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CHAPTER 1

Introduction

The goal of these lectures is to understand the structure of perturbative quantum gauge
theories in an algebraic manner. We intend to obtain rigorous results using Hopf algebras.
These Hopf algebras are generalizations of the Connes–Kreimer Hopf algebras to gauge theories,
involving more than one type of vertex and one type of edge. However, the co-structure on
Feynman graphs is exactly the same, and the interpretation of renormalization to be captured
by the coproduct still holds.

A question that we would like to address is the following:

Q1: What is the coproduct on sums of Feynman graphs, such as the (1PI) Green’s functions?

This question is motivated by the existence of gauge symmetries, which would imply cer-
tain relations (Ward identities, Slavnov–Taylor identities) between Green’s functions. Another
interesting question is thus

Q2: What is the coproduct on the Ward identities?

We will see that the answer to the second question is that the Ward (and Slavov–Taylor)
identities generate Hopf ideals. This implies that the quotient by this ideal is still a Hopf
algebra, and in the meanwhile it provides an answer to the first question: in this quotient Hopf
algebra, the Green’s functions generate Hopf subalgebras (at each loop order). We have thus
obtained a compatibility between renormalization and gauge symmetries on the combinatorial
level, which is of completely algebraic nature.

The outline of these lectures is the following:

(1) Local/Lagrangian approach to gauge field theories, BRST, BV-algebra structures
(2) Hopf algebras H of Feynman graphs
(3) and its structure
(4) Applications:

• Slavnov–Taylor identities in Yang–Mills theories
• BCFW-recursion.
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CHAPTER 2

Lagrangian approach to gauge field theories

1. Local functions and functionals

A field φ is a section of a vector bundle E →M on the background manifold M . If the rank
of the vector bundle E is r, the field is said to have r components, in which case we can write
locally φ = φaea in terms of a basis ea of E.

Example 1. If E = M × C, then a section φ is a complex scalar field φ : M → C; it has
one component.

Example 2. Gauge fields are sections A of E = Λ1⊗ (P ×G g) with P a G-principal bundle
and g = Lie(G). In the case that P is trivial, this becomes a g-valued one-form on M , i.e. A is
a section of Λ1(g). In this case, the rank of the vector bundle is dim(M) · rank(g) which leads
to the familiar decomposition

A = Aaµdx
µT a,

with {T 1, . . . , T rank(g)} a basis for g and summation is understood.

Definition 3. A local form is the tensor product of a differential form on M with a
smooth function (polynomial) in the coordinates xµ and ∂µ1 · · · ∂µn′

φa (0 ≤ n′ ≤ n) for some
finite positive integer n. The algebra of local forms is denote by Loc(E).

Example 4. A scalar field theory is defined by the following Lagrangian L ∈ Loc(m,0)(M ×
R):

L(x, φ, ∂iφ) =
1
2dφ ∗ dφ− V (φ)(∗1)

with V (φ) a polynomial in the field φ ∈ Γ(M × R).

Example 5. Let A ∈ Ω1(g). The Yang–Mills Lagrangian is given by the local m-form:

Lym(x,A) = −tr F ∗ F
where F = dA+A2 is the curvature of A.

If the vector bundle E carries a grading, E = ⊕qE
(q) the algebra Loc(E) becomes bigraded,

L ∈ Loc(E) of bidegree (p, q) if L has degree p as a differential form and degree q as a section.
We also use the words ghost degree to specify the latter. In this case, we write

Loc(E) =
⊕

p≥0,q∈Z
Loc(p,q)(E),

and we have Loc(p,q)(E) ≃ Ωp(M)⊗C∞(M) Loc
(0,q)(E).

Any Lagrangian L, defined in general as a local m-form of the fields (m = dimM), can be
integrated to give the so-called action

S[φ] :=

∫

M
L(x, φ(x)).

In general, we make the following definition.

Definition 6. A local functional F [φ] is the integral of a local m-form, i.e. F [φ] =∫
M L(x, φ(x)) for L ∈ Loc(m,0)(E). The free commutative algebra generated (over C) by lo-
cal functionals is denoted by F([E]).

The grading by ghost degree on local m-forms carries over to a grading on local functionals,
which we also denote by gh(F ) for F ∈ F([E]).
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8 CHAPTER 2. LAGRANGIAN APPROACH TO GAUGE FIELD THEORIES

2. Fields and BRST-sources

If we consider a set Φ consisting of 2N fields, we have specified 2N (graded) vector bundles
each of which has a corresponding field as its section. As said, we will assume that the fields
come in pairs of a field φi and an BRST-source Kφi (i = 1, . . . , N) and we write Ei and E

∨
i for

the corresponding vector bundles which are of equal rank. In fact, E∨
i is the dual vector bundle

of Ei, although shifted in degree as we make more precise now. The fields φi are understood to
have a so-called ghost degree gh(φi) ∈ Z which is then extended to the BRST-sources by

gh(Kφi) := −gh(φi)− 1.

In the physics literature, this is usually called the (total) ghost number. Summarizing, the
elements of Φ constitute a section of the total vector bundle Etot:

(φ1,Kφ1 , . . . , φN ,KφN ) :M → Etot =
N⊕

i=1

Ei ⊕ E∨
i ,

The grading on the fields turn Etot into a graded vector bundle. We will write Loc(Φ) instead

of Loc(Etot) (and similarly Loc(p,q)(Φ)), and F([Φ]) instead of F([Etot]).

Example 7. In Section 4 below, we will focus on pure Yang-Mills gauge theories. In that
case, there is the gauge field A as in Example 2 which (in the trivial bundle case) is a section of
Λ1 ⊗M × g, i.e. an element of Ω1(g). The so-called ghost fields ω and ω are assigned to each
generator of g, in components ω = ωaT a and ω = ωaT a. Their ghost degrees are defined to be
1 and −1, respectively, so that ω is a section in Ω0(g[−1]) and ω in Ω0(g[1]). Also, there is the
so-called auxiliary – or Nakanishi–Lantrup – field h = haT a, which is a section in Ω0(g) and of
degree 0.

Corresponding to these fields, there are the BRST-sources KA, Kω, Kω and Kh which are
of respective ghost degree −1, −2, 0 and −1. Thus, the field content of pure Yang-Mills gauge
theories can be summarized by the following sections

(A,ω, ω, h) ∈ Ω1(g)⊕ Ω0(g[−1])⊕ Ω0(g[1])⊕ Ω0(g),

(KA,Kω,Kω,Kh) ∈ X(g∗[1])⊕ Ω0(g∗[2])⊕ Ω0(g∗)⊕ Ω0(g∗[1]),

where X(g∗) denotes g∗-valued vector fields. Taken all together, they form a section of the total
bundle.

3. The anti-bracket

We will now try to elucidate the above ‘doubling’ of the fields (adding a BRST-source for
every field) in terms of the structure of a Gerstenhaber algebra on the algebra of local functionals
F([Φ]). Recall that a Gerstenhaber algebra [12] is a graded commutative algebra with a Lie
bracket of degree 1 satisfying the graded Leibniz property:

(x, yz) = (x, y)z + (−1)(|x|+1)|y|y(x, z).

Batalin and Vilkovisky encountered this structure in their study of quantum gauge theories
[2, 3, 4]. In fact, they invented what is now called a BV-algebra (see for instance [16]): a

Gerstenhaber algebra with an additional operator ∆̃ that satisfies:

(x, y) = ∆̃(xy)− ∆̃(x)y + (−1)|x|x∆̃(y).

We will define such an anti-bracket on the algebra of local functionals using the functional
derivative.

Definition 8. The left and right functional derivatives are the distributions defined by

d

dt
F [φ+ tψφ] =

∫

M

δLF

δφa(x)
ψaφ(x)dµ(x) =

∫

M
ψaφ(x)

δRF

δφa(x)
dµ(x),

for test functions ψφ of the same ghost degree as φ ∈ Φ.

Renormalizing gauge theories & Hopf algebras, Walter D. van Suijlekom (draft June 15, 2010)



9 4. EXAMPLE: YANG–MILLS GAUGE THEORY

There is the following relation between the two functional derivatives:

δRF

δφa(x)
= (−1)gh(φ)(gh(F )−gh(φ)) δLF

δφa(x)
.

with gh the ghost degree.

Proposition 9. The bracket (·, ·) defined by

(F1, F2) =
N∑

i=1

rkEi∑

a=1

∫

M

[
δRF1

δφai (x)

δLF2

δKa
φi
(x)

− δRF1

δKa
φi
(x)

δLF2

δφai (x)

]
dµ(x),

gives F([Φ]) the structure of a Gerstenhaber algebra with respect to the ghost degree. Moreover,
with

∆̃(F ) =
N∑

i=1

δR
δKa

φi
(x)

δL
δφai (x)

(F )

it becomes a BV-algebra.

In the physics literature, it is common to write this anti-bracket on the fields generators in
terms of the Dirac delta distribution as

(Ka
φi
(x), φbj(y)) = δabδijδ(x− y), (Ka

φi
(x),Ka

φj
(y)) = 0, (φai (x), φ

b
j(y)) = 0

which is then extended to F([Φ]) using the graded Leibniz property.

The typical situation in physics is that there is a distinguished element S ∈ F([Φ]) – called
the action – that satisfies the so-called master equation

(3.1) (S, S) = 0.

Thus, S plays the same role with respect to the Gerstenhaber bracket, as the Poisson bivector
does with respect to the Schouten–Nijenhuis bracket. One can easily check that the master
equation implies that

s(F ) = (S, F )

is a differential: it satisfies Leibniz rule and s2 = 0. In the cases we will cover, s will be the
BRST-differential.

4. Example: Yang–Mills gauge theory

Let us exemplify this in the case of a pure Yang–Mills theory. Let G be a simple Lie group
with Lie algebra g. The gauge field A is a g-valued one-form, that is, a section of Λ1⊗ (M × g).
As before, we have in components A = Aai dx

iT a where the {T a} form a basis for g. The
structure constants {fabc } of g are defined by [T a, T b] = fabc T

c and the normalization is such
that tr (T aT b) = −δab.

The Yang–Mills action is given in terms of the curvature F = dA+ gA2. as

Sym[A] = −
∫

M
tr [F ∗ F ] = −

∫

M
tr [dA ∗ dA+ gdA ∗ [A,A] + 1

4
g2[A,A] ∗ [A,A],

where ∗ is the Hodge star operator. Consider the quadratic term in this action; it is locally of
the form

−1

2

∫

M
tr (∂µAν − ∂νAµ)

2 =
1

2

∫

M
tr Aµ(gµν�− ∂µ∂ν)Aν

The problem with this free action is that there is no well-defined propagator, since gµν�−∂µ∂ν
has zero eigenvectors (namely, Aν = ∂νX for a g-valued function X. This is a consequence of
gauge invariance, and we need to fix the gauge.

Following Faddeev and Popov, we introduce ghost fields ω, ω which are sections ofM×g[−1]
and M × g[1], respectively, and we write ω = ωaT a and ω = ωaT a. The auxiliary field – also
known as the Nakanishi–Lantrup field – is denoted by h = haT a and is a section of M × g.

Renormalizing gauge theories & Hopf algebras, Walter D. van Suijlekom (draft June 15, 2010)



10 CHAPTER 2. LAGRANGIAN APPROACH TO GAUGE FIELD THEORIES

...
...

...

Loc(0,1)

s

OO

d
// Loc(1,1)

s

OO

d
// Loc(2,1)

s

OO

d
// · · ·

Loc(0,0)

s

OO

d
// Loc(1,0)

s

OO

d
// Loc(2,0)

s

OO

d
// · · ·

Loc(0,−1)

s

OO

d
// Loc(1,−1)

s

OO

d
// Loc(2,−1)

s

OO

d
// · · ·

...

s

OO

...

s

OO

...

s

OO

The form degree and ghost degree of the fields are combined in the total degree and sum-
marized in the following table:

A ω ω h
ghost degree 0 +1 −1 0
form degree +1 0 0 0
total degree +1 +1 −1 0

The gauge-fixed action S0 for pure Yang–Mills theory is the local functional

S0 =

∫

M
tr

[
− dA ∗ dA− gdA ∗ [A,A]− 1

4
g2[A,A] ∗ [A,A](4.1)

−A ∗ dh+ dω ∗ dω +
1

2
ξh ∗ h+ gdω ∗ [A,ω]

]

where ξ is the so-called gauge fixing (real) parameter. Note that
∫

M

1
2ξh ∗ h− d∗A ∗ h = 1

2ξ
−1(ξh− d∗A) ∗ (ξh− d∗A)− 1

2ξ
d∗A ∗ d∗A,

where we recognize the last term as the Rξ gauge fixing term (ξ = 1 is Feynman-’t Hooft gauge,
ξ → 0 is Landau gauge). This action is invariant under the following symmetry transformation:

sA = −dω − g[A,ω], sω = −1

2
g[ω, ω], sω = −h, sh = 0

which is extended to all of Loc(p,q)(Φ) by the graded Leibniz rule, and imposed to anti-commute
with the exterior derivative d. One can easily check that s2 = 0, so s and d form a bicomplex
in which s ◦ d+ d ◦ s = 0. The fact that s(S0) = 0 is an easy consequence of the fact that the
Yang–Mills action Sym is gauge invariant and that

s

∫

M
tr
[
−ω ∗ 1

2ξh− dω ∗A)
]
=

∫

M
tr
[
1
2ξh ∗ h− dh ∗A+ dω ∗ dω + gdω ∗ [A,ω]

]

so that S0 = Sym + sΨ is BRST-closed.
A convenient way to express this compactly is by introducing BRST-sources for each of the

above fields, KA,Kω,Kω and Kh. The shift in ghost degree is illustrated by the following table:

KA Kω Kω Kh

ghost degree −1 −2 0 −1
form degree +1 0 0 0
total degree 0 −2 0 −1

Renormalizing gauge theories & Hopf algebras, Walter D. van Suijlekom (draft June 15, 2010)



11 4. EXAMPLE: YANG–MILLS GAUGE THEORY

With these degrees, we can generate the algebra of local forms Loc(Φ), which decomposes before

into Loc(p,q)(E) with p the form degree and q the ghost degree. The total degree is then p+ q
and Loc(E) is a graded Lie algebra by setting

[X,Y ] = XY − (−1)deg(X) deg(Y )Y X,

with the grading given by this total degree. Note the slight abuse of notation, Loc(Φ) is
generated by A,ω, ω, et cetera, and not their components. This bracket should not be confused
with the anti-bracket defined on local functionals in Section 3. The present graded Lie bracket
is of degree 0 with respect to the total degree, that is, deg([X,Y ]) = deg(X) + deg(Y ). It
satisfies graded skew-symmetry, the graded Leibniz identity and the graded Jacobi identity:

[X,Y ] = −(−1)deg(X) deg(Y )[Y,X],

[XY,Z] = X[Y, Z] + (−1)deg(Y ) deg(Z)[X,Z]Y.

(−1)deg(X) deg(Z)[[X,Y ], Z] + (cyclic perm.) = 0

S = S0 + 〈sA,KA〉+ 〈sω,Kω〉+ 〈sω,Kω〉+ 〈sh,Kh〉(4.2)

=

∫

M
tr

[
− dA ∗ dA− gdA ∗ [A,A]− 1

4
g2[A,A] ∗ [A,A]−A ∗ dh+ dω ∗ dω +

1

2
ξh ∗ h(4.3)

+ gdω ∗ [A,ω]−
(
〈dω,KA〉+ g〈[A,ω],KA〉+ 〈h,Kω〉+

1

2
g〈[ω, ω],Kω〉

)
∗ 1
]

Here 〈·, ·〉 denotes the pairing between g-valued 1-forms and g∗-valued vector fields (or g-valued
0-forms and g∗-valued 0-forms). Validity of the master equation (S, S) = 0 is equivalent to
BRST-invariance of the functional S0 and nilpotence of the derivation defined by s = (S, ·).

An interesting functional is the effective action Seff , which is defined as

Seff =
∑

Γ 1PI

~L(Γ)U(Γ)mΓ(Φ)

where U is the Feynman amplitude corresponding to the one-particle irreducible graph Γ (see
below) and mΓ(Φ) is the monomial in the fields correspoding to the graph Γ. We project U(Γ)
onto the relevant form factor, which is then absorbed in mΓ(Φ). At zeroeth order in ~, Seff
is just the action S. Quite importantly is the Zinn–Justin equation that is supposed to be
satisfied:

(4.4) (Seff , Seff) = 0.

Note the correspondence of the Zinn–Justin equation for the effective action with the master
equation for the action S, the quantum corrections to the action seem to respect the Gersten-
haber bracket. As far as I know, the proof of the Zinn–Justin equation relies heavily on path
integral techniques.

Explicitly, in terms of 1PI Green’s functions, this would imply for instance that

U

( )
U

( )
= U

( )
U

( )

It is absolutely crucial to obtain these relations for the renormalized Feynman amplitudes as
well. Our goal in the next chapters is to understand this compatibility from an algebraic
(rigorous) viewpoint, eventually aiming for a proof of this equation.

Renormalizing gauge theories & Hopf algebras, Walter D. van Suijlekom (draft June 15, 2010)





CHAPTER 3

Hopf algebras and renormalization

1. Commutative Hopf algebras

For convenience, let us briefly recall the definition of a (commutative) Hopf algebra. It is
the dual object to a group and, in fact, there is a one-to-one correspondence between groups
and commutative Hopf algebras.

Let G be a group with product, inverse and identity element. We consider the algebra
of representative functions H = F(G). This class of functions is such that F(G × G) ≃
F(G)⊗F(G). For instance, if G is a (complex) matrix group, then F(G) could be the algebra
generated by the coordinate functions xij so that xij(g) = gij ∈ C are just the (i, j)’th entries
of the matrix g.

Let us see what happens with the product, inverse and identity of the group on the level
of the algebra H = F(G). The multiplication of the group can be seen as a map G ×G → G,
given by (g, h) → gh. Since dualization reverses arrows, this becomes a map ∆ : H → H ⊗H
called the coproduct and given for f ∈ H by

∆(f)(g, h) = f(gh).

The property of associativity on G becomes coassociativity on H:

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,(A1)

stating simplify that f
(
(gh)k

)
= f

(
g(hk)

)
.

The unit e ∈ G gives rise to a counit, as a map ǫ : H → C, given by ǫ(f) = f(e) and the
property eg = ge = g becomes on the algebra level

(A2) (id⊗ ǫ) ◦∆ = id = (ǫ⊗ id) ◦∆,
which reads explicitly f(ge) = f(eg) = f(g).

The inverse map g 7→ g−1, becomes the antipode S : H → H, defined by S(f)(g) = f(g−1).
The property gg−1 = g−1g = e, becomes on the algebra level:

(A3) m(S ⊗ id) ◦∆ = m(id⊗ S) ◦∆ = 1Hǫ,

where m : H ⊗H → H denotes pointwise multiplication of functions in H.
From this example, we can now abstract the conditions that define a general Hopf algebra.

Definition 10. A Hopf algebra H is an algebra H, together with two algebra maps ∆ :
H ⊗ H → H (coproduct), ǫ : H → C (counit), and a bijective C-linear map S : H → H
(antipode), such that equations (A1)–(A3) are satisfied.

If the Hopf algebra H is commutative, we can conversely construct a (complex) group from
it as follows. Consider the collection G = HomC(H,C) of multiplicative linear maps from H
to C. We will show that G is a group. Indeed, we have the convolution product between two
such maps φ, ψ defined as the dual of the coproduct: (φ ∗ ψ)(X) = (φ⊗ ψ)(∆(X)) for X ∈ H.
One can easily check that coassociativity of the coproduct (Eq. (A1)) implies associativity of
the convolution product: (φ ∗ ψ) ∗ χ = φ ∗ (ψ ∗ χ). Naturally, the counit defines the unit e
by e(X) = ǫ(X). Clearly e ∗ φ = φ = φ ∗ e follows at once from Eq. (A2). Finally, the
inverse is constructed from the antipode by setting φ−1(X) = φ(S(X)) for which the relations
φ−1 ∗ φ = φ ∗ φ−1 = e follow directly from Equation (A3).

13



14 CHAPTER 3. HOPF ALGEBRAS AND RENORMALIZATION

With the above explicit correspondence between groups and commutative Hopf algebras,
one can translate practically all concepts in group theory to Hopf algebras. For instance, a
subgroup G′ ⊂ G corresponds to a Hopf ideal I ⊂ F(G) in that F(G′) ≃ F(G)/I and viceversa.
The conditions for being a subgroup can then be translated to give the following three conditions
defining a Hopf ideal I in a commutative Hopf algebra H

∆(I) ⊂ I ⊗H +H ⊗ I, ǫ(I) = 0, S(I) ⊂ I.

One can check that then HomC(H/I,C) ≃ G′.
Representations of G correspond one-to-one to corepresentations of H. In fact, if V is a

G-module, then it is also a comodule over H, that is, there exists a map (called coaction)
ρ : V → V ⊗H such that gv = (1⊗g)ρ(v). If V has additional structure, it is natural to require
the coaction to respect this structure.

Finally, we will encounter connected graded Hopf algebras for which there is a grading H =
⊕n∈NHn that is respected by the product and the coproduct:

HkH l ⊂ Hk+l; ∆(Hn) =
n∑

k=0

Hk ⊗Hn−k.

and such that H0 = C1. Dually, graded Hopf algebras correspond to (pro)-unipotent groups.

2. Hopf algebra of Feynman graphs

We suppose that we have defined a (renormalizable) perturbative quantum field theory and
specified the possible interactions between different types of fields. These fields are collected in
a set Φ = {φ1, . . . , φN ′} whereas the different types of interactions – represented by vertices –
constitute a set RV . In the Lagrangian formalism, it is natural to associate to each vertex a local
monomial in the fields (present in the Lagrangian); we will denote this map by ι : RV → Loc(Φ).

Propagators, on the other hand, are indicated by edges and form a set RE . Again, one
assigns a monomial to each edge via ι : RE → Loc(Φ) but now ι(e) which is now of order 2
in the fields, involving precisely the field (and its conjugate in the case of fermions) that is
propagating.

If there are BRST-source terms present in the theory, which means that for each field φi
there is a corresponding source field Kφi in Φ. In other words, the set of fields is of the form

Φ = {φ1, · · · , φN ,Kφ1 , · · · ,KφN }
This even-dimensionality is a manifestation of the structure on the fields of a Gerstenhaber
algebra which we will explore later.

Example 11. Quantum electrodynamics describes the interaction of charged particles such
as electrons with photons, with corresponding fields ψ and A. Their propagation is usually
indicated by a straight and a wiggly line (for the electron and photon, respectively). There is
only the interaction of an electron emitting a photon: this is indicated by a vertex of valence
three; the mass term for the electron is indicated by a vertex of valence two. The dynamical and
interactive character of the theory can be summarized by the following sets,1

RV = { , }; RE = { , }.
The corresponding monomials in F([Φ]) are

ι( ) = −eψγ ◦Aψ, ι( ) = −mψψ,
ι( ) = iψγ ◦ dψ, ι( ) = −dA ∗ dA.

with e and m the electric charge and mass of the electron, respectively.

1We specify the type of fields that are involved in the interaction by drawing a small neighborhood around
the vertex instead of merely a dot.

Renormalizing gauge theories & Hopf algebras, Walter D. van Suijlekom (draft June 15, 2010)



15 2. HOPF ALGEBRA OF FEYNMAN GRAPHS

Example 12. Quantum chromodynamics describes the strong interaction between quarks
and gluons, described by the fields ψ and A, respectively (see Section 4 below for more details).
These are indicated by straight and wiggly lines. In addition, associated to the non-abelian
gauge symmetry (with symmetry group SU(3)) there is the so-called ghost field ω, indicated
by dotted lines, as well as the BRST-sources Kψ,KA and Kω. Between the fields there are
four interactions, three BRST-source terms, and a mass term for the quark. This leads to the
following sets of vertices and edges,

RV =



 , , , , , , ,





with the dashed lines representing the BRST-source terms, and

RE =



 , ,



 .

Note that the dashed edges do not appear in RE, i.e. the source terms do not propagate and in
the following will not appear as internal edges of a Feynman graph.

Although these examples motivate our construction, we stress that for what follows it is not
necessary to specify the fields nor the vertices and edges in R = RV ∪RE explicitly. It is enough
to give the sets RV and RE of types of vertices and types of edges, respectively, as exemplified
above.

A Feynman graph is a graph built from the types of vertices present in RV and the types of
edges present in RE . Naturally, we demand edges to be connected to vertices in a compatible
way, respecting the type of vertex and edge. As opposed to the usual definition in graph theory,
Feynman graphs have no external vertices. However, they do have external lines which come
from vertices in Γ for which some of the attached lines remain vacant (i.e. no edge in RE
attached).

If a Feynman graph Γ has two external lines, both corresponding to the same field, we would
like to distinguish between propagators and mass terms. In more mathematical terms, since we
have vertices of valence two, we would like to indicate whether a graph with two external lines
corresponds to such a vertex, or to an edge. A graph Γ with two external lines is dressed by
a bullet when it corresponds to a vertex, i.e. we write Γ•. The above correspondence between
Feynman graphs and vertices/edges is given by the residue res(Γ). It is defined as the vertex or
edge the graph corresponds to after collapsing all its internal points. For example, we have:

res

( )
= and res

( )
= , but: res

(

•

)
=

For the definition of the Hopf algebra of Feynman graphs, we restrict to one-particle irre-
ducible (1PI) Feynman graphs. These are graphs that are not trees and cannot be disconnected
by cutting a single internal edge.

Definition 13 (Connes–Kreimer [8]). The Hopf algebra of Feynman graphs is the free
commutative algebra H over C generated by all 1PI Feynman graphs with residue in R =
RV ∪RE, with counit ǫ(Γ) = 0 unless Γ = ∅, in which case ǫ(∅) = 1, coproduct,

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ(Γ

γ ⊗ Γ/γ,

where the sum is over disjoint unions of 1PI subgraphs with residue in R. The quotient Γ/γ
is defined to be the graph Γ with the connected components of the subgraph contracted to the
corresponding vertex/edge. If a connected component γ′ of γ has two external lines, then there
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16 CHAPTER 3. HOPF ALGEBRAS AND RENORMALIZATION

are possibly two contributions corresponding to the valence two vertex and the edge; the sum
involves the two terms γ′• ⊗ Γ/(γ′ → •) and γ′ ⊗ Γ/γ′. The antipode is given recursively by,

S(Γ) = −Γ−
∑

γ(Γ

S(γ)Γ/γ.

Two examples of this coproduct, taken from QED, are:

∆( ) = ⊗ 1 + 1⊗ + ⊗ + • ⊗ ,

∆( ) = ⊗ 1 + 1⊗ + 2 ⊗ + 2 ⊗ + ⊗ .

The above Hopf algebra is an example of a connected graded Hopf algebra: it is graded by
the loop number L(Γ) of a graph Γ. Indeed, one checks that the coproduct (and obviously also
the product) satisfy the grading by loop number and H0 consists of complex multiples of the
empty graph, which is the unit in H, so that H0 = C1. We denote by ql the projection in H
onto H l.

In addition, there is another grading on this Hopf algebra. It is given by the number of
vertices and already appeared in [8]. However, since we consider vertices and edges of different
types (wiggly, dotted, straight, et cetera), we extend to a multigrading as follows. As in [17],
we denote by mΓ,r the number of vertices/internal edges of type r appearing in Γ, for r ∈ R.
Moreover, let nγ,r be the number of connected components of γ with residue r. For each v ∈ RV
we define a degree dv by setting

dv(Γ) = mΓ,v − nΓ,v.

The multidegree indexed by RV is compatible with the Hopf algebra structure as follows easily
from the following relation:

mΓ/γ,v = mΓ,v −mγ,v + nγ,v,

and the fact that mΓΓ′,v = mΓ,v +mΓ′,v, and nΓΓ′,v = nΓ,v + nΓ′,v. This gives a decomposition

H =
⊕

(n1,...,nk)∈Zk

Hn1,...,nk ,

where k = |RV |. We denote by pn1,...,nk
the projection onto Hn1,...,nk . Note that also H0,··· ,0 =

C1.

Lemma 14. There is the following relation between the grading by loop number and the
multigrading by number of vertices:

∑

v∈RV

(N(v)− 2)dv = 2L

where N(v) is the valence of the vertex v.

Proof. This can be easily proved by induction on the number of internal edges using
invariance of the quantity

∑
v(N(v)− 2)dv − 2L under the adjoint of an edge. �

The group HomC(H,C) dual to H is called the group of diffeographism. This name was
coined in [9] motivated by its relation with the group of (formal) diffeomorphisms of C, whose
definition we recall in the next section. Stated more precisely, they constructed a map from the
group of diffeographism to the group of formal diffeomorphisms. We will establish this result
in general (i.e. for any quantum field theory) in the next chapter.
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17 3. FORMAL DIFFEOMORPHISMS

3. Formal diffeomorphisms

Another Hopf algebra that will be of interest is that dual to the group Diff(C, 0) of formal
diffeomorphisms of C tangent to the identity, it is known in the literature as the Faà di Bruno
Hopf algebra (see for instance the short review [11]). The elements of this group are given by
formal power series:

(3.1) f(x) = x
∑

n≥0

an(f)x
n; a0(f) = 1

with the composition law given by (f ◦ g)(x) = f(g(x)). The coordinates {an} generate a Hopf
algebra with the coproduct, counit and antipode defined in terms of the pairing 〈an, f〉 := an(f)
as

〈∆(an), f ⊗ g〉 = 〈an, g ◦ f〉. ǫ(an) = 〈an, 1〉, 〈S(an), f〉 = 〈an, f−1〉(3.2)

A convenient expression for the coproduct on an can be given as follows [7]. Consider the
generating series

A(x) = x
∑

n≥0

anx
n; a0 = 1

where x is considered as a formal parameter. Then the coproduct can be written as

∆A(x) =
∑

n≥0

A(x)n+1 ⊗ an(3.3)

One readily checks that indeed 〈∆A(x), g ⊗ f〉 = f(g(x)).

Remark 15. Actually, this Hopf algebra is the dual of the opposite group of Diff(C, 0).
Instead of acting on C as formal diffeomorphisms, the opposite group Diff(C, 0)op can be char-
acterized by its action on the algebra C[[x]] of formal power series in x. On the generator x,
the action of Diff(C, 0)op is defined by the same formula (3.1) but it is extended to all of C[[x]]
as an algebra map. We will denote in the following this group by Aut1(C[[x]]) := Diff(C, 0)op.

Clearly, we have an analogous definition of formal diffeomorphisms of Ck tangent to the
identity. The group Diff(Ck, 0) consists of elements:

f(x) =
(
f1(x), . . . , fk(x)

)

where each fi is a formal power series of the following form

fi(x) = xi(
∑

a
(i)
n1···nk

(f)xn1
1 · · ·xnk

k )

with a
(i)
0,...,0 = 1 and x = (x1, · · · , xk).

Again, there is a dual Hopf algebra generated by the coordinates a
(i)
n1···nk

with the coproduct,
counit and antipode defined by the analogous formula to Eq. (3.2).

Lemma 16. On the generating series Ai(x) = xi(
∑
a
(i)
n1···nk

xn1
1 · · ·xnk

k ) the coproduct equals

∆(Ai(x)) =
∑

n1,...,nk

Ai(x) (A1(x))
n1 · · · (Ak(x))nk ⊗ a

(i)
n1···nk

.

Closely related to these groups of formal diffeomorphisms, is the group of invertible power
series in k parameters, denoted C[[x1, . . . , xk]]

×. As above, it consists of formal series f with
non-vanishing first coefficient a0(f) 6= 0, but with product given by the algebra multiplication.
The formula for the inverse is given by the Lagrange inversion formula for formal power series.
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18 CHAPTER 3. HOPF ALGEBRAS AND RENORMALIZATION

4. Birkhoff decomposition

We now briefly recall how renormalization is an instance of a Birkhoff decomposition in the
group of characters of H as established in [8]. Let us first recall the definition of a Birkhoff
decomposition.

We let l : C → G be a loop with values in an arbitrary complex Lie group G, defined on a
smooth simple curve C ⊂ P1(C). Let C± be the two complements of C in P1(C), with ∞ ∈ C−.
A Birkhoff decomposition of l is a factorization of the form

l(z) = l−(z)
−1l+(z); (z ∈ C),

where l± are (boundary values of) two holomorphic maps on C±, respectively, with values in
G. This decomposition gives a natural way to extract finite values from a divergent expression.
Indeed, although l(z) might not holomorphically extend to C+, l+(z) is clearly finite as z → 0.

C

C+

C− ∞

0

We now look at the group G(K) = HomQ(H,K) of K-valued characters of a connected
graded commutative Hopf algebra H, where K is the field of convergent Laurent series in z.2

The product, inverse and unit in the group G(K) are defined by the respective equations:

φ ∗ ψ(X) = 〈φ⊗ ψ,∆(X)〉,
φ−1(X) = φ(S(X)),

e(X) = ǫ(X),

for φ, ψ ∈ G(K). We claim that a map φ ∈ G(K) is in one-to-one correspondence with loops
l on an infinitesimal circle around z = 0 and values in G(Q) = HomQ(H,Q). Indeed, the
correspondence is given by

φ(X)(z) = l(z)(X),

and to give a Birkhoff decomposition for l is thus equivalent to giving a factorization φ = φ−1
− ∗φ+

in G(K). It turns out that for graded connected commutative Hopf algebras such a factorization
exists.

Theorem 17 (Connes–Kreimer [8]). Let H be a graded connected commutative Hopf algebra.
The Birkhoff decomposition of l : C → G (given by an algebra map φ : H → K) exists and is
given dually by

φ−(X) = ǫ(X)− T [m(φ− ⊗ φ)(1⊗ (1− ǫ)∆(X)]

and φ+ = φ− ∗ φ.

2In the language of algebraic geometry, there is an affine group scheme G represented by H in the category
of commutative algebras. In other words, G = HomQ(H, . ) and G(K) are the K-points of the group scheme.

Renormalizing gauge theories & Hopf algebras, Walter D. van Suijlekom (draft June 15, 2010)



19 4. BIRKHOFF DECOMPOSITION

The graded connected property of H assures that the recursive definition of φ− actually
makes sense. In the case of the Hopf algebra of Feynman graphs defined above, the factorization
takes the following form:

φ−(Γ) = −T


φ(Γ) +

∑

γ(Γ

φ−(γ)φ(Γ/γ)




φ+(Γ) = φ(Γ) + φ−(Γ) +
∑

γ(Γ

φ−(γ)φ(Γ/γ)

The key point is now that the Feynman rules actually define an algebra map U : H → K by
assigning to each graph Γ the regularized Feynman rules U(Γ), which are Laurent series in z.
One concludes that the algebra maps U+ and U− in the Birkhoff factorization of U are precisely
the renormalized amplitude R and the counterterm C, respectively. Summarizing, we can write
the BPHZ-renormalization as the Birkhoff decomposition U = C−1 ∗R of the map U : H → K
dictated by the Feynman rules.
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CHAPTER 4

The structure of the Hopf algebra of Feynman graphs

1. The Hopf subalgebra of Green’s functions

Although the previous construction gives a very nice geometrical description of the process
of renormalization, it is a bit unphysical in that it relies on individual graphs. Rather, as
mentioned before, in physics the probability amplitudes are computed from the full expansion
of Green’s functions. Individual graphs do not correspond to physical processes and therefore a
natural question to pose is how the Hopf algebra structure behaves at the level of the Green’s
functions. We will see in the next section that they generate Hopf subalgebras, i.e. the coproduct
closes on Green’s functions. In proving this, the Slavnov–Taylor identities turn out to play an
essential role.

Definition 18. For a vertex or edge r ∈ R we define the 1PI Green’s function by

(1.1) Gr = 1±
∑

res(Γ)=r

Γ

Sym(Γ)

where the sign is + if r is a vertex and − if it is an edge. Finally, we denote the restriction of
the sum to graphs Γ at loop order L(Γ) = L by GrL.

We are particularly interested in the form of the coproduct on 1PI Green’s functions, and
more generally, the Hopf algebra structure of Green’s functions.

1.1. The coproduct on Green’s functions.

Lemma 19 ([19]).

∆(Gr) =
∑

res(Γ)=r

∏

v∈RV

(Gv)mΓ,v
∏

e∈RE

(Ge)−mΓ,e ⊗ Γ

Sym(Γ)
.

We will not proof this here, but give a low-order example in φ3-theory.

Example 20. In φ3-theory, Green functions (with v = and e = )

Gv = 1 +
∑

Γ=

Γ

|Aut(Γ)| Ge = 1−
∑

Γ=

Γ

|Aut(Γ)|

At lowest loop order:

q2(G
v) = + + + 1

2

(
+ +

)
+ 1

2

q2(G
e) = 1

2 + 1
2

and

∆(q2(G
v)) = q2(G

v)⊗ 1 + 1⊗ q2(G
v) + 3 ⊗ + 3

2 ⊗

∆(q2(G
e)) = q2(G

e)⊗ 1 + 1⊗ q2(G
e) + 2

2 ⊗ + 1
2 ⊗

21
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Theorem 21 ([19]). If we label our vertices as RV = {v1, · · · , vk}, then

∆(Gr) =
∑

n1,...,nk∈Z
Gr

k∏

i=1

(
Gvi

∏
e (G

e)Ne(vi)/2

)ni

⊗ pn1,...,nk
(Gr).

Proof. A counting of the number of edges and numbers of vertices in Γ gives the following
relations:

2mΓ,e +Ne(res(Γ)) =
∑

v∈RV

Ne(v)mΓ,v

where Ne(r) is the number of lines (of type e) attached to r ∈ R. For instance Ne( ) equals
2 if e is an electron line and 1 if e is a photon line. One checks the above equality by noting
that the left-hand-side counts the number of internal half lines plus the external lines which are
connected to the vertices that appear at the right-hand-side, taken into account their valence.

With this formula, we can write the expression of Lemma 19 as

(1.2) ∆(Gr) =
∏

e

(Ge)Ne(r)/2
∑

res(Γ)=r

∏

v

(
Gv

∏
e (G

e)Ne(v)/2

)mΓ,v

⊗ Γ

Sym(Γ)
.

It now remains to observe that mΓ,v = dv(Γ) unless v = r (the residue of Γ) in which case
mΓ,v = dv(Γ) + 1. This yields the extra factor Gr. �

Proposition 22. Define elements Yv ∈ H for v ∈ RV as formal expansions:

Yv :=
Gv

∏
e (G

e)Ne(v)/2

The coproduct on (Yv)
α with α ∈ R is given by

∆(Y α
v ) =

∑

n1···nk

Y α
v Y

n1
v1 · · ·Y nk

vk
⊗ pn1···nk

(Y α
v ),

where pn1···nk
is the projection onto graphs containing ni vertices of the type vi (i = 1, . . . , k =

|RV |).
Proof. First, one can obtain from Theorem 21 the coproduct on Gr as

∆(Gr) =
∑

n1,...,nk

GrY n1
v1 · · ·Y nk

vk
⊗ pn1,...,nk

(Gr)

which holds for any r ∈ R. A long but straightforward computation involving formal power
series expansions yields the following expression for real powers (in the above sense) of the
Green’s functions:

∆((Gr)α) =
∑

n1,...,nk

(Gr)αY n1
v1 · · ·Y nk

vk
⊗ pn1,...,nk

((Gr)α),(1.3)

for r ∈ R and α ∈ R. Together with the fact that ∆ is an algebra map, this yields the desired
cancellations so as to obtain the stated formula. �

There is a striking similarity between the above formula for ∆(Yv) and the coproduct in the
Hopf algebra dual to Diff(Ck, 0), as in Lemma 16. In fact, we have the following

Corollary 23. There is a surjective map from the Hopf algebra dual to the group Diff(Ck, 0)op

to the Hopf subalgebra in H generated by pn1···nk
(Yv).

Proof. Whenever (n1, . . . , nk) 6= (0, . . . , 0), we map the coordinates a
(i)
n1...,nk

of Diff(Ck, 0)
to the elements pn1,...,ni−1,...,nk

(Yvi) ∈ H, with k = |RV |. Indeed, pn1···nk
(Yvi) vanishes for all

nj < 0 (j 6= i) and ni < −1, explaining the shift in the i-th index. Moreover, both a
(i)
0,...,0 and

p0,...,0(Yvi) are equal to the identity. �
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23 1. THE HOPF SUBALGEBRA OF GREEN’S FUNCTIONS

Actually, with Equation (1.3) above it is easy to see that the algebra generated by pn1···nk
(Gv)

and pn1···nk
(Ge) for v ∈ RV and e ∈ RE is a Hopf subalgebra, which we denote by HR. In Propo-

sition 38 below we will show that the corresponding dual group is in fact a subgroup of the
semi-direct product (C[[x1, . . . , xk]]

×)|RE | ⋊Diff(Ck, 0).

1.2. Example: Quantum electrodynamics. Let us now apply the above formula to
the case of quantum electrodynamics (QED). In (massless) quantum electrodynamics, there
is only the vertex of valence three, describing the interaction of the photon with a pair of
electrons. There are two types of edges corresponding to the photon (wiggly edge) and the
electron (straight edge). Summarizing, we have in the notation of the previous section: R =
RV ∪RE with

RV = { };
RE = { , }.

In particular, this means that in the process of renormalization, only three types of graphs are
of importance: the vertex graph, the electron self-energy graph and the vacuum polarization.
Correspondingly, we have the three 1PI Green’s functions,

G = 1 +
∑

Γ

Γ

Sym(Γ)
;

Ge = 1−
∑

Γe

Γ

Sym(Γ)
,

with e = , .

Since there is only one vertex in QED, we can use Lemma 14 to simplify Theorem 21 above.

Proposition 24 ([18]). For r = , or the following holds

∆(Gr) =
∞∑

l=0

Gr
(

G

Ge
√
G

)2l

⊗ ql(G
r)

with ql the projection onto graphs of loop order l. �

Corollary 25. The elements ql(G )− ql(G ) ∈ H for l = 1, 2, . . . generate a Hopf ideal
I, i.e.

∆(I) ⊆ I ⊗H +H ⊗ I, ǫ(I) = 0, S(I) ⊆ I.

Proof. This follows easily by applying Proposition 24 to the coproduct evaluated on the
difference G −G , in combination with the recursive definition of the antipode. �

The identities G = G which hold in the corresponding quotient Hopf algebra H/I have
a physical meaning: they are the famous Ward identities of quantum electrodynamics [21]. The
above claim that they can be implemented on the Hopf algebra of Feynman graphs corresponds
to the physical statement that the Ward identities are compatible with renormalization. In fact,
we have the following.

Proposition 26. Suppose the regularized (but unrenormalized) Feynman rules U : H → K
satisfy the Ward identities. Then the counterterms C and the renormalized Feynman rules R
satisfy the Ward identities:

C(G ) = C(G ); R(G ) = R(G )

Note that the first equation is usually written as Z1 = Z2 [21].

Proof. This follows directly from the Birkhoff decomposition (cf. Theorem 17 above)
applied to the character group of the graded connected commutative Hopf algebra H/I. �
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2. Hopf ideals, Ward, and Slavnov–Taylor identities

We will next establish that a quotient of the Hopf algebra generated by pn1,...,nk
(Yv) by a

certain Hopf ideal is isomorphic to the Hopf algebra dual to (a subgroup of) Aut1(C[[x]]) ≡
Diff(C, 0)op. The latter is indeed a subgroup of Diff(Ck, 0)op under the diagonal embedding.

Theorem 27. [19] The ideal J ′ in HR generated by ql

(
Y
N(v)−2
v′ − Y

N(v′)−2
v

)
for v′, v ∈ RV

of valence greater than 2 (l ≥ 0), and Yv for all v of valence 2 is a Hopf ideal, i.e.

∆(J ′) ⊂ J ′ ⊗HR +HR ⊗ J ′.

Proof. First of all, with Proposition 22, the coproduct on Yv for val(v) = 2 is readily found
to be an element in J ′ ⊗HR +HR ⊗ J ′. With Proposition 22, we can write the coproduct on
the other generators of J ′ as

∆
(
Y
N(v)−2
v′ − Y N(v′)−2

v

)
=
∑

n

Y N(v′)−2
v Y n1

v1 · · ·Y nk
vk

⊗ pn
(
Y
N(v)−2
v′ − Y N(v′)−2

v

)

+
∑

n

[
Y
N(v)−2
v′ − Y N(v′)−2

v

]
Y n1
v1 · · ·Y nk

vk
⊗ pn

(
Y
N(v)−2
v′

)

with n the multi-index (n1, . . . , nk). The second term is clearly an element in J ′ ⊗HR. For the
first term, note that each ni’th power of Yvi can be written as

Y ni
vi = Y

ni
N(v)−2
N(v)−2

vi = Y
ni

N(vi)−2

N(v)−2
v + J ′.

Hence, the first term becomes modulo J ′ ⊗HR

∑

n1···nk

(
Y 1/N(v)−2
v

)n1(N(v1)−2)+···+nk(N(vk)−2)
⊗ pn1···nk

(
Y
N(v)−2
v′ − Y N(v′)−2

v

)
.

Appealing to Lemma 14 now allows us to write this in terms of the loop number l to finally
obtain for the first term

∞∑

l=0

Y
2l+1

N(v)−2)
v ⊗ ql

(
Y
N(v)−2
v′ − Y N(v′)−2

v

)
.

which is indeed an element in HR ⊗ J ′. �

As a consequence, the quotient Hopf algebra H̃R = HR/J
′ is well-defined. In H̃R the

relations Y
N(v′)−2
v = Y

N(v)−2
v′ are satisfied. In physics these identities are called Slavnov–Taylor

identities for the couplings; we will see later how they appear naturally from the relations
between coupling constants. Moreover, the fact that we put Yv = 0 for vertices of valence 2
means that we consider a massless theory. Let us make this more explicit in the case of quantum
chromodynamics (without BRST-sources). Recall that the Feynman graphs are now built from
the sets:

RV = { , , , };

RE = { , , },

where the plain, dotted and curly lines represent the quark, ghost and gluon, respectively. The
four ‘couplings’ are

Y =
G

G
√
G

, Y =
G

G
√
G

,

Y =
G

(
G

)3/2 , Y =
G

G
2 .
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The Hopf ideal implements the Slavnov–Taylor relations for the couplings:

(2.1)

G G = G G ;

G G = G G ;

G G = G G .

The compatibility of these relations is now best captured by the following result.

Proposition 28. Suppose the regularized (but unrenormalized) Feynman rules U : H →
K satisfy the Slavnov–Taylor identities for the couplings. Then the counterterms C and the
renormalized Feynman rules R satisfy the Slavnov–Taylor identities:

C(Y ) = C(Y ) = C(Y ) = C(Y√
)

R(Y ) = R(Y ) = R(Y ) = R(Y√
)

Again, the first equation is typically written in terms of Z-factors. This would lead to the
key relation:

(2.2)
Z

Z
√
Z

=
Z

Z
√
Z

=
Z

(
Z

)3/2 =

√
Z

Z
,

where the notation is as above: Zr := C(Gr).

Proof. As in the case of QED, this follows from the Birkhoff decomposition in the character
group of the quotient Hopf algebra H/I. �

Returning to the general case, in H̃R we can drop the subscript v and use the notation

X := Y
1/N(v)−2
v independent of v ∈ RV as long as val(v) > 2.

Theorem 29. The coproduct in H̃R takes the following form on the element X:

∆(X) =
∞∑

l=0

(X)2l+1 ⊗ ql(X).

where ql is the projection in H̃R onto graphs of loop number l.

Proof. This follows directly by substituting X for Xv in the expression for ∆(Xv) in
Proposition 22 and using the relation from Lemma 14 between the number of vertices and the
loop number. �

Thus, the Hopf algebra H̃R contains a Hopf subalgebra that is generated by ql(X) and a
comparison with Eq. (3.3) yields – after identifying ql(X) with a2l – the following result.

Theorem 30. The graded Hopf subalgebra in H̃R generated by ql (X) for l = 0, 1, . . . is
isomorphic to the Hopf algebra of the group of odd formal diffeomorphisms of C tangent to
the identity. In other words, there is a homomorphism from the group of diffeographisms to
Diff(C, 0)op ≡ Aut1(C[[x]]).

This generalizes the result of [9] where such a map was constructed explicitly in the case of
(massless) φ3-theory; for other theories a map has been constructed by Cartier and Krajewski.
In the next section, we will explore its relation with the group of formal diffeomorphisms acting
on the space of coupling constants.
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3. Dyson–Schwinger equations and Hochschild cohomology

In this section, we will review how Hochschild cohomology fits nicely in the context of
renormalization Hopf algebras, following [10, 5] and [15]. In particular, we will relate it to the
Dyson–Schwinger equations and prove the so-called gauge theory theorem that was announced
in [15].

Let us first recall the definition of Hochschild cohomology for Hopf algebras, – or, more
generally, for bialgebras – with values in a bicomodule. This dualizes the definition of Hochschild
cohomology for algebras to bialgebras. Let H be a bialgebra and M an H-bicomodule, i.e.
there are two cocommuting left and right coactions ρL : M → H ⊗M and ρR : M → M ⊗H.
We denote by Cn(H,M) the space of linear maps φ : M → H⊗n and define the Hochschild
coboundary map b : Cn(H,M) → Cn+1(H,M) by

bφ = (id⊗ φ)ρL +
n∑

i=1

(−1)n∆iφ+ (−1)n+1(φ⊗ id)ρR.

where ∆i denotes the application of the coproduct on the i’th factor in H⊗n. Coassociativity
implies that b is a differential, i.e. that b2 = 0.

Definition 31. The Hochschild cohomology HH•(H,M) of the bialgebra H with values in
the H-comodule M is defined as the cohomology of the complex (C•(H,M), b) defined above.

We are interested in the particular case that M = H is a comodule over itself, with ρL =
∆ but with ρR = (id ⊗ ǫ)∆. We denote the Hochschild cohomology groups in this case by
HH•(H,Hǫ) or simply HH•

ǫ (H) as in [10]. Let us consider the case n = 1, then φ ∈ HH1
ǫ (H)

means simply that

∆φ = (id⊗ φ)∆ + (φ⊗ I).

where (φ⊗ I)(h) ≡ φ(h)⊗ 1 for h ∈ H. As was observed in [10] the grafting operator on rooted
trees is an example of such a 1-cocycle. We will give an example in the case of the Hopf algebra
of Feynman graphs (cf. (2) of Theorem 32 below), following [15].

This starts with the observation that the Green’s functions can be dissected as follows [15,
Theorem 4]:

(3.1) Gr =
∑

γ prim

Bγ
+

(∏
v∈RV

(Gv)mγ,v

∏
e∈RE

(Ge)mγ,e

)
=
∑

γ prim

Bγ
+(G

res(γ)X2l(γ))

where Bγ
+ is the (normalized) grafting operator that inserts in γ the graphs given as its argument

on the appropriate insertion places. The sum is over all primitive graphs γ, i.e. satisfying
∆(γ) = γ ⊗ 1 + 1 ⊗ γ. It is clear that any graph in Gr is of the form Bγ

+(Γ1 · · ·ΓN ) for some
1PI graphs Γ1, . . . ,ΓN but this decomposition is highly non-unique. In order to correct for the
overcounting, the grafting operators have to be normalized appropriately as was done in [15].
We will instead take Eq. (3.1) as a definition of the normalized maps Bγ

+, without explicitly
describing this normalization. The sum of the Bγ

+ over all primitive 1PI Feynman graphs at a

given loop order and with given residue will be denoted by Bk;r
+ , as in loc. cit.. More precisely,

Bk;r
+ =

∑

γ prim
l(γ)=k
res(γ)=r

1

Sym(γ)
Bγ

+

and, of course, Gr =
∑

k,r B
k;r
+ (Xk,r), where we have denoted Xk,r = GrX2k. With this and the

formulas of the previous section on QCD, we can prove the gauge theory theorem as formulated
in [15, Theorem 5]:

Theorem 32. Let H̃ = H/I be the Hopf algebra of QCD Feynman graphs (cf. Sect. 2) with
the Slavnov–Taylor identities for the couplings imposed.
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(1) Gr =
∑∞

k=0B
k;r
+ (Xk,r)

(2) ∆(Bk;r
+ (Xk,r)) = Bk;r

+ (Xk,r)⊗ I + (id⊗Bk;r
+ )∆(Xk,r).

(3) ∆(Grk) =
∑k

j=0 Pol
r
j(G)⊗Grk−j.

where Polrj(G) is a polynomial in the Grm of degree j, determined as the order j term in the loop

expansion of GrX2k−2j.

Proof. The first claim is just the definition of the Bk;r
+ . For (2), we first enhance the result

of Eq. (1.3) to partial sums in Gr over graphs that have ‘primitive residue’ isomorphic to a
fixed primitive graph γ. In other words, if Gr,γ is the part of Gr that sums only over graphs
that are obtained by inserting graphs into the primitive graph γ, then

∆(Gr,γ) = Gr,γ ⊗ 1 +
∞∑

l=1

GrX2l ⊗ ql(G
r,γ).

Here we have imposed the Slavnov–Taylor identities for the couplings to write this in terms
of a single coupling, X. Combing Eq. (1.3) and Theorem 29 we obtain for the coproduct of
Xk,r = GrX2k:

∆(Xk,r) =
∞∑

l=0

GrX2l+2k ⊗ qlXk,r.

Since Gr,γ = Bγ
+(Xk,r), it follows by a combination of the above two formula that

∆(Bγ
+(Xk,r)) = Bγ

+(Xk,r)⊗ I + (id⊗Bγ
+)∆(Xk,r).

and summing over all primitive graphs with residue r at loop order k gives the desired result.
Finally, (3) follows by combining Theorem 21 with Proposition 22, thereby taking into

account the Slavnov–Taylor identities. �

Remark 33. We have corrected for the apparent misprint in [15, Eq. (83)].

In fact, this proves the slightly stronger result that every Bγ
+ defines a Hochschild 1-cocycle:

Proposition 34. For γ a primitive graph at loop order k and residue r, we have

∆(Bγ
+(Xk,r)) = Bγ

+(Xk,r)⊗ I + (id⊗Bγ
+)∆(Xk,r).

Actually, the above results apply in full generality for any Hopf algebra as defined in Defi-
nition 13. However, the meaning of the Hopf ideals as imposing Slavnov–Taylor identities can
only be given in the context of a non-abelian gauge theory. Moreover, the above Hochschild

cocycles Bk;r
+ play an important role in that they give quantum equation of motions. These

Dyson–Schwinger equations are the recursive construction of the 1PI Green’s functions Gr from
the lower order Green’s functions in Xk,r forming the argument of the B+-operations. In fact,
Equation (3.1) are precisely the Dyson–Schwinger equations for quantum chromodynamics.
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CHAPTER 5

Coaction of Feynman graphs on fields and couplings

We now connect the above approach to renormalization in the BV-formalism, which differs
slightly from the usual wave function and coupling constant renormalization (see for instance
[1, Section 6]). We will not give proofs of the results, but refer instead to [20] for all details.

We make the following natural assumptions on the map ι : R→ Loc(Φ)

(1) Whenever a fermionic field, say ψ, interacts at a vertex v ∈ RV which does not involve
a BRST-source, then ι(v) involves both ψ and ψ.

(2) There is only one vertex for every BRST-source.
(3) There are no valence two vertices involving two different fields (thus, still allowing mass

terms).

Physically, the last condition means that we require order two polynomials other than mass
terms in the Lagrangian not to be radiatively corrected.

We further assume that we are given elements Cφ ∈ H for each φ ∈ Φ such that the following
hold:

(1) If φ only appears linearly in the Lagrangian then CφCφi1 · · ·Cφi1 = 1 for ι(v) ∝
φφi1 · · ·φim .

(2) If ι(e) ∝ φφ then CφCφ = Ge.

(3) For any field φi we have CKφiCφi = 1.

Note that in general the Cφ’s are not uniquely determined from these conditions. However, in
theories of interest such as Yang–Mills gauge theories, they actually are as illustrated by the
next example.

Example 35. For pure Yang–Mills gauge theories (see for notation Example 2 below) we
have

CA =
√
G ; Cω = (G )

√
G ; Cω = (G )−

1
2 ; Ch = (G )−

1
2 ,

and CKφ = (Cφ)−1 for φ = A,ω, ω, h. Note that CωCω = G which – as we shall see in
Section 4 below – will be the usual wave function renormalization for the ghost propagator.

Returning to the general setup, we assume that we have defined such elements Cφ for all
φ ∈ Φ. One can easily check that if v does not involve a BRST-source term then

Gv
∏
φ (C

φ)
Nφ(v)

=
Gv

∏
e∈RE

(Ge)Ne(v)/2

since a fermionic field φ will always be accompanied by the field φ on a vertex that does not
involve a BRST-source (cf. above), thus reducing the above formula to Eq. (11) in loc. cit..
It is sufficient to consider only the case of no BRST-sources since in either case (for r with or
without BRST-source) the v’s appearing in the above formula will never involve a BRST-source.

One can also show that

∆(Cφ) =
∑

n1,...,nk

CφY n1
v1 · · ·Y nk

vk
⊗ pn1,...,nk

(Cφ),(0.2)

29
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1. The comodule BV-algebra of coupling constants and fields

Since the coupling constants measure the strength of the interactions, we label them by the
elements v ∈ RV and write accordingly λv. We consider the algebra AR generated by local
functionals in the fields and formal power series (over C) in the coupling constants λv. In other
words, we define AR := C[[λv1 , . . . , λvk ]]⊗C F([Φ]) where k = |RV |. The BV-algebra structure
on F([Φ]) defined in the previous section induces a natural BV-algebra structure on AR; we
denote the bracket on it by (·, ·) as well.

Recall the notation HR for the Hopf subalgebra generated by the elements pn1,...,nk
(Yv)

(v ∈ RV ) and pn1,...,nk
(Cφ) (e ∈ RE) in the Hopf algebra of Feynman graphs.

Theorem 36. The algebra AR is a comodule BV-algebra for the Hopf algebra HR. The
coaction ρ : AR → AR ⊗HR is given on the generators by

ρ : λv 7−→
∑

n1···nk

λvλ
n1
v1 · · ·λnk

vk
⊗ pn1···nk

(Yv),

ρ : φ 7−→
∑

n1···nk

φ λn1
v1 · · ·λnk

vk
⊗ pn1···nk

(Cφ),

for φ ∈ Φ, while it commutes with partial derivatives on φ.

Corollary 37 ([20]). The Green’s functions Gv ∈ HR can be obtained when coacting
on the monomial

∫
M λvι(v)(x)dµ(x) =

∫
M λv∂~µ1φi1(x) · · · ∂~µMφiM (x)dµ(x) for some index set

{i1, . . . , iM}. Explicitly,

ρ

(∫

M
λv∂~µ1φi1(x) · · · ∂~µMφiM (x)

)
=
∑

n1···nk

λvλ
n1
v1 · · ·λnk

vk

∫

M
∂~µ1φi1(x) · · · ∂~µMφiM (x)⊗pn1···nk

(Gv).

Combining Theorem 36 with Corollary 23 yields an induced coaction on C[[λv1 , . . . , λvk ]]
of the Hopf algebra dual to the group of diffeomorphisms on Ck tangent to the identity. The

formula for this coaction can be obtained by substituting a
(i)
n1···nk

for pn1···nk
(Yvi) in the above

formula for ρ(λv). It induces a group action of Diff(Ck, 0) on C[[λv1 , . . . , λvk ]] by f(a) :=

(1⊗ f)ρ(a) for f ∈ Diff(Ck, 0) and a ∈ C[[λv1 , . . . , λvk ]]. In fact, we have the following

Proposition 38 ([20]). Let G be the group consisting of BV-algebra maps f : AR → AR
given on the generators by

f(λv) =
∑

n1···nk

fvn1···nk
λvλ

n1
v1 · · ·λnk

vk
; (v ∈ RV ),

f(φi) =
∑

n1···nk

f in1···nk
φiλ

n1
v1 · · ·λnk

vk
; (i = 1, . . . , N),

where fvn1···nk
, f in1···nk

∈ C are such that fv0···0 = f i0···0 = 1. Then the following hold:

(1) The character group GR of the Hopf algebra HR generated by pn1···nk
(Yv) and pn1···nk

(Cφ)
with coproduct given in Proposition 22, is a subgroup of G.

(2) The subgroup N := {f : f(λv) = λv} of G is normal and isomorphic to (C[[λv1 , . . . , λvk ]]
×)|RE |.

(3) G ≃ (C[[λv1 , . . . , λvk ]]
×)|RE | ⋊Diff(Ck, 0).

The action of (the subgroup of) (C[[λv1 , . . . , λvk ]]
×)|RE | ⋊ Diff(Ck, 0) on AR has a natural

physical interpretation: the invertible formal power series act on every propagating field as wave
function renormalization whereas the diffeomorphisms act on the coupling constants λ1, . . . , λk.
The similarity with the semi-direct product structures obtained (via different approaches) in
[13] for a scalar field theory and in [6, 7] for quantum electrodynamics is striking.

Example 39. Consider again pure Yang–Mills theory with fields A,ω, ω and h. Then,
under the counterterm map γ−(z) ∈ GR (cf. Section 4) we can identify (CA)2 = G with wave
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31 1. THE COMODULE BV-ALGEBRA OF COUPLING CONSTANTS AND FIELDS

function renormalization for the gluon propagator, and the combination CωCω = G with
wave function renormalization for the ghost propagator. The above action of γ−(z) on the fields
A,ω, ω is thus equivalent to wave function renormalization. We will come back to Yang–Mills
theories in more detail in Section 4 below.

1.1. The master equation. The dynamics and interactions in the physical system is
described by means of a so-called action S. In our formalism, S will be an element in AR of
polynomial degree ≥ 2 of the form,

(1.1) S[φ] =
∑

e∈RE

∫
dµ(x) ι(e)(x) +

∑

v∈RV

∫
dµ(x) λv ι(v)(x)

The first sum in S describes the free field theory containing the propagators of the (massless)
fields. The second term describes the interactions including the mass terms. Note that due to
the restrictions in the sums, the action has finitely many terms, that is, it is a (local) polynomial
functional in the fields rather than a formal power series.

The action S is supposed to be invariant under some group of gauge transformations.1 We
accomplish this in our setting by imposing the (classical) master equation,

(1.2) (S, S) = 0,

as relations in the BV-algebra AR.

Proposition 40 ([20]). The BV-ideal I = 〈(S, S)〉 is generated by polynomials in λv (v ∈
RV ), independent of the fields φ ∈ Φ.

We still denote the image of the action S in AR/I under the quotient map by S; it satisfies
the master equation (1.2) with the brackets as defined before. If we make the natural assumption
that S is at most of order one in the BRST-sources, we can write

(1.3) S = S0[λv, φi] +
N∑

i=1

rkEi∑

a=1

∫
dµ(x)(sφi)

a(x)Ka
φi
(x).

with sφi dictated by the previous form of S. Of course, this is the familiar BRST-differential
acting on the field φi as a graded derivation and obviously satisfies sφi(x) = (S, φi(x)). As
usual, validity of the master equation (S, S) = 0 implies that s is nilpotent:

s2(φi) = (S, (S, φi)) = ±((S, S), φi) = 0

using the graded Jacobi identity. Moreover, the action S0 depending on the fields is BRST-
closed, i.e. sS0 = 0, which follows by considering the part of the master equation (S, S) = 0
that is independent of the BRST-sources.

The following result establishes an action and coaction on the quotient BV-algebra AR/I.

Theorem 41 ([20]). Let GIR be the (closed) subgroup of GR defined in Proposition 38
consisting of diffeomorphisms f that leave I invariant, i.e. such that f(I) ⊂ I.

(1) The group GIR acts on the quotient BV-algebra AR/I.
(2) The ideal in HR defined by

(1.4) J :=
{
X ∈ HR : f(X) = 0 for all f ∈ GIR

}

is a Hopf ideal.

Consequently, GIR ≃ HomC(HR/J,C) and the quotient Hopf algebra H̃R = HR/J coacts on
AR/I.

1In addition, it is supposed to be invariant under the symmetry group of the underlying spacetime one works
on, typically the Lorentz group. However, these transformations are linear in the fields and will consequently
not give rise to non-linear equations such as the master equation discussed here. See for instance [14] for more
details.
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We denote the coaction of H̃R := HR/J on AR by ρ̃; it is given explicitly by

(1.5) ρ̃(a+ I) = (πI ⊗ πJ) ρ(a),

for a ∈ AR; also, πI and πJ are the projections onto the quotient algebra and Hopf algebra by
I and J respectively.

Let us now justify the origin of the explicit Hopf ideals that we have encountered in the
previous section in the case that all coupling constants coincide. This happens for instance in
the case of Yang–Mills theory with a simple gauge group, which is discussed in Section 4. In
general, we make the following definition.

Definition 42. A theory defined by S is called simple when the following holds modulo the
ideal 〈λv〉val(v)=2:

(1.6) I = 〈λN(v)−2
v′ − λN(v′)−2

v 〉val(v),val(v′)>2

In other words, if we put the mass terms in S to zero, then the ideal I should be generated by

the differences λ
N(v)−2
v′ − λ

N(v′)−2
v for vertices with valence greater than 2. We denote by I ′ the

ideal in Eq. (1.6) modulo 〈λv〉val(v)=2. A convenient choice of generators for I ′ is the following.

Fix a vertex v ∈ RV of valence three,2 and define g := λv as the ‘fundamental’ coupling constant.
Then I ′ is generated by λv with val(v) = 2 and λv′ − gN(v′)−2 with val(v′) > 2. Recall the ideal
J ′ from the previous section.

Theorem 43 ([20]). Let S define a simple theory in the sense described above.

(1) The subgroup GI
′

of diffeomorphisms that leave I ′ invariant is isomorphic to HomC(HR/J
′,K).

(2) The Hopf algebra HR/J
′ coacts on C[[g, φ]] := AR/I

′ via the map

ρ̃′ : g 7−→
∞∑

l=0

g2l+1 ⊗ ql(X),

ρ̃′ : φ 7−→
∞∑

l=0

g2lφ⊗ ql(C
φ).

Corollary 44. The group GI
′

R acts on AR/I
′ as a subgroup of (C[[g]]×)|RE | ⋊Diff(C, 0).

This last result has a very nice physical interpretation: the invertible formal power series act
on the |RE | propagating fields as wave function renormalization whereas the diffeomorphisms
act on one fundamental coupling constant g. We will appreciate this even more in the next
section where we discuss the renormalization group flow.

2. Example: pure Yang–Mills theory

In the setting of Section 1.1, the action S for pure Yang–Mills theory is the local functional

S =

∫

M
tr

[
− dA ∗ dA− λA3dA ∗ [A,A]− 1

4
λA4 [A,A] ∗ [A,A]−A ∗ dh+ dω ∗ dω +

1

2
ξh ∗ h

(2.1)

+λωAωdω ∗ [A,ω]
]
− 〈dω,KA〉+ λAωKA

〈[A,ω],KA〉+ 〈h,Kω〉+
1

2
λω2Kω

〈[ω, ω],Kω〉

where ∗ denotes the Hodge star operator and ξ is the so-called gauge fixing (real) parameter.
Also 〈·, ·〉 denotes the pairing between 1-forms and vector fields (or 0-forms and 0-forms). In
contrast with the usual formula for the action in the literature, we have inserted the different
coupling constants λv for each of the interaction monomials in the action. We will now show
that validity of the master equation (S, S) = 0 implies that all these coupling constants are
expressed in terms of one single coupling.

2We suppose that there exists such a vertex; if not, the construction works equally well by choosing the
vertex of lowest valence that is present in the set RV .
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First, using Eq. (1.3) we derive from the above expression the BRST-differential on the
generators

sA = −dω − λAωKA
[A,ω], sω = −1

2
λω2Kω

[ω, ω], sω = −h, sh = 0

The BRST-differential is extended to all of Loc(p,q)(Φ) by the graded Leibniz rule, and imposing
it to anti-commute with the exterior derivative d. Actually, rather than on Loc(Φ), the BRST-
differential is defined on the algebra C[[λA3 , λA4 , λωAω, λAωKA

, λω2Kω
]] ⊗ Loc(Φ). However, in

order not to loose ourselves in notational complexities, we denote this tensor product by Loc(Φ)
as well.

Now, validity of the master equation implies that s2 = 0. One computes using the graded
Jacobi identity that

s2(A) =
(
λAωKA

− λω2Kω

)
[dω, ω] +

1

2

(
λ2AωKA

− λAωKA
λω2Kω

)
[A, [ω, ω]].

from which it follows that λAωKA
= λω2Kω

. Thus, with this relation the s becomes a differential,
and forms – together with the exterior derivative – the previously described bicomplex in which
s ◦ d+ d ◦ s = 0.

Next, the master equation implies that sS0 = 0 and a lengthy computation yields for the
first three terms in S0 that

s

(
−dA ∗ dA− λA3dA ∗ [A,A]− 1

4
λA4 [A,A] ∗ [A,A]

)
=

2 (λAωKA
− λA3) dA ∗ [A, dω] + (λA4 − λA3λAωKA

)[dω,A] ∗ [A,A]

+λAωKA

(
−dA ∗ dA− λA3dA ∗ [A,A]− 1

4
λA4 [A,A] ∗ [A,A] , ω

)
.

The last term is a commutator on which the trace vanishes and one is thus left with the equalities
λAωKA

= λA3 and λA4 = λA3λAωKA
. The remaining terms in S0 yield under the action of s

s

(
−A ∗ dh+ dω ∗ dω +

1

2
ξh ∗ h+ λωAωdω ∗ [A,ω]

)
=

(λAωKA
− λωAω)[A,ω] ∗ dh+ (λω2Kω

− λωAω)dω ∗ [dω, ω].
Thus, the master equation implies λAωKA

= λωAω and λω2Kω
= λωAω.

Finally, if we write g = λA3 , the master equation implies that

(2.2) λA4 = g2 and λωAω = λAωKA
= λω2Kω

= g.

This motivates our definition of a simple theory in Section 1.1 above. Imposing these relations
reduces the action S to the usual

S =

∫

M
tr

[
− F ∗ F −A ∗ dh+ dω ∗ dω + gdω ∗ [A,ω] + 1

2
ξh ∗ h+ sA ∗KA + sω ∗Kω + sω ∗Kω

]

with the field strength F given by F = dA+ g
2 [A,A] and the BRST-differential now given by

sA = −dω − g[A,ω], sω = −1

2
g[ω, ω], sω = −h, sh = 0.

The extension to include fermions is straightforward, leading to similar expressions of the cor-
responding coupling constants in terms of g.

2.1. The action of GR. As alluded to before, when the counterterm map – seen as an
element in GR – acts on the action S, it coincides with wave function renormalization. Let us
make this precise in the present case. Clearly, wave function renormalization is given by the
following factors:

ZA = γ−(z)(G ); Zω = Zω = γ−(z)(G ).
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With this definition and Theorem 36 we find that γ−(z) acts as

γ−(z) · (dA ∗ dA) = γ−(z)
(
(CA)2

)
dA ∗ dA = ZA dA ∗ dA

γ−(z) · (dω ∗ dω) = γ−(z)(C
ωCω)dω ∗ dω = Zω dω ∗ dω

by definition of the Cφ’s. This is precisely wave function renormalization for the gluon and ghost
fields. Thus, renormalizing through the coefficients γ−(z)(Cφ) – although more appropriate for
the BV-formalism – is completely equivalent to the usual wave function renormalization (see
also [1, Section 6]).

By construction, the terms −A∗dh and 〈h,Kω〉 do not receive radiative corrections. Indeed,
this follows from the relations:

CbCA = 1; CKωCb = 1,

in HR. Consequently, GR – and in particular the counterterm map γ−(z) – acts as the identity
on these monomials.

In fact, one realizes that S0 = γ−(z) · S is the renormalized action, and since γ−(z) ∈ GR
acts as a BV-algebra map, also S0 satisfies the master equation (S0, S0) = 0.

2.2. The Slavnov–Taylor identities. We now use Theorem 43 to obtain the relations
between the Green’s function in Yang–Mills equations that are induced by the above master
equation (S, S) = 0. In fact, the action S defines a simple theory in the sense defined before and
Equation (2.2) implies that the following relations hold in the quotient Hopf algebra HR/J

′:

Y = (Y )2 and Y = Y = Y = Y .

In terms of the Green’s functions the most relevant read

G

(G )2
=

(
(G )

(G )3/2

)2

,
G

(G )3/2
=

G

(G )1/2G
, and G = G .

These are precisely the Slavnov–Taylor identities for the coupling constants for pure Yang–Mills
theory with a simple Lie group.
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