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[Abstract]

We construct an invariant of finite noncommutative geometric
spaces based on the work of Connes in [1]. A finite noncommutative
geometric space is described by a finite spectral triple (M,H,D),
where M =

⊕
αMdα(C) is a matrix algebra acting on a finite-

dimensional Hilbert space H, and D a symmetric operator. We
will associate an algebra N to the operator D and consider the pair
of algebras (M,N) acting on the same Hilbert space H. Our in-
variant SpecN (M), the relative spectrum, is a set of projections that
measures the position of the algebra M relative to N . It describes
the position of the irreducible representations of M in H relative to
the eigenspaces of D. Together with the spectrum of the operator
D and the set of positive integers {dα}α we obtain, modulo uni-
tary equivalence, a complete invariant. In the commutative case,
it is possible to switch the roles of the algebras M and N in the
construction, which gives rise to a dual invariant SpecM (N). We
give a direct relation between SpecN (M) and SpecM (N). We also
relate our invariant to decorated graphs of finite spectral triples, as
described in [2].
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1 Introduction

Noncommutative geometric spaces ([3],[5]) are a generalization of Riemannian geometric spaces.
We can think of a finite noncommutative geometric space as a finite space whose points have
some internal noncommutative structure together with a notion of distance between the points.
In order to find an algebraic description of such spaces we start from the Gelfand duality be-
tween a topological space and its algebra of functions. By the finite version of this duality, a
commutative matrix algebra describes a finite space. As a generalization, a noncommutative
matrix algebra will now be thought of as the algebra of continuous functions on a finite non-
commutative space. An algebraic description of a finite space together with a metric structure
is given by the commutative matrix algebra M that arises from the Gelfand duality, represented
on a finite-dimensional Hilbert space H, and a symmetric operator D. Such a triple (M,H,D)
is called a finite spectral triple. Dropping the condition of commutativity in a finite spectral
triple then gives a description of finite noncommutative geometric spaces.

Although, we restrict ourselves in this thesis to finite noncommutative spaces, also not necessarily
finite noncommutative spaces can be described by a similar spectral triple. Connes showed in [6]
for example that a spectral triple with commutative algebra and certain conditions necessarily
arises from a compact oriented Riemannian manifold and as a consequence this suggests that a
noncommutative Riemannian manifold is defined by dropping the commutativity of the algebra.
As an important application in physics, we note that a suitable choice for the spectral triple
gives rise to the standard model [7]. This model describes all elementary particles and their
electromagnetic, weak and strong interactions.

In this thesis we construct an invariant of finite noncommutative geometric spaces inspired by
Connes in [1]. This invariant measures the relative position of the algebra M and the algebra
associated to the operator D. Finding an invariant yields a description of finite noncommutative
geometric spaces in another way than the description by finite spectral triples, which is in some
examples more convenient.

The first part of this thesis consists of some preliminaries, so that we understand the notion of a
finite spectral triple. We then first construct an invariant of finite commutative spectral triples
assuming a nondegenerate spectrum of the operator D. For such a triple (M,H,D), we will view
the position of the irreducible representations of the algebra M in the Hilbert space H relative to
the eigenspaces of the operator D. We will do this by associating an algebra N to the operator D
and then considering the pair of algebras (M,N) acting on the same Hilbert space. Our invariant
SpecN (M), the relative spectrum, then gives the position of the irreducible representations of M
in H relative to those of N . The relative spectrum SpecN (M) is a set consisting of projections
expressed by complex matrices whose entries are labeled by Spec(N). Together with σ(D), the
spectrum of the operator D, we then obtain, modulo unitary equivalence, a complete invariant,
i.e. there is, modulo unitary equivalence, a one-to-one correspondence:

(M,H,D)
(1:1)←→ (SpecN (M), σ(D)).

After this construction we will generalize this invariant for the finite commutative case, no
longer assuming the spectrum of D to be nondegenerate. In this case the relative spectrum
SpecN (M), that again measures the relative position of the two algebras M and N , is a set of
projections expressed by matrices {γ} labeled by elements of Spec(N) such that γλµ : Vµ → Vλ
with λ, µ ∈ Spec(N) is a map between eigenspaces of D, so no longer a complex number.
In the end we will see that the construction also works for the noncommutative case, where
M =

⊕
αMdα(C) and that the relative spectrum SpecN (M) then together with the spectrum

of D and the set of positive integers {dα}α is, modulo unitary equivalence, a complete invariant.
Along the way we consider several examples that clarify the construction.
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In the commutative case, it is possible to interchange the roles of the algebras M and N in
our construction which gives rise to a dual invariant SpecM (N). We will give a direct relation
between the invariant and its dual. The purpose of this is that in some examples calculating
the dual is easier than calculating SpecN (M). Furthermore we will find a relation between our
invariant and a graphical invariant of finite spectral triples [2]. The relation we find here, directly
comes from the relation of the relative spectrum and its dual.

This thesis is aimed at master students in mathematics who are familiar with functional analysis
and with representation theory of algebras. The most basic definitions we use from functional
analysis such as the notion of a Hilbert space are not recalled in this text and can for example
be found in [11] or [14]. The notions from representation theory of algebras are stated in the
preliminaries.

During my master I followed several courses with subjects in functional analysis, of which some
at SISSA in Trieste, Italy. As a kind of unfortunate coincidence I did not have the opportunity
to follow a course in noncommutative geometry, neither in Nijmegen, nor in Italy. However since
my bachelor project under supervision of Walter D. van Suijlekom, I have known that I would
like to learn more about the field of noncommutative geometry. Therefore finding a subject
for my master thesis was not very difficult. During my thesis project I discovered that indeed
noncommutative geometry is a very interesting subject. When starting this project I knew that
it would be the end of my studies, but I also knew it would be the last time spending my time
as a mathematical researcher. Now I am finished, I am very happy and grateful that I had this
opportunity. I have learned a lot about this enthralling subject, but also about me as a person.
I hope you will enjoy reading my thesis.
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2 Preliminaries

2.1 Spectral triples

In this subsection we will start with the definition of a unital complex ∗-algebra and come to
the definition of a finite spectral triple. Furthermore we will consider the spectral theorem in
the finite case. We will follow the books [2] and [10].

Definition 2.1. A (complex) algebra is a vector space A (over C) together with a bilinear
associative product A×A→ A denoted by (a, b) 7→ ab.
A unital algebra is an algebra A with a unit 1 ∈ A satisfying 1a = a1 = a for all a ∈ A.
A ∗-algebra is an algebra A with a conjugate linear map ∗ : A→ A such that (ab)∗ = b∗a∗ and
(a∗)∗ = a for all a, b ∈ A. This map is called the involution map.

We will only consider unital complex algebras and refer to them as algebras.

Example 2.2. The set C(X) of complex valued functions on a finite space X is a ∗-algebra.
We have a pointwise linear structure:

(f + g)(x) = f(x) + g(x) and

(λf)(x) = λ(f(x))

for all f, g ∈ C(X), λ ∈ C. The multiplication is pointwise

fg(x) = f(x)g(x)

and the involution is given by conjugation:

f∗(x) = f(x).

Example 2.3. The set Mn(C) of n × n matrices with coefficients in C is a ∗-algebra. The
bilinear product is given by matrix multiplication. The involution map is given by hermitian
conjugation:

(A∗)ij = Aji.

Definition 2.4. A (complex) matrix algebra A is a direct sum

A =

K⊕
α=1

Mdα(C),

for some K and dα in N. The involution is given by hermitian conjugation.
A commutative matrix algebra A is then a matrix algebra of the form CK .

Example 2.5. Let X = {1, . . . , N} be a finite space. Then the ∗-algebra C(X) is a matrix
algebra. We can represent a function f ∈ C(X) as the following matrix:

f(1)
f(2)

. . .

f(N)

 .

In this way pointwise multiplication becomes matrix multiplication and C(X) ∼= CN .

Example 2.6. Let H be a finite-dimensional inner product space, with inner product 〈·, ·〉 → C.
The space of linear operators on H denoted by L(H) is a ∗-algebra with its product given by
composition and its involution given by mapping an operator T to its adjoint T ∗.
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Definition 2.7. A ∗-algebra map (or ∗-homomorphism) between two ∗-algebras A and B is a
linear map φ : A→ B such that

(i) φ(a)φ(b) = φ(ab) and
(ii) φ(a∗) = φ(a)∗

for all a, b ∈ A.

Definition 2.8. A representation of a finite dimensional ∗-algebra A is a pair (H,π) where H
is a finite-dimensional (complex) inner product space and π is a ∗-algebra map

π : A→ L(H).

A representation H is irreducible if H 6= 0 and the only subspaces in H that are left invariant
under π, the action of A, are {0} and H. In other words we have that the only subrepresentations
of H are {0} and H.
A representation is called faithful if the map π is injective.

Since an inner product space and a Hilbert space are the same in the finite-dimensional case,
we will use the term Hilbert space instead of inner product space.

Example 2.9. For Mn(C) is H = Cn a representation on which Mn(C) acts by left matrix
multiplication. It is clear that this representation is irreducible. A reducible representation for
example is given by H = Cn ⊕ Cn, with an action given as follows:

Mn(C) 3 a 7→
(
a 0
0 a

)
∈ L(Cn ⊕ Cn).

Definition 2.10. Two representations (H,π) and (H ′, π′) of a ∗-algebra A are unitarily equiv-
alent if there exists a unitary map U : H → H ′ such that

π′(a) = Uπ(a)U∗

for all a ∈ A.

Lemma 2.11. Each finite-dimensional faithful representation of a ∗-algebra A can be written
as the direct sum of irreducible subrepresentations.

Proof. Any representation H of A has an irreducible subrepresentation H1 ⊂ H. Namely, take
a subrepresentation H1 ⊂ H with minimal dimension. Using the faithfulness we conclude that
H⊥1 is a subrepresentation of H and H = H1 ⊕ H⊥1 . We continue by taking an irreducible
subrepresentation H2 of H⊥1 . Then H⊥1 = H2 ⊕ H⊥2 . Since H is finite dimensional we can
continue in this way and find a decomposition of H into irreducible representations.

Theorem 2.12. Let M =
⊕K

α=1Mdα(C) be a matrix algebra. Then we have that Cd1 , . . . ,CdK
are the irreducible representations of A.

Proof. A proof of this can be found in [10], Theorem 3.3.1.

Definition 2.13. The structure space Â of a ∗-algebra A is the set of all unitary equivalence
classes of irreducible representations of A.

Example 2.14. From Lemma 2.11 and Theorem 2.12 it follows that, modulo a basis trans-
formation, a representation (H,π) of a matrix algebra M =

⊕
αMdα(C) is of the following

form:
H = Cn, π(a) =

⊕
α

mαaα,
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where mα is the multiplicity of Cdα , n =
∑K

α=1mαdα and a = (aα)α ∈M .

The structure space of M is given by M̂ = {1, . . .K}, where each integer α ∈ M̂ corresponds to
the equivalence class of representations of M on Cdα . Labeling the latter equivalence class with
dα gives an identification M̂ ∼= {d1, . . . , dK}.

Definition 2.15. A finite spectral triple is a triple (A,H,D) consisting of a unital ∗-algebra A
which is represented faithfully on a finite-dimensional Hilbert space H, together with a symmet-
ric operator D : H → H. A finite commutative spectral triple is a finite spectral triple, where
the ∗-algebra A is commutative.

Remark 2.16. The representation of the algebra A on the Hilbert space H is implicitly assumed
in the definition of a finite spectral triple and given a finite spectral triple (A,H,D) we view the
elements of A as operators on H.

Theorem 2.17. Let A be a unital ∗-algebra that acts faithfully on a Hilbert space H. Then A
is a matrix algebra

A ∼=
K⊕
α=1

Mdα(C).

Proof. The representation π : A → L(H) is injective by assumption and hence A is a ∗-
subalgebra of L(H). Because we have L(H) ∼= MdimH(C), its only ∗-subalgebras are themselves
matrix algebras. .
A complete proof can be found in [10], Theorem 3.5.4.

Because of the above theorem we will write a finite spectral triple as (M,H,D) with M a matrix
algebra.

Example 2.18. We have that (Mn(C),Cn, D) is a finite spectral triple with an action by left
matrix multiplication and D a hermitian matrix. The space Cn is equipped with the standard
inner product.

Definition 2.19. Two finite spectral triples (M,H,D) and (M ′, H ′, D′) are called unitarily
equivalent, if there exists a unitary operator U : H → H ′ and an isomorphism υ : M →M ′ such
that

(i) Uπ(a)U∗ = π′(υ(a)) for a ∈M and
(ii) UDU∗ = D′.

Remark 2.20. In Example 2.5 we have associated a matrix algebra C(X) to a finite space X.
This algebra behaves naturally with respect to maps between topological spaces and ∗-algebras
i.e. if we have a map φ : X1 → X2 of finite discrete spaces, then the corresponding map
φ∗ : C(X2)→ C(X1) is given by the pullback

φ∗f = f ◦ φ ∈ C(X1) with f ∈ C(X2),

which is a ∗-homomorphism. The following question arises: given a matrix algebra M , does
there exist a finite discrete space X such that C(X) ∼= M? The answer is no, since C(X) is
commutative but M is not necessarily commutative. To solve this we can restrict to commutative
matrix algebras. Given a commutative algebra M then its structure space M̂ ∼= {1, . . . ,K} is
the right candidate. We see that there is a duality between finite spaces and commutative matrix
algebras. This is just a finite-dimensional version of the Gelfand duality stated in [2], Theorem
4.28.
Another way to solve this is to allow more morphisms between matrix algebras. We then find a
duality between finite spaces and Morita equivalence classes of matrix algebras. The definition of
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Morita equivalence can be found in [2], Definition 2.12. In Section 2.2 of [2] we see that the data
of a finite metric space is captured in a finite commutative spectral triple and that this metric
space can also be reconstructed from that commutative spectral triple. A finite noncommutative
spectral triple then describes in the same way a metric on the finite noncommutative space M̂ .

2.2 Spectral theorem

In this subsection we will define the functional calculus of a symmetric operator D on a finite-
dimensional Hilbert space. Therefore we first need the Spectral theorem.

Theorem 2.21 (Spectral theorem (finite version), [15], Theorem 6.16 ). Let H be a finite-
dimensional Hilbert space and D be a symmetric operator in L(H). Then there exists an or-
thonormal basis of H consisting of eigenvectors.

Proof. According to Theorem 6.14 of [15] we can find an orthonormal basis v1, . . . , vn for H
such that the operator D written in this basis is a matrix T which is upper triangular. Then v1

is clearly an eigenvector of D. Suppose that v1, . . . , vk−1 are eigenvectors of D. We then have
that

D(vk) = T1kv1 + . . .+ Tjkvj + . . .+ Tkkvk

and for j < k
Tjk(vj) = 〈vj , D(vk)〉 = 〈D(vj), vk〉 = 〈λjvj , vk〉 = 0

where λj is the eigenvalue corresponding to the eigenvector vj . We conclude that D(vk) = Tkkvk
and hence vk is an eigenvector. By induction v1, . . . , vn are eigenvectors of D.

This immediately implies the following:

Corollary 2.22. Let H be a finite-dimensional Hilbert space. A symmetric operator D ∈ L(H)
can be written as

D =
∑
i

λie
i,

where λi are the eigenvalues and ei the (spectral) projections onto the eigenspace corresponding
to λi.

Definition 2.23. The spectrum σ(D) of an operator D ∈ L(H) for a finite-dimensional Hilbert
space H is the space of eigenvalues with multiplicities. The spectrum is called nondegenerate if
each λ ∈ σ(D) has multiplicity one.

Definition 2.24. Let H be a finite-dimensional Hilbert space and D =
∑

i λie
i ∈ L(H) be a

symmetric operator. The functional calculus of D is defined as the map

C(σ(D))→ L(H) such that

f 7→ f(D) :=
∑
i

f(λi)e
i.

We can also take f ∈ C(R) since all the eigenvalues of a symmetric operator are real numbers.

Lemma 2.25. Let H be a finite-dimensional Hilbert space and let D be a symmetric operator
in L(H). The set N defined by

N := {f(D)|f ∈ C(R)}

is a commutative unital ∗-algebra.
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Proof. Write D =
∑

i λie
i, where λi are the eigenvalues of D and ei the projections onto the

eigenspace corresponding to λi. The linear structure is as follows:∑
i

f(λi)e
i +
∑
i

f ′(λi)e
i =

∑
i

(f + f ′)(λi)e
i and

µ(
∑
i

f(λi)e
i) =

∑
i

(µf)(λi)e
i,

for f, f ′ ∈ C(R), µ ∈ C.

The multiplication between two elements of N is given as follows:∑
i

f(λi)e
i ·
∑
i

f ′(λi)e
i =

∑
i

(ff ′)(λi)e
i =

∑
i

f(λi)f
′(λi)e

i.

Commutativity is immediately clear with this structure. The involution map is given by:(∑
i

f(λi)e
i

)∗
=
∑
i

f∗(λi)e
i =

∑
i

f(λi)e
i.
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3 The invariant of finite commutative spectral triples with non-
degenerate spectrum

In this section we will construct the invariant of finite commutative spectral triples in case of
nondegenerate spectrum. The idea of this construction is based on the invariant of the relative
position of two finite-dimensional commutative von Neumann algebras M and N acting on the
same Hilbert space constructed in [1] by Connes. From Lemma 2.25 we can associate a pair
of algebras (M,N), acting on the same finite-dimensional space H, to a finite spectral triple
(M,H,D) and do a similar construction as in [1]. Although in [1] is started with the case where
M is acting with multiplicity one on the Hilbert space, we do not make this assumption.

3.1 The construction of the invariant of finite commutative spectral triples
with nondegenerate spectrum

Let (M,H,D) be a finite commutative spectral triple with H a Hilbert space of dimension n.
Let σ(D) = {λ1, . . . λn} be the spectrum of D and by assumption each λi has multiplicity one.
Since M is commutative we have

M ∼= CK ,

for a certain K ∈ N. Each copy C of M corresponds to a set Eα ⊂ H such that

π(eαM )Eα = Eα.

Here π is the action of M on H and {e1
M , . . . , e

K
M} is the set of one-dimensional idempotents of

M that generate M and act on H with multiplicity mα. We see that Eα is an mα-dimensional
space isomorphic to C⊗Cmα and we have a decomposition of H into irreducible representations
of M :

H =
K⊕
α=1

Eα.

As a consequence
∑K

α=1mα = n.
We write the operator D as

D =
∑

λ∈σ(D)

λeλN ,

where eλN are the orthogonal projections onto the eigenspaces Vλ. Note that by assumption all
the eλN project onto a one-dimensional space. We take the ∗-algebra N such as defined in Lemma
2.25

N = {f(D)|f ∈ C(R)} =

{∑
λ

f(λ)eλN |f ∈ C(R)

}
∼= Cn.

The action ρ of N on H is defined by:

ρ(
∑
λ

f(λ)eλN )(x) =
∑
λ

f(λ)eλN (x),

for f ∈ C(R) and x ∈ H. Let {ηλ}λ∈σ(D) ∈ H be an orthonormal basis of eigenvectors of D so
that

ρ(eλN )ηλ = ηλ.

We see that the irreducible representations of N in H are just the eigenspaces of D.

We want to know the position of the spaces Eα ⊂ H relative to the eigenspaces Vλ of the operator
D. We will establish this by defining a unitary isomorphism between H and l2(Spec(N) ∼= Cn.
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Remark 3.1. We have Spec(N) = {eλN}λ is the set of spectral projections and l2(Spec(N) is
the space of complex sequences labeled by elements in Spec(N). We will refer to a label eλN just
with λ.

Let φ : H → l2(Spec(N)) be a unitary isomorphism such that φ(ηλ) = ελ, where {ελ}λ is the
canonical basis of l2(Spec(N)). Then

φ(x)(λ) = 〈ηλ, x〉 (1)

for all x ∈ H. The action ρ of N on H has become the diagonal action on l2(Spec(N)).
Furthermore the decomposition of irreducible representations of M on l2(Spec(N)) is given by

l2(Spec(N)) =

K⊕
α=1

φ(Eα).

Since a basis of normalised eigenvectors of D is unique up to a phasefactor zλ ∈ C with |zλ| = 1
for each λ, the isomorphism φ is unique up to an action of

U(N) := U(1)× . . .× U(1)︸ ︷︷ ︸
n

.

We conclude that each copy C of M corresponds to a space φ(Eα) ⊂ l2(Spec(N)) and that
the subspaces φ(Eα) ⊂ l2(Spec(N)) describe the positions of the spaces Eα relative to the
eigenspaces Vλ . In order to view the subspaces φ(Eα) ⊂ l2(Spec(N)) in a nicer way, we will
give an equivalent description of the spaces φ(Eα) in terms of orthogonal projections. This
requires some definitions and a lemma.

Definition 3.2 ([13], Section 1.5). Let the Grassmannian, Gr(m,H), be the set of all m-
dimensional subspaces of a n-dimensional Hilbert space H.

Notation 3.3. Denote with P+
m the set of n× n matrices such that for γ ∈ P+

m :

(i) γ is a positive semidefinite matrix of rank m
(ii) γ2 = γ
(iii) γ∗ = γ.

In fact an element of P+
m is an orthogonal projection onto a m-dimensional subspace of H. Note

that the rank of a projection equals its trace.

Remark 3.4. Since the eigenvalues of an orthogonal projection can only be 0 or 1, the corre-
sponding matrix is always positive semidefinite.

Lemma 3.5. For each element in Gr(m,H) there exist a unique element in P+
m .

Proof. Let E be a m-dimensional subspace of a n-dimensional Hilbert space H. Let {e1, . . . em}
be an orthonormal basis of E. Then E is represented by the matrix

Ẽ =

e11 . . . em1
...

...
e1n . . . emn

 .

Define the map
ψ : Gr(m,H)→ P+

m , ψ(E) = ẼẼ∗.
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The map ψ is independent of the basis chosen for E. Namely, if we choose another orthonormal
basis {e′1, . . . e′m} which gives a representation Ẽ′ of E, we have Ẽ = Ẽ′u with u ∈ U(m), a
unitary m×m matrix. Hence

ψ(E) = ẼẼ∗ = Ẽ′uu∗Ẽ′
∗

= Ẽ′Ẽ′
∗
.

Clearly ẼẼ∗ is of rank m and (ẼẼ∗)∗ = ẼẼ∗. Furthermore we have (Ẽ∗Ẽ)ij = 〈ei, ej〉 = δij
and hence (ẼẼ∗)2 = Ẽ(Ẽ∗Ẽ)Ẽ∗ = ẼẼ∗. So ψ(E) ∈ P+

m . Hence the map ψ is welldefined. It is
clear that ψ(E) is exactly the orthogonal projection onto the space E.
We will show that ψ is an isomorphism by finding its inverse. Take m linear independent columns
{γ1, . . . γm} of an element γ ∈ P+

m and take G = Span{γ1, . . . , γm}. We clearly have that the
inverse map is given by

ψ−1 : P+
m → Gr(m,H), ψ−1(γ) = G.

Note that to obtain an orthonormal basis of G we orthonormalize {γ1, . . . γm}.

From this lemma we can find for each mα-dimensional subspace φ(Eα) ⊂ l2(Spec(N)) an element
γα ∈ P+

mα(N). Here N refers to the fact that γα is a matrix labeled by elements of Spec(N).
This labeling appears since each vector of φ(Eα) is labeled by elements of Spec(N). The order
in which we take the eigenvalues of D determines the order of the labeling in the γα. The action
of the unitary group U(N) then becomes the adjoint action:

(Ad(u)γ)λµ = uλγλµūµ

where u ∈ U(N).

Following Connes in [1], Definition 2.5, we introduce SpecN (M).

Definition 3.6. We define the relative spectrum of M relative to N as

SpecN (M) = {γα|α ∈ {1, . . . ,K}} ⊂
⋃
α

P+
mα(N),

which is defined up to the adjoint action of U(N).

Since each of the φ(Eα) are orthogonal to each other we see from lemma 3.5 that γαγα′ = 0.
Since also

⊕K
α=1 φ(Eα) = l2(Spec(N)) we obtain that

K∑
α=1

γα = I,

where I is the identity map.

We conclude the following proposition:

Proposition 3.7 ([1], Proposition 2.6). Let (M,H,D), be a finite commutative spectral triple
with nondegenerate spectrum of D. Then the relative spectrum of M relative to N consists of K
elements and

S = SpecN (M) ⊂
∞⋃
i=1

P+
i (N),

such that

(i) γγ′ = 0 for all γ 6= γ′ ∈ S
(ii)

∑
S γλµ = δλµ.

(iii)
∑

γ∈Sm(γ) = n, where m(γ) = i if γ ∈ P+
i (N) and n is the dimension of H.
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The relative spectrum, SpecN (M), modulo the adjoint action of U(N) is an invariant of (M,H,D).

Remark 3.8. As mentioned before, requirements (i) and (iii) imply (ii). Also requirements (i)
and (ii) imply (iii). Therefore we can leave out requirement (iii).

Proposition 3.9. Let (M,H,D) and (M ′, H ′, D′) be two unitarily equivalent triples. Then we
have

SpecN (M) ∼= SpecN ′(M
′).

Moreover σ(D) = σ(D′).

Proof. By definition there is a unitary isomorphism U : H → H ′ and an isomorphism υ : M →
M ′ such that:

(i) Uπ(a)U∗ = π′(υ(a)) for all a ∈M and
(ii) UDU∗ = D′.

We immediately see that σ(D) = σ(D′). We choose a basis {ηλ}λ in H consisting of eigenvectors
of D. Then we choose {Uηλ}λ as a basis for H ′, which are eigenvectors of D′. Using this bases
we obtain maps φ : H → l2(Spec(N)) and φ′ : H ′ → l2(Spec(N ′)). Then the following diagram
commutes:

H H ′

l2(Spec(N)) l2(Spec(N ′))

φ

U

Ũ

φ′

The map Ũ from l2(Spec(N)) to l2(Spec(N ′) is the identity map, where only the labeling changes
according to Spec(N ′) = {UeλNU∗}eλN∈Spec(N).

Let {Eα}α be the set of irreducible representations of M in H. Because of property (i) and the
fact that υ sends idempotents to idempotents we have that the set of irreducible representations
of M ′ in H ′ is given by {E′α}α = {UEα}α. We compute a representative for SpecN (M) and for
SpecN ′(M

′):

{γα}α =
{
φ̃(Eα)

(
φ̃(Eα)

)∗}
α

=
{

˜φ′(UEα)
(

˜φ′(UEα)
)∗}

α
= {γ′α}α,

which is an equality as set of matrices. Hence SpecN (M) ∼= SpecN ′(M
′), where a map between

the two is given by a change of labeling.

The relative spectrum SpecN (M) together with the spectrum of D is, modulo unitary equiva-
lence, a complete invariant of finite commutative spectral triples. This is stated in the following
theorem.

Theorem 3.10. There is a one-to-one correspondence between finite commutative spectral
triples (M,H,D) with nondegenerate spectrum of D, modulo unitary equivalence, and pairs
(S,Λ) where

S ⊂
∞⋃
i=0

P+
i (N),

such that

(i) γγ′ = 0 for all γ 6= γ′ ∈ S and
(ii)

∑
S γλµ = δλµ
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is a finite set defined up to the adjoint action of U(N) and Λ = {λ1, . . . , λn} ⊂ R whose number
of elements and order corresponds to the labeling of the γ ∈ S.

Proof. We have already seen that (S,Λ) with S = SpecN (M) and Λ = σ(D) is an invariant of a
finite commutative spectral triple. We are left with reconstructing a finite spectral triple from
(S,Λ) and showing that it is exactly the inverse of our invariant. Let (S,Λ) be a pair such as
stated in the theorem. We will now construct a finite spectral triple from it.
It is clear that the algebra is given by

M ′ = C|S|.

An element γ ∈ S is the orthogonal projection onto some m(γ)-dimensional subspace, where
m(γ) = i if γ ∈ P+

i (N). Then, with Eγ = Im γ, we define a Hilbert space

H ′ =
⊕
γ∈S

Eγ ,

which has dimension
∑

γ∈Sm(γ) = n. We take {Eγ}γ∈S as the irreducible representations of
M ′ in H ′ and therefore the action of M ′ on H ′ is defined. We take the following symmetric
operator

D′ =
∑
λ∈Λ

λ
∑
γ∈S

γλλ,

which is just a diagonal matrix.

We claim that the constructed triple (M ′, H ′, D′) is the inverse of our invariant. Therefore we
need to check two things.

1. The pair (S,Λ) is indeed the invariant of (M ′, H ′, D′).
2. If (M,H,D) is a finite spectral triple and (S,Λ) its invariant, then (M ′, H ′, D′) is unitarily

equivalent to (M,H,D).

Proof of statement 1. In the construction of the invariant of (M ′, H ′, D′) we choose a unitary
isomorphism φ′ : H ′ → l2(Spec(N ′)) which is in this case the identity map, by identifying
l2(Spec(N ′)) with H ′. Hence a representative for SpecN ′(M

′) is {ẼγẼ∗γ}γ∈S = S. Furthermore
we have σ(D) = Λ.

Proof of statement 2. Clearly we must have M ∼= M ′. In the construction of the invariant
of (M,H,D) we choose a unitary isomorphism φ : H → l2(Spec(N)). We have irreducible
representations Eα of M in H and a representative for the invariant is then given by{

γα = φ̃(Eα)
(
φ̃(Eα)

)∗}
α
,

which equals the set S by assumption. Furthermore we have {φ(Eα)}α = {Eγ}γ∈S . Then
(M,H,D) and (M ′, H ′, D′) are unitarily equivalent using the unitary operator φ : H → l2(Spec(N))
viewed as map from H to H ′ such as in the proof of statement 1. Note that σ(D) = σ(D′) = Λ
by assumption and φDφ∗ is a diagonal matrix with the eigenvalues of D on its diagonal and
therefore we have φDφ∗ = D′.

Remark 3.11. Whenever we do not consider pairs (S,Λ), but only subsets S, we have a
complete invariant of the pair of algebras (M,N). Since it is possible to have operators with
different eigenvalues but with the same eigenspaces, we need to know the eigenvalues including
their order to reconstruct the operator D.
We will often refer to the invariant as SpecN (M), without mentioning the set Λ.
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Remark 3.12. The triple (M ′, H ′, D′) that we reconstructed from a a pair (S,Λ) depends on
the representative {γ}γ∈S that is taken. Another representative is given by {UγU∗}γ∈S where

U =

u1 0
. . .

0 un

 ,

where ui ∈ U(1). If we reconstruct the spectral triple from the latter representative we obtain the
same operator D′ and {UẼγ}γ∈S as the irreducible representations of M ′ in the Hilbert space.
This triple is then unitarily equivalent to (M ′, H ′, D′) using the unitary operator U : H → H
and noting that UD′U∗ = D′.

3.2 Examples

Example 3.13. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C, H = C3, D =

0 λ 0
λ 0 0
0 0 0

 ,

π(z1, z2) =

z1 0 0
0 z1 0
0 0 z2

 , z1, z2 ∈ C.

The operator D has eigenvalues λ,−λ and 0 with corresponding normalised eigenvectors

ηλ =
1√
2

1
1
0

 , η−λ =
1√
2

 1
−1
0

 and η0 =

0
0
1

 .

The minimal projections of M are equal to

e1
M =

1 0 0
0 1 0
0 0 0

 and e2
M =

0 0 0
0 0 0
0 0 1

 ,

so the irreducible representations of M in H are given by:

E1
M = Span


1

0
0

 ,

0
1
0

 and E2
M = Span


0

0
1

 .

With Equation (1) we compute the following representative for SpecN (M):

γ1 =


1√
2

1√
2

1√
2
− 1√

2

0 0




1√
2

1√
2

1√
2
− 1√

2

0 0


∗

=

1 0 0
0 1 0
0 0 0

 ∈ P+
2 (N) and

γ2 =

0
0
1

0
0
1

∗ =

0 0 0
0 0 0
0 0 1

 ∈ P+
1 (N).

Consider the same triple but with a different action of M on H:

π′(z1, z2) =

z1 0 0
0 z2 0
0 0 z1

 , z1, z2 ∈ C.
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Since this triple is not unitarily equivalent to the previous one, we expect another invariant.
The minimal projections of M are now given by

e1
M =

1 0 0
0 0 0
0 0 1

 and e2
M =

0 0 0
0 1 0
0 0 0


and then the irreducible representations of M in H are

E1
M = Span


1

0
0

 ,

0
0
1

 and E2
M = Span


0

1
0

 .

We then find as a representative for SpecN (M) the following set:

γ1 =


1√
2

0
1√
2

0

0 1




1√
2

0
1√
2

0

0 1


∗

=

1
2

1
2 0

1
2

1
2 0

0 0 1

 ∈ P+
2 (N) and

γ2 =


1√
2

− 1√
2

0




1√
2

− 1√
2

0


∗

=

 1
2 −1

2 0
−1

2
1
2 0

0 0 0

 ∈ P+
1 (N).

From Remark 3.12 we easily see that indeed this representative gives another equivalence class.

Example 3.14. Consider the finite spectral triple, for fixed λ ∈ R \ {0, 1},

M = C⊕ C, H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 1 0
0 0 0 0

 ,

π(z1, z2) =


z1 0 0 0
0 z1 0 0
0 0 z2 0
0 0 0 z2

 , z1, z2 ∈ C.

The operator D has eigenvalues λ,−λ, 1 and 0 with corresponding normalised eigenvectors

ηλ =


1√
2

1√
2

0
0

 , η−λ =


1√
2

− 1√
2

0
0

 , η1 =


0
0
1
0

 and η0 =


0
0
0
1

 .

Considering the minimal projections of M we obtain the following irreducible representations of
M in H

E1
M = Span




1
0
0
0

 ,


0
1
0
0


 and E2

M = Span




0
0
1
0

 ,


0
0
0
1


 .
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We obtain as a representative for SpecN (M) ⊂ P+
2 (N) the following set:

γ1 =


1√
2

1√
2

1√
2
− 1√

2

0 0
0 0




1√
2

1√
2

1√
2
− 1√

2

0 0
0 0


∗

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and

γ2 =


0 0
0 0
1 0
0 1




0 0
0 0
1 0
0 1


∗

=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .

Consider the same finite spectral triple but with the following action of M on H:

π′(z1, z2) =


z1 0 0 0
0 z2 0 0
0 0 z1 0
0 0 0 z2

 , z1, z2 ∈ C.

We will now obtain another invariant since this triple is not unitarily equivalent with the previous
one. The irreducible representations of M on H are now given by

E1
M = Span




1
0
0
0

 ,


0
0
1
0


 and E2

M = Span




0
1
0
0

 ,


0
0
0
1


 .

This gives the following representative for the set SpecN (M) ⊂ P+
2 (N):

γ1 =


1√
2

0
1√
2

0

0 1
0 0




1√
2

0
1√
2

0

0 1
0 0


∗

=


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1 0
0 0 0 0

 and

γ2 =


1√
2

0

− 1√
2

0

0 0
0 1




1√
2

0

− 1√
2

0

0 0
0 1


∗

=


1
2 −1

2 0 0
−1

2
1
2 0 0

0 0 0 0
0 0 0 1

 .

which indeed gives, using the same argument as in the previous example, not the same equiva-
lence class.

3.3 Viewing the invariant as spheres

The sets φ(Eα) are in one-to-one correspondence with the sets

φ(Eα) ∩ SNC = Sα,

where
SNC = S(l2(Spec(N))) := {z ∈ l2(Spec(N))|

∑
λ∈Spec(N)

|zλ|2 = 1}.

Each idempotent of M corresponds to Sα ∼= S2mα−1 ⊂ SNC . These sets are still mutually orthog-
onal to each other. It is clear that S = {Sα|α ∈ {1, . . . ,K}} together with the spectrum of the
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operator D is a complete invariant. Namely, the dimensions of the spheres give the multiplici-
ties of the corresponding idempotents and the way these spheres are embedded in SNC gives the
action of M on l2(Spec(N)). The operator D is given by the diagonal matrix with the given
eigenvalues on its diagonal. Note that the set S is defined up to an action of U(N).
If we restrict ourselves to the real numbers and take a low dimension, we can make some pictures
of the invariant.

Example 3.15. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = R⊕ R, H = R3, D =

0 λ 0
λ 0 0
0 0 0

 ,

π(x1, x2) =

x1 0 0
0 x1 0
0 0 x2

 , x1, x2 ∈ R.

This is the same triple as in Example 3.13, but then on R3. Using Equation (1) we see that we
get the following representative for our invariant:

s1 = φ

Span


1

0
0

 ,

0
1
0


 ∩ SNR = Span




1√
2

1√
2

0

 ,


1√
2

− 1√
2

0


 ∩ SNR ,

which equals a circle in the (x, y)-plane with radius 1 and

s2 = φ

Span


0

0
1


 ∩ SNR = Span


0

0
1

 ∩ SNR =


0

0
1

 ,

 0
0
−1

 .

The invariant S = {s1, s2} looks like:

Consider the following action of M on H:

π′(x1, x2) =

x1 0 0
0 x2 0
0 0 x1

 , x1, x2 ∈ R.

Now we obtain a representative

s1 = φ

Span


1

0
0

 ,

0
0
1


 ∩ SNR = Span




1√
2

1√
2

0

 ,

0
0
1


 ∩ SNR ,

which equals a circle in the (x = y)-plane with radius 1 and

s2 = φ

Span


0

1
0


 ∩ SNR =

Span


1√
2

− 1√
2

0


 ∩ SNR =




1√
2

− 1√
2

0

 ,

−
1√
2

1√
2

0


 .

The invariant S = {s1, s2} then looks like:
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Since in this example we restrict to the real case, we have that U(N) = {1,−1} × {1,−1} ×
{1,−1}. Therefore we see that in the first triple of this example there is only one representative.
In the second triple the only other representative is obtained by a rotation of 90◦ around the
z-axis. Hence it is clear that the two invariants are as expected not the same.

3.4 The CKM matrix

We will now take a closer look at the case that M acts with multiplicity 1 on the Hilbert space H.
In this case we have that mα = 1 for every α. Therefore we obtain n one-dimensional subspaces
Eα with α ∈ {1, . . . , n}. In the computation of the invariant we choose an orthonormal basis of
each Eα, which is in this case just one normalised vector eα ∈ Eα. This vector is unique up to a
multiplication of an element of U(1). Furthermore we also choose a basis {ηλ}λ ∈ H consisting
of normalised eigenvectors. Using this notations and following (8) in [1] we define the CKM
matrix.

Definition 3.16. The CKM matrix C of a finite spectral triple is given by:

Cλα = 〈ηλ, eα〉,

which is an n× n matrix labeled by λ and α.

Lemma 3.17. The CKM matrix C is unitary.

Proof. Since {eα}α and {ηλ}λ are orthogonal bases in H we have:∑
λ

C̄λαCλα′ =
∑
λ

〈eα, ηλ〉〈ηλ, eα′〉 = 〈eα, eα′〉 = δαα′

and in the same way

∑
α

CλαC̄λ′α = δλλ′ .

From the CKM matrix we obtain our invariant SpecN (M) in the following way:

Proposition 3.18. If (M,H,D) is a finite commutative spectral triple, where M acts with
multiplicity one on H and D has nondegenerate spectrum, then the relative spectrum SpecN (M)
is obtained via the CKM matrix in the following way:

SpecN (M) = {γα}α with (γα)λµ = CλαC̄µα.

Proof. As we have seen the invariant is computed as follows:

γα = φ(eα)φ(eα)∗,

where φ is a unitary isomorphism H → l2(Spec(N)). Then

(γα)λµ = φ(eα)(λ)φ(eα)(µ) = 〈ηλ, eα〉〈ηµ, eα〉 = CλαC̄µα.
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Although we have restricted to the case of multiplicity one, the CKM matrix still depends on
the choice of the eα and also on the choice of the ηλ. The CKM matrix therefore gives not yet a
complete invariant for finite spectral triples, but only when looking modulo the choice of both
bases. That means that the CKM matrix C and UCU ′ where U and U ′ are diagonal matrices
as in Remark 3.12 are both representatives for the invariant.

Remark 3.19. The Cabibbo-Kobayashi-Maskawa (CKM) matrix expresses the mismatch of the
bases of the mass eigenstates of the up quarks and the down quarks. The case of two generations
was treated by N. Cabibbo in [16] and the case of three generations by M. Kobayashi and T.
Maskawa in [17]. The CKM matrix gave rise to a mathematical treatment of the problem in
arbitrary dimension. In Section 2 of [1], Connes proved for example that the representations of
a pair of commutative von Neumann algebras (M,N) where M and N act with multiplicity one
on the same Hilbert space, are classified up to unitary equivalence by the CKM matrix. So in
the case of Connes, the CKM matrix is, in contrast to our case, a complete invariant. Here it is
possible to choose a certain entry Cηe = 〈η, e〉 such that it is positive. Then there is a unique
way of choosing the vectors eα and ηλ such that the row (Cηα)α and column (Cλe)λ are positive.
The rest of the CKM matrix is then also determined. Another choice of η and e does not effect
the CKM matrix.

We will first give an example of the CKM matrix and then we will eliminate the choice of the
eα.

Example 3.20. Let H = l2(G) be our Hilbert space, where G is a finite abelian group, which
we take in this example equal to Z/3Z. Consider the convolution algebra M = C∗(G), Where

(a ∗ b)(g) =
1

3

∑
x∈G

a(x)b(g − x)

for every a and b ∈ M . Note that M is commutative and isomorphic to a matrix algebra by
Theorem 2.17. Consider the operator

D : H → H, Dx(gi) = λigi,

for some distinct λ1, λ2, λ3 ∈ C and x ∈ H. Then N = l∞(G), the set of multiplication operators.
Both M and N are subalgebras of H. Take the following normalised eigenvectors in H

η1 =

1
0
0

 , η2 =

0
1
0

 and η3 =

0
0
1

 .

For M we have the following idempotents:

e1
M =

1
1
1

 , e2
M =

 1

e
2πi
3

e−
2πi
3

 and e3
M =

 1

e−
2πi
3

e
2πi
3

 .

To obtain the CKM matrix we choose vectors

e1 =
1√
3

1
1
1

 , e2 =
1√
3

 1

e
2πi
3

e−
2πi
3

 and e3 =
1√
3

 1

e−
2πi
3

e
2πi
3

 .

Then we compute

C =
1√
3

1 1 1

1 e
2πi
3 e−

2πi
3

1 e−
2πi
3 e

2πi
3

 .

24



A representative of the invariant consists then of the following three matrices in P+
1 (N):

γ1 =
1√
3

1
1
1

 1√
3

1
1
1

∗ =
1

3

1 1 1
1 1 1
1 1 1

 ,

γ2 =
1√
3

 1

e
2πi
3

e−
2πi
3

 1√
3

 1

e
2πi
3

e−
2πi
3


∗

=
1

3

 1 e−
2πi
3 e

2πi
3

e
2πi
3 1 e−

2πi
3

e−
2πi
3 e

2πi
3 1

 ,

γ3 =
1√
3

 1

e−
2πi
3

e
2πi
3

 1√
3

 1

e−
2πi
3

e
2πi
3


∗

=
1

3

 1 e
2πi
3 e−

2πi
3

e
−2πi

3 1 e
2πi
3

e
2πi
3 e−

2πi
3 1

 .

In the case of multiplicity one, the idempotents of M correspond exactly to the columns of the
CKM matrix C. A column of this matrix 〈η•, eα〉 = (〈ηλ, eα〉)λ is an element of SNC . Since such
a column is unique up to a multiplication of U(1), we can view the idempotents not anymore as
one dimensional subspaces in l2(Spec(N)), or as circles S1 in SNC , but as points in

PN = SNC /U(1).

Of course this set of points is still defined up to an action of the group U(N). Hence the
idempotents viewed as subset of PN together with the spectrum of D is a complete invariant of
a finite commutative spectral triple, where M is acting with multiplicity one.

Example 3.21. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C, H = C2, D =

(
0 λ
λ 0

)
.

Take the following normalised eigenvectors of D:

η1 =

(
1√
λ

1√
2

)
and η−λ =

(
1√
2

− 1√
2

)
.

We have idempotents

e1
M =

(
1
0

)
and e2

M =

(
0
1

)
which give the following two vectors: e1 =

(
1
0

)
and e2 =

(
0
1

)
.

We calculate the CKM matrix

C =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

A representative for the invariant as points in PN is then given by the following two points

p1 =

[(
1√
2

1√
2

)]
and p2 =

[(
1√
2

− 1√
2

)]
.

Remark 3.22. Of course we can define the CKM matrix for other multiplicities of M . In case
of constant multiplicity m we can identify the invariant with points in

SNC /U(m).

In this case an idempotent of M corresponds to m columns of the CKM matrix. The choice of
these columns is unique up to an action of U(m).
In case of arbitrary multiplicities there is much more ambiguity in choosing the CKM matrix
and therefore we can not identify the invariant with a similar set.
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4 The invariant of finite commutative spectral triples

In the previous section we assumed the spectrum of the operator D to be nondegenerate. In this
section we will construct the invariant of finite commutative spectral triples with a spectrum that
is not necessarily nondegenerate. In this case we can not use the space l2(Spec(N)) anymore.
We need another space, based on Section 3.4 of [1], for which we first need some definitions.

4.1 Definitions

Definition 4.1. Let X be a finite set. A vector bundle over X is a map π : E → X such that
for all x ∈ X we have that

Ex := π−1(x) ⊂ E

is a finite-dimensional vector space. The set E is called the total space of the bundle and is a
finite-dimensional vector space. The set X is called its base space and the map π is called its
projection.

Definition 4.2. A section of a vector bundle π : E → X is a map σ : X → E such that

π ◦ σ = IX .

The set of all sections of a vector bundle is then equal to the Hilbert space l2(X,E), which is
the set of sequences labeled by elements of X and σ(x) ∈ Ex for σ ∈ l2(X,E).

Remark 4.3. The full definition of a vector bundle, where X is a manifold, can be found in
[12] page 58-59.

Example 4.4. Let N be an algebra acting on a Hilbert space H. Let Vλ be its irreducible
representations in H and Spec(N) = {e1

N , . . . , e
q
N} the set of minimal idempotents. Then

π : V → Spec(N)

is a vector bundle, where V =
⋃
λ Vλ which is a disjoint union and

π(ηλ)(µ) = ηλδλµ

for each ηλ ∈ Vλ.

Definition 4.5. Let π : E → X and π′ : E′ → X be two vector bundles. A homomorphism
h : E → E′ is a linear map such that for x ∈ X its restrictive h|Ex to Ex is a linear map to E′x.
A homomorphism from E to itself is called an endomorphism.

4.2 The construction of the invariant of finite commutative spectral triples

Let (M,H,D) be a finite commutative spectral triple. In the previous section we viewed the
minimal idempotents of M as subspaces of l2(Spec(N)). In this case we would like to view them
as subspaces of l2(Spec(N), V ), where πV : V → Spec(N) is a vector bundle with V =

⋃
λ Vλ

and {Vλ}λ the eigenspaces of D. The Hilbert space l2(Spec(N), V ) is then the space of sections
of V . Note that in this case N ∼= Cq with q ≤ n.

Take again for each α the mα-dimensional subspace Eα ⊂ H such that π(eαM )Eα = Eα.
Define a unitary isomorphism

φ : H → l2(Spec(N), V ), φ(ηλ,j)(µ) = ελ,jδλµ
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for {ηλ,j}j an orthonormal basis in Vλ and µ ∈ Spec(N) = {e1
N , . . . , e

q
N}. Here {ελ,j}λ,j is the

canonical basis in l2(Spec(N), V ). For x ∈ H we have

φ(x)(λ) =
∑
j

〈ηλ,j , x〉ελ,j . (2)

This isomorphism is unique up to an action of a unitary on each of the subspaces Vλ. So the
isomorphism is unique up to an action of the unitary group of endomorphisms of V , denoted by
U End(V ).

Each copy C of M now corresponds to φ(Eα) ⊂ l2(Spec(N), V ) and {φ(Eα)}α gives the position
of M relative to N . Using the same map ψ as in Lemma 3.5 we see that the mα-dimensional
space φ(Eα) corresponds to an element

γα := φ̃(Eα)(φ̃(Eα))∗ =

φ(e1)(λ1) . . . φ(emα)(λ1)
...

...
φ(e1)(λq) . . . φ(emα)(λq)


φ(e1)(λ1) . . . φ(emα)(λ1)

...
...

φ(e1)(λq) . . . φ(emα)(λq)


∗

,

where e1 . . . , emα is an orthonormal basis for Eα. From the lemma it is clear that the choice of

this basis does not matter. The entries of the matrix φ̃(Eα) are in this case not just elements in
C, but they are vectors, since we have φ(ei)(λ) ∈ Vλ. Furthermore is (φ(ei)(λ))∗ an element of
V ∗λ given by the map

Vλ → V ∗λ , v 7→ 〈v, ·〉Vλ
for v ∈ Vλ. So we have

(γα)λµ =

mα∑
i=1

φ(ei)(λ) 〈φ(ei)(µ), ·〉Vµ ,

where λ, µ ∈ Spec(N). We have

((γα)λµ)(v) =

mα∑
i=1

φ(ei)(λ)︸ ︷︷ ︸
∈Vλ

〈φ(ei)(µ), v〉︸ ︷︷ ︸
∈C

∈ Vλ,

for v ∈ Vµ. Hence (γα)λµ are operators

(γα)λµ : Vµ → Vλ

and
γα ∈ End(l2(Spec(N), V )) ∼=

⊕
λ,µ

Vλ ⊗ V ∗µ .

We conclude that for each minimal idempotent eαM of M we find a matrix γα, such that {γα}α
gives the relative position of the irreducible representations of M in H relative to the eigenspaces
of D. These elements γα have similar properties as elements of the set P+

mα(N) from the previous
section. We have

(a) γ∗α = γα, where

((γα)λµ)∗ =

mα∑
i=1

φ(ei)(µ)〈φ(ei)(λ), ·〉 = (γα)µλ.
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(b) γ2
α = γα, since

((γα)2
λµ)(v) =

∑
ω∈Spec(N)

((γα)λω ◦ (γα)ωµ)(v)

=
∑

ω∈Spec(N)

mα∑
i=1

φ(ei)(λ)

〈
φ(ei)(ω),

mα∑
k=1

φ(ek)(ω)〈φ(ek)(µ), v〉

〉

=

mα∑
i=1

mα∑
k=1

φ(ei)(λ)〈φ(ek)(µ), v〉
∑

ω∈Spec(N)

〈φ(ei)(ω), φ(ek)(ω)〉

=

mα∑
i=1

φ(ei)(λ)〈φ(ei)(µ), v〉

= (γα)λµ(v).

They also satisfy the following properties:

(c) Since φ(Eα) is orthogonal to φ(Eα′) we see trough a similar computation as in (b) that
γαγα′ = 0.

(d) The operator γα is of rank mα, since
∑

λ∈Spec(N) Tr((γα)λλ) = mα. Since
⊕

α φ(Eα) =

l2(Spec(N), V ) we also have ∑
α

(γα)λµ =

{
0 if λ 6= µ
Iµ if λ = µ

where Iµ is the identity on Vµ.

Using properties (a) and (b) we introduce the set Pm(N), which is an extension of P+
m(N) .

Definition 4.6. Let V1, . . . , Vq be finite dimensional vector spaces. The set Pm(N) is then
defined as the set of q× q matrices with a certain labeling corresponding to the Vλ such that for
each γ ∈ Pm(N) we have

(i) γλµ : Vµ → Vλ,
(ii) the rank of γ equals m and

(iii) properties (a) and (b) are satisfied for γ.

Note that N in the definition of Pm(N) refers to the labeling.

We see that our elements γα are elements of Pmα(N). The action of U End(V ) on
⋃
α Pmα(N)

becomes the adjoint action:
(Ad(u)γ)λµ = uλγλµu

∗
µ,

where uλ is a unitary endomorphism of Vλ.

Definition 4.7. We define the relative spectrum of M relative to N as

SpecN (M) = {γα|α ∈ {1, . . . ,K}} ⊂
⋃
α

Pmα(N),

which is defined up to the adjoint action of U End(V ).

We conclude the following theorem:

Theorem 4.8. There is a one-to-one correspondence between finite commutative spectral triples,
modulo unitary equivalence, and pairs (S,Λ) where

S ⊂
∞⋃
i=0

Pi(N),

such that
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(i) γγ′ = 0 for all γ 6= γ′ ∈ S and

(ii)
∑

S γλµ =

{
0 if λ 6= µ
Iµ if λ = µ

is a finite set defined up to the adjoint action of U End(V ) with V =
⋃
λ Vλ and Λ = {λ1, . . . , λq} ⊂

R whose number of elements and order corresponds to the labeling of the γ ∈ S.

Proof. It is clear that the pair (S,Λ) is an invariant of finite commutative spectral triples with
S = SpecN (M). The spectrum of D gives the set Λ, which is just the spectrum without
multiplicities.
From a pair (S,Λ) such as stated in the theorem we reconstruct its spectral triple. We take the
algebra

M ′ = C|S|

and, with

Eγ = Im γ =
⊕
λ

(
⋃
µ

Im γλµ),

we define a Hilbert space

H ′ =
⊕
γ∈S

Eγ .

Furthermore we have that our bundle V =
⋃
λ Vλ as disjoint union. The symmetric operator D′

is given by

D′ =
∑
λ∈Λ

λ
∑
γ∈S

γλλ,

which is a diagonal matrix. The constructed triple (M ′, H ′, D′) is then with statement 1 and 2
of the proof of Theorem 3.10, with l2(Spec(N)) replaced by l2(Spec(N), V ), the inverse of our
invariant (S,Λ). Hence the invariant is complete.

We will refer to the invariant of a finite commutative spectral triple as the relative spectrum
SpecN (M) without mentioning the set Λ.

Corollary 4.9. Let SpecN (M) be the invariant of a finite commutative spectral triple (M,H,D).
Let M ′ ∼= Cn acting on H with multiplicity one together with the same operator D. Then we
have that ∑

γ∈SpecN (M)

γ = SpecN (M ′).

Proof. We see that SpecN (M ′) consists of just one element and by property (ii) of Theorem 4.8
it has to be equal to the identity map I on l2(Spec(N), V ). From that property we also conclude
that

∑
γ∈SpecN (M) γ = I.

Remark 4.10. Whenever the spectrum of D is nondegenerate, the construction in this section
coincides with the one of the previous section, since the canonical bases of l2(Spec(N)) and
l2(Spec(N), V ) are the same. Furthermore we have U End(V ) = U(N).

Remark 4.11. It is easier to view the map φ as a map from H to H in the following way:

φ =



ηλ1,1
...

ηλ1,k
...

ηλq ,1
...

ηλq ,k′


,
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with {ηλ,j}j a basis for Vλ and λ ∈ {λ1, . . . , λq}. Then φ(x)(λ) is just a vector in H with nonzero
components at the positions (λ, 1), . . . , (λ, k). We then view γλµ also as a map from H to H by
letting it be zero on its complement.

We then have for all x ∈ H:

γα(x) =
∑
λ,µ

(γα)λµ

=
∑
λ,µ

∑
i

φ(eα,i)(λ)〈φ(eα,i)(µ), x〉H

=
∑
λ,µ

∑
i

φ

∑
j

〈ηλ,j , eα,i〉ηλ,j

〈φ
〈∑

j′

ηµ,j′ , eα,i〉ηµ,j′

 , x

〉

=
∑
i

φ (eα,i) 〈eα,i, φ∗(x)〉

and hence as a matrix we have:

γα = φ

(∑
i

eα,ie
∗
α,i

)
φ∗.

4.3 Examples

Example 4.12. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C, H = C3, D =

0 λ 0
λ 0 0
0 0 λ

 ,

π(z1, z2) =

z1 0 0
0 z1 0
0 0 z2

 , z1, z2 ∈ C.

The operatorD has eigenvalues λ and−λ with multiplicities 2 and 1 respectively. The eigenspaces
are given by

Vλ = Span{ηλ,1, ηλ,2} := Span


0

0
1

 ,


1√
2

1√
2

0


 and

V−λ = Span{η−λ} := Span




1√
2

− 1√
2

0


 .

Furthermore we have irreducible representations of M in H given by

E1
M = Span


1

0
0

 ,

0
1
0

 and E2
M = Span


0

0
1

 ,

as we have seen in Example 3.13.
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We calculate using Equation (2)

φ

1
0
0

 = φ

(
1√
2
ηλ,2 +

1√
2
η−λ

)
=

(
1√
2
ελ,2,

1√
2
ε−λ

)
,

φ

0
1
0

 = φ

(
1√
2
ηλ,2 −

1√
2
η−λ

)
=

(
1√
2
ελ,2,−

1√
2
ε−λ

)
,

φ

0
0
1

 = φ(ηλ,1) = (ελ,1, 0),

which are elements in ∈ l2({λ,−λ}, V ).

We compute a representative for the invariant SpecN (M):

γ1 =

(
ελ,2〈ελ,2, ·〉 0

0 ε−λ〈ε−λ, ·〉

)

=

(0
1

)(
0
1

)∗
0

0 1 · 1̄

 =

(0 0
0 1

) (
0
0

)
(
0 0

)
1

 ∈ P2(N) and

γ2 =

(
ελ,1〈ελ,1, ·〉 0

0 0

)

=

(1
0

)(
1
0

)∗
0

0 0

 =

(1 0
0 0

) (
0
0

)
(
0 0

)
0

 ∈ P1(N).

Consider the same triple but with an action of M on H given by

π′(z1, z2) =

z1 0 0
0 z2 0
0 0 z1

 , z1, z2 ∈ C.

Recall that the irreducible representations of M on H are

E1
M = Span


1

0
0

 ,

0
0
1

 and E2
M = Span


0

1
0

 .

Through a similar computation we now obtain the following representative for SpecN (M):

γ1 =


1
2

(
0
1

)(
0
1

)∗
1
2

(
0
1

)
1
2

(
0
1

)∗
1
2

+

(1
0

)(
1
0

)∗
0

0 0



=

(1 0
0 1

2

) (
0
1
2

)
(
0 1

2

)
1
2

 ∈ P2(N) and

γ2 =


1
2

(
0
1

)(
0
1

)∗
−1

2

(
0
1

)
−1

2

(
0
1

)∗
1
2


=

(0 0
0 1

2

) (
0
−1

2

)
(
0 −1

2

)
1
2

 ∈ P1(N).
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Since we clearly can not find for example a unitary 2× 2 matrix U such that

U

(
1 0
0 1

2

)
U∗ =

(
0 0
0 1

)
we notice that the invariants are as expected not the same.

Using Remark 4.11 we see that the invariant of, for example, the last finite spectral triple can
be calculated easier: The map φ : H → H equals

φ =

 0 0 1
1√
2

1√
2

0
1√
2
− 1√

2
0


Then

γ1 = φ

1 0
0 0
0 1

1 0
0 0
0 1

∗ φ∗ =

(1 0
0 1

2

) (
0
1
2

)
(
0 1

2

)
1
2


and γ2 follows in the same way.
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5 The dual of the invariant

In this section we will interchange the roles of our algebras M and N and construct the dual
invariant. We will find a direct relation between the invariant and its dual.

5.1 The relation between the invariant and its dual

If (M,H,D) is a finite spectral triple we can switch the roles of M and N in our construction.
The obtained set is then again a complete invariant which we will call the dual of SpecN (M)
denoted by SpecM (N).

We would like to find a direct relation f between SpecN (M) and SpecM (N) such that the
following diagram commutes:

(M,N) SpecN (M)

(N,M) SpecM (N)

τ

Spec

Spec

f

In this diagram the map Spec coincides with the construction in the previous section and τ is
the map that interchanges the roles of the two algebras M and N . The purpose of finding the
map f is that in some examples calculating SpecM (N) is easier than calculating SpecN (M).

Remark 5.1. The space of pairs of commutative unital ∗-algebras forms a category. Sets of the
form stated in Theorem 4.8 form also a category. Demanding the diagram to be commutative,
amounts to Spec being a functor between the two categories.

We will state the theorem that explains the relation f : SpecN (M)→ SpecM (N).

Theorem 5.2. Let
SpecN (M) = {γα|α ∈ {1, . . . ,K}}

be a set with the properties of Theorem 4.8. Define

(γ̃λ)αβ :=
∑
ω

(γα)ωλ
∑
κ

(γβ)λκ, (3)

for each λ that occurs in the labeling. The map f : SpecN (M)→ SpecM (N) such that Spec ◦τ =
f ◦ Spec is then given as follows:

f(SpecN (M)) = f({γα}α) = {γ̃λ}λ = SpecM (N).

Proof. Each (γα)λµ : Vµ → Vλ can be extended to a map of dimension
∑

λ dimVλ by letting it
be zero on its orthogonal complement. The definition of (γ̃λ)αβ thus makes sense. Note also
that (γ̃λ)αβ : Im γβ → Im γα.
Let (M,H,D) be the finite spectral triple with invariant SpecN (M) reconstructed as in Theorem
4.8. Let {Eα = Im γα}α be the set of irreducible representations of M in H and {eα,i}i be an
orthonormal basis for Eα. The set {Vλ}λ consists of the eigenspaces of D and let {ηλ,j}j be
orthonormal bases for the Vλ. A representative for SpecN (M) is then

(γα)λµ(v) =
∑
i

φ(eα,i)(λ)〈φ(ei)(µ), v〉,
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for each α. Viewing φ as a map from H to H and considering the reconstructed spectral triple
(M,H,D), we have that φ is just the identity map so we have

(γα)λµ(w) =
∑
i

∑
j

〈ηλ,j , eα,i〉ηλ,j
∑
j′

〈eα,i, ηµ,j′〉〈ηµ,j′ , w〉

for all w ∈ H.
We now compute (γ̃λ)αβ using equation (3), where we use the representative γα we found above.
First we calculate∑

ω

(γα)ωλ(w) =
∑
ω

∑
i

∑
j

〈ηω,j , eα,i〉ηω,j
∑
j′

〈eα,i, ηλ,j′〉〈ηλ,j′ , w〉

=
∑
i

∑
j

eα,i〈eα,i, ηλ,j〉〈ηλ,j , w〉.

This gives us

(γ̃λ)αβ(w) =

(∑
ω

(γα)ωλ
∑
κ

(γβ)λκ

)
(w)

=
∑
i

∑
j

eα,i〈eα,i, ηλ,j〉

〈
ηλ,j ,

∑
i′

∑
j′

〈ηλ,j′ , eβ,i′〉ηλ,j′〈eβ,i′ , w〉

〉
=
∑
i,i′

∑
j,j′

eα,i〈eα,i, ηλ,j〉〈ηλ,j′ , eβ,i′〉〈eβ,i′ , w〉〈ηλ,j , ηλ,j′〉

=
∑
i,i′

∑
j

eα,i〈eα,i, ηλ,j〉〈ηλ,j , eβ,i′〉〈eβ,i′ , w〉,

On the other hand, if we switch the roles of the algebras M and N for the finite spectral
triple (M,H,D) we obtain, using the same choice of bases, the following representative for the
invariant SpecN (M):

(γλ)αβ =
∑
i,i′

∑
j

φ′(eα,i)〈eα,i, ηλ,j〉〈ηλ,j , eβ,i′〉〈φ′(eβ,i′), w〉,

where φ′ : H → H sends {eα,i}i, the bases for the Eα’s, to the standard basis in H and this
map coincides with a map φ′ : H → l2(Spec(M), E), with E =

⋃
αEα. We conclude that

(γ̃λ)αβ : Eβ → Eα and (γλ)αβ : φ′(Eβ) → φ′(Eα) are the same as mα ×mβ matrix. Therefore
we have (γ̃λ)αβ = (γλ)αβ.
Hence equation (3) indeed gives the invariant SpecM (N) in such a way that

Spec ◦τ = f ◦ Spec .

Corollary 5.3. With the notation of Theorem 5.2 we have the following relation

γλ =
∑
α

(γα)λλ.

Proof. We view (γλ)αβ : φ′(Eβ) → φ′(Eα) as a map of dimension
∑

α dimEα by letting it be
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zero on the orthogonal complement. Then

γλ =
∑
α,β

(γλ)αβ

=
∑
α,β

(γ̃λ)αβ (as a matrix using the proof of Theorem 5.2)

=
∑
j

ηλ,j〈ηλ,j , ·〉

=
∑
α

(γα)λλ.

In the following corollary is stated how to reconstruct the finite spectral triple from SpecM (N).

Corollary 5.4. Given the dual invariant SpecM (N) = {γλ}λ we reconstruct the finite commu-
tative spectral triple (M,H,D) as follows:(

M = CK , H =
⊕
α

Eα, D =
∑
λ∈Λ

λγλ

)
,

where K is the number of elements that occurs in the labeling of the elements in SpecM (N).

Proof. Note first that Λ is the same set, as the one corresponding to SpecN (M) and the spaces Eα
appear in the definiton of SpecM (N) ⊂

⋃∞
i=1 Pi(N). From Corollary 5.3 we see that (M,H,D)

is the same triple as the one constructed in Theorem 4.8.

We can also conclude that the inverse map f−1 : SpecM (N)→ SpecN (M) such that Spec ◦τ−1 =
f−1 ◦ Spec, with τ−1 = τ is obtained in the same way as f .

Remark 5.5. As we have seen, the pair of algebras (N,M) together with the spectrum of
D corresponds to the triple (M,H,D). We can ask ourselves if it is possible to determine a
corresponding triple of the form (N,H, D̃) with {f(D̃)|f ∈ C(R)} = M , which then would be
the dual of the finite spectral triple (M,H,D). From Remark 3.11 we see that, since we do not
know what the eigenvalues of D̃ should be, it is not possible to determine the operator D̃ in a
unique way.

5.2 Examples

Example 5.6. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C⊕ C, H = C3, D =

0 λ 0
λ 0 0
0 0 λ

 ,

where M acts with multiplicity 1. The eigenvectors and eigenspaces of D are already given in
Example 4.12. Furthermore we have

E1
M = Span


1

0
0

 , E2
M = Span


0

1
0

 and E3
M = Span


0

0
1

 .
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The map φ : H → H is given by

φ =

 0 0 1
1√
2

1√
2

0
1√
2
− 1√

2
0

 .

A representative for the invariant SpecN (M) is then given by:

γ1 = φ

1
0
0

1
0
0

∗ φ∗ = φ

1 0 0
0 0 0
0 0 0

φ∗ =

(0 0
0 1

2

) (
0
1
2

)
(
0 1

2

)
1
2

 ,

γ2 = φ

0
1
0

0
1
0

∗ φ∗ = φ

0 0 0
0 1 0
0 0 0

φ∗ =

(0 0
0 1

2

) (
0
−1

2

)
(
0 −1

2

)
1
2

 and

γ3 = φ

0
0
1

0
0
1

∗ φ∗ = φ

0 0 0
0 0 0
0 0 1

φ∗ =

(1 0
0 0

)
0

0 0

 .

We compute its dual SpecM (N) using the formula in Equation (3):

(γλ)11 =

0 0 0
0 1

2 0
0 1

2 0

0 0 0
0 1

2
1
2

0 0 0

 =

0 0 0
0 1

4
1
4

0 1
4

1
4

 ,

which is a map (γλ)11 : φ(E1
M )→ φ(E1

M ) such that:

φ

1
0
0

 =

 0
1√
2

1√
2

 7→ 1

2

 0
1√
2

1√
2

 =
1

2
φ

1
0
0

 .

So as a one-dimensional map

(γλ)11 =
1

2
.

We have

(γλ)12 =

0 0 0
0 1

2 0
0 1

2 0

0 0 0
0 1

2 −1
2

0 0 0

 =

0 0 0
0 1

4 −1
4

0 1
4 −1

4

 ,

which is a map (γλ)12 : φ(E2
M )→ φ(E1

M ) such that:

φ

0
1
0

 =

 0
1√
2

− 1√
2

 7→ 1

2

 0
1√
2

1√
2

 =
1

2
φ

1
0
0

 .

So as a one dimensional map

(γλ)12 =
1

2
.

In this way we obtain as a representative for SpecM (N):

γλ =

1
2

1
2 0

1
2

1
2 0

0 0 1

 and γ−λ =

 1
2 −1

2 0
−1

2
1
2 0

0 0 0

 .
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It might be easier in the computation to use Corollary 5.3. We now get:

γ′λ =

1 0 0
0 1 0
0 0 0

 and γ′−λ =

0 0 0
0 0 0
0 0 1

 .

Here γ′λ is the identity map on φ(Vλ), but we need the identity map on Vλ. Hence we obtain a
representative for SpecM (N) as follows:

γλ = φ∗γ′λφ =

1
2

1
2 0

1
2

1
2 0

0 0 1

 and γ−λ = φ∗γ′−λφ =

 1
2 −1

2 0
−1

2
1
2 0

0 0 0

 .

We will now calculate SpecM (N) directly from the pair (N,M) to confirm that the two cal-
culations give the same result. The map φ′ : H → H that coincides with the map φ′ : H →
l2(Spec(M)) is just the identity. We obtain as a representative for SpecM (N) :

γλ = VλV
∗
λ =

0 1√
2

0 1√
2

1 0


0 1√

2

0 1√
2

1 0


∗

=

1
2

1
2 0

1
2

1
2 0

0 0 1

 and

γ−λ = V−λV
∗
−λ =


1√
2

− 1√
2

0




1√
2

− 1√
2

0


∗

=

 1
2 −1

2 0
−1

2
1
2 0

0 0 0

 ,

which is indeed the same.

Remark 5.7. Note that the last method of computation using Corollary 5.3 only works in the
case that M has multiplicity 1. In that case the map φ′ is the identity. In other cases the map
φ′ is not necessary the identity and we obtain SpecM (N) by an extra calculation, namely we
have to calculate φ′γλφ

′∗.

Example 5.8. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C, H = C3, D =

0 λ 0
λ 0 0
0 0 λ

 ,

π(z1, z2) =

z1 0 0
0 z2 0
0 0 z1

 , z1, z2 ∈ C.

The map φ is the same as in the previous example. Recall from Example 4.12 that

E1
M = Span


1

0
0

 ,

0
0
1

 and E2
M = Span


0

1
0

 .

As we have seen in Example 4.12 a representative for the invariant SpecN (M) is given by

γ1 =

(1 0
0 1

2

) (
0
1
2

)
(
0 1

2

)
1
2

 and γ2 =

(0 0
0 1

2

) (
0
−1

2

)
(
0 −1

2

)
1
2

 .

We calculate the dual:

(γλ)11 =

1 0 0
0 1

2 0
0 1

2 0

1 0 0
0 1

2
1
2

0 0 0

 =

1 0 0
0 1

4
1
4

0 1
4

1
4

 ,
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which is a map (γλ)11 : φ(E1
M )→ φ(E1

M ) such that:

φ

1 0
0 0
0 1

 =

 0 1
1√
2

0
1√
2

0

 7→ 1

2

 0 2
1√
2

0
1√
2

0

 =

(
1
2 0
0 1

)
φ

1 0
0 0
0 1


and hence

(γλ)11 =

(
1
2 0
0 1

)
.

In the same way we have

(γλ)12 =

1 0 0
0 1

2 0
0 1

2 0

0 0 0
0 1

2 −1
2

0 0 0

 =

0 0 0
0 1

4 −1
4

0 1
4 −1

4

 ,

which is a map (γλ)12 : φ(E2
M )→ φ(E1

M ) such that:

φ

0
1
0

 =

 0
1√
2

− 1√
2

 7→ 1

2

 0
1√
2

1√
2

 =

(
1
2
0

)
φ

1 0
0 0
0 1


and hence

(γλ)12 =

(
1
2
0

)
.

If we proceed this we obtain as a representative for SpecM (N):

γλ =

(1
2 0
0 1

) (
1
2
0

)
(

1
2 0

)
1
2

 and γ−λ =

(1
2 0
0 0

) (
−1

2
0

)
(
−1

2 0
)

1
2

 .

When we calculate SpecM (N) directly from the pair (N,M)we will obtain exactly this repre-
sentative if we take the same choice of basis with φ′ : H → H given by

φ′ =

1 0 0
0 0 1
0 1 0

 .

Example 5.9. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C, H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 λ 0
0 0 0 0

 ,

π(z1, z2) =


z1 0 0 0
0 z2 0 0
0 0 z1 0
0 0 0 z2

 , z1, z2 ∈ C.

We take the eigenspaces with corresponding orthonormal bases:

Vλ = Span




0
0
1
0

 ,


1√
2

1√
2

0
0


 , V−λ = Span




1√
2

− 1√
2

0
0


 and V0 = Span




0
0
0
1


 .
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The map φ : H → H is then given by the following matrix

φ =


0 0 1 0
1√
2

1√
2

0 0
1√
2
− 1√

2
0 0

0 0 0 1

 .

Furthermore we have that the irreducible representations of M in H are

E1
M = Span




1
0
0
0

 ,


0
0
1
0


 and E2

M = Span




0
1
0
0

 ,


0
0
0
1


 .

We obtain as a representative for SpecN (M):

γ1 =


(

1 0
0 1

2

) (
0
1
2

) (
0
0

)
(
0 1

2

)
1
2 0(

0 0
)

0 0

 and γ2 =


(

0 0
0 1

2

) (
0
−1

2

) (
0
0

)
(
0 −1

2

)
1
2 0(

0 0
)

0 1

 .

We compute the dual in the same way as we did before and we obtain the following representative
for SpecM (N):

γλ =


(

1
2 0
0 1

) (
1
2 0
0 0

)
(

1
2 0
0 0

) (
1
2 0
0 0

)


γ−λ =


(

1
2 0
0 0

) (
−1

2 0
0 0

)
(
−1

2 0
0 0

) (
1
2 0
0 0

)


γ0 =


(

0 0
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
0 0
0 1

)


We end this section with some corollaries for specific cases of M and N .

Corollary 5.10. Let (M,H,D) be a finite spectral triple such that M and N act on H with
equal multiplicities. Then the invariant of the triple (N,H, D̃), where D̃ is the operator with
the same eigenvalues as D and eigenspaces equal to the irreducible representations of M in H,
equals the dual of SpecN (M). We have SpecN (M) ∼= SpecM (N).

Proof. Let {Eα}α be the irreducible representations of M in H and {Vλi}i be the eigenspaces
of D. It is clear that the invariant of (N,H, D̃) equals SpecM (N), noting that Λ in SpecM (N)
and SpecN (M) is the same. We can take a unitary isomorphism U : H → H such that

Vλi
∼−→ Eα

and an isomorphism
ϕ : N →M, ϕ(eiN ) = eαM ,

Then clearly
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(i) Uρ(ein)U∗ = π(eαM ) and
(ii) UD̃U∗ = D.

Hence (M,H,D) is unitary equivalent to (N,H, D̃).

Example 5.11. In Example 5.8 we see that the multiplicities of M and N coincide and indeed
SpecM (N) and SpecN (M) are isomorphic. Namely, another representative for SpecM (N) is
given by

{UγλU∗, Uγ−λU∗},

with

U =

0 1 0
1 0 0
0 0 1

 .

The representatives for SpecM (N) and SpecN (M) are then the same as matrices. We see that
a change of labeling gives the isomorphism.

Corollary 5.12. Let (M,H,D) be a finite spectral triple such that both M and N act on H
with multiplicity one. In the construction of SpecN (M) we calculate the CKM matrix CN and
for SpecM (N) we calculate the CKM matrix CM . We have

CN = C∗M .

Proof. This follows immediately by writing out the definitions of the two CKM matrices.
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6 A graphical invariant of finite commutative spectral triples

We will introduce another invariant of finite commutative spectral triples which is a graph. We
do this by following section 2.3 of [2]. Then we will relate this graphical invariant to our invariant
SpecN (M).

6.1 Decorated graphs

Definition 6.1. A graph Γ consists of a set V of vertices and E of edges, which are pairs of
vertices. An edge e = (v, v) is allowed and is called a loop. The graph is called directed if the
edges have a direction.

Let (M,H,D) be a finite commutative spectral triple. We have that

M ∼= CK

and we decompose the Hilbert space as direct sum of irreducible representations of M in H:

H =
K⊕
α=1

Eα ∼=
K⊕
α=1

C⊗ Cmα .

We will now construct a graph from it. We draw a node for each copy of C labeled with
an α. Multiple nodes at the same position correspond with multiplicities of the irreducible
representations C in H. Thus at each position α there are mα = dimEα nodes.

◦ ◦ � ◦
1 · · · i · · · j · · · K

In this figure we see for example that E1 ⊂ H is just a copy of C and Ej ⊂ H is a copy of C⊕C.

Corresponding to the above decomposition of H we can write the operator D as a sum of
matrices:

Dαβ : Eα → Eβ.

Since D is symmetric we have Dαβ = Dβα. We express the Dαβ in the graph as directed edges
between the nodes α and β.

◦ ◦ � ◦
1 · · · i · · · j · · · K

In this graph we see that the edges between i and j, and i and K represent non-zero operators
Dij : Ei → Ej i.e. C → C ⊗ C2 (multiplicity 2) and DiK : C → C. Their adjoints give the
operators Dji and DKi which results in edges with an opposite direction.

Definition 6.2. A decorated graph is a finite directed graph Γ = (V,E) where

(i) the vertices v ∈ V are labeled by n(v) ∈ A, for some index set A such that {n(v)}v∈V = A
and

(ii) the directed edges e = (v, v′) ∈ E are labeled by operators

De : C→ C.
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Note that |V | ≥ |A| and clearly we have

Dij =
∑

e=(v,v′)
n(v)=i
n(v′)=j

De.

It is clear that this graph is an invariant of a finite commutative spectral triple. Unitary
equivalent spectral triples give the same decorated graphs. The invariant is also complete since
given a decorated graph Γ = (V,E), we obtain the spectral triple by:(

M = C|A|, H = C|V |, D =
∑
e∈E

De

)

The number of nodes with the same label corresponds to the multiplicity of the corresponding
irreducible representation.
We thus have obtained the following theorem:

Theorem 6.3. There is a one-to-one correspondence between finite commutative spectral triples
modulo unitary equivalence and decorated graphs.

Remark 6.4. This classification of finite spectral triples is based on the so-called Krajewski
diagrams in [8].

Example 6.5. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C⊕ C,C3,

0 λ 0
λ 0 0
0 0 0

 .

The irreducible representations of M in H are given by

E1
M = Span


1

0
0

 , E2
M = Span


0

1
0

 and E3
M = Span


0

0
1

 .

We have that D12 = D21 = λ is a one-dimensional map and D11 and D22 are zero and hence we
obtain the following decorated graph:

◦ ◦ ◦
1 2 3D12

D21

Example 6.6. Take the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C,C3,

0 λ 0
λ 0 0
0 0 λ

 ,

π(z1, z2) =

z1 0 0
0 z2 0
0 0 z1

 , z1, z2 ∈ C.

The irreducible representations of M in H are given by

E1
M = Span


1

0
0

 ,

0
0
1

 and E2
M = Span


0

1
0

 .
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We then have that

D11 =

(
0 0
0 λ

)
, D12 =

(
λ 0

)
, D21 =

(
λ
0

)
and D22 = 0.

We obtain the following decorated graph:

� ◦
1 2D12

D21

D11

In fact D12 splits into two edges which correspond to maps

De1 = Span


1

0
0

→ Span


0

1
0

 and De2 = Span


0

0
1

→ Span


0

1
0

 ,

where De1 is a one-dimensional map equal to λ and De2 = 0. In the same way we split D21 and
D11. We obtain in this way the same number of edges as in the graph above.

6.2 Decorated graphs and the invariant SpecN(M)

Since there is a one-to-one correspondence between finite commutative spectral triples and dec-
orated graphs there is a correspondence between the invariant SpecN (M) and decorated graphs.
In the next theorem we will find a direct relation g between the invariant SpecN (M) and a
decorated graph, such that the following diagram commutes:

(M,H,D) SpecN (M)

Γ = (V,E)

G

Spec

g

Here G denotes the correspondence of commutative finite spectral triples and decorated graphs
from the previous subsection.

Theorem 6.7. Let
SpecN (M) = {γα|α ∈ {1, . . . ,K}},

be a set with the properties of Theorem 4.8 and Λ = {λ1, . . . , λq} ⊂ R. Take the decorated graph

Γ̃ with mα = Tr γα vertices with label α such that there are
∑K

α=1mα vertices. Define

D̃αβ :
∑
λ∈Λ

λ
∑
ω

(γωλ)β
∑
κ

(γλκ)α,

which results in the edges D̃e of Γ̃. Then the relation g such that g ◦ Spec = G is given by

g(SpecN (M)) = Γ̃.
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Proof. Let (M,H,D) be the finite spectral triple reconstructed as in Theorem 4.8, with D =∑
λ∈Λ λ

∑
α(γα)λλ. To construct the corresponding decorated graph Γ we see that we have to

draw the nodes in the same way as claimed in the theorem we are proving. To draw the edges
we need to split D into maps

Dαβ : Im γα → Im γβ.

Indeed we have D̃αβ : Im γα → Im γβ and we are left with checking that D̃ =
∑

α,β D̃αβ =∑
α,β Dαβ = D. Take an orthonormal basis {ηλ,j}j in each Vλ and take an orthonormal basis

eα,i in each Im γα. We compute

D̃(v) =
∑
α,β

D̃αβ(v)

=
∑
α,β

∑
λ

λ
∑
ω

(γβ)ωλ
∑
κ

(γα)λκ(v)

=
∑
α,β

∑
λ

λ
∑
i,i′

∑
j

eα,i〈eα,i, ηλ,j〉〈ηλ,j , eβ,i′〉〈eβ,i′ , v〉 (by the proof of Theorem 5.2)

=
∑
λ

λ
∑
j

ηλ,j〈ηλ,j , v〉

=
∑
λ∈Λ

λ
∑
α

(γα)λλ(v) (by Corollary 5.3)

= D(v).

with v ∈ H. We conclude that Γ̃ = Γ.

This theorem results in a corollary that gives the direct relation g′ between the dual invariant
SpecM (N) and decorated graphs, such that the following diagram commutes:

(M,H,D) SpecM (N)

Γ = (V,E)

G

Spec

g′

Corollary 6.8. Let SpecM (N) = {γλ}λ with (γλ)αβ : Eβ → Eα be the dual of the invariant
given in Theorem 6.7. Draw the decorated graph Γ′ with mα = dimEα vertices with label α.
Define

D′αβ =
∑
λ∈Λ

λ(γλ)αβ,

which results in the edges D′e of Γ′. Then the relation g′ such that g′ ◦ Spec = G is given by

g′(SpecM (N)) = Γ′.

Proof. From Theorem 5.2 we see have that D̃αβ as defined in Theorem 6.7 equals D′αβ. Hence

g(SpecN (M)) = g′(f(SpecN (M)) = g′(SpecM (N))

and Γ′ = Γ̃.

Remark 6.9. To find a relation from a decorated graph to the invariant SpecN (M) it is neces-
sary to extract the eigenvalues of D from the data of the graph. The only way to find them is
to compute D and diagonalize it. Therefore a relation from a decorated graph to the invariant
SpecN (M) can only be obtained via the spectral triple (M,H,D) itself.
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We summarize the relations between our invariants in the following diagram:

(M,N) SpecN (M)

Γ (M,H,D)

(N,M) SpecM (N)

τ

Spec

Spec

f
G

g

g′

Recall that in (M,N), (N,M), SpecN (M) and SpecM (N) also the data of the spectrum of D is
included.

Example 6.10. Consider the finite spectral triple, for fixed λ ∈ R \ {0},

M = C⊕ C, H = C3, D =

0 λ 0
λ 0 0
0 0 λ

 ,

π(z1, z2) =

z1 0 0
0 z2 0
0 0 z1

 , z1, z2 ∈ C.

As we have seen in Example 4.12 a representative for SpecN (M) is

γ1 =

(1 0
0 1

2

) (
0
1
2

)
(
0 1

2

)
1
2

 and γ2 =

(0 0
0 1

2

) (
0
−1

2

)
(
0 −1

2

)
1
2

 .

Then

D11 = λ

1 0 0
0 1

2 0
0 1

2 0

1 0 0
0 1

2
1
2

0 0 0

+ (−λ)

0 0 0
0 0 1

2
0 0 1

2

0 0 0
0 0 0
0 1

2
1
2


= λ

1 0 0
0 1

4
1
4

0 1
4

1
4

− λ
0 0 0

0 1
4

1
4

0 1
4

1
4


=

λ 0 0
0 0 0
0 0 0

 .

which is a map from φ(E1
M ) to itself rewritten as

D11 =

(
0 0
0 λ

)
,

where φ is given in Example 4.12. In the same way we obtain

D12 =

0 0 0
0 1

2λ
1
2λ

0 −1
2λ −1

2λ

 ,
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which we rewrite as D12 =
(
λ 0

)
Furthermore D22 = 0, so we obtain the same decorated graph

as in Example 6.6:

� ◦
1 2D12

D21

D11

The dual invariant SpecM (N) is computed in Example 5.8. From Corollary 6.8 and the fact
that the map φ′ : H → l2(SpecM (N) viewed as map from H to H is given by

φ′ =

1 0 0
0 0 1
0 1 0

 ,

we see that the graph we obtain from the dual is indeed the same graph as above.
If we consider the representation

π(z1, z2) =

z1 0 0
0 z1 0
0 0 z2

 , z1, z2 ∈ C,

we have seen in Example 4.12 that a representative for SpecN (M) is

γ1 =

(0 0
0 1

) (
0
0

)
(
0 0

)
1

 and γ2 =

(1 0
0 0

) (
0
0

)
(
0 0

)
0

 .

We then obtain

D11 =

0 0 0
0 λ 0
0 0 −λ

 ,

which we rewrite as a map from φ(E1
m) to itself:(

0 λ
λ 0

)
.

We split up D11 in a map

De1 : φ

1
0
0

→ φ

0
1
0

 and De2 : φ

0
1
0

→ φ

1
0
0

 ,

that both are equal to the one-dimensional map λ. We have that

D22 =

0 0 0
0 0 0
0 0 λ

 ,

which corresponds to the one-dimensional map λ and D12 = D21 = 0. Hence the decorated
graph looks as follows:

� ◦
1 2

De2

De1 D22
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7 The invariant of finite spectral triples

In this section we will compute the invariant SpecN (M) of finite spectral triples where the
algebra M is not necessarily commutative.

7.1 The construction of the invariant of finite spectral triples

Let (M,H,D) be a finite spectral triple with H a n-dimensional Hilbert space. According to
Theorem 2.17 the algebra M is a matrix algebra of the form

M ∼=
K⊕
α=1

Mdα(C).

We have that
K⊕
α=1

Mdα(C) ∼=
K⊕
α=1

L(Cdα),

where Cdα are the irreducible representations of M and mα its corresponding multiplicity in H.
Furthermore

∑K
α=1mαdα = n.

Modulo a basis transformation, an action π of M on H is by Example 2.14 of the following form

π((aα)α) =
K⊕
i=1

mαaα ∈ L(H),

for each (aα)α ∈ M. Here mαaα means mα copies of aα. Each component Mdα(C) of M is
not generated anymore by one minimal idempotent, but we can still define the sets Eα that
correspond to the components Mdα(C). Namely, take {Eα|α ∈ {1, . . . ,K}} the irreducible
representations of M in H, such that each Eα corresponds to the irreducible representation
Cdα ⊗ Cmα ⊂ H. We have that the dimension of Eα is mαdα and

⊕
αEα = H. If we use

the unitary isomorphism φ : H → l2(Spec(N), V ) as defined in Section 4, we obtain the sets
φ(Eα) that give the relative positions of the irreducible representations of M in H relative to the
eigenspaces of D. For each φ(Eα) we compute, using Lemma 3.5, the corresponding projection
γα, which is now an element of Pmαdα(N). The invariant SpecN (M) is then defined as follows:

Definition 7.1. The relative spectrum of M relative to N is the set

SpecN (M) = {γα|α ∈ {1, . . . ,K}} ⊂
⋃
α

Pmαdα(N),

which is defined up to the adjoint action of U End(V ).

The relative spectrum SpecN (M) is then a complete invariant together with σ(D), the spectrum

of D, and {d1, . . . , dK} ∼= M̂ .

Theorem 7.2. There is a one-to-one correspondence between finite spectral triples (M,H,D),

modulo unitary equivalence, and triples (S,Λ, M̂) where

S ⊂
∞⋃
i=1

Pi(N)

such that

(i) γγ′ = 0 for all γ 6= γ′ ∈ S
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(ii)
∑

S γλµ =

{
0 if λ 6= µ
Iµ if λ = µ

,

is a finite set defined up to the adjoint action of U End(V ), Λ = {λ1, . . . , λq} ⊂ R whose number

of elements and order corresponds to the labeling of the γ ∈ S and M̂ = {d1, . . . dK} is a set of
positive integers whose number of elements and order corresponds to the elements of S and dα
divides m(γα) where m(γα) = i if γα ∈ Pi(N).

Proof. Given a spectral triple (M,H,D) we see that S is the relative spectrum SpecN (M), Λ is

obtained from σ(D) and M̂ is obtained from the dimensions of the components of M .

Let (S,Λ, M̂) be a triple such as stated in the theorem. We reconstruct its corresponding spectral
triple. We take

M ′ ∼=
⊕
dα∈M̂

Mdα(C).

Then, with Eγ = Im γ, we define a Hilbert space

H ′ =
⊕
γ∈S

Eγ

and we take the symmetric operator

D′ =
∑
λ∈Λ

λ
∑
γ∈S

γλλ.

To determine the representation π′ of M ′ on H ′ we take π′ : M →
⊕

γ∈S L(Eγ) such that

π′ : M |Mdα (C) → L(Eγα).

Note that this map π′ is not necessary of the form stated in Example 2.14, but we can find a
basis transformation ϕ such that the triple (M ′, H ′, ϕD′ϕ∗) with an action as in Example 2.14,
is unitarily equivalent with (M ′, H ′, D′). Since statement 1 and 2 from the proof of Theorem
3.10 hold for (M ′, H ′, D′), is the finite spectral triple (M ′, H ′, D′) the inverse of our invariant
and hence it is complete.

If we refer to the invariant as SpecN (M) we do not specifically mention the sets Λ and M̂ .

Corollary 7.3. When M = Md(C) is a matrix algebra with one component, we obtain for
SpecN (M) just one element, which equals the identity matrix.

Remark 7.4. The inclusion of the set of positive integers M̂ in our invariant is necessary
to reconstruct the algebra M . When we have an element γ ∈ Pm·d(N), we can for example
reconstruct a copy Mm·d(C) of M acting with multiplicity 1 on H or a copy Md(C) acting with
multiplicity m on H. Whenever we make sure that the number d is included in the invariant we
do not have this problem.

7.2 Examples.

Example 7.5. Consider the finite spectral triple, for fixed λ ∈ R \ {0, 1},

M = M2(C), H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 1

 ,

π(a) =

(
a 0
0 a

)
, a ∈M.
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The eigenvectors of D are the same as in Example 3.14. The irreducible representation in H is
just C4 and hence we have as a representative for SpecN (M) ⊂ P2·2(N) = P4(N) one element:

γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Example 7.6. Consider the finite spectral triple, for fixed λ ∈ R \ {0, 1},

M = M2(C)⊕ C, H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 1

 ,

π(a, b) =

a 0 0
0 b 0
0 0 b

 , a ∈M2(C), b ∈ C.

The irreducible representations of M in H are

E1 = Span




1
0
0
0

 ,


0
1
0
0


 and E2 = Span




0
0
1
0

 ,


0
0
0
1


 .

Therefore the calculation of the invariant is exactly the same as in Example 3.14, so we obtain
the following representative for SpecN (M) :

γ1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ∈ P2·1(N) = P2(N) and γ2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ∈ P1·2(N) = P2(N).

If we consider the representation

π′(a, b) =

b 0 0
0 a 0
0 0 b

 , a ∈M2(C), b ∈ C,

we obtain the spaces

E1 = Span




0
1
0
0

 ,


0
0
1
0


 and E2 = Span




1
0
0
0

 ,


0
0
0
1


 .

The calculation of a representative for SpecN (M) is the same as in Example 3.14 and results in

γ1 =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 1

 ∈ P2·1(N) = P2(N) and γ2 =


1
2 −1

2 0 0
−1

2
1
2 0 0

0 0 1 0
0 0 0 0

 ∈ P1·2(N) = P2(N).

The reason that we obtain the same matrices as in Example 3.14 is explained in Remark 7.4.
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Example 7.7. Consider the finite spectral triple, for fixed λ ∈ R \ {0, 1},

M = M2(C)⊕ C⊕ C, H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 1

 ,

π(a, b, c) =

a 0 0
0 b 0
0 0 c

 , a ∈M2(C), b, c ∈ C.

We obtain the irreducible representations of M in H

E1 = Span




1
0
0
0

 ,


0
1
0
0


 , E(2,1) = Span




0
0
1
0


 and E(2,2) Span




0
0
0
1


 .

Calculating the invariant results in the following representative consisting of three elements:

γ1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ∈ P+
2 (N),

γ(2,1) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 and γ(2,2) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ∈ P+
1 (N).

If we consider the representation

π′(a, b, c) =

b 0 0
0 a 0
0 0 c

 , a ∈M2(C), b, c ∈ C,

we obtain the spaces

E1 = Span




0
1
0
0

 ,


0
0
1
0


 , E(2,1) = Span




1
0
0
0


 and E(2,2) = Span




0
0
0
1




and the following three elements as a representative for SpecN (M) :

γ1 =


1
2 −1

2 0 0
−1

2
1
2 0 0

0 0 1 0
0 0 0 0

 ∈ P+
2 (N),

γ(2,1) =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0

 and γ(2,2) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ∈ P+
1 (N).
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Example 7.8. The last example is one that will include multiplicity of the algebra N . Consider
the finite spectral triple, for fixed λ ∈ R \ {0},

M = M2(C)⊕ C, H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 λ 0
0 0 0 0

 ,

π(a, b) =

b 0 0
0 a 0
0 0 b

 , a ∈M2(C), b ∈ C.

The eigenspaces of D and the map φ are given in Example 5.9. We have the following irreducible
representations of M in H:

E1 = Span




1
0
0
0

 ,


0
0
0
1


 and E2 = Span




0
1
0
0

 ,


0
0
1
0


 .

Calculating φẼα(Ẽα)∗φ∗ gives a representative for the invariant SpecN (M) ⊂ P2(N):

γ1 =


(

0 0
0 1

2

) (
0
1
2

) (
0
0

)
(
0 1

2

)
1
2 0(

0 0
)

0 1

 and γ2 =


(

1 0
0 1

2

) (
0
−1

2

) (
0
0

)
(
0 −1

2

)
1
2 0(

0 0
)

0 0

 .

7.3 Decorated graphs and the invariant SpecN(M)

We would like to define a decorated graph of a finite spectral triple that is not necessarily
commutative, i.e. the case where M ∼=

⊕K
α=1Mdα(C) and

H =
K⊕
α=1

Eα ∼=
K⊕
α=1

Cdα ⊗ Cmα .

We then need a labeling of the vertices by the positive integers d1, . . . dK . We extend our
definition of decorated graphs following section 2.3 of [2].

Definition 7.9. An A-decorated graph is a pair of a finite directed graph Γ = (V,E) and a
finite set A of positive integers, with a labeling of the

(i) vertices v ∈ V by n(v) ∈ A, such that n(V ) = A and
(ii) directed edges e = (v, v′) ∈ E by operators

De : Cn(v) → Cn(v′).

Note that we can have several vertices with the same label, i.e. |V | ≥ |A|. In fact A is of the
form {d1, . . . , dK}, which means that the same number can occur more than once.

Remark 7.10. This definition coincides in the commutative case with Definition 6.2, since then
A equals the set {1, . . . 1}, where each 1 has some index, i.e. A = {11, . . . , 1K}.

We extend Theorem 6.3.

Theorem 7.11. There is a one-to-one correspondence between finite spectral triples modulo
unitary equivalence and decorated graphs.
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Proof. Given an A-decorated graph Γ = (V,E), its corresponding triple is given by:(
M =

⊕
α∈A

Mα(C), H =
⊕
v∈V

Cn(v), D =
∑
e∈E

De

)
.

A copy Mα(C) acts with multiplicity |{v ∈ V |n(v) = α}| on H.

Example 7.12. Consider the finite spectral triple from Example 7.6, for fixed λ ∈ R \ {0, 1},

M = M2(C)⊕ C, H = C4, D =


0 λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 1

 ,

π(a, b) =

a 0 0
0 b 0
0 0 b

 , a ∈M2(C), b ∈ C.

We obtain the following decorated graph:

◦ �
2 1

D11 D22

with D11 =

(
0 λ
λ 0

)
and D22 =

(
0 0
0 1

)
, where D11 splits into two nonzero edges.

For the same spectral triple with action given by

π′(a, b) =

b 0 0
0 a 0
0 0 b

 , a ∈M2(C), b ∈ C,

we obtain the following decorated graph:

◦ �
2 1D12

D21

D11

whith D11 =

(
0 0
0 1

)
and D12 =

(
λ 0
0 0

)
.

We have a similar theorem as Theorem 6.7 which gives a relation g between our invariant
SpecN (M) and A-decorated graphs such that the following diagram commutes:

(M,H,D) SpecN (M)

Γ = (V,E)

G

Spec

g
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Theorem 7.13. Let
SpecN (M) = {γα|α ∈ {1, . . . ,K}},

be a set with the properties of Theorem 7.2, Λ = {λ1, . . . , λq} ⊂ R and M̂ = {d1, . . . dK} a set

of positive integers. Take the decorated graph Γ̃ with mα = Tr γα
dα

vertices with label dα such that

there are
∑K

α=1mα vertices. Define

D̃αβ :
∑
λ∈Λ

λ
∑
ω

(γβ)ωλ
∑
κ

(γα)λκ,

which results in the edges D̃e of Γ̃. Then the relation g such that g ◦ Spec = G is given by

g(SpecN (M)) = Γ̃.

Proof. If we may use Equation (3) then the proof of this theorem is identical to the proof of
Theorem 6.7. So we want to know if Equation (3) holds in the noncommutative case. Therefore
we look at the proof of Theorem 5.2 and see that if we take for (M,H,D) the spectral triple
reconstructed in Theorem 7.2 we conclude the same expression for (γ̃λ)αβ. Switching the the
roles of the algebras M and N in the construction is still possible and we see that the expression
for (γλ)αβ also holds. Hence Equation (3) holds.

Remark 7.14. The proof of the above statement implicitly says that we can define the dual
invariant SpecM (N) also in the noncommutative case as long as in SpecM (N), besides the spec-

trum of the operator, also the data of M̂ is included. Here we look at the pairs of algebras (M,N)
and (N,M) with M noncommutative and N commutative. A pair of noncommutative algebras
does not correspond to a finite spectral triple anymore. However, for a pair of noncommutative
algebras (M,N) we can still construct the invariant SpecN (M), which is then together with the

sets of positive integers M̂ and N̂ a complete invariant. Also the dual invariant SpecM (N) is
then defined. Therefore, if we let go the correspondence between pairs of algebras and finite
spectral triples, we have the following commutative diagram for the category of pairs of unital
∗-algebras acting faithfully on the same Hilbert space:

(M,N) SpecN (M)

(N,M) SpecM (N)

τ

Spec

Spec

f

Example 7.15. Consider the finite spectral triple from Example 7.6. We can use the computed
representative of SpecN (M) to compute the corresponding decorated graph using Theorem 7.13.
We then obtain the same graph as in Example 7.12.
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8 Outlook

As a possible starting point for further research, one thing came up at the end of this thesis
project. A question that naturally arises from our invariant SpecN (M) is: given a morphism
between two finite spectral triples, what is the relation between the invariants? The definition
of a morphism between two spectral triples is not completely obvious in literature. We suggest
the following one:

Definition 8.1. A morphism between two finite spectral triples (M1, H1, D1) and (M2, H2, D2)
is given by a pair (Φ, U) where Φ is a ∗-homomorphism Φ : M1 →M2 and U a partial isometry
U : H1 → H2 such that

(i) Uπ1(a) = π2(Φ(a))U for a ∈M1 and
(ii) UD1 = D2U.

We are interested in finding a direct relation h between the two corresponding invariants
SpecN1

(M1) and SpecN2
(M2) such that the following diagram commutes:

(M1, H1, D1) SpecN1
(M1)

(M2, H2, D2) SpecN2
(M2)

(Φ, U)

Spec

Spec

h

To get a first idea, one can consider the case where U is a unitary map, which is a much stronger
assumption. Since the invariants are determined modulo unitary equivalence we can identify
H1 = H2 and D1 = D2. We then only need to consider the map Φ. This map is determined by
a Bratteli diagram [9]. A direct relation h between SpecN (M1) and SpecN (M2) is then obtained
by a rearrangement of the γα ∈ SpecN (M1) according to the Bratteli diagram. However, if we
only consider the set SpecN (M1) and a Bratteli diagram B, this rearrangement is not unique.
The same problem occurs when we try to find a relation h that goes in the opposite direction,
i.e. from SpecN (M2) to SpecN (M1). The main question still remains open.
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