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Abstract

In this thesis we construct coherent states in the L2(R) Hilbert space, these
states minimize the quantum mechanical uncertainty between x and p and obey
the classical equations of motion for the harmonic oscillator. We confront this
approach, which has an overcomplete basis, with an alternative description using
a basis of wavefunctions and their Fourier transforms. However, since a function
and its Fourier transform cannot be both supported on arbitrarily small sets,
these states do not minimize the quantum mechanical uncertainty between x
and p. Lastly, the concept of Planck cells will be introduced. These cells can
be mathematically characterized by the above coherent states.
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1 Introduction

1 Introduction

In classical physics the properties of a certain system can be described using its
position x and mass m. With these variables it is possible to determine the ve-
locity v(=dx/dt), the momentum p(=mv) and any other dynamical variable of
interest. Quantum mechanics describes the time evolution of physical systems
in a different way, through the systems’ wavefunction: ψ(x, t). The variables
x and p will be replaced by the operators x and p, which are functions. The
position operator x multiplies by x and the momentum operator p takes the
derivative to x and multiplies by ~/i, where ~ is the Planck constant h divided
by 2π. The wavefunction of a system does not tell us everything about the
corresponding system, one can only use it to predict the state of the system.
There is a certain indeterminacy in quantum mechanics.

In the 17th century Christiaan Huygens had a theory of light, which stated that
light would consist of waves. Around that same time Isaac Newton proposed a
different theory of light, where it would consist of particles. In quantum me-
chanics it is assumed that all matter has a wave-particle duality, which means
that all matter has both wave and particle properties. Einstein was the first
scientist who mentioned this duality, in the 20th century his theory about the
wave-particle duality of light became scientifically accepted which led to the
beginning of quantum mechanics. However, it can not be said that Einstein
invented the quantum mechanics. Max Planck, Louis de Broglie and many oth-
ers all have contributed to the theory of quantum mechanics. In 1925 Werner
Heisenberg, Max Born and Pascual Jordan developed the matrix mechanics
formulation of quantum mechanics, which is now commonly used. Quantum
mechanics differs significantly from classical mechanics in its predictions when
looking at the atomic or sub-atomic scale. Many physical phenomena have
currently been re-evaluated as the classical limit of quantum mechanics and
there are even phenomena such as superconductivity and semiconductors which
cannot be explained using classical mechanics. Although successful, quantum
theory is still not fully understood, as it might never be. Like Richard Feynman
once said: ‘I think I can safely say that nobody understands quantum mechan-
ics’.

Unlike classical mechanics, where the variables x and p can be interchanged, the
operators x and p do not commute. This results in the Heisenberg uncertainty
principle, discovered by Werner Heisenberg in 1927, it states that the uncer-
tainty in position times the uncertainty in momentum is always equal or greater
than one half of the reduced Planck constant ~, so:

σxσp ≥
~
2
.

Here, σ is the standard deviation. This uncertainty means that the position
and momentum cannot be both measured with arbitrarily high precision. The
more precise the position is measured, the less precise the momentum can be
determined. Vice versa, the more precise the momentum is known, the less
precise the position can be determined. The Heisenberg uncertainty principle
is not saying anything about the researchers ability to measure the position or
momentum, the principle is a law of physics.

7



1 Introduction

Since, in quantum mechanics the position and momentum of a particle cannot
be both precisely known at the same time, it is impossible to locate a point in
the two dimensional x, p-plane. The most accurate way to localize a point in
this plane is to draw a rectangle with area ~/2. Then the uncertainty in x times
the uncertainty in p satisfies the Heisenberg uncertainty principle with equality,
and therefore the uncertainty is minimal. The x, p-plane can be partitioned
with these rectangles. In this thesis we will try to determine the wavefunctions
which mathematically describe this partitioning.

In chapter two some basic knowledge about vector spaces will be mentioned.
Thereafter, the concept of Hilbert spaces will be introduced. In quantum me-
chanics all wavefunctions are elements of a Hilbert space. In this thesis we will
use the Hilbert space L2(R) which will also be introduced in the first chapter.

The main focus in this thesis will be the concept of coherent states, which will be
introduced in the third chapter. A coherent state is a specific kind of quantum
state of the harmonic oscillator. Its wavefunction will satisfy the Heisenberg
uncertainty principle with equality and the expectation values of position and
momentum satisfy the classical equations of motion of a harmonic oscillator.
To obtain this result we shall study the lecture notes in relativistic quantum
mechanics from L. Bergstrom and H. Hansson ([1]). The harmonic oscillator is
important in physics since any oscillatory motion is harmonic by approximation
as long as the amplitude is small.

In the fourth chapter another approach will be followed to construct states with
minimal uncertainty. First, Fourier transformation on the Hilbert space L2(R)
will be defined, from which we will obtain several delta function identities. Fol-
lowing the reasoning of U. Gerlach ([2]), a partitioning of the x, p-plane will be
made with the help of one specific wavefunction and its Fourier transform. It
turns out that Fourier transformation can not be used to construct wavefunc-
tions with minimal uncertainty, since a function and its Fourier transform can
not be both supported on arbitrarily small sets.
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2.2. Vector spaces

2 Preliminaries

In this chapter some basic definitions about vector spaces and the Lebesgue
measure will be mentioned. With these definitions the L2(R) Hilbert space can
be defined. Lastly, the position operator x and momentum operator p will be
introduced along with some of their properties.

2.1 Matrix operations

Definition 2.1. The transpose of a matrix A is another matrix AT , created
by interchanging rows and columns. The (i, j)th element of AT is the (j, i)th

element of A.

If A is an m× n matrix then AT is an n×m matrix. The transpose of a scalar
is the same scalar, the transpose of a column matrix is a row matrix.

Definition 2.2. The complex conjugate of A is denoted by A. If A is a com-
plex number, then A is also a complex number with the same real part but with
imaginary parts of equal magnitude and opposite sign. The complex conjugate
of a matrix consists of the complex conjugate of every element.

Definition 2.3. The hermitian conjugate (or adjoint) of a matrix A, which
is denoted by A†, is the transpose conjugate of A.

2.2 Vector spaces

Definition 2.4. A seminorm ‖.‖ on a vector space E is a function ‖.‖ : E →
[0,∞) satisfying:

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ E),

2. ‖λx‖ = |λ| · ‖x‖ (x ∈ E, λ ∈ C).

Definition 2.5. A norm ‖.‖ on a vector space E is a function ‖.‖ : E → [0,∞)
satisfying:

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ E),

2. ‖λx‖ = |λ| · ‖x‖ (x ∈ E, λ ∈ C),

3. ‖x‖ = 0 =⇒ x = 0 (x ∈ E).

Definition 2.6. The Cauchy-Schwarz inequality states that for all vectors x
and y of an inner product space, with inner product 〈.|.〉:

|〈x|y〉|2 ≤ 〈x|x〉〈y|y〉.

Equivalently, by taking the square root of both sides and referring to the norms
of the vectors,

|〈x|y〉| ≤ ‖x‖‖y‖.

Definition 2.7. Let E and F be normed vector spaces. The maps E → F that
are both linear and continuous form a vector space denoted by L(E,F ). For
F = C there is a special notation: E′ = L(E,C). The space E′ is called the
dual space of E.
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2.3. Lebesgue Measure

Definition 2.8. An isomorphism is a bijective map f such that both f and its
inverse f−1 are homomorphisms, which means that they are structure-preserving
mappings. If there exists an isomorphism between two structures, we call the
two structures isomorphic.

Definition 2.9. Let E1, E2 be normed vectorspaces with norm ‖.‖ and T :
E1 → E2 a function such that: ‖Tx‖ = ‖x‖ for all x ∈ E1. Then T is called an
isometry.

Definition 2.10. A sequence v1, v2, . . . in a vector space V over a field F is a
basis if it satisfies the following properties:

1. Linear independence property: for all a1, a2, · · · ∈ F and v1, v2 . . . , if
a1v1 + a2v2 + · · · = 0, then necessarily a1 = a2 = · · · = 0.

2. Spanning property: for every x in V it is possible to choose a1, a2, · · · ∈ F
such that x = a1v1 + a2v2 + . . . .

Definition 2.11. A finite or infinite sequence u1, u2, . . . in a vector space E is
orthonormal if:

〈un|um〉 = δnm =

{
0 if n 6= m
1 if n = m

Lemma 2.1. An orthonormal set is linear independent.

Proof. If (un)n is an orthonormal set and there are λ1, λ2, . . . so that λ1u1 +
λ2u2 + · · · = 0 , then 0 = 〈λ1u1 + λ2u2 + . . . |un〉 = λn for each n, since
〈λmum|un〉 = λm〈um|un〉 = λmδnm. So λ1 = λ2 = · · · = 0, and the set (un)n is
linear independent.

Definition 2.12. A set D is dense in X if the X-closure of D is equal to X.

Definition 2.13. A linear operator T from one topological vector space X, to
another one, Y , is said to be densely defined if the domain of T is a dense
subset of X and the range of T is contained within Y .

2.3 Lebesgue Measure

Definition 2.14. Let S be a subset of R, let L(I) be the length of an interval
I ⊆ R: if I = (a, b), then L(I) = b − a. Finally, let M be the set consisting of
the values

∑
A∈C L(A) for all possible countable collections of open intervals C

that cover S, that is, S ⊆ ∪C.
Then the Lebesgue outer measure of S is defined by: m∗(S) = inf(M).

Since
∑
A∈C L(A) ≥ 0, it follows that m∗(S) ≥ 0. However, it is possible that

m∗(S) could equal +∞. Note that the outer measure can be defined for every
single set, because we can take the infimum of any non-empty set.

Definition 2.15. Let E ⊆ R. It is said that E is Lebesgue measurable if
we have the identity: m∗(A) = m∗(A∩E) +m∗(A \E) for every subset A of R.
If E is measurable, the Lebesgue measure of E is defined as m(E) = m∗(E). If
E is not Lebesgue measurable, then m(E) is left undefined.

Definition 2.16. Let E be a Lebesgue measurable subset of R, and let f : E → R
be a function. The function f is a Lebesgue measurable function if f−1(V )
is Lebesgue measurable for every open set V ⊆ R.
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2.5. Lp-Spaces

2.4 Hilbert Space

Definition 2.17. Let U, V be two vector spaces. The mapping from U to V is
called an operator.

Definition 2.18. A Hilbert space is a vector space provided with an inner
product such that the space is complete relative to the inner product norm.

Definition 2.19. Let E1, E2 be Hilbert spaces. A linear map T : E1 → E2 is
called unitary if it is bijective and 〈Tx|Ty〉 = 〈x|y〉 for all x, y ∈ E1.

Definition 2.20. Let E1, E2 be Hilbert spaces and T ∈ L(E1, E2). For y ∈ E2

the function x 7→ 〈Tx|y〉 (x ∈ E1) is an element of E′1, hence is of the form
x 7→ 〈x|Ty〉 (x ∈ E1) for a unique Ty in E1. Thus, we obtain a map T : E2 →
E1, determined by:

〈Tx|y〉 = 〈x|Ty〉 (x ∈ E1, y ∈ E2).

We call T the adjoint of T . If T = T , then T is Hermitian or also called
self-adjoint. This can only occur when E1 = E2.

Definition 2.21. The commutator of two operators A,B defined on a Hilbert
space is given by: [A,B] = AB −BA.

2.5 Lp-Spaces

Using the previously mentioned definitions, the Lp-space can be constructed.

Definition 2.22. Let 1 ≤ p < ∞. By Lp[µ] we mean the set of all Lebesgue
measurable functions f on X ⊆ R for which:

‖f‖p :=

(∫
X

|f |pdµ
)1/p

<∞.

The set of such functions forms a vector space, with the following natural oper-
ations:

(f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x),

for every scalar λ.

It can be shown that the Lp spaces are normed vector spaces with the help of
Minkowski’s inequality:

Proposition 2.1. (Minkowski’s inequality). Let 1 ≤ p < ∞ and f, g ∈
Lp[µ] with µ the Lebesgue measure, then: ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. This is Theorem 3.5 from [6].

Note that Minkowski’s inequality is the triangle inequality in Lp[µ].

Let 1 ≤ p < ∞ and f, g ∈ Lp[µ]. Then f + g and |f + g|p are also Lebesgue
measurable (Corollary 18.5.7 from [7]). With Minkowski’s inequality it follows
that f + g ∈ Lp[µ]. The vectorspace Lp[µ] together with the function ‖.‖p is a
seminorm.
This seminormed vector space can be made into a normed vector space by taking
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2.5. Lp-Spaces

the quotient space with respect to the kernel of ‖.‖p. The kernel of ‖.‖p is defined
by:

N := {f ∈ Lp[µ] : ‖f‖p = 0}.

The kernel of ‖.‖p does not depend on p since any measurable function f satisfies:
‖f‖p = 0 if and only if f = 0 almost everywhere.
Now we can define a Lp-space:

Definition 2.23. Let 1 ≤ p <∞, then define the Lp-space by:

Lp(µ) := Lp[µ]/N .

On Lp(µ) we have the norm ‖.‖p , defined by: ‖f +N‖p = ‖f‖p.

Theorem 2.1. Let 1 ≤ p <∞, then C(X) is dense in Lp(µ).

Proof. This is Theorem 3.14 from [6].

It turns out that a L2-space is complete, to prove this we need the following
theorem:

Theorem 2.2. Let E a normed vector space. The space E is complete if every
sequence (xn)n in E with

∑
‖xn‖ < ∞, is summable. This means that the

sequence (x1 + · · ·+ xN )N converges.

Proof. Suppose every sequence (xn)n in E with
∑
‖xn‖ <∞, is summable. Let

(un)n be a Cauchy sequence in E, we have to show that this Cauchy sequence
has a limit u and that u is also in E.
Because (un)n is a Cauchy sequence we can choose N(1), N(2), . . . in N so that

‖un − uN(i)‖ ≤ 2−i as soon as n ≥ N(i) (∗),

and N(2) > N(1), N(3) > N(2), etc. Take i ∈ N arbitrary and n ≥ N(i + 1)
then:

‖uN(i+1) − uN(i)‖ ≤ ‖uN(i+1) − un‖+ ‖un − uN(i)‖ ≤ 2 · 2−(i+1) = 2−i.

Consider the sequence (vi)
∞
i=0 in E where v0 = uN(1) and vi = uN(i+1) − uN(i)

for i ≥ 1. We have
∑
i vi ≤

∑
i 2−i ≤ ∞. So the sequence vi is summable.

The partial sums of this sequence are
∑M
i=0 vi = uN(M+1), so u := limi→∞ uN(i)

exists. From the inequality (*) we get un → u, so the Cauchy sequence (un)n
has a limit u in E.

Theorem 2.3. The space Lp(µ) is complete for 1 ≤ p <∞ with respect to the
Lebesgue measure µ.

Proof. Let 1 ≤ p < ∞. Because Lp(µ) is the quotient space of Lp[µ] with
respect to the kernel of ‖.‖p, we can consider sequences in Lp[µ] to prove that
Lp(µ) is complete. We are going to use Theorem 2.2. So, take a sequence (fn)n
in Lp[µ] such that s :=

∑
n ‖fn‖p is finite. We have to show that the sequence

(f1 + f2 + · · · + fN )N converges. As every function can be written as a linear
combination of non negative real functions, we may assume fn ≥ 0 for all n.
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2.6. Position and momentum operator

Now, for each n, set gn := f1 + · · · + fn in Lp[µ]. The sequence (gpn)n is an
increasing sequence in L1[µ]. Here,∫

gpndµ = ‖f1 + · · ·+ fn‖pp ≤ (‖f1‖p + . . . ‖fn‖p)p ≤ sp ≤ ∞,

for every n. Note that gp1 ≤ g
p
2 ≤ . . . and supn

∫
gpndµ ≤ ∞, so we can use Levi’s

Theorem (Theorem C.16 from [5]) which states that: There is a g in Lp[µ]+

with gpn → gp almost everywhere. Then (gn − g)p → 0 almost everywhere, and
‖gn − g‖p → 0 by Lebesgue’s Theorem (Theorem C.18 from [5]). So we have
proven that ‖g− (f1 + · · ·+ fn)‖p → 0. Therefore, the sequence (f1 + · · ·+ fn)n
converges and from Theorem 2.2 it follows that Lp(µ) is complete.

For now, let p = 2.

Definition 2.24. Let f(x), g(x) ∈ L2(R), then the inner product 〈f |g〉 is defined
by:

〈f |g〉 :=

∫ ∞
−∞

f(x)g(x)dx.

Since f(x) and g(x) are both in L2(R), the expression 〈f |g〉 is guaranteed to
exist i.e. it converges to a finite number. This follows from the Cauchy-Schwarz
inequality (Definition 2.6):∣∣∣∣∫ ∞

−∞
f(x)g(x)dx

∣∣∣∣ ≤
√∫ ∞
−∞
|f(x)|2dx

∫ ∞
−∞
|g(x)|2dx ≤ ∞.

The inner product has the following properties:

〈y|x〉 = 〈x|y〉 for all x, y ∈ L2(R),

〈x+ y|z〉 = 〈x|z〉+ 〈y|z〉 for all x, y, z ∈ L2(R),

〈x|αy〉 = α〈x|y〉 for all x, y ∈ L2(R) and α ∈ C,

〈x|x〉 ≥ 0 for all x ∈ L2(R),

〈x|x〉 = 0 =⇒ x = 0.

We can define the norm ‖x‖2 of x ∈ L2(R) by ‖x‖22 = 〈x|x〉.
If a set of functions {fn} with fn ∈ L2(R) is orthonormal, then 〈fn|fm〉 = δnm.
Functions in L2(R) are called square-integrable functions.

Corollary 2.1. The space L2(R) is a Hilbert space.

Proof. The space L2(R) is a complete vector space (Theorem 2.3), provided
with an inner product.

2.6 Position and momentum operator

Let x be the position operator and p := ~
i
d
dx the momentum operator. Their

commutator can be calculated with the help of a so called ‘test function’ f(x)
with the following property: f(x) ∈ D := {f(x) : xnf (m)(x) ∈ L2(R) ∀n,m ∈
N}. Let f ∈ D then: xf ∈ D and pf = ~

i
d
dxf = ~

i f
(1)(x) ∈ D. So, xD ⊂ D and
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2.6. Position and momentum operator

pD ⊂ D. Therefore, x : D → D and p : D → D.
Now use an arbitrary f ∈ D as a test function to calculate the commutator of
x and p, so:

[x, p]f = x
~
i

d

dx
(f)− ~

i

d

dx
(xf) =

~
i

(
x
df

dx
− x df

dx
− f

)
= i~f.

Dropping the test function, we obtain:

[x, p] = i~. (1)

In this thesis the bra-ket notation will be used, this is a standard notation for
describing quantum states in quantum mechanics. Let H a Hilbert space. The
inner product of two states is denoted by a bracket, 〈α|β〉. The left part is called
the bra and the right part the ket. The ket |β〉 is a column vector and is an
element of the Hilbert space H. The bra 〈α| is a row vector and is an element
of the dual space H ′ of H. Further, 〈α| = |α〉†.

Definition 2.25. Let H a Hilbert space, with inner product 〈.|.〉. A continuous
linear operator Q : H → H is hermitian if:

〈f |Qg〉 = 〈Qf |g〉 for all f, g ∈ H.

Definition 2.26. Let H a Hilbert space, with inner product 〈.|.〉. A linear
operator Q : H → H is symmetric on the domain D ⊂ H if:

〈f |Qg〉 = 〈Qf |g〉 for all f, g ∈ D.

Corollary 2.2. Let H a Hilbert space, with inner product 〈.|.〉 and Q a hermi-
tian operator. Then the operator Q is also symmetric.

Proof. Since Q is hermitian, it is linear. Furthermore, for all f, g ∈ H it satisfies
the equation: 〈fQ|g〉 = 〈f |Qg〉, and therefore also for all f, g ∈ D ⊂ H.

Theorem 2.4. The position operator x is symmetric on the domain D = {f(x) :
xnf (m)(x) ∈ L2(R) ∀n,m ∈ N}.

Proof. Let f(x), g(x) ∈ D. Using that x = x we find:

〈f |xg〉 =

∫ ∞
−∞

f(x)[xg(x)]dx =

∫ ∞
−∞

[xf(x)]g(x)dx

= 〈xf |g〉.

So indeed, x is symmetric on D.

Theorem 2.5. The momentum operator p = ~
i
d
dx is symmetric on D = {f(x) :

xnf (m)(x) ∈ L2(R) ∀n,m ∈ N}.

Proof. Let f(x), g(x) ∈ D, then:

〈f |pg〉 =

∫ ∞
−∞

f(x)

(
~
i

dg(x)

dx

)
dx =

[
~
i
f(x)g(x)

]∞
−∞

+

∫ ∞
−∞

(
~
i

df(x)

dx

)
g(x)dx

= 〈pf |g〉.

We applied integration by parts where the boundary term was equal to zero
because f and g are square integrable functions which go to zero at ±∞.
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2.6. Position and momentum operator

Lemma 2.2. Define D := {f(x) : xnf (m)(x) ∈ L2(R) ∀n,m ∈ N}, and let Q
a symmetric operator on D. If Qf(x) = qf(x), with f(x) ∈ D, then q ∈ R.

Proof. Since Q is symmetric, it follows that:

q〈f |f〉 = 〈f |Qf〉 = 〈Qf |f〉 = q〈f |f〉.

Here, 〈f |f〉 cannot be zero because f = 0 is not a legal eigenfunction, so q = q
and hence q is real.

Corollary 2.3. Let x the position operator and f(x) ∈ D = {f(x) : xnf (m)(x) ∈
L2(R) ∀n,m ∈ N}. If xf(x) = qf(x), then q ∈ R.

Proof. From Theorem 2.4 we know that the position operator x is symmetric
on D. Therefore, applying Lemma 2.2, we find that if f(x) ∈ D and if xf(x) =
qf(x), then q ∈ R.
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3.1. The harmonic oscillator

3 Coherent states of the harmonic oscillator

In this chapter the concept of coherent states will be introduced, inspired on
section 4.3 of [1]. First, we will investigate the harmonic oscillator in quantum
mechanics. It will turn out that coherent states represent the equations of
motion of the classical harmonic oscillator.

3.1 The harmonic oscillator

In classical mechanics we can talk about the position of a particle at any given
time: x(t). The quantum mechanics analog to this is a particle’s wavefunction:
|ψ(x, t)〉. This wavefunction has a statistical interpretation, |ψ(x, t)|2 gives the
probability of finding the particle at position x at time t. More precisely we

could say that
∫ b
a
|ψ(x, t)|2dx is the probability of finding the particle between a

and b, at time t. The wavefunction can be obtained by solving the Schrödinger
equation:

Definition 3.1. The following equation is called the one dimensional Schröding-
er equation:

i~
∂|ψ〉
∂t

= − ~2

2m

∂2|ψ〉
∂x2

+ V |ψ〉.

Here, i is the square root of −1 and ~ = h
2π , with h the Planck constant.

The paradigm for a classical harmonic oscillator is a mass m attached to a
spring of force constant k. Ignoring friction, the potential energy is given by:

V (x) = 1
2kx

2. The frequence of oscillation, denoted by ω, is given by: ω =
√

k
m .

The quantum problem is to solve the one dimensional Schrödinger equation for
the potential V (x) = 1

2mω
2x2. Because this potential is not time dependent

we can solve the Schrödinger equation by the method of separation of variables.
For more detail about this method see section 2.1 of [3]. It suffices to solve the
time-independent Schrödinger equation:

− ~2

2m

d2|ψ〉
dx2

+ V (x)|ψ〉 = E|ψ〉.

We can rewrite this equation with the help of the momentum operator p = ~
i
d
dx ,

which results in:

(
p2

2m
+ V (x))︸ ︷︷ ︸
=H

|ψ〉 = E|ψ〉,

where H is called the Hamiltonian. The Hamiltonian of the harmonic oscillator
is given by:

H =
1

2m
[p2 + (mωx)2].

The wavefunctions of the harmonic oscillator can be determined using ladder
operators:
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3.1. The harmonic oscillator

Definition 3.2. The following quantities are called ladder operators:

a =
1√

2~mω
(ip+mωx),

a† =
1√

2~mω
(−ip+mωx).

Here a is called the lowering operator, and a† is called the raising operator.

The commutator of a and a† can be calculated directly from their definition:

[a, a†] =
i

~
[p, x] = 1.

Here, we used that the commutator of p and x is equal to −i~, which follows
from equation (1).
The operators x and p expressed in terms of these ladder operators are:

x =

√
~

2mω
(a+ a†),

p =
1

i

√
~mω

2
(a− a†).

So,

x2 =
~

2mω
(a+ a†)2,

p2 = −mω~
2

(a− a†)2.

We can express the Hamiltonian of the harmonic oscillator in terms of the ladder
operators using that:

aa† =
1

2~mω
(p2 + (mωx)2)− i

2~
[x, p] =

1

~ω
H +

1

2
. (2)

Here we recognized the Hamiltonian of the harmonic oscillator and the commu-
tator of x and p, which is equal to i~.
Now we can express the Hamiltonian H in terms of the ladder operators:

H = ~ω(aa† − 1

2
).

And it follows that:

[H, a] = ~ωa[a†, a] = −~ωa,
[H, a†] = ~ωa†[a, a†] = ~ωa†.

The lowering operator will always reduce the energy of the state, since:

Ha|ψ〉 = (aH − ~ωa)|ψ〉 = (E − ~ω)a|ψ〉.
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3.1. The harmonic oscillator

Similarly, the raising operator will always raise the energy of the state, hence
the name ladder operator:

Ha†|ψ〉 = (a†H + ~ωa†)|ψ〉 = (E + ~ω)a†|ψ〉.

The ground state of a system is the state with the lowest energy. Since, the
lowering operator will always reduce the energy of the state, the ground state
wavefunction of the harmonic oscillator |0〉 must satisfy the equation a|0〉 = 0.
Consequently, the ground state wavefunction can be determined (see section 2.3
of [3] for more detail).

|0〉 =

(
mω

π~

)1/4

e−
mωx2

2~ ∈ L2(R). (3)

Using the raising operator, the excited states |n〉 can be calculated (see section
2.3 of [3] for more detail). This gives:

|n〉 =
1√
n!

(a†)n|0〉 ∈ L2(R). (4)

With,

a†|n〉 =
√
n+ 1|n+ 1〉, (5)

a|n〉 =
√
n|n− 1〉. (6)

Furthermore, the wavefunctions are orthonormal. So, 〈n|m〉 = δnm.
We also know from [3] that the energy of the harmonic oscillator is quantized:

H|n〉 = En|n〉 = ~ω(n+
1

2
)|n〉. (7)

Using the above two relations, for the ladder operators acting on the wavefunc-
tion |n〉, and Hermite polynomials, we can prove that the collection of wave-
functions of the harmonic oscillator forms a basis for L2(R).

Definition 3.3. For n = 1, 2, . . . we define the Hermite polynomial Hn by:

Hn(x) := (−1)nex
2 dn

dxn
(e−x

2

).

The Hermite polynomials obey the following recursion formula:

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x). (8)

Further, their derivative satisfies:

d

dx
Hn(x) = 2nHn−1(x). (9)

Now we can prove the following theorem:

Theorem 3.1. The collection of wavefunctions {|n〉} of the harmonic oscillator
forms a basis for L2(R). This basis is called the |n〉 basis.

18



3.1. The harmonic oscillator

Proof. To prove this theorem we will consider the functions:

|ψn〉 := (2nn!π1/2x0)−1/2︸ ︷︷ ︸
:=αn

e−y
2/2Hn(y).

Here, x0 =
√

~
mω . We will show that these functions are eigenfunction of the

Hamiltonian of the harmonic oscillator and that they are equal to the wave-
functions |n〉. First we are going to rewrite the Schrödinger equation for the
harmonic oscillator, which is given by:

H|ψ〉 =

(
−~
2m

d2

dx2
+

1

2
mω2x2

)
|ψ〉 = E|ψ〉.

Using y = x/x0 we obtain:

d2|ψ〉
dy2

− y2|ψ〉 = −2E

~ω
|ψ〉.

For |ψn〉 = αne
−y2/2Hn(y) = αnφ(y) we have:

dφ(y)

dy
=

(
dHn(y)

dy
− yHn(y)

)
e−y

2/2.

And,

d2φ(y)

dy2
=

(
d2Hn(y)

dy2
− 2y

dHn(y)

dy
+ (y2 − 1)Hn(y)

)
e−y

2/2.

Here, we can use equation (9) for the derivative of Hn, then we obtain:

= (4n(n− 1)Hn−2(y)− 4ynHn−1(y) + (y2 − 1)Hn(y))e−y
2/2.

Now use the recursion relation (8) for the Hermite polynomials:

= Hn(y)(−2n− 1 + y2)e−y
2/2.

So the Schrödinger equation becomes:

−(2n+ 1)αne
−y2/2Hn(y) = −2E

~ω
αne

−y2/2Hn(y).

Therefore, |ψn〉 = αne
−y2/2Hn(y) is an eigenfunction of H with eigenvalue

En = ~ω(n + 1
2 ). Rewriting |ψn〉 we see that this function is equal to |n〉, the

wavefunction of the harmonic oscillator:

|ψn〉 = αne
−y2/2Hn(y) = αn(−1)ney

2/2 d
n

dyn
e−y

2

= (2nn!π1/2x0)−1/2

(
y − dn

dyn

)n
e−y

2/2.
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3.2. Coherent states

Substituting x = yx0 and x0 =
√

~
mω , we obtain:

=
1√
n!

(
1

2~mω

)n/2(
mω

π~

)1/4(
mωx− ~

d

dx

)n
e−mωx

2/(2~).

Using Definition 3.2 for a† we can recognize expression (4) for |n〉, so that:

=
1√
n!

(a†)n|0〉 = |n〉.

So, |ψn〉 = αne
−y2/2Hn(y) is equal to |n〉. Using Theorem 14.18 from [5] we see

that the functions αne
−y2/2Hn(y) form a basis for L2(R). Consequently, the

collection {|n〉} forms a basis for L2(R).

Corollary 3.1. The closure relation for the wavefunctions of the harmonic
oscillator is:

∞∑
n=0

|n〉〈n| = 1̂.

Where 1̂ is the identity operator.

Proof. Let f ∈ L2(R), then since the collection {|n〉} forms a basis for L2(R)
we could write:

f =

∞∑
m=0

am|m〉.

The wavefunctions of the harmonic oscillator are orthonormal so, 〈m|m〉 = 1
and 〈n|m〉 = 0 if n 6= m. Using this, we obtain:( ∞∑
n=0

|n〉〈n|
)
f =

( ∞∑
n=0

|n〉〈n|
) ∞∑
m=0

am|m〉 =

∞∑
n=0

∞∑
m=0

am|n〉〈n|m〉 =

∞∑
n=0

an|n〉 = f.

So we can conclude that:
∞∑
n=0

|n〉〈n| = 1̂.

3.2 Coherent states

Before the coherent states will be defined, we introduce the uncertainty princi-
ple:

Theorem 3.2. (Uncertainty principle) Consider a system with suitable nor-
malized wavefunction |ψ〉, e.g. |ψ〉 ∈ D = {f(x) : xnf (m)(x) ∈ L2(R) ∀n,m ∈
N}, and two symmetric operators A and B. Then:

(σA)(σB) ≥ 1

2
|〈[A,B]〉|.

This is called the uncertainty principle.
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3.2. Coherent states

The uncertainty in operators A and B is defined by:

σA = (〈A2〉 − 〈A〉2)1/2 ≥ 0,

σB = (〈B2〉 − 〈B〉2)1/2 ≥ 0.

And the expectation values by:

〈A〉 = 〈ψ|A|ψ〉,
〈B〉 = 〈ψ|B|ψ〉.

Proof. If σB 6= 0, define the following operator:

C := A− 〈A〉+ iλ(B − 〈B〉) (λ ∈ R).

Using this operator, the fact that A and B are symmetric operators and the
fact that |ψ〉 is normalized, we obtain the following inequality for every real λ:

0 ≤ 〈Cψ|Cψ〉 = 〈ψ|C†C|ψ〉 = (σA)2 + λ2(σB)2 + λ〈i[A,B]〉. (10)

The right side of this equation has a minimum for λ = − 1
2 〈i[A,B]〉/(σB)2. This

minimum is equal to:

(σA)2 − 〈i[A,B]〉2

4(σB)2
≥ 0.

Rearranging gives us the uncertainty principle,

(σA)(σB) ≥ 1

2
|〈[A,B]〉|.

When σB = 0 and σA 6= 0, we can obtain the uncertainty principle in the same
way but with the roles of A and B interchanged. If σA = σB = 0, then from
equation (10) follows that 〈[A,B]〉 = 0, because λ can be negative. This result
is in accordance with the uncertainty principle.

Heisenberg discovered this uncertainty relation in 1926. He realized that ev-
ery pair of physical properties that do not commute results in an uncertainty
relation. This implication led the foundation of the contemporary quantum
mechanics. In this thesis we will use the uncertainty relation with the physical
properties position and momentum.

Theorem 3.3. The Heisenberg uncertainty principle states that:

(σx)(σp) ≥
~
2
.

Proof. It is known from equation (1) that [x, p] = i~. Since x and p are sym-
metric operators (Theorem 2.4 and 2.5), we can apply the uncertainty principle
(Theorem 3.2) to x and p, then:

(σx)(σp) ≥
1

2
|〈i~〉| = ~

2
.
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3.2. Coherent states

Our main interest in this thesis is to find states that satisfy this uncertainty
with equality.

Definition 3.4. Wavefunctions that satisfy the Heisenberg uncertainty principle
with equality are called minimum uncertainty wavefunctions.

Theorem 3.4. The ground state wavefunction |0〉 of the harmonic oscillator is
a minimum uncertainty wavefunction.

Proof. We need the following expectation values to prove the theorem:

〈0|(a+ a†)(a+ a†)|0〉 = 〈0|aa+ a†a+ aa† + a†a†|0〉
= 〈0|aa|0〉+ 〈0|a†a|0〉+ 〈0|aa†|0〉+ 〈0|a†a†|0〉.

Because a|0〉 = 0 and 〈0|2〉 = 0, there is only one term nonzero:

= 〈0|aa†|0〉 = 〈0|
(

1

~ω
H +

1

2

)
|0〉 =

1

~ω
E0 +

1

2
= 1. (11)

In a similar way it follows that:

〈0|(a− a†)(a− a†)|0〉 = 〈0| − aa†|0〉 = −1. (12)

Now the expectation values for position and momentum can be calculated. We
obtain:

〈x〉0 := 〈0|x|0〉 =

√
~

2mω
〈0|(a+ a†)|0〉 = 0,

〈p〉0 := 〈0|p|0〉 =
1

i

√
~mω

2
〈0|(a− a†)|0〉 = 0.

Where we used that a|0〉 = 0 and that the wavefunctions are orthonormal, so
〈0|1〉 = 0. Further, using equations (11) and (12) it follows that:

〈x2〉0 := 〈0|x2|0〉 =
~

2mω
〈0|(a+ a†)2|0〉 =

~
2mω

,

〈p2〉0 := 〈0|p2|0〉 = −~mω
2
〈0|(a− a†)2|0〉 =

~mω
2

.

Now we can calculate the uncertainty in x and p, which results in:

(σx)2
0 := 〈x2〉 − 〈x〉2 =

~
2mω

,

(σp)
2
0 := 〈p2〉 − 〈p〉2 =

~mω
2

.

We obtain the Heisenberg uncertainty principle with equality:

(σx)2
0(σp)

2
0 =

~2

4
.

So, the ground state wavefunction |0〉 of the harmonic oscillator is a minimum
uncertainty wavefunction.
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3.2. Coherent states

Theorem 3.5. The wavefunctions |n〉 (n 6= 0), are not minimum uncertainty
wavefunctions.

Proof. Since the wavefunctions are orthonormal, we obtain that:

〈x〉n := 〈n|x|n〉 =

√
~

2mω
〈n|a+ a†|n〉 = 0,

and that:

〈p〉n := 〈n|p|n〉 =
1

i

√
~mω

2
〈n|a− a†|n〉 = 0.

Furthermore,

〈x2〉n =
~

2mω
〈n|(a+ a†)2|n〉 =

~
2mω

〈n|[a, a†] + 2a†a|n〉 =
~

2mω
(1 + 2n),

〈p2〉n = −~mω
2
〈n|(a− a†)2|n〉 =

~mω
2
〈n|[a, a†] + 2a†a|n〉 =

~mω
2

(1 + 2n).

Where relations (5) and (6) were used combined with the orthonormality of the
wavefunctions of the harmonic oscillator.
Now we can calculate the uncertainty in x and p, which results in:

(σx)2
n(σp)

2
n =

~2

4
(1 + 2n)2.

This is not a minimum uncertainty, as the uncertainty increases with n.

The crucial point that causes the wavefunction |n〉 (n 6= 0) to have no minimal
uncertainty is that a|n〉 6= 0 so that: 〈n|a†a|n〉 6= 0. Further, |n〉 is not an
eigenfunction of the operator a since a|n〉 =

√
n|n− 1〉.

The minimum uncertainty wavefunction |0〉 did satisfy the relation a|0〉 = 0, so
that: 〈0|a†a|0〉 = 0. We would expect other minimum uncertainty wavefunctions
|α〉 if they satisfy the relation: a|α〉 = α|α〉.

Definition 3.5. The states |α〉 defined by: a|α〉 = α|α〉, with 〈α|α〉 = 1, are
called coherent states.

Later in this chapter we will see that a coherent state is a specific kind of quan-
tum state of the quantum harmonic oscillator whose dynamics closely resemble
the oscillating behavior of a classical harmonic oscillator system.

Theorem 3.6. Coherent states satisfy the minimum uncertainty relation

Proof. From a|α〉 = α|α〉 it follows that 〈α|a† = 〈α|α. So, 〈α|a†a|α〉 = |α|2.
Furthermore,

〈α|a+ a†|α〉 = α+ α, (13)

〈α|a− a†|α〉 = α− α, (14)

〈α|(a+ a†)2|α〉 = 〈α|aa|α〉+ 〈α|a†a†|α〉+ 〈α|[a, a†]|α〉+ 2〈α|a†a|α〉
= α2 + (α)2 + 1 + 2αα = (α+ α)2 + 1.
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3.3. Coherent states in the n-representation

In a similar way it follows that:

〈α|(a− a†)2|α〉 = α2 + (α)2 − 1− 2αα = (α− α)2 − 1.

Now we can calculate the expectation values for position and momentum:

(σx)2
α = 〈x2〉α − 〈x〉2α =

~
2mω

(〈α|(a+ a†)2|α〉 − 〈α|a+ a†|α〉)

=
~

2mω
[(α+ α)2 + 1− (α+ α)2] =

~
2mω

,

(σp)
2
α = 〈p2〉α − 〈p〉2α = −~mω

2
(〈α|(a− a†)2|α〉 − 〈α|a− a†|α〉)

= −~mω
2

[(α− α)2 − 1− (α− α)2] =
~mω

2
.

Which implies:

(σx)2
α(σp)

2
α =

~2

4
.

So, the coherent states satisfy the minimum uncertainty relation.

3.3 Coherent states in the n-representation

The wavefunctions of the harmonic oscillator form a basis for L2(R), this is The-
orem 3.1. Therefore, we can express the coherent states in these wavefunctions.
In the |n〉 basis the coherent state |α〉 is written as:

|α〉 =

∞∑
n=0

cn|n〉 (cn ∈ R).

Multiplying this expression from the left with the bra 〈m| gives a expression for
the coefficients cm, so:

〈m|α〉 =

∞∑
n=0

cn〈m|n〉 = cm.

Here, we used the fact that the wavefunctions of the harmonic oscillator are
orthonormal. As a result we obtain the following expression:

|α〉 =
∞∑
n=0

|n〉〈n|α〉. (15)

Now use expression (4) for the wavefunction |n〉, then:

〈n|α〉 =
1√
n!
〈0|anα〉 =

αn√
n!
〈0|α〉.

Combining this with expression (15) we obtain:

|α〉 = 〈0|α〉
∞∑
n=0

αn√
n!
|n〉. (16)
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3.3. Coherent states in the n-representation

The constant factor 〈0|α〉 must still be determined, which can be done using
normalisation since the coherent state |α〉 has to be normalized. So,

1 = 〈α|α〉 =

( ∞∑
m=0

〈α|m〉〈m|
)( ∞∑

n=0

|n〉〈n|α〉
)
.

Here, expression (15) was used, after rearranging the obtained expression, or-
thonormality can be used resulting in:

=

∞∑
m=0

∞∑
n=0

〈α|m〉〈m|n〉〈n|α〉 =

∞∑
n=0

〈α|n〉〈n|α〉.

Now we can use expression (4) for the functions |n〉, this results in:

=

∞∑
n=0

1

n!
(α)nαn〈α|0〉〈0|α〉 =

∞∑
n=0

1

n!
|α|2n|〈0|α〉|2.

Here, the exponential function of |α|2 can be recognized:

= |〈0|α〉|2e|α|
2

.

Solving for |〈α|0〉| we get:

|〈0|α〉| = e−
1
2 |α|

2

.

Now we know 〈0|α〉 up to a constant phase factor:

〈0|α〉 = e−
1
2 |α|

2

eiβ .

Substituting this into equation (16) we obtain the final form:

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉. (17)

The constant phase factor eiβ is left out because it does not contribute to the
expectation value of the wavefunction, since |eiβ |2 = 1, and because every mul-
tiple of a coherent state by a nonzero constant factor is still a coherent state.
We can check that the coherent state |α〉 is indeed orthonormal:

〈α|α〉 = e−|α|
2
∞∑
m=0

∞∑
n=0

αn(α)m√
n!m!

〈m|n〉 = e−|α|
2
∞∑
n=0

|α|2n

n!
= e−|α|

2

e|α|
2

= 1.

The coherent state |α〉 is not an eigenfunction of the harmonic oscillator, which
can be seen from:

H|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
H|n〉 = e−

1
2 |α|

2
∞∑
n=0

αn√
n!
En|n〉 6= λ|α〉,
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3.4. Orthogonality and completeness relations

with λ ∈ C.

The coherent state |α〉 can be expressed in terms of the displacement operator

D(α), which is given by D(α) = eαa
†−αa. From expression (17) we know that:

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉.

Now use expression (4) for |n〉, this gives:

= e−
1
2 |α|

2
∞∑
n=0

αn

n!
(a†)n|0〉 = e−

1
2 |α|

2

eαa
†
|0〉, (18)

where we recognized the exponential function of αa†.
To rewrite this expression we need the Baker−Campbell−Hausdorff formula
which states that if X and Y are Hilbert space operators that both commute
with [X,Y ] then:

eX+Y = e−
1
2 [X,Y ]eXeY . (19)

We apply this formula on the displacement operator with X = αa† and Y =
−αa. Their commutator is: [αa†,−αa] = −|α|2[a†, a] = |α|2, since [a, a†] = 1.
So this commutator commutes with both αa† and αa. Now, applying the Baker-
−Campbell−Hausdorff formula results in:

eαa
†−αa = eαa

†
e−αae−

1
2 |α|

2

.

Since a|α〉 = 0, it follows that e−αa|0〉 = e0 = 1. Therefore,

|α〉 = e−
1
2 |α|

2

eαa
†
|0〉 = eαa

†
e−αae−

1
2 |α|

2

|0〉 = eαa
†−αa|0〉 = D(α)|0〉.

So, the coherent state |α〉 is equal to the displacement operator D(α) operating
on the ground state of the harmonic oscillator.

3.4 Orthogonality and completeness relations

We can calculate the overlap between two coherent states. Let |α〉 and |β〉 be
two coherent states, so a|α〉 = α|α〉 and a|β〉 = β|β〉. Using expression (17)
these two states can be expressed by:

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉, |β〉 = e−

1
2 |β|

2
∞∑
m=0

βm√
m!
|m〉.

Then the overlap is calculated using:

〈α|β〉 =

(
e−

1
2 |α|

2
∞∑
n=0

(α)n√
n!
〈n|
)(

e−
1
2 |β|

2
∞∑
m=0

βm√
m!
|m〉
)

= e−
1
2 |α|

2

e−
1
2 |β|

2
∞∑
n=0

(α)nβn

n!
= e−

1
2 |α|

2

e−
1
2 |β|

2

eαβ ,
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3.5. Coherent states in the x-representation

and similarly,

〈β|α〉 = e−
1
2 |α|

2

e−
1
2 |β|

2

eβα.

So that the overlap is given by:

|〈α|β〉|2 = 〈β|α〉〈α|β〉 = e−|α|
2−|β|2+αβ+αβ = e−|α−β|

2

.

Suppose a system is in quantum state |α〉, then there is a nonzero chance that
the system is in quantum state |β〉 because |〈α|β〉|2 6= 0 if α 6= β. Consequently,
since 〈α|β〉 6= 0 if α 6= β, the collection of coherent states forms an overcomplete
set. The number of coherent states is greater than the needed number for a
basis.
Nevertheless, there is a closure relation:∫

C
d2α|α〉〈α| =

∫
C
d2αe−|α|

2
∞∑
n=0

∞∑
m=0

(α)nαm√
n!m!

|m〉〈n|.

Now, writing α in polar form: α = reiφ and d2α = rdrdφ, gives:

=

∞∑
n=0

∞∑
m=0

|n〉〈m|√
n!m!

∫ 2π

0

eiφ(m−n)dφ︸ ︷︷ ︸
=2πδn,m

∫ ∞
0

re−r
2

r(n+m)dr

=

∞∑
n=0

|n〉〈n|
n!

2π

∫ ∞
0

re−r
2

r2ndr.

Change variable from r to x = r2, then dx = d(r2) = 2rdr and we obtain:

=

∞∑
n=0

|n〉〈n|
n!

2π

∫ ∞
0

1

2
e−xxndx︸ ︷︷ ︸

= 1
2 Γ(n+1)

= π

∞∑
n=0

|n〉〈n| = 1̂π.

Here, (n+ 1) ∈ N− {0}, so Γ(n+ 1) = n!.
We used the closure relation from Corollary 3.1 to obtain this result.
We can conclude that the closure relation for coherent states is given by:∫

C

d2α

π
|α〉〈α| = 1̂.

3.5 Coherent states in the x-representation

In this section the wavefunction of a coherent state in the x-representation will
be determined. We shall introduce some constants to simplify the calculation.
Using equation (13) and (14) we find that:

R(α) :=
1

2
(α+ α) = 〈α|a+ a†

2
|α〉 =

√
mω

2~
〈x〉α,

I(α) :=
1

2i
(α− α) = 〈α|a− a

†

2i
|α〉 =

1√
2mω~

〈p〉α.
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3.5. Coherent states in the x-representation

We could also write,

〈x〉α =

√
2~
mω
R(α), (20)

〈p〉α =
√

2mω~I(α). (21)

Here R(α) is the real part of α and I(α) is the imaginary part of α.

Now, we are going to write the coherent state |α〉 in the x-representation. Let
|x′〉 be an eigenstate of the operator x, so x|x′〉 = x′|x′〉.
Using the previously derived form of the coherent states, expressed in terms of
the ground state of the harmonic oscillator (equation (18)), we get:

〈x′|α〉 = 〈x′|e− 1
2 |α|

2+αa† |0〉.

Now use Definition 3.2 for a†, then:

= e−
1
2 |α|

2

〈x′|eα
√

mω
2~ (x− ip

mω )|0〉.

Multiplying from the left with 〈x′|, remembering that the eigenvalues of x′ are
real (Corollary 2.3), so 〈x′|x = 〈x′|x′ and 〈x′|p = ~

i
d
dx′ , we obtain:

= e−
1
2 |α|

2

eα
√

mω
2~ (x′− i

mω
~
i
d
dx′ )〈x′|0〉.

Substitute the constants N = (mωπ~ )1/4 and x0 =
√

~
mω . Further, use the explicit

expression for |0〉 which is given by equation (3), then:

= e−
1
2 |α|

2

e
α

x0
√

2
(x′−x2

0
d
dx′ )〈x′|Ne−

1
2 ( xx0

)2

= e−
1
2 |α|

2

e
α

x0
√

2
(x′−x2

0
d
dx′ )Ne−

1
2 ( x
′
x0

)2 .

For notational simplicity use y′ = x′/x0, which results in:

= e−
1
2 |α|

2

e
α√
2

(y′− d
dy′ )Ne−

1
2y
′2
.

Now we are going to use the Baker−Campbell−Hausdorff formula, given by
formula (19). Apply this formula with X = α√

2
y′ and Y = − α√

2
d
dy′ . The

commutator of X and Y can be calculated using a test function f ∈ L2(R)
with the following property: f ∈ D = {f(x) : xnf (m)(x) ∈ L2(R) ∀n,m ∈ N}.
Then:

[X,Y ]f = −α
2y′

2

d

dy′
(f) +

α2

2

d

dy′
(y′f) = −α

2y′

2

df

dy′
+
α2

2
(f + y′

df

dy′
) =

α2f

2
.

Dropping the test function f we obtain:

[X,Y ] =
α2

2
.
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3.5. Coherent states in the x-representation

Operators X and Y both commute with this commutator, so we can apply the
Baker−Campbell−Hausdorff formula:

e
α√
2

(y′− d
dy′ ) = e−

α2

4 e
α√
2
y′
e
− α√

2
d
dy′ .

To rewrite this expression we need the following definition:

Definition 3.6. Define a translation operator T (a), which acts on a wave-
function |ψ(x)〉, as an operator which translates the wavefunction over a, so:
T (a)|ψ(x)〉 = |ψ(x+ a)〉.

Consider the function ψ(y′ − α), using a Taylor series we can rewrite this as:

ψ(y′ − α) =

∞∑
n=0

ψn(y′)

n!
(−α)n = e

−α d
dy′ ψ(y′).

So, e
−α d

dy′ is a translation operator.

Using the fact that e
−α d

dy′ is a translation operator we find:

e
− α√

2
d
dy′ e−

1
2y
′2

= e
− 1

2 (y′− α√
2

)2
= e−

1
2 (y′2+α2

2 −
√

2αy′).

Thus,

e−
α2

4 e
α√
2
y′
e
− α√

2
d
dy′ e−

1
2y
′2

= e−
α2

4 e
α√
2
y′
e−

1
2 (y′2+α2

2 −
√

2αy′) = e−
1
2α

2+
√

2αy′− 1
2y
′2
.

For the final expression we used that, since [y′, α] = 0, every term commutes
with each other and the expression could be written as a single exponent. Now,
we obtain:

〈x′|α〉 = Ne−
1
2 |α|

2− 1
2α

2+
√

2αy′− 1
2y
′2

= Ne−
1
2 (y′−

√
2R(α))2+i

√
2I(α)y′−iI(α)R(α).

Using expressions (20) and (21), and substituting x′ = x0y
′ the resulting ex-

pression for the wavefunction of the coherent state is:

〈x′|α〉 = Ne−
mω
2~ (x′−〈x〉α)2+ i

~ 〈p〉αx
′− i

2~ 〈p〉α〈x〉α .

Since the last term is a constant phase factor it can be ignored and we finally
obtain:

ψα(x′) := 〈x′|α〉 = (
mω

π~
)1/4e

i
~ 〈p〉αx

′−mω2~ (x′−〈x〉α)2 . (22)

This wavefunction is a Gaussian function:

Definition 3.7. A Gaussian function is a function of the form:

f(x) = ae−
(x−b)2

2c2 ,

for some real constants a, b, c > 0.

The graph of a Gaussian has a symmetric shape that quickly falls off towards
±∞. The parameter a is the height of the curve’s peak, b is the position of the
center of the peak and c controls the width.
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3.6. Time evolution of coherent states

3.6 Time evolution of coherent states

In this section we will investigate the time evolution of a coherent state, it turns
out that a coherent state remains coherent under time evolution.

The time evolution of a state is given by the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉. (23)

Here, H(t) is the Hamilton operator.
The Schrödinger equation is a first order differential equation, when a state
|ψ(t)〉 is known on a time t = t0, then the state can be determined for every t.

Definition 3.8. The time evolution operator U(t, t0) gives the time evolu-
tion of a state. It has the following properties:

|ψ(t)〉 := U(t, t0)|ψ(t0)〉,
U(t0, t0) = 1̂, ∀t1U(t, t0) = U(t, t1)U(t1, t0), U−1(t, t0) = U(t0, t).

According to equation (23), it is required that:

i~
∂

∂t
U(t, t0)|ψ(t0)〉 = H(t)U(t, t0)|ψ(t0)〉.

So that,

i~
∂

∂t
U(t, t0) = H(t)U(t, t0), (24)

with precondition U(t0, t0) = 1̂.

The Hamiltonian of the harmonic oscillator, H = 1
2m [p2 + (mωx)2], is time

independent, so ∂
∂tH(t) = 0. Therefore, differential equation (24) has a direct

solution given by:

U(t, t0) = e−i(t−t0)H/~.

So, the time evolution of a state is:

|ψ(t)〉 = e−i(t−t0)H/~|ψ(t0)〉. (25)

This expression can be used to determine the time evolution of a coherent state.
We use expression (17) to define a coherent state at t0 = 0 as:

|α(0)〉 = e−
1
2 |α(0)|2

∞∑
n=0

α(0)n√
n!
|n〉.

The coherent state at an arbitrary time t is found by applying equation (25),
resulting in:

|α(t)〉 = U(t, 0)|α(0)〉 = e−
i
~Ht|α(0)〉 = e−

1
2 |α(0)|2

∞∑
n=0

e−
i
~Ht

α(0)n√
n!
|n〉.
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3.6. Time evolution of coherent states

Since the wavefunctions |n〉 are eigenstates of the Hamiltonian with eigenvalue
En we obtain:

= e−
1
2 |α(0)|2

∞∑
n=0

e−
i
~Ent

α(0)n√
n!
|n〉.

Here, En = ~ω(n+ 1/2), see equation (7). Substituting |n〉 from expression (4)
results in:

= e−itω/2e−
1
2 |α(0)|2

∞∑
n=0

[α(0)(a†)e−itω]n

n!
|0〉

= e−itω/2e−
1
2 |α(0)|2eα(0)(a†)e−itω |0〉.

We recognized an exponential function, now rewrite the obtained expression
using that |eiωt|2 = 1, then:

= e−itω/2
(
e−

1
2 |α(0)|2|eiωt|2+α(0)e−itω(a†)|0〉

)
.

Comparing the expression between the parentheses with equation (18), we see
that this gives a coherent state with the time dependent eigenvalue e−iωtα(0):

= e−itω/2|e−iωtα(0)〉.

We can conclude that a coherent state remains coherent under time evolution.
Furthermore,

α(t) = e−iωtα(0).

Which implies that:

d

dt
α(t) = −iωα(t). (26)

This differential equation can be rewritten using the real part of α(t), denoted
by R(α(t)) and the imaginary part, I(α(t)). These are defined by:

R(α(t)) :=
1

2
(α(t) + α(t)) = 〈α(t)|a+ a†

2
|α(t)〉,

I(α(t)) :=
1

2i
(α(t)− α(t)) = 〈α(t)|a− a

†

2i
|α(t)〉.

From equation (26) follows that:

d

dt
R(α(t)) = ωI(α(t)), (27)

d

dt
I(α(t)) = −ωR(α(t)). (28)
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3.6. Time evolution of coherent states

Therefore, the expectation values for position and momentum are given by:

xc(t) := 〈α(t)|x|α(t)〉 =

√
2~
mω
R(α(t)),

pc(t) := 〈α(t)|p|α(t)〉 =
√

2mω~I(α(t)).

Here, the subscript c stands for classical. Combining these expectation values
with expressions (27) and (28) results into the following differential equations:

d

dt
xc(t) =

√
~

2mω
2
d

dt
R(α(t)) =

√
~

2mω
2ωI(α(t)) =

pc(t)

m
,

d

dt
pc(t) =

1

i

√
~mω

2
2i
d

dt
I(α(t)) = −

√
~mω

2
2ωR(α(t)) = −mω2xc(t).

After rewriting and introducing vc(t) = d
dtxc(t) we obtain a more familiar form:

pc(t) = m
d

dt
xc(t) = mvc(t), (29)

d

dt
pc(t) = −mω2xc(t). (30)

So, the equations of motion for the classical harmonic oscillator are valid in
terms of the quantum mechanical expectation values for x and p. We could
have expected this because of the following theorem:

Theorem 3.7. The Ehrenfest Theorem relates the time derivative of the
expectation value for a quantum mechanical operator to the commutator of that
operator with the Hamiltonian of the system in the following way:

d

dt
〈A〉 =

1

ih
〈[A,H]〉+ 〈∂A

∂t
〉.

Where A is some quantum mechanical operator and 〈A〉 is its expectation value.

We are working with the Hamiltonian of the harmonic oscillator, then with the
Ehrenfest Theorem (Theorem 3.7) we find that:

d

dt
〈p〉 =

1

ih
〈[p, 1

2m
(p2 + (mωx)2)]〉+ 〈∂p

∂t
〉 =

1

i~
〈[p, mω

2x2

2
]〉 = −mω2〈x〉,

d

dt
〈x〉 =

1

ih
〈[x, 1

2m
(p2 + (mωx)2)]〉+ 〈∂x

∂t
〉 =

1

ih
〈[x, 1

2m
p2]〉 =

1

m
〈p〉.

So, from the Ehrenfest Theorem we could have expected equations (29) and
(30) to be found.

The quantum mechanical expectation values for position and momentum, de-
termined with the coherent states, satisfy the classical equations of motion for
a harmonic oscillator. Furthermore, as we already saw, the coherent states re-
main coherent under time evolution. That is why the coherent states are used
to study the classical limit of quantum mechanics.
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4.1. The Fourier Transform

4 Phase space representation

In this chapter we will try another approach to construct minimal wavefunctions.
Hereby, we will follow the reasoning of U. Gerlach ([2]). First we have to define
a Fourier transformation on the L2(R) space. We will use this to construct
wavefunctions that partition the x, p-plane into cells with minimal uncertainty.

4.1 The Fourier Transform

In this section we will define Fourier transformation on the L2 space. First we
will define a Fourier transformation on functions f ∈ L1. We cannot directly
use this definition on functions g ∈ L2, but with the help of an extension from
the Fourier transformation F : L1 ∩L2 → L2 to F : L2 → L2 we can define the
Fourier transformation on L2.

Definition 4.1. Let f ∈ L1(R), the Fourier transform of f is the function f̂
defined by:

f̂(x) = F(f(p)) =

∫ ∞
−∞

f(p)
e−ixp√

2π
dp.

This integral is well defined for every real x, because f ∈ L1(R).

Theorem 4.1. The Inversion Theorem. If f ∈ L1(R) and f̂ ∈ L1(R), and
if:

g(p) =

∫ ∞
−∞

f̂(x)
eixp√

2π
dx (p ∈ R),

then g ∈ C0(R) and f(p) = g(p) almost everywhere.
Here, C0(R) denotes the space of all continuous functions on R which vanish at
infinity.

Proof. This is Theorem 9.11 from [6].

Corollary 4.1. The Uniqueness Theorem. If f1 and f2 belong to L1(R)

and f̂1(x) = f̂2(x) for all x ∈ R, then f1(p) = f2(p) almost everywhere.

Proof. Using Theorem 4.1 we obtain that if f̂(x) = 0 then f(p) = 0 almost

everywhere. Applying this to f̂1(x)− f̂2(x) = 0 we find that f1(p)− f2(p) = 0
almost everywhere and consequently that f1(p) = f2(p) almost everywhere.

The definition of the Fourier transform by Definition 4.1 is not directly appli-
cable to every f ∈ L2(R), because L2(R) is not a subset of L1(R). However, if
f ∈ L1(R) ∩ L2(R) the definition does apply.
It is known from Theorem 2.1 that C(X) is dense in both L1(R) and L2(R).
As C(X) is contained in the intersection we know that the space L1(R)∩L2(R)
is dense in L2(R). This implies that the Fourier transform map restricted to
L1(R)∩L2(R) has a unique extension to a linear isometric map L2 −→ L2 . This
extension defines the Fourier transform of every f ∈ L2, called the Plancherel
transform. This makes it possible to speak of the Fourier transform of a square
integrable function.

Theorem 4.2. One can associate to each f ∈ L2(R) a function f̂ ∈ L2(R) so
that the following properties hold:
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4.1. The Fourier Transform

1. If f ∈ L1(R) ∩ L2(R), then f̂ is the Fourier transform of f as defined in
Definition 4.1.

2. The mapping f → f̂ is an unitary map with respect to the L2 norm ‖.‖2.

3. For every f ∈ L2(R), ‖f̂‖2 = ‖f‖2.

4. The mapping f → f̂ is a Hilbert space isomorphism of L2(R) onto L2(R).

5. The following symmetric relation exists between f and f̂ : if

h(x) =
∫ A
−A f(p) e

−ixp
√

2π
dp and g(p) =

∫ A
−A f̂(x) e

ixp
√

2π
dx then ‖h − f̂‖2 → 0

and ‖g − f‖2 → 0 as A→∞.

Proof. Properties (1) to (4) will be proven here, for the proof of property (5)
see Theorem 9.13 of [6].

If f ∈ L1(R) ∩ L2(R), then the Fourier transform f̂ is defined as in Definition
4.1, since L1(R) ∩ L2(R) ⊂ L1(R). This proves the first item.

Let f̂(x), ĝ(x) ∈ L2(R) and α ∈ C then:

F−1(f̂(x) + ĝ(x)) =

∫ ∞
−∞

(f̂(x) + ĝ(x))
eixp√

2π
dx

=

∫ ∞
−∞

f̂(x)
eixp√

2π
dx+

∫ ∞
−∞

ĝ(x)
eixp√

2π
dx

= F−1(f̂(x)) + F−1(ĝ(x)),

F−1(αf̂(x)) =

∫ ∞
−∞

αf̂(x)
eixp√

2π
dx = α

∫ ∞
−∞

f̂(x)
eixp√

2π
dx

= αF−1(f̂(x)).

So, the Fourier transformation is a linear map.
For f(p), g(p) ∈ L2(R) we have:

〈f̂(x)|ĝ(x)〉 =

∫ ∞
−∞

f̂(x)ĝ(x)dx =

∫ ∞
−∞

f̂(x)

(∫ ∞
−∞

g(p)
e−ixp√

2π
dp

)
dx

=

∫ ∞
−∞

(∫ ∞
−∞

f̂(x)
eixp√

2π
dx

)
g(p)dp =

∫ ∞
−∞

f(p)g(p)dp = 〈f(p)|g(p)〉.

We used the fact that ĝ is the Fourier transform of g, and then after reorga-
nizing where we changed the order of integration using Fubini’s Theorem, we
recognized the Fourier transform of f̂ , which is f .
We can conclude that the Fourier transformation is a unitary transformation.
With this result we can easily verify that for f ∈ L2(R): ‖f̂‖2 = ‖f‖2. Take
g = f in the previous result, then:∫ ∞

−∞
|f̂(x)|2dx = 〈f̂(x)|f̂(x)〉 = 〈f(p)|f(p)〉 =

∫ ∞
−∞
|f(p)|2dp.

So indeed, ‖f‖2 = ‖f̂‖2.
Now we are going to prove property (4). Let f ∈ L2(R) then ‖f‖2 ≤ ∞, so

‖f̂‖2 = ‖f‖2 ≤ ∞. From this it is clear that f̂ is also in L2(R) and that the

mapping f → f̂ is a Hilbert space isomorphism of L2(R) onto L2(R).
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Since L1(R) ∩ L2(R) is dense in L2(R), properties (1) and (3) determine the

mapping f → f̂ uniquely:
Let f ∈ L2 and let X ⊆ L1 ∩ L2 be a dense subspace of L2(R), for instance
L1 ∩ L2 itself. Now, choose a sequence fn ∈ X, such that ‖fn − f‖2 → 0 if

n → ∞. Then the sequence (fn)n is a Cauchy sequence in X and f̂n is well

defined because fn ∈ L1. Since ‖f̂n− f̂m‖2 = ‖fn− fm‖2, it follows that f̂n is a
Cauchy sequence in L2(R). The space L2(R) is complete, therefore there exists

a unique limit in L2(R) and f̂ is well defined as f̂ := limn→∞ f̂n.

Corollary 4.2. If f ∈ L2(R) and f̂ ∈ L1(R), then:

f(p) =

∫ ∞
−∞

f̂(x)
eixp√

2π
dx a.e.

Proof. This is a Corollary of Theorem 4.2, property (5).

If f ∈ L2(R), the Plancherel transform defines f̂ uniquely as an element of the
Hilbert space L2(R). But in terms of pointwise functions the Fourier transform

f̂(x) is determined almost everywhere on R.

4.2 Delta functions

To define some delta identities on the L2(R) space we will use trigonometric
polynomials:

Definition 4.2. A trigonometric polynomial is a finite sum of the form:

f(p) = a0 +

N∑
n=1

(an cos(np) + bn sin(np)) (p ∈ R),

where N ∈ N and a0, a1, . . . , aN and b1, . . . , bN are complex numbers. We can
also write this in the form:

f(p) =

N∑
n=−N

cne
inp,

where c−N , . . . , cN are complex numbers.

It is clear that every trigonometric polynomial has period 2π. This means that
f(p− π) = f(p+ π) for all real p.

Theorem 4.3. Let g ∈ CC(T ), which consists of all continuous complex 2π-
periodic functions on [−π, π] with norm ‖g‖∞ = supp |g(p)|, and let ε > 0.
Here, 2π-periodic means that g(−π) = g(π). Then, there exists a trigonometric
polynomial P such that: ‖g − P‖∞ < ε.

Proof. This is Theorem 4.25 from [6].

Theorem 4.4. Let ε > 0 and f a complex function in L2([−π, π]) with f(−π) =
f(π). Then there exists a trigonometric polynomial P such that: ‖f −P‖2 < ε.
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Proof. From Theorem 2.1 we know that since f ∈ L2([−π, π]), there exists a
continuous function g on [−π, π] such that: ‖f − g‖2 < 1

2ε.
From Theorem 4.3 we know that there is a trigonometric polynomial P such
that: ‖g − P‖∞ < 1

2
√

2π
ε on [−π, π].

Now use that for h a continuous function: ‖h‖2 ≤
( ∫ π
−π supp |h(p)|dp

)1/2

≤
√

2π‖h‖∞. So restricted to [−π, π], we obtain:

‖f − P‖2 ≤ ‖f − g‖2 + ‖g − P‖2 ≤
1

2
ε+
√

2π‖g − P‖∞ ≤ ε.

By taking the limit of ε to zero it follows that we can write every complex
function f ∈ L2([−π, π]), with f(−π) = f(π), as a limit of trigonometric poly-
nomials, so:

f(p) = lim
M→∞

M∑
m=−M

ame
imp. (31)

We would like to define a delta distribution on functions f ∈ L2([−π, π]). First
we will define the delta distribution on continuous functions f on the interval
[−π, π], with f(−π) = f(π).

Theorem 4.5. Let f ∈ C([−π, π]), with f(−π) = f(π) then:

1

2π

∫ π

−π

∞∑
n=−∞

ein(p−p′)f(p)dp = f(p′).

As a distribution on C([−π, π]) we could write:

1

2π

∞∑
n=−∞

ein(p−p′) = δ(p− p′).

Proof. To prove this theorem we have to calculate the following integral:∫ π

−π

∞∑
n=−∞

ein(p−p′)f(p)dp = lim
M→∞

∫ π

−π

∞∑
n=−∞

M∑
m=−M

ame
in(p−p′)eimpdp.

The order of integration and taking the limit could be changed due to the
dominated convergence Theorem.
Suppose n 6= −m, then since (n+m) ∈ Z it follows that:

am

∫ π

−π
eip(n+m)dp =

am
i(n+m)

(eiπ(n+m) − e−iπ(n+m)) = 0.

Suppose n = −m, then:

am

∫ π

−π
eip(n+m)dp = am

∫ π

−π
dp = am2π.
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4.3. Basis of L2(R)

So for fixed m:∑
n

ame
−ip′n

∫ π

−π
eip(n+m)dp = ame

ip′m2π.

From which it follows that:∫ π

−π

∞∑
n=−∞

ein(p−p′)f(p)dp =

∫ π

−π

∞∑
n=−∞

M∑
m=−M

ame
in(p−p′)eimpdp.

The order of summation can be changed because the summation is absolute
convergent. The order of integration and summation can be changed because
the summation is uniform convergent and the function einpeimp is Riemann
integrable. We obtain:

=

M∑
m=−M

∞∑
n=−∞

ame
−ip′n

∫ π

−π
eip(n+m)dp = 2π

M∑
m=−M

ame
ip′m.

If we take the limit of M to infinity we recognize the function f(p′), so that:

lim
M→∞

∫ π

−π

∞∑
n=−∞

ein(p−p′)f(p)dp = 2πf(p′).

Corollary 4.3. Let f ∈ C([−π, π]), then:

1

2π

∫ π

−π

∞∑
n=−∞

einpf(p)dp = f(0).

Proof. Let p′ = 0 in Theorem 4.5.

The continuous functions are dense in L2, and the action of the delta distri-
bution on such functions is well defined on the interval [−π, π]. Therefore, the
Dirac delta distribution is densely defined on L2([−π, π]).

4.3 Basis of L2(R)
We are going to define a basis for the Hilbert space L2(R) with the help of
Fourier transformation.

Divide the real line, −∞ < x <∞, of the Fourier domain into equal intervals of
length ε and consider a function Pjl(p) whose Fourier transform Fjl(x) is zero
everywhere except in one of these intervals:

Fjl(x) =

{
0 x /∈ [jε, (j + 1)ε], l ∈ Z
1√
ε
e
−2πilx

ε x ∈ [jε, (j + 1)ε], l ∈ Z (32)

We demand that l ∈ Z, so that Fjl(x) can be pictured as a finite complex am-
plitude in the jth position interval: jε ≤ x ≤ (j + 1)ε. For l = 4, the imaginary
part of Fjl(x) is pictured in Figure 1.
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4.3. Basis of L2(R)

Figure 1: The imaginary part of Fjl(x) for l = 4.

Theorem 4.6. The set {Fjl(x)} forms an orthonormal set and Fjl(x) ∈ L2(R).

Proof. Using the fact that Fjl(x)Fj′l′(x) = 0 if j 6= j′, we compute:

〈Fjl|Fj′l′〉 =

∫ ∞
−∞

Fjl(x)Fj′l′(x)dx = δjj′

∫ ∞
−∞

Fjl(x)Fjl′(x)dx.

Further, since Fjl is zero outside the interval [jε, (j + 1)ε] we obtain:

= δjj′

∫ (j+1)ε

jε

1

ε
e

2πix(l′−l)
ε dx = δjj′

∫ (j+1)

j

e2πix(l′−l)dx

=

{
δjj′

e2πij(l
′−l)

2πi(l′−l) [e2πi(l′−l) − 1] = 0 for l 6= l′, (l′ − l) ∈ Z
δjj′

∫ (j+1)

j
dx = δjj′ for l = l′

= δjj′δll′ .

Also, Fjl ∈ L2(R), because:

‖Fjl(x)‖2 = 〈Fjl(x)|Fjl(x)〉 = 1 <∞.

Corollary 4.4. The set {Fjl(x)} forms a linear independent set.

Proof. From Theorem 4.6 we know that the set {Fjl(x)} forms an orthonormal
set. Since Lemma 2.1 tells us that an orthonormal set is also linear independent,
it follows that the set {Fjl(x)} is linear independent.

In order to form a basis for L2(R), the set {Fjl(x)} has to span this space. First,
we will prove that the set {Fjl(x)} spans the space C(R).

Proposition 4.1. Let f ∈ C(R), then:∫ ∞
−∞

∞∑
j=−∞

∞∑
l=−∞

Fjl(x′)Fjl(x)f(x′)dx′ = f(x),

with convergence in the L2 norm. This can also be written as a distribution on
C(R),

∞∑
j=−∞

∞∑
l=−∞

Fjl(x′)Fjl(x) = δ(x− x′).
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4.3. Basis of L2(R)

Proof. Let x, x′ ∈ [jε, (j + 1)ε] then for that fixed j we obtain:

Fjl(x)Fjl(x′) =
1

ε
e

2πil(x′−x)
ε .

For the other j′s in Z the product of Fjl(x)Fjl(x′) is zero. Therefore,∫ ∞
−∞

∞∑
j=−∞

∞∑
l=−∞

Fjl(x′)Fjl(x)f(x′)dx′ =

∫ (j+1)ε

jε

∞∑
l=−∞

1

ε
e

2πil(x′−x)
ε f(x′)dx′.

Since the summation is absolute convergent, the order of summation could be
changed. After rescaling we recognize the delta identity from Theorem 4.5:

=

∫ π

−π

( ∞∑
l=−∞

eil(x
′−x)

2π

)
f
(ε(x′ + 2πj + π)

2π

)
dx′ = f

(ε(x+ 2πj + π)

2π

)
= f(x).

Suppose x ∈ [jε, (j+1)ε] and x′ ∈ [j′ε, (j′+1)ε] with j′ 6= j, then Fjl(x)Fjl(x′) =
0 for every j ∈ Z. And, because x′ /∈ [jε, (j + 1)ε], we obtain:∫ (j+1)ε

jε

δ(x− x′)f(x′)dx′ = 0 =

∫ ∞
−∞

∞∑
j=−∞

∞∑
l=−∞

Fjl(x′)Fjl(x)f(x′)dx′.

We can conclude that:∫ ∞
−∞

∞∑
j=−∞

∞∑
l=−∞

Fjl(x′)Fjl(x)f(x′)dx′ = f(x),

with convergence in the L2 norm.

Corollary 4.5. Let f ∈ C(R), then:

f =
∑
j≤|J|

∑
l≤|L|

ajlFjl(x),

in L2(R) with ajl ∈ R.

Proof. It is known from Theorem 4.1 that if f ∈ C(R), then:

‖
∫
R

∑
j≤|J|

∑
l≤|L|

Fjl(x′)Fjl(x)f(x′)dx′ − f(x)‖2 → 0,

as J, L→∞. So if J, L→∞ then:

‖
∫
R

∑
j≤|J|

∑
l≤|L|

Fjl(x′)Fjl(x)f(x′)dx′ − f(x)‖2

= ‖
∑
j≤|J|

∑
l≤|L|

(∫
R
Fjl(x′)f(x′)dx′

)
Fjl(x)− f(x)‖2,

39



4.3. Basis of L2(R)

We recognize the inner product of Fjl(x
′) and f(x′), so:

= ‖
∑
j≤|J|

∑
l≤|L|

〈Fjl(x′)|f(x′)〉Fjl(x)− f(x)‖2

=: ‖
∑
j≤|J|

∑
l≤|L|

ajlFjl(x)− f(x)‖2 → 0,

where ajl ∈ R. The order of summation and integration could be changed

because the summation is uniform convergent and the function Fjl(x′)f(x′) is
Riemann integrable.

We can conclude that:

Theorem 4.7. The collection {Fjl}, with:

Fjl(x) =

{
0 x /∈ [jε, (j + 1)ε], l ∈ Z
1√
ε
e
−2πilx

ε x ∈ [jε, (j + 1)ε], l ∈ Z

forms a basis for L2(R).

Proof. Since C(R) is a dense subset of L2(R) (Theorem 2.1), every f ∈ L2(R)
is either in C(R) or is a limit point of C(R). So, for every f ∈ L2(R) there
is a g ∈ C(R) such that: ‖f − g‖2 → 0. Using Corollary 4.5 we obtain that
f =

∑
j≤|J|

∑
l≤|L| ajlFjl(x) in L2(R) with ajl ∈ R. Consequently, the collection

{Fjl(x)} spans L2(R). Combining this with Corollary 4.4, which tells us that
the set {Fjl(x)} is linear independent, we obtain that the collection {Fjl(x)}
forms a basis for L2(R).

With the help of the square integrable functions Fjl(x) we can construct the
wavefunctions Pjl(p) with the momentum domain −∞ < p < ∞. Fourier
transformation of Fjl(x) gives:

Pjl(p) =

∫ ∞
−∞

Fjl(x)
eixp√

2π
dx.

The real part of Pjl(p) is pictured in Figure 2 for l = 1 and j = 2 and in Figure
3 for l = 2 and j = 2.

Theorem 4.8. The collection {Pjl(p)} forms a basis for L2(R).

Proof. In Theorem 4.2 we proved that a Fourier transformation is a unitary
transformation from which it follows that:

〈Pjl|Pj′l′〉 = 〈Fjl|Fj′l′〉 = δjj′δll′ .

So, the collection {Pjl(p)} forms an orthonormal set and therefore also a linear
independent set due to Lemma 2.1. Theorem 4.2 noted that, since Pjl is the
Fourier transform of Fjl and Fjl ∈ L2(R), also Pjl ∈ L2(R).
Let f(p) ∈ C(R), write f(p) as the Fourier transform of f(x), so:

f(p) =

∫ ∞
−∞

eixp√
2π
f(x)dx.
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4.3. Basis of L2(R)

Figure 2: The real part of Pjl(p) for l = 1 and j = 2.

Figure 3: The real part of Pjl(p) for l = 2 and j = 2.

Using the spanning property of the set {Fjl(x)} we could write:

f(x) =

∞∑
j=−∞

∞∑
l=−∞

ajlFjl(x).

Substituting this in the expression for f(p) gives:

f(p) =

∫ ∞
−∞

∞∑
j=−∞

∞∑
l=−∞

ajlFjl(x)
eixp√

2π
dx.
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4.3. Basis of L2(R)

After reorganizing we can recognize Pjl and we obtain:

=

∞∑
j=−∞

∞∑
l=−∞

ajl

∫ ∞
−∞

Fjl(x)
eixp√

2π
dx =

∞∑
j=−∞

∞∑
l=−∞

ajlPjl(p).

The order of summation and integration could be changed because the summa-

tion is uniform convergent and the functions Fjl(x) e
ixp
√

2π
are Riemann integrable.

We can conclude that the collection {Pjl(p)} spans the space C(R). Since
C(R) ⊂ L2(R) dense, every f ∈ L2(R) is either in C(R) or is a limit point of
C(R). So, for every f ∈ L2(R) there is a g ∈ C(R) such that: ‖f − g‖2 → 0.
Therefore, we obtain that f =

∑
j≤|J|

∑
l≤|L| ajlPjl(p) in L2(R) with ajl ∈ R.

Consequently, the collection {Pjl(p)} spans L2(R). Since the collection {Pjl(p)}
forms a linear independent set we obtain that the collection {Pjl(p)} forms a
basis for L2(R).

Note that f(p) and f(x) have the same expansion coefficients ajl relative to the
Fourier-related bases {Pjl(p)} and {Fjl(x)}.

Instead of writing Pjl(p) as the Fourier transform of Fjl(x) we could also calcu-
late Pjl(p) explicitly.
For p = 2πl

ε we obtain:

Pjl(2πl/ε) =

∫ ∞
−∞

Fjl(x)
eix2πl/ε

√
2π

dx =

∫ (j+1)ε

jε

1√
ε2π

dx =

√
ε

2π
.

For p 6= 2πl
ε we obtain:

Pjl(p) =

∫ ∞
−∞

Fjl(x)
eixp√

2π
dx =

∫ (j+1)ε

jε

e−2πilx/ε

√
ε

eixp√
2π

dx

=
1√
2πε

[
ei(p−2πl/ε)(j+1)ε − ei(p−2πl/ε)jε

i(p− 2πl/ε)

]
(33)

=
2√
2πε

ei(p−2πl/ε)(j+1/2)ε sin[(p− 2πl
ε ) ε2 ]

p− 2πl
ε

.

These two expressions for Pjl(p) are equivalent, which can be seen using a Taylor
expansion for the exponential functions in expression (33). If y is small then
ey ≈ 1 + y + . . . . For p → 2πl

ε , a Taylor expansion can be used in expression
(33), resulting in:

Pjl(p) =
1√
2πε

[
ei(p−2πl/ε)(j+1)ε − ei(p−2πl/ε)jε

i(x− 2πl/ε)

]
≈ 1√

2πε

[
i(p− 2πl/ε)(j + 1)ε− i(p− 2πl/ε)jε

i(p− 2πl/ε)

]
=

√
ε

2π
.

We can conclude that:

Pjl(p) =
2√
2πε

ei(p−2πl/ε)(j+1/2)ε sin[(p− 2πl
ε ) ε2 ]

p− 2πl
ε

.
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Note that this wavefunction consists of a real amplitude, a sinc function1, mul-
tiplied by an exponential phase factor which is oscillating. At p = 2πl

ε , the

function Pjl(p) has maximum modulus with value:
√

ε
2π .

For p = 2πk
ε , where k ∈ Z− {l}, the function Pjl(p) equals zero. We define ∆p

to be the distance between two such zero’s, so: ∆p = 2π
ε .

4.4 Phase Space

Consider the two-dimensional space spanned by the domain −∞ < p <∞, and
the Fourier domain −∞ < x < ∞, of the set of square-integrable functions
f(p). In this section we will see that the set of wavefunctions Pjl(p) determines
a partitioning of this space into elements of area whose shape and location are
determined by this wavefunctions. This partitioned two-dimensional space is
called the Phase Space. The partition of the phase space exist of elements of
equal area called the phase space cells.

The wavefunction representation for a function f(p) ∈ L2(R), which is given by:

f(p) =

∞∑
j=−∞

∞∑
l=−∞

ajlPjl(p),

can be represented geometrically as a set of complex amplitudes ajl assigned
to their corresponding phase space cells. The location of the phase space cells,
as determined by Pjl(p) and Fjl(x), is given by the mean position 〈x〉 and the
mean momentum 〈p〉.

In the article of U. Gerlach ([2]), each cell has a surface of size ∆x∆p. Here, ∆x
and ∆p both depend on the distance between two zero points of the function
Fjl(x), respectively Pjl(p). The surface of a cell can also be calculated with help
of the standard deviations of the position and momentum, given by σx and σp.
Both approaches will be discussed in this section.

For now, let us follow the reasoning of U. Gerlach. We already saw that ∆p =
2π
ε . We will define ∆x in a similar way, ∆x is the length of the interval where
Fjl(x) 6= 0, so ∆x = ε. In this way we see that the surface of a phase space cell
is given by: S = ∆x∆p = 2π.
For the position of a phase space cell we calculate:

〈x〉 =

∫ ∞
−∞

Fjl(x)xFjl(x)dx =
1

ε

∫ (j+1)ε

jε

xdx = ε(
1

2
+ j), (34)

〈p〉 =

∫ ∞
−∞

Pjl(p)pPjl(p)dp =

∫ ∞
−∞

4p

2πε

(
sin[(p− 2πl

ε ) ε2 ]

p− 2πl
ε

)2

dp.

1sinc(y) = sin(y)/y
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Change of variable to t = (p− 2πl
ε ) ε2 , and using dp = 2

εdt results in:

=

∫ ∞
−∞

(
sin(t)

t

)2
2t− 2πl

ε

1

π
dt =

2

πε

∫ ∞
−∞

sin(t)2

t
dt︸ ︷︷ ︸

=0

+
2l

ε

∫ ∞
−∞

(
sin(t)

t

)2

dt︸ ︷︷ ︸
=π

=
2πl

ε
. (35)

So, the location of the (j, l)th phase space cell is given by its mean position
(j + 1

2 )ε, and its mean momentum 2πl
ε .

Now we can assign the complex amplitude ajl to the (j, l)th phase space cell.
Typically, the squared norm:

‖f(p)‖2 =

∫ ∞
−∞
|f(p)|2dp,

is proportional to the total ‘energy’ of the signal represented by f(p). Using the
spanning property of {Pjl(p)} we obtain:

‖f(p)‖2 =

∫ ∞
−∞
|f(p)|2dp =

∫ ∞
−∞

∞∑
j=−∞

∞∑
l=−∞

|ajl|2|Pjl(p)|2dp.

Using 〈Pjl|Pj′l′〉 = δjj′δll′ and changing the order of summation and integration
gives:

=

∞∑
j=−∞

∞∑
l=−∞

|ajl|2
∫ ∞
−∞
|Pjl(p)|2dp =

∞∑
j=−∞

∞∑
l=−∞

|ajl|2.

The order of summation and integration could be changed because the summa-
tion is uniform convergent and the function |ajl|2|Pjl(p)|2 is Riemann integrable.
This implies that |ajl|2 is proportional to the ‘energy’ contained in the (j, l)th

phase space cell. In other words {|ajl|2 : j, l ∈ Z} is a decomposition of the
‘energy’ of f(p) relative to the chosen wavefunction basis {Pjl(p)}. The wave-
function representation of a signal f(p) assigns to each phase space cell an
intensity |ajl|2, which we can represent as a level of grayness. This is illustrated
in Figure 4.

We already mentioned that the surface of a phase space cell can be determined
with the standard deviations: σx and σp, where σA =

√
〈A2〉 − 〈A〉2. The

surface obtained in this way is given by: S = σxσp. It turns out that an other
surface is found using this approach then with the approach of U. Gerlach, where
the distance between two zero points of Pjl(p) and Fjl(x) was used.
From equation (34) we know that:

〈x〉 = ε

(
1

2
+ j

)
.

Further,

〈x2〉 =

∫ ∞
−∞

Fjl(x)x2Fjl(x)dx =
1

ε

∫ (j+1)ε

jε

x2dx = ε2(j2 + j +
1

3
).
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Figure 4: Phase space representation of a wavefunction.

And therefore,

σ2
x = 〈x2〉 − 〈x〉2 = ε2

(1

3
− 1

4

)
=
ε2

12
,

σx =
ε

2
√

3
.

For the momentum p, we already know from equation (35) that:

〈p〉 =
2πl

ε
.

Further,

〈p2〉 =

∫ ∞
−∞

Pjl(p)p
2Pjl(p)dp =

∫ ∞
−∞

4

2πε

(
sin[(p− 2πl

ε ) ε2 ]

p− 2πl
ε

)2

p2dp.

Change of variable to t = (p− 2πl
ε ) ε2 , and using dp = 2

εdt results in:

=

∫ ∞
−∞

(
sin(t)

t

)2(
2t− 2πl

ε

)2
1

π
dt

=
4

πε2

∫ ∞
−∞

sin(t)2dt︸ ︷︷ ︸
→∞

+
4πl2

ε2

∫ ∞
−∞

(
sin(t)

t

)2

dt︸ ︷︷ ︸
=π

+
4l

ε2

∫ ∞
−∞

sin(t)2

t
dt︸ ︷︷ ︸

=0

→∞.

So,

σ2
p = 〈p2〉 − 〈p〉2 →∞.

We see that the surface of a cell calculated in this way goes to infinity. This
is not unexpected. When looking at the graphs of the functions Fjl(x) (Figure
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1) and Pjl(p) (Figure 2), we see that the graph of Fjl(x) is localized on a finite
interval, so we expected σx to be finite. On the contrary, the graph of Pjl(p) is
not localized on a finite interval, which intuitively explains the fact that σp →∞.

The construction of functions Fjl(x) and Pjl(p) using Fourier transformation
leads to the concept of gray coloring. Since the collection {Pjl(p)} forms a basis
for L2(R) we can express a function ψ ∈ L2(R) as the sum of complex ampli-
tudes ajl and functions Pjl(p). With the help of these amplitudes ajl, we can
represent the function ψ in the two-dimensional space spanned by x and p, by
gray coloring of the phase space cells. However, the functions Pjl(p) and Fjl(x)
do not describe the phase cells mathematically. We could have known this right
from the beginning because a function f and its Fourier transform f̂ cannot
be both supported on arbitrarily small sets (see Theorem 2.1 from [4]). This
can also be seen from the definition of the Fourier transform from Plancherel’s
transformation, Theorem 4.2. Suppose f is only supported on a small interval
I ⊂ R, then:

f̂(x) =

∫ ∞
−∞

f(p)
e−ixp√

2π
dp =

∫
I

f(p)
e−ixp√

2π
dp.

So, for every x ∈ R we know that f̂(x) is nonzero and therefore can not be
supported on a small interval.
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5 Conclusion

From the Heisenberg uncertainty principle we know that: σxσp ≥ ~
2 . This means

that the smaller the uncertainty is in position, the larger it is in momentum.
And the other way around, the larger the uncertainty is in position, the smaller
it is in momentum. Consequently, it is not possible to localize points in the two
dimension space spanned by x and p.
Nevertheless, it is possible to determine a partition of this space into cells of size
~/2, then the uncertainty in x times the uncertainty in p is minimal. Consider
a particle whose position x and momentum p we would like to indicate in the
x, p-plane. Suppose that the uncertainty in position: σx is known, for example
σx = ~, then σp has to be 1/2. Therefore, we could draw a rectangle in the
x, p-plane with sides: σx = ~ and σp = 1/2. Since we do not know the precise
uncertainty in the position or momentum we obtain a collection of rectangles,
for each combination of uncertainties in x and p. All the obtained cells have area
~/2 and will lie in a star-shaped cell, this is illustrated in Figure 5. The obtained
rectangles are called Planck cells. The cell with equal uncertainty in position
and momentum is called the central Planck cell, this cell is drawn in red in
Figure 5. A central Planck cell has sides: σx = σp =

√
~/2. There are infinitely

many Planck cells, but there is only one central Planck cell. To create the par-
titioning of the x, p-plane by Planck cells, minimal uncertainty wavefunctions
have to be used. From [4] we know that if ψ ∈ L2(R) then: The wavefunction
ψ is a minimum uncertainty wavefunction⇔ The wavefunction ψ is a Gaussian.

In Chapter 3 we defined coherent states. These coherent states satisfy the
Heisenberg uncertainty relation with equality and indeed, their wavefunction
is a Gaussian. The coherent states mathematically characterize Planck cells.
A disadvantage of coherent states is that they form an overcomplete basis for
L2(R). Nevertheless, since coherent states remain coherent under time evolution
and their expectation values for position and momentum satisfy the equations
of motion for the classical harmonic oscillator, they can be used to study the
classical limit of quantum mechanics.

In Chapter 4 we studied an article by U. Gerlach ([2]), where cells in the x, p-
plane were constructed using one specific function Pjl(p) and its Fourier trans-
form Fjl(x). U. Gerlach defined his cells using ∆x and ∆p, both derived from
the graphs of Fjl(x), respectively Pjl(p). We confronted this approach with
an alternative description of the cells using the standard deviations σx and σp.
This approach led to a surface that goes to infinity, so there is no minimal un-
certainty. This is not unexpected since the function Pjl(p) is not a Gaussian
function and therefore does not satisfy the Heisenberg uncertainty principle with
equality. The advantage of using the function Pjl(p) and its Fourier transform,
is that the collection {Pjl(p)} forms a basis for L2(R). Therefore, a wavefunction
ψ(p) ∈ L2(R) can be written as:

ψ(p) =

∞∑
j=−∞

∞∑
l=−∞

ajlPjl(p),

and the amplitude ajl can be assigned to its corresponding phase space cell
constructed in the way U. Gerlach did, with ∆x and ∆p. This results in a
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visual display of the wavefunction in the x, p-plane.

σx

σp

Figure 5: The star-shaped cell which contains all Planck cells, three of them are
drawn in the cell. The central Planck cell is drawn in red.
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