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Abstract

In this thesis we analyze the perturbation semigroup introduced by A. Chamseddine, A.
Connes and W. van Suijlekom, and we try to get a better understanding of its structure.
We will concretely determine the perturbation semigroup for all matrix algebras and use
some toy models to see the physical use of the perturbation semigroup, in particular to
the Standard Model of Particle Physics.
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Chapter 1

Introduction

Geometry is an ancient part of mathematics which can be traced back to the ancient
Greeks and further. Euclides and Newton used geometry in their work and Einstein
used geometry for his famous theory of gravity. In order to develop his general theo-
rem of relativity he had to use some kind of geometry, more specifically Einstein used
Riemannian geometry. In this way, Einstein’s theory could describe gravity. The other
three fundamental forces, the weak and strong nuclear force and the electromagnetic
force, could not yet be described by it despite many efforts (e.g. Kaluza-Klein [1]).
Many have tried to generalize Einstein’s theory, but it was Alain Connes in the twenti-
eth century that found a generalization that allows for the inclusion of the other forces
as well [2]. The result was non-commutative geometry and it generalizes Riemannian
geometry. With this generalization it was also possible to describe the Standard Model
of Particle Physics at least at the classical level [3].

In 2013 an article was published in which non-commutative geometry was further
generalized by the disposal of one of the conditions, namely the first order condition [4].
In this thesis we will take a closer look at a semigroup structure emerging through this
generalization and try to apply it to some toy models.

In this first chapter we will give a short introduction of the subject. In the next
chapter we will give some definitions needed later, and we will also prove that the
perturbation semigroup is in fact a semigroup. After that we will continue with some
examples. We will then determine the perturbation semigroup for all matrix algebras.
Starting with CN we show that

Pert(CN) ∼= CN(N−1)/2

and we will take a look at the embedding of the unitaries in the perturbation semigroup.
This explains how the perturbation semigroup is a generalization of the gauge group. We
will also determine the perturbation semigroup of MN(C). For both CN and MN(C) we
will first determine the perturbation semigroup for some example before we generalize
it. For Mi(C), where i = 2, 3, 4, we will first determine the structure that follows from
the definition after which we will try to find defining properties. As it will turn out, in
general it is too hard to understand the structure of the perturbation semigroup from
the definition. Instead we will start by analyzing defining properties and determine its
structure that way. If we have done that we will also take a quick look at the invertible
elements in the perturbation semigroup and at the way the unitaries in the algebra are

3



embedded in the perturbation semigroup. An other interesting matrix algebra besides
MN(C) is MN(R) for which we will find that

Pert(MN(R)) ∼=
(
R(N−1)(N+2)/2 oM(N−1)(N+2)/2(R)

)
×MN(N−1)/2(R).

We will also take a look at the perturbation semigroup of the quaternions H, which is
a real subalgebra of Pert(M2(C)), and then we will generalize this to the perturbation
semigroup of MN(H), which is a real subalgebra of Pert(M2N(C)).

In chapter 4 we will take a look at the general theory of the perturbation semigroup,
in the sense that we will look at the perturbation semigroup of the direct sum and of the
tensor product. For the perturbation semigroup of a direct sum we will find an explicit
expression, while for the perturbation semigroup of the tensor product there does not
seem to be such an explicit expression.

After that it will be time to take a look at the perturbation semigroup of the Standard
Model of Particle Physics. Before we can determine that perturbation semigroup we
will consider the perturbation semigroup of smooth functions on a manifold after which
we will replace the smooth functions by the smooth functions with values in a finite
dimensional ∗-algebra.

In the last chapter we will take a look at the action of this perturbation semigroup on
hermitian matrices. We will apply it to some toy models, some of which have physical
meaning. We will take a look at the action of the perturbation semigroup on diagonal
matrices, after which we will consider off-diagonal, but still hermitian, matrices. These
have some physical application: it will turn out that the famous Higgs field is encoded
in one of the results.

In the appendix we will prove a few results on semigroups which we have not proven
in the text. For instance, we include the semigroup isomorphism theorems and a result
on the invertible elements of a semidirect product.
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Chapter 2

Perturbation semigroup

2.1 Definitions
In order for us to be able to do mathematics we need a few definitions.

Definition 2.1. A complex unital algebra is a vector space A with a bilinear associative
product A×A → A and a unit 1 satisfying 1a = a1 = a for all a ∈ A.

Definition 2.2. An involutive algebra (or ∗-algebra) is a complex algebra A with a
conjugate-linear map ∗ : A → A such that for all a, b ∈ A

(ab)∗ = b∗a∗,
(a∗)∗ = a.

We will restrict to involutive unital ∗-algebras and we will simply refer to them as
algebras. An example of a ∗-algebra is CN with componentwise multiplication. An other
example is MN(C) with matrix multiplication.

Proposition 2.3. The vector space CN with componentwise multiplication is a ∗-algebra,
with the action of ∗ given by conjugation. The monoid MN(C) with matrix multiplication
is a ∗-algebra, where ∗ acts as hermitian conjugation.

Proof. Let v, w ∈ CN then (vw)i = (viwi)i ∈ CN since every vi, wi ∈ C, thus viwi ∈ C.
We also know that C is commutative, thus in general CN is commutative. The unit is
given by 1 = (1)i, the vector with as entries 1. The ∗ is conjugation. So let v, w ∈ CN

then
(vw)∗ = vw = wv = w∗v∗

and
(v∗)∗ = (v)∗ = v = v.

For MN(C) we have the usual matrix multiplication. So if A,B ∈ MN(C) then
AB ∈ MN(C). The unit is given by the unit matrix IN , i.e. by the diagonal matrix IN
with as entries 1 on the diagonal and zeros elsewhere. The ∗ is hermitian conjugation,
so for A,B ∈MN(C) we get

(AB)∗ = (AB)T = B
T
A

T = B∗A∗
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and
(A∗)∗ = (AT)∗ = (AT)

T
= (A

T
)T = A.

We conclude that both CN and MN(C) are ∗-algebras.

Central in finite dimensional non-commutative geometry is

Definition 2.4. A finite spectral triple is a triple (A,H, D) of a ∗-algebra A represented
faithfully on a finite-dimensional Hilbert space H, together with a symmetric linear
operator D : H → H.

The name spectral triple comes from the fact that the geometry of A is encoded
in the spectrum of D. It is useful to allow for finite spectral triples on real algebras,
instead of complex ones, as above.

Definition 2.5. A real unital algebra is a vector space A (over R) with a bilinear
associative product A×A → A and a unit 1 satisfying 1a = a1 = a for all a ∈ A.
An involutive algebra (or ∗-algebra) is a real algebra A together with a real linear map
(the involution) ∗ : A → A such that for all a, b ∈ A

(ab)∗ = b∗a∗,
(a∗)∗ = a.

Remark 2.6. Note that both RN and MN(R) are also real unital ∗-algebras, just as in
Proposition 2.3. The action of ∗ on RN is trivial, while the action of ∗ on MN(R) is
just matrix transposition.

The difference between this definition and that of a complex ∗-algebra is that the
real algebras are closed under multiplication with real numbers only. A particularly
interesting example in this context is given by the quaternions, H, which is a real
subalgebra of M2(C), defined by

H =


(
α β

−β̄ ᾱ

) ∣∣∣∣α, β ∈ C

.
As one can see, the entries of the matrices are complex, but the algebra itself is real.
Indeed, upon multiplying a matrix in H with a complex number λ, and demanding this
to be in H, forces λ = λ.

We will also be working with semigroups in this thesis, so we need a few definitions
on that.

Definition 2.7. A semigroup S is a set with an associative operation ◦ : S × S → S.
If S has a unit it is called a monoid.

Definition 2.8. A group G is a set with an associative operation ◦ : G × G → G, an
identity element e such that ge = g = eg for all g ∈ G and for every g ∈ G there is an
element g−1 ∈ G such that gg−1 = e = g−1g. We will refer to g−1 as the inverse element
of g, since g−1 is unique for every g.

Remark 2.9. Every group G is thus in particular a monoid and a semigroup.
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Just as for groups we have homomorphism between semigroups.

Definition 2.10. Let S, T be two semigroups, then the function φ : S → T is called a
semigroup homomorphism if

φ(xy) = φ(x)φ(y)
for all x, y ∈ S.

Notation 2.11. For a semigroup (or a monoid) S we write S× for the group of invertible
elements in S.

Associated to any spectral triple is the following group.

Definition 2.12. The group U(A) is the group of unitaries, i.e.

U(A) = {u ∈ A | uu∗ = 1 = u∗u}.

2.2 Semigroup of inner perturbations
The starting point of this thesis is [4]. In that paper the theory of non-commutative
geometry is enriched by neglecting the first order condition. This gave rise to the inner
perturbations as we will now describe. At first the fluctuated metrics were formed with
help of U(A) in the sense that, for u ∈ U(A) we had

D 7→ uDu∗,

which can be rewritten as

D 7→ uDu∗ = D + u[D, u∗].

However, since the elements of U(A) are unitary elements the spectrum of D remains
the same. This motivated the use of A to fluctuate the metric. If we now use u[D, u∗]
as a prototype for the new elements we get

D 7→ D + A, A =
∑

aj[D, bj],

where aj, bj ∈ A and A = A∗, as in [5]. In [4] this action was generalized to the action
of the so called perturbation semigroup Pert(A). The elements of this perturbation
semigroup are ∑ aj ⊗ bopj ∈ Pert(A) and work on D as ∑ ajDbj. Let us work towards a
precise definition of the perturbation semigroup.

Definition 2.13. Let A be an algebra, then the opposite algebra of A is denoted by
Aop. It is given by A as a vector space, with product a ◦ b = ba.

Definition 2.14. Let A be an associative algebra with unit then Ω1(A) is the space of
one-forms given by

Ω1(A) = {
∑
i

aiδbi | ai, bi ∈ A},

where
δ : A → Ω1(A)
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be a map such that

δ(ab) = (δa)b+ aδb;
δ(αa+ βb) = αδa+ βδb;

δ(a)∗ = −δ(a∗).

Here a, b ∈ A, α, β ∈ C.

Remark 2.15. The condition

δ(ab) = (δa)b+ aδb

implies that δ1 = 0. Therefore also δC = 0.

This Ω1(A) is further generalized in [6]. One now has

Lemma 2.16. The map η is a surjection

η : {
∑

aj ⊗ bopj ∈ A⊗Aop |
∑

ajbj = 1} → Ω1(A), η(
∑

aj ⊗ bopj ) =
∑

ajδ(bj)

and one has
η(
∑

b∗j ⊗ a
∗op
j ) = (η(

∑
aj ⊗ bopj ))∗.

Proof. Let ω = ∑
aiδ(bi) ∈ Ω1(A), then we can write

ω = (1−
∑

aibi)δ(1) +
∑

aiδ(bi),

because we have δ(1) = 0. The preimage of this element is

1⊗ 1op −
∑

aibi ⊗ 1op +
∑

ai ⊗ bopi .

This is normalized since we have

1 · 1−
∑

aibi · 1 +
∑

aibi = 1.

So η is a surjection.
Let ∑ aiδ(bi) ∈ Ω1(A), then we see that ∑ ai ⊗ bopi is normalized. We have

(
∑

aiδ(bi))∗ = −(
∑

δ(ai)bi)∗ =
∑

b∗i δ(a∗j),

hence
η
(∑

b∗j ⊗ a
∗op
j

)
=
(
η
(∑

aj ⊗ bopj
))∗

.

Note that we have ∑
b∗ja
∗
j = (

∑
ajbj)∗ = 1∗ = 1

so ∑ b∗i ⊗ a
∗op
i is also normalized.

Now suppose that ω = ∑
xiδ(yi), such that ω = ω∗. We can now write ω as

ω = 1
2
∑
aiδ(bi) + 1

2
∑
b∗i δ(a∗i ) for given ai, bi. Note that ω is in fact self-adjoint. We can

rewrite ω as

ω = (1−
∑

aibi)δ(
1
2) + δ(1

2)(1−
∑

b∗i a
∗
i ) + 1

2
∑

aiδ(bi) + 1
2
∑

b∗i δ(a∗i ),
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since δ(1
2) = 0. The preimage of ω is

1⊗ 1
2
op

−
∑

aibi ⊗
1
2
op

+ 1
2 ⊗ 1op −

∑ 1
2 ⊗ (aibi)∗op + 1

2
∑

ai ⊗ bopi + 1
2
∑

b∗i ⊗ a
∗op
i ,

where we have used that (b∗i a∗i )op = (aibi)∗op. Also note that this preimage is in fact
self-adjoint. We see that this preimage is normalized since we have

1 · 1
2 −

∑
aibi ·

1
2 + 1

2 · 1−
1
2 ·
∑

(aibi)∗ + 1
2
∑

aibi + 1
2
∑

b∗i a
∗
i = 1.

We now want to show transitivity of the inner fluctuations, which means that inner
fluctuations of inner fluctuations are still inner fluctuations.

Proposition 2.17. Let A = ∑
ai ⊗ bopi ∈ A ⊗ Aop be self-adjoint and normalized by∑

aibi = 1. Then for A,A′ ∈ A⊗Aop, both normalized, we have

(D(η(A)))(η(A′)) = D(η(A′A)).

Here D′ = D(η(A)) stands for the inner fluctuation of D, which means

D′ = D +
∑

ai[D, bi].

Proof. Let A = ∑
ai⊗ bopi and A′ = ∑

xs⊗ yops be normalized and self-adjoint. We have

D′ = D(η(A)) = D +
∑

ai[D, bi]

and in a similar way

D′′ = D′(η(A′)) = (D(η(A)))(η(A′)) = D(η(A)) +
∑

xs[D(η(A)), ys].

Expanding this gives

D′′ = D +
∑

ai[D, bi] +
∑

xs[D, ys] +
∑∑

xs[ai[D, bi], ys].

If we now use
xs[ai[D, bi], ys] = xs(ai[D, bi]ys − ysai[D, bi])

and we use that ∑∑
xsysai[D, bi] =

∑
ai[D, bi]

we get
D′′ = D +

∑
xs[D, ys] +

∑∑
xsai[D, bi]ys.

However xsai[D, bi]ys can be expanded as

xsai[D, bi]ys = xsai[D, biys]− xsaibi[D, ys]

and we know that ∑∑
xsaibi[D, ys] =

∑
xs[D, ys].

So we get
D′′ = D +

∑∑
xsai[D, biys].

If we now use
(
∑

xs ⊗ yops )(
∑

ai ⊗ bopi ) =
∑

xsai ⊗ (biys)op

we get the result.
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Thus inner fluctuations of inner fluctuations are still inner fluctuations. The self-
adjoint normalized elements of A⊗Aop form a semigroup Pert(A) under multiplication.

Definition 2.18. The perturbation semigroup is given by

Pert(A) =
{∑

aj ⊗ bopj ∈ A⊗Aop |
∑

ajbj = 1,
∑

aj ⊗ bopj =
∑

b∗j ⊗ a
∗op
j

}
,

where the sums are finite and the 1 is the unit in A.

Theorem 2.19. Pert(A) is a semigroup and has a unit.

Proof. To show that Pert(A) is in fact a semigroup we have to show the operation
◦ : Pert(A) × Pert(A) → Pert(A) is associative, thus for all a, b, c ∈ Pert(A) we have
(a◦b)◦c = a◦(b◦c). However, since A is associative we know that A⊗Aop is associative
as well. Since every element in the perturbation semigroup comes from A ⊗ Aop, we
know that the operation ◦ is associative. We now need to show that the operation is
closed, i.e. that the product of two elements is again in the perturbation semigroup.
Again let ∑j aj ⊗ ãopj ,

∑
k bk ⊗ b̃opk ∈ Pert(A), then(∑

j aj ⊗ ãopj
)(∑

k bk ⊗ b̃opk
)

= ∑
j,k(ajbk ⊗ ãopj b̃

op
k ),

= ∑
j,k(ajbk ⊗ (b̃kãj)op).

This has to be both normalized and self-adjoint. This is the case since we have∑
j,k(ajbk)(b̃kãj) = ∑

j,k aj(bkb̃k)ãj,
= ∑

j aj(
∑
k bkb̃k)ãj,

= ∑
j aj ãj,

= 1,

where we have subsequently used the normalization condition for ∑k bk⊗ b̃opk and ∑j aj⊗
ãopj . Moreover, self-adjointness follows from∑

j,k(b̃kãj)∗ ⊗ (ajbk)∗op = ∑
j,k ã

∗
j b̃
∗
k ⊗ a

∗op
j b∗opk ,

=
(∑

j ã
∗
j ⊗ a

∗op
j

)(∑
k b̃
∗
k ⊗ b

∗op
k

)
,

=
(∑

j aj ⊗ ãopj
)(∑

k bk ⊗ b̃opk
)
,

= ∑
j,k(ajbk)⊗ (b̃kãj)op,

where we have used the self-adjointness of both ∑k bk ⊗ b̃opk and ∑j aj ⊗ ãopj .
We claim that the unit in Pert(A) is given by 1⊗ 1, since

(∑j aj ⊗ ãopj ) ◦ (1⊗ 1) = ∑
j(aj ⊗ ãopj ) ◦ (1⊗ 1),

= ∑
j(aj · 1)⊗ (ãopj · 1),

= ∑
j aj ⊗ ãopj .

Similarly
(1⊗ 1) ◦ (∑j aj ⊗ ãopj ) = ∑

j(1⊗ 1) ◦ (aj ⊗ ãopj ),
= ∑

j(1 · aj)⊗ (1 · ãopj ),
= ∑

j aj ⊗ ãopj ,
where we have used that 1 is a unit in both A and Aop. We conclude that Pert(A) is a
semigroup and it is a monoid if A has a unit.
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Let us now consider how the unitary group is embedded in the perturbation semi-
group.

Proposition 2.20. Let A be a ∗-algebra, then we have

U(A)→ Pert(A), (2.1)
u 7→ u⊗ u∗op.

Proof. We need to show that u⊗ u∗op is both normalized and self-adjoint. The normal-
ization condition follows by definition, since we have uu∗ = 1. We also have

u⊗ u∗op = (u∗)∗ ⊗ (uop)∗,

hence the element is self-adjoint, which proves the proposition.
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Chapter 3

Perturbation semigroup for matrix
algebras

Now that we have our definitions in place, we want to further investigate the perturbation
semigroup by studying some examples.

3.1 Perturbation semigroup Pert(CN)
Since the examples are finite dimensional vector spaces, we can work in a basis for
A = CN , which allows for an explicit form of Pert(A). For a vector space CN (and also
RN) we have

A ∼= Aop

since it is commutative.

3.1.1 A = C
First we look at the case A = C. Now ∑

j aj ⊗ bopj reduces to ∑j ajbj, since the tensor
product is linear over C and C ∼= Cop. This ∑j ajbj enters precisely in our normalization
condition, thus equals 1. We can therefore conclude that the case A = C is trivial

Pert(C) ∼= {1}.

U(C) maps onto the perturbation semigroup, following the embedding in (2.1), since we
have

λ ∈ U(1) 7→ λ⊗ λ.

However, the tensor product is C-linear, therefore we can bring λ to the other side,
which gives

λλ⊗ 1 = 1⊗ 1.

Thus in this case U(1)→ {1}.
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3.1.2 A = C2

Now let us consider A = C2, so that A⊗Aop ∼= C4. As a basis for A we take

e1 =
(

1
0

)
, e2 =

(
0
1

)
.

In terms of this basis the product of C2 behaves much like a Kronecker delta, in the
sense that

eiej =

0 if i 6= j,

ei if i = j.

Thus for an element ∑i,j Cijei⊗eopj , with coefficients Cij, one gets that the normalization
conditions reads

C11e1e1 + C12e1e2 + C21e2e1 + C22e2e2 = C11e1 + C22e2 = e1 + e2,

since e1 + e2 is the identity in C2. So it follows that C11 = C22 = 1. To determine what
restrictions are imposed on C21 and C12, we use the self-adjointness condition. We see
that ∑

i,j

Cijei ⊗ eopj =
∑
i,j

Cijei ⊗ ej,

=
∑
i,j

C∗ije
∗
j ⊗ e∗i ,

=
∑
i,j

Cijej ⊗ ei,

=
∑
i,j

Cjiei ⊗ eopj ,

where we have used that A ∼= Aop. So we see that Cij = Cji, hence C12 = C21.
Upon identifying the basis

e1 ⊗ e1  


1
0
0
0

 , e1 ⊗ e2  


0
1
0
0

 etc.

the element ∑
i,j

Cijei ⊗ eopj ∈ Pert(C2)

thus becomes 
1
C12
C12
1

 , C12 ∈ C.

This is isomorphic to C, so we get

Pert(C2) ∼= C.
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For C2 the unitaries are mapped to Pert(C2) as in (2.1). With the identification
U(C2) ∼= U(1)× U(1),

we have
(λ, µ) ∈ U(1)× U(1) 7→ (λ, µ)⊗ (λ, µ).

Once again we have a C-linear tensor product, thus we get
(λ, µ)⊗ (λ, µ) = (λ, µ)⊗ λ(1, λµ) = (1, λµ)⊗ (1, λµ).

Note that one only sees the difference between the components, but not the components
itself, leaving a U(1) ⊂ Pert(C2).

3.1.3 A = CN

Now let us take a look at the general case A = CN so that A⊗Aop ∼= CN2 . As a basis
for A we take

ei =



...
0
1
0
...

← i

the standard basis.
Proposition 3.1. For any N ≥ 1 we have

Pert(CN) ∼= CN(N−1)/2

with the semigroup structure given by componentwise multiplication.
Proof. Our normalization condition states that Cii = 1 for all i. Since∑

i,j

Cijeiej

reduces to ∑
i

Ciieiei

and ∑i eiei is the unit in CN . That this sum reduces to the unit comes from the product
eiej which behaves much like a Kronecker product in the sense that

eiej =

0 if i 6= j,

ei if i = j.
(3.1)

The self-adjointness condition states that Cij = Cji for all i, j, since∑
i,j

Cijei ⊗ eopj =
∑
i,j

Cijei ⊗ ej,

=
∑
i,j

C∗ije
∗
j ⊗ e∗i ,

=
∑
i,j

Cijej ⊗ ei,

=
∑
i,j

Cjiei ⊗ eopj
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So there are N2 variables, among which N are equal to one, while the others are pairwise
conjugated.

Now let v, w ∈ Pert(CN) and z = vw. This is once again in the semigroup, since for
the k-th component we have

zk = zij = vijwij = CijDij

for given i, j and components Cij, Dij, such that vij = Cijei ⊗ ej and similarly for wij
and zij. Suppose i = j then

zk = zii = viiwii = CiiDii = 1 ∗ 1 = 1.

So z is normalized. For arbitrary i, j we have

zij = vijwij = vjiwji = zji,

hence zij = zji. So z is self-adjoint. Thus the product is indeed the semigroup structure
required.

In general we have the following proposition for the embeddeding of the unitaries in
the perturbation semigroup.

Proposition 3.2. Under the embedding U(CN) ↪→ Pert(CN) we have

U(CN)→ U(1)N−1.

Proof. Let
(λ1, . . . , λN) ∈ U(CN) ∼= U(1)N ,

then the embedding reads

(λ1, . . . , λN)⊗ (λ1, . . . , λN) = (λ1, . . . , λN)⊗ λ1(1, λ1λ2, . . . , λ1λN),
= (1, λ1λ2, . . . , λ1λN)⊗ (1, λ1λ2, . . . , λ1λN),

Where we have used that the tensor product is C-linear and that every variable is
unitary. We only see the difference between every pair of variables, therefore we get
that the unitaries U(CN) are embedded in Pert(CN) as U(1)N → U(1)N−1.

Note that it does not matter which variable we extract from the vector (λ1 in the
above proof), since (λiλj)(λiλk) = λjλk.

3.2 Perturbation semigroup Pert(MN(C))
Another interesting case is the perturbation semigroup of MN(C). The first cases we
will consider are A = M2(C),M3(C) and M4(C) which will then be generalized to
A = MN(C).

First let us look at MN(C)⊗MN(C)op in general. One can look at the basis compo-
nents in order to determine the perturbation semigroup. As basis we take {eij}, where
eij is a matrix with a 1 on position (i, j) and zero’s everywhere else.
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Lemma 3.3. We have the following identification

MN(C)op →MN(C),
Aop 7→ AT.

Proof. Note that the product behaves the same on both sides. Since

AopBop = (BA)op

and
ATBT = (BA)T.

Also note that the dimensions of both ∗-algebras are equal. Thus this identification is
correct.

Under this identification we then have

eopij ↔ eji.

Furthermore, if we multiply two basis matrices we get

eijekl = δjkeil. (3.2)

We also introduce the notation Cij,kl as the coefficient corresponding to eij ⊗ eopkl in
MN(C)⊗MN(C)op. The last thing we need to note is that we can identify elements in
the perturbation semigroup with elements in MN2(C), since we take the tensor product
of two MN(C) matrices.

3.2.1 A = M2(C)
The first case we look at is A = M2(C). Note that we have four basis elements for which
the normalization condition becomes

(C11,11 + C12,21)e11 + (C11,12 + C12,22)e12 + (C21,11 + C22,21)e21

+ (C21,12 + C22,22)e22 = e11 + e22

Thus, we need to have

C11,11 + C12,21 = 1,
C11,12 + C12,22 = 0,
C21,11 + C22,21 = 0,
C21,12 + C22,22 = 1.

If we combine two arbitrary basis elements in the tensor product we can make the
following identification

M2(C)⊗M2(C)op →M4(C),
eij ⊗ eopkl 7→ eij ⊗ elk = e2(i−1)+l, 2(j−1)+k.
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in terms of the basis elements eij ⊗ elk and then extend this linearly to all of M2(C)⊗
M2(C)op. For the self-adjointness we get Cij,kl = Clk,ji, which will be proven in section
3.2.4. Taking the above identification into account and applying these conditions we get
for A ∈ Pert(M2(C))

A =


x1 z3 z3 1− x1
z1 z2 z5 −z1
z1 z5 z2 −z1
x2 z4 z4 1− x2

 ; z1, . . . z5 ∈ C, x1, x2 ∈ R.

Surprisingly for two of such matrices, their product once again has this general form.
Now let A ∈ M4(C) correspond to an element in Pert(M2(C)) via the above identifica-
tion. Then the above form for A can be obtained by demanding

A


1
0
0
1

 =


1
0
0
1

 ,

Ω̂A = AΩ̂,where Ω̂ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
This Ω̂ can be rewritten as a block matrix

Ω̂ =
(
e11 e21
e12 e22

)
=
(
eT

11 eT
12

eT
21 eT

22

)
=
∑

eij ⊗ eji.

Especially the last identity is useful, since we see that the eigenvectors of Ω̂ are given
by e1 ⊗ e2 ± e2 ⊗ e1, with eigenvalue 1 and −1 depending on the + or − sign, and
e1 ⊗ e1 ± e2 ⊗ e2, with eigenvalue 1. If we now change to a basis consisting of these
eigenvectors we will get

Ω =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
We also see that in this new base, the vector e1 is left invariant, i.e. e1 is an eigenvector of
the matrix Ω with eigenvalue 1. This eigenvector is identified with e1⊗e1 +e2⊗e2 in the
original basis and therefore it is also an eigenvector of the matrix A in the perturbation
semigroup. Thus we get

Ωe1 = e1; e1 =


1
0
0
0

 .
This gives

Pert(M2(C)) ∼=
{
A ∈M4(C) | Ae1 = e1, ΩA = AΩ

}
,
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with

Ω =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =
(
I3 0
0 −1

)
.

The invertible elements in the perturbation semigroup are given by the invertible ma-
trices in M4(C) which fulfill the conditions. Thus the invertible elements are given
by

Pert(M2(C))× ∼=
{
A ∈ GL4(C) | Ae1 = e1, ΩA = AΩ

}
.

We also want to know how the unitaries are embedded in the perturbation semigroup.
For a unitary matrix u we have uu∗ = I2. As it turns out there are two possible 2 by 2
unitary matrices, namely (

a −b∗
b a∗

)
and

(
a b∗

b −a∗
)
,

where |a|2 + |b|2 = 1. Using equation (2.1) we can get the general form of these matrices
in the perturbation semigroup. Computation gives

|a|2 −ab −ab |b|2

ab a2 −b2 −ab
ab −b2 a2 −ab
|b|2 ab ab |a|2


and 

|a|2 ab ab |b|2

ab −a2 b
2 −ab

ab b2 −a2 −ab
|b|2 −ab −ab |a|2

 .
We see that these matrices have the same general form as we found for Pert(M2(C)).
We also see that these matrices are again unitary matrices, since we have

|a|2 ∓ab ∓ab |b|2

ab ±a2 ∓b2 −ab
ab ∓b2 ±a2 −ab
|b|2 ±ab ±ab |a|2



|a|2 ab ab |b|2

∓ab ±a2 ∓b2 ±ab
∓ab ∓b2 ±a2 ±ab
|b|2 −ab −ab |a|2

 =


(|a|2 + |b|2)2 0 0 0

0 (|a|2 + |b|2)2 0 0
0 0 (|a|2 + |b|2)2 0
0 0 0 (|a|2 + |b|2)2

 = I4,

where we have used that |a|2 + |b|2 = 1.
We now want to change to a basis consisting of eigenvectors, more precisely the

eigenvectors e1 ⊗ e1 ± e2 ⊗ e2 and e1 ⊗ e2 ± e2 ⊗ e1. We do this with a transformation
matrix, which is given by

M =


1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0

 ,
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with inverse

M−1 = 1
2


1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

 .
Note that both M and M−1 are unitary matrices since the columns of M are orthogonal.
In terms of this new basis we get

M−1


|a|2 −ab −ab |b|2

ab a2 −b2 −ab
ab −b2 a2 −ab
|b|2 ab ab |a|2

M =


1 0 0 0
0 |a|2 − |b|2 −2<(ab) −2i=(ab)
0 2<(ab) <(a2 − b2) i=(a2 − b2)
0 2i=(ab) i=(a2 + b2) <(a2 + b2)


and

M−1


|a|2 ab ab |b|2

ab −a2 b
2 −ab

ab b2 −a2 −ab
|b|2 −ab −ab |a|2

M =


1 0 0 0
0 |a|2 − |b|2 2<(ab) 2i=(ab)
0 2<(ab) −<(a2 − b2) −i=(a2 − b2)
0 2i=(ab) −i=(a2 + b2) −<(a2 + b2)

 .

Apart from some minus signs, these matrices are equal. The result is again unitary, since
it is the product of three unitary matrices. These resulting matrices can be parametrized
by the lower right 3× 3 block. So we get

U(M2(C))→


|a|

2 − |b|2 ∓2<(ab) ∓2i=(ab)
2<(ab) ±<(a2 − b2) ±i=(a2 − b2)
2i=(ab) ±i=(a2 + b2) ±<(a2 + b2)


∣∣∣∣∣∣|a|2 + |b|2 = 1

.

3.2.2 A = M3(C)
There is not really a big difference between the cases where n = 2 versus n = 3. Instead
of four basis elements, we now need nine basis elements, one for every possible position
in the matrix. The normalization condition becomes

C11,11 + C12,21 + C13,31 = 1, C11,12 + C12,22 + C13,32 = 0, C11,13 + C12,23 + C13,33 = 0,
C21,11 + C22,21 + C23,31 = 0, C21,12 + C22,22 + C23,32 = 1, C21,13 + C22,23 + C23,33 = 0,
C31,11 + C32,21 + C33,31 = 0, C31,12 + C32,22 + C33,32 = 0, C31,13 + C32,23 + C33,33 = 1.

When combining two arbitrary basis elements in the perturbation semigroup we make
the following identification

M3(C)⊗M3(C)op →M9(C),
eij ⊗ eopkl 7→ eij ⊗ elk = e3(i−1)+l, 3(j−1)+k,

again in terms of the basis eij⊗elk. The self-adjoint condition translates to Cij,kl = Clk,ji,
this will be proven in section 3.2.4. Taking the above identification into account and
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applying these conditions we get for A ∈ Pert(M3(C))

A =



x1 z7 z8 z7 x2 z9 z8 z9 1− x1 − x2
z1 z10 z11 z12 z2 z13 z14 z15 −z1 − z2
z3 z16 z17 z18 z4 z19 z20 z21 −z3 − z4
z1 z12 z14 z10 z2 z15 z11 z13 −z1 − z2
x3 z22 z23 z22 x4 z24 z23 z24 1− x3 − x4
z5 z25 z26 z27 z6 z28 z29 z30 −z5 − z6
z3 z18 z20 z16 z4 z21 z17 z19 −z3 − z4
z5 z27 z29 z25 z6 z30 z26 z28 −z5 − z6
x5 z31 z32 z31 x6 z33 z32 z33 1− x5 − x6


;

z1, . . . , z33 ∈ C, x1, . . . , x6 ∈ R.

Let A ∈M9(C) then the above form for A can be obtained by demanding

A(e1 + e5 + e9) = (e1 + e5 + e9),

Ω̂A = AΩ̂,where Ω̂ =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


,

such that A ∈ Pert(M3(C)). Furthermore, we can bring Ω̂ to a more compact form, i.e.

Ω̂ =

e11 e21 e31
e12 e22 e32
e13 e23 e33

 =

e
T
11 eT

12 eT
13

eT
21 eT

22 eT
23

eT
31 eT

32 eT
33

 =
∑

eij ⊗ eji.

The eigenvectors are now given by ek ⊗ el ± el ⊗ ek for l 6= k, with eigenvalue ±1. For
l = k the eigenvectors are given by ek ⊗ ek for k = 1, 2, 3, all with eigenvalue 1. Note
that e1⊗e1 +e2⊗e2 +e3⊗e3 is also an eigenvector with eigenvalue 1. We can diagonalize
Ω̂ with a new basis consisting of these eigenvectors, which will lead to

Ω =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1


.
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First note that Ωe1 = e1 and if we change basis so that e1 becomes the vector e1 ⊗ e1 +
e2 ⊗ e2 + e3 ⊗ e3 in the previous basis, we see that e1 is also an eigenvector of a matrix
A in the perturbation semigroup. Combining this gives

Pert(M3(C)) ∼=
{
A ∈M9(C) | Ae1 = e1, ΩA = AΩ

}
,

with
Ω =

(
I6 0
0 −I3

)
.

The invertible elements of Pert(M3(C)) are given by the invertible matrices in the per-
turbation semigroup. Thus

Pert(M3(C))× ∼=
{
A ∈ GL9(C) | Ae1 = e1, ΩA = AΩ

}
.

Just as for Pert(M2(C)), we want to know how the unitaries are embedded in
Pert(M3(C)). However for N = 2 we had two possible unitary matrices, if N be-
comes larger, there are also more possible unitary matrices. The approach is similar.
We construct a transformation matrix using the eigenvectors. Note that the columns
need to be orthogonal. For the unitary matrix u we use that ∑j uijukj = δik. This way,
though a lot of work, we can determine the embedding of the unitaries in Pert(M3(C)).

3.2.3 A = M4(C)
The last case which will be discussed before we take a look at the general case is A =
M4(C). We do this to get more insight in the structure of the perturbation semigroup.
In terms of our coefficients Cij,kl described above, the normalization condition reads

4∑
i=1

Cki,ik = 1 for k ∈ {1, . . . , 4},

4∑
i=1

Cki,il = 0 for k, l ∈ {1, . . . , 4}, k 6= l.

Once again when combining two arbitrary basis elements in the perturbation semi-
group we make the following identification

M4(C)⊗M4(C)op →M16(C),
eij ⊗ eopkl 7→ eij ⊗ elk = e4(i−1)+l, 4(j−1)+k,

in terms of the basis eij ⊗ elk. The self-adjoint condition is now given by Cij,kl = Clk,ji,
which will be proven in section 3.2.4. Taking the identification into account and applying
these conditions we get for A ∈ Pert(M4(C))
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A =



x1 z19 z21 z23 z19 x2 z24 z22 z21 z24 x3 z20 z23 z22 z20 1− x1 − x2 − x3
z1 z31 z35 z39 z65 z2 z73 z77 z78 z74 z3 z66 z40 z36 z32 −z1 − z2 − z3
z4 z43 z47 z51 z69 z5 z81 z87 z88 z82 z6 z70 z52 z48 z44 −z4 − z5 − z6
z7 z55 z59 z63 z57 z8 z85 z62 z61 z86 z9 z58 z64 z60 z56 −z7 − z8 − z9
z1 z65 z78 z40 z31 z2 z74 z36 z35 z73 z3 z32 z39 z77 z66 −z1 − z2 − z3
x4 z111 z91 z99 z111 x5 z109 z92 z91 z109 x6 z112 z99 z92 z112 1− x4 − x5 − x6
z10 z95 z101 z105 z97 z11 z107 z104 z103 z108 z12 z98 z106 z102 z96 −z10 − z11 − z12
z13 z71 z90 z54 z45 z14 z84 z50 z49 z83 z15 z46 z53 z89 z72 −z13 − z14 − z15
z4 z69 z88 z52 z43 z5 z82 z48 z47 z81 z6 z44 z51 z87 z70 −z4 − z5 − z6
z10 z97 z103 z106 z95 z11 z108 z102 z101 z107 z12 z96 z105 z104 z98 −z10 − z11 − z12
x7 z113 z93 z100 z113 x8 z110 z94 z93 z110 x9 z114 z100 z94 z114 1− x7 − x8 − x9
z16 z67 z80 z42 z33 z17 z76 z38 z37 z75 z18 z34 z41 z79 z68 −z16 − z17 − z18
z7 z57 z61 z64 z55 z8 z86 z60 z59 z85 z9 z56 z63 z62 z58 −z7 − z8 − z9
z13 z45 z49 z53 z71 z14 z83 z89 z90 z84 z15 z72 z54 z50 z46 −z13 − z14 − z15
z16 z33 z37 z41 z67 z17 z75 z79 z80 z76 z18 z68 z42 z38 z34 −z16 − z17 − z18
x10 z25 z27 z29 z25 x11 z30 z28 z27 z30 x12 z26 z29 z28 z26 1− x10 − x11 − x12



,

z1, . . . , z114 ∈ C x1, . . . , x12 ∈ R.
Now suppose A ∈M16(C) then we obtain the above form by demanding that

A(e1 + e6 + e11 + e16) = (e1 + e6 + e11 + e16)

and
Ω̂A = AΩ̂,

where

Ω̂ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

We can rewrite this Ω̂ as a block matrix

Ω̂ =


e11 e21 e31 e41
e12 e22 e32 e42
e13 e23 e33 e43
e14 e24 e34 e44

 =


eT

11 eT
12 eT

13 eT
14

eT
21 eT

22 eT
23 eT

24
eT

31 eT
32 eT

33 eT
34

eT
41 eT

42 eT
43 eT

44

 =
∑

eij ⊗ eji.

22



The eigenvectors are given by el ⊗ ek ± ek ⊗ el for l 6= k, with eigenvalues 1 and −1
depending on the sign, and ei ⊗ ei for i = 1, . . . , 4 with eigenvalue 1. We now see that∑

ei ⊗ ei

is also an eigenvector with eigenvalue one. We can diagonalize Ω̂ with a new basis
consisting of these eigenvectors, which will lead to

Ω =
(
I10 0
0 −I6

)
.

As we can see e1 is an eigenvector of Ω and if we identify e1 in terms of the new basis
with the vector ∑ ei⊗ei in the old basis, we see that e1 is also an eigenvector of a matrix
A in the perturbation semigroup. Combining this gives

Pert(M4(C)) ∼=
{
A ∈M16(C) | Ae1 = e1, ΩA = AΩ

}
,

with
Ω =

(
I10 0
0 −I6

)
.

The invertible elements in this perturbation semigroup are given by

Pert(M4(C))× ∼=
{
A ∈ GL16(C) | Ae1 = e1, ΩA = AΩ

}
.

In a similar way as for Pert(M3(C)) we can construct the embedding of the unitaries
in Pert(M4(C)). We construct a transformation matrix using the eigenvectors. Note that
the columns need to be orthogonal. For the unitary matrix u we use that ∑j uijukj = δik.
This way, though a lot of work, we can determine the embedding of the unitaries in
Pert(M4(C)).

3.2.4 A = MN(C)
With these examples in mind we now proceed and determine Pert(MN(C)). First
note that the matrices in the perturbation semigroup Pert(MN(C)) will be elements
of MN2(C). For the normalization condition we have the following proposition

Proposition 3.4. For i = 1, . . . , N the normalization condition is equivalent to∑
j

Cij,ji = 1

and for i, l = 1, . . . , N and i 6= l it is equivalent to∑
j

Cij,jl = 0.

Proof. An element ∑ aj ⊗ bopj ∈MN(C)⊗MN(C)op has to be normalized, which means∑
ajbj = 1,

23



where the 1 is the unit in MN(C). Therefore, in terms of our basis eij and coefficients
Cij,kl, we get ∑

Cij,kleijekl =
∑

eii,

where the right hand side is the unit 1. Using (3.2) we see that we can rewrite it as∑
Cij,kleilδ

j
k =

∑
eii.

For i = l the coefficients on the LHS need to equal 1, hence∑
j

Cij,ji = 1.

For i 6= l the coefficients on the RHS equal zero, so∑
j

Cij,jl = 0.

Remark 3.5. Note that this proposition, and hence the normalization condition, implies
that ∑i ei⊗ ei is an eigenvector for such a matrix A in the perturbation semigroup with
eigenvalue 1.

While in the previous section we determined the general form of a matrix in the
semigroup after which we found two defining properties, this time we do it the other
way around. We now determine a matrix Ω̂ which will give the general form of matrices
in the perturbation semigroup, but first let us look at the following lemma

Lemma 3.6. For A = ∑
Cij,kleij ⊗ eopkl the self-adjointness condition is equivalent to

demanding
Cij,kl = Clk,ji.

Proof. Let A = A∗, then we have

A = ∑
Cij,kleij ⊗ eopkl

= ∑
Cij,kle

∗
kl ⊗ e

∗op
ij

= ∑
Cij,klelk ⊗ eopji

.

If we now relabel the last expression, we get∑
Clk,jieij ⊗ eopkl ,

hence
Cij,kl = Clk,ji

We now have the following proposition.

Proposition 3.7. Let A = ∑
Cij,kleij⊗eopkl . Then Cij,kl = Clk,ji if and only if Ω̂A = AΩ̂

with Ω̂ = ∑
eij ⊗ eopij ∈MN(C)⊗MN(C)op.

24



Proof. We can write Ω̂ as Ω̂ = ∑
δrmδ

s
nemn ⊗ eoprs. Starting with the right hand side of

the equation we get

AΩ̂ = (∑Cij,kleij ⊗ eopkl )(
∑
δrmδ

s
nemn ⊗ eoprs)

= ∑
Cij,klδ

r
mδ

s
neijemn ⊗ (ersekl)op

= ∑
Cij,klδ

r
mδ

s
nδ

m
j δ

k
s ein ⊗ e

op
rl

= ∑
Cij,klδ

r
j δ
k
nein ⊗ e

op
rl

= ∑
Cij,kleik ⊗ eopjl .

The left hand side of the equation reads

Ω̂A = (∑ δrmδ
s
nemn ⊗ eoprs)(

∑
Cij,kleij ⊗ eopkl )

= ∑
Cij,klδ

r
mδ

s
nemneij ⊗ (eklers)op

= ∑
Cij,klδ

r
mδ

s
nδ

n
i emj ⊗ δlre

op
ks

= ∑
Cij,klδ

l
mδ

s
i emj ⊗ e

op
ks

= ∑
Cij,klelj ⊗ eopki

= ∑
Clk,jieik ⊗ eopjl .

Thus we have Cij,kl = Clk,ji if and only if Ω̂A = AΩ̂.

We now make the following identification

MN(C)⊗MN(C)op →MN2(C),
Cij,kleij ⊗ eopkl 7→ Cij,kleij ⊗ elk = Cij,kleN(i−1)+l, N(j−1)+k,

after which we can bring Ω̂ into a more appealing form as a block matrix. So we get

Ω̂ =
∑

eij ⊗ eji.

Lemma 3.8. The eigenvectors of Ω̂ are given by ek ⊗ el± el⊗ ek with eigenvalue 1 and
−1 (k 6= l).

Proof. First suppose k 6= l, then we have

Ω̂(ek ⊗ el ± el ⊗ ek) = (∑ eij ⊗ eji)(ek ⊗ el ± el ⊗ ek),
= ∑

eijek ⊗ ejiel ±
∑
eijel ⊗ ejiek,

= ∑
eiδ

j
k ⊗ ejδil ±

∑
eiδ

j
l ⊗ ejδik,

= el ⊗ ek ± ek ⊗ el,
= ±(ek ⊗ el ± el ⊗ ek).

Thus ek⊗ el± el⊗ ek is indeed an eigenvector with eigenvalue 1 or −1 depending on the
sign.

Now suppose k = l. We now need to show that ek ⊗ ek is an eigenvector of Ω̂ for all
k. This is indeed the case, since we have

Ω̂(ek ⊗ ek) = (∑ eij ⊗ eji)(ek ⊗ ek),
= ∑

eijek ⊗ ejiek,
= ∑

eiδ
j
k ⊗ ejδik,

= ek ⊗ ek,
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Therefore ek ⊗ ek is an eigenvector with eigenvalue 1. Note that we now have all the
eigenvectors since there are N(N+1) eigenvectors ek⊗el+el⊗ek, however interchanging
l and k will not change the eigenvector, so essentially we have N(N + 1)/2 eigenvectors
of this form. We also have N(N − 1) eigenvectors ek ⊗ el − el ⊗ ek (for l 6= k), but
once again interchanging k and l will give a minus sign and therefore we essentially
have N(N − 1)/2 eigenvectors of this form. If we now add these we see that we have
N(N + 1)/2 +N(N − 1)/2 = N2 eigenvectors, hence the lemma is proven.

Since ek ⊗ ek is an eigenvector for all k and the eigenvalue is 1 for all these vectors,
we see that their sum must be an eigenvector with eigenvalue 1 as well, i.e. we have

Ω̂(
∑
i

ei ⊗ ei) =
∑
i

ei ⊗ ei.

We change to a basis consisting of eigenvectors, where we take ∑ ei ⊗ ei in terms of
the old basis to be identified with e1 in the new basis. This will give us

Ω =
(
IN(N+1)/2 0

0 −IN(N−1)/2

)
. (3.3)

Note that the number of minus ones and plus ones match the number of eigenvalues.
As we have seen before ∑ ei ⊗ ei in terms of our old basis, is an eigenvector of a matrix
A in the perturbation semigroup. In the new basis e1 is thus an eigenvector of such a
matrix A. Combining the above results gives the following theorem

Theorem 3.9. We have

Pert(MN(C)) ∼=
{
A ∈MN2(C) | Ae1 = e1, ΩA = AΩ

}
(3.4)

where
Ω =

(
IN(N+1)/2 0

0 −IN(N−1)/2

)
.

The semigroup structure is given by matrix multiplication.

Proof. We have already seen that

MN(C)⊗MN(C)op ∼= MN(C)⊗MN(C) = MN2(C),

hence the perturbation semigroup consists of matrices in MN2(C). As seen in the above
propositions the normalization condition and the self-adjointness can be translated into
two defining properties. Let A ∈ Pert(MN(C)) then

Ae1 = e1

and
ΩA = AΩ,

where
Ω =

(
IN(N+1)/2 0

0 −IN(N−1)/2

)
.
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Thus the elements in the perturbation semigroup are matrices A ∈ MN2(C) which
fulfill two conditions, hence we get

Pert(MN(C)) ∼=
{
A ∈MN2(C) | Ae1 = e1, ΩA = AΩ

}
.

We now need to prove that for A,B ∈ Pert(MN(C)) also AB ∈ Pert(MN(C)). So
suppose A,B ∈ Pert(MN(C)), then

(AB)e1 = A(Be1) = Ae1 = e1

and.
Ω(AB) = ΩAB = AΩB = ABΩ = (AB)Ω.

Hence AB ∈ Pert(MN(C)). Therefore the perturbation semigroup is closed under the
operation.

Similarly the invertible elements in the perturbation semigroup are given by

Pert(MN(C))× ∼=
{
A ∈ GLN2(C) | Ae1 = e1, ΩA = AΩ

}
.

Now let us take a closer look at Pert(MN(C)) again. Let A ∈MN2(C) with Ae1 = e1,
then we get that

A =
(

1 v
0 B

)
.

Here v is a row vector of length N2 − 1, while B ∈ MN2−1(C). However, we also know
that ΩA = AΩ. If we set

Ω′ =
(
IN(N+1)/2−1 0

0 −IN(N−1)/2

)
=
(
I(N+2)(N−1)/2 0

0 −IN(N−1)/2

)
,

then the condition that ΩA = AΩ can be rewritten as

Ω′B = BΩ′,

and
v = vΩ′.

Note that the equality v = vΩ′ does indeed hold. If we work this out we see that

v =
(
v1 iv2

)
,

where v1 and v2 are both real row vectors of resp. length (N − 1)(N + 2)/2 and N(N −
1)/2. We also see that

B =
(
B1 iB2
iB3 B4

)
,

where B1, . . . , B4 are all real matrices. The dimensions of these matrices are (N−1)(N+
2)/2×(N−1)(N+2)/2, N(N−1)/2×(N−1)(N+2)/2, (N−1)(N+2)/2×N(N−1)/2,
N(N − 1)/2×N(N − 1)/2, resp.

Now define
V =

{
v ∈ CN2−1 | v = vΩ′

}
,

S =
{
A ∈MN2−1(C) | Ω′A = AΩ′

}
.

We can now construct the semidirect product of V and S which gives
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Lemma 3.10. Let V, S be as above, then V o S is in fact a semigroup defined by

(v, A) · (v′, A′) = (v′ + vA′, AA′).

Proof. First note that vA′ ∈ V since

vA′Ω′ = vΩ′A′,
= vA′,
= vA′.

Of course AA′ ∈ S since S is a semigroup. Therefore this semigroup is closed under the
operation. The unit of this semigroup is given by

1 = (0, I),

since
(v,A) · (0, I) = (0 + vI, AI) = (v,A).

Thus it is in fact a semigroup with the above operation.

With this lemma we get

Theorem 3.11. For V and S as above we can write

Pert(MN(C)) ∼= V o S.

Proof. Let A,A′ ∈ Pert(MN(C)), then we have

A =
(

1 v
0 B

)

and
A′ =

(
1 v′

0 B′

)
for suitable v, v′ ∈ V and B,B′ ∈ S. If we now multiply A and A′ we get

AA′ =
(

1 v
0 B

)(
1 v′

0 B′

)
=
(

1 v′ + vB
0 BB′

)
.

The matrix (
1 v′ + vB
0 BB′

)
can be parameterized by the second column and that column equals the semidirect
product defined in the previous lemma. So we get

Pert(MN(C)) ∼= V o S.

First consider the following lemma
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Lemma 3.12. Let V be a vectorspace and G a group which acts on V , then V o G is
a group, with the operation

(v, A) · (v′, A′) = (v′ + vA′, AA′).

Proof. That the group is closed under the operation and that there is a unit has already
been proven in the previous proposition. All that is left is to prove that there is an
inverse element. In fact we have

(v,A)−1 = (−vA−1, A−1),

because

(v, A) · (−vA−1, A−1) = (v + (−vA−1)A,AA−1) = (v − v, I) = 1.

We know that A−1 exists, since G is a group.

We can now look at the invertible elements in the perturbation semigroup, but first
let

T = S× =
{
A ∈ GLN2−1(C) | Ω′A = AΩ′

}
.

Then we have

Proposition 3.13. For V a vector space and S a semigroup working on V we have

(V o S)× = V o S×.

This follows from
0 6= det(A) =

∣∣∣∣∣1 v
0 B

∣∣∣∣∣ = det(B),

where A ∈ Pert(MN(C)). This gives

Proposition 3.14. Let
V =

{
v ∈ CN2−1 | v = vΩ′

}
and

T =
{
A ∈ GLN2−1(C) | Ω′A = AΩ′

}
then we have

Pert(MN(C))× ∼= V o T.

In general one can find the embedding of the unitaries in Pert(MN(C)) using a
transformation matrix consisting of eigenvectors. However, these eigenvectors need to
be orthogonal. Note that we can use Gramm-Schmidt orthogonalization in order to
construct these eigenvectors. We only need to orthogonalize the vectors with eigenvalue
1 and −1 seperately, since the eigenvectors with eigenvalue 1 are orthogonal to the
eigenvectors with eigenvalue −1. If we look at the eigenvectors with eigenvalue 1 (or
−1) we see that every linear combination of them is also an eigenvector with eigenvalue
1 (or −1). For the unitary matrix u we use that ∑uijukj = δik. This way, though a lot
of work, we can determine the embedding of the unitaries in Pert(MN(C)).
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3.3 Perturbation semigroup of real matrix algebras
Now that we have the semigroup Pert(MN(C)) we can take a look at the perturbation
semigroup of a real matrix algebra, to wit Pert(MN(R)) and Pert(MN(H)).

3.3.1 A = MN(R)
We can start with the results we obtained for Pert(MN(C)). In the calculations we did
use that fact the the entries were complex, in the sense that Cij,kl = Clk,ji. We can
however use the same reasoning for real entries and neglect complex conjugation, so

Pert(MN(R)) ∼=
{
A ∈MN2(R) | Ae1 = e1, ΩA = AΩ

}
,

where
Ω =

(
IN(N+1)/2 0

0 −IN(N−1)/2

)
.

The invertible elements in the perturbation semigroup are then given by

Pert(MN(R))× =
{
A ∈ GLN2(R) | Ae1 = e1, ΩA = AΩ

}
.

If we now take a closer look at Pert(MN(R)) we see that we get1 v1 0
0 B1 0
0 0 B2

 .
Note that this equals the general form we have seen for Pert(MN(C)), however the
complex parts now equal zero. If we now, once again, multiply two of such matrices,
say A and A′, we see that

AA′ =

1 v1 0
0 B1 0
0 0 B2


1 w1 0

0 C1 0
0 0 C2

 =

1 w1 + v1B2 0
0 B1C1 0
0 0 B2C2

 .
The upper left 2× 2-block looks exactly like the matrix we got in the previous section.
While the lower right entry is just simple matrix multiplication. Using our knowledge
about a semidirect product gives us

Theorem 3.15. We have

Pert(MN(R)) ∼=
(
R(N−1)(N+2)/2 oM(N−1)(N+2)/2(R)

)
×MN(N−1)/2(R).

Proof. The first part is just the application of Lemma 3.10 with V = R(N−1)(N+2)/2 and
S = M(N−1)(N+2)/2(R). Note that we do not have to impose extra conditions on V and
S with respect to Ω, since the matrix got this form from Ω. The second part is the lower
right entry, which behaves as simple matrix multiplication.
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Taking a closer look at the invertible elements we see that matrices A ∈ Pert(MN(R))
have a rather interesting form

A =

1 v 0
0 C 0
0 0 D

 ,
where v is a 1×(N−1)(N+2)/2-matrix, C a (N−1)(N+2)/2×(N−1)(N+2)/2-matrix
and D a N(N − 1)/2×N(N − 1)/2-matrix. Note that this is the same matrix as in the
MN(C) case, but the complex entries now equal zero. If A is invertible then so are C
and D because we have

0 6= det(A) = 1 ·
∣∣∣∣∣C 0
0 D

∣∣∣∣∣ = det(C)det(D).

If we now multiply two matrices in the perturbation semigroup, say A,B, we see that

AB =

1 v 0
0 C 0
0 0 D

 =

1 w 0
0 E 0
0 0 F

 =

1 w + vD 0
0 CE 0
0 0 DF

 .
Here the second column behaves similar as in the complex-case, while the last column
is just matrix multiplication. Note that the only condition we have on the vector and
the matrices is that the entries are real. So if we use the result about V o G from the
previous section,

(v, A) · (v′, A′) = (v′ + vA′, AA′)
with

V = R(N−1)(N+2)/2,

G = GL(N−1)(N+2)/2(R),
we get

Pert(MN(R))× ∼=
(
R(N−1)(N+2)/2 oGL(N−1)(N+2)/2(R)

)
×GLN(N−1)/2(R)

In a similar way as for Pert(MN(C)) we can find the embedding of the unitaries
in Pert(MN(R)). There is however one difference, namely that for the unitary matrix
we have ∑uijuki = δik. This way we can determine the embedding of the unitaries in
Pert(MN(R)). Note that the moment we will find the embedding of the unitaries in
Pert(MN(C)), we have also found the embedding in Pert(MN(R)), since we can neglect
the complex terms.

3.3.2 A = H
We want to determine the perturbation semigroup of the quaternions, notated by H.
First, recall that

H =


(
α β
−β α

)
| α, β ∈ C

.
For matrices in H we have the following lemma
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Lemma 3.16. For A ∈M2(C) to be in H we have ĴA = AĴ where

Ĵ =
(

0 1
−1 0

)
= e12 − e21.

Proof. For A ∈M2(C) we can write

A =
(
α β
γ δ

)
,

with α, β, γ, δ ∈ C. The RHS reads

ĴA =
(

0 1
−1 0

)(
α β
γ δ

)
=
(
γ δ
−α −β

)
,

while the LHS reads

AĴ =
(
α β
γ δ

)(
0 1
−1 0

)
=
(
−β α
−δ γ

)
.

Therefore α = δ and β = −γ. Hence

A =
(
α β
−β α

)
∈ H.

Since the quaternions form a real subalgebra of M2(C) we can start by looking at
the matrices in Pert(M2(C)). Recall that the general form of the matrices was given by

A =


x1 z2 z2 1− x1
z1 z4 z5 −z1
z1 z5 z4 −z1
x2 z3 z3 1− x2

 ,
zi ∈ C, for i = 1, . . . , 5, x1, x2 ∈ R.

We now have to impose our condition regarding Ĵ in order to get a matrix in Pert(H).
In the tensor product M2(C) ⊗M2(C)op this Ĵ behaves almost the same way. Now for
A⊗Bop ∈M2(C)⊗M2(C)op to be in H⊗Hop we have

(Ĵ ⊗ Ĵop)(A⊗Bop) = (Ĵ ⊗ Ĵop)(A⊗Bop) = (A⊗Bop)(Ĵ ⊗ Ĵop).

Once again using the identification

M2(C)⊗M2(C)op →M4(C),
eij ⊗ eopkl 7→ eij ⊗ elk

we get

Ĵ ⊗ Ĵop 7→ J̃ = (e12 − e21)⊗ (e12 − e21)T =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 . (3.5)
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So for a matrix A ∈ Pert(H) we need to have

J̃A = AJ̃.

The matrix A in the perturbation semigroup can now be written as

A =


x z2 z2 1− x
z1 z3 z4 −z1
z1 z4 z3 −z1

1− x −z2 −z2 x

 ,
where x ∈ R, z1, z2, z3, z4 ∈ C. Since this is the same form as for A ∈ Pert(M2(C)) it
follows that we have a similar commutation relation for this A with Ω̂, namely Ω̂A = AΩ̂.
Once again we can diagonalize Ω̂ to

Ω =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
This new basis consists of eigenvectors, which are

e1 ⊗ e2 ± e2 ⊗ e1,

e1 ⊗ e1 ± e2 ⊗ e2.

Recall that these are indeed eigenvectors of Ω̂. Let us now write J̃ = Ĵ ⊗ Ĵop in terms
of this new basis. We see that(

(e12 − e21)⊗ (e21 − e12)
)
(e1 ⊗ e2 ± e2 ⊗ e1) = ±(e1 ⊗ e2 ± e2 ⊗ e1),(

(e12 − e21)⊗ (e21 − e12)
)
(e1 ⊗ e1 ± e2 ⊗ e2) = ∓(e1 ⊗ e1 ± e2 ⊗ e2).

Since the first eigenvector of Ω was e1⊗ e1 + e2⊗ e2 we retrieve the following expression
for J̃ in terms of the new basis

J =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
We see that e1 in this new basis, e1⊗e1 +e2⊗e2 in the old, is an eigenvector of J . With
this we can find the general expression for Pert(H).
Proposition 3.17. We have

Pert(H) ∼=
{
A ∈M4(C) | Ae1 = e1,ΩA = AΩ, JA = AJ

}
.

Proof. Since we started with the perturbation semigroup Pert(M2(C)), we only have
to show that imposing the condition JA = AJ gives Pert(H). But we know that
for a general 2 × 2-matrix B, we can retrieve the general form of a quaternion by
demanding that ĴB = BĴ . We also saw that a similar relation holds in the tensor
product of two such matrices, this time with J̃ . If we now choose the matrices A such
that A ∈ Pert(M2(C)) the same reasoning holds and thus the matrix has the same
commutation relation with J̃ . Changing to the new basis then gives J and this gives
the result.
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Since Ω and J have the same commutation relation with A ∈ Pert(H), also the sum
and difference of Ω and J must have this commutation relation with A. If we now set

Υ = (Ω− J)/2 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Γ = (Ω + J)/2 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


we get

Pert(H) ∼=
{
A ∈M4(C) | Ae1 = e1,ΥA = AΥ,ΓA = AΓ

}
.

Now let A ∈ Pert(H) then by Ae1 = e1 we get

A =


1 x1 x2 x3
0 x4 x5 x6
0 x7 x8 x9
0 x10 x11 x12

 .
Now ΓA = AΓ gives

A =


1 0 0 0
0 x1 x2 x3
0 x4 x5 x6
0 x7 x8 x9


and ΥA = AΥ then gives

A =


1 0 0 0
0 x1 x2 iy1
0 x3 x4 iy2
0 iy3 iy4 x5

 ,
where x1, . . . , x5, y1, . . . , y4 ∈ R. If we now have two of such matrices, say A and B we
see that

AB =
(

1 0
0 C

)(
1 0
0 D

)
=
(

1 0
0 CD

)
for given C,D. Thus AB is again in the perturbation semigroup. Note that we can
parameterize A with a given 3× 3-matrix. Now define

Γ′ =

1 0 0
0 1 0
0 0 −1

 ,
so Γ without the first row and column. Then we have

Proposition 3.18. The perturbation semigroup for H is given by

Pert(H) ∼= {A ∈M3(C) | Γ′A = AΓ′},

which is a monoid.
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Proof. We got a general form for A ∈ Pert(H) which can be parameterized by a 3× 3-
matrix which has a commutation relation with Γ′. This gives the expression Pert(H).

We also have I3 ∈ Pert(H), since

Γ′I3 = Γ′I3 = Γ′ = I3Γ′.

Also for A,B ∈ Pert(H) we have

Γ′(AB) = (Γ′A)B = AΓ′B = ABΓ′ = (AB)Γ′,

hence AB ∈ Pert(H), which proves the proposition.

For A ∈ Pert(H), A invertible, we have A−1 ∈ Pert(H), since

Γ′A−1 = Γ′A−1 = (AΓ′−1)−1 = (AΓ′)−1 = (Γ′A)−1 = A−1Γ′−1 = A−1Γ′.

Corollary 3.19. The invertible elements are given by

Pert(H)× ∼= {A ∈ GL3(C) | Γ′A = AΓ′}.

In order to find the embedding of the unitaries in Pert(H) we can use the result we
have found for Pert(M2(C)). The unitary 2 by 2 matrices are given by(

a −b∗
b a∗

)
and

(
a b∗

b −a∗
)
,

where |a|2 + |b|2 = 1. We see that the first matrix is in fact an element of H. The second
matrix is not an element of H, because in order for it to be, we need to have a = 0 and
b = 0. So we only need to look at (

a −b∗
b a∗

)
.

The computation has already been done in section 3.2.1. We get the general form
|a|2 −ab −ab |b|2

ab a2 −b2 −ab
ab −b2 a2 −ab
|b|2 ab ab |a|2

 ,

which can be brought to
1 0 0 0
0 |a|2 − |b|2 −2<(ab) −2i=(ab)
0 2<(ab) <(a2 − b2) i=(a2 − b2)
0 2i=(ab) i=(a2 + b2) <(a2 + b2)


by a basis transformation. The embedding is then given by

U(H)→


|a|

2 − |b|2 −2<(ab) −2i=(ab)
2<(ab) <(a2 − b2) i=(a2 − b2)
2i=(ab) i=(a2 + b2) <(a2 + b2)

 | |a|2 + |b|2 = 1

.
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3.3.3 A = MN(H)
We now want to determine the perturbation semigroup for A = MN(H). For a matrix
in Pert(MN(H)) we have a matrix similar to J̃ that we had for Pert(H), we call this
matrix L̃. We had J̃A = AJ̃ , this becomes L̃B = BL̃, for B ∈ Pert(MN(H)).

Lemma 3.20. We can retrieve Pert(MN(H)) from Pert(M2N(C)) by imposing

L̃A = AL̃

on A ∈ Pert(M2N(C)). Here L̃ = IN2 ⊗ J̃ .

Proof. Let A ∈M4N2(C) and let L̃ = IN2⊗J̃ . If we now think of A as a N2×N2-matrix,
with as entries 4 by 4 matrices, we can write A = ∑

eij ⊗ Aij, with eij the standard
basis for MN(C) and Aij ∈M4(C).

Now we compute both L̃A and AL̃. Computing L̃A gives

L̃A = (IN2 ⊗ J̃)(
∑

eij ⊗ Aij) =
∑

IN2eij ⊗ J̃Aij =
∑

eij ⊗ J̃Aij,

while AL̃ gives

AL̃ = (
∑

eij ⊗ Aij)(IN2 ⊗ J̃) =
∑

eijIN2 ⊗ AijJ̃ =
∑

eij ⊗ AijJ̃ .

Thus we get
L̃A = AL̃⇔ J̃Aij = AijJ̃ ⇔ Aij ∈ H⊗Hop,

where we have used equation (3.5).
So by imposing L̃A = AL̃, for A ∈ Pert(M2N(C)), we retrieve Pert(MN(H)) from

Pert(M2N(C)).

We now want to diagonalize L̃ just as we did with J̃ for H. In order to do so we will
prove that Ω̂ and L̃ commute. First let us define the basis {ei,j ⊗ fαβ}i,j=1,...,N,α,β=1,2 for
both L̃ and Ω̂. So fαβ is the standard basis for M2(C), while ei,j is the standard basis
for MN(C). In terms of this basis we can write

L̃ =
(∑

ekk ⊗ (f12 − f21)
)
⊗
(∑

ekk ⊗ (f21 − f12)
)

and
Ω̂ =

∑
(eij ⊗ fαβ)⊗ (eji ⊗ fβα).

Note that f12, f21 are the basis vectors of J . We now have the following proposition

Proposition 3.21. Let L̃, Ω̂ be as above, then we have

L̃Ω̂ = Ω̂L̃.

Proof. By multiplying L̃ and Ω̂ we can show that the LHS reads

L̃Ω̂ =
(
(∑ ekk ⊗ (f12 − f21))⊗ (∑ ekk ⊗ (f21 − f12))

)(∑(eij ⊗ fαβ)⊗ (eji ⊗ fβα)
)
,

= ∑(∑
ekkeij ⊗ (f12 − f21)fαβ)

)
⊗
(∑

ekkeji ⊗ (f21 − f12)fβα
)
,

= ∑(
eij ⊗ (f1βδ

2
α − f2βδ

1
α)
)
⊗
(
eji ⊗ (f2αδ

1
β − f1αδ

2
β)
)
.
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If we now just consider the fαβ part of the equation we get∑
(f1βδ

2
α − f2βδ

1
α)⊗ (f2αδ

1
β − f1αδ

2
β) = f11 ⊗ f22 + f22 ⊗ f11 − f12 ⊗ f21 − f21 ⊗ f12.

The RHS however reads

Ω̂L̃ =
(∑(eij ⊗ fαβ)⊗ (eji ⊗ fβα)

)(
(∑ ekk ⊗ (f12 − f21))⊗ (∑ ekk ⊗ (f21 − f12))

)
,

= ∑(∑
eijekk ⊗ fαβ(f12 − f21)

)
⊗
(∑

ejiekk ⊗ fβα(f21 − f12)
)
,

= ∑(
eij ⊗ (fα2δ

1
β − fα1δ

2
β)
)
⊗
(
eji ⊗ (fβ1δ

2
α − fβ2δ

1
α)
)
.

If we now once again consider the fαβ part of the equation we get∑
(fα2δ

1
β − fα1δ

2
β)⊗ (fβ1δ

2
α − fβ2δ

1
α) = −f12 ⊗ f21 − f21 ⊗ f12 + f11 ⊗ f22 + f22 ⊗ f11.

Hence the two terms are equal, thus the two matrices commute.

Corollary 3.22. Ω̂ and L̃ have a common set of eigenvectors.

We know that L̃ has the same amount of eigenvectors with eigenvalue 1 as −1.
Diagonalizing then gives us

Ω =
(
IN(2N+1) 0

0 −IN(2N−1)

)

and

L =

−IN 0 0
0 I2N2 0
0 0 −IN(2N−1)

 ,
such that for A ∈ Pert(MN(H)) : ΩA = AΩ and LA = AL. We thus get

Pert(MN(H)) ∼=
{
A ∈M4N2(C) | Ae1 = e1,ΩA = AΩ, LA = AL

}
.

As we have shown Ω and L commute, so every linear combination of these two must
satisfy a similar commutation relation with A. Now let us define

Ψ = (Ω− L)/2 =

1 0 0
0 IN−1 0
0 0 0


and

Θ = (Ω + L)/2 =

0 0 0
0 I2N2 0
0 0 −IN(2N−1)

 ,
also let

Θ′ =
(
I2N2 0

0 −IN(2N−1)

)
.

The reason why we choose this particular notation will become clear in the following
theorem, but first notice that we now have

Pert(MN(H)) ∼=
{
A ∈M4N2(C) | Ae1 = e1,ΨA = AΨ,ΘA = AΘ

}
.
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Theorem 3.23. We have
Pert(MN(H)) ∼=

(
RN−1 oMN−1(R)

)
× T,

where
T =

{
A ∈M4N2−N(C) | Θ′A = AΘ′

}
.

Proof. Let us start with a matrix A ∈M4N2 and let us write A in the following suggestive
form

A =


a v1 v2 v3
b B11 B12 B13
c B21 B22 B23
d B31 B32 B33

 ,
where a, b, c, d ∈ C, B11 ∈ MN−1(C), B22 ∈ M2N2(C) and B33 ∈ MN(2N−1)(C). The
other block matrices Bij and the vectors vi are chosen in a similar suitable way. Then
the first condition Ae1 = e1 implies that a = 1 and b = c = d = 0. The second condition
ΨA = AΨ gives 

1 v1 v2 v3
0 B11 B12 B13
0 0 0 0
0 0 0 0

 =


1 v1 0 0
0 B11 0 0
0 B21 0 0
0 B31 0 0

 ,
hence all v2, v3, B12, B13, B21, B31 equal zero, while v1 is a real vector and B11 is a real
matrix. The third and final condition, ΘA = AΘ, implies0 0 0

0 B22 B23
0 −B32 −B33

 =

0 0 0
0 B22 −B23
0 B32 −B33

 .
So we see that B22, B33 are real, while B23, B32 are pure complex. Thus, we have obtained
the following general form

A =

1 v1 0
0 B11 0
0 0 C

 ,
where C ∈ T . As we have seen multiple times before the upper left 2× 2 block can be
parameterized by a semidirect product, namely RN−1 oMN−1(R), while the lower right
entry has no further condition, but to be in T . This gives

Pert(MN(H)) ∼=
(
RN−1 oMN−1(R)

)
× T,

which proves the theorem.

Note that this result is in accordance with the perturbation semigroup for H, since
the semidirect product vanishes for N = 1.

For the embedding of the unitaries in Pert(MN(H)) we follow the same steps as we
would take for Pert(MN(C)). We construct a transformation matrix (this can be the
same as for Pert(M2N(C)). The columns of this transformation matrix (the eigenvectors
of a matrix A) need to be orthogonal, which can be established by Gramm-Schmidt
orthogonlization. For the unitary matrix u we use that ∑uijukj = δik. However, we also
demand that u ∈ MN(H). This way we can determine the embedding of the unitaries
in Pert(MN(H)). Note that we can get the embedding of the unitaries in Pert(MN(H))
from Pert(M2N(H)) by imposing a commutation relation with L.
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Chapter 4

General cases

When we know the perturbation semigroup of two ∗-algebras, we would also like to
know the perturbation semigroup of their direct sum and the perturbation semigroup
of their tensor product. This is important in order to reach our final goal, namely to
determine the perturbation semigroup of the Standard Model of Particle Physics, which
uses both of these structures.

4.1 Perturbation semigroup of direct sum
If the perturbation semigroup of two ∗-algebras is known, we would like to construct
the perturbation semigroup of their direct sum. We have the following result.
Theorem 4.1. Let A,B be ∗-algebras, then we have

Pert(A⊕ B) ∼= Pert(A)× Pert(B)× (A⊗ Bop ⊕ B ⊗Aop)s.a. (4.1)
where s.a. stands for the self-adjoint elements as we have for the perturbation semigroup.

The self-adjoint elements have the general form ∑
ai ⊗ bopi + b∗i ⊗ a

∗op
i , which is in

fact self-adjoint. Note that for A,B matrix algebras the last term reduces to A⊗ B.

Proof. We have by definition

Pert(A⊕ B) =

∑ aj ⊗ bopj ∈ (A⊕ B)⊗ (A⊕ B)op
∣∣∣∣∣
∑
ajbj = 1∑
aj ⊗ bopj = ∑

b∗j ⊗ a
∗op
j

.
Now define

φ : Pert(A⊕ B) → Pert(A)× Pert(B),∑(aj, bj)⊗ (ãopj , b̃j
op) 7→ (∑ aj ⊗ ãopj ,

∑
bj ⊗ b̃j

op).
Note that φ is surjective, since φ(∑(aj, 1) ⊗ (ãopj , 1)) will give Pert(A). The same goes
for Pert(B) with φ(∑(1, bj)⊗ (1, b̃j

op)).
Note that elements which are normalized, are mapped to normalized elements, since

for ∑(aj, bj)⊗ (ãopj , b̃j
op) ∈ (A⊕ B)⊗ (A⊕ B)op one gets∑(aj, bj)(ãj, b̃j) = ∑(aj ãj, bj b̃j),

= ∑(aj ãj, 0) + (0, bj b̃j),
= (∑ aj ãj, 0) + (0,∑ bj b̃j),
= 1 ≡ (1, 1).
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For the self-adjointness the same reasoning holds, it is preserved by φ. Now let us
consider the kernel of φ. The kernel appears to consists of elements of the form∑(aj, 0) ⊗ (0, b̃j

op) and ∑(0, bj) ⊗ (ãopj , 0). However these elements alone are not self-
adjoint. Combining them gives self-adjoint elements in the kernel. This gives∑

(0, bj)⊗ (aopj , 0) + (a∗j , 0)⊗ (0, b∗opj )

for the elements in the kernel. But one quickly sees that∑
(0, bj)⊗ (aopj , 0) + (a∗j , 0)⊗ (0, b∗opj ) ∈ B ⊗Aop ⊕A⊗ Bop.

However, as we just saw, not every element of B ⊗Aop ⊕A⊗Bop is in ker(φ), only the
self-adjoint elements are. Hence

ker(φ) ∼= (B ⊗Aop ⊕A⊗ Bop)s.a,

the self-adjoint elements. By the first isomorphism theorem for semigroups we now know
that

Pert(A⊕ B)/ ker(φ) ∼= Im(φ) = Pert(A)× Pert(B).

However, we also know that

(A⊕ B)⊕ (A⊕ B)op ∼= A⊗ Bop ⊕ B ⊗Aop ⊕A⊗Aop ⊕ B ⊗ Bop.

For the perturbation semigroup we need to impose a normalization condition and a self-
adjoint condition on the above expression. We see that, with the self-adjoint condition,
the first two terms are precisely ker(φ). We already saw that

Pert(A⊕ B)/ ker(φ) ∼= Pert(A)× Pert(B),

hence this equals

Pert(A⊕ B) ∼= Pert(A)× Pert(B)× (B ⊗Aop ⊕A⊗ Bop)s.a.

The self-adjoint part will reduce to a simple tensor product between A and B in the
cases we will consider.

Example 4.2. Let CN and CM be two ∗-algebras, then Pert(CN+M) ∼= C(N+M)(N+M−1)/2

and Pert(CN+M) ∼= Pert(CN ⊕ CM). We also see that

Pert(CN)×Pert(CM)×(CN⊗CM) ∼= CN(N−1)/2×CM(M−1)/2×CNM ∼= C(N+M)(N+M−1)/2.

Hence, we have

Pert(CN ⊕ CM) ∼= Pert(CN)× Pert(CM)× CN ⊗ CM ,

or
C(N+M)(N+M−1) ∼= CN(N−1)/2 × CM(M−1)/2 × CN ⊗ CM .
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4.2 Perturbation semigroup of tensor product
Just as for the perturbation semigroup of the direct sum of two ∗-algebras, we would
like to get an explicit expression for the perturbation semigroup of the tensor product
of two ∗-algebras. This is however more difficult, as we will now explain.

Let us take a look at Pert(A⊗ B), we know that the elements of Pert(A⊗ B) have
the general form ∑

(aj ⊗ bj)⊗ (ãopj ⊗ b̃j
op) ∈ (A⊗ B)⊗ (A⊗ B)op,

such that ∑
(aj ⊗ bj)(ãopj ⊗ b̃j

op) = 1

and ∑
(aj ⊗ bj)⊗ (ãopj ⊗ b̃j

op) =
∑

(ã∗j ⊗ b̃j
∗)⊗ (a∗opj ⊗ b

∗op
j ).

By the isomorphism

(A⊗ B)⊗ (Aop ⊗ Bop) ∼= (A⊗Aop)⊗ (B ⊗ Bop),

we can modify the terms in the self-adjointness condition to get∑
(aj ⊗ bj)⊗ (ãopj ⊗ b̃j

op) ∼=
∑

(aj ⊗ ãop)j ⊗ (bj ⊗ b̃j
op)

and ∑
(ã∗j ⊗ b̃j

∗)⊗ (a∗opj ⊗ b
∗op
j ) ∼=

∑
(ã∗j ⊗ a

∗op
j )⊗ (b̃j

∗ ⊗ b∗opj ).

Thus ∑
(aj ⊗ ãopj ) =

∑
(ã∗j ⊗ a

∗op
j )

and ∑
(bj ⊗ b̃j

op) =
∑

(b̃j
∗ ⊗ b∗opj ).

So this would give the impression that the perturbation semigroup of a tensor product
splits in the two separate perturbation semigroups plus an extra term. However, let us
now consider the normalization condition. This can be rewritten as∑

(aj ãopj ⊗ bj b̃j
op) = 1.

An easy conclusion could be that both ∑ aj ã
op
j and ∑ bj b̃j

op need to equal 1. However,
the tensor product is linear over C. Therefore it is possible that ∑ aj ã

op
j = λ, while∑

bj b̃j
op = λ−1 for λ 6= 0, which still gives∑

(aj ãopj ⊗ bj b̃j
op) = 1.

Hence, it is not possible to say that both sums need to be normalized, thus the pertur-
bation semigroup can not split in two separate perturbation semigroup.

Let us now take a look at an element ∑(aj⊗ bj)⊗ (ãopj ⊗ b̃j
op), such that ∑ aj ãj = 0.

Then it is possible that ∑(aj ⊗ bj)⊗ (ãopj ⊗ b̃j
op) = 0, while ∑ bj ⊗ b̃j

op 6= 0. So this way
we have an element which equals zero in Pert(A⊗ B), but is non-zero in Pert(B).

41



Chapter 5

Perturbation semigroup of the
Standard Model

We now want to determine the perturbation semigroup of the Standard Model of particle
physics, that is [3]

Pert
(
C∞

(
M,C⊕H⊕M3(C)

))
, (5.1)

where M is a manifold. With C∞(M,A) we mean the smooth functions over M which
takes values in the ∗-algebra A. Before we can determine the perturbation semigroup
of the Standard Model, we need to know what Pert(C∞(M)) and Pert(C∞(M,A)) are.

5.1 Perturbation semigroup Pert(C∞(M))
Let us first take a look at the definition of our perturbation semigroup and what it
means for C∞(M). The definition reads

Pert(C∞(M)) =

∑ gj ⊗ hopj ∈ C∞(M)⊗ C∞(M)op
∣∣∣∣∣
∑
gjhj = 1∑
gj ⊗ hopj = ∑

h∗j ⊗ g
∗op
j

.
However, we know that C∞(M) ∼= C∞(M)op, thus we get elements in C∞(M)⊗C∞(M).
A corollary from the Arzelà-Ascoli theorem [7][8] states that C∞(M ×M) is dense in
C∞(M)⊗C∞(M). Therefore we will look at functions in two variables instead. We get

Pert(C∞(M)) =
{
f(x, y) ∈ C∞(M ×M) | normalized and self-adjoint

}
.

We now need to write the normalization and self-adjointness in terms of these new
functions f(x, y). We have

C∞(M)⊗ C∞(M) → C∞(M ×M)∑
gj ⊗ hj 7→ f.

So gj is the first component of f , while hj is the second. Hence we can write∑
gj ⊗ hopj = f(x, y)
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and ∑
h∗j ⊗ g

∗op
j = f(y, x)∗.

We also know that f ∗ = f . So the self-adjointness condition becomes

f(x, y) = f(y, x)

in terms of the new functions.
If we take a similar look at the functions ∑ gj ⊗ hopj for the normalization condition,

thus gj as the first component and hj as the second, we see that only the function values
f(x, x) need to be normalized. This gives

Pert(C∞(M)) =
{
f ∈ C∞(M ×M) | f(x, x) = 1, f(x, y) = f(y, x)

}
.

5.2 Perturbation semigroup Pert(C∞(M,A))
In the previous section we considered smooth functions over a manifold M which took
values in C. Now we have smooth functions over a manifold M , but it takes values in a
finite dimensional matrix algebra A.

Proposition 5.1. Let M be a manifold and A a matrix algebra, then

C∞(M,A) ∼= C∞(M)⊗A.

In general this can be proven for nuclear Frechet spaces [9]. However for us it is
enough if we look at matrix algebras A.

Proof. Let {ai}i be a basis for the vector space A and let x ∈M then for f ∈ C∞(M,A)
we can say

f(x) = a =
∑

ciai,

for a, ai ∈ A and coefficients ci. We now want to construct a function h ∈ C∞(M)⊗A
such that we have equality. Let gi ∈ C∞(M), ai ∈ A such that we have ∑ gi(x) ⊗ ai.
Now define gi(x) = ci, where ci is taken as above. Then we have equality, since the
element f(x) = a = ∑

ciai can be written as ∑ ciai ⊗ 1 = ∑
ci ⊗ ai = ∑

gi(x) ⊗ ai by
C-linearity. So we get h(x) = ∑

gi(x)⊗ ai.

Remark 5.2. For matrix algebras the LHS consists of functions which map to matrices,
while the RHS consists of matrices with as entries functions from M to R or C.

Corollary 5.3. For M a manifold and A,B matrix algebras we have

C∞(M,A⊕ B) ∼= C∞(M,A)⊕ C∞(M,B).

We can now look at the perturbation semigroup for C∞(M,A). Let us first introduce
the semigroup homomorphism µ defined by

µ : A⊗Aop → A, (5.2)
a⊗ bop 7→ ab.

We then have
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Theorem 5.4. Let A be a ∗-algebra and M a manifold, then

Pert(C∞(M ×M,A⊗Aop)) ∼= C∞(M,Pert(A))× C∞(M ×M −∆,A⊗Aop)s.a..

With ∆ we mean the diagonal of M and with s.a. we mean the self-adjoint elements
again in terms of our perturbation semigroup.

Proof. First we make the identification

C∞(M)⊗ C∞(M)→ C∞(M ×M)∑
gj ⊗ hj 7→ f.

So we only need to consider functions in two variables which map to A ⊗ Aop. The
self-adjoint condition behaves the same way as it did for Pert(C∞(M)). However, we
now have functions that map to an element in A⊗Aop. Therefore, instead of complex
conjugation we now have

f(x, y) = f(y, x)∗,
where the ∗ is the ∗ from A.

For Pert(C∞(M)) we saw that only the elements f(x, x) had to be normalized. For
Pert(C∞(M,A)) we have

f(x, x) =
∑

ai ⊗ bopi
for given ai, bi ∈ A. We now use the semigroup homomorphism µ to define the normal-
ization condition. We have

µ(f(x, x)) = µ(
∑

ai ⊗ bopi ) =
∑

aibi = 1.

Note that we have used that µ is a semigroup homomorphism.
As we have seen all the elements need to be self-adjoint, while only the elements

f(x, x) need to be normalized. Now split the manifold M ×M in M ×M −∆ and ∆,
where ∆ stands for the diagonal. So again for every element we have the self-adjointness
condition, while we only have the normalization condition for elements on the diagonal.
So the elements of C∞(M ×M − ∆,A ⊗ Aop) only need to be self-adjoint, while the
elements of C∞(∆,A⊗Aop) need to be both self-adjoint and normalized. However, the
elements of A⊗Aop which are normalized and self-adjoint are precisely the elements in
Pert(A). If we also use that ∆ ∼= M we get

Pert(C∞(M,A)) ∼= C∞(M,Pert(A))× C∞(M ×M −∆,A⊗Aop)s.a..

5.3 Perturbation semigroup of the Standard Model
With all the examples we have worked out and the general theory on perturbation
semigroups, we can now construct the perturbation semigroup of the Standard Model
of Particle Physics. Recall that we can write the Standard Model of Particle Physics as

A = C∞(M)⊗
(
C⊕H⊕M3(C)

)
.
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Here C describes the photon γ, H describes the bosons for the weak nuclear force, namely
Z and W±, while M3(C) describes the gluons [5]. Note that the quarks and leptons,
which are fermions, are not described by this expression. Instead they are described by
the Hilbert space H. For the Standard Model we have H = C96. The reason we get
96 and not something else can be found in the Standard Model of Particle Physics by
looking at the elementary particles. We see that we have leptons and quarks, for every
quark and lepton we have two types. There is also an antiparticle for every quark and
for every lepton, while only quarks can have a color. Every particle can also be either
right handed or left handed. We also know that for both leptons and quarks there are
three generations. So we get

2 · 2 · 2 · 3︸ ︷︷ ︸
Leptons

+ 2 · 2 · 2 · 3 · 3︸ ︷︷ ︸
Quarks

= 24 + 72 = 96.

We can now determine the perturbation semigroup of the Standard Model of Particle
Physics. In order to do so we use the results we have acquired in the previous sections,
which then gives us

Pert
(
C∞(M)⊗

(
C⊕H⊕M3(C)

)) ∼=
C∞(M,C)×C∞(M,Pert(H))×C∞(M,Pert(M3(C)))×C∞(M ×M −∆,C)s.a.×
C∞(M ×M −∆,H⊗Hop)s.a. × C∞(M ×M −∆,M3(C)⊗M3(C)op)s.a.×(

C∞(M,C)⊗ C∞(M,H)⊕ C∞(M,C)⊗ C∞(M,M3(C))⊕

C∞(M,H)⊗ C∞(M,C)⊕ C∞(M,H)⊗ C∞(M,M3(C))⊕

C∞(M,M3(C))⊗ C∞(M,H)⊕ C∞(M,M3(C))⊗ C∞(M,C)
)s.a.

. (5.3)

Note that we have used that C ∼= C⊗ Cop.
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Chapter 6

Action of the perturbation
semigroup

Now that we have determined the perturbation semigroup for several cases, we would like
to obtain some physics from them. Since the application of the perturbation semigroup
to the full Standard Model of Particle Physics would go beyond the scope of this text,
we will restrict ourselves to some toy models. In non-commutative geometry one has
finite spectral triples and in particular one has a hermitian matrix D and this matrix is
precisely what we will look at. We will consider the action of the perturbation semigroup
on the hermitian matrix D. Let ∑ aj ⊗ bopj ∈ Pert(A), then this element acts on D by

D 7→
∑

ajDbj.

6.1 Diagonal hermitian matrices
Let us first consider the case where A = C2 and H = C2. Also let D be a diagonal
hermitian matrix, such that D has the following form

D =
(
a 0
0 b

)
,

where a, b ∈ R and a 6= b. If a = b, then D is just the identity matrix multiplied by a
constant in which case the action does nothing with D. We now have the spectral tripleC2,C2,

(
a 0
0 b

),
let us first look at the action of Pert(C2). For convenience we rewrite the basis elements.
Let eii := ei thus the matrix with a one at position (i, i) and zeros everywhere else.
Note that the normalization condition and self-adjointness condition still hold, since
eiiejj = δijeii. The coefficients Cij now become Cii,jj.

Example 6.1. The action is given by∑
Cii,jjeiiDejj.

46



We know that C11,11 = C22,22 = 1 and C11,22 = C22,11, so we get as action

e11De11 + e22De22 + ze11De22 + ze22De11 =
(
a 0
0 0

)
+
(

0 0
0 b

)
+ 0 + 0 =

(
a 0
0 b

)
= D.

So the cross terms ze11De22 and ze22De11 vanishes. This is expected from equation
(3.1). We know that D = ae11 + be22, so the only non vanishing terms are e11De11 and
e22De22. So the action of Pert(C2) on D is trivial.

Now let us consider the same hermitian matrix, but now with the perturbation semi-
group Pert(M2(C)). As we have already seen matrices A in the perturbation semigroup
have the general form

A =


x1 z4 z4 1− x1
z1 z2 z3 −z1
z1 z3 z2 −z1

1− x2 z5 z5 x2

 ; z1, . . . z5 ∈ C, x1, x2 ∈ R.

We can rewrite this matrix A as

A = 1
2e11 ⊗

(
x1 z4
z1 z2

)
+ 1

2

(
x1 z1
z4 z2

)
⊗ e11

+1
2e12 ⊗

(
z4 1− x1
z3 −z1

)
+ 1

2

(
z4 z3

1− x1 −z1

)
⊗ e21

+1
2e21 ⊗

(
z1 z3

1− x2 z5

)
+ 1

2

(
z1 1− x2
z3 z5

)
⊗ e12

+1
2e22 ⊗

(
z2 −z1
z5 x2

)
+ 1

2

(
z2 z5
−z1 x2

)
⊗ e22.

This seems like a lot of unnecessary work, but as we will see in the next example it
makes live easier. Since we did nothing, but rewrite A as a sum of Kronecker products
we see that in this form A is still self-adjoint. First note that for Pert(M2(C)) we have
the spectral triple M2(C),C2,

(
a 0
0 b

).
Example 6.2. Let us now look at the action of the perturbation semigroup of M2(C) on

D =
(
a 0
0 b

)
.

The action
D 7→

∑
ajDbj

is now given by

1
2

(
ax1 az4
0 0

)
+ 1

2

(
ax1 0
az4 0

)
+ 1

2

(
bz3 −bz1
0 0

)
+ 1

2

(
bz3 0
−bz1 0

)

+1
2

(
0 0
az1 az3

)
+ 1

2

(
0 az1
0 az3

)
+ 1

2

(
0 0
bz5 bx2

)
+ 1

2

(
0 bz5
0 bx2

)
.
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Which sums up to(
ax1 + b

2(z3 + z3) 1
2(az4 − bz1 + az1 + bz5)

1
2(az4 − bz1 + az1 + bz5) 1

2(az3 + az3) + bx2

)

which can be rewritten as(
ax1 + b<(z3) 1

2(az4 − bz1 + az1 + bz5)
1
2(az4 − bz1 + az1 + bz5) bx2 + a<(z3)

)
.

Note that the result is in fact still hermitian as it should.

Now we want to consider a diagonal hermitian matrix D in dimension N , such that
D =

N∑
k=1

λkekk. We consider the action of Pert(CN) on this D. Let the basis element

of Pert(CN) be given by eii which can be identified with ei just as we did above. The
coefficients Cij translate to Cii,jj. Then we have the following theorem.

Theorem 6.3. Let D =
N∑
k=1

λkekk be a hermitian matrix, then the action

D 7→
∑

ajDbj

of the perturbation semigroup Pert(CN) is trivial.

Proof. The elements in the perturbation semigroup are given by ∑Cii,jjeii ⊗ eopjj . The
action is then given by

D 7→
∑

Cii,jjeiiDejj.

If we work this out we get

∑
Cii,jjeii(

N∑
k=1

λkekk)ejj = ∑
i,j,k Cii,jjλkeiiekkejj,

= ∑
i,j,k Cii,jjλkeijδ

i
kδ
k
j ,

= ∑
i,j Cii,jjλieijδ

i
j,

= ∑
iCii,iiλieii.

We also know that from the normalization condition follows that Cii,jj = 1 if i = j.
Hence

D 7→
∑
i

λieii = D,

so Pert(CN) acts on D as
D 7→ D.

Note that in the above theorem we had the spectral triple(
CN ,CN ,

N∑
k=1

λkekk

)
.
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6.2 Off-diagonal hermitian matrices
In this section we want to take a look at off-diagonal hermitian matrices D. First let us
take a look at

D =
(

0 c
c 0

)
and at the action of Pert(C2) and Pert(M2(C)) on this D. Let us take the same basis
vectors as in the previous section for Pert(C2). Note that the spectral triples for these
examples are given by C2,C2,

(
0 c
c 0

)
and M2(C),C2,

(
0 c
c 0

).
Example 6.4. Let D be as above and let∑

Cii,jjeii ⊗ eopjj ∈ Pert(C2)

be the elements which act on D, then the action of the perturbation semigroup on D is
given by

D 7→
∑

Cii,jjeiiDejj.

If we work this out numerically we see that∑
Cii,jjeiiDejj = ∑

Cii,jjeii(ce12 + ce21)ejj,
= ∑

Cii,jj(ceijδi1δ2
j + ceijδ

i
2δ

1
j ),

= C11,22ce12 + C22,11ce21.

We also know that by self-adjointness C11,22 = C22,11, so let C11,22 = φ then

D 7→
(

0 cφ
cφ 0

)
.

In a similar way we can look at the action of Pert(M2(C)) on this D. Recall from
the previous section that the elements A ∈ Pert(M2(C)) were given by

A = 1
2e11 ⊗

(
x1 z4
z1 z2

)
+ 1

2

(
x1 z1
z4 z2

)
⊗ e11

+1
2e12 ⊗

(
z4 1− x1
z3 −z1

)
+ 1

2

(
z4 z3

1− x1 −z1

)
⊗ e21

+1
2e21 ⊗

(
z1 z3

1− x2 z5

)
+ 1

2

(
z1 1− x2
z3 z5

)
⊗ e12

+1
2e22 ⊗

(
z2 −z1
z5 x2

)
+ 1

2

(
z2 z5
−z1 x2

)
⊗ e22.
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Example 6.5. The action of Pert(M2(C)) on

D =
(

0 c
c 0

)

is given by

D 7→ c1
2

(
z1 z2
0 0

)
+ c1

2

(
z1 0
z2 0

)
+ c1

2

(
z4 1− x1
0 0

)
+ c1

2

(
z4 0

1− x1 0

)

+c1
2

(
0 0

1− x2 z5

)
+ c1

2

(
0 1− x2
0 z5

)
+ c1

2

(
0 0
z2 −z1

)
+ c1

2

(
0 z2
0 −z1

)
.

Upon summing this we get

D 7→ 1
2

(
cz1 + cz1 + cz4 + cz4 cz2 + c− cx1 + c− cx2 + cz2

cz2 + c− cx1 + c− cx2 + z2 cz5 + cz5 − cz1 − cz1

)
,

=
(

<(cz1 + cz4) cz2 + c− c
2(x1 + x2)

cz2 + c− c
2(x1 + x2) <(cz5 − cz1)

)
.

The result is a perturbed matrix D, which is still hermitian.

Now let us take a look at a more physics related example. Let

D =

0 c 0
c 0 0
0 0 0


and consider the action of Pert(C⊕M2(C)). Note that the spectral triple is now given
by C⊕M2(C),C3,

0 c 0
c 0 0
0 0 0


.

Example 6.6. We know by equation (4.1) that

Pert(C⊕M2(C)) ∼= Pert(C)× Pert(M2(C))×M2(C)⊗ C,

since Pert(C) ∼= {1} is trivial, its action will not do anything with D. We also know
that M2(C)⊗ C ∼= M2(C), hence

Pert(C⊕M2(C)) ∼= Pert(M2(C))×M2(C).

Thus we only need to know the action of Pert(M2(C)) and the action of M2(C) on D.
The perturbation semigroup Pert(M2(C)) is embedded in Pert(C⊕M2(C)) as0 0 0

0 a11 a12
0 a21 a22

⊗
0 0 0

0 b11 b12
0 b21 b22


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where (
a11 a12
a21 a22

)
⊗
(
b11 b12
b21 b22

)
= A⊗B ∈ Pert(M2(C)).

The way we have written the matrix A in the previous examples can be used in this
example as well. However, where we first had a tensor product of 2 × 2-matrices, we
now have a tensor product of 3× 3-matrices(

0 0
0 A

)
⊗
(

0 0
0 B

)
,

where A,B are such 2× 2-matrices. So we get

A⊗B = 1
2e22 ⊗

0 0 0
0 x1 z4
0 z1 z2

+ 1
2

0 0 0
0 x1 z1
0 z4 z2

⊗ e22

+1
2e23 ⊗

0 0 0
0 z4 1− x1
0 z3 −z1

+ 1
2

0 0 0
0 z4 z3
0 1− x1 −z1

⊗ e32

+1
2e32 ⊗

0 0 0
0 z1 z3
0 1− x2 z5

+ 1
2

0 0 0
0 z1 1− x2
0 z3 z5

⊗ e23

+1
2e33 ⊗

0 0 0
0 z2 −z1
0 z5 x2

+ 1
2

0 0 0
0 z2 z5
0 −z1 x2

⊗ e33.

Note that both the first row and the first column are zero for every matrix. Hence, if we
look at the action

D 7→
∑

ajDbj,

we see that the multiplication Dbj annihilates the first column of D, while the multipli-
cation ajD annihilates of the first row of D. Thus the action of Pert(M2(C)) on D is
trivial.

Now consider the term M2(C), recall that we had (M2(C) ⊗ C ⊕ C ⊗M2(C))s.a. as
in equation (4.1). Note that M2(C)⊗ C is embedded in Pert(C⊕M2(C)) by0 0 0

0 b11 b12
0 b21 b22

⊗
λ 0 0

0 0 0
0 0 0

 .
In a similar way we get an expression for the term C⊗M2(C). Since the tensor product
is C−linear we can set λ = 1. By self-adjointness we now get0 0 0

0 φ1 φ3
0 φ2 φ4

⊗
1 0 0

0 0 0
0 0 0

+

1 0 0
0 0 0
0 0 0

⊗
0 0 0

0 φ1 φ2
0 φ3 φ4

 .
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The action on D is now given by

D 7→

0 0 0
0 φ1 φ3
0 φ2 φ4


0 c 0
c 0 0
0 0 0


1 0 0

0 0 0
0 0 0

+

1 0 0
0 0 0
0 0 0


0 c 0
c 0 0
0 0 0


0 0 0

0 φ1 φ2
0 φ3 φ4



=

 0 0 0
cφ1 0 0
cφ2 0 0

+

0 cφ1 cφ2
0 0 0
0 0 0



=

 0 cφ1 cφ2
cφ1 0 0
cφ2 0 0

 .
Remark 6.7. It turns out that the two fields φ1 and φ2 parameterize the famous Higgs
field in physics [10][11].

Remark 6.8. Note that this was in fact the action of Pert(C ⊕ H) as in the Standard
Model. Again Pert(H) acts trivial and for H we have φ3 = −φ2 and φ4 = φ1. However,
φ3, φ4 do not matter for the fluctuated D, hence we get the same result

D =

 0 cφ1 cφ2
cφ1 0 0
cφ2 0 0

 .
Remark 6.9. Note that this example appears in equation (5.3) as the term(

C∞(M,C)⊗ C∞(M,H)⊕ C∞(M,H)⊗ C∞(M,C)
)s.a.

.

The action of Pert(C⊕M2(C)) can be generalized to the action of Pert(C⊕MN(C)),
but first let

D = ce1i + cei1

for i = 1, . . . , N + 1, such that the spectral triple is given by(
C⊕MN(C),CN+1, ce1i + cei1

)
.

Example 6.10. We know by equation (4.1) that

Pert(C⊕MN(C)) ∼= Pert(C)× Pert(MN(C))×MN(C)⊗ C.

Since Pert(C) is trivial and we have the identification MN(C)⊗ C ∼= MN(C) we get

Pert(C⊕MN(C)) ∼= Pert(MN(C))×MN(C).

Let us first look at the action of Pert(MN(C)). This perturbation semigroup is embedded
in Pert(C⊕MN(C)) by

FA =
(

0 0
0 A

)
,
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where A ∈ MN(C). Note that (FA)ij = 0 if i = 1 or j = 1. Now let ∑Ai ⊗ Bop
i ∈

Pert(MN(C)) then ∑FAi
⊗FBop

i
∈ Pert(C⊕MN(C)). The action on D is now given by

D 7→ ∑
FAi

DFBop
i

= ∑
FAi

(ce1j + cej1)FBop
i

= ∑(
c
∑(FAi

)kle1jFBop
i

+ c
∑
FAi

ej1(FBop
i

)mp
)

= ∑(
c
∑(FAi

)kjδl1FBop
i

+ c
∑
FAi

(FBop
i

)jpδjm
)

= 0.

So Pert(MN(C)) acts trivial on D.
We now only need to consider the action of MN(C) on D. In a similar way as for

M2(C), the elements of MN(C) are embedded in Pert(C⊕MN(C)) as

A =


0 0 . . . 0
0 a11 . . . a1N
... ... . . . ...
0 aN1 . . . aNN

⊗

λ 0 . . . 0
0 0 . . . 0
... ... . . . ...
0 0 . . . 0

⊕

λ 0 . . . 0
0 0 . . . 0
... ... . . . ...
0 0 . . . 0

⊗


0 0 . . . 0
0 a11 . . . aN1
... ... . . . ...
0 a1N . . . aNN

 .
However without loss of generality we can set λ = 1, since we have a C-linear tensor
product. The action is now given by

D 7→ B(ce1j + cej1)e11 + e11(ce1j + cej1)B∗,

where

B =


0 0 . . . 0
0 φ11 . . . φ1N
... ... . . . ...
0 φN1 . . . φNN

 .
If we work this out we get

D 7→Bcej1 + ce1jB
∗

=
∑
k

cek1φkj +
∑
k

ce1kφkj,

where we have used that φij = φji. For j = 1 we get(
2<(c) 0

0 0

)
,

while for j = 2, . . . , N + 1 we get
0 cφ1,j−1 . . . cφN,j−1

cφ1,j−1 0 . . . 0
... ... . . . ...

cφN,j−1 0 . . . 0

 .

This last example is a generalization of a part of the standard model (namely the
part C⊕M3(C)) and its action on an off-diagonal hermitian operator D. Note that one
is not restricted to the forms we have considered for D. The only restriction we have on
D is that D is self-adjoint.
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Appendix A

Other results for semigroups

In order to get a better understanding of semigroups and monoids in general we try to
generalize some theorems which hold for groups to theorems which hold for semigroups.
Note that this in indeed a generalization, since every group is in particular a semigroup.

A.1 Definitions
Let us first start with some definitions.

Definition A.1. A semigroup S is a set with an associative operation ◦ : S × S → S.
If S has a unit it is called a monoid.

Definition A.2. A group G is a set with an associative operation ◦ : G × G → G, an
identity element e such that ge = g = eg for all g ∈ G and for every g ∈ G there is an
element g−1 ∈ G such that gg−1 = e = g−1g. We will refer to g−1 as the inverse element
of g, since g−1 is unique for every g.

Remark A.3. Every group G is thus in particular a monoid and a semigroup.

Just as for groups we have homomorphism between semigroups.

Definition A.4. Let S, T be two semigroups, then the function φ : S → T is called a
semigroup homomorphism if

φ(xy) = φ(x)φ(y)

for all x, y ∈ S.

Notation A.5. For a semigroup (or a monoid) S we write S× for the group of invertible
elements in S.

It is also possible that we have a semigroup S and a subset T of this semigroup.
Some special subsets are

Definition A.6. Let S be a semigroup and T ⊂ S, we say that

i T is a subsemigroup of S, if st ∈ T for all s, t ∈ T ;

ii T is a submonoid of S, if T is a subsemigroup of S and es ∈ T ;
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iii T is a subgroup of S (T ≤ S), if T is a submonoid of S and T is a group.

Definition A.7. Let S be a semigroup and T a subset of S. We say that T is a normal
subsemigroup, or T is normal, ⇔ sT = Ts for all s ∈ S.

Remark A.8. If S is a group, the definition can be reformulated as: T is normal
⇔ T = sTs−1 for all s ∈ S.

A.2 Generalized isomorphism theorems
A semigroup homomorphism which is bijective is called a semigroup isomorphism. For
group isomorphisms we have three well known theorems, namely

Theorem A.9. (First group isomorphism theorem) Let G,H be groups and ϕ : G→ H
a group homomorphism, then we have

i kerϕ / G, i.e. kerϕ is a normal subgroup of G,

ii Imϕ ≤ H, i.e. Imϕ is a subgroup of H,

iii Imϕ ∼= G/ kerϕ.

Corollary A.10. If ϕ is surjective we get

H ∼= G/ kerϕ.

Theorem A.11. (Second group isomorphism theorem) Let G be a group, H ≤ G and
N / G, then

i HN ≤ G,

ii H ∩N / H,

iii (HN)/N ∼= H/(H ∩N).

Theorem A.12. (Third group isomorphism theorem) Let G be a group, N,M /G such
that M ⊆ N ⊆ G, then

i N/M / G/M,

ii (G/M)/(N/M) ∼= G/N.

However in general these theorems do not apply for semigroups, since the notion
of quotients is not defined for semigroups. Furthermore is the notion of a kernel not
defined for semigroups, since

kerϕ = {g ∈ G | ϕ(g) = eH}

and semigroups do not need to have an identity element. We need to modify the theo-
rems in order to be able to generalize them. The solution has been found in congruence
relations.
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Definition A.13. A relation ∼ is called a congruence relation, or congruence, if it is
an equivalence relation and if x ∼ y, z ∼ w then xz ∼ yw.

We can now form a new definition for the kernel of a homomorphism.

Definition A.14. Let ϕ : G → H be a homomorphism between two semigroups, then
define the congruence

(x, y) ∈ kerϕ⇔ ϕ(x) = ϕ(y).

Note that this indeed is a generalization of the definition of the kernel for a group
homomorphism, since ϕ(eG) = eH , and if ϕ(x) = ϕ(y) then ϕ(xy−1) = ϕ(eG) and
xy−1 ∈ kerφ.

Theorem A.15 (First isomorphism theorem). Let ϕ : S → T be a semigroup homo-
morphism then kerϕ is a congruence, Imϕ is a subsemigroup of T and S/ kerϕ ∼= Imϕ.

We follow the proof as in [12].

Proof. First we prove that kerϕ is a congruence. That kerϕ is a equivalence relation
is trivial. Now suppose x ∼ y, z ∼ w then we now that ϕ(x) = ϕ(y) and ϕ(z) = ϕ(w).
But then we get

ϕ(xz) = ϕ(x)ϕ(z) = ϕ(y)ϕ(w) = ϕ(yw),
so

xz ∼ yw.

Thus kerϕ is a congruence. Also Imϕ is a subsemigroup of T , because if ϕ(s), ϕ(t) ∈
Imϕ then ϕ(s)ϕ(t) = ϕ(st) ∈ Imϕ since st ∈ S. Now define ψ : S/ kerϕ → T, [x] 7→
ϕ(x), this is a semigroup homomorpishm, since

ψ([x][y]) = ψ([xy]) = ϕ(xy) = ϕ(x)ϕ(y) = ψ([x])ψ([y]).

Furthermore is ψ injective. Suppose ψ([x]) = ψ([y]) then we have ϕ(x) = ϕ(y), so
[x] = [y]. And we have that ψ is onto Imϕ, because if t ∈ Imϕ then there is a s ∈ S
such that ϕ(s) = t. By construction this means t = ψ([s]) and since Imϕ ⊆ T we get
the result

S/ kerϕ ∼= Imϕ

We also have a generalization for the second and third isomorphism theorems. For
the proofs we roughly follow [13].

Theorem A.16 (Second isomorphism theorem). Let S be a semigroup, T a subsemi-
group and ρ a congruence, then % := ρ ∩ (T × T ) is a congruence, T̃ := ∪x∈T [x] is a
subsemigroup of S and T/% ∼= T̃ /ρ

Proof. Let φ : S → S/ρ be the natural quotient homomorphism and let φ|T be the
restriction of φ to T . Then we see that Im(φ|T ) ∼= T̃ /ρ. Since the image of T is T
modulo the congruence ρ. We also have that the kernel is equal to %, so therefore % is
a congruence. Applying the first isomorphism theorem gives us T/% = T/ker(φ|T ) ∼=
Im(φ|T ) = T̃ /ρ
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Theorem A.17 (Third isomorphism theorem). Let S be a semigroup, %,$ congruence
relations on S such that % ⊆ $, then $/% is a congruence relation on S/% and (S/$) ∼=
(S/%)/($/%).

Proof. Let ϕ : S → S/$ be a semigroup homomorphism, then is the kernel given by $.
However since % ⊆ $ we get that ϕ′ : S/% → S/$, which maps congruence classes to
congruence classes, is also a semigroup homomorphism. But the kernel of this map is
$/%, and every kernel is a congruence relation and vice versa, so $/% is a congruence.
If we now apply the first isomorphism theorem and use the fact that ϕ′ is onto, we get
(S/$) = Im(ϕ′) ∼= (S/%)/Ker(ϕ′) = (S/%)/($/%), which gives the result.

A.3 General theory on semigroups

A.3.1 Morphisms between semigroups
Let φ : S → T be a semigroup homomorphism. We now want to construct a function,
say φ̃ : S× → T×, between the invertible elements.

Proposition A.18. Let φ : S → T be a semigroup homomorphism, then φ̃ : S× → T×,
defined by φ̃ := φ|S× is a group homomorphism.

Proof. If S has no identity we are done, since then S× = ∅. So suppose S has an identity
and S× is not trivial then we see that the invertible elements of S has to be mapped on
the invertible elements in T . This follows from

eT = φ(eS) = φ(xx−1) = φ(x)φ(x−1)⇒ φ(x−1) = φ(x)−1,

where x ∈ S× arbitrary. Note that the above φ can be replaced by φ̃ since x ∈ S×.
Thus φ̃ := φ|S× : S× → T× is a group homomorphism

A.3.2 Semidirect product
Let us start with the definition of a semidirect product.

Definition A.19. Let S be a semigroup and T a semigroup which works on S. Then
we define the semidirect product S o T by

(s1, t1) · (s2, t2) = (s1ϕt1(s2), t1t2)

with ϕ : T → Aut(S).

If we have a semidirect product between a vector space and a semigroup, which works
on the vector space, we saw that the invertible elements were the invertible elements of
the semigroup which worked on the vector space. So

(V o S)× = V o S×

where S is a semigroup and V is a vector space on which S acts. But if we have two
semigroups instead of a vector space and a semigroup, then what are the invertible
elements?
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Lemma A.20. Let S be a semigroups and T a semigroup which works on S then we
have

(S o T )× = S× o T× (A.1)

Proof. That we have the term T× is clear, since the second component of the semidirect
product reads t1t2. So for this to be the unit, we need to have t2 = t−1

1 .
Now suppose that s1 6∈ S×, but that s1ϕt1(s2) = eS. We then see that ϕt1(s2) is the

inverse of s1. Also ϕt1(s2) ∈ S, since ϕ : T → Aut(S) and s2 ∈ S by definition. Then
we see that s1 ∈ S× since (s1)−1 = ϕt1(s2). Of course is ϕt1 invertible, since it is an
automorphism and therefore also s2 ∈ S×, which gives (A.1).
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