Noncommutative tori and the Riemann-Hilbert correspondence

Walter D. van Suijlekom
Radboud Universiteit Nijmegen
(joint work with Snigdhayan Mahanta, MPIM Bonn)

5 September 2007
Outline

Goal: Study interplay noncommutative differential and noncommutative algebraic geometry by means of an example.

Common principle: trade spaces for algebras

Examples:

- affine varieties \(\leftrightarrow \) finitely generated domains

 \[X \leftrightarrow A(X) \]

- top. Hausdorff spaces \(\leftrightarrow \) commutative \(C^* \)-algebras

 \[X \leftrightarrow C(X) \]

- Relax commutativity: \[\text{noncommutative differential geometry} \]

- Applications of NCG in ordinary geometry: use noncommutative algebra to describe “bad quotients”.
Example 1: Noncommutative torus

- Leaf space of Kronecker foliation of torus: non-Hausdorff space $S^1/\theta \mathbb{Z}$ with θ irrational.
- Better description by crossed product $A_\theta = C(S^1) \rtimes_\theta \mathbb{Z}$. Explicitly: A_θ is generated by two unitaries U_1, U_2 such that
 \[U_1 U_2 = e^{2\pi i \theta} U_2 U_1 \]
- Two corresponding derivations: δ_1, δ_2:
 \[\delta_j(U_k) = 2\pi i \delta_{jk} U_k. \]
- Vector bundles on $S^1/\theta \mathbb{Z}$ are described by finite projective (right) A_θ-modules.
Holomorphic vector bundles on \mathbb{T}_θ.

Let $\delta_\omega := \omega_1 \delta_1 + \omega_2 \delta_2$ with ω_1, ω_2 two complex numbers.
If $(\omega_1, \omega_2) = (\tau, 1)$ we set $\delta_\tau := \delta_\omega$.

- A **holomorphic vector bundle** is given by a pair (E, ∇_ω) with E finite projective A_θ-module and ∇_ω a connection associated to the differential δ_ω.

- Denote by $\text{Vect}(\mathbb{T}_\theta^\omega)$ the category of holomorphic vector bundles.

Proposition

(a) *If g is an element in $SL(2, \mathbb{Z})$, then $\text{Vect}(\mathbb{T}_\theta^{g\omega}) \simeq \text{Vect}(\mathbb{T}_\theta^\omega)$.***

(b) *If $\omega_2 \neq 0$ and $\tau = \frac{\omega_1}{\omega_2}$, then $\text{Vect}(\mathbb{T}_\theta^{\omega}) \simeq \text{Vect}(\mathbb{T}_\theta^{\tau})$.***

The category $\text{Vect}(\mathbb{T}_\theta^{\tau})$ turns out to be an abelian category [PS]

(i.e. kernels and cokernels of morphisms $f : (E, \nabla) \to (E', \nabla')$ are in $\text{Vect}(\mathbb{T}_\theta^{\tau})$)
Example 2: Noncommutative elliptic curves

- \mathbb{C}^* with action of \mathbb{Z}: $n \cdot z \mapsto q^n z$ for some $q \in \mathbb{C}$.
- Consider the following category of modules over $\mathcal{O}(\mathbb{C}^*)$:

$$\mathcal{B}_q := \left\{ \text{Finitely presentable } \mathbb{Z}-\text{equivariant } \mathcal{O}(\mathbb{C}^*)\text{-modules} \right\}$$

- If $|q| < 1$, $q = e^{2\pi i \tau}$, then $\mathcal{B}_q \simeq \text{Coh}(X_\tau)$ with X_τ the elliptic curve (i.e. $\mathbb{C}^*/q\mathbb{Z}$) and \mathcal{F} is a coherent sheaf, i.e.

$$\mathcal{O}_{\mathbb{C}^*}^m \rightarrow \mathcal{O}_{\mathbb{C}^*}^n \rightarrow \mathcal{F} \rightarrow 0$$

- Again, if $q = e^{2\pi i \theta}$ with θ irrational real then the quotient $\mathbb{C}^*/q\mathbb{Z}$ is not Hausdorff but we can define the category of coherent sheaves on $\mathbb{C}^*/q\mathbb{Z}$ by \mathcal{B}_q [SV].

Spirit: Gabriel-Rosenberg Theorem: reconstruct variety from the category of coherent sheaves.

Goal: link these two examples functorially via a category \mathcal{B}_q^{τ} and study its properties.
The category \mathcal{B}_q^τ

Intermediate category between \mathcal{B}_q and $\text{Vect}(\mathbb{T}_\theta^\tau)$;

Objects of \mathcal{B}_q^τ are triples (M, σ, ∇):

- M: finite presentable $\mathcal{O}(\mathbb{C}^*)$-module, i.e.
 \[
 \mathcal{O}(\mathbb{C}^*)^m \rightarrow \mathcal{O}(\mathbb{C}^*)^n \rightarrow M \rightarrow 0
 \]

- σ: action of $\theta\mathbb{Z}$ on M that covers the action α on $\mathcal{O}(\mathbb{C}^*)$, i.e.
 \[
 \sigma(m \cdot f) = \sigma(m)\alpha(f)
 \]

- ∇: $\theta\mathbb{Z}$-equivariant connection on M lifting $\delta = \tau zd/dz$, i.e.
 \[
 \nabla(m \cdot f) = \nabla(m) \cdot f + m \cdot \delta(f); \quad \nabla(\sigma(m)) = \sigma(\nabla(m)).
 \]

We impose that ∇ is regular singular so that there exists a module basis e_k for M such that the holomorphic functions $z^{-1}A_{ij}$ defined by $A_{ij}e_j = \nabla(e_i)$ have simple poles at 0.

- The modules M turn out to be free: this follows from the equivariance condition or from the fact that they allow a connection.
- \mathcal{B}_q^τ is an abelian category.
Relation with the noncommutative torus

Consider the following restriction of a holomorphic function on \mathbb{C}^* to the unit circle, embedded in the smooth noncommutative torus:

$$\psi : \mathcal{O}(\mathbb{C}^*) \rightarrow A_\theta$$

$$\sum_{n \in \mathbb{Z}} f_n z^n \longmapsto \sum_{n \in \mathbb{Z}} f_n U_1^n$$

- This makes A_θ a $\mathcal{O}(\mathbb{C}^*)$-module: $f \cdot a = \psi(f)a$.
- ψ is injective since a holomorphic function that vanishes on S^1, vanishes everywhere on \mathbb{C}^*.

Proposition

The association $(M, \sigma, \nabla) \mapsto (\tilde{M}, \tilde{\nabla})$ defines a functor ψ_* from \mathcal{B}_q^τ to $\text{Vect}(\mathbb{T}_\theta^\tau)$ where

$$\tilde{M} = M \otimes_{\mathcal{O}(\mathbb{C}^*)} A_\theta$$

$$\tilde{\nabla} = 2\pi i \nabla \otimes 1 + 1 \otimes \delta_\tau \quad (\text{with} \ \delta_\tau = \tau \delta_1 + \delta_2).$$
Properties of the functor ψ_*

First of all, it turns out that the module A_θ over $O(C^*)$ (via ψ) is flat (i.e. tensor product $\bigotimes_{O(C^*)} A_\theta$ preserves exact sequences). As a corollary to this and to injectivity of ψ:

Proposition

The functor $\psi_* : B^\tau_q \to Vect(T^\tau_\theta)$ is exact and faithful (i.e. injective on morphisms).

Summary:

\[
\begin{array}{ccc}
B^\tau_q & \xrightarrow{\psi_*} & B^\tau \\
\downarrow & & \downarrow \\
B_q & \xleftarrow{\psi_*} & Vect(T^\tau_\theta)
\end{array}
\]

with all arrows faithful and exact functors.
The Riemann-Hilbert correspondence on \mathbb{C}^*

Correspondence between linear differential equations on \mathbb{C}^* and representations of the fundamental group $\pi_1(\mathbb{C}^*, z_0) \simeq \mathbb{Z}$.

Categorically,

$$\{\text{vector bundles on } \mathbb{C}^* \text{ with a connection } \nabla\} \xleftrightarrow{\text{}} \{\text{finite dimensional representations of fundamental group}\}.$$

The correspondence is given by taking germs of local solutions of the differential equation $\nabla U = 0$ at the point z_0; the fundamental group acts on the resulting vector space (monodromy).
The equivariant Riemann-Hilbert correspondence

Theorem

\mathcal{B}_q^τ is equivalent to the category $\text{Rep}(\mathbb{Z}^2)$ of representations of \mathbb{Z}^2.

As a consequence, it is a so-called Tannakian category: a (rigid) tensor category with a fiber functor.

- We define a tensor product on \mathcal{B}_q^τ as follows:

 $$ (M, \sigma, \nabla) \otimes (N, \sigma', \nabla') = (M \otimes \mathcal{O}(\mathbb{C}^*) N, \sigma \otimes \sigma', \nabla \otimes 1 + 1 \otimes \nabla') $$

- **Rigidity:** dual object

 - $M^\vee = \text{Hom}_{\mathcal{O}(\mathbb{C}^*)}(M, \mathcal{O}(\mathbb{C}^*))$

 - $\sigma^\vee(f) = \alpha \circ f \circ \sigma^{-1}$

 - $\nabla^\vee(f) = \delta \circ f - f \circ \nabla$

Fiber functor:

$$ \omega : \mathcal{B}_q^\tau \rightarrow \text{Vect}_\mathbb{C} $$

$$ (M, \sigma, \nabla) \mapsto (\ker \nabla)_{z_0} $$
\[\pi^1(C^*, z_0) \cong \mathbb{Z} \]
Proof of Theorem

Proposition

For each object in \mathcal{B}_q^T there is an isomorphic object (M, σ, ∇) with

- $M = V \otimes \mathcal{O}(\mathbb{C}^*)$ with V a vector space
- $\sigma(v \otimes f) = Bv \otimes \alpha(f)$ for an invertible constant matrix B.
- $\nabla = \delta + A$ with A a constant matrix with all eigenvalues in the same transversal T to $\theta \mathbb{Z}$ in \mathbb{C}.

N.B. If (M, σ, ∇) and (M', σ', ∇') are of this form (with same transversal) then $\text{Hom}_{\mathcal{O}(\mathbb{C}^*)}(M, M') \subset \text{Hom}_{\mathbb{C}}(V, V')$.

This implies that $\omega : \mathcal{B}_q^T \rightarrow \text{Vect}_\mathbb{C}$ is faithful.
Fix a transversal T to $\tau \mathbb{Z}$ in \mathbb{C}^* and let (V, ρ_1, ρ_2) be an object in $\text{Rep}(\mathbb{Z}^2)$.

We can write $\rho_1(1) =: e^{2\pi iA/\tau}$ such that A is the unique matrix with all eigenvalues in T.

Also, write $\rho_2(1) =: B$ so that A and B are constant matrices.

They define an element in \mathcal{B}_q^T denoted $F_T(V, \rho_1, \rho_2)$. For a morphism ϕ in $\text{Rep}(\mathbb{Z}^2)$ we set $F_T(\phi) = \phi \otimes 1$.

Proposition

The above association defines a functor $F_T : \text{Rep}(\mathbb{Z}^2) \rightarrow \mathcal{B}_q^T$ which is fully faithful and essentially surjective.