Noncommutative tori and the Riemann-Hilbert correspondence

Walter D. van Suijlekom Radboud Universiteit Nijmegen (joint work with Snigdhayan Mahanta, MPIM Bonn)

5 September 2007

Outline

Goal: Study interplay noncommutative differential and noncommutative algebraic geometry by means of an example.

Common principle: trade spaces for algebras

Examples:		
affine varieties	\leftrightarrow	finitely generated domains
X		affine coordinate ring $A(X)$
top. Hausdorff spaces	\leftrightarrow	commutative C^* -algebras
X		continuous functions $C(X)$

- Relax commutativity: { noncommutative differential geometry noncommutative algebraic geometry
- Applications of NCG in ordinary geometry: use noncommutative algebra to describe "bad quotients".

Example 1: Noncommutative torus

- Leaf space of Kronecker foliation of torus: non-Hausdorff space S¹/θZ with θ irrational.
- Better description by crossed product A_θ = C(S¹) ⋊_θ Z.
 Explicitly: A_θ is generated by two unitaries U₁, U₂ such that

 $U_1U_2 = e^{2\pi i\theta}U_2U_1$

• Two corresponding derivations: δ_1, δ_2 :

$$\delta_j(U_k)=2\pi i\delta_{jk}U_k.$$

 Vector bundles on S¹/θZ are described by finite projective (right) A_θ-modules.

Holomorphic vector bundles on \mathbb{T}_{θ} .

Let $\delta_{\omega} := \omega_1 \delta_1 + \omega_2 \delta_2$ with ω_1, ω_2 two complex numbers. If $(\omega_1, \omega_2) = (\tau, 1)$ we set $\delta_{\tau} := \delta_{\omega}$.

- A holomorphic vector bundle is given by a pair (E, ∇_ω) with E finite projective A_θ-module and ∇_ω a connection associated to the differential δ_ω
- Denote by Vect(T^ω_θ) the category of holomorphic vector bundles.

Proposition

(a) If g is an element in SL(2, Z), then Vect(T^{gω}_θ) ≃ Vect(T^ω_θ).
(b) If ω₂ ≠ 0 and τ = ^{ω₁}/_{ωⁿ}, then Vect(T^ω_θ) ≃ Vect(T^τ_θ).

The category Vect($\mathbb{T}_{\theta}^{\tau}$) turns out to be an abelian category [PS] (i.e. kernels and cokernels of morphisms $f: (E, \nabla) \to (E', \nabla')$ are in Vect($\mathbb{T}_{\theta}^{\tau}$)

Example 2: Noncommutative elliptic curves

- \mathbb{C}^* with action of \mathbb{Z} : $n \cdot z \mapsto q^n z$ for some $q \in \mathbb{C}$.
- Consider the following category of modules over $\mathcal{O}(\mathbb{C}^*)$:

• If |q| < 1, $q = e^{2\pi i \tau}$, then $\mathcal{B}_q \simeq \operatorname{Coh}(X_{\tau})$ with X_{τ} the elliptic curve (i.e. $\mathbb{C}^*/q^{\mathbb{Z}}$) and \mathcal{F} is a coherent sheaf, i.e.

$$\mathcal{O}^m_{\mathbb{C}^*} \to \mathcal{O}^n_{\mathbb{C}^*} \to \mathcal{F} \to 0$$

• Again, if $q = e^{2\pi i\theta}$ with θ irrational real then the quotient $C^*/q^{\mathbb{Z}}$ is not Hausdorff but we can define the category of coherent sheaves on $\mathbb{C}^*/q^{\mathbb{Z}}$ by \mathcal{B}_q [SV]. Spirit: Gabriel-Rosenberg Theorem: reconstruct variety from the category of coherent sheaves.

Goal: link these two examples functorially via a category \mathcal{B}_q^{τ} and study its properties.

The category \mathcal{B}_{q}^{τ}

Intermediate category between \mathcal{B}_q and $\operatorname{Vect}(\mathbb{T}_{\theta}^{\tau})$; Objects of \mathcal{B}_q^{τ} are triples (M, σ, ∇) :

• *M*: finite presentable $\mathcal{O}(\mathbb{C}^*)$ -module, i.e.

$$\mathcal{O}(\mathbb{C}^*)^m \to \mathcal{O}(\mathbb{C}^*)^n \to M \to 0$$

• σ : action of $\theta \mathbb{Z}$ on M that covers the action α on $\mathcal{O}(\mathbb{C}^*)$, i.e.

$$\sigma(\boldsymbol{m}\cdot\boldsymbol{f})=\sigma(\boldsymbol{m})\alpha(\boldsymbol{f})$$

• ∇ : $\theta \mathbb{Z}$ -equivariant connection on M lifting $\delta = \tau z d/dz$, i.e.

$$abla(m \cdot f) = \nabla(m) \cdot f + m \cdot \delta(f); \qquad \nabla(\sigma(m)) = \sigma(\nabla(m)).$$

We impose that ∇ is regular singular so that there exists a module basis e_k for M such that the holomorphic functions $z^{-1}A_{ij}$ defined by $A_{ij}e_j = \nabla(e_i)$ have simple poles at 0.

- The modules M turn out to be **free**: this follows from the equivariance condition or from the fact that they allow a connection. - \mathcal{B}_q^{τ} is an abelian category. Relation with the noncommutative torus Consider the following restriction of a holomorphic function on \mathbb{C}^* to the unit circle, embedded in the <u>smooth</u> noncommutative torus:

$$\psi: \mathcal{O}(\mathbb{C}^*) \to \mathcal{A}_{ heta}$$

$$\sum_{n \in \mathbb{Z}} f_n z^n \mapsto \sum_{n \in \mathbb{Z}} f_n U_1^t$$

- This makes $\mathcal{A}_{\theta} \ a \ \mathcal{O}(\mathbb{C}^*)$ -module: $f \cdot a = \psi(f)a$.
- ψ is injective since a holomorphic function that vanishes on S^1 , vanishes everywhere on \mathbb{C}^* .

Proposition

The association $(M, \sigma, \nabla) \mapsto (\tilde{M}, \tilde{\nabla})$ defines a functor ψ_* from \mathcal{B}_q^{τ} to $\operatorname{Vect}(\mathbb{T}_{\theta}^{\tau})$ where

$$\begin{split} ilde{\mathcal{M}} &= \mathcal{M} \otimes_{\mathcal{O}(\mathbb{C}^*)} \mathcal{A}_{ heta} \ ilde{
abla} &= 2\pi i
abla \otimes 1 + 1 \otimes \delta_{ au} \qquad (\textit{with } \delta_{ au} = au \delta_1 + \delta_2). \end{split}$$

Properties of the functor ψ_*

First of all, it turns out that the module \mathcal{A}_{θ} over $\mathcal{O}(\mathbb{C}^*)$ (via ψ) is flat (i.e. tensor product $_{--} \otimes_{\mathcal{O}(\mathbb{C}^*)} \mathcal{A}_{\theta}$ preserves exact sequences). As a corollary to this and to injectivity of ψ :

Proposition

The functor $\psi_* : \mathcal{B}_q^{\tau} \to \text{Vect}(\mathbb{T}_{\theta}^{\tau})$ is exact and faithful (i.e. injective on morphisms).

Summary:

with all arrows faithful and exact functors.

The Riemann-Hilbert correspondence on \mathbb{C}^*

Correspondence between linear differential equations on \mathbb{C}^* and representations of the fundamental group $\pi_1(\mathbb{C}^*, z_0) \simeq \mathbb{Z}$.

Categorically,

{vector bundles on \mathbb{C}^* with a connection ∇ } \uparrow {finite dimensional representations of fundamental group}.

The correspondence is given by taking germs of local solutions of the differential equation $\nabla U = 0$ at the point z_0 ; the fundamental group acts on the resulting vector space (monodromy).

The equivariant Riemann-Hilbert correspondence Theorem

 \mathcal{B}_q^{τ} is equivalent to the category $\operatorname{Rep}(\mathbb{Z}^2)$ of representations of \mathbb{Z}^2 .

As a consequence, it is a so-called Tannakian category: a (rigid) tensor category with a fiber functor.

• We define a tensor product on \mathcal{B}_q^{τ} as follows:

$$(M,\sigma,
abla)\!\otimes\!(N,\sigma',
abla')=(M\!\otimes_{\mathcal{O}(\mathbb{C}^*)}\!N,\ \sigma\!\otimes\!\sigma',\
abla\!\otimes\!1\!+\!1\!\otimes\!
abla')$$

• Rigidity: dual object

•
$$M^{\vee} = \operatorname{Hom}_{\mathcal{O}(\mathbb{C}^*)}(M, \mathcal{O}(\mathbb{C}^*))$$

•
$$\sigma^{\vee}(f) = \alpha \circ f \circ \sigma^{-1}$$

$$\nabla^{\vee}(f) = \delta \circ f - f \circ \nabla.$$

Fiber functor:

$$\omega: \mathcal{B}^{ au}_{q}
ightarrow \mathsf{Vect}_{\mathbb{C}}$$
 $(M, \sigma,
abla) \mapsto (\mathsf{ker}
abla)_{z_0}$

Proof of Theorem

Proposition

For each object in \mathcal{B}_q^{τ} there is an isomorphic object (M, σ, ∇) with

- $M = V \otimes \mathcal{O}(\mathbb{C}^*)$ with V a vector space
- $\sigma(v \otimes f) = Bv \otimes \alpha(f)$ for an invertible constant matrix B.
- ∇ = δ + A with A a constant matrix with all eigenvalues in the same transversal T to θZ in C.

N.B. If (M, σ, ∇) and (M', σ', ∇') are of this form (with same transversal) then $\operatorname{Hom}_{\mathcal{O}(\mathbb{C}^*)}(M, M') \subset \operatorname{Hom}_{\mathbb{C}}(V, V')$. This implies that $\omega : \mathcal{B}_{a}^{\mathsf{T}} \to \operatorname{Vect}_{\mathbb{C}}$ is faithful.

Equivalence functor

- Fix a transversal T to $\tau \mathbb{Z}$ in \mathbb{C}^* and let (V, ρ_1, ρ_2) be an object in Rep (\mathbb{Z}^2) .
- We can write ρ₁(1) =: e^{2πiA/τ} such that A is the unique matrix with all eigenvalues in T.
- Also, write $\rho_2(1) =: B$ so that A and B are constant matrices.

They define an element in \mathcal{B}_q^{τ} denoted $\mathsf{F}_{\mathsf{T}}(V, \rho_1, \rho_2)$. For a morphism ϕ in $\mathsf{Rep}(\mathbb{Z}^2)$ we set $\mathsf{F}_{\mathsf{T}}(\phi) = \phi \otimes 1$.

Proposition

The above association defines a functor $F_T : \operatorname{Rep}(\mathbb{Z}^2) \to \mathcal{B}_q^{\tau}$ which is fully faithful and essentially surjective.