ρ(z) =
π−1/2(Γ(1 + z

2 ))
1/z, so

τz
(
(1 + /D

2
z)

−s/2
)
=

Γ( s2 − z
2 )

Γ( s2 )
πz/2, for s ∈ C \ {−2 + z,−4 + z, . . .}.

Observe that the function s 7→ Γ( s2 − z
2 ) has simple poles for s

2 − z
2 ∈ {. . . ,−2,−1, 0}. Note

that w 7→
(
Γ(w2 )

)−1
is holomorphic at w = s. Thus s 7→ τz(1 + /D

2
z)

−s/2 has a simple pole at

s = z. For m ∈ N the residue of the gamma function are given by resw=−m Γ(w) = (−1)m

m! . Thus
it follows that

ress=z τz
(
(1 + /D

2
z)

−s/2
)
= ress=z

Γ( s2 − z
2 )

Γ( s2 )
πz/2 =

πz/2

Γ( z2 )
.

For every pole s we have s ≤ z. Therefore τz(1 + /D
2
z)

−s/2 < ∞ for all s > z, hence the triple is
z+-summable.
It remains to show that z is the only pole. Recall that the transformation (4.13) was only valid
for 1 − z/2 + s/2 /∈ {0,−1,−2, . . .}. We have to deal with these points in a different way. Fix
x0 ∈ (1,∞) and s0 ∈ {. . . ,−4 + z,−2 + z}. Say − z

2 + s0
2 = −m. Let s be close to s0, then

F
(s
2
,− z

2
+
s

2
; 1− z

2
+
s

2
;−x2/z0

)
=

∞∑
j=0

( s2 )j(−
z
2 + s

2 )(−
z
2 + s

2 + 1) · · · (− z
2 + s

2 + j − 1)

(− z
2 + s

2 + 1) · · · (− z
2 + s

2 + j − 1)(− z
2 + s

2 + j)j!
(−x−2/z

0 )j

=
∑

j∈N\{m}

( s2 )j

j!

− z
2 + s

2

− z
2 + s

2 − j
(−xz/20 )j +

( s2 )m(− z
2 + s

2 )

(− z
2 + s

2 +m)m!
(−x−2/z

0 )m. (4.15)

We will now consider the limit s → s0. To prove that (4.12) does not have a pole at s = s0 we
compute (still for x0 fixed) the residue of (4.12) and show that it equals 0. Since we singled out
m in the infinite sum, near s0 the function

s 7→
∑

j∈N\{m}

( s2 )j

j!

− z
2 + s

2

− z
2 + s

2 − j
(−x−2/z

0 )j

is holomorphic. To conclude that (4.13) has a removable singularity at s0 we compute the
following residue

ress=s0

Γ(1 + z
2 )Γ(

s
2 − z

2 )

Γ( s2 )
+

Γ(1 + z
2 )Γ(

z
2 − s

2 )

Γ( z2 )Γ(1 +
z
2 − s

2 )
x
−s/z+1
0

( s2 )m(− z
2 + s

2 )

(− z
2 + s

2 +m)m!
(−x−2/z

0 )m

=
Γ(1 + z

2 )

Γ( s02 )

(−1)m

m!
+

Γ(1 + z
2 )Γ(m)

Γ( z2 )Γ(m+ 1)
x
−s0/z+1
0

( s02 )m(−m)

m!
(−1)m(x

−2/z
0 )m

=
Γ(1 + z

2 )

Γ( s02 )

(−1)m

m!
−

Γ(1 + z
2 )

Γ( z2 )

(m− 1)!m

m!

1

m!

Γ( s02 +m)

Γ( s02 )
(−1)m

=
Γ(1 + z

2 )

Γ( s02 )

(−1)m

m!
−

Γ(1 + z
2 )

Γ( z2 )

(−1)m

m!

Γ( z2 )

Γ( s02 )

= 0.
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Indeed, this residue is independent of x0. So the dimension spectrum of /Dz consists of z = s. �

It is interesting to compare the dimension spectrum of /Dz and Ez, the latter operator is the
operator introduced in Remark 4.11. With the previous theorem it has become easy to compute
the poles of s 7→ τz((1 + E2

z )
−s/2).

Proposition 4.15. Suppose z ∈ (0,∞), then the dimension spectrum of Ez equals the dimension
spectrum of /Dz.

Proof. From the definition of the trace τz and the operator Ez it immediately follows that

τz
(
(1 + E2

z )
−s/2

)
=

∫ ∞

0

(
1 + (ρ(z) sgn(x)f(|x|)1/z)2

)−s/2
dx

=

∫ 1/2

0

(
1 + ρ(z)2f(|x|)2/z

)−s/2
dx+

∫ ∞

1/2

(
1 + ρ(z)2x2/z

)−s/2
dx.

It follows from the proof of Theorem 4.14 that it suffices to show that the functions

s 7→
∫ 1/2

0

(
1 + ρ(z)2x2/z

)−s/2
dx, s 7→

∫ 1/2

0

(
1 + ρ(z)2f(|x|)2/z

)−s/2
dx

are holomorphic on C. We start with the first one.∫ 1/2

0

(
1+ρ(z)2x2/z

)−s/2
dx = ρ(z)−z

∫ 1/2

0

(1+x2/z)−s/2 dx = ρ(z)−z 1

2
F
(z
2
,
s

2
; 1+

z

2
;−
(1
2

)2/z)
.

Note −(1/2)2/z ∈ (−∞, 0), thus [24, §15.2] implies that

s 7→ ρ(z)−z 1

2
F
(z
2
,
s

2
; 1 +

z

2
;−
(1
2

)2/z)
is holomorphic on C. Now the second one. The function f is smooth, strictly increasing, f(0) > 0
and f(1/2) = 1/2. Thus there exist δ,D > 0 such that δ < 1 + ρ(z)2f(x)2/z < D for all
x ∈ [0, 1/2]. But from these bounds it is clear that for each s ∈ C the function

[0, 1/2] → C, x 7→
(
1 + ρ(z)2f(|x|)2/z

)−s/2

is bounded. Thus

s 7→
∫ 1/2

0

(
1 + ρ(z)2f(|x|)2/z

)−s/2
dx

does not have any poles in C. �

In Theorem 3.18 it was proved that the product of two regular semifinite spectral triples is again
regular. Since Az = C and thus Tz is regular, the following corollary is immediate.

Corollary 4.16. Suppose S is an even regular semifinite spectral triple. Then the product triple
S × Tz is also regular.

Since the tensor product of a spectral triple with Sz is regular, one can compute its dimension
spectrum. We expect that the whole spectrum shifts over the vector z, but we cannot prove
this fact in its full generality. However we can prove the result for the largest pole. We will use
Fubini’s theorem for traces cf. Proposition 1.79.

Proposition 4.17. Suppose S := (A,H, D;N , τ, γ) is a finitely summable regular semifinite
spectral triple with 1 ∈ A. Denote Sz := (A, H̃, Dz; Ñ , τ ′) := S×Tz. Suppose w ∈ C is an element
of the dimension spectrum of S such that Re(w) > 0 and for all w′ in the dimension spectrum
of S we have Re(w′) ≤ Re(w). Then if 0 < z < Re(w), the function s 7→ τ ′((D2

z + 1)−s/2) has a
pole for s = w + z and all other poles w′′ of the zeta functions ζb satisfy Re(w′′) ≤ Re(w) + z.
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Proof. The main idea of the proof of this lemma is to write the operator (Dz + 1)−s/2 as an
elementary tensor and then use the factorisation of the trace τ ′. This can be done by writing
this operator as an integral of exponential functions. Then we will need the previous Lemma
1.79 to interchange the integral and the trace.
We start with the identity∫ ∞

0

e−txta−1 dt = x−aΓ(a) Re(a) > 0.

In the following calculation we will interchange two times an integral with a trace. We will justify
those manipulations later.

ζ1(s) = τ ′((D2
z + 1)−s/2)

= τ ′
( 1

Γ(s/2)

∫ ∞

0

e−t(1+D2⊗1+1⊗ /D2
z)ts/2−1 dt

)
=

1

Γ(s/2)

∫ ∞

0

τ ′
(
e−t(1+D2) ⊗ e−t /D2

z
)
ts/2−1 dt (4.16)

=
1

Γ(s/2)

∫ ∞

0

τ
(
e−t(1+D2)

)
τz
(
e−t /D2

z
)
ts/2−1 dt

=
1

Γ(s/2)

∫ ∞

0

τ
(
e−t(1+D2)

)
πz/2t−z/2ts/2−1 dt

= πz/2 1

Γ(s/2)
τ
(∫ ∞

0

e−t(1+D2) t(s−z)/2−1 dt
)

(4.17)

= πz/2 Γ((s− z)/2)

Γ(s/2)
τ
(
(1 +D2)−(s−z)/2

)
.

By assumption the function s 7→ τ((1 +D2)−s/2) has a pole at w, thus s 7→ τ ′(D2
z + 1)−s/2) has

a pole at s− z = w i.e. at s = w + z. Since z < Re(w), this is the largest pole of ζ1, because Γ
only has poles at the non-positive integers.
Suppose b ∈ B, then the following estimate shows that one does not obtain any poles in the
half-plane {s ∈ C : Re(s) > Re(w) = z}.

|ζb(s)| = |τz
(
b(D2

z + 1)−s/2
)
| ≤ τ ′(|b(D2

z + 1)−s/2|) ≤ ∥b∥τ ′(|(D2
z + 1)−s/2|),

which converges for s with Re(s) > Re(w) + z.
It remains to show why one can interchange the integral and trace in (4.16) and (4.17) we
use Proposition 1.79. Suppose E is an unbounded self-adjoint operator on K. By analytic
continuation it is sufficient to prove the switch for s ∈ R with s > 2. Fix such an s. Consider

f : [0,∞) → B(K), t 7→ 1

Γ(s)
e−t(1+E2)ts/2−1.

We check the conditions of Proposition 1.79. We know that if a, b are positive, then the map
[0,∞) → R, t 7→ e−tatb is uniformly bounded. Using the functional calculus shows that f(E) is
norm-bounded.
To prove the second requirement note that f(·)h ! f(·)∗h corresponds to s ! s. Thus it is
sufficient to show that f(·)h is measurable. We will prove continuity of f(·)h.

∥f(t0 + t)h− f(t0)h∥ ≤ 1

Γ(s)

∥∥e(−t0+t)(1+E2)(t0 + t)s/2−1 − e−t0(1+E2)(t0 + t)s/2−1
∥∥ ∥h∥

≤ 1

Γ(s)

(∥∥e−t0(1+E2)
∥∥ ∥∥e−t(1+E2) − 1

∥∥ |t0 + t|s/2−1 +
∥∥e−t0(1+E2)

∥∥ ∣∣(t0 + t)s/2−1 − t
s/2−1
0

∣∣)∥h∥
which tends to 0 as t→ 0.
And the last requirement

ρ(|f(t)|) = 1

Γ(s)
ρ
(
e−t(1+E2)

)∣∣ts/2−1
∣∣. (4.18)
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If we now let E = Dz and ρ = τ ′ then it is obvious that as a function of t, (4.18) is uniformly

bounded on [0,∞), in particular on the interval [0, n]. Thus using the fact that [D2⊗1, 1⊗ /D
2
z] = 0

and Proposition 1.79 we obtain that for all n > 0:

τ ′
( 1

Γ(s)

∫ n

0

e−t(1+D2⊗1+1⊗ /D2
z)ts/2−1 dt

)
=

1

Γ(s)

∫ n

0

τ ′
(
e−t(1+D2) ⊗ e−t /D2

z
)
ts/2−1 dt.

Taking the limit n→ ∞ gives the desired Equality (4.16). For (4.17), we can do the same trick,
but we have to replace E by D and ρ by τ . �

4.3 Minkowski dimension of the spectrum

At the end of the Paragraph 1.19.2, Connes and Marcolli pose the question to give an upperbound
on the Minkowski dimension of the spectrum of the operator /Dz. The answer appears to be 1.
Before we will give the proof of this result we will start with the definitions.

Definition 4.18. Suppose E ⊂ Rn is a bounded subset. We denote by NE(ε) the number of
boxes with sides of length ε needed to cover the set E. If no confusion will arise, we will omit
the subscript E . We define

dimM (E) := lim
ε↓0

log(N(ε))

log(1/ε)
.

If this limit exists, the quantity dimM (E) is called the Minkowski dimension of E. We can
also define the upper Minkowski dimension and lower Minkowski dimension. These are given by
respectively

dimM up(E) := lim sup
ε↓0

log(N(ε))

log(1/ε)
and dimM low(E) := lim inf

ε↓0

log(N(ε))

log(1/ε)
.

It is immediate from this definition that dimM up(E) ≤ dimM low(E). Furthermore we have
equality if and only if dimM (E) exists, in which case dimM up(E) = dimM low(E) = dimM (E).
Also if F ⊂ E, and for both sets the Minkowski dimensions exist, then dimM (F ) ≤ dimM (E).
A similar statement holds for dimM up and dimM low.

Example 4.19. The Minkowski dimension of E := [a, b] is 1. Namely N(ε) = ⌈ b−a
ε ⌉. Thus

b−a
ε ≤ N(ε) < b−a

ε + 1. Note

lim
ε↓0

log( b−a
ε )

log( 1ε )
= lim

ε↓0

log(b− a) + log( 1ε )

log( 1ε )
= 1.

And also

lim
ε↓0

log( b−a
ε + 1)

log( 1ε )
= lim

ε↓0

log(b− a+ ε) + log( 1ε )

log( 1ε )
= 1.

Thus

1 ≤ lim
ε↓0

log(N(ε))

log( 1ε )
≤ 1.

Note that this result is independent of a and b.

If a set E ⊂ Rn is unbounded, the number of boxes NE(ε) is infinite and the limit limε↓0
log(N(ε))
log(1/ε)

will also be infinite. But this is not what we want, because we expect that Rn has Minkowski
dimension n. This can be fixed in the following way.

Definition 4.20. Let E ⊂ Rn be a subset (not necessarily bounded). We define

dimM up(E) := sup{dimM up(F ) : F ⊂ E, F is bounded};
dimM low(E) := sup{dimM low(F ) : F ⊂ E, F is bounded}.

If dimM up(E) = dimM low(E) we define dimM up(E) := dimM up(E).
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We cannot define dimM up(E) = sup{dimM (F ) : F ⊂ E, F is bounded}, because dimM (F ) does
not to exist for all F .

Example 4.21. We have dimM (R) = 1. Indeed, if F ⊂ R is a bounded set, then there exists
a, b ∈ R such that F ⊂ [a, b]. Which implies NF (ε) ≤ N[a,b](ε), so dimM up(F ) ≤ 1 and
dimM low(F ) ≤ 1 for any bounded F . Note that for some sets F we have equality, for example if
F is an interval. Thus dimM up(R) = 1 and dimM low(R) = 1, hence by definition dimM (R) = 1.

Remark 4.22. In [9, §1.19.2] Connes and Marcolli guess that an upperbound for the Minkowski
dimension of the spectrum of /Dz is given by 1

1/Re(z) . However this cannot be true. Because we

know that σ( /Dz) = R if z ∈ (0,∞), thus by Example 4.21 it follows that dimM (σ( /Dz)) = 1. Now
select z ∈ (0, 1), then it does not hold that dimM (σ( /Dz)) ≤ 1

1/Re(z) . It is possible to explicitly

calculate the Minkowski dimension of the spectrum of /Dz.

Theorem 4.23. If z ∈ C and Re(z) > 0, then the Minkowski dimension dimM (σ( /Dz)) = 1.
Here we consider σ( /Dz) ⊂ C ∼= R2.

To obtain an idea of what the spectrum of Dz looks like, take a look at figure 1. Since σ(Dz) =
{ρ(z) sgn(x)|x|1/z : z ∈ R} we plotted the function fz : R → C (cf. Notation 4.3) for z = 1

2 +2i.
The red curve indicates (a part) of the positive real axis, the blue curve (a part of) the negative
real axis. The spiral continues towards zero and infinity, but of course this can not be captured
in the plot.

Figure 1: Plot of the spectrum of Dz for z = 1
2 + 2i

Proof. We have to compute the dimension of the set σ( /Dz) = {ρ(z) sgn(x)|x|1/z}. If Im(z) ̸= 0,
then this is a double spiral as given in figure 1. Fix z ∈ C, Re(z) > 0. We start by computing
the Minkowski dimension of E := {xw : x ∈ [0,∞)}, where w := 1

z . Write w = a+ bi.
The idea of the proof is to calculate the length of the spiral E in the region {z ∈ C : |z| ≤ R}
for some R. Once we know the length, we can use this to estimate the number of boxes needed
to cover the spiral. And then we can calculate its Minkowski dimension. Using the Minkowski
dimension of E we can calculate the Minkowski dimension of σ( /Dz).
Notice that x 7→ |xw| is a strictly increasing function. It holds that |xw| = xa, so we have
r ≤ |xw| ≤ R if and only if r1/a ≤ x ≤ R1/a. We impose this lower bound, because near the
origin the spiral crops up. Let γ be the path

γ :
[
r1/a, R1/a

]
→ C, x 7→ xw.
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The length of γ is given by

l(γ) =

∫ R1/a

r1/a

∣∣∣ d
dx
γ(x)

∣∣∣ dx =

∫ R1/a

r1/a

∣∣wxw−1
∣∣ dx = |w|

∫ R1/a

r1/a
xa−1 dx =

|w|
a

[
xa
]x=R1/a

x=r1/a

=
|w|
a

(R− r).

We let FR := {z ∈ E : |z| ≤ R}. The number of boxes of size ε × ε needed to cover FR is at

least the diameter of {z ∈ C : |z| ≤ R} divided by ε and it is at most 1 + l(γ)
ε , where γ is the

curve γ : [ε/2, R] → C. Here the 1 comes from the box centered at 0 (because the spiral crops

up around 0) and now we can cover the rest of the spiral outside this centered box by l(γ)
ε boxes.

So we have
2R

ε
≤ NFR(ε) ≤ 1 +

l(γ)

ε
= 1 +

|w|
a

(
R− ε

2

)
ε

.

We compute the Minkowski dimension of FR. It follows from log(ab) = log(a) + log(b) and
continuity of the numerators that

lim
ε↓0

log
(
2R
ε

)
log
(
1
ε

) = lim
ε↓0

log(2R) + log
(
1
ε

)
log
(
1
ε

) = 1;

lim
ε↓0

log
(
1 +

|w|
a (R− ε

2 )

ε

)
log
(
1
ε

) = lim
ε↓0

log
(
1
ε

)
+ log

(
ε+ |w|

a (R− ε
2 )
)

log
(
1
ε

) = 1.

So the Minkowski dimension dimM (FR) = 1.
Suppose F ′ ⊂ E is a bounded set. Then there exists an R > 0 such that F ′ ⊂ FR. Therefore

dimM low(F
′) ≤ dimM up(F

′) ≤ dimM up(F ) = dimM (Fr) = 1.

Taking the supremum over all F ′ yields

dimM low(E) ≤ dimM up(E) ≤ 1.

Since for FR it holds that dimM (Fr) = 1, we obtain 1 ≤ dimM low(E). And so dimM (E) = 1.
Now it remains to show that dimM (σ( /Dz) = dimM (E). Note that σ( /Dz) = (ρ(z)E)∪ (−ρ(z)E),
where we denote cE = {cz : z ∈ E}. Now the proof immediately follows from the next lemma. �

Lemma 4.24. If E ⊂ Rn and E has Minkowski dimension λ and c ̸= 0, then cE and E ∪ −E
have Minkowski dimension λ.

Proof. It is sufficient to prove this statement for bounded sets, because the general statement
follows by taking suprema. If E is bounded, then NcE(|c|ε) = NE(ε). So

dimM (cE) = lim
ε↓0

log(NcE(ε))

log( 1ε )
= lim

δ↓0

log(NcE(|c|δ))
log( 1

|c|δ )
= lim

δ↓0

log(NE(δ))

log( 1
|c| ) + log( 1δ )

= lim
δ↓0

log(NE(δ))

log( 1δ )
· lim

δ↓0

log( 1δ )

log( 1
|c| ) + log( 1δ )

= dimM (E).

For the other assertion, we have

NE(ε) ≤ NE∪−E(ε) ≤ 2NE(ε),

now apply a similar argument. �
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5 Application to physics

In section 4 we described a set of spectral triples which can be considered as being z-dimensional.
In this section we will apply these spectral triples to describe phenomena which occur in physics.
We start with dimensional regularisation, continue with computations on so-called anomalous
graphs which we will apply to zeta function regularisation in the last subsection.

5.1 Dimensional regularisation

In quantum field theory, the integrals considered are typically of the form∫
R4

1

(k2 +m2)2
d4k. (5.1)

This specific integral corresponds to the following Feynman diagram

k

k

It represents a particle with mass m which propagates and self-interacts. Since these integrals
are divergent, ’t Hooft and Veltman [21] developed dimensional regularisation to deal with these
integrals. Their method is based on the following formula:∫

RD

e−λp2

dDp =
(π
λ

)D/2

. (5.2)

This equality is valid for D ∈ {1, 2, . . .}. For non-integer values of D this cannot be proved,
because their is no such thing as a (Lebesgue) integral in D-dimensions. But instead of proving
it, the right hand side is used as a definition for the left hand side if D /∈ {1, 2, . . .}. In this way
we obtain a method to integrate in D dimensions. We will work out an example.

Example 5.1. We will compute (5.1) in dimension 4− w for Re(w) > 0. To start, note that∫ ∞

0

e−t(p2+m2) dt =
1

p2 +m2
.

So
1

(p2 +m2)2
=

∫ ∞

0

∫ ∞

0

e−s(p2+m2)e−t(p2+m2) ds dt.

Substitute s = (1− x)λ and t = xλ, then

det

(
ds
dλ

dt
dλ

ds
dx

dt
dx

)
= det

(
1− x x
−λ λ

)
= λ(1− x) + λx = λ

and

1

(p2 +m2)2
=

∫ 1

0

∫ ∞

0

e−(1−x)λ(p2+m2)e−xλ(p2+m2)λ dλ dx

=

∫ 1

0

∫ ∞

0

e−λ(p2+m2)λ dλ dx

=

∫ ∞

0

e−λ(p2+m2)λ dλ. (5.3)

Then we obtain ∫
1

(p2 +m2)2
d4−wp =

∫ ∫ ∞

0

e−λ(p2+m2)λ dλ d4−wp.
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Now we interchange the order of integration, although we do not have a theorem of Fubini at
our disposal, we just change the order. We do this, because this is a way to give a meaning to
the integral in 4− w-dimensions. After this we insert the essential identity (5.2) to obtain∫

1

(p2 +m2)2
d4−wp =

∫ ∞

0

∫
e−λ(p2+m2)λ d4−wp dλ

=

∫ ∞

0

(∫
e−λp2

d4−wp
)
λe−λm2

dλ

=

∫ ∞

0

(π
λ

)(4−w)/2

λe−λm2

dλ

= π(4−w)/2

∫ ∞

0

( µ

m2

)−1+w/2

e−µ 1

m2
dµ

= π(4−w)/2m−w

∫ ∞

0

e−µµ−1+w/2 dµ

= π(4−w)/2m−wΓ
(w
2

)
.

The general theory can for example be found in [14, Chapter 7]. What one usually does is
introduce new variables (in our case x and λ), rewrite the integrand as an exponential function
and use (5.2).

Remark 5.2. We however do not need to use (5.2) as a definition, but using our previous
developed machinery we can explicitly compute

τ
(
e−λ /Dz

)
=
(π
λ

)z/2
and use this as a definition of an integral in z dimensions instead. So if we want to calculate an
integral in z dimensions, we have to replace the variable over which we integrate by the operator
/Dz and the integral by the trace τz. Via this method we have a genuine calculation and not just
a formal manipulation. We will illustrate this with an example, we compute again (5.1) but now
with /Dz and τz.

Example 5.3. We want to compute
∫

1
(k2+m2)2 d

zk for z ∈ (0,∞). To do this, replace k by /Dz

and
∫
· dzk by the trace τz. We have∫

1

(k2 +m2)2
dzk := τz

( 1

( /D
2
z +m2)2

)
As before use (5.3), we interchange integral and trace and finally we use (4.4) to obtain

τz

( 1

( /D
2
z +m2)2

)
= τz

(∫ ∞

0

e−λ /D2
ze−λm2

λ dλ
)

=

∫ ∞

0

τz
(
e−λ /D2

z
)
e−λm2

λ dλ

=

∫ ∞

0

(π
λ

)z/2
e−λm2

λ dλ.

Note that it is valid to interchange trace and integral, because by the definition of τz we have

τz

(∫ ∞

0

e−λ /D2
ze−λm2

λ dλ
)
=

∫ ∞

0

∫ ∞

0

e−λρ(z)2x2/z

e−λm2

λ dλ dx.

Since z > 0 it holds that e−λρ(z)2x2/z

e−λm2

λ ≥ 0 for all x, λ ∈ [0,∞). Thus by Fubini inter-
changing the integrals is allowed and therefore we can interchange trace and integral.
To finish the calculation, we can copy the end of Example 5.1. So

τz

( 1

( /D
2
z +m2)2

)
= πz/2m−zΓ(2− z/2),

78



5.2. Anomalies

which has precisely a simple pole at z = 4. Note that this expression is well defined for all z > 0
and has a meromorphic extension to z ∈ C.

5.2 Anomalies

In this section we will give another application of the the semifinite triple Tz. It can be used to
compute anomalies which are of interest in quantum field theory. This computation has been
performed in [9, §1.19.4], we will provide details. For physicists these anomalies are interesting
on their own, but we will use these anomalies in the next section on zeta function regularisation.
More information about quantum field theory can be found in a lot of books, a good book for
mathematicians is [14].

Assume we have a space given by a spectral triple (A,H, D). As described in Remark 2.36 we
can assume that the Dirac operator of a spectral triple is invertible. For use in this subsection
fix a regular, finitely summable, even spectral triple S := (A,H, D; γ) where D is an invertible
Dirac operator. We will consider the tensor product of the triple S with the semifinite triple Tz.
Denote as before

Sz := S × Tz =
(
A⊗ C,H⊗ L2(R), D ⊗ 1 + γ ⊗ /Dz;B(H)⊗ L∞(R),Tr⊗τz

)
for the product of the spectral triple S with the semifinite spectral triple Tz as described in
Theorem 3.10. To avoid an abundance of tensor products we introduce the following notation
for the product of the spectral triples

Sz =: (A, H̃, Dz; Ñ , τ ′)

The use of A instead of Ã is no typo, because A⊗ C ∼= A.

Notation 5.4. For an even spectral triple (A,H, D; γ), denote by OP (A,H, D; γ) the algebra
generated by A, D and γ. If it is clear which spectral triple is considered we will write OP .

We have the following important result, it is one of the results of the local index theorem.

Theorem 5.5 (Connes & Moscovici [10]). Suppose (A,H, D) is a regular, finitely summable
spectral triple with a simple dimension spectrum. Consider the functional∫

− P := ress=0 Tr(P |D|−s),

this defines a trace on the algebra generated by A, [D,A] and |D|s with s ∈ C,

Note that the assumption of discrete dimension spectrum is necessary for existence of the residues.
The aim of this subsection is to relate for A ∈ Ω1

D the trace
∫
(AD−1)n to the behaviour of

τ ′((A⊗ 1)D−1
z )n as z → 0. This relation will be described in Proposition 5.11. The proof of this

result needs some preparations, we follow the line of [9, §1.19.4]. We start with the observation
that Dz is invertible and continue with a technical result.

Lemma 5.6. If D is an invertible Dirac operator, then Dz is invertible as well.

Proof. Note that the spectrum of an operator is closed. Since D is invertible, D2 is invertible.

So there exists an ε > 0 such that ε ≤ D2. Clearly 0 ≤ /Dz. Hence ε ≤ D2 ⊗ 1 + 1⊗ /D
2
z = D2

z .
So 0 /∈ σ(Dz)

2 and hence 0 /∈ σ(Dz). So Dz is invertible. �

Lemma 5.7. Let P ∈ OP (A,H, D; γ). Let k, n ∈ N with 0 < k < n and suppose there exists an
z0 > 0 such that for all 0 < z < z0 the operator (γ1 ⊗ /Dz)

2k(P ⊗ 1)D−2n
z ) is bounded, then

lim
z→0

τ ′
(
(γ ⊗ /Dz)

2k(P ⊗ 1)D−2n
z

)
= −1

2
B(k, n− k)

∫
− PD−2(n−k).

Here B denotes the beta-function, given by B(p, q) := Γ(p)Γ(q)
Γ(p+q) .
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5. APPLICATION TO PHYSICS

The requirement “(γ1⊗ /Dz)
2k(P ⊗1)D−2n

z ) is bounded” is necessary because otherwise the trace
of this operator is not defined.
Proof. Note that by Lemma 5.6 the operator Dz is invertible. Again as in Proposition 4.17
we will interchange trace and integral, because then we can write the operator as an elementary
tensor. For a > 0 consider the map

g : [0,∞) → [0,∞), x 7→
∫ ∞

0

e−tx2

ta−1 dt.

For a > 0 we have the following identity

g(x) =

∫ ∞

0

e−tx2

ta−1 dt

=

∫ ∞

0

e−s
( s
x2

)a−1 1

x2
ds

= x−2a

∫ ∞

0

e−ssa−1 ds

= x−2aΓ(a),

From this we obtain that g|[ε,∞) is continuous and bounded if a > 0. Note that since D is
invertible 0 /∈ σ(D). The spectrum is closed, so there exists ε > 0 such that |λ| > ε for all

λ ∈ σ(D). Hence ε2 < D2 and thus D2
z = D2 ⊗ 1 + 1 ⊗ /D

2
z > ε2. Using the functional calculus

we obtain

Γ(m− l − u/2) |Dz|u+2(l−m) =

∫ ∞

0

e−tD2
z tm−1−u/2−l dt. (5.4)

So we have

τ ′
(
(γ1 ⊗ /Dz)

2k(P ⊗ 1)D−2n
z

)
= τ ′

(
(P ⊗ /D

2k
z )(D2 ⊗ 1 + 1⊗ /D

2
z)

−n
)

= τ ′
(
(P ⊗ /D

2k
z )

1

Γ(n)

∫ ∞

0

e−t(D2⊗1)e−t(1⊗ /D2
z)tn−1 dt

)
=

1

Γ(n)
τ ′
(∫ ∞

0

(
Pe−tD2)

⊗
(
/D
2k
z e

−t /D2
z
)
tn−1 dt

)
. (5.5)

We compute τ
(
/D
2k
z e

−t /D2
z

)
. Successively we do the following: apply the transformation y :=

tρ(z)2x2/z, partial integration and use the definitions of the gamma-function and the constant
ρ(z) = π−1/2(Γ(z/2 + 1))1/z.

τ
(
/D
2k
z e

−t /D2
z
)
=

1

2

∫
R
(ρ(z) sgn(x)|x|1/z)2ke−t(ρ(z) sgn(x)|x|1/z)2 dx

=

∫ ∞

0

(ρ(z)2x2/z)ke−tρ(z)2x2/z

dx

=
z

2
ρ(z)−zt−k−z/2

∫ ∞

0

yk+z/2−1e−y dy

=
z

2
πz/2Γ(z/2 + 1)−1t−k−z/2Γ(k + z/2)

=
z

2
πz/2Γ(z/2 + 1)−1t−k−z/2(k + z/2− 1)(k + z/2− 2) · · · (z/2 + 1)Γ(z/2 + 1)

= πz/2t−k−z/2 z(z + 2) · · · (z + 2k − 2)

2k
. (5.6)

We will now show that we can interchange the trace and the integral in Equation (5.5). The
idea is clear, but it is some work since we have to check many things. Later we will refer to this
result, so we will isolate it as a lemma.
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5.2. Anomalies

Lemma 5.8. We have the following equalities

τ ′
(∫ ∞

0

(
Pe−tD2)

⊗
(
/D
2k
z e

−t /D2
z
)
tn−1 dt

)
=

∫ ∞

0

τ ′
(
Pe−tD2

⊗ /D
2k
z e

−t /D2
z
)
tn−1 dt (5.7)

=

∫ ∞

0

Tr
(
Pe−tD2)

τ
(
/D
2k
z e

−t /D2
z
)
tn−1 dt. (5.8)

Proof. Equality (5.8) follows directly from the factorisation of the trace τ ′ (cf. Proposition 3.7).
For the first equality we would like to apply Proposition 1.79, but we cannot do this directly
since our measure space ([0,∞),B([0,∞)), µ) is not finite. Luckily it is σ-finite, we will exploit
that fact later. First we check that the requirements of Proposition 1.79 are satisfied.
By construction Ñ is a semifinite von Neumann algebra and τ ′ is a semifinite faithful normal
trace. Define

f : [0,∞) → B(H̃), f(t) :=
(
Pe−tD2)

⊗
(
/D
2k
z e

−t /D2
z
)
tn−1.

Since P ∈ OP (A1,H1, D1) the operator P is finite linear combination of products of elements
a ∈ A, D and γ. Therefore f(t) is affiliated with Ñ . Observe that the commutators [a,D] are
bounded and D anti-commutes with γ. Therefore in these products we can pull all the terms D
to the right and we can write P =

∑n
i=0 biD

i for some bounded operators bi and l ∈ N. Since D
is invertible

P =
l∑

i=0

biD
i =

l∑
i=0

biD
i−lDl = TDl

for some bounded operator T . Then

∥f(t)∥ = ∥
(
TDle−tD2)

⊗
(
/D
2k
z e

−t /D2
z
)
tn−1∥

≤ ∥T∥ ∥t(n−1)/2Dle−tD2

∥ ∥t(n−1)/2 /D
2k
z e

−t /D2
z∥ ≤ C <∞,

for some constant C > 0 independent of t. Hence f maps into N .
We will show f(·)h : [0,∞) → Ñz is a continuous function. Almost the same argument can be
used for f(·)∗h. We establish continuity if h is an elementary tensor h = h1 ⊗ h2. In general
approximate an element h ∈ H̃ by linear combinations of elementary tensors. Then

∥
(
TDle−(t0+t)D2

h1
)
⊗
(
/D
2k
z e

−(t0+t) /D2
zh2
)
−
(
TDle−(t0)D

2

h1
)
⊗
(
/D
2k
z e

−(t0) /D
2
zh2
)
∥

≤ ∥TDle−t0D
2

(1− e−tD2

)h1∥ ∥ /D2k
z e

−(t0+t) /D2
zh2∥

+ ∥TDle−t0D
2

h1∥ ∥( /D2k
z e

−t0 /D2
z (1− e−t /D2

z )h2∥,

this converges to 0 as t → 0. Since t 7→ tn−1 is continuous, the function f(·)h is continuous.
Note that a continuous function is measurable. Hence f is ∗-measurable. So

f ∈ Lso∗

∞ ([0,∞), µ;L1(Ñz, τ
′)).

The trace τ ′ factorises so by (5.8)

τ ′(|f(t)|) = Tr
(∣∣Pe−tD2 ∣∣)τ(∣∣ /D2k

z e
−t /D2

z

∣∣) |tn−1|

= πz/2 z

2

z + 2

2
. . .

z + 2k − 2

2
Tr
(∣∣t−k−z/2+n−1TDle−tD2 ∣∣).

This is clearly uniformly bounded for t large. For t = 0 we have τ ′(|f(0)|) = 0. By continuity it
follows that τ ′(|f(t)|) is uniformly bounded on [0,∞). Hence f is uniformly L1(Ñ , τ ′)-bounded.
So we can apply Proposition 5.8 to the intervals [0, n] which are finite measure spaces. We obtain

τ ′
(∫ n

0

(
Pe−tD2)

⊗
(
/D
2k
z e

−t /D2
z
)
tn−1 dt

)
=

∫ n

0

τ ′
(
Pe−tD2

⊗ /D
2k
z e

−t /D2
z
)
tn−1 dt. (5.9)
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Suppose P is a positive operator then the operators involved in (5.9) are positive. By normality
of the trace and the monotone convergence theorem we obtain (5.8) as we let n → ∞. If P is
not positive we can write P as a linear combination of four positive operators and then apply
the previous. �

We will continue our proof of Lemma 5.7. We plug in equation (5.6) in (5.8), as before we swap
the integral and trace and we use again the identity (5.4) to obtain

τ ′
(
(γ ⊗ /Dz)

2k(P ⊗ 1)(Dz)
−2n
)

(5.10)

=
1

Γ(n)

∫ ∞

0

Tr
(
Pe−tD2)

πz/2tn−k−z/2−1 z(z + 2) . . . (z + 2k − 2)

2k
dt

=
1

Γ(n)
πz/2 z(z + 2) . . . (z + 2k − 2)

2k

∫ ∞

0

Tr
(
Pe−tD2)

tn−k−z/2−1 dt

=
1

Γ(n)
πz/2 z(z + 2) . . . (z + 2k − 2)

2k
Tr
(
P

∫ ∞

0

e−tD2

tn−k−z/2−1 dt
)

=
1

Γ(n)
πz/2 z

2

(z
2
+ 1
)
. . .
(z
2
+ k − 1

)
Γ
(
n− z

2
− k
)
Tr
(
P |D|z−2(n−k)

)
. (5.11)

Observe

lim
z→0

1

Γ(n)

(z
2
+ 1
)
. . .
(z
2
+ k − 1

)
Γ
(
n− z

2
− k
)
=

Γ(k)Γ(n− k)

Γ(n)
= B(k, n− k).

Thus by (5.11) we have

lim
z→0

τ ′
(
(γ ⊗ /Dz)

2k(P ⊗ 1)(Dz)
−2n) = lim

z→0

z

2
B(k, n− k)Tr

(
P |D|z−2(n−k)

)
= resz=0 −

1

2
B(k, n− k)Tr

(
P |D|−z−2(n−k)

)
= −1

2
B(k, n− k)

∫
− P |D|−2(n−k),

as desired. �

Using this lemma and the theory of the generalised pseudo-differential operators (the classes
OPα) we described in Subsection 2.3, we are able to prove the result which we are after.

Definition 5.9. Define the gauge potentials of a spectral triple (A,H, D) by

Ω1
D(A) :=

{∑
j

aj [D, bj ] : aj , bj ∈ A
}
.

Remark 5.10. Since A⊗ C ∼= A as algebras it is no surprise that Ω1
Dz

(A⊗ C) = Ω1
D(A) ⊗ C.

Indeed, since γ commutes with A we obtain

(a⊗ 1)[D′
z, b⊗ 1] = (a⊗ 1)[D ⊗ 1 + γ ⊗Dz, b⊗ 1] = (a⊗ 1)([D, b]⊗ 1 + γb[Dz, 1]) = a[D, b]⊗ 1,

which gives the result. So from now on we identify Ω1
D(A) ∼= Ω1

Dz
(A⊗ C).

Now we can prove the key result of this subsection. We can compute one-loop graphs of the
following form:
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The result for n = 3 of the proposition stated below corresponds to this graph.

Proposition 5.11. Let A ∈ Ω1
D(A) and n ∈ N, n > 0. Then the function

z 7→ τ ′
(
((A⊗ 1)D−1

z )n
)

has at most a simple pole at z = 0, with residue given by

resz=0 τ
′(((A⊗ 1)D−1

z )n
)
= −

∫
−(AD−1)n.

Proof. We start by computing ((A⊗ 1)D−1
z )n). For this we will use the identity D−1

z = DzD
−2
z

and Lemma 2.47. Will we proceed by induction to show the following result. If k > 0, then
((A⊗ 1)D−1

z )n can be written as

((A⊗ 1)D−1
z )n =

∑
α

cα(A⊗ 1)Dz(∇α1

D (A)⊗ 1)Dz . . . (∇αn−1

D (A)⊗ 1)DzD
−2αn
z +R, (5.12)

with R ∈ OP−k. Here α is some multiindex and cα ∈ Z are some combinatorial constants to
count the multiplicities.
The case n = 1 is trivial. Now fix k. Observe that since /Dz commutes with 1 and D2

z =

D2 ⊗ 1 + 1⊗ /D
2
z it holds that

∇Dz (A⊗ 1) = ∇D(A)⊗ 1.

Repeated use of Lemma 2.47 gives

D−2n
z (A⊗ 1) = D−2n+2

z

m1∑
k1=1

(−1)k1−1(∇k1−1
D (A)⊗ 1)D−2k1

z +D−2n+2
z Rm1

=

mn∑
kn=1

· · ·
m1∑

k1=1

(−1)k1+...+kn−n(∇k1+...+kn−n
D (A)⊗ 1)D−2(k1+...+kn)

z +D−2n+2
z Rm1

+

m1∑
k1=1

D−2n+4
z Rm2D

−2k1
z + . . .+

mn−1∑
kn−1=1

· · ·
m1∑

k1=1

Rmn−1D
−2(k1+...+kn−1)
z

Observe that the error terms Rmi ∈ OP−mi−1, thus

D−2n+2
z Rm1 ∈ OP−m1−2n+1

m1∑
k1=1

D−2n+4
z Rm2D

−2k1
z ∈ OP−m2−2n+1

mn−1∑
kn−1=1

· · ·
m1∑

k1=1

RmD
−2(k1+...+kn−1)
z ∈ OP−mn−1−2n+1.
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Hence

D−2n
z (A⊗ 1) =

∑
β

cβ(∇β
D(A)⊗ 1)D−2β

z +R, with R ∈ OP−2n+1−min{m1,...,mn−1}. (5.13)

Select mj such that −n−min{m1, . . . ,mn−1} < −k. We will use the Expression (5.13) to prove
the induction step(
(A⊗ 1)D−1

z

)n+1
=
(
(A⊗ 1)D−1

z

)n
(A⊗ 1)D−1

z

=
(∑

α

cα(A⊗ 1)Dz(∇α1

D (A)⊗ 1)Dz . . . (∇αn−1

D (A)⊗ 1)DzD
−2αn
z +R1

)
(A⊗ 1)DzD

−2
z

=
∑
ξ

dξ(A⊗ 1)Dz(∇ξ1
D (A)⊗ 1)Dz . . . (∇ξn−1

D (A)⊗ 1)Dz(∇ξn
D (A)⊗ 1)DzD

−2ξn+1
z

+
(∑

α

cα(A⊗ 1)Dz(∇α1

D (A)⊗ 1)Dz . . . (∇αn−1

D (A)⊗ 1)Dz

)
R2D

−2
z +R1(A⊗ 1)DzD

−2
z

=
∑
ξ

dξ(A⊗ 1)Dz(∇ξ1
D (A)⊗ 1)Dz . . . (∇ξn−1

D (A)⊗ 1)Dz(∇ξn
D (A)⊗ 1)DzD

−2ξn+1
z +R3

Since R1 ∈ OP−(n+1) and R2 ∈ OP−2n+1−min{m1,...,mn−1}, the operator R3 ∈ OP−k. This closes
the induction.
The next step is to take care of each of the summands of (5.12). We split upDz = D1⊗1+γ⊗ /Dz.
Since γ ⊗ /Dz anticommutes with the terms A ⊗ 1 and ∇αi

D (A) ⊗ 1, in a summand of (5.12) we
can pull all the terms γ ⊗ /Dz to the left and write such a summand as

cα(A⊗ 1)Dz(∇α1

D (A)⊗ 1) . . . (∇αn−1

D (A)⊗ 1)DzD
−2αn
z =

n∑
j=0

∑
βj

dβj (γ ⊗ /Dz)
j(A⊗ 1)PβjD

−2αn
z .

Here βj are again a multiindices, the constants dβj ∈ Z count the multiplicity and Pβj are certain
products of the elements ∇αi

D (A)⊗1 and D⊗1, in particular (A⊗1)Pβj = Qβj ⊗1 for an element
Qβj ∈ OP (A,H, D; γ).

Consider an operator

(γ ⊗ /Dz)
j(Qβj ⊗ 1)D−2αn

z = γjQβj ⊗ /D
j
z(D

2
1 ⊗ 1 + 1⊗ /D

2
z)

−αn .

Note that /Dz was given by multiplication with the function fz : R → R, which is odd i.e.

fz(−x) = −fz(x). So if j is odd, then f jz is an odd function. In particular τz( /D
j
z) =

∫
R f

j
z (x) dx =

0. Note that 1 and /D
2
z are even, so (D2

1 ⊗ 1 + 1 ⊗ /D
2
z)

−αn is even. Since τz = Tr⊗(
∫
R · dx), it

holds that

τ ′(γjQβj ⊗ /D
j
z(D

2
1 ⊗ 1 + 1⊗ /D

2
z)

−αn = 0 for j odd.

Because (γ ⊗ /Dz)
j(Qβj ⊗ 1)D−2αn

z ∈ OP−k is bounded, Lemma 5.7 shows that the function

z 7→ τ ′
(
(γ ⊗ /Dz)

j(Qβj ⊗ 1)D−2αn
z

)
(5.14)

does not have a pole at z = 0 if j > 0 is even. Since the functions given by (5.14) does not have
a poles at z = 0 for j > 0 we only have to compute the residues at z = 0 of the function

z 7→ τ ′
(
(Q⊗ 1)D−2a

z

)
, (5.15)

for Q ∈ OP (A,H, D; γ). For this we will use the same method as in the proof of Lemma 5.8. In
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a similar fashion as before one can check that the conditions of Proposition 1.79 are satisfied.

τ ′
(
(Q⊗ 1)D−2a

z

)
= τ ′

( 1

Γ(a)

∫ ∞

0

(Q⊗ 1)e−t(D2⊗1)e−t(1⊗ /D2
z)ta−1 dt

)
=

1

Γ(a)

∫ ∞

0

τ ′
(
Qe−tD2

⊗ e−t /D2
z ta−1

)
dt

=
1

Γ(a)

∫ ∞

0

Tr
(
Qe−tD2)

τ
(
e−t /D2

z
)
ta−1 dt

=
πz/2

Γ(a)
Tr
(
Q

∫ ∞

0

e−tD2

ta−z/2−1 dt
)

= πz/2 Γ(a− z/2)

Γ(a)
Tr
(
Q(D2)z/2−a

)
= πz/2 Γ(a− z/2)

Γ(a)
Tr
(
QD−2a|D|z

)

Therefore we obtain

resz=0

(
z 7→ τ ′

(
(Q⊗ 1)D−2a

z

)
= resz=0 −Tr

(
QD−2a|D|−z

)
= −

∫
− QD−2a. (5.16)

If we use exactly the same powers and coefficients in the expansion of (AD−1)n as we did for
((A⊗ 1)D−1

z )n (cf. Equation (5.12)), then

(AD−1)n =
∑
α

cαAD∇α1

D (A)D . . .∇αn−1

D (A)DD−2αn +R′, (5.17)

with R′ ∈ OP−k(A,H, D). These terms correspond 1-1 with the terms (Qβj ⊗1)D−2αn
z of (5.15)

which might have a pole at z = 0 (i.e. where j = 0). By (5.16) for a summand of the expansion
(5.17) we have

resz=0 τ
′(((cαAD . . .∇αn−1

D (A)D)⊗ 1)D−2αn
z = −

∫
− cαAD . . .∇αn−1

D (A)DD−2αn .

Summing over α gives the result we are after. �

5.3 Zeta function regularisation

In this subsection we will show that it is also possible to use semifinite spectral triples for zeta
function regularisation [20].
In zeta function regularisation on typically has to deal with integrals of the form∫ ∞

0

1

t
e−t dt.

For zeta function regularisation one replaces 1
t by t−1+s for some s ∈ C, Re(s) > 0 and one

investigates what happens if s → 0. For example the integral
∫∞
0
t−1e−t dt is divergent, but by

definition of the gamma function it holds that∫ ∞

0

t−1+se−t dt = Γ(s),

which has a simple pole at s = 0 with residue 1. Note that this result is very similar to dimensional
regularisation. In both cases we introduce a new parameter in the integral and then examine
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what happens if that parameter is sent to 0. In both cases a pole of the gamma function appears
which describes the divergence of the integral.
The aim of this subsection is to give a reasonable definition of det((D + A)D−1) for a spectral
triple (A,H, D) and a gauge potential A ∈ Ω1

D(A). For trace-class operators it is possible to
define a so called Fredholm determinant, but we choose a different way to give meaning to a
determinant. We will start with an informal motivation. Recall from linear algebra the identity
det(exp(T )) = exp(Tr(T )) for any square matrix T . Thus using functional calculus we have
log(det(T )) = Tr(log(T )). Then

log
(
det((D +A)D−1)

)
= Tr

(
log((D +A)D−1)

)
= Tr

(
log(1 +AD−1)

)
.

Therefore we are interested in computing Tr
(
log(1+AD−1)

)
. However, this is not finite, because

the operators considered are not trace class. So we would like to give a different meaning to it.
We want to introduce a new parameter and examine in what way the result diverges as a function
of this parameter. One way is to consider

s 7→ Tr
(
log(1 +AD−1)|D|−s

)
and compute the residue at s = 0. This is what Connes and Chamseddine have done, see
Theorem 5.13 below. But we can also use the triple Tz, to compute

z 7→ τ ′
(
log(1 +AD−1

z )
)
.

The result appears to be the same, see Theorem 5.15.

Notation 5.12. If D is a self-adjoint operator, denote ζD(s) := Tr(|D|−s).

To prove our main theorem of this section, we will need the following result.

Theorem 5.13 (Connes & Chamseddine [8]). Suppose (A,H, D) is a finitely summable, regular
spectral triple and A ∈ Ω1

D(A) is a self-adjoint gauge potential, then

(i) the function ζD+A extends to a meromorphic function with a most simple poles;

(ii) the function ζD+A is regular at s = 0;

(iii) the following equality holds

ζD+A(0)− ζD(0) = −
∫
− log

(
1 +AD−1

)
=
∑
n

(−1)n

n

∫
−
(
AD−1

)n
.

Proof. See [8, Thm. 2.4] �

Remark 5.14. The above use of log(1+AD−1) needs some comments. Namely, 1+AD−1 need
not to be positive, hence log(1 +AD−1) is undefined. What we have is

log(1 + x) = −
∞∑

n=1

(−1)n

n
xn, for |x| < 1.

Note that for n large due to summability of the spectral triple the residue
∫
(AD−1)n = 0. So

the series −
∑

n
(−1)n

n

∫
(AD−1)n is in fact a finite sum. And this sum is well defined for all

gauge potentials A and Dirac operators D. So we use −
∑

n
(−1)n

n

∫
(AD−1)n as a definition

for
∫
log(1 + AD−1). Therefore −

∑
n

(−1)n

n

∫
(AD−1)n gives a meaning to the determinant of

(D +A)D−1.
We know that if D is invertible and if A ∈ Ω1

D(A) is a gauge potential, then A is bounded. So
there exists a constant a > 0 such that ∥AD−1∥ < a. For such an a,

log
(
1 +

1

a
AD−1

)
is a well-defined operator and of course both interpretations in 5.13 are equal.
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5.3. Zeta function regularisation

Theorem 5.15. Suppose (A,H, D; γ) is an even p+-summable regular spectral triple, A ∈ Ω1
D(A)

is a self-adjoint gauge potential and D is invertible. Then

ζD+A(0)− ζD(0) =
∑
n

(−1)n

n

∫
−
(
AD−1

)n
=
∑
n

(−1)n

n
resz=0 τ

′((AD−1
z )n

)
. (5.18)

Proof. The proof is now a simple combination of the results we obtained in this section. The
operator Dz is invertible because of Lemma 5.6. The first equality of (5.18) is given by Theorem
5.13 and the second equality follows from Proposition 5.11. �
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