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Spectral geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



The disc



Wave numbers on the disc
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Wave numbers on the disc: high frequencies
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The square



Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac’s question is no.



Weyl’s estimate

Nevertheless, certain information can be extracted from spectrum, such as
dimension n of M:

N(Λ) = #wave numbers ≤ Λ

∼ ΩnVol(M)

n(2π)n
Λn

For the disc and square this is confirmed by the parabolic shapes (
√

Λ):
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Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

The Dirac operator is a ‘square-root’ of the Laplacian, so that its
spectrum give the wave numbers k .

First found by Paul Dirac in flat space, but exists on any Riemannian
spin manifold M.

Let us give some examples.



The circle

The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

The Dirac operator on the circle is

DS1 = −i
d

dt

with square ∆S1 .

The eigenfunctions of DS1 are the complex exponential functions

e int = cos nt + i sin nt

with eigenvalue n ∈ Z.



The 2-dimensional torus

Consider the two-dimensional torus T2 parametrized by two angles
t1, t2 ∈ [0, 2π).

The Laplacian reads

∆T2 = − ∂2

∂t2
1

− ∂2

∂t2
2

.

At first sight it seems difficult to construct a differential operator that
squares to ∆T2 :(

a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t2
1

+ 2ab
∂2

∂t1∂t2
+ b2 ∂

2

∂t2
2



This puzzle was solved by Dirac who considered the possibility that a
and b be complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0

The Dirac operator on the torus is

DT2 =

(
0 ∂

∂t1
+ i ∂

∂t2

− ∂
∂t1

+ i ∂
∂t2

0

)
,

which satisfies (DT2)2 = − ∂2

∂t2
1
− ∂2

∂t2
2
.

The spectrum of the Dirac operator DT2 is

{√
n2

1 + n2
2 : n1, n2 ∈ Z

}
;



The 4-dimensional torus

Consider the 4-torus T4 parametrized by t1, t2, t3, t4 and the Laplacian is

∆T4 = − ∂2

∂t2
1

− ∂2

∂t2
2

− ∂2

∂t2
3

− ∂2

∂t2
4

.

The search for a differential operator that squares to ∆T4 again involves
matrices, but we also need quaternions:

i2 = j2 = k2 = ijk = −1.

The Dirac operator on T4 is

DT4 =

(
0 ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4

− ∂
∂t1

+i ∂
∂t2

+j ∂
∂t3

+k ∂
∂t4

0

)
The relations ij = −ji , ik = −ki , et cetera imply that its square
coincides with ∆T4 .



Spectral action functional

Reconsider Weyl’s estimate, in a smooth version:

Tr χ

(
DM

Λ

)
=
∑
λ

χ

(
λ

Λ

)
for a smooth cutoff function χ : R→ R.

For simplicity, restrict to a Gaussian function

χ(x) = e−x
2

so that we can use heat asymptotics: Tr e−D
2
M/Λ2 ∼ Vol(M)Λn

(4π)n/2



Hearing the shape of a drum

As said, the geometry of M is not fully determined by spectrum of DM .

This can be improved by considering besides DM also the algebra
C∞(M) of smooth functions on M, with pointwise product and addition

In fact, the distance function on M is equal to

d(x , y) = sup
f ∈C∞(M)

{|f (x)− f (y)| : gradient f ≤ 1}

b b

x y

f

b b

x y

The gradient of f is given by the commutator [DM , f ] = DM f − fDM .
For example, on the circle we have [DS1 , f ] = −i dfdt



Finite spaces

Finite space F , discrete topology

F = 1 • 2 • · · · · · · N•

Smooth functions on F are given by N-tuples in CN , and the
corresponding algebra C∞(F ) corresponds to diagonal matrices

f (1) 0 · · · 0
0 f (2) · · · 0
...

. . .
...

0 0 . . . f (N)


The finite Dirac operator is an arbitrary hermitian matrix DF , giving rise
to a distance function on F as

d(p, q) = sup
f ∈C∞(F )

{|f (p)− f (q)| : ‖[DF , f ]‖ ≤ 1}



Example: two-point space

F = 1 • 2•

Then the algebra of smooth functions

C∞(F ) :=

{(
λ1 0
0 λ2

) ∣∣∣∣λ1, λ2 ∈ C
}

A finite Dirac operator is given by

DF =

(
0 c
c 0

)
; (c ∈ C)

The distance formula then becomes

d(p, q) =

{
|c |−1 p 6= q
0 p = q



Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F .

Instead of diagonal matrices, we consider block diagonal matrices

A =


a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 . . . aN

 ,

where the a1, a2, . . . aN are square matrices of size n1, n2, . . . , nN .

Hence we will consider the matrix algebra

AF := Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN (C)

A finite Dirac operator is still given by a hermitian matrix.



Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by considering
the algebra AF of 3× 3 block diagonal matrices of the following formλ 0 0

0 a11 a12

0 a21 a22


A finite Dirac operator for this example is given by a hermitian 3× 3 matrix,
for example

DF =

0 c 0
c 0 0
0 0 0





Spectral triples
Noncommutative Riemannian spin manifolds

More generally, we consider

Definition

A spectral triple (A,H,D) is given by a unital associative ∗-algebra A
represented as bounded operators on a Hilbert space H and a self-adjoint
operator D in H such that the resolvent (i + D)−1 is a compact operator
and [D, a] is bounded for each a ∈ A.

Spectral action functional:

Tr χ(D/Λ)

Invariant under unitaries u ∈ U(A) acting as

D 7→ uDu∗



Semigroup of inner perturbations
Extend this to more general perturbations:

Pert(A) :=

∑
j

aj ⊗ bop
j ∈ A⊗A

op

∣∣∣∣ ∑j ajbj = 1∑
j aj ⊗ bop

j =
∑

j b∗j ⊗ a∗opj


with semi-group law inherited from product in A⊗Aop.

U(A) maps to Pert(A) by sending u 7→ u ⊗ u∗op.

Pert(A) acts on D:

D 7→
∑
j

ajDbj = D +
∑
j

aj [D, bj ]

Spectral action functional:

Tr χ (D + ω) =
∞∑
n=0

1

2πin
Tr

∮
χ′(z)ω(z − D)−1 · · ·ω(z − D)−1



Perturbation semigroup for matrix algebras

Proposition

Let AF be the algebra of block diagonal matrices (fixed size). Then the
perturbation semigroup of AF is

Pert(AF ) '

∑
j

Aj ⊗ Bj ∈ AF ⊗AF

∣∣∣∣ ∑j Aj(Bj)
t = I∑

j Aj ⊗ Bj =
∑

j Bj ⊗ Aj


The semigroup law in Pert(AF ) is given by the matrix product in AF ⊗AF :

(A⊗ B)(A′ ⊗ B ′) = (AA′)⊗ (BB ′).



The two conditions in the above definition,∑
j

Aj(Bj)
t = I

∑
j

Aj ⊗ Bj =
∑
j

Bj ⊗ Aj

are called normalization and self-adjointness condition, respectively.

Let us check that the normalization condition carries over to products,∑
j

Aj ⊗ Bj

(∑
k

A′k ⊗ B ′k

)
=
∑
j ,k

(AjA
′
k)⊗ (BjB

′
k)

for which indeed∑
j ,k

AjA
′
k(BjB

′
k)t =

∑
j ,k

AjA
′
k(B ′k)t(Bj)

t = I



Example: perturbation semigroup of two-point space

Now AF = C2, the algebra of diagonal 2× 2 matrices.

In terms of the standard basis of such matrices

e11 =

(
1 0
0 0

)
, e22 =

(
0 0
0 1

)
we can write an arbitrary element of Pert(C2) as

z1e11 ⊗ e11 + z2e11 ⊗ e22 + z3e22 ⊗ e11 + z4e22 ⊗ e22

Matrix multiplying e11 and e22 yields for the normalization condition:

z1 = 1 = z4.

The self-adjointness condition reads

z2 = z3

leaving only one free complex parameter so that Pert(C2) ' C.

More generally, Pert(CN) ' CN(N−1)/2 with componentwise product.



Example: perturbation semigroup of M2(C)

Let us consider a noncommutative example, AF = M2(C).

We can identify M2(C)⊗M2(C) with M4(C) so that elements in
Pert(M2(C) are 4× 4-matrices satisfying the normalization and
self-adjointness condition. In a suitable basis:

Pert(M2(C)) =




1 v1 v2 iv3

0 x1 x2 ix3

0 x4 x5 ix6

0 ix7 ix8 x9

∣∣∣∣ v1, v2, v3 ∈ R
x1, . . . x9 ∈ R


and one can show that

Pert(M2(C)) ' R3 o S .

More generally (B.Sc. thesis Niels Neumann),

Pert(MN(C)) 'W o S ′.



Example: noncommutative two-point space

Consider noncommutative two-point space described by C⊕M2(C)

It turns out that

Pert(C⊕M2(C)) ' M2(C)× Pert(M2(C))

Only M2(C) ⊂ Pert(C⊕M2(C)) acts non-trivially on DF :

DF =

0 c 0
c 0 0
0 0 0

 7→
 0 cφ1 cφ2

cφ1 0 0
cφ2 0 0


Physicists call φ1 and φ2 the Higgs field.

The group of unitary block diagonal matrices is now U(1)× U(2) and
an element (λ, u) therein acts as(

φ1

φ2

)
7→ λu

(
φ1

φ2

)
.



Example: perturbation semigroup of a manifold
Recall, for any involutive algebra A

Pert(A) :=

∑
j

aj ⊗ bop
j ∈ A⊗A

op

∣∣∣∣ ∑j ajbj = 1∑
j aj ⊗ bop

j =
∑

j b∗j ⊗ a∗opj


We can consider functions in the tensor product C∞(M)⊗ C∞(M) as
functions of two variables, i.e. elements in C∞(M ×M).

The normalization and self-adjointness condition in Pert(C∞(M))
translate accordingly and yield

Pert(C∞(M)) =

{
f ∈ C∞(M ×M)

∣∣∣∣ f (x , x) = 1

f (x , y) = f (y , x)

}
The action of Pert(C∞(M)) on the partial derivatives appearing in a
Dirac operator DM is given by

∂

∂xµ
7→ ∂

∂xµ
+

∂

∂yµ
f (x , y)

∣∣∣∣
y=x

=: ∂µ + Aµ



Applications to particle physics

Combine (4d) Riemannian spin manifold M with finite noncommutative
space F :

M × F

F is internal space at each point of M

Described by matrix-valued functions on M: algebra C∞(M,AF )



Dirac operator on M × F

Recall the form of DM :

DM =

(
0 D+

M
D−M 0

)
.

Dirac operator on M × F is the combination

DM×F =

(
DF D+

M
D−M −DF

)
.

The crucial property of this specific form is that it squares to the sum of
the two Laplacians on M and F :

D2
M×F = D2

M + D2
F

Using this, we can expand:

Tr e−D
2
M×F /Λ2

=
Vol(M)Λ4

(4π)2
Tr

(
1−

D2
F

Λ2
+

D4
F

2Λ4

)
+O(Λ−1).



The Higgs mechanism

We apply this to the noncommutative two-point space described before

Algebra AF = C⊕M2(C)

Perturbation of Dirac operator DF parametrized by φ1, φ2.

Potential for the perturbed Dirac operator is

V (φ) = −2Λ2(|φ1|2 + |φ2|2) + (|φ1|2 + |φ2|2)2

Minimum breaks symmetry spontaneously, giving mass to Higgs boson
(125.5 GeV, corresponding to 10−18m).



The spectral Standard Model

The full Standard Model is based on the algebra AF = C⊕H⊕M3(C)

The finite Dirac operator is given by a 96× 96-dimensional hermitian
matrix, containing masses for the leptons and quarks.

This allows for a derivation of the particle content of the Standard
Model from pure geometry

The spectral action functional describes their dynamics and interactions



Summary

Noncommutative geometry allows for a derivation of the Standard
Model of particle physics

Perturbations of D form a semigroup, unitary elements form a subgroup
of this semigroup.

Matrix algebras give rise to matrix semigroups, perturbing the Dirac
operator to yield physical fields (electromagnetic, Higgs, etc.).

Spectral action functional gives dynamics and interactions.

At the classical level... still awaiting a rigorous quantization


