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A B S T R A C T

One of the prime achievements of noncommutative geometry (NCG), a
branch of mathematics, is its application to (particle) physics. We delve into
the application of NCG to supersymmetry, which has received relatively little
attention so far. The results are twofold. First, we present a noncommutative
approach to the supersymmetric version of the Einstein-Yang-Mills system.
Second, we make some first efforts towards a description of the Minimal
Supersymmetric Standard Model (MSSM) by deriving super-QCD, the su-
persymmetric extension of the theory of quarks and gluons.
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1I N T R O D U C T I O N

This thesis is the result of my Master’s research in the field of Theoretical
High Energy Physics, that I have been conducting under the supervision
of Dr. W. van Suijlekom from summer ’08 to August ’09. It deals with the
noncommutative approach to supersymmetry. Noncommutative geometry
(NCG) is a vast and modern field of mathematics in which many notions
from other mathematical branches meet. In a nutshell, NCG is about extends
the correspondence between commutative algebras and spaces to algebras
whose elements do not commute, corresponding to some virtual noncom-
muting space. In the past decades it became clear that noncommutative
geometry is well suited for physical applications.

Indeed, by now one of the prime successes of noncommutative geometry
from a physical point of view is that it provides an alternative, geometrical,
interpretation of the Standard Model (SM). This Standard Model is a theory
that describes nature at the smallest scales accessible to man. It does so in
terms of elementary particles and their interactions. The accuracy of the SM
is astonishing and its predictions got (and get) confirmed in experiments time
and time again .1 For theoretical reasons, however, it is widely recognized
that at certain energies beyond those currently available in experiments the
predictions made by the Standard Model should become less and less accu-
rate. Its validity has to ’break down’ at some point.

This is where supersymmetry (SUSY) comes into play. Supersymmetry de-
scribes a certain symmetry between the two types of elementary particles;
fermions and bosons. That is, it states that for each fermion appearing in a
certain theory there should be a boson that is somehow associated to it. In
such a case we call these particles each others superpartners. A particularly
important example of a supersymmetric theory is the Minimal Supersymmet-
ric Standard Model (MSSM) which states that for every particle that appears
in the Standard Model, there should be a —yet unobserved— superpartner.2

The MSSM is regarded by many as being a promising candidate for accu-
rately describing nature ’beyond the Standard Model’.

The subject of this thesis is to make first efforts to see to what extent noncom-
mutative geometry is capable of giving an alternative description not only
for the SM, but for the MSSM as well.

This thesis is divided into several parts. The first is dedicated to set the
stage for a number of mathematical notions and concepts (not necessarily
typical for noncommutative geometry) that will be needed in the rest of this
thesis. I cannot emphasize enough that is not meant as —and by far is—
an exhausting coverage of noncommutative geometry; in general, we only
introduce here what will be needed later on. Due to the nature of this part,
it will unfortunately be rather prosaic; it mainly contains definitions and
examples.

1 All particles predicted by the SM have indeed been detected in particle accelerators. Except for
one; the infamous Higgs boson.

2 This characterization is not completely right, but it is more or less.
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What follows is the actual core of this thesis; the application of noncommuta-
tive geometry to supersymmetric field theory. In Part II (Chapters 9 to 11) we
consider the Einstein-Yang-Mills model. Using a vocabulary that is (partly)
typical for noncommutative geometry, we investigate to what extent this
model exhibits supersymmetry.

In Part III we set our first steps on MSSM-grounds: we consider a simplifica-
tion of the SM by discarding most of its particles and try to ’supersymmetrize’
what is left using noncommutative geometry.

In both Part II as III there is a chapter that serves as an interlude; Chapter 9
provides a very sketchy introduction to supersymmetry, whereas Chapter
12 can be regarded as a brief introduction to the Standard Model, but in the
approach of noncommutative geometry. Even if your are a physicist that is
(very) familiar with the Standard Model, I can advice you to have a look at it.
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Part I

P R E L I M I N A R I E S





2( C ∗ - ) A L G E B R A S & M O D U L E S

The concepts that appear in this chapter were already widely used before the
advent NCG and are consequently certainly not unique for NCG. Despite
that, they may be considered as being part of the toolbox of noncommuta-
tive geometry. We will briefly discuss what a C∗-algebra is and give some
examples. After that, C∗-modules are introduced. At the end of the chapter
the notion of Morita equivalence will be mentioned.

2.1 ( C∗ - ) A L G E B R A S

. Definition 2.1 [(Unital) algebra]. An (associative) algebraA is a vector space
over some field F (in general R or C), equipped with a product A×A → A that
obeys

(ab)c = a(bc) (associativity)

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc (linearity 1)

f(ab) = (fa)b = a(fb) (linearity 2)

for all a, b, c ∈ A, f ∈ F . In general, an algebra need not have a unit 1 ∈ A obeying
1a = a1 = a ∀ a ∈ A. If is does though, the algebra is called unital.

Just as for a vector spaces, we can define on a algebras something called a
norm:

. Definition 2.2 [Norm]. A norm is a map ‖.‖ : A → F that obeys

‖a+ b‖ ≤ ‖a‖+ ‖b‖ (triangle inequality)

‖fa‖ = |f |‖a‖
‖a‖ ≥ 0 and ‖a‖ = 0 ⇔ a = 0

for all a, b ∈ A, f ∈ F . Here |.| : F → R is a norm on F .

. Definition 2.3 [Involution, involutive algebra]. An involution on an alge-
bra A over a field F is a map ∗ : A → A (that sends a→ a∗), such that

(ab)∗ = b∗a∗,

(a+ b)∗ = a∗ + b∗,

(a∗)∗ = a,

(fa)∗ = f̄a∗.

for all a, b ∈ A, f ∈ F . We call an algebra on which an involution is defined an
involutive algebra.

. Definition 2.4 [Banach algebra]. Let A be an associative algebra over the real
or complex numbers that is equipped with a norm and that is complete with respect
to that norm. If additionally we have

‖ab‖ ≤ ‖a‖‖b‖ ∀ a, b ∈ A,

we call A a Banach algebra.
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So the definition of a Banach algebra combines the notions ‘algebra’ and
‘norm’. In the same sense we can introduce an involution and call what we
end up with a C∗-algebra:
. Definition 2.5 [C∗-algebra]. A C∗-algebra is a Banach algebra A equipped
with an involution that obeys

‖a∗a‖ = ‖a‖2 ∀ a ∈ A. (2.1)

Equation 2.1 is known as the C∗-identity.
Note that from being a Banach algebra it follows that ‖aa∗‖ = ‖a‖2 as well,
since

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖ ⇒ ‖a‖ ≤ ‖a∗‖.

By replacing a with a∗ we similarly have that ‖a∗‖ ≤ ‖a‖ and consequently
‖a∗‖ = ‖a‖ for any a ∈ A. Combining this with the C∗-identity yields

‖aa∗‖ = ‖(a∗a)∗‖ = ‖a∗a‖ = ‖a‖2.
We will give one of the most elementary examples of a C∗-algebra.

. Example 2.6. is the algebra MN (C) of N × N matrices with complex co-
efficients, regarded as operators on CN . If we define a norm on MN (C) by

‖T‖ := min{c : ‖Tz‖ ≤ c‖z‖ ∀ z ∈ CN‖,

and let T ∗ be T after transposing and complex conjugation of its entries, it is
seen that MN (C) is indeed a C∗-algebra.

Another example —and one that will play an important role— is the follow-
ing.

. Example 2.7. Let X be a compact Hausdorff space and let C(X,C) (or just
C(X) for short) be the space of continuous functions from X to C. This is not
only a vector space over C; we can turn this into an algebra as well by defining a
product fg by

(fg)(x) := f(x)g(x) ∀ x ∈ X. (2.2)

In addition, we can make it an involutive algebra by defining

C(X) 3 f → f∗ ∈ C(X), f∗(x) := f(x) ∀x ∈ X. (2.3)

Here the symbol z simply indicates the complex conjugate of z ∈ C. Now we add
to this data a norm (the so called sup-norm) given by

‖f‖ := sup
x∈X

|f(x)|. (2.4)

This can be seen to be a Banach algebra1:

‖fg‖ = sup
x∈X

|(fg)(x)| = sup
x∈X

|f(x)||g(x)|

≤ sup
x∈X

|f(x)| sup
x∈X

|g(x)| = ‖f‖‖g‖.

In addition, it satisfies the C∗-identity (2.1) as well:

‖f∗f‖ = sup
x∈M

|f(x)f(x)| = sup
x∈M

|f(x)f(x)| = ‖f2‖.

1 The proof of completeness uses topology; we will omit it here but refer to [16, §2.7] instead.
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We combine the above two examples.

. Example 2.8. Let C(X,MN (C)) be the space of matrix-valued functions.
A product and involution are given by

(fg)(x) := f(x)g(x) ∀x ∈ X,

and

f∗(x) := f(x)∗.

That this is also a C∗-algebra follows from the previous examples.

For future use we can define a concept closely related to an algeba:
. Definition 2.9 [Opposite algebra]. Suppose A is an algebra over a field F .
We can construct the opposite algebra Ao of A as follows; take

Ao := {ao, a ∈ A}, (2.5)

with addition and scalar multiplication the same as in the case of A: (a + b)o =
ao + bo, (λa)o = λao ∀a, b ∈ A, λ ∈ F . The thing that makes Ao different from A
is the multiplication:

(ba)o := aobo.

2.2 M O D U L E S

Another important concept that has a central role in what follows is that of
a module.2 It can be regarded as a generalization of the notion of a vector
space in the sense that the latter is defined over a field whereas the first can
be defined over any ring.
. Definition 2.10 [Module]. Let A be an algebra over a field F . A right module
E is a vector space over F that allows for a right action E × A → E , (η, a) → (ηa)
that fulfills

η(ab) = (ηa)b, (2.6a)

η(a+ b) = ηa+ ηb, (2.6b)

(η + ζ)a = ηa+ ζa (2.6c)

for all η, ζ ∈ E and a, b ∈ A.
N.B. As said above, modules are in principle defined in terms of rings. Rings
and algebras are related however, which enables us to extend the definition
of a module in terms of an algebra by additionally requiring that it is a vector
space as well.

We can just as easily define a left module when it has a left action (η, a) → aη.
In addition we can define a bimodule if, for two algebras A and B, there is a
mutually commuting left-A and right-B action:

(aη)b = a(ηb) ∀a ∈ A, b ∈ B and η ∈ E . (2.7)

Needless to say, the properties (2.6a) to (2.6c) defining the module vary
slightly in those cases.

The swarm of left/right/bimodules can sometimes be confusing. In cases
where confusion may possibly occur we write AEB for a left-A right-B bi-
module.

2 For a good treatment [1] is recommended.
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. Example 2.11. Note that any (associative) algebra A is a module over itself,
by using the multiplication on A; just compare the Definitions 2.1 of an algebra
to Definition 2.10 of a module.

Let us expand the previous example a bit:

. Example 2.12. Define An := A×A× . . .×A (n times). Elements of this
space are then n-tuples with entries in A: {(a1, a2, . . . , an) | a1, . . . an ∈ A}.
We make An a A-bimodule by defining

a(a1, a2, . . . , an) := (aa1, aa2, . . . , aan),

(a1, a2, . . . , an)a := (a1a, a2a, . . . , ana).

The properties (2.6a) to (2.6c) are then easily verified.

If A is an algebr over C, we can identify this space with Cn ⊗C A by

An 3 {a1, . . . an} ↔
∑

i

ei ⊗ ai ∈ Cn ⊗C A.

Here ei is the i’th (canonical) basis vector of Cn.

. Example 2.13. Let X be a compact space. We denote by Γ(X,S) the space
of spinor-valued functions; for any ψ ∈ Γ(X,S) we write ψ(x) ∈ Sx, where
Sx is a complex, finite-dimensional vector space. Γ(X,S) is seen to be a left
C(X)-module by the definition

(fψ)(x) := f(x)ψ(x) ∈ Sx ∀f ∈ C(M), ψ ∈ Γ(X,S). (2.8)

From the compactness of X we infer that elements of C(X) act as bounded
multiplication operators on Γ(X,S).

Related to the concept of a module is that of a contragredient module.

. Definition 2.14 [Contragredient module]. Let A and B be two involutive
algebras and let E be a left-A right-B bimodule. We define the contragredient
module Eo of E as the space

Eo := {η, η ∈ E}. (2.9)

It has left-B right-A action, inherited from E :

b η a := a∗ηb∗, (2.10)

and is thus a right-A left-B bimodule.

N.B. Equivalently this makes Eo a left-Ao right-Bo bimodule, where Ao and
Bo are the opposite algebras of A and B respectively (see Definition 2.9); if,
for ao ∈ Ao and η ∈ Eo, we define aoη := a∗η, we easily see that

ao
1a

o
2η = a∗1a

∗
2η = (a2a1)∗η = (a2a1)oη, (2.11)

in correspondence with the product structure onAo. The case for B is similar,
Eo becoming a left-Ao right-Bo bimodule.

8



. Definition 2.15 [Endomorphisms of a module]. For a right A-module E we
let

EndA(E) := {φ : E → E : φ(ηa) = φ(η)a, φ(η1 + η2) = φ(η1) + φ(η2)

∀ a ∈ A, η, η1, η2 ∈ E} (2.12)

be theA-linear endomorphisms of E . This can be given the structure of an algebra,
with the product given by composition.

Given an algebra A and modules EA and AF , we can construct a tensor
product over A of E and F , denoted by E ⊗A F .3 For such a tensor product
we have the relations

(η + ζ)⊗A ξ = η ⊗A ξ + ζ ⊗A ξ
η ⊗A (ξ + χ) = η ⊗A ξ + η ⊗A χ

ηa⊗A ξ = η ⊗A aξ ∀a ∈ A, η, ζ ∈ E , ξ, χ ∈ F .

In cases where it is obvious that we take the tensor product over an algebra
instead of over a field, we may drop the reference to the algebra in the
notation.

2.3 I N N E R P R O D U C T S & N O R M S O N M O D U L E S

The definitions and examples merely had preparatory purposes: just as we
enriched algebras with extra structures to yield C∗-algebras, we can make
the transition from ordinary modules to something called C∗-modules.

. Definition 2.16 [Pre-C∗-module, Hermitian pairing]. Suppose A is a C∗-
algebra over C and suppose E is a right-A module. We call E a pre-C∗-module if
we define a pairing (., .) : E × E → A, that behaves nicely with the vector space
structure:

(η, z1ζ + z2ξ) = z1(η, ζ) + z2(η, ξ) ∀z1, z2 ∈ C (2.13)

and on top of that satisfies

(η, ζa+ ξb) = (η, ζ)a+ (η, ξ)b,

(η, ζ)∗ = (ζ, η),

(η, η) ≥ 0, (η, η) = 0 ⇔ η = 0 ∀a, b ∈ A, η, ζ, ξ ∈ E . (2.14)

We will generally refer to a pairing as above as a (A-valued) Hermitian pairing.

If on EA such a pairing (., .) is defined, the contragredient module AEo natu-
rally carries a pairing (., .)′ as well, by (η, ζ)′ := (η, ζ).

Now if you would want to derive a norm from the pairing as just mentioned,
you run into trouble: since it takes values in A instead of in C, a norm like
‖η‖ :=

√
(η, η) will not work since the square root of an element in A is in

general not defined. We can however, take

‖.‖E : E → R with ‖η‖E :=
√
‖(η, η)‖)A, (2.15)

where the second norm is that on A. This norm is seen to satisfy all the
requirements that have been laid out in Definition 2.2.

3 We will not delve into the precise construction of a tensor product over an algebra, but mention
that it is not too different from the construction of a tensor product over a field and refer for
further information to [1, § 19].
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. Definition 2.17. If a pre-C∗-module E is complete in the norm defined by (2.15),
we call it a C∗-module.

. Example 2.18. If we look at Examples 2.11 and 2.12 —but now with A a
C∗-algebra— we can define in a simple manner an A-valued Hermitian pairing
on A and An by

(a, b) := a∗b ∀ a, b ∈ A

and

( (a1, . . . an), (b1, . . . , bn) ) :=
n∑

i=1

a∗i bi ∀ ai, bi ∈ A

respectively. That these definitions obey the properties of Definition 2.16 is easy
to check.

. Example 2.19. The C(X)-module of spinor-valued functions Γ(X,S) (see
Example 2.13) can be furnished with a Hermitian pairing

(., .) : Γ(S)× Γ(S) → C(X), (2.16)

by setting

(ψ, χ)(x) := 〈ψ(x), χ(x)〉, (2.17)

where with 〈., .〉 : Sx × Sx → C the complex inner product on the spinor
representation is meant.

Given a C∗-module EA with Hermitian pairing (., .), we can form the set of
operators

|η〉〈ζ| : E → E |η〉〈ζ|(ξ) := η(ζ, ξ). (2.18)

Since for each a ∈ A, |η〉〈ζ|(ξa) = η(ζ, ξ)a = |η〉〈ζ|(ξ)a so that all operators
of this form are elements of EndA(E) (see Definition 2.15), their composition
being of the form

|η〉〈ζ|◦|ξ〉〈χ| = |η(ζ, ξ)〉〈χ| ∀ η.ζ, ξ, χ ∈ E .

Furthermore we can give an adjoint of each of these operators with respect
to the pairing (., .), that is

(η, |ζ〉〈ξ|χ) = (η, ζ)(ξ, χ) = (ξ(ζ, η), χ) = (|ξ〉〈ζ|η, χ) ∀ η, χ ∈ E ,

i.e. |ζ〉〈ξ|∗ = |ξ〉〈ζ|. All finite sums of this kind of terms form an algebra,
which we denote by End0

A(E).4

2.4 M O R I TA E Q U I VA L E N C E

Morita equivalence is a relation between two rings (and therefore algebras).
Though it is a weaker relation than isomorphism, many of the properties of
an object are preserved under Morita equivalence.

For the existence of a Morita equivalence of two C∗-algebras, two definitions
can be given.

4 Actually, we take its closure with respect to the norm derived from (., .).
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. Definition 2.20 [Morita equivalence 1]. Two C∗-algebras A and B are said
to be Morita equivalent if there exist C∗ bimodules AEB and BFA such that

E ⊗B F ' A F ⊗A E ' B (2.19)

. Definition 2.21 [Morita equivalence 2]. A and B are Morita equivalent if
there exist a full right A module5 E such that

End0
A(E) ' B, (2.20)

where End0
A(E) as defined in the previous section.

That these definitions are in fact equivalent is seen for example in [14,
Thm. 4.26].

. Lemma 2.22. Any C∗-algebra A is Morita equivalent to itself.

Proof. If we take the first definition withA = B, we immediately see that this
is true with E = F = A. 2

This fact will prove to be of great interest of use, as we will see in Section 6.

5 In this context full means that the closure of (E, E) := span{(η, ζ) : η, ζ ∈ E} must be equal to E .
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3A S P E C T S O F D I F F E R E N T I A L G E O M E T RY

The purpose of this chapter is mainly to prepare for the next one, in which
many of the ideas and concepts introduced here, will be used. Differential
geometry is branch of mathematics that deals with (topological) spaces that
are not Rn for some n, but ’locally’ look like it. We introduce the notion of a
manifold and its tangent and cotangent spaces. From there on, we will work
towards the definition of the scalar curvature of a manifold, introducing the
concepts of vector fields, covector fields, connections and metrics.

3.1 M A N I F O L D S

. Definition 3.1 [Manifold]. LetM be a Hausdorff space. We callM a manifold
if there exists an atlas, i.e. a family of charts {(Ui, φi)}, where Ui ⊂ M with⋃

i Ui = M and φi : Ui → Rn a homeomorphism such that for each two Ui, Uj

with Ui ∩ Uj 6= ∅ the transition map φi ◦ φ−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) is

smooth. Such a manifold is said to be of dimension n.
Intuitively this says that if we can find a set of patches Ui, each of which is
isomorphic to a subset of Rn for some fixed n, where all of these patches
together totally cover M , then we call M a manifold. We say M is locally
isomorphic to Rn. In general the term local is sometimes used if we have a
description in terms of some explicitly chosen chart. Often we will —for
obvious reasons— denote a chart by {(Ui, xi)}.

. Example 3.2. A simple, though instructive example of a manifold is the two-
sphere with radius 1:

S2 := {(x1, x2, x3) | x2
1 + x2

2 + x2
3 = 1}.

We can describe this space with an atlas consisting of two charts, U1 and U2.
They are given by

U1 := S2 − {(1, 0, 0)} U2 := S2 − {(−1, 0, 0)}

If we define maps φ1,2 : U1,2 → R2 by

φ1(x1, x2, x3) =
(x2, x3)
1 + x1

, φS(x1, x2, x3) =
(x2, x3)
1− x1

.

Because of the specific signs in the numerator, these maps are well defined. We
see that U1 ∪ U2 = S2 and that φ−1

1 is given by

φ−1
1 (y1, y2) =

(
1− y2

1 − y2
2

1 + y2
1 + y2

2

,
2y1

1 + y2
1 + y2

2

,
2y2

1 + y2
1 + y2

2

)
.

Now U1 ∩ U2 = S − {(1, 0, 0), (−1, 0, 0)} so that for one of the two transition
functions

φ21 := φ2 ◦φ
−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

we have

φ21(y1, y2) =
(

y1
y2
1 + y2

2

,
y2

y2
1 + y2

2

)
,

which is indeed an infinitely differentiable nowhere vanishing function. For the
transition function φ12 we have a similar result, from which we may conclude
that S2 is a manifold, locally isomorphic to R2.
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3.2 TA N G E N T & C O TA N G E N T S PA C E S

With a curve we mean a continuous map γ : I →M from some real interval
I , sweeping out a path in M . We denote the variable that runs through I

with t.

We can take two such curves γ1, γ2, with respective intervals I1, I2. If these
curves have the same value p at some point s ∈ I1 ∪ I2, i.e. γ1(s) = γ2(s) = p,
and if for some φi, belonging to a Ui in which the curves γ1(t1) and γ2(t2)
are contained for all t1 ∈ I1 and t2 ∈ I2, we have

d
dt
φi ◦γ1(t)

∣∣∣
t=s

=
d
dt
φi ◦γ2(t)

∣∣∣
t=s

,

(i.e. the derivatives of these two curves at the point s coincide), we say that
these curves are tangent at the point s. Now ‘being tangent’ is equivalence
relation and we can consider the equivalence classes of such tangent curves.
We denote the representative —the ’tangent vector’— of an equivalence class
containing γ by γ′(s).

Without loss of generality, we can suppose s = 0 from here on.

Figure 3.1: A set of tangent curves at a point
p ∈ M . The representative of their
equivalence class is depicted with an
arrow.

We can then use such a tangent vector γ′(0) to define a smooth derivation
v : C∞(M) → R. We define v by its action on any smooth function f ∈
C∞(M,R) as

v(f) :=
d
dt
f ◦γ(t)

∣∣∣
t=0

. (3.1)

By using the properties of C∞(M,R) —that are derived from Example 2.7—
it is easily checked that such a v satisfies

v(f + g) = v(f) + v(g) ∀ f, g ∈ C∞(M,R) (3.2a)

v(λf) = λv(f) ∀ λ ∈ R (3.2b)

v(fg) = f(p)v(g) + v(f)g(p) ∀ f, g ∈ C∞(M,R), (3.2c)

(where p = γ(0)), i.e. v is indeed a derivation.

In fact, we can turn the above properties into a definition:

14



. Definition 3.3 [Tangent vector]. A tangent vector is a map v : C∞(M) → R
that satisfies (3.2a) to (3.2c).

Now as we have seen above, there may be many inequivalent tangent vectors
at one point. For their collection, we have:

. Definition 3.4 [Tangent space]. The tangent space TpM is the space consist-
ing of the equivalence classes of curves tangent to M at p.

This tangent space can be given the structure of a vector space, in the follow-
ing way. As we have seen above, a tangent vector γ′(0) defines a derivation.
Suppose we have two such —inequivalent— tangent vectors, γ′1(0) and γ′2(0)
giving rise to derivations v1 and v2. We can define

(v1 + v2)(f) := v1(f) + v2(f) ∀ v1, v2 ∈ TxM

(λv)(f) := λv(f) ∀ λ ∈ R.

It is then seen that these definitions indeed define a vector space structure.

Figure 3.2: The two-sphere S2, with one of its tangent
spaces TxS2.

The fact that TpM is a vector space is nice, but for future calculations it is
convenient to know a basis of the tangent space. We can construct one as
follows: for a chart {(U, x)} and p ∈ U we define ∂

∂xi

∣∣
p

by

∂

∂xi

∣∣∣∣
p

(f) := Di(f ◦x−1)
∣∣∣∣
x(p)

. (3.3)

for each f ∈ C∞(M,R). Here, Di is just the i-th derivative of a map from Rn

to R. Looking at definition 3.3, one can see that this map is indeed a vector
tangent to p.

. Proposition 3.5 [A basis of TpM ]. If (U, x) is a n-dimensional chart of M and
p ∈ U , then{

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}
(3.4)

is a basis for TpM .

Proof. See [28], Theorem 3.3. 2
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The above Proposition implies that in this notation any tangent vector X is
written as X = Xi

p
∂

∂xi |p, where Xi
p ∈ R for any of the i’s.

Instead of talking about tangent spaces, defined with respect to one point of
the manifold, we can also prefer a more ’global’ description. We define

TM :=
∐

x∈M

TxM, (3.5)

where
∐

denotes the disjoint union of all spaces TxM . We call a smooth
function that maps each point p of M to a tangent vector in TpM , a vector
field. We denote the space of such functions by Γ∞(M,TM) or Γ∞(TM). It is
a C∞(M)-module. Its elements are of the form X = Xi∂i, Xi ∈ C∞(M).
We connect this notation to the ’pointwise’ case by setting X(p) := Xi

p
∂

∂xi

∣∣
p
.

Closely related to the tangent space is the cotangent space:

. Definition 3.6 [Cotangent space]. The cotangent space T ∗pM for some point
p ∈M is defined as the dual of the tangent space:

T ∗pM := Hom(TpM,R)

Any f ∈ C∞(M,R) defines a cotangent vector df |p at p by

df(v) := v(f) (3.6)

This means in particular that if { ∂
∂xi

∣∣
p
, i = 1, . . . , n} is a basis for TpM , we

can define a basis {dxi
∣∣
p
, i = 1, . . . , n} for T ∗pM which is fixed by

dxi
∣∣
p

(
∂

∂xj

∣∣∣∣
p

)
=

∂

∂xj

∣∣∣∣
p

xi = Dj(xi ◦x−1)
∣∣∣∣
x(p)

(3.7)

i.e. dxi
∣∣
p

(
∂

∂xj

∣∣
x(p)

)
= δi

j .

As for tangent vectors we can pick a more ’global’ approach to cotangent
vectors, by defining the C∞(M)-module of cotangent vector fields or covector
fields Γ(M,T ∗M).

3.3 D I FF E R E N T I A L F O R M S & C O N N E C T I O N S

In the previous section we saw that a map f ∈ C∞(M) defined a covector
field df by (df)(X) := X(f) for all X ∈ Γ(M,TM). We can generalize this.
For α, β covector fields, define α ∧ β : Γ∞(TM)× Γ∞(TM) → C∞(M) by

α ∧ β(X,Y ) = α(X)β(Y )− α(Y )β(X).

This satisfies

α1 ∧ (α2 + α3) = α1 ∧ α2 + α1 ∧ α3,

α1 ∧ α2 = −α2 ∧ α1. (3.8)

We can take linear combinations of such element and denote the resulting
C∞(M)-module by Ω2(C∞(M)).
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Of course we can generalize this to maps Γ(TM)× ...× Γ(TM) → C∞(M)
(with k products). We write Ωk(M) for the space of all such differential k-forms.
With respect to a coordinate system {dx1, . . . ,dxn} we write

Ωk(C∞(M)) := span{fi1,...ik
dxi1 ∧ · · · ∧ dxik : fi1,...ik

∈ C∞(M)}
(3.9)

where i1 < . . . < ik. Note that Ωk(C∞(M)) = 0 for k > n because of the
antisymmetry property (3.8).

The direct sum of all spaces

Ω(C∞(M)) :=
⊕
k=0

Ωk(C∞(M)), Ω0(C∞(M)) := C∞(M), (3.10)

thus forms a graded space., where k denotes the degree of an element.

We can define a differential d : Ωk(M) → Ω(M)k+1 by

d(fi1...ik
dxi1 ∧ · · · ∧ dxik) :=

∂

∂xi
(fi1...ik

)dxi ∧ dxi1 ∧ · · · ∧ dxik ,

(3.11)

which can be seen to satisfy:

· On A0(M) ≡ C∞(M), d is defined by (3.6);

· d(α1 + α2) = d(α1) + d(α2);

· d2 = 0;

· d(α1 ∧ α2) = d(α1) ∧ α2 + (−)|α1|α1 ∧ d(α2).

There is another map, the contraction ιX : Ωk(M) → Ωk−1(M), where X is a
vector field, which is defined by

(ιXα)(X1, . . . , Xk−1) := α(X,X1, . . . , Xk−1). (3.12)

This map satisfies

· ιX(α1 + α2) = ιX(α1) + ιX(α2);

· ιX(α1 ∧ α2) = ιXα1 ∧ α2 + (−)|α1| ∧ ιX(α2);

· ιfX = fιX ∀f ∈ C∞(M);

· ιXιY = −ιY ιX , in particular ι2X = 0.

Suppose we are given a manifold M and for each p ∈ M a vector space
Ep over R, such that we can —in a similar way as for TM and T ∗M— con-
struct an object E from that. We again let Γ(M,E) be the space of E-valued
functions. We then define

Ω1(M,E) := Γ∞(M,E)⊗ Ωk(C∞(M)) ' Γ∞(M,ΛkT ∗M ⊗ E).
(3.13)

i.e. the space of functions with values in the E-valued differential 1-forms.

. Definition 3.7 [Connection]. A connection ∇ on such an E as above is a
R-linear map

∇ : Γ∞(M,E) → Γ∞(M,T ∗M ⊗ E) (3.14)

that satisfies

∇(fs) = f∇(s) + df ⊗ s ∀f ∈ C∞(M), s ∈ Γ(M,E). (3.15)
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By composition a connection ∇ with the contraction ιX we get an operator

∇X : Γ(M,E) → Γ(M,E)

by

∇X := ∇◦ιX + ιX ◦∇. (3.16)

N.B. In a specific coordinate system {∂i} we will sometimes write:

∇i := ∇∂i .

3.4 R I E M A N N I A N M A N I F O L D S & T H E M E T R I C

A special class of manifolds are ones that carry a metric. In this context, we
mean with the latter
. Definition 3.8 [Metric, Riemannian manifold]. we call a map

g : Γ(TM)× Γ(TM) → C∞(M) (3.17)

a metric when it is C∞(M)-bilinear and positive definite in the sense that
g(X,X) ≥ 0 ∀ X ∈ Γ(TM) (using the norm defined in Example 2.7). If M
possesses such a metric, we call the pair (M, g) a Riemannian manifold.
A possible way to construct a metric is to associate to each point p ∈ M a
R-bilinear positive definite map

gp : TpM × TpM → R.

The family of maps gp then forms the metric.

Given a p ∈M we can apply to gp two basis elements of Tp giving rise to the
definition

gij := gp

( ∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p

)
, (3.18)

from which we can infer that gp can be written as

gp = gijdxi
∣∣
p
⊗ dxj

∣∣
p
,

where a sum on i, j is implied.

N.B. A metric g as above induces a pairing g′ : Γ(T ∗M)×Γ(T ∗M) → C∞(M)
for one-forms (see e.g. [14, § 7,1]). We will refer to this pairing as the metric
too and — and write

gij := g′(dxi,dxj).

3.5 T H E L E V I - C I V I TA C O N N E C T I O N & C U RVAT U R E

Given a connection ∇ we can define its torsion tensor

T (X,Y ) := ∇X(Y )−∇Y (X)− [X,Y ]

We call a connection torsion free if T (X,Y ) = 0 ∀ X,Y ∈ Γ(TM).

If for a Riemannian manifold, a connection ∇ satisfies

g(∇X,Y ) + g(X,∇Y ) = d(g(X,Y ))

we we have written

g(Xi ⊗ dxi, Y ) = g(Xi, Y )dxi.

we call the connection compatible with the metric.
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. Theorem 3.9. For any Riemannian manifold (M, g) there is a unique connection
∇g : Γ(TM) → Γ(T ∗M ⊗ TM), that is both torsion free as compatible with the
metric. We call this connection the Levi-Civita connection.

Proof. See [29], Lemma 6.8. 2

. Definition 3.10 [Riemann curvature tensor]. LetX,Y ∈ Γ(TM). We define
the Riemann curvature tensor R(X,Y ) by

R(X,Y )Z := (∇g
X∇

g
Y −∇g

Y∇
g
X −∇g

[X,Y ])Z, (3.19)

for Z ∈ Γ(TM).

Properties of R(X,Y ) that can be inferred from the definition above are

· R(X,Y ) = −R(Y,X);

· g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z);

· R(X,Y )Z +R(Y, Z)X +R(Z,X)Y (Bianchi identity).

Since for some vector field X the Levi-Civita tensor is an operator on Γ(TM),
we can get a characterization of ∇g in terms of Christoffel symbols Γk

ij that are
defined by

∇g
∂j
∂i = Γk

ij∂k. (3.20)

This expression allows us to translate the properties of the Levi-Civita tensor
(torsion-freeness, metric compatibility) into properties of these Christoffel
symbols. Without proof we state

Γ•ij = Γ•ji and (3.21)

Γl
ijglk + Γl

ikgjl = ∂igjk. (3.22)

Additionally, we can use the local expression for the Levi-Civita connection
to obtain an expression in components for the Riemann curvature tensor. We
define

Ri
jkl∂i := R(∂k, ∂l)∂j = [∇g

∂k
Γm

lj ∂m −∇g
∂l

Γm
kj∂m]

= (∂kΓm
lj )∂m + Γn

kmΓm
lj ∂n − (∂lΓm

kj)∂m − Γn
lmΓm

kj∂n, (3.23)

where we have used that [∂i, ∂j ] = 0 ∀ i, j and the properties of a connection.
Contracting this expression by means of the metric tensor yields

Ri
jkl = (∂kΓi

lj)− (∂lΓi
kj) + Γi

kmΓm
lj − Γi

lmΓm
kj .

From this expression we first obtain the Ricci tensor by contracting two
indices:

Rjl := Rk
jkl

and by contracting again we obtain the scalar curvature R :

R := gjlRjl. (3.24)

Since a given Riemannian manifold produces a unique Levi-Civita con-
nection and the curvature is derived from that, the latter provides useful
information about the manifold: it assigns to every point on the manifold a
number that is a measure for the amount of curvature on that point.
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4S P I N G E O M E T RY

As the name suggests, spin geometry —in contrast to differential geometry—
allows us to describe spinor fields, widely used in particle physics. The field
of spin geometry is vast and intricate. We therefore by far have the intention
of giving a complete introduction, rather we will merely touch upon some of
the most important concepts to us, only now and then going into detail a bit.
This chapter is mainly based upon [14], (in particular Chapters 5 and 9). For
other good and detailed accounts we refer to e.g. [12].

. Definition 4.1 [Clifford algebra]. Let V be a finite dimensional vector space
over R, endowed with a bilinear symmetric map g : V × V → R. The Clifford
algebra Cl(V, g) is the algebra generated by products of elements of V modulo the
relation {v1, v2} := v1v2 + v2v1 = 2g(v1, v2).

If a set of elements {ei} of V is some basis for V , this characteristic relation
can be casted into a form more common in physics:

{ei, ej} = 2gij ,

Here we have written gij := g(ei, ej).

We can extend the definition of a Clifford algebra to a vector space over the
complex numbers by a technique called complexification. For a real vector
space V we take V C := V ⊗R C ' V ⊕ iV . Then we can extend a given
bilinear symmetric map g : V × V → R, to gC : V C × V C → C by

gC(v1 + iv2, v3 + iv4) := g(v1, v3)− g(v2, v4) + i(g(v2, v3) + g(v1, v4)).

Using gC, we can, in a similar fashion as for a real vector space, construct a
Clifford algebra Cl(V C, gC). We will write Cl(V ) for short.

We can define an inner product on any Clifford algebra quite easily. Given an
orthonormal basis {e1, . . . , en} for V (such that eiej = −ejei and e2i = 1 ∀ i, j),
any element u of the Clifford algebra Cl(V ) can be written as u =

∑
I uIeI ,

where each I is a strictly ordered set1 and uI ∈ C for each I . In this notation
we define an inner product 〈 . , . 〉 : Cl(V )× Cl(V ) → C by

〈u , v 〉 :=
∑

I

uIvI . (4.1)

In that same notation, we can make Cl(V ) involutive, by defining for any
u =

∑
I uIeI ∈ Cl(V ):

u∗ :=
∑

I

uIe
!
I , (4.2)

where with e!I we mean the total reversal of the order in which all elements
appear.

1 See the beginning of §A.1 for more on this particular notation.
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For each Clifford algebra Cl(V ) we can define a Chirality element γ that is
given in terms of an orthonormal basis {e1, . . . , en} of V by

γ := (−i)me1e2 · · · en (4.3)

where n = 2m or n = 2m + 1 according to whether n is even or odd. This
definition guarantees that γ∗ = γ and γ2 = 1.

Let us apply the aforementioned concepts. Throughout this chapter (M, g)
will denote a compact Riemannian manifold with metric g.

. Example 4.2 [Cl(T ∗xM)]. As we saw in Chapter 3, for each point p on
the manifold T ∗pM has the structure of a vector space, spanned by the basis
dxµ|p. We can therefore construct a Clifford algebra Cl(T ∗pM) generated by
the complexifications of dxµ|p modulo the Clifford algebra relation featuring the
complexification of the symmetric bilinear form using the complexification of
gµν(p) := g(dxµ|p,dxν |p).

Thus we can associate a complex Clifford algebra to each point of the mani-
fold. We write Γ(M,Cl(T ∗M)) [or just Γ(Cl(T ∗M))] for the space of ’Clifford
algebra-valued functions’, that is for an element α ∈ Γ(M,Cl(T ∗M)) we
have α(x) ∈ Cl(T ∗xM) for each x ∈M .

Note that, as the Clifford algebra itself, Γ(M,Cl(T ∗M)) is an algebra by
’pointwise multiplication’: for α, β ∈ Γ(M,Cl(T ∗M))

(αβ)(x) := α(x)β(x) ∈ Cl(T ∗M), (4.4)

i.e. αβ ∈ Γ(M,Cl(T ∗M)) as well. In a similar way we can make Γ(Cl(T ∗M))
involutive [α∗(x) := α(x)∗, where α(x)∗ is given by (4.2)] and it can be
endowed with a Hermitian pairing (., .) : Γ(Cl(T ∗M)) × Γ(Cl(T ∗M)) →
C∞(M) by:

(α, β)(x) := 〈α(x) , β(x) 〉, (4.5)

where 〈., .〉 is the inner product (4.1) on the Clifford algebra. Last, we intro-
duce a chirality element γ on Γ(Cl(T ∗M)) by

γ(x) := γ, (4.6)

where with right hand side we mean the chirality element γ on each Clifford
algebra [cf. (4.3)].

We recall the space of spinor-valued functions as introduced in Example 2.13.
The coordinate space appearing there is in this context M of course. We will
write Γ(S) for Γ(M,S). So far we have hardly said anything about S, with
the exception that for each x ∈M , Sx has the structure of a complex vector
space. We mention here that Sx is a representation of the so called spinc-
group of Cl(T ∗xM) that consists of elements that are a product of an even
number of unitary elements of Cl(T ∗xM). If the dimension of M is even, Sx

falls apart in two irreducible representations of equal dimension —eigenspaces
of the chirality element γ with eigenvalues ±1— that are denoted by S+

x and
S−x respectively.
The dimension can be determined from the dimension of the manifold. We
suffice by saying that for a manifold M that locally looks like the Euclidean
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Figure 4.1: The spinor-valued functions ψ maps a point
x ∈M to an element in the vector space Sx.

space R4, the spinors will have 4 complex components as well and turn out
to be Dirac spinors.2 We refer to [14, §5.2, 5.3] for details.

If there exists a C(M)-linear algebra homomorphism

c : Γ(Cl(T ∗M)) → EndC(M)(Γ(S)) (4.7)

(the spin homomorphism), the elements γµ := c(dxµ) act on the spinor-valued
functions Γ(S) in the following way:

(γµψ)(x) := γµ(x)ψ(x), (4.8)

where the right hand side is just matrix multiplication.

Thus Γ(S) is not only a left C(M)-module, but (via the homomorphism c) a
left Γ(Cl(T ∗M))-module as well. These two modules structures are compati-
ble, for elements of the two different algebras commute with each other.

From here on, we will restrict to only the smooth elements of C(M), Γ(S),
Γ(Cl(T ∗M)).3 To maintain a concise notation, though, we still write Γ(S) and
Γ(Cl(T ∗M)) where we in fact mean Γ∞(S) and Γ∞(Cl(T ∗M) respectively.

. Definition 4.3 [Space of square integrable spinors, L2(M,S)]. On the
space of smooth spinor-valued functions Γ(S) we can define an inner product

〈., .〉 : Γ(S)× Γ(S) → C (4.9)

given by

〈ψ , φ 〉 :=
∫

M

(ψ, φ)(x)
√
g d4x, (4.10)

2 This does not imply, however, that number of components of the spinor always equals the
dimension of the manifold.

3 We must mention that the subalgebra C∞(M) of C(M) is not a C∗-algebra, since it fails to be
complete with respect to norm on C(M). We will ignore this though.
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where with (., .) we denote the C∞(M)-valued pairing that can be obtained from
the one in Example 2.19 by restriction. Upon completing Γ(S) with respect to this
inner product, we get the Hilbert space L2(M,S); the space of square integrable
spinors.

4.1 T H E D I R A C O P E R AT O R

There is a certain type of manifolds that allows the construction of spinor-
valued functions, these are called spin manifolds. We shall not go into what
the requirements are for such a spin manifold to exists. We do mention that
a four-dimensional compact Riemannian manifold is indeed a spin manifold
as long as it is orientable, its second Stiefel-Whitney class of S vanishes4 and one
is able to define a bijective antilinear map C : Γ(S) → Γ(S) satisfying certain
conditions ([14, §9.2]).

. Definition 4.4 [Spin connection]. On a spin manifold M we can define a
unique Hermitian connection (the spin connection)

∇S : Γ(S) → Γ(T ∗M ⊗ S) ' Γ(T ∗M)⊗C∞(M) Γ(S)

that satisfies the Leibniz-rule

∇S(c(α)ψ) = c(∇gα)ψ + c(α)∇Sψ ∀ ψ ∈ Γ(S),

ν ∈ Γ(Cl(T ∗M)), ψ ∈ Γ(S).
(4.11)

Here ∇g is the Levi-Civita connection on M , as introduced in Section 3.5.

There is a local expression for the spin connection, it is (see [14, §9.3])

∇S = dxµ ⊗ (∂µ + ωµ), with ωµ = Γ̃β
µαγ

αγβ , (4.12)

where Γ̃β
µα are the Christoffel symbols determined by∇g [cf. (3.20)] (but with

respect to a different basis than the dxµ) and γα, γβ are the tetrads as defined
in Appendix A.

Using the spin-homomorphism c we can construct another map
ĉ : Γ(Cl(T ∗M))⊗ Γ(S) → Γ(S) by defining

ĉ(α⊗ ψ) := c(α)ψ ∀ α ∈ Γ(Cl(T ∗M)), ψ ∈ Γ(S).

Combining ĉ and ∇S we get an operator on Γ(S):

. Definition 4.5 [Dirac operator]. The Dirac operator on Γ(S) is given by

/∂M := iĉ◦∇S , (4.13)

where we have tacitly used the embedding of Γ(T ∗M) in Γ(Cl(T ∗M)).

It is not hard to find a local expression of the Dirac operator, once you know
the one for the spin connection:

/∂M = iγµ(∂µ + ωµ), (4.14)

where ωµ is as above.

Adjoining the i in the definition of the Dirac operator has the following result:

4 See e.g. [20], Theorem 1.7
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. Theorem 4.6. /∂M as in (4.13) is a self-adjoint operator on L2(M,S).
Proof. See [14, §9.4].5 2

. Lemma 4.7. The commutator [/∂M , a] for any a ∈ C∞(M) is a bounded operator
on L2(M,S) that is locally of the form γµ∂µ(a).
Proof. Using the properties of the spin connection, we get [/∂M , a] = c(da) for
the commutator of /∂M with a. Since c is C∞(M)-linear, this becomes for a
certain chart

[/∂M , a] = c(dxµ)(∂µa) = γµ∂µ(a).

We then have for the norm

‖[/∂M , a]‖2 = sup
x∈M

‖c(da)(x)‖2

= sup
x∈M

[(γµ∂µ(a), γν∂ν(a)(x)] (4.15)

= sup
x∈M

[(γµ, γν)(x)(∂µa)(x)(∂νa)(x)]

= sup
x∈M

|(∂µa)(x)|2 = ‖∂µa‖C∞(M) ≤ ∞, (4.16)

since a ∈ C∞(M). The pairing (., .) appearing in the second and third line, is
that on Γ(Cl(T ∗M)) given by (4.5). 2

As we shall see, the square of a Dirac operator is a variable that will fre-
quently appear. For /∂M we shall calculate it explicitly. It’s important to note
that because of (4.11) the spin connection ∇S

µ and gamma matrices do not
commute. Instead we find 6

∇S
µγ

ν = ∇S
µc(dx

ν) = c(dxν)∇S
µ + Γν

λµc(dx
λ) = γν∇S

µ + Γν
λµγ

λ.

Bearing this in mind, we get for the square of /∂M :

/∂
2
M = −γµγν∇S

µ∇S
ν + Γν

λµγ
µγλ∇S

ν

= −gµν∇S
µ∇S

ν − 1
2γ

µγν [∇S
µ ,∇S

ν ] + gµλΓν
µλ∇S

ν

= −gµν(∇S
µ∇S

ν − Γλ
µν∇S

λ)− 1
2γ

µγν [∇S
µ ,∇S

ν ], (4.17)

where in the second step we have employed the identity γµγν = gµν +
1
2 [γµ, γν ].
Now we use the local form of the spin connection (4.12) to get for
Now by using the local form of ∇S

µ and the properties of the Riemann tensor
3.23 one can show (e.g. [14, Thm. 9.16]) that for the second term of (4.17) we
have

γµγν [∇S
µ ,∇S

ν ] =
1
2
R, (4.18)

where R is the scalar curvature of M . Thus we arrive at

/∂
2
M = ∆ + 1

4R,

where ∆ = −gµν(∇µ∇ν − Γλ
µν∇λ) is called a Laplacian. For future use we

write it out locally to yield

/∂
2
M = −[gµν∂µ∂ν + (2ωµ − Γµ)∂µ + ∂µ(ωµ) + ωµωµ − Γµωµ + 1

4R].
(4.19)

5 There is a subtlety here. Rather than /∂M its closure /∂M is self-adjoint, we will write /∂M for the
latter.

6 Would we be using flat gamma-matrices (i.e. γa = ea
µγ

µ) as in Appendix A, this would be
equivalent with ∇νe

µ
a := ∂νe

µ
a + ωνe

µ
a − Γµ

λνe
λ
a = 0.
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5S P E C T R A L T R I P L E S

We have arrived at a point where we can introduce one of the key notions of
noncommutative geometry: that of a spectral triple.

. Definition 5.1 [Spectral triple]. Let H be a Hilbert space, A an involutive
unital algebra and D an operator on H. We call the set (A,H, D) a spectral triple
when

· A has a representation as bounded operators on H;

· D is self-adjoint and has compact resolvent;

· for all a ∈ A, the commutator [D, a] is a bounded operator on H.

Several contents introduced in the previous chapters seamlessly fit into this
definition:

. Example 5.2 [Canonical spectral triple]. In the case of a compact manifold
M without boundary, the spin geometry (C∞(M), L2(M,S), /∂M = iĉ◦∇S)
that we constructed in Chapter 4 is a particular example of a spectral triple. Most
of the demands were already seen to be met: C∞(M) is involutive by Example
2.7, which indeed has a representation as bounded operators on H by Example
2.13. The operator /∂M is self-adjoint (as was mentioned in the previous Chapter)
and [/∂M , a] was indeed seen to be bounded by Lemma 4.7. We will often refer to
this spectral triple as the canonical spectral triple

Besides the canonical example as above, there is another one of particular
interest to us:

. Example 5.3. When we take the algebra to be a finite direct sum of matrix-
algebras, i.e. A =

⊕
ni
Mni

(K) —where K is R,C or H— let H be some finite
dimensional representation of A and D a symmetric matrix acting on H, we
get a spectral triple. That it indeed is one, is easy to check, since everything is
finite-dimensional.

. Definition 5.4 [Even spectral triple]. If H is Z2 graded, i.e. there exits a
unitary operator χ on H with χ∗ = χ and χ2 = 1 that in addition fulfills

· χD = −Dχ;

· χa = aχ, ∀ a ∈ A, (5.1)

we call (A,H, D, χ) an even spectral triple.

. Example 5.5. For the spectral triple (C∞(M), L2(M,S), D) we define

χ := c(γ) (5.2)

where c is the spin homomorphism as defined in the previous Chapter and
where γ is the chirality element of the Γ(Cl(M)). To see that this χ meets the
requirements as laid out above, the local expression for /∂M and the properties of c
have to be used.
More often than not χ is denoted γ5 when H = L2(M,S).
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. Definition 5.6 [Real Spectral Triple]. Given a spectral triple (A,H, D), we
can define a real structure; an antilinear isometry J :H → H, that satisfies J2 = ε

and JD = ε′DJ , where ε, ε′ ∈ {±1}. A spectral triple endowed with a real
structure, is called a real spectral triple and is denoted by (A,H, D, J).

The definitions of an even spectral triple and a real spectral triple can be
combined, yielding a real even spectral triple (A,H, D, J, χ). We have to specify
how χ and J interact, though. To this end we define a third sign ε′′ ∈ {±1}
with γJ = ε′′Jγ.

. Example 5.7. If M is a four-dimensional compact Riemannian manifold, we
have ε = −1, ε′ = ε′′ = 1. When taking (C∞(M), L2(M,S), /∂M ) as a spectral
triple, we can explicitly define J as being related to the charge conjugation matrix
C in the following way ([19, § 6.8]):

(Jψ)(x) := Cψ(x) ∀x ∈M. (5.3)

Readers that are confused about the signs, should keep in mind that we are in a
Euclidean set up here.

For reference we list different values of ε, ε′ and ε′′ for all possible even
KO-dimensions. We mention that for a Riemannian spin manifold M , the
KO-dimension equals the dimension of M .

KO dimension H J2 = ε JD = ε′DJ Jγ = ε′′γJ

0 + + +
2 - + -
4 - + +
6 + + -

Table 5.1: The values for ε, ε′, ε′′ defined by the value of J2 and whether J (anti)commutes with
D and γ.

In [8], A. Connes formulated seven axioms that a certain spectral triple must
meet in order to be called a noncommutative (spin) geometry. Except for one,
we will not cover them here, for they will not be needed in this thesis and
introducing them would require quite a lot of effort. Instead we refer to [14,
Ch. 10], or [33, Ch. 3] for details. There are two things to mention here. One
is that for a compact Riemannian manifold M without boundary, the set
(C∞(M), L2(M,S), D, J, χ) is an example of a noncommutative geometry
(see [14], chapter 11). Secondly, under suitable circumstances [17], finite
spectral triples fulfill these axioms as well.

As announced above, we mention two demands related to the seven axioms.

In addition to H being a left A-module (meaning that there exists a repre-
sentation of A on H), we can make H a right A-module as well by using
J :

ψb := Jb∗J∗ψ ∀ ψ ∈ H, b ∈ A, (5.4)

where (2.6a) is easily seen to be satisfied:

(ψa)b := (Jb∗J∗)(Ja∗J∗)ψ = J(ab)∗J∗ψ = ψ(ab).
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The requirement (2.7) for bimodules then becomes our first demand:

[a, Jb∗J−1] = 0. (5.5)

We could have stated this demand in terms of a representation of A⊗Ao as
well. Recalling definition 2.9 of the opposite algebra, we can define a opposite
representation bo = Jb∗J−1 on H (indeed satisfying aobo = (ba)o). Then from
the representations of A and Ao on H, we construct one of A⊗Ao on H by
a⊗ bo → aJb∗J−1, which is only seen to be a representation after requiring
(5.5).

The second demand is the order one condition: in addition to commuting with
the representation of A (5.5), the representation of Ao must commute with
that of [D,A] as well:

[[D, a], bo] = [[D, a], Jb∗J−1] = 0 ∀a, b ∈ A. (5.6)

As we will see, when it comes to doing particle physics, the above examples
will nut suffice; they simply do not provide enough data to make models
that show resemblance with reality. Luckily we can rely on

. Theorem 5.8. If (A1,H1, D1, γ1) of and (A2,H2, D2) are two spectral triples,
then

(A,H, D) := (A1 ⊗A2,H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2) (5.7)

is one as well.

Proof. The tensor product of a Hilbert space is another, with respect to the
inner product

〈 . , . 〉H1⊗H2 = 〈 . , . 〉H1〈 . , . 〉H2 (5.8)

The representation of A1 ⊗A2 on H1 ⊗H2 is simply defined by π(a1 ⊗ a2) =
π1(a1)⊗ π2(a2) where π1,2 are the representations on H1,2 respectively. The
representation π is easily seen to be bounded using (5.8).

It is immediate that D is self-adjoint (with respect to 5.8), since γ1 is. Further-
more, by using (5.1), we find

[D, a1 ⊗ a2] = [D1, a1]⊗ a2 + γ1a1 ⊗ [D2, a2] (5.9)

which is bounded since the representations A1 → B(H1) and A2 → B(H2)
are. 2

In the case of two real spectral triples with isometries J1 and J2 respectively,
we can make the tensor product a real spectral triple as well by defining a
J on the tensor product. In order to (anti)commute with the Dirac operator,
this is J1 ⊗ J2, J1 ⊗ J2χ2 or J1χ1 ⊗ J2, depending on the values of n1 and n2

(see [32]).

Note that if we have two spectral triples with KO-dimension n1 and n2

respectively, their tensor product is of KO-dimension n = n1 + n2.

We anticipate a bit to chapter 8, if we state that it is the tensor product
of carefully chosen spectral triples with which we can construct realistic
physical models.
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U N I TA R I LY E Q U I VA L E N C E O F S P I N G E O M E T R I E S

. Definition 5.9 [Unitarily equivalent spin geometries ([33], §7.1)]. Two
spin geometries (A,H, D, γ, J) and (A,H, D′, γ′, J ′) are said to be unitarily
equivalent, if there exists a unitary operator U : H → H such that

· D′ = UDU∗;

· J ′ = UJU∗;

· γ′ = UγU∗;

· Uπ(a)U∗ = π(σ(a)) ∀ a ∈ A.

Here, with π we explicated the representation A must necessarily have on H and
σ : A → A is an automorphism of A.

. Example 5.10. If for a certain spin geometry we take U = uJuJ∗, where
u ∈ U(A) := {u ∈ A : u∗u = uu∗ = 1} a unitary element of A, we see that

γ′ = uJuJ∗γJu∗J∗u∗ = ε′′uJγJ∗u∗ = (ε′′)2γ = γ, where we have used
that γ must commute with elements of the algebra, and gives a ε′′ upon
interchanging it with J ;

·· J ′ = (uJuJ∗)J(Ju∗J∗u∗) = uJuJu∗J∗u∗ = uJJu∗J∗uu∗ = εJ∗ =
J , where we have used (5.5);

· the resulting automorphism is σu(a) = uau∗: again using (5.5) gives
σ(a) = uJuJ∗aJu∗J∗u∗ = uau∗. This is an example of what is called an
inner automorphism.

For D we have:

D′ = uJuJ∗DJu∗J∗u∗ = ε′uJuDu∗J∗u∗ = ε′uJu(u∗D + [D,u∗])J∗u∗

= ε′uJDJ∗u∗ + ε′uJu[D,u∗]J∗u∗ = uDu∗ + ε′JJ∗uJu[D,u∗]J∗u∗

= D + u[D,u∗] + ε′Ju[D,u∗]J∗ =: Du

where we have made use of (5.5) and the order one condition (5.6).

All inner automorphisms σu for u ∈ U(A) in fact form a group of which the
product is given by composition (with σu1

◦σu2 = σu1u2). The element σ1 is
seen to be the identity, and the inverse of σu is σu∗ . We denote the group
of inner automorphisms by Inn(A). It will later on become clear that it can
be interpreted as the gauge group. See e.g. [9, § 9.9], [19, § 9.3] for a more
thorough discussion on this.
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6I N N E R F L U C T U AT I O N S O F T H E D I R A C O P E R AT O R

There are many interesting problems and questions regarding the concept
of a spectral triples. The answer of one of them will have a crucial physical
interpretation. We will cover it in the last two sections of this chapter. Before
that we cover some preparatory subjects.

6.1 C O N N E S ’ A L G E B R A O F D I FF E R E N T I A L F O R M S

. Definition 6.1 [Derivation]. Let E be a bimodule over an algebra A. A map
d : A → E is called a derivation when

d(ab) = (da)b+ adb ∀ a, b ∈ A.

If A is unital (definition 2.1) it follows that da = d(1a) = (d1)a + 1da,
i.e. d1 = 0.

. Example 6.2. For a spectral triple (A,H, D), adD : A → B(H), defines a
derivation, since

adD(ab)ψ = [D, ab]ψ = a[D, b]ψ + [D, a]bψ

= [a adD(b) + adD(a)b]ψ ∀ ψ ∈ H. (6.1)

We will be exploiting this example right away:

. Definition 6.3 [Connes’ algebra of differential forms]. For a spectral triple
(A,H, D) we define Connes’ algebra of differential forms as

ΩDA :=
⊕
k=0

ΩDA with Ω0
DA := A and

Ωk
DA := span{a0[D, a1] · · · [D, ak], a0, . . . , ak ∈ A}. (6.2)

By the third demand for a spectral triple (cf. Definition 5.1) we see that
ΩDA ⊆ B(H), the bounded operators on H.

Note that, as the name suggests, the algebra comes with a product; for two
elements a0[D, a1] · · · [D, ak] ∈ Ωk

DA and ak+2[D, a1] · · · [D, ak+l+1] ∈ Ωl
DA

we have

(a0[D, a1] · · · [D, ak])(ak+1[D, ak+2] · · · [D, ak+l+1])

=
k∑

i=1

(−1)k−ia0[D, a1] · · · [D, (aiai+1)] · · · [D, ak+1] · · · [D, ak+l+1]

+ (−1)k(a0a1[D, a2] · · · [D, ak+l+1]).

. Example 6.4. For the canonical spectral from Example 5.2 triple we have that

Ωk
/∂M
C∞(M) := span{a0γ

µ∂µ(a1) · · · γν∂ν(ak) : a0, . . . ak ∈ C∞(M)},
(6.3)

since the term ωµ of D drops out due to the commutator.
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We will focus on the second (Ω1
DA) and third terms (Ω2

DA) of (6.2) though
many results can obtained for ΩDAin general (e.g. [19, Chapter 7]).

. Lemma 6.5. Ω1
DA and Ω2

DA are both A-bimodules.

Proof. The left modules structure is immediately clear. As for the right A
module structure of Ω1

DA we have

Ω1A×A 3 (a[D, b], c) → a[D, b]c = a[D, bc]− ab[D, c] ∈ Ω1
DA

∀ a, b, c ∈ A.

The argument for Ω2
DA is analogous. 2

Note that Ω1
DA is involutive, with its involution given by

(a[D, b])∗ = −[D, b∗]a∗ = b∗[D, a∗]− [D, b∗a∗] ∈ Ω1
DA

where we have used that D is self-adjoint. The algebra Ω2
DA is involutive as

well as is seen by a slightly longer calculation.

. Theorem 6.6. Let A = C∞(M). Taking the algebra Ω1A and Ω2A as con-
structed in Section 3.3 we have the following isomorphisms:

Ω1A ' Ω1
DA and

Ω2A ' Ω2
DA/J, (6.4)

with J = {
∑

i[D, ai][D, bi] : ai, bi ∈ A,
∑

i ai[D, bi] = 0}.

Proof. We give a sketch of the proof. The thing to do is define a map
π : ΩkA → Ωk

DA that is both an algebra-homomorphism [π(ω1ω2) = π(ω1)π(ω2)
∀ ω1, ω2 ∈ ΩDA] and satisfies

π◦d = adD◦π. (6.5)

This last equation will assure us that if π(ω) = 0 for some ω, π(dω) = 0 as
well.

We take for the map π:

π(a0da1 · · ·dak) := a0[D, a1] · · · [D, ak],

i.e. π(a0da1) := a0[D, a1] on Ω1A and π(a0da1da2) := a0[D, a1][D, a2] on
Ω2A. On both Ω1A and Ω2A, π is easily seen to be an algebra homomorphism.
As for the other requirement, we obviously have π◦da = adD◦π(a) on Ω1A.
For Ω2A however there are in general elements

∑
i aidbi of Ω1A with∑

i

π(aidbi) = ai[D, bi] = 0

but with
∑

i[D, ai][D, bi] 6= 0. We solve this by simply dividing out all
elements that prevent π from satisfying (6.5):

J := {
∑

i

[D, ai][D, bi] : ai, bi ∈ A,
∑

i

ai[D, bi] = 0}.

2

Similar isomorphisms can be constructed for any algebraA, part of a spectral
triple and for the whole of ΩDA (i.e. for any degree), see for example [19,
Ch. 7].
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6.2 C O N N E C T I O N S O N M O D U L E S

Previously, in Chapter 3 we defined a connection in the context of differential
geometry. Here we will extend this definition somewhat.

. Definition 6.7. A connection ∇ over a right A-module E is a map

∇ : E → E ⊗A Ω1A (6.6)

that obeys a Leibniz rule

∇(ηa) = (∇η)a+ η ⊗ da ∀ a ∈ A, η ∈ E . (6.7)

Instead of over a right module we can define a connection over a left A-
module F as well. In that case a connection is defined as a map

∇ : F → Ω1A⊗F

that obeys

∇(aη) = a(∇η) + da⊗ η ∀ a ∈ A, η ∈ F . (6.8)

If on a right A-module E a Hermitian pairing (., .) : E × E → A is defined,
we can regard connections that are compatible with the pairing.

. Definition 6.8. Let E be a right A-module with a Hermitian pairing (., .) :
E × E → A defined on it. A connection ∇ : E → E ⊗A Ω1A is called a Hermitian
connections if it obeys

(∇η, ζ)′ + (η,∇ζ)′ = d(η, ζ) ∀η, ζ ∈ E

where we have extended the pairing (., .) to (., .)′E ⊗ Ω1A× E → Ω1A by

(η ⊗ da, ζ)′ := (η, ζ)da ∀a ∈ A, η, ζ ∈ E (6.9)

As in the case of connections, Hermitian connections can be defined for
left modules equally well, for which only a minor modification to (6.9) is
required.

6.3 M O R I TA E Q U I VA L E N C E & I N N E R FL U C T U AT I O N S

As hinted in Section 2.4, the notion of Morita equivalence plays a crucial role.
In this chapter we will see what that role precisely is. The central question
is what the implications are when the algebra of a certain spectral triple
is Morita equivalent to some other algebra. We start out by considering a
general spectral triple and cover the case of a real spectral triple thereafter.

We recall definition 2.21: two C∗-algebras A,B being Morita equivalent
means that there exists a full right A-module E such that End0

A(E) ' B.1

6.3.1 Inner fluctuations for a spectral triple

Suppose (A,H, D) is a spectral triple, so it meets all the demands as stated
in definition 5.1. Suppose in addition that A is Morita equivalent to another

1 As mentioned in the previous chapter, the restriction C∞(M) of C(M) is not a C∗-algebra
anymore. The definition of Morita equivalence then requires E to be something called a finitely
generated projective module. This does not have any consequences for the results.
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algebra B.

The question is whether we can find a second spectral triple (B,H′, D′)
that is compatible with the Morita equivalence of A and B. The relation
B ' End0

A(E) suggests that we take H′ := E ⊗A H, where the representation
of B on H′ is simply given by

b(η ⊗ ψ) := b(η)⊗ ψ, ∀ b ∈ B. (6.10)

This respects the A-linearity of the tensor product. Note that B is involutive
and unital too, as is demanded for the algebra of a spectral triple.

We can endow H′ with an inner product derived from the respective inner
products on E and H:

〈η1 ⊗ ψ1, η2 ⊗ ψ2〉H′ := 〈ψ1, (η1, η2)ψ2〉H,

where (., .) is the A-valued pairing on E (cf. definition 2.16).

The remaining question is what D′ : H′ → H′ looks like; simply taking
D′ = id⊗D will not suffice, for then D′ does not respect the A-linearity of
the tensor product:

D′(ηa⊗A φ) = (η ⊗A aDφ) 6= (η ⊗A Daφ) = D′(η ⊗A aφ),

since the commutator [D, a] does not vanish identically in general.

The way out is to specify a connection ∇ : E → E ⊗A Ω1A as in (6.6) and
define D′ : H′ → H′ by

D′(η ⊗ ψ) := η ⊗Dψ +∇(η)ψ,

where we use the identification Ω1A ' Ω1
DA (cf. Theorem 6.6) and the fact

that Ω1
DA has by demand a representation as bounded operators on H.

We easily check that this definition does respect A-linearity:

D′(η ⊗A aψ)−D′(ηa⊗A ψ) = (∇η)aψ + η ⊗A Daψ − (∇η)aψ
− η ⊗A daψ − ηa⊗A Dψ

= η ⊗A [D, a]ψ − η ⊗A daψ = 0, (6.11)

upon using Theorem 6.6 again.

Note that any connection ∇ : E → E ⊗A Ω1A will do the trick, so actually the
Morita equivalence of A with B induces a set of spectral triples

(B,H′, D′) = (End0
A(E), E ⊗A H, 1⊗D +∇⊗ id) (6.12)

with ∇ : E → E ⊗A Ω1A.

As mentioned before, any algebra is in particular Morita equivalent to itself
—in which case E ' A— so we can apply the operator D′ to H′ = A⊗A H
too:

D′(a⊗ ψ) = (a⊗D +∇(a))ψ

However, A ⊗A H ' H by the identification a ⊗A ψ ↔ aψ. Taking in
particular a = 1 we get

D′ψ = (D +A)ψ A := ∇(1) ∈ Ω1A,
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where A is of the form

A =
∑

j

aj [D, bj ], aj , bj ∈ A, (6.13)

since any element of Ω1
DA is. Furthermore, from the self-adjointness of D,

we infer the demand A∗ = A.

We call the induced operators D′ = D +A the inner fluctuations of D.

6.3.2 Inner fluctuations for a real spectral triple

When considering a real spectral triple (A,H, D, J) (see definition 5.6), we
can ask again what the consequences of a Morita equivalence of A with
some B are. Compared to the previous case there is a further restriction: any
induced spectral triple (B,H′, D′, J ′), for some J ′ : H′ → H′ needs to be
compatible with the relation J ′D′ = ε′D′J ′.

Note that if A is Morita equivalent with some B, E is a B-A-module. Then
the contragredient module Eo (see Definition 2.14) naturally is aA-B-module.

We then take for the constituents of the spectral triple (B,H′, D′, J ′):

· H′ := E ⊗A H⊗A Eo where for the second tensor product we use the
left A-representation on H (5.4), i.e.

η ⊗A ψ ⊗A aζ = η ⊗A ψa⊗A ζ = η ⊗A Ja∗J∗ψ ⊗A ζ.

· Compared to (6.10), the action of B on H′ is modified slightly to yield

b(η ⊗ ψ ⊗ ζ) := b(η)⊗ ψ ⊗ ζ,

easily seen to be respecting A-linearity.

· We define J ′ by:

J ′(η ⊗ ψ ⊗ ζ) := ζ ⊗ Jψ ⊗ η.

Note that by using J ′ there is a right representation of B on H′ as well:

(η ⊗ ψ ⊗ ζ)b := J ′b∗J ′(η ⊗ ψ ⊗ ζ)

= (η ⊗ ψ ⊗ b∗ζ)

= η ⊗ ψ ⊗ ζb

compatible with (2.10).

Last we have to specify D′. In analogy with the previous situation, the choice
D′ = id ⊗ D ⊗ id would ruin A-linearity, so again we pick an expression
involving connections on both E and Eo:

D′(η ⊗ ψ ⊗ ζ) := ∇(η)ψ ⊗ ζ + η ⊗Dψ ⊗ ζ + η ⊗ ψ∇′ζ (6.14)

where∇ : E → E⊗AΩ1
DA as seen before and∇′ : Eo → Ω1

DA⊗AEo satisfying

∇′(aζ) = a∇′(ζ) + da⊗ ζ.
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Here, the right representation of A on H is extended to one of Ω1
DA by

ψda := J(da)∗J−1ψ = J [D, a]∗J−1ψ. (6.15)

Up to now ∇ and ∇′ were unrelated, but the demand D′J ′ = ε′J ′D′ restricts
them. If we write everything out and demand this equality, we see that if
∇η is of the form

∑
i ηi ⊗ ωηi

for certain ηi ∈ E , ωηi
= Ω1

DA we have that
ωηi

= ε′ω∗ηi
.

As in the previous case we take as a special case thatA is Morita equivalent to
itself, leading to E ' A, Eo ' Ao. Making the identification A⊗AH⊗AAo '
H by a1 ⊗A ψ ⊗A a2 ↔ aJa2J

−1ψ and applying D′ to 1⊗ ψ ⊗ 1 ∈ H′ yields

D′ψ = [D +∇(1) + ε′J∇(1)∗J∗]ψ,

corresponding to inner fluctuations of D of the form

D → D +A+ ε′JAJ−1, A =
∑

i

ai[D, bi], ai, bi ∈ A, (6.16)

after imposing the demand of self-adjointness for D.

Note that this particular form relies on the non-commutativity of A. To see
this, take A commutative. This implies that for each a ∈ A, a = Ja∗J∗ (see
[19, §6.8]) and let Ω1

D 3 A =
∑

i ai[D, bi], A∗ = A. Then

JAJ∗ =
∑

i

JaiJ
∗J [D, bj ]J∗ = ε′

∑
i

JaiJ
∗[D, b∗j ]

= ε′
∑

i

[D, b∗j ]JaiJ
∗ = ε′

∑
i

[D, b∗j ]a
∗
i

= −ε′
(∑

i

ai[D, bj ]
)∗

= −ε′A,

where we successively exploited (5.6) and the self-adjointness of A. Con-
sequently for a Riemannian spin manifold all fluctuationsA+εJAJ−1 vanish.

As a last topic in this Chapter, we combine the theory from Section 5, with
inner fluctuations.

. Proposition 6.9. The noncommutative spin geometries (A,H, DA, γ, J) and
(A,H, D′

A, γ, J) are unitarily equivalent under the unitary transformation of the
form uJuJ∗ for u ∈ U(A) (i.e. ’under the gauge group’) when D′

A = DAu . Here

Au := uAu∗ + u[D,u∗] (6.17)

Proof. As was seen in Example 5.10, taking U = uJuJ∗ for u ∈ U(A) did not
have effect on γ and J . For the fluctuated Dirac operator we have

UDAU = U(D +A+ ε′JAJ∗)U∗

= D + u[D,u∗] + ε′Ju[D,u∗]J∗ + UAU∗ + ε′UJAJ∗U∗.

Now for the fourth term we have

UAU∗ = uJuJ∗
(∑

i

ai[D, bi]
)
Ju∗J∗u∗ =

∑
i

uJuJ∗aiJu
∗J∗[D, bi]u∗,

where we have used the order one condition (5.6). If we employ (5.5) too, we
get

UAU∗ =
∑

i

uJuJ∗Ju∗J∗ai[D, bi]u∗ =
∑

i

uai[D, bi]u∗ = uAu∗.
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With a similar calculation we can obtain UJAJ∗U∗ = eJuAu∗J∗. Collecting
terms, we get

UDAU = D + uAu∗ + u[D,u∗] + ε′J(uAu∗ + u[D,u∗])J∗ = DAu .

2
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7S P E C T R A L A C T I O N

As was introducted in Chapter 5, a spectral triple consists of the data
(A,H, D), where A, H a Hilbert space and D a Dirac operator. The latter we
can use in
. Definition 7.1. For a Dirac operator D, a cut-off scale of Λ and some positive,
even function f we can define the spectral action:

Tr(f(DA/Λ)). (7.1)

Here DA = D +A+ ε′JAJ∗ is the Dirac operator with its inner fluctuations.

This action functional was first proposed and used by A. Connes and A.H.
Chamseddine ([8], [4]). We shall encounter it numerous times in the remain-
ing part of this thesis, its central role will automatically become clear.
. Lemma 7.2. Let (A,H, D) be a spectral triple and let U(A) be the unitary
elements of A (see Section 5), then the spectral action as defined above is gauge
invariant:

Tr(f(DAu/Λ)) = Tr(f(DA/Λ)) ∀ u ∈ U(A).

Proof. As was proved in Proposition 6.9, the gauge transformation Au =
uAu∗ + u[D,u∗] of A was such that DAu = UDAU

∗, U = uJuJ∗, for some
u ∈ U(A). The result then automatically follows from the properties of the
trace. 2

The action functional in the above form is in many cases not useful for direct
computations. There is however a certain expansion in powers of Λ that can
be made in order to simplify calculations. For this we first need to elaborate
on the heat kernel.

7.1 T H E H E AT K E R N E L

The theory of this section is taken mainly from [13].

Let V be a bundle of a Riemann manifold (M, g) and P : C∞(V ) → C∞(V )
be an operator of the form

P = −
(
gµν∂µ∂ν +Kµ∂µ + L) (7.2)

with Kµ, L ∈ End(V ).

. Lemma 7.3. Given a P as above, there exist unique ∇, E such that

P = ∇∇∗ − E. (7.3)

Here, E is given by

E = L− gµν∂ν(ω′µ)− gµνω′µω
′
ν + gµνω′ρΓ

ρ
µν (7.4)

ω′µ =
1
2
(gµνKν + gµνg

ρσΓν
ρσ) (7.5)

where ω′µ is determined by the local form of ∇:

∇µ = ∂µ + ω′µ.
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Proof. See [13], Lemma 4.8.1. 2

We introduce the variable Ωµν that denotes the curvature of ∇:

Ωµν := ∂µ(ω′ν)− ∂ν(ω′µ)− [ω′µ, ω
′
ν ]. (7.6)

If P is indeed of the form (7.2) we can make an expansion of the operator
e−tP in of powers of t. It is given by

Tr e−tP ∼
∑
n≥0

t(n−m)/2

∫
M

an(x, P )
√
gdmx, (7.7)

where m is the dimension of M . The coefficients an(x, P ) are called the
Seeley-De Witt coefficients. It follows that an(x, P ) = 0 for odd n.1 A deep
Theorem by Gilkey [13, Ch 4.8] shows that the first three even coefficients of
the expansion are given by

a0(x, P ) = (4π)−m/2 Tr(id); (7.8a)

a2(x, P ) = (4π)−m/2 Tr(−R/6 id + E); (7.8b)

a4(x, P ) = (4π)−m/2 1
360

Tr
(
− 12R µ

;µ + 5R2 − 2RµνR
µν

+ 2RµνρσR
µνρσ − 60RE + 180E2 + 60E µ

;µ

+ 30ΩµνΩµν
)
, (7.8c)

where R µ
;µ := ∇µ∇µR and the same for E. Also, Ωµν and E are given by

(7.5) and (7.4) respectively and both depend only on x and P . For notational
purposes, we define

an(P ) :=
∫

M

an(x, P )
√
gdmx. (7.9)

In all cases that we will consider, the manifold will be taken without bound-
ary2: ∂M = ∅. Then the termsE µ

;µ , R µ
;µ vanish by an application of Stokes’s

Theorem on manifolds3:∫
M

A µ
;µ

√
gdmx =

∫
M

(∇µ∇µA)
√
gdmx =

∫
∂M

εµa1···am∇µA, (7.10)

where, ε :=
√
g dx1 ∧ · · · ∧ dxm. Of course, for a manifold without boundary,

the right hand side of (7.10) vanishes.

7.2 E X PA N S I O N O F T H E A C T I O N F U N C T I O N A L

Now we have the following expansion for the spectral action.

. Theorem 7.4 [Expansion of the spectral action]. If D is of the form (7.2),
the spectral action (7.1) can be expanded as

Tr f(D/Λ) =
∑
n≥0

Λm−nan(D2)
2fm−n

Γ((m− n)/2)
+ am(D2)f(0), (7.11)

for certain fn−m depending on the function f . Here m is the dimension of the
manifold under consideration.

1 E.g. see [13, Theorem 1.7.6].
2 Equivalently we can demand all functions on the manifold to have compact support, i.e. they

‘vanish at infinity’.
3 See e.g. [34], appendix B for more details on this.
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Proof. We take a test function k(u), which is the Laplace transform of another:

k(u) =
∫ ∞

0

e−suh(s)ds.

From this we can obtain an even function f(u) by taking the square of the
argument:

f(u) := k(u2) =
∫ ∞

0

e−su2
h(s)ds.

Now we can replace u by an (unbounded) operator D/Λ and take the trace
on both sides yielding

Tr f(D/Λ) =
∫ ∞

0

Tr(e−sD2/Λ2
)h(s)ds.

If D2 is of the form (7.2), we can use (7.7) and this turns into

Tr f(D/Λ) =
∑
n≥0

∫ ∞

0

[
(s/Λ2)(n−m)/2an(D2)

]
h(s)ds

=
∑
n≥0

Λm−nan(D2)
∫ ∞

0

s(n−m)/2h(s)ds. (7.12)

Now, we can use for n 6= m the Laplace transform of s(n−m)/2:

s(n−m)/2 =
1

Γ((m− n)/2)

∫ ∞

0

e−svv(m−n)/2−1dv,

whereas for n = m we use∫
h(s)ds = lim

v→0

∫ ∞

0

e−svh(s)ds = f(0).

Inserting these in (7.12), we get:

Tr f(D/Λ) = am(D2)f(0) +
∑
n≥0

Λm−nan(D2)
1

Γ((m− n)/2)

×
∫ ∞

0

[ ∫ ∞

0

e−svh(s)ds
]
v(m−n)/2−1dv.

We can make a change of variable w2 := v, which gives us

Tr f(D/Λ) =
∑
n≥0

Λm−nan(D2)
2

Γ((m− n)/2)

∫ ∞

0

f(w)wm−n−1dw

+ am(D2)f(0)

=
∑
n≥0

Λm−nan(D2)
2fm−n

Γ((m− n)/2)
+ am(D2)f(0), (7.13)

where we defined

fk :=
∫ ∞

0

f(w)wk−1dw.

2
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8A F I R S T A P P L I C AT I O N : T H E E I N S T E I N - YA N G - M I L L S
S Y S T E M

A first application of the theory presented in the previous chapters is a model
that not only outgrows a toy theory but will play a central role in what fol-
lows. We obtain the Einstein-Yang-Mills system, after we have constructed a
new spectral triple from an existing one by taking the tensor product with
an algebra of matrices.

Up to the end of this thesis M will denote a four-dimensional compact Rie-
mannian manifold without boundary. We take our spectral triple (A,H, D)
to be the tensor product of the canonical spectral triple (see Example 5.7) and
the finite spectral triple (MN (C),MN (C), 0):

A = C∞(M)⊗MN (C);

H = L2(M,S)⊗MN (C);

D = /∂M ⊗ id, with /∂M = iγµ∇S
µ ,

where the representation of the complex N ×N matrix MN (C) on MN (C) is
just by left multiplication)

We make (A,H, D) a real spectral triple by defining J : H → H by

J(ψ ⊗A) := JMψ ⊗A∗, ψ ∈ H, A ∈MN (C), (8.1)

where JM is the real structure on L2(M,S) (see Example 5.7) and A∗ is the
adjoint of A.

Note that elements of the algebraA can equally well be interpreted as ‘matrix-
valued functions’, i.e. functions from M to MN (C) by the identification

(a⊗A)(x) := a(x)A, a ∈ C∞(M), A ∈ MN (C).

Since a(x) ∈ C we have that C∞(M)⊗MN (C) ' C∞(M,MN (C)).

Keep in mind that an element χ(x) of Sx ⊗ MN (C) actually has several
indices, both spinor (indicated by a, b, etc. and running from 1, . . . , 4) as
matrix (indicated by i, j, etc. and running from 1, . . . , N ), so in component
form χ = ψ ⊗ T is can pointwise be written like χ(x)a

ij = ψ(x)a ⊗ Tij .

8.1 I N N E R FL U C T U AT I O N S

As we shall see later on, the inner fluctuations generated by the Morita
equivalence of the algebra A have an important physical interpretation.
To determine these fluctuations, we first need the local expression of the
fluctuated Dirac operator. As we have seen in Chapter 6, all inner fluctuations
are of the form (6.16), where now∑

j

aj [D, bj ] = i
∑

j

(ãj ⊗ Ãj)(γµ∇S
µ ⊗ id)(b̃j ⊗ B̃j)

= iγµ
(∑

j

ãj∇S
µ(b̃j)⊗ ÃjB̃j

)
=: γµaµ ⊗A,
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where ãj , b̃j , aµ ∈ C∞(M) and Ãj , B̃j , A ∈MN (C).

Since the dimension of the manifold is even, we have for the action of JM on
gamma-matrices ([14, § 5.3]):

JMγµJ∗M = JMγµJ−1
M = −γµ, (8.2)

where the first equality follows from JM being an isometry on an even-
dimensional manifold. Now for an operator A of the form A = γµaµ ⊗ Ã

—with aµ ∈ C∞(M)— we have

JAJ∗(ψ ⊗ T ) = JMaµγ
µJ∗M ⊗ (ÃT ∗)∗

= −aµγ
µ ⊗ TÃ∗

= −aµγ
µ ⊗ TA

by the self-adjointness of A and using that γµ∗ = γµ. Adding terms and
setting ad(A)T := [A, T ], we have

A+ JAJ∗ = γµaµ ⊗ ad(Ã), (8.3)

for the fluctuations of the Dirac operator.

Combining the expression for /∂M (4.14) and (8.3), we can state the complete,
‘fluctuated’ Dirac operator in local coordinates:

DA = ieµ
aγ

a[(∂µ + ωµ)⊗ id− iaµ ⊗ ad(Ã)] (8.4)

So, even though we started out with the trivial Dirac operator on MN (C), we
still get a non-trivial one after allowing for fluctuations!

For some of the calculations that will follow, it is most convenient to interpret
the algebra of matrices as follows. We associate with each element T ∈
MN (C) a function from M to M ×MN (C), that assigns to each point x the
value (x, T ). We then make the identification

Γ∞(M,S)⊗MN (C) ' Γ∞(M,S)⊗C∞(M) Γ(M,M ×MN (C)).

With this identification we are allowed to ‘pull’ the C∞(M)-function aµ

through the —now C∞(M)-linear— tensor product resulting in

−iγµ ⊗ aµ ad Ã =: γµ ⊗ Aµ, (8.5)

where A := −iaµ ad(Ã). The result is that A is skew-Hermitian (A∗ = −A),
rather than that it is self-adjoint.

Note that, in order for DA to respect the C∞(M)-linearity of the tensor
product, ∂µ must naturally act on its second part as well. We therefore need
to write

DA = ieµ
aγ

a[(∂µ + ωµ)⊗ id + id⊗ (∂µ + Aµ)]. (8.6)

Note that this is the same operator as in (8.4) but on Γ∞(M,S) ⊗C∞(M)

Γ∞(M,M ×MN (C)) instead of Γ∞(M,S)⊗MN (C).

44



8.1.1 The symmetries of the fluctuations

In the previous calculations we already saw —and used— that A was self-
adjoint by the demand of the self-adjointness of DA, it is thus a u(N)-valued
one-form.1 Now, U(N) is not a simple group but U(N) ' U(1) × SU(N)
resulting in u(N) ' u(1)⊕su(N) for the corresponding Lie algebras. But since
A+ JAJ−1 is in the adjoint representation [cf. (8.3)] of U(N), the scalar u(1)-
part is irrelevant when taking a Lie bracket like [A, T ] and we might therefore
just as well discard that part from the outset, keeping only a traceless object.
The symmetry group of the fluctuations is therefore effectively su(N).

8.2 T H E I N N E R P R O D U C T : F E R M I O N S

We can then define an inner product onH = L2(M,S)⊗MN (C) by combining
the inner product on L2(M,S) (4.10) with the Hilbert Schmidt inner product
on MN (C):

〈ψ1 ⊗ T1 , ψ2 ⊗ T2 〉 = 〈ψ1 , ψ2 〉L2(M,S)〈T1 , T2 〉MN (C)

:=
∫

M

(ψ1, ψ2)(x)
√
g d4xTr(T ∗1 T2),

This inner product will have a very important application in the system
under consideration as the next theorem shows.
. Theorem 8.1. The fermionic part of the Lagrangian of the SU(N) Einstein-
Yang-Mills system is given by the expression

〈χ,DAχ〉, χ ∈ H. (8.7)
Proof. Combine the inner product and the formula for the fluctuated Dirac
operator to yield

〈χ , DAχ 〉 := 〈ψ ⊗ T , iγµ[(∂µ + ωµ)⊗ id + id⊗ Aµ]ψ ⊗ T 〉

=
∑
i,j

|Tij |2
∫

M

ψ(x)γµ[i(∂µ + ωµ)ψ](x)
√
g d4x

−
∫

M

ψ(x)iγµ(x)ψ)(x)]
√
g d4xTr(T ∗[Aµ, T ]),

= i

∫
M

ψ(x)iγµ(x)[t1(∂µ + ωµ)] + t2ψ](x)
√
g d4x, (8.8)

with t1 := Tr(T ∗T ) and t2µ := Tr(T [Aµ, T ]). Upon renaming objects, this
corresponds to the expressions of the literature for the fermion part of the
Lagrangian (compare e.g. [37, § 16.2], but on a curved space). 2

Of course the value of this inner product should not depend on whether we
think of H as L2(M,S) ⊗MN (C) or as Γ∞(S) ⊗C∞(M) Γ(M,M ×MN (C)).
To make this explicit, in the latter case we would have

〈χ , DAχ 〉 := 〈ψ ⊗ T , iγµ[(∂µ + ωµ)⊗ id + id⊗ (∂µ + Aµ)]ψ ⊗ T 〉
= 〈ψ , i〈T, T 〉γµ(∂µ + ωµ)ψ 〉+ 〈ψ , i〈T, γµ(∂µ + Aµ)T 〉ψ 〉

= i

∫
M

(
ψ(x)iγµ{[Tr(T ∗T )(∂µ + ωµ)

+ [Tr(T ∗[Aµ, T ])ψ](x)}
)
√
g d4x,

which clearly equals (8.8) after using the C∞(M)-linearity of the trace and
identifying t1 and t2 with the same expressions we did earlier.

1 In the Dirac operator we pulled out factor i, causing the finite part of Aµ to be skew-Hermitian.
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8.3 T H E S P E C T R A L A C T I O N : B O S O N S

8.3.1 Finding expressions for E and Ωµν

The coefficients of the heat kernel expansion involve the operators E —
defined by (7.3)— and Ωµν , the curvature tensor of the connection on the
tensor product. So before we can proceed, we need expressions for them.

. Theorem 8.2. The operator D2
A, with DA given by (8.6), is of the form (7.2).

Proof. This calculation bears strong resemblance with the one that led to
(4.19). Writing out and using taking care of (4.11) gives

D2
A = −γµ[∇S

µ ⊗ id + id⊗ (∂µ + Aµ)][γν{∇S
ν ⊗ id + id⊗ (∂ν + Aν)}]

= −γµγν [∇S
µ∇S

ν ⊗ id + id⊗ (∂µ + Aµ)(∂ν + Aν)

+∇S
ν ⊗ (∂µ + Aµ) +∇S

µ ⊗ (∂ν + Aν)]

+ Γν
λµγ

µγλ[∇S
ν ⊗ id + id⊗ (∂ν + Aν)]

= −gµν [∇S
µ ⊗ id + id⊗ (∂µ + Aµ)][∇S

ν ⊗ id + id⊗ (∂ν + Aν)]

+ Γν [∇S
ν ⊗ id + id⊗ (∂ν + Aν)]

− 1
2γ

µγν([∇S
µ ,∇S

ν ]⊗ id + id⊗ [∂µ + Aµ, ∂ν + Aν ])

where we have used the symmetry of the Christoffel symbols (Γ•µν = Γ•νµ)
and the definition Γν := Γν

µλg
µλ. Notice the similarities with (4.19). Now for

the first of the commutators of the connections we take the result of equation
(4.18), while for the second we have

[∂µ + Aµ, ∂ν + Aν ] = ∂µ(Aν)− ∂ν(Aµ) + [Aµ,Aν ] =: Fµν (8.9)

the curvature tensor of Aµ. Inserting these results as well as the local expres-
sion for ∇S (4.12) and collecting terms of the same order of ∂µ yields:

D2
A = −[gµν(∂µ ⊗ id + id⊗ ∂µ)(∂ν ⊗ id + id⊗ ∂ν)

+ [(2ωµ − Γµ)⊗ id + 2 id⊗ Aµ](∂µ ⊗ id + id⊗ ∂µ)

+ (∂µωµ + ωµωµ − Γµωµ + 1
4R)⊗ id + id⊗ (∂µAµ + AµAµ)

+ 2ωµ ⊗ Aµ − Γµ ⊗ Aµ − 1
2γ

µγν ⊗ Fµν ].

So indeed DA is of the form (7.2), with

Kµ = (2ωµ − Γµ)⊗ id + 2 id⊗ Aµ

L = (∂µωµ + ωµωµ − Γµωµ + 1
4R)⊗ id + id⊗ (∂µAµ + AµAµ)

+ 2ωµ ⊗ Aµ − Γµ ⊗ Aµ − 1
2γ

µγν ⊗ Fµν .

which proves the theorem. 2

With this we can both determine ω′µ (and consequently Ωµν) and E uniquely.
First of all, ω′µ is given by (7.5):

ω′µ =
1
2
gµν(Kν + Γν ⊗ id) = ωµ ⊗ id + id⊗ Aµ. (8.10)

With this we find for E [cf. (7.4)]:

E = L− gµν∂νω
′
µ − gµνω′µω

′
ν + gµνω′ρΓ

ρ
µν

= [∂µ(ωµ) + ωµωµ − Γµωµ + 1
4R]⊗ id + 2ωµ ⊗ Aµ

id⊗ (∂µAµ + AµAµ) + 1
2γ

µγν ⊗ Fµν − Γν [id⊗ Aν ]

− [∂µωµ ⊗ id + id⊗ ∂µAµ]− [ωµωµ ⊗ id + 2ωµ ⊗ Aµ

+ id⊗ AµAµ] + Γµ[ωµ ⊗ id + id⊗ Aµ]

= 1
4R⊗ id− 1

2γ
µγν ⊗ Fµν .
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Next, from (7.5) we have

Ωµν := ∂µ(ω′ν)− ∂ν(ω′µ) + [ω′µ, ω
′
ν ],

where ∂µ = ∂µ ⊗ id + id⊗ ∂µ is understood. Inserting ω′µ from (8.10) yields

Ωµν = (∂µων ⊗ id + id⊗ ∂µAν)− (∂νωµ ⊗ id + id⊗ ∂νAµ)

+ [ωµ ⊗ id + id⊗ Aµ, ων ⊗ id + id⊗ Aν ]

= (∂µων − ∂νωµ + [ωµ, ων ])⊗ id

+ id⊗ (∂µAν − ∂νAµ + [Aµ,Aν ])

=
1
4
Rab

µνγab ⊗ id + id⊗ Fµν ,

where the derivation of the Rab
µνγab is taken from (4.18).

8.3.2 The spectral action

We have shown that the fluctuated Dirac operator DA meets the demands
needed to apply the theory of § 7.1, using equation (7.11). The dimension of
the manifold under consideration is 4, so we get:

Tr f(DA/Λ) ∼ 2f4Λ4a0(D2
A)+2f2Λ2a2(D2

A)+f(0)a4(D2
A)+O(Λ−2). (8.11)

In order to determine the first terms of this this expansion we need to obtain
the exact expressions of the Seeley-De Witt coefficients a0(D2

A), a2(D2
A) and

a4(D2
A) from the heat kernel expansion2. In order to do so, we need to

translate equations 7.8a, 7.8b and 7.8c into the current situation. For that,
we use Tr(A⊗B) = Tr(A) Tr(B), where the trace of A is taken over spinor
space. For the traces over the space MN (C) —denoted by TrN if otherwise
confusion could arise— we have

TrN (id) = dimMN (C) = N2.

Now for the first coefficient a0(D2
A) we immediately find

a0(D2
A) = (4π)−2

∫
M

Tr(id)TrN (id)
√
gd4x =

N2

4π2

∫
M

√
g d4x. (8.12)

Next for a2(D2
A) we have two terms. The first is

Tr
(
− R

6
⊗ id

)
= −4N2

6
R, (8.13)

where the 4 comes from the trace of the identity in spinor space and the N2

from that of MN (C). The second term is

Tr(E) =
(
N2R−

∑
µ<ν

Tr(γµγν) Tr(Fµν)
)

= N2R, (8.14)

since gµν is symmetric in its indices, but Fµν is antisymmetric. Combining
(8.13) and (8.14), we obtain

a2(D2
A) =

N2

(4π)2

∫
M

(
− 4

6
R+R

)
√
g d4x =

N2

48π2

∫
M

R
√
g d4x. (8.15)

2 Recall that an(D2
A) is an(x,D2

A) after integration.
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Next for a4(D2
A) we have quite a few terms and will deal with them one by

one.

The first four terms of (7.8c) yield us no surprises:

Tr(−12R µ
;µ ) = −48N2R µ

;µ , (8.16)

Tr(5R2) = 20N2R2, (8.17)

Tr(−2RµνR
µν) = −8N2RµνR

µν , (8.18)

Tr(2RµνρσR
µνρσ) = 8N2RµνρσR

µνρσ. (8.19)

Next, we have

Tr(RE) = R

[
1
4
RTr(id)TrN (id)−

∑
µ<ν

Tr(γµγν) Tr(Fµν)
]

= N2R2, (8.20)

where we exploited the antisymmetry of Fµν again. For the square of E we
obtain

Tr(E2) =
1
16
R2 Tr(id)TrN (id)− 2

4

∑
µ<ν

RTr(γµγν) Tr(Fµν)

+
∑

µ<ν,ρ<σ

Tr(γµγνγργσ) Tr(FµνFρσ)

=
N2

4
R2 + 4

∑
µ<ν,ρ<σ

(gµνgρσ − gµρgνσ + gµσgνρ) Tr(FµνFρσ)

=
N2

4
R2 − 2 Tr(FµνFµν). (8.21)

Here, changing to a summation over all indices gave a difference of a factor
four, and using the antisymmetry of the field tensor resulted in factor minus
two again, and the vanishing of the term containing F µ

µ . The next term is

Tr(E µ
;µ ) =

(
N2R µ

;µ −
∑
ρ<σ

gρσ Tr(F µ
ρσ;µ )

)
= N2R µ

;µ , (8.22)

by antisymmetry of Fµν . And finally, for the last term we have:

Tr(ΩµνΩµν) =
N2

16
Rab

µνR
cdµν Tr(γabγcd) +

1
2
Rab

µν Tr(γab) Tr(Fµν)

+ 4 Tr(FµνFµν)

= −N
2

2
RabµνR

abµν + 4 Tr(FµνFµν), (8.23)

where in the second step we used (A.8) and have exploited the property
Rijkl = −Rjikl.
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The only thing left, is putting all pieces together. Combining equations (8.16),
to (8.23) —but with the right coefficients (see [7.8c])— we get

a4(D2
A) =

1
16π2

1
360

∫
M

[
(60− 48)N2R µ

;µ +
(

180
4

+ 20− 60
)
N2R2

− 8N2RµνR
µν +

(
8− 30

2

)
N2RµνρσR

µνρσ

+ (30 · 4− 180 · 2) Tr(FµνFµν)
]

=
1

16π2

N2

360

∫
M

[
12R µ

;µ + 5R2 − 8RµνR
µν

− 7RµνρσR
µνρσ

]
√
g d4x− 1

24π2

∫
M

Tr(FµνFµν)
√
g d4x.

(8.24)

8.3.3 Final expression

Inserting the results from the previous section into (8.11) we have

Tr f(DA/Λ) ∼ 2f4Λ2a0(D2
A) + 2f2Λ2a2(D2

A) + f(0)a4(D2
A) +O(Λ−2)

=
1

4π2

∫
M

L(gµν , A)
√
g d4x+O(Λ−2), (8.25)

where

L(gµν , A) = 2f4Λ4N2 +
N2

6
f2Λ2R+ f(0)

N2

1440

[
5R2 − 8RµνR

µν

− 7RµνρσR
µνρσ

]
− f(0)

6
Tr(FµνFµν) (8.26)

where we have discarded boundary terms R µ
;µ , E µ

;µ since the M is without
boundary.

To summarize, we have constructed a spectral triple from the canonical
one and the finite spectral triple (MN (C),MN (C), 0), fluctuated the Dirac
operator on the former and saw that a component appeared on the latter.
That component turned out to have a su(N)-symmetry. We then took the
spectral action Tr f(DA/Λ) and made an expansion in powers of the mass-
scale Λ, according to Section 7.2 and found three terms, one is the Einstein-
Hilbert action of General Relativity and another is the Lagrangian of the
SU(N)-Yang-Mills field. Since the term 〈ψ,DAψ〉 accounts for the fermionic
propagator and interactions with the gauge field, the sum

〈ψ,DAψ〉+ Tr f(DA/Λ) (8.27)

gives the full action of the Einstein Yang-Mills system plus terms O(Λ−2).
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Part II

N O N C O M M U TAT I V E G E O M E T RY &
S U P E R S Y M M E T RY





9I N T R O D U C T I O N T O S U P E R S Y M M E T RY

It is fairly pointless to discuss supersymmetry (SUSY) —as we will be doing
in the following chapters— without having at least a certain grasp of what
is meant with it. In this chapter we will present some basic notions of
supersymmetry, mostly in the parlance of physics. We underline that it
is by no means an exhausting coverage of the field. Good —though not
very rigorous— introductions are [21], [23] and [2]. A more mathematical
approach can be found in [11].

9.1 E X T E N S I O N S O F T H E P O I N C A R E G R O U P

As is well known, all isometries —rotations, boosts and translations— of
Minkowski space R3,1 (with metric g) are described by the Poincaré group.
The Lie algebra corresponding to the 10-dimensional Poincaré group is
generated by Jµν (= −Jνµ) [boosts and rotations] and Pµ (µ, ν = 1, . . . , 4)
[translations] satisfying

[Pµ, Pν ] = 0

[Jµν , Pρ] = gνρPµ − gµρPν

[Jµν , Jρσ] = gµσMνρ − gµρMνσ − gνσMµρ + gνρMµσ.

The question was raised whether extensions of the Poincaré algebra exist to
incorporate a possible symmetry that would prove to be valuable for physics.
In [7] Coleman and Mandula proved that —given certain conditions— these
are all the symmetries of the S-matrix.

Several years later however, Haag et al. [15] showed that extending the
Poincaré algebra can possibly lead to new physics, if instead of a Lie algebra
one uses a

. Definition 9.1 [Lie superalgebra]. A Lie superalgebra G is a vector space
(over R or C) supplied with a map [., .] : G × G → G satisfying

[A,B] = −(−)|A||B|[B,A], ∀ A,B ∈ G (9.1)

and

(−)|A||C|[A, [B,C]] + (−)|C||B|[C, [A,B]]

+ (−)|B||A|[B, [C,A]] = 0 ∀ A,B,C ∈ G. (9.2)

Here |.| : G → {0, 1} denotes the order of an element, thus making G Z2-graded.
This generalizes a Lie algebra, where all elements are considered to be of
order 0.

It is then possible to extend the Poincaré algebra with a set of variables Qi
a

andQ
i

a (i = 1, . . . , N , a = 1, 2) of order 1, transforming in the ( 1
2 , 0) and (0, 1

2 )
representations of the Lorentz group respectively. This extended algebra is
called the supersymmetry algebra.

Troughout this thesis we will be considering the case N = 1 only.

Adding Q and Q, a number of new commutators have to be determined.
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. Lemma 9.2. We have the following results for the extra commutators that appear
due to adding Q and Q.

[Pab, Qc] = [Pab, Qc] = 0, (9.3a)

[Qa, Jµν ] = 1
2 (σµνQ)a, [Qa, Jµν ] = 1

2 (σµνQ)a (9.3b)

[Qa, Qb] = −2iPαβ (9.3c)

[Qa, Qb] = [Qa, Qb] = 0, (9.3d)

where we have written Pαβ = (σµ)αβPµ, σµ = (1, σ) being the Pauli matrices.
Proof. See [36, Ch. 2]. 2

. Lemma 9.3. On any representation |m, s, s3〉 (with mass m, spin s) of the
supersymmetry algebra we have

Q2|m, s, s3〉 ∼ |m, s, s3 + 1
2 〉 Q1|m, s, s3〉 ∼ |m, s, s3 − 1

2 〉. (9.4)
Proof. See [35, Ch. 2]. 2

N.B. a similar theorem can be stated (e.g.[21]) for massless representations of
the Poincaré algebra.

The above lemma suggests that supersymmetry is a relation between fermions
(with half integer spin) and bosons (with integer spin). This will indeed turn
out to be the case.

9.2 A FI R S T P E E K AT S U S Y: T H E W E S S - Z U M I N O M O D E L

Now how does this relate to field theory?
. Definition 9.4 [Supersymmetry transformation]. For a constant, two com-
ponent spinor ε, we define (cf. [35, pg. 21]) a supersymmetry transformation on
a field φ as

δεφ(x) := [(εQ) + (ε∗Q)]φ(x). (9.5)
N.B. It is important not to think of δ as some map, rather we associate with
some field a new one δεφ(x).

If we define such a δεφi(x) for each of the fields φ1, . . . , φn appearing in the
action of a certain system, we can talk about whether or not this action is
invariant under supersymmetry. For this we define:

δS[φ1, . . . , φn] :=
d
dt
S[φ1 + tδεφ1, . . . , φn + tδεφn]

∣∣∣
t=0

(9.6)

If then δS[φ1, . . . , φn] = 0 we call the system to be supersymmetry invariant.

. Example 9.5 [Wess-Zumino]. The action of a system containing a free Weyl
fermion ψ and scalar φ, is given by

S[φ, φ∗, χ, χ] = −
∫ [

|∂µφ(x)|2 + iψ(x)∗σµ∂µψ(x)
]
d4x.

One can define δε,ε∗φ(x) and δε,ε∗ψ(x) by

δε[φ(x)] := ε · χ(x). (9.7)

(implying that Qφ(x) = 0) and

δε∗ [ψ(x)] := −i[σµε∗]∂µφ(x), . (9.8)

respectively, and show that the action is invariant under (9.7) and (9.8) (see [23,
ch. 3]). Fields such as φ and ψ are called each others superpartners.

54



Actually, in proving the invariance of the Wess-Zumino model, the equation
of motion for ψ has to be used; it only holds on shell. We can make this work
off shell though as well by introducing a complex scalar fieldD (an ’auxiliary
field’) appearing in the Lagrangian through LD = |D(x)|2. Modifying (9.7)
and (9.8) slightly to contain D, supersymmetry is seen to be holding both on
shell as off shell. Furthermore we can check that (9.3c) holds by applying the
maps (9.7) and (9.8) twice.
Notice that this is a pointwise approach: at each separate point of Minkowski
space the bosonic and fermionic variables are linked to each other trough δ.

The example above is a nice illustration of a requisite in order for a system to
exhibit supersymmetry at all:

The total number of fermionic and bosonic degrees of freedom is
the same.

Upon applying the equations of motion for ψ in the Wess-Zumino model, the
number of degrees of freedom (two) match, but off shell we have four real
fermionic degrees of freedom but only two bosonic. Adding two off shell
bosonic degrees of freedom (the equations of motion for D are D = 0, thus
D does not contribute to on shell degrees of freedom), mended this problem.

N.B. In many of the more advanced treatments of supersymmetry (e.g. [35]),
ordinary space is extended to yield a superspace (xµ, θ, θ) (where θ and θ

are two-component Grassmann variables). The particle content of a certain
model is then described in terms of superfields (fields depending on all co-
ordinates of superspace). The action is recovered by integrating potentials
that are functions of these superfields over superspace by means of a Berezin
integral. Though this kind of machinery can be convenient, we will not adopt
it here.

9.3 S U P E R S Y M M E T R I C G A U G E T H E O R I E S

Many —if not all— of the theories describing nature at its most fundamental
level are gauge theories. How do supersymmetry and gauge symmetry
relate?

Since sypersymmetry links particles of different spin and gauge transforma-
tions only have an effect on the gauge (’internal’) group of the particles, we
require both transformations to be compatible. This boils down to requiring
that:

A particle and its superpartner are in the same representation of
the gauge group.

Two pivotal examples of supersymmetric gauge theories are

. Example 9.6 [Super Yang-Mills theory]. The Yang-Mills model —the
model discussed in Chapter 8 but on a flat manifold— exhibits (N = 1) super-
symmetry under suitable conditions (cf. [23, ch. 3.3]).

. Example 9.7 [MSSM]. If we consider the Standard Model (SM, see Chapter
12) —certainly a gauge theory— we can add a superpartner for each type of
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particle that appears. The theory that describes the SM-particles and their —yet
unobserved— superpartners is called the Minimally Supersymmetric Stan-
dard Model (MSSM)1. The adjective ’minimally’ is justified by the fact that the
MSSM is the supersymmetric extension of the SM with the smallest number of
additional superpartners: it is an example of N = 1 supersymmetry.

The list of the MSSM’s merits is quite impressive. See [6, ch. 1] for a short
overview.

We will be encountering both examples again in the succeeding chapters.

1 The situation is actually somewhat more involved; in addition to all Standard Model particles
having a superpartner, the MSSM requires an extra two Higgs doublets instead of only one.
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10P R E PA R I N G T H E E I N S T E I N - YA N G - M I L L S S Y S T E M F O R
S U P E R S Y M M E T RY

Having considered the Einstein-Yang-Mills system in Chapter 8 and some
basic notions of supersymmetry in Chapter 9, we would like to combine
these to obtain a realization of supersymmetry for the Einstein-Yang-Mills
system in the framework of noncommutative geometry.

We immediately stumble upon two problems. The first is that bosonic and
fermionic fields are not in the same representation of the gauge group, as
is required for supersymmetry. Indeed, in Section 8.1 we were able to re-
duce the degrees of freedom for the bosons by requiring self-adjointness and
unimodularity, and found them to be in the adjoint representation of su(N).
The fermions, on the other hand, are still of the form ψ⊗A,withA ∈MN (C).

Secondly a spinor ψ(x) ∈ Sx has eight real degrees of freedom —four compo-
nents with complex coefficients— whereas the continuous part of the gauge
potential has only four: Aµ, µ = 1, . . . , 4.

These two problems are summarized in table 10.1. We will solve them one
by one in the subsequent sections.

Currently Needed
Continuous Finite Continuous Finite

Bosons 4 N2 − 1 4 N2 − 1
Fermions 8 2N2 4 N2 − 1

Table 10.1: The number of real degrees of freedom for fermions and bosons for both the continu-
ous and finite parts of the Hilbert space. The current situation is on the left, whereas
the situation needed in order to obtain supersymmetry is given on the right.

10.1 M A J O R A N A & W E Y L F E R M I O N S

As is well known, the basic fermionic constituents of many supersymmetric
theories are Majorana fermions, particles that are their own antiparticle. One
would therefore need to restrict to those ψ ∈ H for which we can impose
the Majorana condition: Jψ = ψ, thereby reducing the degrees of freedom.
However, in the Euclidean set up, we have J2 = −1 (see table 5.1) with which
only ψ(x) = 0 is compatible. Indeed (massless) Majorana fermions do not
exist in a 4 dimensional Euclidean space, as was pointed out by Schwinger
already in 1959 [26].

Different but similar solutions of this problem were given by Van Nieuwen-
huizen and Waldron [30] and Nicolai [24]. To obtain a Lagrangian in Eu-
clidean space, whose Green functions are analytic continuations of the
Minkowskian counterpart, [30] proposes a scheme that boils down to dou-
bling the spinor degrees of freedom compared to Minkowski space. That is,
the kinetic term of a fermion Lagrangian still comprises of two Grassmann
variables (ψ and ψ), but the number of complex numbers is doubled. This is
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achieved by relaxing the (Minkowskian) reality constraint ψ := ψ†γ0 —thus
regarding ψ and ψ as two different variables.1

Instead of working with Majorana fermions in Euclidean space, Nieuw-
enhuizen and Waldron employ the fact that in Minkowski space any Majo-
rana fermion can be written as a Weyl fermion. They then take a Minkowskian
Lagrangian containing Weyl fermions, relax the constraint ψ := ψ†γ0 and
Wick rotate the Lagragian, thus obtaining the Euclidean counterpart of a
Minkowskian Lagrangian containing Majorana fermions.

So our goal is converted to finding an inner product that is suited for Weyl
spinors. To this end —and to accommodate a mass term for the neutrino—,
Chamseddine, Connes and Marcolli propose in [5] (but see also [9, §16.2]), a
different inner product compared to (8.7):

〈 Jψ1 , DAψ2 〉. (10.1)

The pleasant property of this inner product is that it allows for restricting
spinors to eigenspaces of γ, thus obtaining Weyl spinors2. Indeed, for ψ1,2 ∈
H+ = {ψ ∈ H ; γψ = ψ} and (A, H, D) of KO-dimension 2, we have

〈 Jψ1 , Dψ2 〉 = 〈 Jψ1 , Dγψ2 〉 = −〈 γJψ1 , Dψ2 〉 = 〈 Jγψ1 , Dψ2 〉.

Here, we have used in the second step that Dγ = −γD and γ∗ = γ and that
Jγ = −γJ in the third step. In our case (KO-dimension 4; Jγ = γJ) however,
this calculation would yield the disastrous result 〈Jψ1, Dψ2〉 = −〈Jψ1, Dψ2〉
and will thus not allow a reduction to Weyl spinors.

To resolve this, we retain the inner product (8.7) —with no J occurring— and
employ the ideas of [30] as illustrated above, inserting two different spinor
fields into the inner product. Then we can restrict the spinors to eigenspaces
of γ, albeit different ones. That is, for ψ ∈ H+ we have

〈χ , Dψ 〉 = 〈χ , Dγψ 〉 = −〈χ , γDψ 〉 = −〈 γχ , Dψ 〉

which again equals 〈χ,Dψ〉 provided χ ∈ H−, i.e. γχ = −χ.

In conclusion, we are able to reduce fermion degrees of freedom by the right
amount, by taking

Sf [A, ψ, χ] := 〈χ , DAψ 〉 ψ ∈ H+, χ ∈ H−, (10.2)

instead of (8.7) or (10.1) as the fermionic part of the action. The resulting
action is then in fact the same as that of [30, eq. 47].

Notice that the above arguments hold for fluctuated Dirac operators equally
well, since DAγ = −γDA if A ∈ Ω1

DA, as can easily be seen from (8.3).

Even though it might appear that we have doubled the degrees of freedom
by relaxing the reality constraint as above, the path integral is insensitive for
this step; the result should be the same regardless of whether we integrate
over ψ and ψ or over χ and ψ. (See the discussion at the end of [31] for some
details.)

1 A direct consequence of this is the loss of the Hermiticity of the Lagrangian, but see [31], pg. 2
for a short discussion on this.

2 This was in fact the very reason for Chamseddine, Connes and Marcolli to work in a spectral
triple of KO-dimension 2.
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10.2 U N I M O D U L A R I T Y F O R F E R M I O N S

We still have to reduce the finite part of the fermions from MN (C) to su(N),
to yield what —in analogy with the bosonic case— we can call unimodular
fermions.

We will do this in two steps; first from MN (C) to u(N) and second from u(N)
to su(N).

For the first part we simply use the fact that the MN (C) is the complexifica-
tion of u(N):

MN (C) ' u(N)⊕ iu(N)

or

MN (C) ' C⊗R u(N).

For the Hilbert space this implies that

H = L2(M,S)⊗C MN (C) ' L2(M,S)⊗R u(N).

Since for any u ∈ u(N) we have u = uaSa, u
a ∈ R,∀ a = 1, . . . , N2 with

respect to a basis Sa of u(N), we can write ψ(x)⊗ u ∈ Sx ⊗R u(N) in compo-
nents:

ψ(x)i ⊗ u = ψa
i ⊗ Sa, with ψa

i := ψ(x)iu
a, i = 1, . . . 4,

in components.

Note that the adjoint action of the bosons leaves this reduction invari-
ant. This is seen by applying A(x) = γµAa

µ ⊗ adTa to ψ(x) = ψb ⊗ Sb

for which the finite part is then given by [Ta, Sb]. For the latter we have
[Ta, Sb]∗ = (Sb)∗(T a)∗ − (T a)∗(Sb)∗ = −[T a, Sb]. We may conclude that
Aψ ∈ L2(M,S)⊗R u(N) whenever ψ ∈ L2(M,S)⊗R u(N).

What is left now, is the reduction from u(N) to su(N).

We do this by splitting any fermion into two parts as was done earlier for the
bosons in Chapter 8:

ψ̃ = Tr ψ̃ + ψ, ψ̃ ∈ L2(M,S)⊗R u(N),

with Tr ψ̃ ∈ L2(M,S) ⊗ u(1) and ψ ∈ L2(M,S) ⊗ su(N). Inserting these
expressions into the inner product, we get

〈 χ̃ , DAψ̃ 〉 = 〈Tr χ̃ , DA Tr ψ̃ 〉+ 〈χ , DA Tr ψ̃ 〉
+ 〈Tr χ̃ , DAψ 〉+ 〈χ , DAψ 〉.

Now the first term on the right hand side is reduced to 〈Tr χ̃,DTr ψ̃〉 since
the finite part gives us terms like [u, s] with u ∈ u(1) and s ∈ su(N), that of
course vanish. That same argument can be applied to reduce the second term
to 〈χ,DTr ψ̃〉 which then vanishes for the inner product on the finite part
gives only terms like Tr(su) = uTr s = 0. Finally the third term on the right
hand side vanishes too, while the inner product on the finite part yields only
terms like Tr(u[s1, s2]) = uTr[s1, s2], where s1, s2 ∈ su(N). We then have
obtained that

〈 χ̃ , DAψ̃ 〉 = 〈Tr χ̃ , DTr ψ̃ 〉+ 〈χ , DAψ 〉, (10.3)
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i.e. the two different parts decouple and the trace-part lacks all gauge inter-
actions; it describes a totally free fermion. We therefore discard it from the
theory, thereby retaining the unimodular part of the fermion.

Combining the two schemes presented in the preceding two sections equalize
the bosonic and fermionic degrees of freedom, thereby putting them in the
same gauge representation, thus permitting supersymmety.
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11S U P E R S Y M M E T RY I N T H E N O N - C O M M U TAT I V E
E I N S T E I N - YA N G - M I L L S S Y S T E M

The preparations being done in the previous chapter, the Einstein-Yang-Mills
system is at least suited for supersymmetry. What is left, is actually showing
that the system is supersymmetric.

We still consider the spectral triple as defined in the beginning of Chapter 8,
but in addition we take the manifold (M, g) such that all Christoffel symbols
(and thus the scalar curvature) vanish everywhere. The Dirac operator can
then locally be written as1 DA = iγµ(∂µ ⊗ + ⊗ (∂µ + Aµ)) =: iγµDµ. The
action corresponding to this system can directly be read off from the curved
case as considered in Chapter 8:

S[ψ, χ,A] =
∫

M

L(ψ, χ,A)(x)d4x+O(Λ−2) (11.1)

with Lagrangian

L(ψ, χ,A) = TrF (χ,DAψ)− f(0)
24π2

Tr(F2), with ψ ∈ H+, χ ∈ H−,

(11.2)

where F = γµγν ⊗ Fµν . Here with (. , .) we mean the Hermitian pairing
(. , .) : Γ∞(S)× Γ∞(S) → C∞(M) and by TrF the trace of the finite part.

For the constituents of this Lagrangian we have, after performing the reduc-
tion as discussed in the previous chapter:

A = Aa ⊗ adTa ∈ B(L2(M,S))⊗ ad su(N)

ψ = ψa ⊗ Ta ∈ L2(M,S)+ ⊗ su(N),

where the plus-sign means that ψ is of positive chirality. In order to see
whether this system exhibits supersymmetry, we would like to define2

δA ∈ B(H) and δψ, δχ ∈ H (11.3)

—where the expressions for δA, δψ and δχ contain their respective superpart-
ners— under which the action in (11.1) is invariant, i.e. δS[ψ, χ,A] as defined
in (9.6) vanishes.

B O S O N I C T E R M S

Let ε+/− be two constant spinors [i.e. (∂µε+/−)(x) = 0 ∀ x ∈ M ] of posi-
tive/negative chirality.

. Definition 11.1. We define δA ∈ B(H) by

δA := c1γ
µ ⊗ ad(ε−, γµψ) + c2γ

µ ⊗ ad(χ, γµε+), (11.4)

where (ε−, γµψ) = (ε−, γµψ
a)Ta is understood and ad : su(N) → ad su(N) is

simply defined by ad(Ta) := adTa .

1 Notice the difference with (8.4).
2 Even though the symbols are the same, no confusion is likely to arise.
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The values of c1,2 ∈ R are yet to be determined from the subsequent calcula-
tions.

Since the bosonic part of the action functional only depends on A, we have

δSB [A] :=
d
dt
SB [A + tδA]

∣∣∣
t=0

, (11.5)

where t is some real parameter.

Taking the bosonic part of (11.2), this means that

δ

∫
M

Tr F2d4x =
d
dt

∫
M

Tr(d(A + tδA) + [A + tδA,A + tδA]F )2d4x
∣∣∣
t=0

=
∫

M

[
2

d
dt

Tr[(dA + [A,A]F )(dtδA + [tδA,A]F

+ [A + tδA]F ) +O(t2)]
∣∣∣
t=0

]
d4x

=
∫

M

2 Tr
[
F(dδA + [δA,A]F + [A + δA]F )

]
d4x. (11.6)

Three unknown terms occur in (11.6): dδA, [δA,A]F and [A + δA]F . For the
first we have

. Lemma 11.2. With δA given by Definition 11.1 we have

dδA = 2σµν ⊗ [c1 ad(ε−, ∂µγνψ)− c2 ad(∂µγνχ, ε+)]. (11.7)

with σµν := 1
2 [γµγν − γνγµ].

Proof. The proof can be split up into two parts. First we have that

dA = c(dM

∑
i

aidMbi)⊗ adTi

= c(dxµ ∧ dxν)∂µ(ai∂νbi)⊗ adTi = 2σµν ⊗ ∂µAν . (11.8)

[e.g. (3.11)]. Applying Definition 11.1 to this expression, we simply get

dδA = 2σµν ⊗ ∂µδAν

= 2σµν ⊗ [c1 ad ∂µ(ε−, γνψ) + c2 ad ∂µ(χ, γνε+)].

Secondly, the spin connection ∇S is Hermitian, i.e.

(dψ, χ) + (ψ,dχ) = d(ψ, χ) ∀ ψ, χ ∈ L2(M,S), (11.9)

on a flat manifold. We can extend the pairing (. , .) : Γ(S)× Γ(S) → C(M) to
another (., .)′ : Γ(S)× Γ(S)⊗ Ω1(C(M)) → Ω1(C∞(M)) by

(a, b⊗ dc)′ := (a, b)dc.

Using this pairing in combination with (11.9) and then applying the map c
[cf. (4.7)] we get

γµ(∂µψ, χ) + γµ(ψ, ∂µχ) = γµ∂µ(ψ, χ). (11.10)

Now applying this to the case with one of the spinors constant, we get the
desired result. 2
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Next, for the other part of the field strength we have
. Lemma 11.3. With δA given by Definition 11.1 we have

[δA,A]F + [A, δA]F = 2σµν ⊗
(
c1 ad(ε−, γµAν , ψ) + c2 ad(γµAνχ, ε+)

)
.

(11.11)
Proof. A simple calculation shows that

[δA,A]F + [A, δA]F = γµγν ⊗ ([δAµ,Aν ] + [Aµ, δAν ])

= γµγν ⊗
(
[c1 ad(ε−, γµψ) + c2 ad(χ, γµε+),Aν ]

+ [Aµ, c1 ad(ε−, γνψ) + c2 ad(χ, γνε+)]
)

= γµγν ⊗
(
− ad[Aν , c1(ε−, γµψ) + c2(χ, γµε+)]

+ ad[Aµ, c1(ε−, γνψ) + c2(χ, γνε+)]
)
,

where we have used the fact that ad : su(N) → ad su(N) is a Lie algebra
homomorphism and that the Lie bracket is antisymmetric. Then by ordering
terms by coefficients and using that ε+/− lack a finite part and that the gauge
potential is self-adjoint (i.e. Aa

µ = Aa
µ), this yields

[δA,A]F + [A, δA]F = 2σµν ⊗
[
c1 ad(ε−, γνAµ, ψ) + c2 ad(γνAµχ, ε+)

]
.

2

We are now ready to determine the full expression for δSB [A]:
. Proposition 11.4. The map 11.1 results in

δSB [A] = −4f(0)N
3π2

[c1〈ε−, FµνγµDνψ〉+ c2〈FµνγµDνχ, ε+〉], (11.12)

for the bosonic part of the Einstein Yang-Mills action. Here 〈., .〉 denotes the inner
product on H and we have written Dµ := ∂µ + Aµ.
Proof. We use the results of the previous two lemmas by inserting (11.7) and
(11.11) into (11.6) to get

δ

∫
M

Tr F2d4x = 2
∫

M

[
Tr
[
F(dδA + [δA,A] + [A + δA])

= 4
∫

M

[
Tr(γµγνσαβ) Tr

[
Fµν

(
c1 ad(ε−, γβ∂αψ)

+ c2 ad(γβ∂αχ, ε+) + c1 ad(ε−, γβAα, ψ)

+ c2 ad(γβAαχ, ε+)
)]]

d4x. (11.13)

Employing the identity (A.7) we get

2 Tr(γµγνσαβ) = 8[δµβδνα − δµαδνβ ], (11.14)

so that (11.13) turns into

32
∫

M

[
Tr[Fµν(c1 ad(ε−, γµ∂νψ) + c2 ad(γµ∂νχ, ε+)

+
(
c1 ad(ε−, γµAν , ψ) + c2 ad(γµAνχ, ε+)]

]
d4x

= 32N
∫

M

[
Tr[Fµν(c1(ε−, γµ∂νψ) + c2(γµ∂νχ, ε+)

+
(
c1(ε−, γµAν , ψ) + c2(γµAνχ, ε+)]

]
d4x (11.15)

= 32N
∫

M

[
Tr[(c1(ε−, FµνγµDνψ) + c2(FµνγµDνχ, ε+)]

]
d4x

= 32N [c1〈ε−, FµνγµDνψ〉+ c2〈FµνγµDνχ, ε+〉]
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where we have written Dµ = ∂µ + Aµ, used the antisymmetry of Fµν and
that for su(N) the inner product is a scalar multiple of the killing form:

Tr[adT1 adT2] = N Tr[T1T2] ∀ T1, T2 ∈ su(N). (11.16)

Collecting terms, pulling Fµν into the pairing and multiplying with the
correct factor from the Lagrangian, gives the desired result. 2

F E R M I O N I C T E R M S

Now for the fermionic part of the action we can perform similar calculations.
To do so we must first define δψ and δχ.
. Definition 11.5. For ψ,∈ H+, χ ∈ H− we define δψ ∈ H+, δχ ∈ H− by

δψ := c3Fε+ = c3γ
µγνF a

µνε+ ⊗ Ta and δχ := c4Fε−. (11.17)
Here again, c3,4 ∈ R are yet to be determined.

For the fermionic part of the action we then have the following proposition.
. Proposition 11.6. With the definitions given above, we have for the fermionic
part of the action

δSF [ψ, χ,A] = −2c4〈ε−, Fµνγ
µDνψ〉 − 2c3〈Fµνγ

µDνχ, ε+〉. (11.18)
Proof. We take the same approach as in the bosonic case:

δSF [ψ, χ,A] =
d
dt
SF [ψ + tδψ, χ+ tδχ,A + tδA]

∣∣∣
t=0

=
d
dt
〈χ+ tδχ,DA+tδA(ψ + tδψ)〉

∣∣∣
t=0

= c4〈Fε−, DAψ〉+ 〈χ, δAψ〉+ c3〈χ,DAFε+〉. (11.19)

Let us look at the terms on the right hand side one by one. Writing out F ,
using the self-adjointness of DA and using the identity (A.9) we have for the
first

(Fε−, DAψ) = i([δσµγν − δσνγµ + δµνγσ − iεσµνλγ5γλ]DσFµνε−, ψ).
(11.20)

The first two terms of (11.20) add up by the antisymmetry of Fµν , whereas
the third term vanishes for that very reason. The fourth term is in fact the
celebrated Bianchi identity (e.g. [10, §18.3]):

[DµFνσ +DσFµν +DνFσµ](x) = 0 ∀ x ∈M.

We are thus left with:

c4〈Fε−, DAψ〉 = 2c4i(γνDµFµνε−, ψ)

By exactly the same reasoning we can rewrite the third term of (11.19). Now
we are still left with the second term of (11.19), which yields for each point
x ∈M :

TrF (χ, δAψ)(x) = fabc(χa, γµψc)[c1(ε−, γµψ) + c2(χ, γµε+)](x).
(11.21)

Both terms are seen to vanish separately using the antisymmetry of fabc and
a Fierz transformation (see Appendix A.1 for all the details). Adding the
results for the first and third terms of (11.19) yields the expression:

δSF [χ, ψ,A] = 2c4i〈γνDµFµνε−, ψ〉+ 2c3i〈χ, γνDµFµνε+〉
= −2c4i〈ε−, Fµνγ

µDνψ〉 − 2c3i〈Fµνγ
µDνχ, ε+〉.

2
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Then adding the separate results for the fermions and bosons, we get:

. Theorem 11.7. The action given by (11.1) is a supersymmetry invariant, given
(11.7) and (11.17), provided that 3π2c4 = 2if(0)Nc1 and 3π2c3 = 2if(0)Nc2.

Proof. With Propositions 11.4 and 11.6, this boils down to nothing more than
comparing the expressions (11.12) and (11.18) to conclude that

δSF [χ, ψ,A] + δSB [A]

= −
(

4f(0)N
3π2

c1 + 2ic4

)
〈ε−, FµνγµDνψ〉

−
(

4f(0)N
3π2

c2 + 2ic3

)
〈FµνγµDνχ, ε+〉 = 0 (11.22)

iff 2f(0)Nc1 = −3iπ2c4 and 2f(0)Nc2 = −3iπ2c3. 2

11.1 S U P E R S Y M M E T RY U P T O T H E P L A N C K S C A L E

In the previous chapter we have demonstrated that the action of the Yang-
Mills system was invariant under supersymmetry. Despite that the signature
of the manifold was Euclidean instead of Minkowskian —in contrast to prac-
tically all other treatments— resulted in several difficulties, the methods and
results were essentially not that different from the canonical approach of the
subject, apart from some notational matters perhaps. The point where the re-
sults of the noncommutative and canonical approaches to field theory differ
most, is that the spectral action of the former contributes much more to the
action than only (11.1). In terms of a series in Λ, we only took the termsO(Λ0)
[i.e. a4(D2

A)] into account in the previous Chapter. But we have absolutely
no guaranty that the spectral action as a whole is supersymmetric! There’s
no a priori reason that the terms on all orders of Λ —together with the inner
product— are invariant (given (11.4) and (11.7)) —or that their sum is at least.

The consequence of additional terms generated by (11.4), (11.7) and/or
(11.17) would be to alter these expressions in order to preserve supersymme-
try, if that is possible. But let’s not panic too soon and get to work.

Since all fermionic contributions to the Lagrangian are of order Λ0 (originat-
ing from the inner product), we can focus our attention solely on the spectral
action. As future input for the latter we have

. Proposition 11.8. The square of the operator DA+tδA with δA given by

δA = γµ ⊗ [c1(ε−, γµψ) + c2(χ, γµε+)], ψ ∈ H+, χ ∈ H− (11.23)

(with c1, c2 determined in the previous section) is of the form

D2
A+tδA = −[gνν∂

µ∂ν +Kµ∂µ + L] (11.24)

for certain Kµ, L ∈ End(H).

Proof. We will explicitly calculate

D2
A+tδA = [D +A+ tδA+ J(A+ tδA)J∗]2

= D2
A + i{DA, δA}t− (δA)2t2, (11.25)
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where δA+ JδAJ = iδA was already determined to yield

γµ ⊗ ad[(ε−, γµψ) + (χ, γµε+)]. (11.26)

For the rest of this chapter we only take the first term of δA (featuring ψ)
into account and remark that the arguments and results for the other term
are analogous. We first focus on the second term on the right hand side of
(11.25). Since the manifold under consideration is flat, we get

{DA, δA} = [iγν(∂ν ⊗ id + id⊗ (∂ν + Aν))][c1γµ ⊗ ad(ε−, γµψ)]

+ [ic1γµ ⊗ ad(ε−, γµψ)][γν(∂ν ⊗ id + id⊗ (∂ν + Aν))]

= ic1γ
νγµ ⊗ ad(ε−, γµ(∂ν + Aν)ψ) + 2ic1 ⊗ ad(ε−, γµψ) ∂µ

+ 2ic1 ⊗ ad(ε−, γνψ) Aν .

Plugging this expression into (11.25), we receive

Kµ → Kµ′ = Kµ + 2c1 ⊗ ad(ε−, γµψ)t,

L→ L′ = L+ c1γ
νγµ ⊗ ad(ε−, γµ(∂ν + Aν)ψ)t

+ 2c1 ⊗ ad(ε−, γνψ)Aνt+O(t2), (11.27)

compared to the values of K and L for only DA. 2

This result is useful, for it allows us to perform a the heat kernel expansion,
analogous to (7.7). After done that, we possess the correct machinery to see
to what extent each of the coefficients an(D2

A) (for n = 0, 2, 4) is invariant
under supersymmetry. Since the spectral action is just part of the total action,
we can adopt a definition for the supersymmetry transformation for the
former, quite similar to (11.5).

. Definition 11.9. The supersymmetry transformation for the spectral action is
defined as

δTr f(DA/Λ) :=
d
dt

Tr f(DA+tδA/Λ)
∣∣∣
t=0

.

We can again make a Laplace transformation of the spectral action and
formally expand the resulting exponential in a Laurent series in Λ:

δTr f(DA/Λ) =
∫ ∞

0

d
dt

Tr e−s(DA+tδA/Λ)2h(s)ds
∣∣∣
t=0

∼
∑

n

d
dt
an(DA+tδA)

∣∣∣
t=0

Λ4−n

∫ ∞

0

snh(s)ds,

where in the last step we have used the heat kernel expansion (7.7), which is
justified by the theorem above. The objects that are of particular interest are
thus

d
dt
an(D2

A+tδA)
∣∣∣
t=0

=
d
dt
an(D2

A + {δA, DA}t+O(t2))
∣∣∣
t=0

, (11.28)

the first of which are given by (7.8a), (7.8b) and (7.8c). The E and Ωµν ap-
pearing in these formulas are of course different than before, but still related
to Kµ and L (as given above) in the same way; by (7.4) and (7.5).
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Short calculations —similar to those in Section 8.3.1— show that the changes
of Kµ to Kµ′ and L to L′ have the following effect on the variables E and
Ωµν :

E → E′ = E + c1γ
µγν ⊗ ad(ε−, γνDµψ)t

− c1id⊗ ad(ε−, γµDµψ)t+O(t2)

Ωµν → Ω′µν = Ωµν + ic1id⊗ [ad(ε−, γνDµψ)

− c1 ad(ε−, γµDνψ)]t+O(t2).

Having found these particular expressions, we are ready to determine (11.28)
for n = 0, 2, 4.
. Theorem 11.10. Under the supersymmetry map from Definition 11.1 we have
for the first three coefficients of the heat kernel expansion:

d
dt
a0(D2

A+tδA)
∣∣∣
t=0

= 0 (11.29a)

d
dt
a2(D2

A+tδA)
∣∣∣
t=0

= 0 (11.29b)

d
dt
a4(D2

A+tδA)
∣∣∣
t=0

=
c1

6π2
〈ε−, FµνγνDµψ〉, (11.29c)

where with 〈., .〉 the inner product on H is meant.
Proof. The first coefficient a0(D2

A) is trivial: the identity does not transform
under supersymmetry. For the second coefficient, there is only one contribu-
tion [see (7.8b)];

d
dt

Tr(E′)
∣∣∣∣
t=0

= c1 Tr[γµγν ⊗ ad(ε−, γνDµψ)− id⊗ ad(ε−, γµDµψ)]

= 0.

The results for the third coefficient (7.8c) should of course be no different
than (11.12), but it might be instructive to calculate it explicitly anyway:

δa4(D2
A) =

1
192π2

d
dt

∫
M

Tr
(
6E′2 + Ω′µνΩ′µν)d4x

∣∣∣∣
t=0

. (11.30)

We use that E = − 1
2γ

µγν ⊗ Fµν and get for the first term of (11.30):

d
dt

∫
M

TrE′2d4x

∣∣∣∣
t=0

= −2
1
2
c1

∫
M

[
Tr
[
γλγσγµγν ⊗ Fλσ ad(ε−, γνDµψ)

− γµγν ⊗ Fµν ad(ε−, γλDλψ)
]]

d4x

= −4c1
(
δλνδσµ − δλµδνσ

)
×
∫

M

Tr[Fλσ ad(ε−, γνDµψ)]d4x

= 8c1
∫

M

Tr
[
Fµν ad(ε−, γνDµψ)]d4x

= −8Nc1〈ε−, FµνγµDνψ〉,

where at various points we have used that F is antisymmetric. For the second
term in (11.30) we have with Ωµν = 1⊗ Fµν

d
dt

∫
M

TrΩ′2µνd4x

∣∣∣∣
t=0

= 2c1
∫

M

Tr
[
1⊗ Fµν ][id⊗ ad(ε−, γ[νDµ]ψ)]

]
d4x

= 16c1
∫

M

Tr
[
Fµν ad(ε−, γνDµψ)

]
d4x

= −16Nc1〈ε−, Fµνγ
µDνψ〉.
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We thus get for (11.30):

δa4(D2
A) = − c1

192π2
(48 + 16)N〈ε−, FµνγµDνψ〉

= − c1
3π2

〈ε−, FµνγµDνψ〉.

2

So the theorem shows that both a0(D2
A) (proportional to Λ4) and a2(D2

A)
(proportional to Λ2) are supersymmetry invariants, and the result for a4(D2

A)
is as expected. That means that for at least all positive powers of Λ the inner
product and the spectral action together are supersymmetry invariant. These
results are not only not that bad, they are in fact all we could have hoped for:
we can let Λ run up to the Planck scale without getting into trouble.

Note that we have not considered terms an(D2
A) for n ≥ 6, not only be-

cause they are less interesting from a physical point of view but also for the
pragmatic reason that their specific expressions in terms of E and Ωµν are
enormous at best (e.g. [13, pg 327]).

Though these results are encouraging, it is still somewhat unsatisfactory
that we had to resort to a heat kernel expansion; a question whether or not
the full spectral action is supersymmetry invariant remains to be answered.
As was noted [3] by A. Chamseddine, noncommutative geometry treats
bosons (spectral action) and fermions (inner product) on such a different
footing, that it seems unlikely that noncommutative field theory is a truly
supersymmetric theory. Hence, any attempt (such as [27]) that combines
both the inner product and the spectral action into a single expression is well
worth studying from the perspective of supersymmetry.
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Part III

O N N O N C O M M U TAT I V E G E O M E T RY & T H E
M S S M





12T H E S TA N D A R D M O D E L F R O M N O N C O M M U TAT I V E
G E O M E T RY

The list of merits of noncommutative geometry is long, the derivation of the
full Standard Model (SM) Lagrangian being the most prominent by far from
a physical point of view. In this chapter we will very briefly sketch how this
Lagrangian is derived from noncommutative geometry. The main goal is to
touch upon a number of the steps leading to the Standard Model and to put
the next chapter into perspective (the MSSM is after all an extension of the
SM), rather than providing a detailed and thorough mathematical treatment.
For details and a complete review we refer the reader to [9, Ch. 12 – 17], on
which this chapter is primarily based.

As in the case of the Einstein-Yang-Mills model, a spectral triple is defined
as the tensor product of the canonical spectral triple on a Riemannian spin
manifold and a suitably chosen finite spectral triple (AF ,HF , DF , JF , γF ).
The former is dealt with extensively in the Preliminaries. We will focus
primarily on the latter, only now and then referring to the spinor part.

12.1 T H E A L G E B R A

The starting point is defining the algebra:

ALR := C⊕HL ⊕HR ⊕M3(C) (12.1)

where H denotes the algebra of the quaternions, which can be represented by
2× 2 matrices:

H :=
{(

α β

−β α

)
: α, β ∈ C

}
.

(The subscripts L and R have no specific meaning yet.) The algebra is
involutive by the involution on its components. That is, for an element
(λ, qL, qR,m) ∈ ALR involution is defined by

(λ, qL, qR,m)∗ = (λ, q†L, q
†
R,m

∗) ∈ ALR.

Here q† denotes the involution on quaternions:(
α β

−β α

)†
:=
(
α −β
β α

)
12.2 T H E R E P R E S E N TAT I O N S O F T H E A L G E B R A

We will characterize the various representations of ALR by their dimension,
written in boldface: 3 denotes the three dimensional representation of M3(C)
and so forth. In addition, a subscript L or R is used to indicate whether HL

or HR acts on it. We denote by Eo the contragredient (see Definition 2.14) of
a module E : 3o is the contragredient of 3.
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We then construct the finite Hilbert space as follows. Let the representation
E of ALR be given by

E := 2L ⊗ 1o ⊕ 2R ⊗ 1o ⊕ 2L ⊗ 3o ⊕ 2R ⊗ 3o, (12.2)

we take the direct sum with its opposite representation and take three copies
of it:

HF := (E ⊕ Eo)⊕3. (12.3)

We can also writeHF = Hf⊕Hf whereHf = E⊕E⊕E andHf = Eo⊕Eo⊕Eo.
This notation will become more clear later on.

The number of copies is put in by hand, but the construction of E ⊕ Eo is
by no means ad hoc, though, as presented here, it might so. We refer to [9,
Ch. 13] for the details.

We make the finite spectral triple real and even by defining an isometry JF

and grading operator respectively. The first is given by

JF : E ⊕ Eo → E ⊕ Eo, JF (f, f ′) := (f ′, f), (12.4)

that is, JF both interchanges and conjugates the components of the different
elements. The grading on the other hand is defined with respect to the
isometry

γF := c− JF cJF c = (0, 1,−1, 0). (12.5)

This has the property that

γF fL = fL and γF fR = −fR

for left and right handed particles respectively. (From the representations as
above we can directly see that the first term of (12.5) gives a sign to left and
right handed elements, whereas the second term does the same on Eo.)

In addition it is easy to check that

J2
F = 1 and JF γF = −γFJF ,

implying that we are dealing with a finite spectral triple of KO-dimension 6
(cf. table 5.1).1

Now with a bit of foresight the compatibility between the algebra and the
Dirac operator is investigated. It follows that if the finite Dirac operator will
have components that map fromHf toHf , i.e. it has off diagonal components2

we are in fact restricted to a subalgebra of ALR instead. The algebra AF of
maximal dimension that allows for off diagonal Dirac operators is seen so be
of the form

AF := {(λ, q, λ,m) : λ ∈ C, q ∈ H,m ∈M3(C)}.

We continue with this algebra.

1 This has the effect that the tensor product of the two spectral triple is of KO-dimension
(4 + 6) mod 8 = 2; see the end of Chapter 5.

2 As we will see, this is something we would want.

72



These representations (12.2) have an interpretation of course. If we write
|↑〉L,R and |↓〉L,R for the two basisvectors of HL,R, we can define (the finite
part of) the left and right handed up-quarks uL,R by

uL := |↑〉L ⊗ 3o ⊂ 2L ⊗ 3o, and uR := |↑〉R ⊗ 3o, (12.6)

respectively. The left and right handed down-quarks are then given by

dL := |↓〉L ⊗ 3o, and dR := |↓〉R ⊗ 3o.

In a similar fashion we can take

νL,R := |↑〉L,R ⊗ 1o and eL,R := |↓〉L,R ⊗ 1o

for the (left/right handed) neutrino and electron respectively. Together they
form the leptons. The antiparticles of these particles are then elements of
the opposite representation Eo. This is in accordance with the definition of
JF , sending particles to antiparticles and vice versa. The different copies of
course represent the three generations of particles.

In the notation as introduced above, we can define the precise representations
of the algebra. On the quarks we have, for a = (λ, q, λ,m) ∈ AF

a

(
uL

dL

)
:= qt

(
uL

dL

)
, a

(
uR

dR

)
:= qt(λ)

(
uR

dR

)
,

where qt denotes the transpose of q and with q(λ) we mean the embedding
of the scalar λ in a quaternion q(λ):

q(λ) :=
(
λ 0
0 λ

)
.

Note that the quaternions act only on the 2-part, leaving the 3o-part unaf-
fected.

On the leptons we define the representation in the same way:

a

(
νL

eL

)
:= qt

(
νL

eL

)
a

(
νR

eR

)
:= qt(λ)

(
νR

eR

)
.

We have a representation of the algebra on the antiparticles as well. For any
antilepton3 l it is given by

a l := λ l,

acting on the 1 part. For an antiquark q on the other hand, we have

a q := mq, (12.7)

acting on the 3 of course.

The isometry JF defined above then has the effect that the particles not only
have a left representation but also a right (or opposite) representation by

πo(m) := JFπ(m∗)J∗F .

3 We only use this particular notation here to emphasize that we are dealing with an antiparticle.
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For example, the representation (12.7) on the antiquarks causes a right repre-
sentation on the quarks by

πo(m)f := JFπ(m∗)JF f = mtf, f ∈ 2L,R ⊗ 3o, (12.8)

which can be written as fm as well.

N.B. The identification of the various standard model particles is further
backed up if one considers

SU(AF ) := {u ∈ AF : uu∗ = u∗u = 1,det(u) = 1}.

Not only do you find

SU(AF ) ∼ U(1)× SU(2)× SU(3)

but, using the adjoint action u(u∗)o of all elements u ∈ U(1) < SU(AF ), you
get precisely the correct hypercharges for the fermions ([9, § 13.3]).

12.3 T H E D I R A C O P E R AT O R S & T H E I R I N N E R FL U C T U AT I O N S

As we mentioned in chapter 5, a Dirac operator on the tensor product of the
canonical and finite spectral triple is of the form:

DA = /∂M ⊗ id + γ5 ⊗DF .

For the first part we take the canonical Dirac operator /∂M = ĉ ◦∇S which
was seen to locally equal iγµ(∂µ + ωµ). For the Dirac operator on the finite
spectral triple we introduce a 3×3 matrix Υu that mixes between generations
(in this case between the up, charm and top quarks). In a similar fashion
Υe,Υν and Υd can be introduced. Then DF is taken to be

DF :=
(
S T ∗

T S

)
, (12.9)

with S given by

S := Sl ⊕ (Sq ⊗ id3), (12.10)

where

Sl : 2R ⊗ 1o ⊕ 2L ⊗ 1o → 2R ⊗ 1o ⊕ 2L ⊗ 1o

is of the form

Sl :=


0 0 Υ∗

ν 0
0 0 0 Υ∗

e

Υν 0 0 0
0 Υe 0 0

 (12.11)

on the basis (νR, eR, νL, eL). The map

Sq ⊗ id3 : 2R ⊗ 3o ⊕ 2L ⊗ 3o → 2R ⊗ 3o ⊕ 2L ⊗ 3o

acts trivially on 3o and Sq is given by the same expression as (12.11) but with
Υν → Υu and Υe → Υd.

74



For the map T —the off diagonal part of the Dirac operator we discussed
earlier— a fifth 3× 3 matrix ΥR is introduced, after which the map

T : |↑〉R ⊗ 1o → 1⊗ |↑〉oR,

connecting the neutrinos with the antineutrino, is given by T (νR) := ΥRνR

on the right handed neutrinos and T = 0 everywhere else.

Again this might seem kind of ad hoc, but in fact Connes and Marcolli make
a classification of Dirac operators. It turns out that —given the algebra AF —
any Dirac operator that meets all requirements such as the order one condi-
tion (5.6) is of this form.

With the representations of the algebra being defined, the inner fluctuations
of these two Dirac operators can be determined.

For the canonical Dirac operator we can define for ai, a
′
i ∈ A where A :=

C∞(M,AF ), i.e. ai(x) = (λi, qi,mi), a′i(x) = (λ′i, q
′
i,m

′
i) ∈ AF

Ω1
/∂M
A 3 A(1,0)(x) :=

∑
i

ai[/∂M , a′i](x)

=
∑

i

(
λi /∂M (λ′i), qi /∂M (q′i),mi /∂M (m′

i)
)
, (12.12)

acting diagonally on generations. Here we have introduced the notation
A(1,0) to distinguish the fluctuations coming from the canonical Dirac opera-
tor from those coming from the finite one (A(0,1)).

By requiring self-adjointness for the fluctuated Dirac operator and further-
more demanding that the third component of (12.12) has vanishing trace,
it can be shown ([9], Proposition 1.207) that these inner fluctuations can be
parametrized by three gauge fields (Λ, Q, V ), having U(1), SU(2) and SU(3)
symmetry respectively.

Then there is the finite Dirac operator DF . Given a set of elements

ai(x) =
(
λi,

(
α β

−b α

)
i

,

(
λ 0
0 λ

)
i

,mi

)
,

a′i(x) =
(
λ′i,

(
α′ β′

−b′ α′

)
i

,

(
λ′ 0
0 λ

′

)
i

,m′
i

)
,

it can be shown that its inner fluctuations on Hf are of the form∑
i

ai[γ5 ⊗DF , a
′
i](x)

∣∣∣
Hf

= γ5 ⊗
(
A(0,1)

q +A
(0,1)
l

)
(12.13)

acting on quarks and leptons respectively, with

A(0,1)
q =

(
0 X

X ′ 0

)
⊗ id3,

where id3 denotes the identity on the color sector. Here X and X ′ are given
by

X =
(

Υ∗
uφ1 Υ∗

uφ2

−Υ∗
dφ2 Υ∗

dφ1

)
, X ′ =

(
Υuφ

′
1 Υdφ

′
2

−Υuφ′2 Υdφ′1

)
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respectively. That is, as far as the quark sector is concerned, the inner fluctua-
tions of DF act trivially on the color sector, but mix between generations. For
the leptonic part of the fluctuations, we have

A
(0,1)
l =

(
0 Y

Y ′ 0

)
,

with Y and Y ′ the same as for the quark sector but with the replacements
Υu → Υν and Υd → Υe.

Here the fields φ = φ1 + jφ2, φ
′ = φ′1 + jφ′2 ∈ C∞(M,H) are quaternion-

valued fields, defined in terms ai(x) and a′i(x):

φ1 :=
∑

i

λi(α′i − λ′i), φ2 :=
∑

i

λiβ
′
i

φ′1 :=
∑

i

αi(λ′i − α′i) + βiβi, φ′2 :=
∑

i

βi(λ′i − α′i)− αiβ
′
i.

Note that, in contrast to S, the map T does not generate any inner fluctua-
tions.

The astonishing part is that having defined all the contents of the spectral
triple completely, everything else comes out naturally! From the data of the
spectral triple we can define the fluctuations of the Dirac operator(s). Having
defined these, the inner product and spectral action

〈Jψ ,DA ψ 〉+ Tr(f(DA/Λ)) (12.14)

(where for the latter a heat kernel expansion is used) together produce the
action functional. Of course, this is no picknick: performing the actual
calculations requires care and patience, and a lot of problems and subtleties
pop up along the way, but in the end you come up with an action: the full
action of the Standard model, including the Higgs mechanism —the Higgs
field being described by the different φ′s— neutrino mass and everything
coupled to gravity!

76



13S U P E R - Q C D

As a first step on the long road towards the MSSM, we consider a somewhat
simplified version of QCD —the theory of quarks and gluons. For that we
will be regarding only one of three generations of particles and we leave all
leptons and weak gauge bosons out. Consequently we in fact have only one
quark which is described by 3o instead of 2L/R⊗3o (see (12.6)). Nevertheless,
this model retains many of the characteristic features of QCD itself. It is this
simplified version of QCD that we try to make supersymmetric by adding
the superpartners of the particles involved.

13.1 T H E S E T U P

If we want any chance of finding supersymmetry, we need to enlarge the
finite part of the Hilbert space such that it contains not only the quarks and
antiquarks, but the gluinos1 —the supersymmetric partners of the gluons
and therefore fermions— as well. To this end, we define the finite spectral
triple as follows.

. Definition 13.1. Let the finite real spectral triple (AF ,HF , DF , JF ) be given
by

· AF := M3(C);

· HF := 3 ⊕M3(C) ⊕ 3o, i.e. we add the algebra as a vector space to the
Hilbert space. Note that we have interchanged the the M3(C) representations
of quarks and antiquarks compared to the previous Chapter [cf. (12.7) and
(12.8)]. This has no physical consequences though. Troughout this chapter we
will use that as a vector space M3(C) ' C9;

· DF is given by

DF :=

 0 d 0
d∗ 0 e∗

0 e 0

 , (13.1)

with d : M3(C) → 3 and e : M3(C) → 3o (both linear) yet to be defined.
Note that DF is self-adjoint by construction.

· JF is defined by

JF (q1, g, q2) := (q2, g∗, q1), (13.2)

that is, for 3 and 3o JF acts the same as in the SM [see (12.4)] and for M3(C)
it is the same as in the Einstein-Yang-Mills model (8.1) —with N = 3.

Note that we leave the algebra untouched; the gauge group should for the
superpartners be SU(AF ) ' SU(3) too.

For the representation of AF on HF we take

π = π1 ⊕ π2 ⊕ π′1 (13.3)

1 We will postpone the (partial) justification of this terminology until §14.4.
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where

π1(m)q := mq ∀m ∈M3(C), q ∈ 3,

π2(m)g := mg ∀m ∈M3(C), g ∈M3(C)

and π′1 = 1.

As with J , the representation of the algebra is as expected: on 3 and 3o it
is —up to interchanging 3 and 3o— the same as in the Standard Model ([9,
§13.2]), on M3(C) it is the same as in the EYM model .
. Lemma 13.2. With the representation as above, we have for the opposite repre-
sentation

πo = πo
1 ⊕ πo

2 ⊕ π′1
o
, (13.4)

with

πo
2(m)g = gm, ∀m ∈M3(C), g ∈M3(C)

π′1
o(m)q = mtq, ∀m ∈M3(C), q ∈ 3o,

(13.5)

and π1
o = 1.

Proof. This follows directly from the definition πo(m) = JFπ(m∗)J∗F . 2

13.2 I N N E R FL U C T U AT I O N S

Everything being properly defined now, the only objects that can still be
varied are d and e, appearing in DF . We are in fact restricted even further, as
is seen by the next lemma.
. Lemma 13.3. With JF as in (13.2) the requirement DFJF = JFDF uniquely
determines e in terms of d:

e(g) = d(g∗) ∀ g ∈M3(C). (13.6)
Proof. Applying DFJF and JFDF on an element (q1, g, q2), gives —amongst
others— the equality (13.6), which indeed fixes e completely. 2

So actually, specifying d fixes DF completely.
. Definition 13.4. Let d : M3(C) → 3o be such that

d(g) = gv ∀ g ∈M3(C). (13.7)

Here, v is a fixed 3-tuple which depends on d.
This definition for d corresponds to d∗(q) = qvt [i.e. (qvt)ij = qivj] for the
adjoint of d:

〈d(g), q〉3 =
∑

i

(gv)iqi =
∑
i,j

(g∗)jivjqi

= Tr(g∗qvt) = 〈g, qvt〉 ∀ g ∈M3(C), q ∈ 3o. (13.8)

Here v is the same as in (13.7). Note that for any two 3-tuples v1, v2 and a
matrix m we have m(v1vt

2) = (mv1)vt
2 and (v1vt

2)m = v1(mtv2)t.

By Lemma 13.3 this gives for the map e:

e(g) = gtv ∀g ∈M3(C),

e∗(q) = vqt ∀q ∈ 3.

where again v is the same as in (13.7).

An argument that this DF is bona fide is provided by the next lemma.
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. Lemma 13.5. Given that π′1 = πo
1 = 1, the finite Dirac operator with d and e as

above satisfies the order one condition (5.6).

Proof. Writing out (5.6) and using π′1 = πo
1 = 1 gives the simultaneous

demands:

dπ2(m) = π1(m)d, dπ2(m)πo
2(n) = π1(n)dπo

2(m),

d∗π1(m) = π2(m)d∗, πo
2(m)d∗π1(n) = πo

2(n)π2(m)d∗,

e∗πo
1
′(m) = πo

2(m)e∗, π2(m)e∗πo
1
′(n) = πo

2(n)π2(m)e∗,

eπo
2(m) = πo

1
′(m)e, eπ2(m)πo

2(n) = πo
1
′(n)eπ2(m),

which are easily seen to be met for the given representations and maps d and
e. 2

. Theorem 13.6. The inner fluctuations A(0,1) and JF (A(0,1))∗J∗F of DF ,2 with
d and e as above, are of the form

A(0,1) =
∑

i

0 0 0
0 0 π2(mi)(1− π2(ni))◦e∗

0 e◦(π2(ni)− 1) 0

 (13.9)

and

JFA
(0,1)J∗F =

∑
i

 0 d◦πo
2(mi)(1− πo

2(ni)) 0
(πo

2(ni)− 1)◦d∗ 0 0
0 0 0


(13.10)

with ni,mi ∈M3(C).

Proof. We have A(0,1) :=
∑

i π(mi)[DF , π(ni)] [cf. (6.13)] which, applied to
an element (q1, g, q2) ∈ HF , gives∑

i

π(mi)[DF , π(ni)](q1, g, q2)

=
∑

i

(
mi[d(nig)− nid(g)],mi[d∗(niq1)− nid

∗(q1)]

+mie
∗(q2)−minie

∗(q2), e(nig)− e(g)
)

=
∑

i

(
0,mi[1− ni]e∗(q2), e((ni − 1)g)

)
(13.11)

corresponding to (13.9). Note that the specific form of d causes its inner
fluctuations to vanish.

For the other part, JF (A(0,1))∗J∗F , we have∑
i

JF (π(mi)[DF , π(nj)])∗J∗F = −
∑

i

JF [DF , π(n∗i )]π(m∗
i )JF

= −
∑

i

[DF , π
o(ni)]πo(mi),

2 We use the notation A(0,1) to distinguish the inner fluctuations of DF from those of the Dirac
operator on the spinor part.
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where we have used that DFJF = JFDF . We therefore get

JF (A(0,1))∗JF (q1, g, q2)

=
∑

i

(
− d(gmini)− d(gmi),−d∗(q) + d∗(q1)ni

− e∗(nt
im

t
i) + e∗(mt

iq2)ni,−e(gmini) + nt
ie(gmi)

)
=
∑

i

(
d(gmi(1− ni)), d∗(q1)(ni − 1), 0

)
. (13.12)

This time, it’s the inner fluctuations of e that vanish. 2

These expressions are not that insightful, though. The next lemma sheds
some light on the nature of the fluctuations. In analogy with A(0,1) we intro-
duce the notationD(0,1) := DF +A(0,1) +JF (A(0,1))∗J∗F to make a distinction
between the finite Dirac operator and the (fluctuated) Dirac operator D(1,0)

on the spinor part.

. Lemma 13.7. Requiring self-adjointness for A(0,1) gives

D(0,1) = g3

 0 Aeq 0
A∗eq 0 B∗eq
0 Beq 0

 (13.13)

with

A∗eq(q) = qq̃
t
, Aeq(g) = gq̃,

B∗eq (q) = q̃qt, Beq(g) = gtq̃.

for some q̃ ∈ C3. Here, g3 is the QCD-coupling constant.

Proof. Requiring (13.9) and its counterpart (13.10) to be self-adjoint yields
the demand∑

i

n∗i − 1 =
∑

i

mi(1− ni), (13.14)

for the elements of the algebra.

If we add the expressions (13.11) and (13.12) for A(0,1) and JFA
(0,1)J∗F re-

spectively to that of DF , we get

D(0,1)(q1, g, q2)

=
∑

i

(
d(g(1 +mi −mini)), d∗(q1)ni + (1 +mi −mini)e∗(q2), e(nig)

)
=
∑

i

(
g(1 +mi −mini)v, q1(n∗i v)

t + [(1 +mi −mini)v]qt
2, g

tn∗i v
)

= g3
(
gq̃, q1q̃

t
+ q̃qt

2, g
tq̃
)

(13.15)

after having defined

q̃ := g−1
3

∑
i

[1 +mi(1− ni)]v = g−1
3

∑
i

n∗i v. (13.16)

It is clear that (13.15) corresponds to (13.13). 2
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We identify q̃ and q̃ as the squark and anti squark respectively.

N.B. We will occasionally write D(0,1)eq instead of D(0,1) to indicate that/how
the Dirac operator depends on q̃.

Note that if we take the tensor product of the spectral triple as in Defini-
tion 13.1 with the canonical one, a squark becomes in fact an element of
C∞(M,C3), the calculations above only holding on each separate x ∈M .

There is one more thing to check. The demand of self-adjointness for the
inner fluctuations of the finite Dirac operator put constraints on the elements
of the algebra, as was the case for those of the canonical Dirac operator. Are
these constraints compatible? The answer is positive, as was pointed out by
A. Connes, A.H. Chamseddine and M. Marcolli [5, §3.5.3] and their argument
can be seen to be applicable equally well to our case.

13.3 T H E L A G R A N G I A N

Having found an expression for D(0,1), we are in a position to determine
all additional terms in the Lagrangian that result from adding a finite Dirac
operator and enlarging the Hilbert space with M3(C). The full spectral triple
is (as in the models discusses previously) taken to be the tensor product of
the canonical and finite spectral triples. In contrast to the previous chapters,
we may take the spin manifoldM to be curved again, with scalar curvatureR.

We recall that the full Dirac operator —including its inner fluctuations— of
the tensor product of the canonical and finite spectral triples, is given by:

DA = D(1,0) + γ5 ⊗D(0,1), (13.17)

where we use the notations D(1,0) and D(0,1) to designate the canonical and
finite Dirac operators respectively.

13.3.1 The inner product

Due to adding γ5 ⊗ D(0,1) and the gluinos to the theory, we have two ad-
ditional terms in the fermionic Lagrangian. On the one hand we have for
ψg ∈ L2(M,S)⊗M3(C)

〈ψg, D
(1,0)ψg〉 = g3〈ψg, iγ

µ[(∂µ + ωµ)⊗ id + id⊗ (∂µ + (Aµ)]ψg〉,
(13.18)

with the gauge field Aµ in the adjoint representation, as in the Einstein-Yang-
Mills model. On the other hand we have an interaction due to γ5 ⊗D(0,1).
This gives (for the finite part only):

〈(q1, g, q2), D(0,1)(q1, g, q2)〉

= g3
[
〈q1, gq̃〉3o + 〈g, q1q̃

t〉M3(C) + 〈g, q̃qt
2〉M3(C) + 〈q2, gtq̃〉3

]
= g3

[
〈q1, gq̃〉3o + 〈gq̃, q1〉3o + 〈gtq̃, q2〉3 + 〈q2, gtq̃〉3

]
, (13.19)

after having employed a calculation similar to (13.8). We will spend more
time on these terms again in the last part of this chapter.

81



13.3.2 Spectral action

Then there are contributions to the Lagrangian coming from the spectral
action (7.1). We will first prove some lemmas that will be of later use.
. Lemma 13.8. For the square of DA as in (13.17) we have

TrD2
A = Tr(D(1,0))2 + Tr(D(0,1))2 (13.20)

with

Tr(D(0,1))2 = 12g2
3 |q̃|2

Proof. In writing out the square of DA we find an additional term
γ5[D(1,0), 1⊗D(0,1)] that vanishes upon taking the trace. For the square
of the finite part we find

Tr(D(0,1))2 = 2g2
3 Tr[A∗eqAeq] + 2g2

3 Tr[B∗eqBeq].
If we apply this first operator on the right hand side on a quark q we get:

[AeqA∗eqq]i = [(qtq̃)q̃]i =
∑

j

(q̃q̃ t)jjqi,

i.e. AeqA∗eq = diag |q̃|2. With a similar calculation for Beq, we arrive at the
result. 2

. Lemma 13.9. For the fourth power of the finite Dirac operator D(0,1) we have

Tr(D(0,1))4 = 16g4
3 |q̃|4. (13.21)

Proof. The calculation bears strong resemblance with the previous lemma,
the main difference lies in additional cross terms. If we write out the fourth
power of (13.13) we get

Tr(D(0,1))4 = 2g4
3 Tr(AeqA∗eq)2 + 4g4

3 Tr[BeqA∗eqAeqB∗eq ] + 2g4
3 Tr(BeqB∗eq )2.

For the first term on the right hand side of this expression we have

[AeqA∗eqAeqA∗eq(q)]i = diag |q̃|4qi,

whereas for the second we find

[BeqA∗eqAeqB∗eq ]ij = |q̃|2q̃iq̃j .

Adding these two expressions to the one involving Beq, yields

Tr(D(0,1))4 = 2g4
3 Trdiag |q̃|4 + 4g4

3 |q̃|4 + 2g4
3 Trdiag |q̃|4 = 16g4

3 |q̃|4.

2

To proceed, we will —as in Chapter 8— make an expansion in powers of D2
A.

We first determine E′ ∈ End(H), defined by

D2
A = ∇∗∇− E′, (13.22)

where ∇ = ∇S + g3A. Adding a finite Dirac operator is easily seen to have
the following effect on E and Ωµν

−E → −E′ = −E − iγ5γµ[Dµ, 1⊗D(0,1)] + 1⊗D(0,1)2

Ωµν → Ωµν (13.23)

compared to E = 1
4R ⊗ id −

∑
µ<ν γ

µγν ⊗ Fµν prior to adding squarks
and gluinos. The minus sign giving rise to the commutator comes from
interchanging γµ and γ5. The term ωµ then drops from the expression,
leaving the commutator of Dµ := ∂µ + g3Aµ with D(0,1).
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. Theorem 13.10. Adding the finite Dirac operator γ5 ⊗D(0,1), has the following
effect (at the orders of Λ2 and Λ0) on the bosonic part of the action:

SB → SB +
∫

M

[
− 6f2

π2
g2
3Λ2|q̃(x)|2 + g2

3

f(0)
4π2

(8g2
3 |q̃(x)|4

+ 6|Dµq̃(x)|2 − 3Rg2
3 |q̃(x)|2)

]
√
g d4x. (13.24)

Proof. From (7.8b) wee see that the contributions to the Lagrangian of O(Λ2)
come from Tr(E′). Since the trace of second term of (13.23) vanishes, we are
left with

Tr(E′) = Tr(E)− 4 Tr(D(0,1))2 = Tr(E)− 48g2
3 |q̃|2,

by virtue of Lemma 13.8.

Since Ωµν is unaltered, all extra terms we have on O(Λ0) result from Tr(RE′)
and Tr(E′2) [see (7.8c)]. For the first we have

Tr(RE′) = Tr(RE)− 4RTr(D(0,1))2 = Tr(RE)− 48g2
3R|q̃|2, (13.25)

whereas the second gives

Tr(E′2) = Tr(E2) + Tr(iγ5γµ[Dµ, 1⊗D(0,1)])2 + Tr[1⊗ (D(0,1))2]2

− 1
2

Tr[R⊗ (D(0,1))2]

= Tr(E2) + 4 Tr([Dµ, D
(0,1)][Dµ, D(0,1)]) + 4 Tr[(D(0,1))4]

− 2RTr(D(0,1))2, (13.26)

where in the first step we have used that terms of the Clifford algebra pro-
portional to γµγν (µ < ν), γ5γµ and 1 are orthogonal, and we consequently
only retain the squares of the terms in (13.23) plus one cross-term. Now for
the last term of (13.26) we can use Lemma 13.9, whereas for the second we
use that Dµ acts as follows on the different particles:

Dµq = (∂µ + g3Aµ)q on quarks

Dµg = (∂µ + g3Aµ)g on gluinos

Dµq = (∂µ + g3Aµ)q on antiquarks.

Thus we get3

[Dµ, D
(0,1)](q1, g, q2)

=
(
(∂µ +Aµ)(gq̃)− [(∂µ + adAµ)g]q̃, (∂µ + adAµ)(q1q̃

t
)

− [(∂µ +Aµ)q1]q̃
t
+ (∂µ + adAµ)(q̃q t

2 )− q̃[(∂µ +Aµ)q2]t,

(∂µ +Aµ)(gtq̃)− [(∂µ + adAµ)g]tq̃
)

=
(
g(∂µ +Aµ)q̃, q1[∂µq̃]t − (q1q̃

t
)Aµ + [(∂µ +Aµ)q̃]qt

2, g
t(∂µ −At

µ)q̃
)

=
(
g(∂µ +Aµ)q̃, q1[(∂µ +Aµ)q̃]t + [(∂µ +Aµ)q̃]qt

2, g
t(∂µ +Aµ)q̃

)
,

where we have frequently used that A∗µ = −Aµ.

3 For notation’s sake we omit the coupling parameter g3 in this calculation, and put it back in the
result.
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This means that we have

[Dµ, D
(0,1)eq ](q1, g, q2) = D

(0,1)
(∂µ+g3Aµ)eq(q1, g, q2)

with which the second term of (13.26) becomes

Tr([Dµ, D
(0,1)][Dµ, D(0,1)]) = TrD(0,1)

(∂µ+g3Aµ)eqD(0,1)
(∂µ+g3Aµ)eq

= 12g2
3 |(∂µ + g3Aµ)q̃|2. (13.27)

Taking the expansion of the spectral action (7.11), with the coefficients taken
from (7.8b) and (7.8c) we get the following extra extra contributions:

O(Λ2) : −2f2
1

(4π)2
4 Tr(D(0,1))2 = − 6

π2
f2g

2
3 |q̃|2,

O(Λ0) : f(0)
1

(4π)2
1

360
[
− 60(−48g2

3R|q̃|2) + 180(4 · 12|(∂µ + g3Aµ)q̃|2

+ 64|q̃|4 − 24R|q̃|2)
]

with which we arrive at (13.24). 2

13.4 T H E G A U G E G R O U P

Finally we cover a question most important to supersymmetry:

. Theorem 13.11. The squarks and the quarks are in the same representation of
the gauge group, as are the gluinos and gluons.

Proof. The thing to check is how the quarks, squarks, gluinos and gluons
transform under the gauge group

U(M3(C)) = {u ∈M3(C) : u∗u = uu∗ = 1}. (13.28)

First we have a look at how the (s)fermions transform (see Example 5.10):

uJuJ∗(q1, g, q2) = π(u)πo(u∗)(q1, g, q2) = (uq1, ugu∗, uq2),

i.e.

q → uq for quarks,

g → ugu∗ for gluinos, and

q′ → uq′ = uq′ for antiquarks.

Next, we look at how D(0,1) transforms. We therefore apply4

uJuJ∗D(0,1)u∗(JuJ∗)∗ = π(u)πo(u∗)D(0,1)π(u)∗πo(u)

to an element (q1, g, q2). This results in

uJFuJ
∗
FD

(0,1)u∗JFu
∗J∗F (q1, g, q2)

= π(u)πo(u∗)D(0,1)(u∗q1, u∗gu, utq2)

= π(u)πo(u∗)
(
(u∗gu)q̃, (u∗q1)q̃

t
+ q̃(utq2)t, (u∗gu)tq̃

)
=
(
u(u∗gu)q̃, u(u∗q1)q̃

t
u∗ + uq̃(utq2)tu∗, u(u∗gu)tq̃

)
=
(
guq̃, q1(uq̃) t + uq̃qt

2, g
tuq̃
)

4 Again we will omit the coupling constant g3 for a moment.
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which corresponds to applying D(0,1) but with

q̃ → uq̃,

indeed the same as with the quarks.

Last, we check how the gluons transform. We review the finite part of D(1,0)

applied to a gluino5:

π(u)πo(u∗)(∂µ + Aµ)π(u∗)πo(u)g = π(u)πo(u∗)(∂µ(u∗gu) + [Aµ, u
∗gu])

= u∂µ(u∗)g + ∂µg + g(∂µu)u∗

+ u[Aµ, u
∗gu]u∗

= ∂µg + ad(uAµu
∗ + u[∂µ, u

∗])g

= (∂µ + Au
µ)g,

with Au as in (6.17). This transformation is indeed the same as for gluinos.
2

13.5 R E S U LT S & D I S C U S S I O N

The upshot of all of this is that we have added the superpartners of the QCD-
particles (squarks and gluinos) to the theory, in conformity to the ’paradigm’
of NCG: fermions are elements of the Hilbert space, whereas scalars come
from a finite Dirac operator. The way to achieve this was by

1. adding the algebra of the spectral triple to the Hilbert space;

2. defining maps connecting the ’old’ part of the Hilbert space to the part
just added.

The freedom to choosing these maps was seen to be very little. On top of
that, this construction led to the fact that these superpartners are in the right
representation of the gauge group.

At this point there is only one big question left: ’Is this model right?’. To what
extent does it describe the supersymmetrization of the QCD — super-QCD?
Well, we found a Lagrangian with

· a kinetic term for the squarks [the fourth term of (13.24)], with the latter
minimally coupled to the gluons. This gives a squark-squark-gluon and
squark-squark-gluon-gluon coupling;

· a squark-potential∼ |q̃|4 [the third term of (13.24)], resulting in a squark
self-interaction. As in the case of the Higgs-Lagrangian this term is of
opposite sign compared to the kinetic term;

· a squark mass term ∼ |q̃|2 [the second term of (13.24)] on the order of
Λ2 is appearing;

· a gluino-gluino-gluon interaction that follows from the inner product;

· a gluino-quark-squark coupling that is provided by the inner product
(13.18);

· a term that couples the squarks to gravity.

5 Applying it to a quark or antiquark would give the very same result.
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Since these are precisely the same terms that are predicted by the MSSM, it
appears that we indeed obtained a description of super-QCD, using noncom-
mutative geometry.6 At the end of this chapter we will compare these results
extensively with results as found in the literature.

Note that though we have added scalars to a theory by means of introducing
a finite Dirac operator, the way how is not quite the same as in the treatment
of the Higgs-model by Connes, Marcolli and Chamseddine ([5], [9, §15.6 &
16.1]). While in the latter case the finite Dirac operator provides the coupling
constants/mixing matrices, here it (partly) provides the fields q̃, q̃ themselves
as well. This is due to the fact that the finite Dirac operator in [9] maps right
to left handed particles and vice versa7, whereas in our case it maps from the
space of the squarks to that of the gluinos, both being of different dimension.
Another difference with the Higgs-mechanism lies in the fact that in [9] there
is an extra contribution ∼ Λ0|q̃|2 compared to our model.

Note that for supersymmetry at least the number of degrees of freedom need
to be the same. For that, the finite part of the gluinos has to be reduced from
M3(C) to su(3) —a problem that was dealt with in chapter 10.

In order to compare the results with that of the MSSM8, we need to spell
things out. We first switch to flat Euclidean space by taking ωµ = 0 and
R = 0. For each of the interactions that appear we will at the same time make
the switch from the current notation to the one more common in physics and
translate the (relevant pieces of the) Lagrangian as found in the literature to
this context set up we have used. We assume the degrees of freedom of the
gluinos already to be reduced so that we may write g = gaTa (the Ta being
the eight su(3)-generators) for their finite part.

� Squark-quark-gluino

We take the finite part of this interaction from (13.19) and write χ⊗ g ∈
L2(M,S)⊗ su(3) for a gluino and ψ ⊗ q1 ∈ L2(M,S)⊗ 3o for a quark.
We leave out the antisquarks for a moment. We then have:

((ψ ⊗ q1, χ⊗ g), γ5 ⊗D(0,1)(ψ ⊗ q1, χ⊗ g))(x)

= g3((ψ ⊗ q1, χ⊗ g), (γ5ψ ⊗ gq̃, γ5χ⊗ q1q̃
t
))(x)

= g3(ψ ⊗ qiei, γ
5ψ ⊗ ga(Ta)j

k q̃
kej)(x)

+ g3〈χ⊗ ga(Ta)j
k q̃

kej , γ
5χ⊗ qi

1ei〉(x)

= g3(ψi
q1
, γ5ψa

g )(x)(Ta)ik(q̃(x))k + g3(χa
g , γ

5χi
q1

)(x)(Ta)ik(q̃(x))k

= g3(Ta)ik

[
〈ψi

q1
, γ5ψa

g 〉(x)(q̃(x))k − (χa
g , γ

5χk
q1

)(x)(q̃(x))i
]

where along the way we switched notations: ψ ⊗ q1 = ψi
q1
⊗ ei and

ψ ⊗ g = ψa
g ⊗ Ta and similar expressions for χ.

6 This is besides the simplifications we made to the model, as was mentioned in the introduction
of this chapter.

7 The distinction between left and right handed particles is not present in this model, since
—lacking a weak sector— this would introduce a property not present in the (MS)SM.

8 Kraml [18] and Chung et al. [6] provide lengthy expositions on the MSSM. In the latter, the
various MSSM-interactions are listed in the appendix.
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We compare our result to that of Chung ([6], (C.82)):

−
√

2g3T a
jk

∑
u,d

(
Gg̃

a
PLq

k
I q̃

j ∗
α (ΓSCKM

qL )∗Iα +G−1qj
IPRg̃

aq̃k
α(ΓSCKM

qL )Iα

−G−1g̃
a
PRq

k
I q̃

j ∗
α (ΓSCKM

qL )∗Iα −Gqj
IPLg̃

aq̃k
α(ΓSCKM

qL )Iα

)
.

In order to compare we have to delete the matrices ΓSCKM which
rotate between generations:

−
√

2g3T a
jk

(
Gg̃

a
PLq

k q̃j ∗ +G−1qjPRg̃
aq̃k

−G−1g̃
a
PRq

k q̃j ∗ −GqjPLg̃
aq̃k

)
.

Using the notation introduced in [6], appendix C.2, this becomes:

√
2g3T a

jk

(
qjγ5g̃aq̃k − γ5g̃

a
qk q̃j ∗).

� Gluon-gluino-gluino

We get a gluon-gluino-gluino interaction from (13.18):

Lgegeg = (ψg, ig3γ
µAµψg)(x) = ig3(ψc

g, γ
µAa

µψ
b
g)(x)〈Tc, [Ta, Tb]〉〉

= ig3fabcψg
b
(x) γµ ψc

g(x)A
a
µ(x)

In Kraml ([18]), §1.6.7, we find for the gluon-gluino-gluino term:

Lgegeg =
igs

2
fabcG

a
µ

¯̃g
b
γµ g̃c.

Both terms are seen to be equal upon identifying g̃c = ψc
g .

� Squark-squark-gluon

From (13.27) we can extract a squark-squark-gluon term, that looks
like9:

− g2
3(g3Aµq̃)i(∂µq̃)i − g2

3(∂µq̃)i(g3Aµq̃)i

= −g3
3A

a
µ(Ta)ij q̃

j∂µ(q̃)i − g3
3∂µ(q̃)iAa

µ(Ta)ij q̃
j

= g3
3A

a
µ(Ta)ij [q̃

i
(∂µq̃)j − g3

3(∂µq̃)iq̃j ]

Kraml ([18], §1.6.2) gives the following expression for this interaction:

Leqeqg = igs T
a

rs δijG
a
µ q̃

∗
jr

↔
∂µ q̃is = igs T

a
rsG

a
µ[q̃∗r∂

µ(q̃s)− ∂µ(q̃∗r )q̃s],

after writing out the differential. These two forms differ two was: we
have an extra minus sign and we have the a g2

3 extra. We will come
back to this.10

9 We will omit the coordinates ’(x)’ to reduce notational clutter.
10 The i appearing here is probably harmless since it might be due to the convention in physics to

take Ta
ij selfadjoint, whereas in our case the Ta

ij are skew-Hermitian. The connection between
these two conventions is exactely an i.
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� Squark-squark-gluon-gluon

Equation 13.27 does not only provide us a squark-squark-gluon inter-
action, but a squark-squark-gluon-gluon term as well:

g2
3(g3Aµq̃)i(g3Aµq̃)i = g4

3A
µ aAb

µ(Taq̃)i(Tbq̃)i

= −g4
3A

µ aAb
µ(TbTa)ij q̃iq̃j .

Since the gluons are in the defining / fundamental representation here,
we can use the identity

TbTa =
1
6
δabid3 +

1
2
(ifbac + dbac)T c,

resulting in

Leqeqgg = −1
6
Aµ

aA
a

µ q̃iq̃
i − 1

2
dabcA

µ aAb
µ(T c)ij q̃iq̃j

where the term with fabc vanishes since Aµ aAb
µ is symmetric upon

interchanging a and b.

Kraml provides us the following expression (§1.6.8) for this interaction:

Leqeqgg =
1
2
g2

s (
1
3
δij δab + dabc (T c)ij)Ga

µ G
bµ q̃∗j q̃i,

where two indices are interchanged compared to our result. However,
since both [6] (C.93) and [22] (§2.2.3) do provide the same expression
that we have, we are inclined to adhere to the latter two.

We note that, as in the case of the squark-squark-gluon interaction, our
answer is off by a factor of g2

3 and we have an additional minus sign.

� Four-squark

There is a squark self-interaction

g4
3 |q̃(x)|4 = g4

3 q̃(x)iq̃(x)iq̃(x)j q̃(x)j ,

originating from the third term of (13.24).

Kraml, §1.6.9 gives for this interaction:

Leqeqeqeq = −1
2
g2

s T
a
rsT

a
tu

(
q̃a∗
L,r q̃

a
L,s − q̃a∗

R,r q̃
a
R,s

)(
q̃b∗
L,t q̃

b
L,u − q̃b∗

R,t q̃
b
R,u

)
.

Here, the generators T a represent a rotation in flavor space, not present
in our work. Setting them all to the identity, we get:

Leqeqeqeq = −1
2
g2

s

(
q̃∗i q̃i

)(
q̃∗i q̃i

)
.

Again, we have a factor of g2
3 extra compared to the literature, and our

result is of opposite sign compared to Kraml.
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To summarize, all results are in perfect agreement with the literature, in the
sense that all interactions are present and their form is precisely the same. In
three terms that we compared however, we were off by two powers of the
coupling constants and a sign. However, it are precisely these ’erroneous’
terms of the Lagrangian that are accompanied by a factor f(0), in which we
can absorb this excess of coupling constants. The minus sign is unresolved
still, since f has to be a positive function. There is one other unresolved issue:
the constants appearing in our results do not in all cases match those of the
literature. One possible solution to this problem is to absorb a constant in
the definition of our squark (13.16). It is unclear whether that can solve it.
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14S U M M A RY & O U T L O O K

This thesis started out with the definition of an algebra and concluded a
large number of pages later with the Lagrangian of super-QCD. Much has
happened in between. First, we considered the Einstein-Yang-Mills system,
where we were able to identify the fermions and bosons that appear as each
others superpartners (Chapter 11). This was not possible, though, before we
adapted certain techniques that allowed us to work with Weyl spinors in an
Euclidean set up of KO-dimension 4. This, together with making the finite
part of the fermions unimodular, was required for reducing the number of
fermionic degrees of freedom in order to equate them with the bosonic ones
(Chapter 10).

In Section 11.1 we casted the calculations in a form more appropriate for
NCG, and showed that —in a heat kernel expansion of the spectral action in
terms of the cut off parameter Λ— the EYM-system is not only supersymmet-
ric on O(Λ0) but in fact for all positive powers of Λ.

After that, we turned our attention to another system; a one-quark version of
Quantum chromodynamics (QCD) in a curved spacetime. We showed that
in the noncommutative approach of field theory this part of the Standard
Model could be extended to yield super-QCD. With the latter we mean a
’supersymmetrized’ model in which the superpartners of the QCD-particles
(’squarks’ and ’gluinos’) are incorporated as well. These superpartners were
seen to be in the same representation of the gauge group as the original
particles. On top of that, the resulting super-QCD Lagrangian, after making
a translation to the flat Euclidean space, was seen to match the Lagrangian
of the canonical approach to the MSSM perfectly.1

The equivalence of these results is without a doubt promising. Despite that,
we are far from there yet: the MSSM is much more than super-QCD as QCD
is only a part of the Standard Model. What would be the most logical way
to proceed from here? At first sight this would be to extend the model of
Chapter 13, for example to yield three quarks (one for each particle gen-
eration), but this is to a certain extent straightforward. Adding a second
quark by adjoining the weak sector is not that convenient, for the specific
representations of AF require you to add much more than that in order to
maintain an equal number of fermionic and bosonic degrees of freedom.2

Besides, we think that there is a more informative extension.

The electroweak theory (containing only the leptons, the photon and the
weak gauge bosons)3 is probably the most logical candidate. As a next step,
the distinctive MSSM Higgs sector might even be recovered.

1 With the exception that a few constants differed somewhat.
2 With this we mean that adding a weak sector would require to add H to the algebra. But then

you automatically get the weak gauge bosons which requires you to add their superpartners as
well, etc.

3 In that case we would take AF = {(λ, q, λ) : λ ∈ C, q ∈ H} and Hf = 2L ⊗ 1o ⊕ 2R ⊗ 1o.
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A last intriguing aspect of the noncommutative description of super-QCD
that beggs for further reseach is the featured squark mass term; in our opin-
ion this bears so much resemblance to that of the Higgs particle that it might
not be a mere coincidence.

All in all, we can say that the signals for a possible noncommutative deriva-
tion of the MSSM are definitely there, but much more has to be done for the
full MSSM to be realized!
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Part IV

A P P E N D I X





AG A M M A M AT R I C E S & V I E R B E I N S — O R T E R A D S

In order to simplify some calculations we introduce the vierbeins (see e.g. [34],
§ 3.4b); matrix-valued functions that transform a certain metric into a flat
one, and that are thus defined by

gµν = ea
µe

b
νδab. (A.1)

This implies that

γa := eµ
aγµ (A.2)

satisfies {γa, γb} = 2δab. We define

γab :=
1
2
[γa, γb], (A.3)

subject to the identity ([25], page 40)1:

[γab, γcd] = δcbγad − δcaγbd − δdbγac + δdaγbc. (A.4)

Later on, we will need to take traces of combinations of flat gamma matrices.
For this, we have

Tr(γaγb) = 1
2 Tr{γa, γb} = 4δab (A.5)

and

Tr(γabγcd) = 1
4 [Tr(γaγbγcγd)− Tr(γbγaγcγd)− Tr(γaγbγdγc)

+ Tr(γbγaγdγc)]. (A.6)

For one of these terms, we get by repeatedly interchanging elements:

Tr(γaγbγcγd) = 2δab Tr(γcγd)− 2δac Tr(γbγd) + 2δad Tr(γbγc)

− Tr(γbγcγdγa)

= 8δabδcd − 8δacδbd + 8δadδbc − Tr(γbγcγdγa),

where we have used (A.5), so that

Tr(γaγbγcγd) = 4[δabδcd − δacδbd + δadδbc]. (A.7)

Adding the contributions from the different terms of (A.6), then gives

Tr(γabγcd) = 4[δadδbc − δacδbd]. (A.8)

Furthermore we have (without proof):

γµγνγσ = gµνγσ − gσνγµ + gµσγν − iεµνσλγ5γλ (A.9)

1 Diligent readers though may earn my respect by writing all terms out and repeatedly using the
anticommutator of two gamma matrices.

95



A.1 FI E R Z I D E N T I T I E S

. Definition A.1 [Orthonormal Clifford basis]. Let Cl(V ) be the Clifford al-
gebra over a n-dimensional vector space V . Then γK := γk1 · · · γkr for all strictly
ordered sets K = {k1 < . . . < kr} ⊆ {1, . . . , n} form a basis for Cl(V ). If γK is
as above, we denote with γK the element γk1 · · · γkr . The basis spanned by the γK is
said to be orthonormal if Tr γKγL = nnKδKL ∀K,L. Here nK := (−1)r(r−1)/2,
where r denotes the cardinality of the set K and with δKL we mean

δKL =
{

1 if K = L

0 else
. (A.10)

. Example A.2. Take V = R4 en let Cl(4, 0) be the Euclidean Clifford algebra
[i.e. with signature (+ + + +)]. Its basis are the sixteen matrices

1

γµ (4 elements)

γµγν µ < ν (6 elements),

γµγνγλ µ < ν < λ (4 elements)

γ1γ2γ3γ4 =: γ5.

We can identify

γ1γ2γ3 = γ4γ5 γ1γ3γ4 = γ2γ5

γ1γ2γ4 = −γ3γ5 γ2γ3γ4 = −γ1γ5,
(A.11)

establishing a connection with the basis most commonly used by physicists.

. Lemma A.3 [Completeness relation]. If the basis of the clifford algebra is
orthonormal, it satisfies the following completeness relation:

1
n

∑
L

nL(γL) c
d (γL) b

a = δ c
a δ b

d . (A.12)

Proof. Since the γK form a basis, we can write any element Γ of the Clifford
algebra as

Γ =
∑
K

mKγK mK ∈ C, (A.13)

where the sum runs over all (strictly ordered) sets. By multiplying both sides
with γL and taking the trace we find the expression for the coefficient mL to
be:

mL =
1
n
nL TrΓγL,

Applying this result in particular to Γ = γK , and writing matrix indices
explicitly, (A.13) yields

(γK) b
a =

1
n

∑
L

nL(γK) d
c (γL) c

d (γL) b
a ,

for which (A.12) is required. 2
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. Theorem A.4 [(Generalized) Fierz identity]. If for any two strictly ordered
sets K,L there exists a third strictly ordered set M and c ∈ N such that γKγL =
c γM , we have the four-spinor identity

〈ψ1, γ
Kψ2〉〈ψ3, γKψ4〉 = − 1

n

∑
L

CKL〈ψ3, γ
Lψ2〉〈ψ1, γLψ4〉

CKL ∈ N, (A.14)

for any ψ1, . . . , ψ4 in the n-dimensional spin representation of the Clifford algebra.
Here we denote by 〈., .〉 the inner product on the spinor representation.

Proof. We start by multiplying the completeness relation (A.12) with (γK) e
c (γK) f

b

yielding

(γK) e
a (γK) f

d =
1
n

∑
L

(γLγK) e
d (γLγK) f

a ,

or

(γK) e
a (γK) f

d =
1
n

∑
M

CKM (γM ) e
d (γM ) f

a , (A.15)

by the assumtion made. Here we have accomodated the proportionality
constants in a matrix CKL. Now we have to contract the above expression
with the four spinors ψa

1 , ψ2e, ψ
d
3 and ψ4f . But, remembering that they are

Grassmann variables — i.e. their components anticommute— we get one
minus sign on the left hand side of (A.15) from interchanging ψ1 and ψ3.
Hence we we arrive at the result. 2

Now how do we compute the constants CKL? Just multiply (A.15) again by
(γL) d

e (γL) a
f , yielding:

Tr(γKγLγKγL) =
1
n

∑
M

CKM Tr(γMγL) Tr(γMγL). (A.16)

On the other hand, we have

γKγLγK = fKLγ
L fKL ∈ N (no sum over L) (A.17)

using the anticommutator repeatedly2. Putting (A.17) into (A.16) we get:

fKL Tr(γLγL) = n
∑
M

CKMδM
L δL

M

or

CKL = nLfKL, (A.18)

since

Tr(γLγL) = (−1)r(r−1)/2n,

by orthonornality.

2 For example: γµγλγµ = (2− dimV )γλ ∀ λ ∈ {1, 2, · · · , dimV }.
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. Corrolary A.1 [Fierz identity]. We work out one example of particular interest
to us. Consider again Cl(4, 0) (n = 4) with the basis as in Example A.2. As can
readily be checked, this basis satisfies the requirement for theorem A.4. The spinors
we will contract with, are the four Weyl spinors: χ, ε− ∈ S−, ψ1, ψ2 ∈ S+. We
start with determining the numbers f1r, r = 0, . . . , 4 defined by γµγLγµ = f1rγL

(see above) where r is the cardinality of L. We find the recursive relation

γµ1γµ = n · 1 ≡ f101

γµγνγµ = 2γν − γµγµγν = (2− f10)γν ≡ f11γ
ν

. . .

γµ(γν1 · · · γνn)γµ = [2(−1)n−1 − f1(n−1)]γν1 · · · γνn

≡ f1nγ
ν1 · · · γνn (n ≤ 4)

which gives

f10 = 4, f11 = −2, f12 = 0, f13 = 2, f14 = −4

and consequently, using (A.18)

C10 = 4, C11 = −2, C12 = 0, C13 = −2, C14 = −4.

Now applying (A.14) yields

〈χ, γµψ1〉〈ε−, γµψ2〉 = −1
4
C11〈ε−, γµψ1〉〈χ, γµψ2〉

− 1
4
C13〈ε−, γµγνγλψ1〉〈χ, γµγνγλψ2〉

since only terms with an odd number of γ-matices survive due to the different
chirality of the spinors. Identifing the terms with three γ-matrices with ±γµγ5 as in
(A.11), we get

〈χ, γµψ1〉〈ε−, γµψ2〉 =
1
2
〈ε−, γµψ1〉〈χ, γµψ2〉

+
1
2
〈ε−, γµψ1〉〈χ, γµψ2〉

= 〈ε−, γµψ1〉〈χ, γµψ2〉. (A.19)
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