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1 Introduction & acknowledgements

This paper is an introduction to the theory of a specific class of C∗-algebras:
those which can be associated with a graph. We are primarily interested in link-
ing the structure of the graph to that of the associated C∗-algebra. Specifically
the occurrence of ideals and the K-theory of these C∗-algebras is discussed in
relationship to their graphs. It is often very hard to find these for arbitrary
C∗-algebras and it will come as a relieve that both the ideals and the K-theory
are solely defined in terms of the graph for graph algebras in an easy manner.

Het voorstel van Walter van Suijlekom om graaf algebras te bestuderen kwam
op het juiste moment: ik was toenertijd bezig met een introductie in categorie
theorie, C∗-algebras en K-theorie. Ik keek er naar uit om delen uit deze drie
disciplines met elkaar te verenigen. Triviale en gemakkelijk te doorgronden voor-
beelden van C∗-algebras zijn schaars: in het bijzonder is het vinden van idealen
geen sinecure. Grafen zijn een onuitputtelijke bron van interessante algebras en
ik was erg blij door middel van deze grafen ‘hands on’ ervaring te krijgen met
C∗-algebras.
Tot slot zou ik zowel Walter als Susanne van Suijlekom willen bedanken. Walter
voor zijn inzet, inzicht en de uren die we samen doorgebracht hebben, filosofer-
end en nadenkend over de materie. En Susanne voor haar aanmoediging mezelf
te vermannen en de scriptie eindelijk eens af te schrijven.
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2 Preliminaries

2.1 C∗-algebras

Definition 1 (C∗-algebra). A C∗-algebra A is a complex linear vector space
endowed with a norm ‖·‖, a multiplication · : A×A → A and function ∗ : A → A
(called involution) such that for all a, b ∈ A:

• A is (Cauchy) complete;

• ‖a · b‖ ≤ ‖a‖ ‖b‖ (A is a Banach-space);

• (za + wb)∗ = za∗ + wb∗ for each z, w ∈ C;

• (a · b)∗ = b∗ · a∗ and (a∗)∗ = a;

• ‖a∗ · a‖ = ‖a‖2 .

We will also come across the little brother of the C∗-algebra, the *-algebra.

Definition 2 (*-algebra). A *-algebra R is a C∗-algebra without a norm, there-
fore only adhering to points (3) and (4) of the above definition.

Morphisms between C∗-algebras are complex linear, respect multiplica-
tion and involution. ϕ : A → B is a morphism between C∗-algebras A, B if
ϕ(a · b) = ϕ(a) · ϕ(b) and ϕ(a∗) = ϕ(a)∗.
An isomorphism between C∗-algebras is a bijective morphism.
A C∗-algebra with a unit element is called unital.
A *-homomorphism is a complex linear map respecting multiplication and
involution.

A very important example is the space of continuous function on a compact
Hausdorff-space X, C0(X), using the definitions: ‖f‖ = sup{|f(x)|; x ∈ X},
(f · g)(x) = f(x)g(x) and (f∗)(x) = f(x) on X.
Secondly, the set of bounded operators on a Hilbert-space H is a C∗-algebra.
As norm we use the operator norm ‖a‖ = sup{‖ax‖ ; ‖x‖ = 1} and the involu-
tion is defined by (x, ay) = (a∗x, y) for all x, y ∈ H .

As all proper algebras, C∗-algebras boast ideals. An ideal in a C∗-algebra
A is a subset I ⊂ A such that I is closed under multiplication and summation
(meaning it is a sub-C∗-algebra of a C∗-algebra), I is both an algebraic left-
and right-ideal and it is closed in the norm of A. It is a consequence of this
definition that an ideal I is closed under involution.
As one would expect any ideal in a C∗-algebra A is the kernel of a morphism
ϕ : A → B (however, this is surprisingly hard to prove: see [10], chapter 10, for
a discussion).

The Gelfand-Naimark-Segal representation theorem maybe is one of the most
important theorem about C∗-algebras (see [10] for a complete proof):
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Theorem 3 (Gelfand-Naimark-Segal). Every C∗-algebra A is isomorphic to
a norm closed ∗-subalgebra of B(H ) for some Hilbert-space H . Or: every
C∗-algebra admits an injective morphism π : A → B(H ).

Definition 4 (Projections and partial isometries). An element p ∈ A with A a
C∗-algebra is a projection if p2 = p = p∗. A partial isometry is an element
s ∈ A such that ss∗ and s∗s are both (not necessarily equal) projections. A set
of projections {pn} is called mutually orthogonal if pipj = pjpi = 0 for all i 6= j.
If two projections are mutually orthogonal their sum is a projection too.

2.2 C∗-Algebraic K-theory

The roots of C∗-algebraic K-theory lie with the topological K-theory. In topo-
logical K-theory a series of maps {Kn;n ∈ N} are used to encode information
about certain equivalence classes of vector bundles over a topological space by
assigning an Abelian group to the topological space. Much can be learned about
the topology by studying the associated K-groups. For an introduction into the
subject, see [13].
A theorem of Gelfand and Naimark states that every commutative C∗-algebra
is isomorphic to C0(X) for some locally-compact Hausdorff-space, which makes
commutative C∗-algebras intrinsically topological spaces. Due to the fact that
certain non-Abelian C∗-algebras can be seen as operators on quantum system
we want to study topological properties of these algebras, too. By extend-
ing topological K-theory to C∗-algebraic K-theory we see that we can study
(through the associated K-groups) some reminiscent topological properties of
non-commutative C∗-algebras.
It turns out that in C∗-algebraic K-theory, Kn(A) ∼= Kn+2(A) for every C∗-
algebra A and n ∈ N. This is called Bott-periodicity.
Before we move to the definition of these K0 and K1 maps, we first cover certain
equivalence relations used in that definition.

Definition 5 (Equivalence of embedding). Let A be a unital C∗-algebra. Form
Mn(A), the n × n matrix algebra with entries in A. We call two elements
a, b ∈ Mn(A) equivalent up to embedding if a = b ⊕ 0m−n. Denote this
relation by R.

Definition 6 (Path equivalence). Using the last definition, define M∞(A) =∐
Mn(A)/R, the union of all these matrix algebras. P∞(A) is the set of projec-

tions in M∞(A). For p, q ∈ P∞(A), we call them path equivalent if there is a
continuous path of projections {e(t)} ⊂ P∞(A) such that e(0) = p and e(1) = q.

Definition 7 (K0). For every equivalence class of paths in P∞(A), K0 assigns
one copy of Z to the algebra A.

Definition 8 (K1). Under the same conditions as before, define S(A) as C0((0, 1), A),
the space of continuous functions f : (0, 1) → A. Then K1(A) := K0(S(A)).
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2.3 Category theory

Category theory is a unification of all mathematical algebraic notions. Some
would even go so far as saying that the whole of mathematics can be defined in
terms of category theory. It makes use of the abstract notions of a category.

Definition 9 (Categories). A category consists of two classes C0 (objects) and
C1 (arrows, or morphisms) with the following properties:

1. there are maps r : C1 → C0 and s : C1 → C0, called the range and source
map;

2. there is map ◦ : {(f, g) ∈ C1×C1; s(f) = r(g)} → C1, called composition,
such that r(g ◦ f) = r(g) and s(g ◦ f) = s(f);

3. there is a map i : C0 → C1, called identity, such that for all c ∈ C0,
r(i(c)) = c = s(i(c)).

There is a natural map between categories called a functor:

Definition 10 (Functor). Let C,D be categories. Then a functor F : C → D
are two maps F 0 : C0 → D0 and F 1 : C1 → D1 such that:

1. For all c ∈ C0, F 1 ◦ i(c) = i(F 0(c));

2. If f : c → c′ is an arrow in C1, then F 1(f) : F 0(c) → F 0(c′) is an arrow
in D1;

3. F 1(f ◦ g) = F 1(f) ◦ F 1(g).

To show how widespread the use of categories is, we give two examples:

• N. Let C0 = N and let C1 be the collection of arrows pointing from n to
m when m−n = 1 plus an identity arrow for every number. Composition
is then defined by addition.

• Form Top, the category of topological spaces, by setting
Top0 = {(X, T ); (X, T ) is a topological space} and
Top1 = {f : X → Y ; f is a continuous map of topological spaces}.

The strong point of an approach via category theory is that we can make
far-fetching generalizations of known algebraic structures. One of these is the
a so-called universal construction. See [11], chapter 3, for a profound intro-
duction into this matter. We will only quote here two examples to see how this
universality works and work with this understanding.

• Direct product of topological spaces. Let X, Y be two topological spaces.
Then X × Y , the topological direct product, goes with two projections
p : X × Y → X and q : X × Y → Y such that p(x, y) = x and q(x, y) = y.
Now let U be a topological space such that there exist f : X → U and
g : Y → U with the property f ◦ p = g ◦ q. The construction of the direct
product is universal in the sense that there is a unique morphism (= a
continuous map) h : X × Y → U . You guessed it, the morphism we are
looking for is h = (f, g).
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• Cokernels. We work with a category which has a zero-object 0 such that
for every pair of objects u, v we have unique arrows f, g with f : u → 0
and g : 0 → v. Let f : u → v be a morphism. Then cokerf is defined
by an object cokerf and an arrow p : v → cokerf such that pf = 0 and
when there is an object b with arrow q : v → b such that qf = 0, there is
a unique arrow h : cokerf → b with p ◦ h = q.

The word universal comes from the fact that these construction are the most
general way of constructing an object of that particular type. It is therefore
no surprise that they are so ubiquitous. The direct product, for instance, is
available for many types of mathematical structures.
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3 Graph algebras

3.1 Definitions

Definition 11 (Row-finite directed graph). A directed graph is a class con-
sisting of a set of vertices E0, a set of edges E1 and maps s : E1 → E0

and r : E1 → E0 called respectively the source and the range of an edge.
A row-finite directed graph is all of the above with the extra condition that
r−1(v) = {e ∈ E1; r(e) = v} is finite for all v ∈ E0.

The reason for demanding row-finiteness will become apparent in the def-
inition of a graph algebra. Since every directed graph we will encounter is
row-finite we will call ‘row-finite directed graphs’ simply ‘graphs’.

A clear example of a graph is the following one.

w
g

//

h

""
v

f
// u e

yy
(1)

We see that E0 = {u, v, w} and E1 = {e, f, g, h}. r(e) = r(h) = r(f) = u and
r(g) = v. s(e) = u, s(h) = s(g) = w and s(f) = v.

Definition 12 (Graph algebras). Let E be a graph, {Se; e ∈ E1} a collection of
partial isometries and {Pv; v ∈ E0} a collection of mutual orthogonal projections
in a C∗-algebra B (also called a Cuntz-Krieger family {S, P}, or just simply
CK-family) if they satisfy:

1. S∗eSe = Ps(e),

2. Pv =
∑

e∈E1;r(e)=v

SeS
∗
e iff r(v)−1 6= ∅

then the C∗-algebra generated (over C) by all Se and Pv is a graph algebra.
Let us denote this algebra with C∗(S, P ).

Note that our requirement #(r−1(v)) < ∞ now makes sense; in general
∞∑

e∈E1;r(e)=v

SeS
∗
e is not a projection. However, it is possible to define a CK-

family on any directed graph and the interested reader should look into [14]
chapter 5.
Let us make two important observations. At this stage, we have to embed
C∗(S, P ) into an ambient C∗-algebra B since C∗(S, P ) is not naturally endowed
with a norm: we have to borrow one from B1. Secondly, the definition does not
exclude the association of several CK-families to the same graph. As we shall

1The reader familiar with the theory of C∗-algebras notices that the norm of a C∗-algebra
is entirely defined by the algebraic structure, hence the reference to B is in fact redundant.
In section 4.1 we will construct the graph algebra from scratch, omitting any reference to an
ambient algebra.
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see in section 4.4, these different graph algebras associated to a graph are in
general not isomorphic.

Definition 13 (Paths). A path is a string of edges µ := µ1 · · ·µn with µi ∈ E1

such that s(µi) = r(µi+1). |µ| = n, the length of the path, s(µ) = s(µ|µ|) and
r(µ) = r(µ1). For every n ∈ N∗ En is defined as the collection of paths of length
n. We extend this to include E0 and we simply call paths of length zero vertices

for which r(v) = s(v) = v. Denote E∗ =
⋃

n∈N∗
En. For every µ ∈

n∏
i=1

E1 (not

just paths) we define Sµ = Sµ1 · · ·Sµn
.

A simple graph is a graph without any cycles, that is, for every vertex v
there is no path in the graph which begins and ends at v.
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3.2 Structure of graph algebras: the multiplication rules

The astute reader has probably already noticed that the way we can chase
arrows in the graph tells us what the structure of multiplication in C∗(S, P )
will be. In fact, there is a very elegant way of expressing arbitrary elements of
C∗(S, P ):

Theorem 14. C∗(S, P ) = span{SµS∗ν ;µ, ν ∈ E∗, s(µ) = s(ν)}.
Before we start with the actual proof, we will prove a set of lemmas first

which will be needed to prove that span{SµS∗ν ;µ, ν ∈ E∗, s(µ) = s(ν)} is a
subalgebra of C∗(S, P ).

In the following calculations we make the assumption that all projections
associated to a graph are non-zero. An extension to the general case is trivial,
but it would ruin the elegant formulation of the multiplication rules.

The first one conveniently elucidates the nature of Sµ.

Lemma 15 (SµSν & S∗µS
∗
ν).

1. If µ /∈ E∗ then Sµ = 0.

2. Sµ is a partial isometry.

3. SµSν = Sµν .

4. S∗µS∗ν = S∗νµ.

Proof. 1. Choose an i such that r(µi+1) 6= s(µi). Then Sµi+1Sµi = Sµi+1Pr(µi+1)Ps(µi)Sµi =
0 because the projections are mutually orthogonal. Thus Sµ = 0.
2. If µ /∈ E∗ then S∗µSµ = 0 is definitely a projection. Otherwise let us take a
look at S∗µSµ:

S∗µSµ = S∗µn
· · ·S∗µ1

Sµ1 · · ·Sµn = S∗µn
· · ·S∗µ2

Ps(µ1)Sµ2 · · ·Sµn =

S∗µn
· · ·S∗µ2

Pr(µ2)Sµ2 · · ·Sµn = S∗µn
· · ·S∗µ2

Sµ2 · · ·Sµn = . . .

= S∗µn
Sµn = Ps(µn) = Ps(µ).

3 : Whether or not µν ∈ E∗ this statement is checked by writing it out fully.
4 : Apply the adjoint to 3.

To see how this works on a diagrammatical level we take a look at (1). Then
we can infer that to construct a non-zero composition of Sµ’s composition must
be tail-to-head and against the direction of the arrows. For example, consider
ShSf . Since w = s(h) 6= r(f) = v this is zero. Also Sgfe = 0 while Sefg is not.

Lemma 16 (SµS∗ν). If SµS∗ν 6= 0 then s(µ) = s(ν).
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Proof.

SµS∗ν = Sµ1 · · ·SµnS∗νk
· · ·S∗ν1

= Sµ1 · · ·SµnPs(µn)Ps(νk)S
∗
νk
· · ·S∗ν1

6= 0

Which means Ps(µn)Ps(νk) 6= 0. Both of these projections are associated with
the sources of some arrow, which, by definition, implies that they are mutually
orthogonal. The product being non-zero then shows Ps(µn) = Ps(νk) so that
s(µ) = s(µn) = s(νk) = s(ν).

Lemma 17 (S∗µSν).

S∗µSν =





S∗µ′ if µ = νµ′ for some µ′ ∈ E∗

Sν′ if ν = µν′ for some ν′ ∈ E∗

0 otherwise

Proof. Let us look a the case S∗µSν 6= 0 and assume |ν| ≤ |µ|. Choose an α such
that µ = αµ′ with |α| = |ν|. Then S∗µSν = S∗αµ′Sν = S∗µ′(S

∗
αSν). If α = ν then

S∗µSν = S∗µ′(S
∗
νSν) = S∗µ′Ps(ν) = S∗µ′Pr(µ′) = S∗µ′ . If α 6= ν choose the smallest

integer such that αi 6= νi. Then

S∗αSν = (Sα1 · · ·Sαn)∗Sν1 · · ·Sνn = S∗αn
· · ·S∗αi

(S∗αi−1
· · ·S∗α1

Sν1 · · ·Sνi−1)Sνi · · ·Sνn =

S∗αn
· · ·S∗αi

Pr(αi)Sνi · · ·Sν = S∗αn
· · ·S∗αi

Sνi · · ·Sν .

Which vanishes, as we have seen before. Applying the same line of reasoning to
the case |µ| ≤ |ν| yields the second expression.

Apply the last lemma to obtain the important relation:

(SµS∗ν )(SαS∗β) =





Sµα′S
∗
β if α = να′ for some α′ ∈ E∗

SµS∗βν′ if ν = αν′ for some ν′ ∈ E∗

0 otherwise
(2)

Now for the proof of theorem 2.

Proof. Equation (2) shows that any word formed in SµS∗ν is of the form SαS∗β
for some paths α and β. span{SµS∗ν ; µ, ν ∈ E∗, s(µ) = s(ν)} is closed under
multiplication and closed under involution and hence is a proper subalgebra of
C∗(S, P ). It contains all the generators of C∗(S, P ), so its norm closure must
be the whole of C∗(S, P ).
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3.3 Examples of graph algebras: simple graphs

In this section we will present all examples of simple graphs and provide a
complete classification of graph algebras they generate.

Example 18 (Matrix algebras).

Let us start with a description of a matrix algebra as a C∗-algebra. Define
Mn(C) = {A : Cn → Cn;A linear}. Mn(C) is a vector space over the complex
numbers and multiplication is given by the usual matrix multiplication. We en-
dow this space with the operator norm ‖A‖ = {‖Ax‖ ; ‖x‖ = 1} with respect to
the inner product on Cn. Involution is given by A∗ = A

T
, complex conjugation

and transposition. The projections in Mn(C) are the matrices with ones on the
diagonal and zeros everywhere else.
We can choose {eij , i, j ∈ {1, . . . , n}} as a base for Mn(C) where eij is a n× n-
matrix with a 1 on (i, j) and zeros everywhere else. Note that eij is a partial
isometry for all pairs i, j: eije

∗
ij = eijeji = eii and e∗ijeij = ejj . We therefore

can form the ∗-algebra An generated by {e1j ; j ∈ {1, . . . , n}} of partial isome-
tries. It follows that Mn(C) = span(An). Note that there are multiple ways to
construct An.
So if we were to find a graph E, a set of (non-zero) partial isometries Q and
a set of projections P which generate C∗(S, P ) ∼= Mn(C) then by definition E
should have a finite number of edges. Futhermore, for any morphism between
C∗(S, P ) ∼= Mn(C) to respect composition, we need property (2) to boil down to
the relation (SµS∗ν)(SαS∗β) = δν,αSµS∗β . This implies that α′ and ν′ are always
vertices, meaning whenever (SµS∗ν)(SαS∗β) 6= 0, s(µ) = s(β). So in general,
a graph corresponding to Mn(C) has n different partial isometries emanating
from the same (single) source. Since every projection in Mn(C) is of the form
eije

∗
ij every vertex in the graph receives at least one edge, which makes the

graph connected. Surely, the graph has no cycles because of the finite number
of partial isometries involved.

Returning to the discussion in the introduction of this section we can show
that the members of (C∗)−1(Mn(C)) are in general not graph-isomorphic. For
instance

w
f // u1

g // u2
h // u3 , w

i //

j ÃÃB
BB

BB
BB

B u1

u2

k

==||||||||

(3)

both generate M4(C). Namely, we for both graph algebras we have the set
{Sw, Sf , Sgf , Shgf} and {Sw, Sj , Skj , Si} satisfying the matrix multiplication
rules of base vectors. These sets are therefore isomorphic to a set of gener-
ators of M4(C), which proves that both graphs generate M4(C).
They differ in which base vectors of M4(C) the isomorphism maps to. We can use
the graph relations to determine the image of the isomorphism on the edges when
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we have fixed the edges. For the first graph, map w → e11, u1 → e22, u2 → e33

and u3 → e44. Then {Sw, Sf , Sg, Sh} ∼= {e11, e21, e32, e43}, which gives us the
generators {e11, e21, e31, e41}. For the second graph, w → e11, u1 → e33 + e44

and u2 → e22. Then {Sw, Si, Sj , Sk} ∼= {e11, e31, e21, e42} which also gives the
generators {e11, e31, e21, e41}.

Example 19 (Multimatrix algebra).

A multimatrix algebra M(~m) for m ∈ Nn is defined by M(~m) =
n⊕

i=1

Mm(i)(C).

This is also known as a Jordan normal form. They are a direct extension of
the matrix algebras. Namely, Let E be a finite graph without cycles and let

{w1, . . . , wn} the collection of sources. Then C∗(S, P ) ∼=
n⊕

i=1

M#{s−1(wi)}(C).

Proof. Let Ai = span{SµS∗ν ; s(µ) = s(ν) = wi}. Then following the line of
reasoning in example 18 we see that Ai

∼= M#{s−1(wi)}. Let i 6= j and SµS∗ν
with s(µ) = s(ν) = wi and SαS∗β with s(α) = s(β) = wj . Then SµS∗νSαS∗β =
0 unless ν extends to α or α extends to ν. But since they do not share a
source, this is not possible. Therefore AiAj = 0. It is now easy to see that
span{Ai ∪Aj} ∼= Ai ⊕Aj .

Example 20 (Compact operators on a separable Hilbert space).

The correct generalization of the matrix algebras (which act on a finite di-
mensional space) to spaces of infinite (but countable) dimension are the com-
pact operators. As illustrated in [2] chapter II they exhibit a great degree of
similarity with matrix operators. The algebra of compact operators, B0(H), is
a closed algebraic ideal of B(H) and thus a C∗-algebra in its own right. As a
graph algebra, B0(H)’s ancestry is quite evident. Namely,

. . . // u2 // u1 // w (4)

generates B0(H). Let {En; n ∈ N} be the basis of H and define the linear
operator Ei ⊗Ej : H → H as Ei ⊗Ej(h) := Eij(h) = (h,Ej)Ei. It is obviously
a finite rank operator, so An = span{Eij , i, j ∈ {1, . . . , n}} ⊂ B0(H) for every
n ∈ N.
We can derive two useful identities.

Eij(Ekl(h)) = Eij(h,El)Ek = (h,El)(Ek, Ej)Ei = δj,k(h,El)Ei = δj,kEil(h)

(g,Eijh) = (g, (h,Ej)Ei) = (Ej , h)(Ei, g) = ((Ei, g)Ej , h) = (Ejig, h)

This means we can construct an isomorphism ϕ : An → Mn(C) by simply iden-
tifying ϕ(Eij) = eij .
By using the results from 18 we can conclude that the algebra generated by (4)
equals span{eij ; i, j ∈ N} = span{Eij ; i, j ∈ N}. Since every element in B0(H) is
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the norm limit of some series of finite rank operator, and span{Eij ; i, j ∈ N} con-
tains every finite rank operator, we can conclude span{Eij ; i, j ∈ N} = B0(H).

The algebra of compact operators is an example of an approximately finite
algebra.

Example 21 (AF-algebra).

An AF-algebra A is defined by A = clo
∞⋃

n=1
An with {An} a sequence of

multimatrix algebras ordered by inclusion. For instance, if we include Mn(C) ⊂
Mn+1(C) by Mn(C)⊕ 0 ∈ Mn+1(C) then we see that clo

∞⋃
n=1

Mn(C) = B0(H).

In general, AF-algebras will be generated by graphs of multimatrix algebras
with an infinite path added to each sink.

These possibilities exhaust all the graph algebras generated by simple graphs
and we have obtained a complete classification.
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4 Categorical aspects of graph algebras

4.1 The universal construction

To study K-theory properly we have to delve into the functorial nature of the
construction of a graph algebra from a graph. Heuristically speaking, we want

to examine the maps {graphs} C∗→ {C∗ − algebras} Ki

→ {Abelian groups} for
i ∈ {0, 1}. As we have seen there is an ambiguity in our choice for a graph
algebra which first needs to be resolved. Only if we can associate a unique
C∗-algebra to a given graph, a functor C∗ can be formulated. Reference [14]
proposes a universal construction:

Theorem 22 (C∗(E)). For any graph E there is a C∗-algebra C∗(E) with a
formal Cuntz-Krieger family {s, p} such that if {T,Q} is a Cuntz-Krieger family
generating an algebra B, there is a unique morphism πT,Q : C∗(E) → B such
that πT,Q(se) = Te and πT,Q(pv) = Qv for every vertex and edge.
Moreover, this construction is universal. Let {w, r} be a CK-family generating
C such that for every CK-family {T, Q} generating B there is a homomorphism
ρT,Q : C → B such that ρT,Q(we) = Te for all edges and ρT,Q(rv) = Qv for all
vertices. Then there is an isomorphism ϕ : C∗(E) → C such that ϕ(se) = we

and ϕ(pv) = rv for all edges respectively vertices.
This implies the following diagram is commutative:

C
ρT,Q // B

C∗(E)

!ϕ

OO

πT,Q

<<yyyyyyyyy

Proof. Let zµ,ν ∈ C and dµ,ν formal symbols for all paths µ, ν ∈ E∗. Then
V = {∑ zµ,νdµ,ν ; µ, ν ∈ E∗, s(µ) = s(ν)} is a ∗-algebra under the following def-
initions:

• a
∑

zµ,νdµ,ν + b
∑

wµ,νdµ,ν =
∑

(azµ,ν + bwµ,ν)dµ,ν ;

• d∗µ,ν = dν,µ;

• dµ,νdα,β satisfies the same relations as (2).

We need to define a norm on V to construct a C∗-algebra. We will borrow the
norm from the other C∗-algebras generated by E.
For every Cuntz-Krieger family {S, P} (generating C∗-algebra A) we can de-
fine a ∗-homomorphism with the property πS,P (dµ,ν) = SµS∗ν . Then ‖v‖1 =
sup{‖πS,P (v)‖ ; {S, P} is a Cuntz-Krieger family} is a semi-norm on V . This
follows from:∥∥∥πS,P

(∑
zµ,νdµ,ν

)∥∥∥ ≤
∑

|zµ,ν | ‖SµS∗ν‖ ≤
∑

|zµ,ν |,

since A is a Banach space and every partial isometry has norm 1.
It is easily checked that ‖·‖1 satisfies ‖v∗v‖1 = ‖v‖21, since πS,P is a *-homomorphism.
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Taking V0 as the quotient algebra of V and the kernel of the norm gives us a
new norm ‖·‖0 which is constant on equivalence classes. Forming the closure of
V0 then gives us a C∗-algebra, which we call C∗(E).
Now take se := de,s(e) and pv := dv,v. It is easily verified this a Cuntz-Krieger
family which generates V0. Using the Gelfand-Naimark theorem to find a faithful
representation ρ : B → B(H ) for some Hilbert space H , πT,Q = ρ−1◦πρ(T ),ρ(Q)

then does the trick.
Lastly, the universality property. Since {w, r} is a Cuntz-Krieger family, there
is a map πw,r : C∗(E) → C. We will prove this is an isomorphism.
The range of πw,r contains all the generators of C, namely all {we, rv}. Hence
it is surjective. Vice versa, there is a ρs,p : C → C∗(E). This makes ρs,p ◦ πw,r

the identity on {s, p}, thus all of C∗(E). Injectivity then follows from πw,r(a) =
0 ⇒ a = ρs,p ◦ πw,r(a) = 0.

Now a central result in the theory of graph algebra’s is the uniqueness cri-
terion of graph algebras, which is the subject of chapter 3 in [14]. It can be
formulated in terms of this universal construction.

Corollary 23. If E is a graph for which every cycle has an entry, then every
Cuntz-Krieger family {T, Q} defined on E has the universal property described
above.

To conclude: if in a graph E every cycle has an entry all graph algebras it
generates are isomorphic. If the graph does not exhibit this property there is
still a unique graph algebra we can associate it with.
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4.2 The functor C∗

Now we are ready to deploy the machinery of category theory to our graph
algebras. First of all, we need to define proper categories which we will be
working with.

Definition 24. 1. DGrph is the category of directed graphs. Its objects are
directed graphs and its arrows are defined as follows. ϕ : E → F is a graph
morphism if ϕ(v) is a vertex in F for every v ∈ E0 and ϕ(e) is an edge in F for
every e ∈ E1 such that r(ϕ(e)) = ϕ(r(e)) and s(ϕ(e)) = ϕ(s(e)). Composition
of ϕ : E → F and ψ : F → G is defined as ψ ◦ ϕ : E → G. Lastly, if µ ∈ E∗

with µ = µ1 · · ·µn, ϕ(µ) =
∏

ϕ(µi) ∈ F ∗.
2. CAlg is the category of C∗-algebras with as objects C∗-algebras. An arrow
ϕ : A → B with A, B C∗-algebras is a complex linear map satisfying ϕ(ab) =
ϕ(a)ϕ(b) and ϕ(a∗) = ϕ(a)∗.

Corollary 25. There is a functor C∗ : DGrph→ Calg adding to every graph
the graph algebra by universal construction.

Proof. Let ϕ : E → F be a graph morphism such that {s, p} and {t, p} are the
Cuntz-Krieger families generating C∗(E) and C∗(F ).
Define C∗(ϕ)(αsµ+βsν) := αtϕ(µ)+βtϕ(ν) for any µ, ν ∈ E∗ and α, β ∈ C. Then
C∗(ϕ) is a morphism of C∗-algebras: C∗(ϕ)(sµsν) = C∗(ϕ)(sµν) = tϕ(µν) =
tϕ(µ)tϕ(ν) = C∗(ϕ)(sµ)C∗(ϕ)(sν) and C∗(ϕ)(s∗µ) = t∗ϕ(µ) = (C∗(ϕ)(sµ))∗. Now
using the fact that C∗(F ) is norm-closed, we can extend C∗(ϕ) to any element
a ∈ C∗(E) by continuity.
Let 1E be the identity on graph E. C∗(1E)(sµ) = s1E(µ) = sµ = 1C∗(E)(sµ).
For ψ : F → G with C∗(G) generated by {s, r} we have C∗(ψ ◦ ϕ)(sµ) =
rψ◦ϕ(µ) = C∗(ψ)(sϕ(µ)) = C∗(ψ) ◦ C∗(ϕ)(sµ).

It is desirable to have a functor U : Calg → DGrph such that it is the
left-adjoint of C∗ and such that C∗ is the right-adjoint to U . This would allow
us to prove the result in [7] with less effort: it’s a known result that when
U and C∗ relate in such a manner, C∗ is both stable under take limits and
colimits. Which would imply C∗(E ⊕ F ) = C∗(E) ⊕ C∗(F ) and C∗(E × F ) =
C∗(E) ⊗ C∗(F ). Calculating for instance the K-theory of tensor products of
C∗-algebras is elaborate and these results would prove to be useful tool. See for
instance [11] for more information on this subject. Here, we will only quote a
result of this conjecture, which can also be proved independently:

Proposition 26 (Direct sums of graphs). Let E, F be graphs then E ⊕ F is
constructed by laying E and F in the same plane without touching each other.
Then C∗(E ⊕ F ) = C∗(E)⊕ C∗(F ).

We foresee two major technical difficulties in this endeavor. Firstly, how to
restrict the category Calg. The two most important reasons for this is that not
every C∗-algebra is the norm-limit span of a set of partial isometries. Secondly,
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the multiplication rules (2) are in general not valid for C∗-algebras. Lastly,
it would be a challenge to retrieve partial isometries in a given C∗-algebra.
Via the representation on a Hilbert-space we can always dissect the bounded
operators into sums of one-dimensional projections. An abstract procedure to
create partial isometries is available for us: let p, q ∈ A be projections in a
C∗-algebra A. Form the representations p = (·, ei)ei and q = (·, ej)ej on the
basis {ei}i∈I of the Hilbert-space H on which we represent the algebra. Then
ei ⊗ ej as defined in 20 does the trick. However, it is not obvious that there is
an element a ∈ A such that π(a) = ei⊗ ej and how we would construct such an
a.
I am grateful for a discussion with W. Szymański who pointed out that one
should look at the Z-graded C∗-algebras with graded morphisms as subcategory.
The functor then should take us to the category of Hilbert-bimodules, which
has to be decreased sufficiently to narrow down to a directed graph, which is in
particular a special case of a Hilbert-bimodule.
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4.3 Graphs of rank 2

We now go into the theory of higher-rank graphs. The following is based on the
material in chapter 10 of [14].

Definition 27 (Graph of rank 2). Let N2 be the category with one object, two
morphisms given by two generators of N and addition as multiplication. Then a
graph of rank 2 is a countable category Λ and a functor d : Λ → N2, called the
degree map. d has the following property: if d(λ) = m + n for some morphism
λ and m,n ∈ N2, then there are two morphisms µ, ν such that d(µ) = m and
d(ν) = n with λ = µν.

This abstract definition basically means that d colors the arrows of a graph,
painting them blue and red, and that decomposition in N2 is guaranteed to be
reflected in the way we can take paths of different colors on the graph (see also
example 28).
A graph of rank 2 has no sources if every vertex receives at least one arrow of
every color.

Example 28. [Ω2] A good example is Ω2; let Ω0
2 = N2 and define the collection

of paths on Ω2 as: Ω∗2 = {(p, q) ∈ N2×N2; p1 ≤ q1, p2 ≤ q2}. Define d : Ω2 → N2

as d(p, q) = q − p, r(p, q) = p, s(p, q) = q and composition (p, q)(q, r) = (p, r).
This is a graph of rank 2.

Proof. Ω2 is a category with objects pairs of positive integers. The morphisms

are the pairs (p, q) such that q − p =
(

1
0

)
(blue arrows) or q − p =

(
0
1

)

(red arrows).
Then d is a functor; if (p, q) is the identity morphism then p = q, so that
d(p, q) = 0. Let (p, q), (q, r) be a pair of morphisms then d((p, q)(q, r)) =
d(p, r) = r − p = r − q + (q − p) = d(p, q) + d(q, r). So d is a functor.
Now let d(p, q) = m + n. To prove we can find two paths (p, r), (r, q) such that
d(p, r) = m and d(r, q) = n we take a look at the visualization of the 2 graph in
terms of its 1-skeleton.

²² ²² ²² ²²
.

²²

.

e

²²

oo .

k

²²

foo q
goo

l

²²

oo oo

.

²²

p

²²

oo hoo

²²

joo

²²

oo oo

. oo oo oo oo

Then d(p, q) =
(

1
2

)
and depending on the values of m and n we can find paths

efg, hkg and hjl for the composition µν to satisfy d(p, q) = d(µ) + d(ν).
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Definition 29 (2-rank graph algebra). Let Λ be a graph of rank 2. Then a
Cuntz-Krieger-Λ-family S = {Sλ;λ ∈ Λ∗} is a collection of partial isome-
tries satisfying:

1. {Sv; v ∈ Λ0} are mutually orthogonal projections;

2. SλSµ = Sλµ when s(λ) = r(µ).

3. S∗λSλ = Ss(λ).

4. Sv =
∑

λ∈Λn;r(λ)=v

SλS∗λ for all v ∈ Λ0 and all n ∈ N2.

Important to note is that condition (4) implies that paths of different color
share the same projection. This implies that Λ is a so-called 2-category. See
[11], chapter 2.5, for more information on these special type of categories.

We will use the following important theorem about two-graphs, which is the
following result by [7].

Theorem 30. Let E and F be two ordinary graphs. Then E × F is a 2-graph
and C∗(E × F ) = C∗(E)⊗ C∗(F ) with ⊗ the tensor product for C∗-algebras.
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4.4 Examples of graph algebras: graphs with cycles

We now illustrate the theory of the preceding chapter with examples of graphs
with cycles.

Example 31 (C(T)). The graph

ve :: (5)

does not have an entry into its single cycle, so it might as well generate mul-
tiple non-isomorphic C∗-algebras. In fact we can immediately find two distinct
algebras.
This graph allows only one projection. If we conveniently assume Pv = 1 then
every possible partial isometry Se is unitary. These are the only restrictions we
face so if we choose B = B(C) ∼= C then we can choose Se = exp(it) for any
t ∈ R. Since C∗(S, P ) is the linear span of exp(it), C∗(S, P ) ∼= C too.
B = C(T), the algebra of continuous functions over the circle, is also gener-
ated by this graph. By fixing Se = e1 ∈ C(T) with ek(x) = exp(ikx) for
all x ∈ [0, 2π) we see that Sk

e = ek for all k ∈ Z. Therefore C∗(S, P ) =

closure

{
M∑

k=−N

akek; ak ∈ `1(Z)

}
= C(T), which is obviously not isomorphic to

C.
We also can examine the universal graph algebra, C∗(E). When represented on
a suitable Hilbert-space, Se forms an isometry Se : PvH → PvH so for C∗(E),
PV is the unit element. This means C∗(E) is universal for all C∗-algebras gen-
erated by a single unitary.
Now, C(T) has the same universal property. Construct i : T→ C the inclusion
function. Then the spectrum of i coincides with that of any unitary element
U in a C∗-algebra B. Hence we have a morphism π : C(T) → B such that
π(i) = U . All of this implies C(T) ∼= C∗(E).

Example 32 (T ). Consider the graph

ve :: w
f

oo (6)

Since every cycle has an entry we only have to select any graph algebra
generated by the graph to prove that algebra is the graph algebra.
Let us represent C∗(S, P ) on B(`2(N)). Choose Pv({en}) = (e1, 0, 0, . . .) then
Pw({en}) = (0, e2, e3, . . .). The CK-relations imply Sf ({en}) = (0, e1, 0, . . .)
and S∗f ({en}) = (e2, 0, 0, . . .) while Se({en}) = (0, 0, e2, e3, . . .) and S∗e ({en}) =
(0, e3, e4, . . .).
We conclude this graph generates the Töplitz-algebra.

Example 33 (SUq(2)). For q ∈ [0, 1) Let SUq(2) be the C∗-algebra generated
by a and b subject to the following relations:

a∗a + b∗b = 1 ab = qba

aa∗ + q2b∗b = 1 ab∗ = qb∗a

b∗b = bb∗
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Theorem A2.2 in [20] proves that for all q the C∗-algebras they generate are
isomorphic. So let us focus on the case q = 0. Now take a look at the following
graph:

ve :: f
// w gee (7)

We have the following relations: Pv = S∗fSf = S∗eSe = SeS
∗
e and Pw = S∗gSg =

SgS
∗
g + SfS∗f . We call the universal C∗-algebra generated by these projections

and partial isometries C∗(L3).
We now claim ϕ : C(SU0(2)) → C∗(L3) given on generators by ϕ(a) = S∗f + S∗g
and ϕ(b) = Se is an isomorphism.

Proof. We claim that the image of the generators also adheres to the relations
of SU0(2):
ϕ(b∗b) = S∗eSe = SeS

∗
e = ϕ(bb∗).

ϕ(ab) = (S∗f + S∗g )Se = S∗fSe + S∗gSe. There is no path µ′ such that f = eµ′,
neither is there any ν′ such that e = fν′. Same goes for S∗gSe, so this relation
is zero.
ϕ(a∗b) = (Sf + Sg)Se = Sfe + Sge = 0.
ϕ(aa∗) = (S∗f +S∗g )(Sf +Sg) = 1+S∗fSg +S∗gSf = 0 for the same reason as the
one above.
ϕ(a∗a + b∗b) = (Sf + Sg)(S∗f + S∗g ) + S∗eSe = 1 + SgS

∗
f + SfS∗g = 0 since f and

g do not have the same source.
Now construct ϕ−1 as follows: ϕ−1(Pv) = a∗a, ϕ−1(Pw) = bb∗, ϕ−1(Se) =
a∗(1− bb∗), ϕ−1(Sg) = b and ϕ−1(Sf ) = a∗bb∗. Again, it is an easy exercise to
check if these images obey the relations of a graph algebra and is the inverse of
ϕ.
By extending ϕ to linearity we now see that C(SUq(2)) ∼= C∗(L3).

Example 34 (Aθ). The irrational rotation algebra, or Aθ, is the C∗-algebra
generated by u, v on which we define the relationship uv = exp(iθ)vu with θ
irrational.

An important result achieved by Elliot and Evans is the description of
Aθ as a direct limit in [4]. Let {qn} be the coefficients of θ in a continu-
ous fraction expansion. The rotational algebra takes the following form Aθ =
lim
→

(
Mqn+1(C(T)⊕Mqn(C(T))

)
where we take the direct limit in the category

of C∗-algebras. See [8], proposition 5.2, for more information. For our algebra
this narrows down to Aθ =

⋃
n

Mqn+1(C)⊗ C(T) ⊕ ⋃
n

Mqn(C)⊗ C(T)2. Using

the identities we have found and the result in the discussion of chapter 4.2 two
copies of the following 2-rank graph generate the irrational rotational algebra:

(8)

2With the added technical detail that we have to take care of a construction of a new norm
on this limit. But since it is not relevant for our discussion, we omit this here.
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5 The ideal structure of graph algebras

The purposes of this section is to link the structure of a graph to the (possible)
ideals of the generated C∗-algebra. First of all, we derive a condition for simplic-
ity of the algebra. For graph algebras with ideals we will show that every ideal
determines a unique subgraph. Using both lemma 39 and theorem 40 we derive
the structure of this subgraph. At the end of the section we can formulate a
1-to-1 correspondence of certain subgraphs and ideals for graphs without cycles.

First two definitions. The first one is for notational purposes, used to com-
pare vertices:

Definition 35 (Preorder on vertices). For w, v ∈ E0, v ≤ w if there is a µ ∈ E∗

such that s(µ) = w and r(µ) = v.

The second one is the criterion for simplicity:

Definition 36 (Cofinality). Let E≤∞ be the collection of infinite paths together
with the finite paths starting at a source. A graph E is cofinal if for every
µ ∈ E≤∞ and every v ∈ E0 there is a vertex w on µ such that v ≤ w.

Loosely speaking, from every infinite path and from every source we can
reach the rest of the graph by following the arrows.

Theorem 37 (Simplicity). Let E be graph such that E is cofinal and every
cycle has an entry. Then the graph algebra is a simple algebra.

Proof. Take a graph algebra C∗(S, P ). Every ideal is the kernel of a represen-
tation π : C∗(S, P ) → A ⊆ B(H ). So it suffices to show injectivity for every
representation π and to prove that C∗(S, P ) is unique. To do this we first prove
Pv 6= 0 for all v ∈ E0.
Take a non-zero Pv and assume for a moment Pv is not a source. Since v = r(e)
for some edge e we have SeS

∗
e 6= 0, implying Ps(e) = S∗eSe 6= 0. We can follow

this procedure until we arrive at a source or form an infinite path. Either way,
we form a path µ ∈ E≤∞. Take a w ∈ E0. There is a path µ′ ∈ E∗ with
r(µ′) = w and s(µ′) a vertex in µ. By construction, Ps(µ′) = S∗µ′Sµ′ 6= 0, which
implies Sµ′S

∗
µ′ 6= 0. And since PwSµ′S

∗
µ′ = Sµ′S

∗
µ′ 6= 0. Hence all projections

are non-zero (implying all partial isometries are non-zero too) and we can apply
theorem 23 to see that C∗(S, P ) ∼= C∗(E). Since every representation is linear
and the multiplication rule, injectivity now follows.

Corollary 38. Matrix algebras and B0 are simple.

Proof. The graphs of these C∗-algebras have no cycle. So we have to show
they are cofinal. For B0, E≤∞ consists of all paths extending from −∞ to an
arbitrary vertex. For reference, use (4).
Let us choose µ the path finishing at v and an arbitrary ui ∈ E0. If ui is on µ,
then we are finished. If ui is to the right of v, there is a path starting at v and
finishing at ui just be following the arrows connecting these two vertices. So B0
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is simple.
The matrix algebras do not have infinite paths, so E≤∞ are all the paths starting
at the source w. For an arbitrary vertex v, there is a path starting at w and
finishing at v, which immediately shows that the graph is cofinal.

On the other hand, multimatrix algebra’s or not simple; they have multiple
sources which directly implies there is no path way to connect paths from one
source to an other source.

The graph of the Töplitz-algebra is a good example of a graph which does
satisfy the condition that every cycle has and entry but does not exhibit cofi-
nality.

ue 99 v
foo (9)

Since I = span{Pv, Se} is an ideal of T . The reader can verify this by examining
the multiplication of the generators of I with the generators of T and then
extending this result by linearity and continuity.

The converse of 37 is also true: a graph algebra is simple if and only if ev-
ery cycle has an entry and the graph is cofinal. For a proof, see chapter 4 of [14].

In general, given a graph algebra C∗(E) with a non-trivial ideal I, I deter-
mines a subgraph of E in the following way:

Lemma 39. If I is an ideal of the graph algebra C∗(S, P ) on graph E the set
E\HI generates C∗(S, P )/I.

Proof. The quotient-algebra C∗(S, P )/I defines q, the quotient map , satisfying
q(I) = 0. This proves that {q(Pv); v /∈ HI} is a set of non-zero projections.
This implies for s(e) /∈ HI that 0 6= q(Ps(e)) = q(Se)∗q(Se). Since q(Pr(e)) =
q(Se)q(Se)∗ + . . . (some others projections) we can write down the intuitive
statement q(Pr(e)) ≥ q(Se)q(Se)∗ > 03. Other way around, if r(e) /∈ HI then
q(Se)q(Se)∗ = 0 so q(Ps(e)) = 0.
So E\HI = {E0\HI ; s−1(E0\HI), r, s} is a graph. One verifies easily that
{q(Pv), q(Se)} generates the graph algebras of E\HI , of which some (uniqueness
is not guaranteed!) are isomorphic to C∗(S, P )/I.

The defining property of HI representing an ideal is that HI is an a sense
an isolated part of the graph. To make this concretely:

Theorem 40. If I is a non-zero ideal in the graph algebra C∗(S, P ) of graph
E then:

• if w ∈ HI and w ≤ v, then v ∈ HI (HI is hereditary);

3This may seem like complete nonsense since we seem to pretend q(Se)q(Se)∗ and q(Pr(e))
are real numbers which they are not. However, in the theory of C∗-algebras ‘≤’ has a very
precise meaning having to do with ‘positivity’ of operators. See also [10] section 9. Using this
theory one easily sees s(e) /∈ HI ⇒ q(Pr(e)) 6= 0.
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• r−1(v) 6= ∅ and {s(e); r(e) = v} ⊂ HI , then v ∈ HI (HI is saturated).

Proof.

• Let w ∈ HI and µ a path with s(µ) = v and r(µ) = w. We will proof that
if r(µ1) = w then s(µ1) ∈ HI from which follows that v ∈ HI (we can
repeat the argument to show s(µ2) ∈ HI , s(µ3) ∈ HI etc up to v).
Pw ∈ I which means PwSµ1 ∈ I because of the fact that Pw is an ideal.
This means PwSµ1 = Pr(µ1)Sµ1 = Sµ1 ∈ I.

• Let v ∈ E0 such that r−1(v) 6= ∅ and {s(e); r(e) = v} ⊂ HI . Since for
every e with r(e) = v we know Se = SePs(e) ∈ I, Pv =

∑
e;r(e)=v

SeS
∗
e ∈ I.

In fact, for graphs without cycles we can formulate the opposite of theorem
40.

Theorem 41. For a graph E, if H ⊆ E0 is both hereditary and saturated and
E has no cycles, then H determines an ideal I.

We start with defining an equivalence relation on C∗(S, P ). Let IH be the
C-linear combination of {Pv; v ∈ H} then a ∼ b iff there is an i ∈ IH such that
a + i = b. The map q : C∗(S, P ) → C∗(S, P )/ ∼ is the canonical projection
map with ker(q) = IH .
Our goal will to prove that if HI is hereditary and saturated C∗(S, P )/ ∼ is a
C∗-algebra in its own right. This means that the map q is a proper morphism
of which IH is the kernel, from which we will infer that IH is an ideal in C∗(S, P ).

Proof. (of theorem 41)
From the construction of the quotient map we see that q is surjective. So if we
can prove that q is a morphism then according to theorem 10.4 in [10] we can
conclude C∗(S, P )/ ∼ is a C∗-algebra. q(a∗) = {b ∈ C∗(S, P );∃i ∈ IH b =
a∗ + i}. IH is closed under involution, so q(a∗) = {b∗ ∈ C∗(S, P );∃i ∈ IH b =
a + i} = q(a)∗.

q(a1)q(a2) = {b1 · b2 ∈ C∗(S, P );∃i1, i2 ∈ IH ; a1 = b1 + i1, a2 = b2 + i2}
q(a1a2) = {b ∈ C∗(S, P );∃i ∈ IH ; a1 · a2 = i + b}

If b1b2 ∈ q(a1)q(a2) then b1b2 ∈ q(a1a2) only if a1a2 = b1b2 + i1b2 +b1i2 + i1i2 =
b1b2 + i for some i ∈ IH .
Assume Pv ∈ HI . Since multiplication on a C∗-algebra is continuous in every
argument we have:

Pvb2 = Pv ·
( ∞∑

n=1

SµnS∗νn

)
=

∞∑
n=1

Pv · SµnS∗νn
.
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Assume Sµn is a projection. Then either PvSµn = Pv or zero. In the first
case, examine PvS∗νn

. If again S∗νn
is a projection then PvSµn

S∗νn
∈ IH . Oth-

erwise, PvS∗νn
= Pr(e)SeS

∗
νn

for every e with r(e) = v. If this is non-zero, then
s(e) = s(νn).

We will show first that IH = span{SαS∗β ; s(α) = s(β) ∈ H} is an algebraic
ideal in C∗(S, P ).
Let Sα ∈ IH . The multiplication in any C∗-algebra is continuous in both argu-
ments. So if a ∈ C∗(S, P ) is of the form as derived in theorem ?? then:

SαS∗β · a = SαS∗β ·
( ∞∑

n=1

SµnS∗νn

)
=

∞∑
n=1

SαS∗βSµnS∗νn

Which motivates us to study multiplication of generators of IH with those of
C∗(S, P ).
Assume SαSµ 6= 0 for Sα ∈ IH . Then s(α) = r(µ). Which means v ≤ s(µ)
implying Sµ ∈ IH because H is hereditary.
If SαS∗ν 6= 0 then s(α) = s(µ). If ν lies in H then we are finished. Otherwise,
take the largest i such that either r(νi) or s(νi) /∈ H. Saturation now implies
that if r(νi) /∈ H then s(νi) /∈ H. If SαS∗βSµS∗ν 6= 0 then either there is a path
β′ with β = µβ′ or µ′ with µ = βµ′.
In the first case we see that β ≤ β′. Because H is hereditary, β′ is a path in H
and SαS∗β′ ∈ IH . We now answer the question is whether or not SνSβ′ ∈ IH . If
ν is a path in H we are done. Otherwise, choose the smallest i such that either
s(νi) /∈ H or r(νi) /∈ H. Because H is saturated, if s(νi) /∈ H then r(νi) /∈ H.
Using this result:

SνSβ′ = Sν1 · · ·Sνi−1Sνi · · ·Sβ′ = Sν1 · · ·Sνi−1Ps(νi−1)Pr(νi)Sνi · · ·Sβ′

Ps(νi−1) ∈ IH and definitely Pr(νi) /∈ IH . So this expression is zero, which yields
a contradiction. Following the reasoning all back from where we started we
conclude:
SαS∗βSµS∗ν ∈ IH if there is some β′ with β = µβ′.
The case in which there is some µ′ with µ = βµ′ yields the same result, which
proves IH is an algebraic right ideal. The proof that IH is an algebraic left ideal
is similar.

Furthermore we claim that if I ∈ IH is approximated by a number of ele-
ments In ∈ IH then (again due to the continuity of multiplication):

n∑

i=1

Ii

∞∑

k=1

Sµk
S∗νk

=
∞∑

k=1

n∑

i=1

IiSµk
S∗νk

⇒
∞∑

i=1

Ii

∞∑

k=1

Sµk
S∗νk

=
∞∑

i,k=1

IiSµk
S∗νk

∈ I.

Same for left multiplication, so I is ideal.
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Final remark: As elaborated on in chapter 4 of [14], one can formulate a
general theorem of which we shall briefly state the results. If every cycle in a
graph E has a return path then there is a bijection I ↔ H of closed, two sided
ideals and hereditary and saturated subsets. As in 39, C∗(E/H) ∼= C∗(E)/I
and C∗(H) ∼= pHIpH for the formal sum of projections in H which satisfies
pHSµS∗ν = SµS∗ν if r(µ) ∈ H and zero otherwise.
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6 The K-theory of graph algebras

The K-groups of a graph algebra have a particular elegant form for they can
be calculated solely using the properties of the underlying graph. The classical
result of Raeburn in [14] chapter 7 is restricted to the use of graphs without
sources, we here quote a more general theorem found in [18], proposition 2,
which applies to graphs with sources and a countable amount of vertices:

Theorem 42. For a directed graph E let VE be the collection of all the vertices
which receive at least one edge but only finitely many. Let ZVE and ZE0 be the
free abelian groups on free generators VE and E0. Define ∆E : ZVE → ZE0 on
generators as follows:

∆E(v) =
∑

e∈E1;r(e)=v

s(e)− v.

Then K0(C∗(E)) ∼= coker(∆E) and K1(C∗(E)) ∼= ker(∆E).

Notice that this formula extends to graphs with a countable number of ver-
tices, not necessarily finite.

Example 43 (Matrix algebras).

A familiar example of a graph with a source is M2(C). VE consists of one
vertex only and E0 of two. So in terms of the generator (1) of ZVE on one side

and the generators
(

1
0

)
and

(
0
1

)
we have:

∆E((1)) =
(

0
1

)
−

(
1
0

)
.

Such that K0(M2(C) = coker(∆E) = Z2/Z = Z and K1(M2(C)) = ker(∆E) =
0, a familiar result. Using the representation of Mn(C) in (3) we can extend our
result to any matrix algebra. We have exactly n− 1 vertices receiving one edge,
from the vertex to the left of it, and one source. So ∆E is a n × n − 1 matrix
defined on the generators of Zn−1 as:

∆Eei = ei−1 − ei ⇒ ∆E =




1 0 · · · 0
−1 1 · · · 0
...

...
. . . 0

0 0 · · · −1


 ⇒

∆E




k1

k2

...
kn−1


 =




k1

k2 − k1

k3 − k2

...
kn−1 − kn−2




So the range of ∆E is Zn−1, hence K0(Mn(C)) = Z and the kernel of ∆E = 0.
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Example 44 (SUq(2)).

This is now very easy! We do not have to bother with sources or sinks since
the graph contains none. ∆E is defined by the following relations:

∆E

(
1
0

)
=

(
1
0

)
−

(
1
0

)
& ∆E

(
0
1

)
=

(
1
0

)
+

(
0
1

)
−

(
0
1

)
⇒

∆E =
(

0 0
0 1

)
.

So K0(SUq(2)) = K1(SUq(2)) = Z.

In the paper [3], D. Evans has extended the calculating of K-theory to higher
rank graph algebras without sources. We quote the central result:

Theorem 45 (K-theory of higher rank graph algebras). Let E×F be the direct
product of two 1-graphs forming a 2-graph without sources. They define the C∗-
algebra C∗(Λ). Let ∆E and ∆F be the maps defined by 42 on E, respectively F .
Then:

K0(C∗(Λ)) = coker(∆E , ∆F )⊕ ker
( −∆F

∆E

)
(10)

K1(C∗(Λ)) = ker(∆E , ∆F )/im
( −∆F

∆E

)
. (11)

Where we view (∆E , ∆F ) : ZΛ0 ⊕ ZΛ0 → ZΛ0 and
( −∆F

∆E

)
: ZΛ0 → ZΛ0 ⊕

ZΛ0 as group morphisms on resp. ZΛ0 and ZΛ0 ⊕ ZΛ0, the 1-skeleton of the
graph.

Example 46 (Aθ).

Let us define E as the graph of (4) and F as (5) then C∗(E×F ⊕E×F ) =
C∗(E × F )⊕ C∗(E × F ) ∼= Aθ (see proposition 26) and:

∆E =




1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
...

...
...

...
. . .




, ∆F =




1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .




.

We should evaluate these maps on the free generators of ZΛ0, which implies
that we should evaluate the formulas for all k ∈ ZN with a finite number of
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non-zero terms. We have

∆E




k1

k2

k3

...
kn

0
...




=




k1

k2 − k1

k3 − k2

...
kn − kn−1

−kn

0
...




as element of ZN with at the right-hand side n + 1 non-zero terms. This means:

(∆E ,∆F )







k1

...
kn

0
...




,




n1

...
nn

0
...







=




k1 + n1

k2 − k1 + n2

k3 − k2 + n3

...
kn − kn+1 + nn

−kn

0
...




( −∆F

∆E

)




k1

k2

...
kn

0
...




=







k1

k2

...
kn

0
...




,




−k1

−k2 + k1

−k3 + k2

...
−kn + kn−1

kn

0
...







.

From these expressions we can read that coker(∆E , ∆F ) = Zn+1/Zn = Z and

ker
( −∆F

∆E

)
= 0. Therefore, K0(Aθ) = K0(C∗(E) × C∗(F )) ⊕K0(C∗(E) ×

C∗(F )) = Z⊕ Z.

Lastly, ker(∆E , ∆F ) = Z2n while im
( −∆F

∆E

)
is only Z2n−1; therefore K0(Aθ) =

Z2n/Z2n−1 ⊕ Z2n/Z2n−1 = Z⊕ Z.

For C∗-algebras there are many equivalences which lead to the same K-
groups. For instance homotopy equivalence and the excision property. Also, a
very natural one is Morita-equivalence. It would be a nice endeavor to explore
what the conditions on a graph would be to create equivalent graph algebras.
The interested reader is referred to Bates and Pask for their paper [1] to see
some results.
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