Inner perturbations in noncommutative geometry

Walter D. van Suijlekom

(joint with Ali Chamseddine and Alain Connes)

May 26, 2014

Overview

- Spectral geometry
- Matrix algebra and noncommutative geometry
- Semigroup of perturbations
- Examples of perturbation semigroup
- Towards the Standard Model of Particle Physics

References

A. Chamseddine, Alain Connes, WvS. Inner Fluctuations in Noncommutative Geometry without the first order condition. *J. Geom. Phys.* 73 (2013) 222-234 [arXiv:1304.7583]

A. Chamseddine, Alain Connes, WvS. Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. *JHEP* 11 (2013) 132. [arXiv:1304.8050]

WvS. The spectral model of particle physics, *Nieuw Archief voor Wiskunde*, June 2014.

WvS. *Noncommutative Geometry and Particle Physics*. Mathematical Physics Studies, Springer, July 2014.

and also: http://www.noncommutativegeometry.nl

Spectral geometry

"Can one hear the shape of a drum?" (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

$$\Delta_M u = k^2 u$$

determine the geometry of M?

The disc

Wave numbers on the disc

Wave numbers on the disc: high frequencies

The square

Wave numbers on the square

Isospectral domains

But, there are isospectral domains in \mathbb{R}^2 :

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no.

Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such as dimension n of M:

$$egin{aligned} \mathcal{N}(\Lambda) &= \# ext{wave numbers} &\leq \Lambda \ &\sim rac{\Omega_n ext{Vol}(M)}{n(2\pi)^n} \Lambda^n \end{aligned}$$

For the disc and square this is confirmed by the parabolic shapes $(\sqrt{\Lambda})$:

Analysis: Dirac operator

Recall that k^2 is an eigenvalue of the Laplacian in the Helmholtz equation.

- The Dirac operator is a 'square-root' of the Laplacian, so that its spectrum give the wave numbers *k*.
- First found by Paul Dirac in flat space, but exists on any Riemannian spin manifold *M*.
- Let us give some examples.

The circle

• The Laplacian on the circle \mathbb{S}^1 is given by

$$\Delta_{\mathbb{S}^1}=-rac{d^2}{dt^2}; \qquad (t\in [0,2\pi))$$

• The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -irac{d}{dt}$$

with square $\Delta_{\mathbb{S}^1}$.

• The eigenfunctions of $D_{\mathbb{S}^1}$ are the complex exponential functions

$$e^{int} = \cos nt + i \sin nt$$

with eigenvalue $n \in \mathbb{Z}$.

The 2-dimensional torus

- Consider the two-dimensional torus \mathbb{T}^2 parametrized by two angles $t_1, t_2 \in [0, 2\pi)$.
- The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -rac{\partial^2}{\partial t_1^2} - rac{\partial^2}{\partial t_2^2}.$$

• At first sight it seems difficult to construct a differential operator that squares to $\Delta_{\mathbb{T}^2}$:

$$\left(a\frac{\partial}{\partial t_1} + b\frac{\partial}{\partial t_2}\right)^2 = a^2 \frac{\partial^2}{\partial t_1^2} + 2ab\frac{\partial^2}{\partial t_1 \partial t_2} + b^2 \frac{\partial^2}{\partial t_2^2}$$

 This puzzle was solved by Dirac who considered the possibility that a and b be complex matrices:

$$a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

then $a^2 = b^2 = -1$ and ab + ba = 0

• The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = egin{pmatrix} 0 & rac{\partial}{\partial t_1} + i rac{\partial}{\partial t_2} \ -rac{\partial}{\partial t_1} + i rac{\partial}{\partial t_2} & 0 \end{pmatrix},$$

which satisfies $(D_{\mathbb{T}^2})^2 = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}.$

• The spectrum of the Dirac operator $D_{\mathbb{T}^2}$ is

$$\left\{\sqrt{n_1^2+n_2^2}:n_1,n_2\in\mathbb{Z}
ight\};$$

The 4-dimensional torus

• Consider the 4-torus \mathbb{T}^4 parametrized by t_1, t_2, t_3, t_4 and the Laplacian is

$$\Delta_{\mathbb{T}^4} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2} - \frac{\partial^2}{\partial t_3^2} - \frac{\partial^2}{\partial t_4^2}.$$

 The search for a differential operator that squares to Δ_{T⁴} again involves matrices, but we also need quaternions:

$$i^2 = j^2 = k^2 = ijk = -1.$$

• The Dirac operator on \mathbb{T}^4 is

$$D_{\mathbb{T}^4} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} \\ -\frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} & 0 \end{pmatrix}$$

The relations ij = −ji, ik = −ki, et cetera imply that its square coincides with Δ_{T⁴}.

Spectral action functional

• Reconsider Weyl's estimate, in a smooth version:

$$\operatorname{Tr} \chi\left(\frac{D_M}{\Lambda}\right) = \sum_{\lambda} \chi\left(\frac{\lambda}{\Lambda}\right)$$

for a smooth cutoff function $\chi : \mathbb{R} \to \mathbb{R}$.

• For simplicity, restrict to a Gaussian function

so that we can use heat asymptotics: $\operatorname{Tr} e^{-D_M^2/\Lambda^2} \sim \frac{\operatorname{Vol}(M)\Lambda^n}{(4\pi)^{n/2}}$

Hearing the shape of a drum

- As said, the geometry of M is not fully determined by spectrum of D_M .
- This can be improved by considering besides D_M also the algebra $C^{\infty}(M)$ of smooth functions on M, with pointwise product and addition
- In fact, the distance function on M is equal to

$$d(x,y) = \sup_{f \in C^{\infty}(M)} \left\{ |f(x) - f(y)| : \text{ gradient } f \leq 1
ight\}$$

• The gradient of f is given by the commutator $[D_M, f] = D_M f - f D_M$. For example, on the circle we have $[D_{\mathbb{S}^1}, f] = -i \frac{df}{dt}$

Finite spaces

• Finite space F, discrete topology

 $F = 1 \bullet 2 \bullet \cdots N \bullet$

• Smooth functions on F are given by N-tuples in \mathbb{C}^N , and the corresponding algebra $C^{\infty}(F)$ corresponds to diagonal matrices

$$\begin{pmatrix} f(1) & 0 & \cdots & 0 \\ 0 & f(2) & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & f(N) \end{pmatrix}$$

• The finite Dirac operator is an arbitrary hermitian matrix D_F , giving rise to a distance function on F as

$$d(p,q) = \sup_{f \in C^{\infty}(F)} \{ |f(p) - f(q)| : ||[D_F, f]|| \le 1 \}$$

Example: two-point space

$$F = {}_1 \bullet {}_2 \bullet$$

• Then the algebra of smooth functions

$$\mathcal{C}^{\infty}(\mathcal{F}) := \left\{ egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix} \Big| \lambda_1, \lambda_2 \in \mathbb{C}
ight\}$$

• A finite Dirac operator is given by

$$D_{F}=egin{pmatrix} 0&\overline{c}\ c&0 \end{pmatrix}; \qquad (c\in\mathbb{C})$$

• The distance formula then becomes

$$d(p,q) = \left\{ egin{array}{cc} |c|^{-1} & p
eq q \ 0 & p = q \end{array}
ight.$$

Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a *noncommutative* structure at each point of F.

Instead of diagonal matrices, we consider block diagonal matrices

$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_N \end{pmatrix}$$

where the a₁, a₂,... a_N are square matrices of size n₁, n₂,..., n_N.
Hence we will consider the matrix algebra

$$\mathcal{A}_F := M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_N}(\mathbb{C})$$

• A finite Dirac operator is still given by a hermitian matrix.

Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by considering the algebra A_F of 3 × 3 block diagonal matrices of the following form

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & a_{11} & a_{12} \\ 0 & a_{21} & a_{22} \end{pmatrix}$$

A finite Dirac operator for this example is given by a hermitian 3×3 matrix, for example

$$D_F = \begin{pmatrix} 0 & \overline{c} & 0 \\ c & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Spectral triples

Noncommutative Riemannian spin manifolds

More generally, we consider

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ is given by a unital associative *-algebra \mathcal{A} represented as bounded operators on a Hilbert space \mathcal{H} and a self-adjoint operator D in \mathcal{H} such that the resolvent $(i + D)^{-1}$ is a compact operator and [D, a] is bounded for each $a \in \mathcal{A}$.

• Spectral action functional:

Tr $\chi(D/\Lambda)$

• Invariant under unitaries $u \in \mathcal{U}(\mathcal{A})$ acting as

 $D \mapsto uDu^*$

Semigroup of inner perturbations

Extend this to more general perturbations:

$$ext{Pert}(\mathcal{A}) := \left\{ \sum_{j} \mathsf{a}_{j} \otimes \mathsf{b}_{j}^{ ext{op}} \in \mathcal{A} \otimes \mathcal{A}^{ ext{op}} \ \Big| \ \sum_{j} \mathsf{a}_{j} \otimes \mathsf{b}_{j}^{ ext{op}} = \sum_{j} \mathsf{b}_{j}^{*} \otimes \mathsf{a}_{j}^{* ext{op}}
ight.$$

with semi-group law inherited from product in $\mathcal{A}\otimes\mathcal{A}^{\mathrm{op}}.$

- $\mathcal{U}(\mathcal{A})$ maps to $Pert(\mathcal{A})$ by sending $u \mapsto u \otimes u^{*op}$.
- Pert(A) acts on D:

$$D\mapsto \sum_j a_j Db_j = D + \sum_j a_j [D, b_j]$$

• Spectral action functional:

$$\operatorname{Tr} \chi (D + \omega) = \sum_{n=0}^{\infty} \frac{1}{2\pi i n} \operatorname{Tr} \oint \chi'(z) \omega (z - D)^{-1} \cdots \omega (z - D)^{-1}$$

Perturbation semigroup for matrix algebras

Proposition

Let A_F be the algebra of block diagonal matrices (fixed size). Then the perturbation semigroup of A_F is

$$\operatorname{Pert}(\mathcal{A}_{\mathcal{F}}) \simeq \left\{ \sum_{j} A_{j} \otimes B_{j} \in \mathcal{A}_{\mathcal{F}} \otimes \mathcal{A}_{\mathcal{F}} \ \middle| \ \sum_{j} A_{j} (B_{j})^{t} = \mathbb{I} \\ \sum_{j} A_{j} \otimes B_{j} = \sum_{j} \overline{B_{j}} \otimes \overline{A_{j}} \right\}$$

The semigroup law in $Pert(A_F)$ is given by the matrix product in $A_F \otimes A_F$:

$$(A \otimes B)(A' \otimes B') = (AA') \otimes (BB').$$

• The two conditions in the above definition,

$$\sum_{j} A_{j}(B_{j})^{t} = \mathbb{I} \qquad \sum_{j} A_{j} \otimes B_{j} = \sum_{j} \overline{B_{j}} \otimes \overline{A_{j}}$$

are called normalization and self-adjointness condition, respectively.Let us check that the normalization condition carries over to products,

$$\left(\sum_{j}A_{j}\otimes B_{j}
ight)\left(\sum_{k}A_{k}'\otimes B_{k}'
ight)=\sum_{j,k}(A_{j}A_{k}')\otimes(B_{j}B_{k}')$$

for which indeed

$$\sum_{j,k} A_j A'_k (B_j B'_k)^t = \sum_{j,k} A_j A'_k (B'_k)^t (B_j)^t = \mathbb{I}$$

Example: perturbation semigroup of two-point space

- Now $\mathcal{A}_F = \mathbb{C}^2$, the algebra of diagonal 2 × 2 matrices.
- In terms of the standard basis of such matrices

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

we can write an arbitrary element of $\operatorname{Pert}(\mathbb{C}^2)$ as

$$z_1e_{11} \otimes e_{11} + z_2e_{11} \otimes e_{22} + z_3e_{22} \otimes e_{11} + z_4e_{22} \otimes e_{22}$$

• Matrix multiplying e₁₁ and e₂₂ yields for the normalization condition:

$$z_1=1=z_4.$$

• The self-adjointness condition reads

$$z_2 = \overline{z_3}$$

leaving only one free complex parameter so that $\operatorname{Pert}(\mathbb{C}^2) \simeq \mathbb{C}$.

• More generally, $\operatorname{Pert}(\mathbb{C}^N) \simeq \mathbb{C}^{N(N-1)/2}$ with componentwise product.

Example: perturbation semigroup of $M_2(\mathbb{C})$

- Let us consider a noncommutative example, A_F = M₂(ℂ).
- We can identify M₂(ℂ) ⊗ M₂(ℂ) with M₄(ℂ) so that elements in Pert(M₂(ℂ) are 4 × 4-matrices satisfying the normalization and self-adjointness condition. In a suitable basis:

$$\operatorname{Pert}(M_{2}(\mathbb{C})) = \left\{ \begin{pmatrix} 1 & v_{1} & v_{2} & iv_{3} \\ 0 & x_{1} & x_{2} & ix_{3} \\ 0 & x_{4} & x_{5} & ix_{6} \\ 0 & ix_{7} & ix_{8} & x_{9} \end{pmatrix} \middle| \begin{array}{c} v_{1}, v_{2}, v_{3} \in \mathbb{R} \\ x_{1}, \dots x_{9} \in \mathbb{R} \end{array} \right\}$$

and one can show that

$$\operatorname{Pert}(M_2(\mathbb{C})) \simeq \mathbb{R}^3 \rtimes S.$$

• More generally (B.Sc. thesis Niels Neumann),

 $\operatorname{Pert}(M_N(\mathbb{C})) \simeq W \rtimes S'.$

Example: noncommutative two-point space

- Consider noncommutative two-point space described by $\mathbb{C}\oplus M_2(\mathbb{C})$
- It turns out that

 $\operatorname{Pert}(\mathbb{C} \oplus M_2(\mathbb{C})) \simeq M_2(\mathbb{C}) \times \operatorname{Pert}(M_2(\mathbb{C}))$

• Only $M_2(\mathbb{C}) \subset \operatorname{Pert}(\mathbb{C} \oplus M_2(\mathbb{C}))$ acts non-trivially on D_F :

$$D_F = \begin{pmatrix} 0 & \overline{c} & 0 \\ c & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 & \overline{c}\overline{\phi_1} & \overline{c}\overline{\phi_2} \\ c\phi_1 & 0 & 0 \\ c\phi_2 & 0 & 0 \end{pmatrix}$$

- Physicists call ϕ_1 and ϕ_2 the Higgs field.
- The group of unitary block diagonal matrices is now U(1) × U(2) and an element (λ, u) therein acts as

$$\begin{pmatrix} \phi_1\\ \phi_2 \end{pmatrix} \mapsto \overline{\lambda} u \begin{pmatrix} \phi_1\\ \phi_2 \end{pmatrix}.$$

Example: perturbation semigroup of a manifold Recall, for any involutive algebra \mathcal{A}

$$\operatorname{Pert}(\mathcal{A}) := \left\{ \sum_{j} a_{j} \otimes b_{j}^{\operatorname{op}} \in \mathcal{A} \otimes \mathcal{A}^{\operatorname{op}} \middle| \begin{array}{c} \sum_{j} a_{j} b_{j} = 1 \\ \sum_{j} a_{j} \otimes b_{j}^{\operatorname{op}} = \sum_{j} b_{j}^{*} \otimes a_{j}^{*\operatorname{op}} \end{array} \right\}$$

- We can consider functions in the tensor product C[∞](M) ⊗ C[∞](M) as functions of two variables, *i.e.* elements in C[∞](M × M).
- The normalization and self-adjointness condition in $Pert(C^{\infty}(M))$ translate accordingly and yield

$$\operatorname{Pert}(C^{\infty}(M)) = \left\{ f \in C^{\infty}(M \times M) \left| \begin{array}{c} f(x,x) = 1 \\ f(x,y) = \overline{f(y,x)} \end{array} \right\} \right\}$$

 The action of Pert(C[∞](M)) on the partial derivatives appearing in a Dirac operator D_M is given by

$$\frac{\partial}{\partial x_{\mu}} \mapsto \frac{\partial}{\partial x_{\mu}} + \left. \frac{\partial}{\partial y_{\mu}} f(x, y) \right|_{y=x} =: \partial_{\mu} + A_{\mu}$$

Applications to particle physics

• Combine (4d) Riemannian spin manifold *M* with finite noncommutative space *F*:

 $M \times F$

• F is internal space at each point of M

• Described by matrix-valued functions on M: algebra $C^{\infty}(M, \mathcal{A}_F)$

Dirac operator on $M \times F$

• Recall the form of D_M :

$$D_M = egin{pmatrix} 0 & D_M^+ \ D_M^- & 0 \end{pmatrix}.$$

• Dirac operator on $M \times F$ is the combination

$$D_{M\times F} = \begin{pmatrix} D_F & D_M^+ \\ D_M^- & -D_F \end{pmatrix}.$$

• The crucial property of this specific form is that it squares to the sum of the two Laplacians on *M* and *F*:

$$D_{M\times F}^2 = D_M^2 + D_F^2$$

• Using this, we can expand:

$$\mathrm{Tr} \ e^{-D_{M\times F}^2/\Lambda^2} = \frac{\mathrm{Vol}(M)\Lambda^4}{(4\pi)^2} \mathrm{Tr} \ \left(1 - \frac{D_F^2}{\Lambda^2} + \frac{D_F^4}{2\Lambda^4}\right) + \mathcal{O}(\Lambda^{-1}).$$

The Higgs mechanism

We apply this to the noncommutative two-point space described before

- Algebra $\mathcal{A}_F = \mathbb{C} \oplus M_2(\mathbb{C})$
- Perturbation of Dirac operator D_F parametrized by ϕ_1, ϕ_2 .
- Potential for the perturbed Dirac operator is

$$V(\phi) = -2\Lambda^2(|\phi_1|^2 + |\phi_2|^2) + (|\phi_1|^2 + |\phi_2|^2)^2$$

 Minimum breaks symmetry spontaneously, giving mass to Higgs boson (125.5 GeV, corresponding to 10⁻¹⁸m).

The spectral Standard Model

- The full Standard Model is based on the algebra $\mathcal{A}_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$
- The finite Dirac operator is given by a 96 × 96-dimensional hermitian matrix, containing masses for the leptons and quarks.
- This allows for a derivation of the particle content of the Standard Model from pure geometry

• The spectral action functional describes their dynamics and interactions

Summary

- Noncommutative geometry allows for a derivation of the Standard Model of particle physics
- Perturbations of *D* form a semigroup, unitary elements form a subgroup of this semigroup.
- Matrix algebras give rise to matrix semigroups, perturbing the Dirac operator to yield physical fields (electromagnetic, Higgs, etc.).
- Spectral action functional gives dynamics and interactions.
- At the classical level... still awaiting a rigorous quantization