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Abstract

In this thesis we analyze the perturbation semigroup introduced by A. Chamseddine, A.
Connes and W. van Suijlekom, and we try to get a better understanding of its structure.
We will concretely determine the perturbation semigroup for all matrix algebras and use
some toy models to see the physical use of the perturbation semigroup, in particular to
the Standard Model of Particle Physics.
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Chapter 1

Introduction

Geometry is an ancient part of mathematics which can be traced back to the ancient
Greeks and further. Euclides and Newton used geometry in their work and Einstein
used geometry for his famous theory of gravity. In order to develop his general theo-
rem of relativity he had to use some kind of geometry, more specifically Einstein used
Riemannian geometry. In this way, Einstein’s theory could describe gravity. The other
three fundamental forces, the weak and strong nuclear force and the electromagnetic
force, could not yet be described by it despite many efforts (e.g. Kaluza-Klein [1]).
Many have tried to generalize Einstein’s theory, but it was Alain Connes in the twenti-
eth century that found a generalization that allows for the inclusion of the other forces
as well [2]. The result was non-commutative geometry and it generalizes Riemannian
geometry. With this generalization it was also possible to describe the Standard Model
of Particle Physics at least at the classical level [3].

In 2013 an article was published in which non-commutative geometry was further
generalized by the disposal of one of the conditions, namely the first order condition [4].
In this thesis we will take a closer look at a semigroup structure emerging through this
generalization and try to apply it to some toy models.

In this first chapter we will give a short introduction of the subject. In the next
chapter we will give some definitions needed later, and we will also prove that the
perturbation semigroup is in fact a semigroup. After that we will continue with some
examples. We will then determine the perturbation semigroup for all matrix algebras.
Starting with CV we show that

Pert(CV) = CNWN-1/2

and we will take a look at the embedding of the unitaries in the perturbation semigroup.
This explains how the perturbation semigroup is a generalization of the gauge group. We
will also determine the perturbation semigroup of My (C). For both CY and My(C) we
will first determine the perturbation semigroup for some example before we generalize
it. For M;(C), where i = 2, 3,4, we will first determine the structure that follows from
the definition after which we will try to find defining properties. As it will turn out, in
general it is too hard to understand the structure of the perturbation semigroup from
the definition. Instead we will start by analyzing defining properties and determine its
structure that way. If we have done that we will also take a quick look at the invertible
elements in the perturbation semigroup and at the way the unitaries in the algebra are



embedded in the perturbation semigroup. An other interesting matrix algebra besides
My (C) is My (R) for which we will find that

Pert(My(R)) = (R<N_1)<N+2)/2 X M(Nl)(N+2)/2(R)) X My(n-1)/2(R).

We will also take a look at the perturbation semigroup of the quaternions H, which is
a real subalgebra of Pert(M,(C)), and then we will generalize this to the perturbation
semigroup of My (H), which is a real subalgebra of Pert(Msy(C)).

In chapter 4 we will take a look at the general theory of the perturbation semigroup,
in the sense that we will look at the perturbation semigroup of the direct sum and of the
tensor product. For the perturbation semigroup of a direct sum we will find an explicit
expression, while for the perturbation semigroup of the tensor product there does not
seem to be such an explicit expression.

After that it will be time to take a look at the perturbation semigroup of the Standard
Model of Particle Physics. Before we can determine that perturbation semigroup we
will consider the perturbation semigroup of smooth functions on a manifold after which
we will replace the smooth functions by the smooth functions with values in a finite
dimensional x-algebra.

In the last chapter we will take a look at the action of this perturbation semigroup on
hermitian matrices. We will apply it to some toy models, some of which have physical
meaning. We will take a look at the action of the perturbation semigroup on diagonal
matrices, after which we will consider off-diagonal, but still hermitian, matrices. These
have some physical application: it will turn out that the famous Higgs field is encoded
in one of the results.

In the appendix we will prove a few results on semigroups which we have not proven
in the text. For instance, we include the semigroup isomorphism theorems and a result
on the invertible elements of a semidirect product.



Chapter 2

Perturbation semigroup

2.1 Definitions

In order for us to be able to do mathematics we need a few definitions.

Definition 2.1. A complex unital algebra is a vector space A with a bilinear associative
product A x A — A and a unit 1 satisfying la = al = a for all a € A.

Definition 2.2. An involutive algebra (or %-algebra) is a complex algebra A4 with a
conjugate-linear map * : 4 — A such that for all a,b € A

(ab)* = b*a*,

(a*)* =a.

We will restrict to involutive unital x-algebras and we will simply refer to them as
algebras. An example of a x-algebra is CV with componentwise multiplication. An other
example is My (C) with matrix multiplication.

Proposition 2.3. The vector space CY with componentwise multiplication is a *-algebra,
with the action of * given by conjugation. The monoid My (C) with matriz multiplication
is a x-algebra, where x acts as hermitian conjugation.

Proof. Let v,w € CV then (vw); = (vsw;); € CV since every v;, w; € C, thus v;w; € C.
We also know that C is commutative, thus in general CV is commutative. The unit is
given by 1 = (1);, the vector with as entries 1. The * is conjugation. So let v,w € C¥
then

and

For My(C) we have the usual matrix multiplication. So if A, B € My(C) then
AB € My(C). The unit is given by the unit matrix I, i.e. by the diagonal matrix Iy
with as entries 1 on the diagonal and zeros elsewhere. The * is hermitian conjugation,
so for A, B € My(C) we get

(AB)* = (AB)T =B'A' = B*A*



and -
— — :T
Ay =@y =A") =@A) =4
We conclude that both CV and My (C) are *-algebras. O

Central in finite dimensional non-commutative geometry is

Definition 2.4. A finite spectral triple is a triple (A, H, D) of a x-algebra A represented
faithfully on a finite-dimensional Hilbert space H, together with a symmetric linear
operator D : H — H.

The name spectral triple comes from the fact that the geometry of A is encoded
in the spectrum of D. It is useful to allow for finite spectral triples on real algebras,
instead of complex ones, as above.

Definition 2.5. A real unital algebra is a vector space A (over R) with a bilinear
associative product 4 x A — A and a unit 1 satisfying la = al = a for all a € A.

An involutive algebra (or x-algebra) is a real algebra A together with a real linear map
(the involution) * : A — A such that for all a,b € A

(ab)* = b*a*,

(a*)* =a.

Remark 2.6. Note that both RN and My (R) are also real unital *-algebras, just as in
Proposition 2.5. The action of x on RN is trivial, while the action of * on My(R) is
Just matriz transposition.

The difference between this definition and that of a complex *-algebra is that the
real algebras are closed under multiplication with real numbers only. A particularly
interesting example in this context is given by the quaternions, H, which is a real
subalgebra of My(C), defined by

H:{(_O‘ﬂ g) ’a,ﬁec}.

As one can see, the entries of the matrices are complex, but the algebra itself is real.
Indeed, upon multiplying a matrix in H with a complex number A, and demanding this
to be in H, forces A = \.

We will also be working with semigroups in this thesis, so we need a few definitions
on that.

Definition 2.7. A semigroup S is a set with an associative operation o : § x § — S.
If S has a unit it is called a monoid.

Definition 2.8. A group G is a set with an associative operation o : G X G — G, an
identity element e such that ge = g = eg for all g € G and for every g € GG there is an
element g~ € G such that gg=! = e = g~ 1g. We will refer to g=! as the inverse element
of g, since g~! is unique for every g.

Remark 2.9. Every group G is thus in particular a monoid and a semigroup.



Just as for groups we have homomorphism between semigroups.

Definition 2.10. Let S,7T be two semigroups, then the function ¢ : S — T is called a
semigroup homomorphism if

o(zy) = o(x)9(y)
forall z,y € S.

Notation 2.11. For a semigroup (or a monoid) S we write S* for the group of invertible
elements in S.

Associated to any spectral triple is the following group.

Definition 2.12. The group U(.A) is the group of unitaries, i.e.

UA) ={ue A|uwu" =1=u"u}.

2.2 Semigroup of inner perturbations

The starting point of this thesis is [4]. In that paper the theory of non-commutative
geometry is enriched by neglecting the first order condition. This gave rise to the inner
perturbations as we will now describe. At first the fluctuated metrics were formed with
help of U(A) in the sense that, for u € U(A) we had

D — uDu*,
which can be rewritten as
D — uDu* = D + u[D,u"].

However, since the elements of U(.A) are unitary elements the spectrum of D remains
the same. This motivated the use of A to fluctuate the metric. If we now use u[D, u*|
as a prototype for the new elements we get

DP—>D+A, A:ZCLj[D,bj],

where a;,b; € Aand A = A*, as in [5]. In [4] this action was generalized to the action
of the so called perturbation semigroup Pert(.A). The elements of this perturbation
semigroup are Y- a; ® b}” € Pert(A) and work on D as 3~ a;Db;. Let us work towards a
precise definition of the perturbation semigroup.

Definition 2.13. Let A be an algebra, then the opposite algebra of A is denoted by
A Tt is given by A as a vector space, with product a o b = ba.

Definition 2.14. Let A be an associative algebra with unit then Q'(.A) is the space of
one-forms given by

Ql(A) = {Z Cblébz | a;, bz € A},

where

§:A— QA

7



be a map such that

d(ab) = (da)b + adb;
d(aa + b)) = ada + [ob;
d(a)* = —=d(a”).

Here a,b € A, a, 5 € C.
Remark 2.15. The condition
d(ab) = (da)b + adb
implies that 61 = 0. Therefore also 6C = 0.
This Q!(A) is further generalized in [6]. One now has
Lemma 2.16. The map 7 is a surjection
n: {Z a; @b € A® A7 | Zajbj =1} — Q'(A), n(z a; @) = Zajé(bj)
and one has
n(Q b @ a;”) = (3_a; @ b))
Proof. Let w =3 a;6(b;) € Q'(A), then we can write
w=(1-=> a;b)o(1) + > a;d(b;),
because we have §(1) = 0. The preimage of this element is
1®1P = ab; @17 + ) a; @ b,

This is normalized since we have

So 7 is a surjection.
Let 3 a;0(b;) € Q(A), then we see that 3" a; ® bj¥ is normalized. We have

(D aid(b:) = =D d(a)b:)" =D bjo(aj),

hence

'r;(Zb; ® a;kpp) = (n(Zaj ® bjp))*.
S0 = () =1 =

so Y bF @ a;” is also normalized.

Now suppose that w = > x;0(y;), such that w = w*. We can now write w as
w =3 a;0(b;) + 23 b76(a}) for given a;, b;. Note that w is in fact self-adjoint. We can
rewrite w as

= (1= Y ab)i(5) + 6()(1 — X biai) + 5 S ad(b) + 5 X bio(a;),

Note that we have

8



since 0(%) = 0. The preimage of w is

op op

1 17 1
105 ~Yahoy +301%-Y @ @h)”+ ;Y aok+ Y o

where we have used that (b;f‘a;?‘)"p = (a;b;)*". Also note that this preimage is in fact
self-adjoint. We see that this preimage is normalized since we have

1

1 1 1 . 1 N
1-5—Zaibi'§+§'1—§'2(aibi) +§Zaibi+§Zbiai—1
O

We now want to show transitivity of the inner fluctuations, which means that inner
fluctuations of inner fluctuations are still inner fluctuations.

Proposition 2.17. Let A = Y a; @ b)Y € A® A? be self-adjoint and normalized by
S ab; = 1. Then for A, A" € A® AP, both normalized, we have

(D(n(A))(n(A") = D(n(A'A)).
Here D' = D(n(A)) stands for the inner fluctuation of D, which means
D'=D+> aD,b].
Proof. Let A= a; ®b¥ and A" =Y 2, ® y°P be normalized and self-adjoint. We have
D'=D(n(A)) =D +> a[D,b]
and in a similar way
D" = D'(n(A) = (D(n(A)))(n(A")) = D(n(A)) + >_xs[D(n(A)), ysl.
Expanding this gives
D'=D+ Z a;[D, b;] + Z zs[D, ys] + Z Z z[a;[D, b, ys)-

If we now use

:L‘s[a'i[D7 bz]; ys] = xs(ai [Da bz]ys — Ys@; [Da bz])

Mo aysaiD, b = Y ai[D, b
=D+ x[D,y] + > wa;[D, by,

However xga;[D, b;|ys can be expanded as

Ty [Da bz]ys = xsai[Da bzys] - xsaibi [Da ys}

and we use that

we get

and we know that

DD weaibi[D,ys) =Y wi[D, .
D"=D+> Y zalD,bys).

Oz @yP)D a; ®bF) = xa; ® (bys)°

we get the result. O

So we get

If we now use



Thus inner fluctuations of inner fluctuations are still inner fluctuations. The self-
adjoint normalized elements of A ® A% form a semigroup Pert(.A) under multiplication.

Definition 2.18. The perturbation semigroup is given by

Pert(A) = {Zaj @0 € AQ AP | Y ajby=1,> a; @b =" b; ®a;0p},
where the sums are finite and the 1 is the unit in \A.
Theorem 2.19. Pert(A) is a semigroup and has a unit.

Proof. To show that Pert(A) is in fact a semigroup we have to show the operation
o : Pert(A) x Pert(A) — Pert(A) is associative, thus for all a,b, ¢ € Pert(A) we have
(aob)oc = ao(boc). However, since A is associative we know that A® A is associative
as well. Since every element in the perturbation semigroup comes from A ® A, we
know that the operation o is associative. We now need to show that the operation is
closed, i.e. that the product of two elements is again in the perturbation semigroup.
Again let >; a; ® a3”, Y, by ® gzp € Pert(A), then

(Zj a; ® 5510) ( Yebr ® 'sz) = Zj,k(ajbk ® aEPEZPL
= Xjrlabr ® (bra;)).

This has to be both normalized and self-adjoint. This is the case since we have

Siaaibe) (0kdy) = X5k a;(brbi)ay,
= Zj a; (Zk bkbk)aja
= 254,45,
= 1

)

where we have subsequently used the normalization condition for Y by ®gzp and 37, a;®
a;’. Moreover, self-adjointness follows from

505 (briy)* @ (agby)™? = 53, @bt @ aj by,
= (@ 0q7)(Shb 0 57),
= (Y @a?) (i@ ),
= Sixlajby) ® (byaj)™,

where we have used the self-adjointness of both ¥, by ® b% and ¥ja;@a;’.
We claim that the unit in Pert(.A) is given by 1 ® 1, since

(XCja;®a)o(1l®1) = Yi(e;®a")o(1®1),
= Yj(a;- 1) ®(aj”- 1),

Similarly
(I®l)o(Xa;®a) = 2;(1®1)o(a fo?p)’
= Xj(l-a;) @ (1-a3"),
= Y,a;®ay,
where we have used that 1 is a unit in both A and A°?. We conclude that Pert(A) is a
semigroup and it is a monoid if A has a unit. O

10



Let us now consider how the unitary group is embedded in the perturbation semi-
group.

Proposition 2.20. Let A be a x-algebra, then we have

U(A) — Pert(A), (2.1)

U= u®uP.

Proof. We need to show that u ® u*°? is both normalized and self-adjoint. The normal-
ization condition follows by definition, since we have uu* = 1. We also have

u® u*op _ (u*)* ® (uop)>o<7

hence the element is self-adjoint, which proves the proposition. O

11



Chapter 3

Perturbation semigroup for matrix
algebras

Now that we have our definitions in place, we want to further investigate the perturbation
semigroup by studying some examples.

3.1 Perturbation semigroup Pert(CY)

Since the examples are finite dimensional vector spaces, we can work in a basis for
A = CV, which allows for an explicit form of Pert(A). For a vector space CV (and also
RY) we have

A= AP

since it is commutative.

311 A=C

First we look at the case A = C. Now };a; ® b?p reduces to _; a;b;, since the tensor
product is linear over C and C = C?. This }_; a;b; enters precisely in our normalization
condition, thus equals 1. We can therefore conclude that the case A = C is trivial

Pert(C) 2 {1}.

U(C) maps onto the perturbation semigroup, following the embedding in (2.1), since we
have

ANEUL) = AR N

However, the tensor product is C-linear, therefore we can bring A to the other side,
which gives
MNl=1®1.

Thus in this case U(1) — {1}.

12



3.1.2 A=C?
Now let us consider A = C?, so that A ® A% = C*. As a basis for A we take

) )

In terms of this basis the product of C? behaves much like a Kronecker delta, in the

sense that
{0 if i £,
€€ = o .
€; ifi=7.

Thus for an element 37, ; C’ijei®e§p , with coefficients C;;, one gets that the normalization
conditions reads

Crierer + Craeresy + Carege; + Caesen = Chieg + Cagen = €1 + €9,

since e; + es is the identity in C2. So it follows that C;; = Cy, = 1. To determine what
restrictions are imposed on Cy; and (9, we use the self-adjointness condition. We see
that

op _
> Cijei ® e = > Cijei @ e,
] i3
ij <y
= Z Cije; @ e;,
1,J

_ op
= Z C’jiei ® ej s

/L'7j

7]
= Z Cre: ®er,
'7j

where we have used that A = A%. So we see that C;; = Cj;, hence Cjp = Coy.
Upon identifying the basis

e Qe ~ €1 eg ~> etc.

o O O
O O = O

the element
Z Cl-jez- X €?p < Pert(CQ)
,J

thus becomes

— 1, CpeC.

This is isomorphic to C, so we get

Pert(C?) = C.

13



For C? the unitaries are mapped to Pert(C?) as in (2.1). With the identification
UC*H =U(1) x U(1),
we have B
(A ) €U1) xUL) = (A 1) @ (A T).
Once again we have a C-linear tensor product, thus we get
A i) @ (A1) = (A, 1) @ ML) = (1, ) @ (1, \).

Note that one only sees the difference between the components, but not the components
itself, leaving a U(1) C Pert(C?).

3.1.3 A=CV

Now let us take a look at the general case A = CN so that A ® A% = CN”. As a basis
for A we take

the standard basis.
Proposition 3.1. For any N > 1 we have
Pert(CN) = cNW-1/2
with the semigroup structure given by componentwise multiplication.

Proof. Our normalization condition states that Cj; = 1 for all ¢. Since
Z Cij €i€j
i?j

reduces to
Z Ciieie;
i

and Y, e;e; is the unit in CV. That this sum reduces to the unit comes from the product
e;e; which behaves much like a Kronecker product in the sense that

0 £ L

wo={0 P 1)
€; if1=j.

The self-adjointness condition states that C;; = Cj; for all i, j, since

Z Cijei ® e = Z Cije; @ ej,

7:7‘7‘

LV

j
= Z(f‘e*» ® e,
,J

=Y Cye; @ e,

7:7‘7‘
— op
=> Cjie; @ ¢

1]

14



So there are N? variables, among which N are equal to one, while the others are pairwise
conjugated.

Now let v, w € Pert(CY) and z = vw. This is once again in the semigroup, since for
the k-th component we have

2 = Zij = vijwij = CijDij

for given 7, j and components Cj;, D;;, such that v;; = Cjje; ® e; and similarly for w;;
and z;;. Suppose 7 = j then

2p = zii = vwy; = Cy Dy = 1+ 1= 1.
So z is normalized. For arbitrary 7, 7 we have
Zij = VijWij = UjiWji = Zji,

hence z;; = Zj;. So z is self-adjoint. Thus the product is indeed the semigroup structure
required. O]

In general we have the following proposition for the embeddeding of the unitaries in
the perturbation semigroup.

Proposition 3.2. Under the embedding U(CN) < Pert(CN) we have
UCY) = UM

Proof. Let
(AL, .. ) €UCN) =2 U(1)Y,

then the embedding reads

()\17"'7>\N)®(A17"'7)\N) - ()\1777)‘]\/) g)\il(17>\l)\72777)\lm)77
= (L, M A, MAN) @ (1, A1 e, ..., M AN),

Where we have used that the tensor product is C-linear and that every variable is
unitary. We only see the difference between every pair of variables, therefore we get
that the unitaries U(C") are embedded in Pert(CV) as U(1)Y — U(1)N 1, O

Note that it does not matter which variable we extract from the vector ()\; in the
above proof), since (AiA;) (M) = Aj Ak

3.2 Perturbation semigroup Pert(My(C))

Another interesting case is the perturbation semigroup of My (C). The first cases we
will consider are A = My(C'), M3(C) and M,(C) which will then be generalized to
A = My(C).

First let us look at My (C) ® My(C) in general. One can look at the basis compo-
nents in order to determine the perturbation semigroup. As basis we take {e;;}, where
e;; is a matrix with a 1 on position (i, j) and zero’s everywhere else.

15



Lemma 3.3. We have the following identification

My (C)? — My(C),
AP AT

Proof. Note that the product behaves the same on both sides. Since
APB? = (BA)”

and
ATBT = (BA)T.

Also note that the dimensions of both x-algebras are equal. Thus this identification is
correct. O

Under this identification we then have
ey < €.
Furthermore, if we multiply two basis matrices we get
€ijer = 5£eil. (3.2)

We also introduce the notation Cjj; as the coefficient corresponding to e;; ® ey in
My (C) ® My(C)°. The last thing we need to note is that we can identify elements in
the perturbation semigroup with elements in My2(C), since we take the tensor product
of two My (C) matrices.

3.21 A= MC)

The first case we look at is A = M,(C). Note that we have four basis elements for which
the normalization condition becomes

(Ch111 + Crag1)enr + (Criaz + Crag2)ers + (Carar + Cozo1)en
+ (Ca1,12 + Coz90)€90 = €11 + €29

Thus, we need to have

Ciig1 + Cioo1 = 1,
Ci112 + Cra22 = 0,
Co111 + Ca291 =0,
Car12 + Caa 90 = 1.

If we combine two arbitrary basis elements in the tensor product we can make the
following identification

MQ(C) (024 MQ(C)OP — M4((C),

op _
€ij & €p > €5 Q e = €2(;—1)+1,2(j—1)+k-

16



in terms of the basis elements e;; ® e, and then extend this linearly to all of My(C) ®
M, (C)°P. For the self-adjointness we get Cjjr = Cix ji, which will be proven in section
3.2.4. Taking the above identification into account and applying these conditions we get
for A € Pert(M,(C))

X1 23 Z3 1-&31

Z1 22 25 —Zz1
_ _ _ ; 21,...2’56@, r1, T € R.
21 25 22 —Zz1

Xo 24 Z4 ]_—IQ

Surprisingly for two of such matrices, their product once again has this general form.
Now let A € M4(C) correspond to an element in Pert(Ms(C)) via the above identifica-
tion. Then the above form for A can be obtained by demanding

A

1 1
0 0
o] 0]’
1 1

OA = AQ, where () =

S O O =
o = O O
o O = O
—_ o O O

This ) can be rewritten as a block matrix

T T
O €11 €21 €11 €12
QZ( =0 P=2Xei®e

€12 €22 €91 €22

Especially the last identity is useful, since we see that the eigenvectors of Q are given
by e; ® es £ €3 ® €1, with eigenvalue 1 and —1 depending on the + or — sign, and
e1 ® e + ey ® ey, with eigenvalue 1. If we now change to a basis consisting of these
eigenvectors we will get

Q:

OO =
O = O

0 0
0 O
1 0
000 -1

We also see that in this new base, the vector e is left invariant, i.e. e; is an eigenvector of
the matrix 2 with eigenvalue 1. This eigenvector is identified with e; ® e; +e5 ® €5 in the
original basis and therefore it is also an eigenvector of the matrix A in the perturbation
semigroup. Thus we get

961 = €1, €1 —

o O O =

This gives
Pert(My(C)) = {A € My(C) | Aey — ey, QA = AQ},
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with

Q:

S O =
S = O

0 0
0 0| (I ©
1 0| \o -1/
00 —1

The invertible elements in the perturbation semigroup are given by the invertible ma-
trices in My(C) which fulfill the conditions. Thus the invertible elements are given

by

e}

Pert(M,(C))* = {A € GLy(C) | Aey = e1, QA — AQ}.

We also want to know how the unitaries are embedded in the perturbation semigroup.
For a unitary matrix u we have uu* = I,. As it turns out there are two possible 2 by 2

unitary matrices, namely
a —b* and (@ b*
b a* b —a*)’

where |a|?+]b|? = 1. Using equation (2.1) we can get the general form of these matrices
in the perturbation semigroup. Computation gives

la|> —ab —ab |b|?

ab @ —b —ab

ab —b* @ -—ab

b2 ab  ab |al?
and _

la|> ab  ab  |b)?

ab —a®> b —ab

ab b* —a® —ab

b2 —ab —ab |al?
We see that these matrices have the same general form as we found for Pert(M»(C)).
We also see that these matrices are again unitary matrices, since we have

lal> Fab Fab |b]*\ [|a* @b ab |b?
ab +a® Fb —ab||Fab +@® Fb +ab
ab  Tb? :I:dj —ab | | Fab Fb*> +a® +ab

S

|b]> +ab +ab |al? b]> —ab —ab |al?

(laf* + [b]?)? 0 0 0
0 (|af* + [b]*)? 0 0 g
0 0 (la]* + [b]*)? 0 b
0 0 0 (lal* + [b]*)?

where we have used that |al? + |b]? = 1.

We now want to change to a basis consisting of eigenvectors, more precisely the
eigenvectors e; ® e; €3 ® e; and e; ® e5 + €5 ® ;. We do this with a transformation
matrix, which is given by

1 1 0 0

0 0 1 1
M= 0 0 1 -1}

1 =10 O



with inverse

10 0 1
1110 0 -1

-1 _ =

M_20110
01 -1 0

Note that both M and M ~! are unitary matrices since the columns of M are orthogonal.
In terms of this new basis we get

la|> —ab —ab |b]? 1 0 0 0
e ab o> —b —ab M= 0 [a>—[p* —2R(ab)  —2iI(ab)
ab —bv* a* —ab 0  2R(ab) R(a® -0 iS(a® —b?)
B2 ab @b |af? 0 2iS(ad) iS(a®+ ) R(a+0?)
and
lal> ab  ab |b|? 1 0 0 0
e ab —a® b —ab M- 0 |al*>—|b|? 2R(ab) 2i(ab)
ab b?  —a* —ab 10 2R(ab)  —R(a* —V*) —iS(a® - V)
B2 —ab —ab |af? 0 2S(ah) —iS(a+ b)) —R(a?+ 0?)

Apart from some minus signs, these matrices are equal. The result is again unitary, since
it is the product of three unitary matrices. These resulting matrices can be parametrized
by the lower right 3 x 3 block. So we get

|l — o> F2R(ab) F2i(ab)
UMy (C)) — { 2R(ab)  ER(a* — ) +iS(a® — b?)
2i3(ab)  +iS(a® +0?)  £R(a® + b?)

la]* + |b]* = 1}.

3.2.2 A= M;(C)

There is not really a big difference between the cases where n = 2 versus n = 3. Instead
of four basis elements, we now need nine basis elements, one for every possible position
in the matrix. The normalization condition becomes

Ciigr 4+ Cioo1 +Cisz1 =1, Ciiia +Ciaoo +Cizze =0, Ciiiz+ Cigos + Cizsg = 0,
Co111 4+ Caz01 +Caz31 =0, Coy1a + Carroa + Cozzo =1, Car13 + Cag 3 + Coz 33 = 0,
C3111 + Cs291 + Cs331 = 0, Csq10 + Csg00 + U330 = 0, Cz113 + U203 + Cs333 = 1.

When combining two arbitrary basis elements in the perturbation semigroup we make
the following identification

M3(C) @ M3(C)” — My(C),

op _
€ij & €py > €55 Q €l = €3(;—1)+1,3(j—1)+k>

again in terms of the basis e;;®@e;,. The self-adjoint condition translates to Csj . = Cig jis
this will be proven in section 3.2.4. Taking the above identification into account and
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applying these conditions we get for A € Pert(M;3(C))

Ty zZr 28 Zr T2 Zyg Zg Z9 1—r1— X2

£1  Z10 11 *12 k2 213 <14 <15 —Z1 — %2

23 Z16 A17T X18 R4 R19 k20 <21 —X3 — 24

Z1 Z12 R4 210 22 215 Z11 13 TR 22
A= w3 200 23 7oz T4 Zoa Za3 v 1 —x3— T4

25 k25 R26 k27T K6 <28 <29 <30 —RX5 T %6

Z3 218 %20 216 24 221 AT Rl9  —R3 24

Zy R Z29 Z25 6 R30 R26 R28 T R5 T 26

Ts 231 232 231 T 233 232 233 1 — x5 — X6

Z1,...,233 € C, z1,...,26 € R.

Let A € My(C) then the above form for A can be obtained by demanding

A(Gl + €5 + 69) = (61 + €5 + 69),

QA = AQ, where ) =

sl eBaoloBaNel =

S OO OO OO o
il e eoNel Y =R el
SO OO o oo
SO DO O OO OO
O R OO oo o oo
SO DD DO o OO
SO O OO o oo
_ O O OO oo oo

)

such that A € Pert(M;(C)). Furthermore, we can bring € to a more compact form, i.e.

T T
R €11 €21 €31 €11 €12 €13
. T T T _
Q= lex e e3| =€y € €] = Z €ij @ €.
T T T
€13 €23 €33 €31 €32 €33

The eigenvectors are now given by e, ® ¢; + ¢; ® e, for | # k, with eigenvalue +1. For
[ = k the eigenvectors are given by e, ® e for k£ = 1,2, 3, all with eigenvalue 1. Note
that e; ®e; +e,®es+e3®e3 is also an eigenvector with eigenvalue 1. We can diagonalize
Q with a new basis consisting of these eigenvectors, which will lead to

100000 O O O
010000 O 0 O
001000 0 0 O
000100 0 0 O
=100 0010 0 0 O
000001 O 0 O
0000O0O0-1 0 O
0o000O0O0O O0 -1 0
0000O0O0O 0 0 -1

20



First note that (2e; = e; and if we change basis so that e; becomes the vector e; ® e; +
es ® eg + e3 ® e3 in the previous basis, we see that ey is also an eigenvector of a matrix
A in the perturbation semigroup. Combining this gives

Pert(Ms(C)) = {A € My(C) | Aey = e, A = AQ},

(I; 0
Q_<0 _[3).

The invertible elements of Pert(Ms(C)) are given by the invertible matrices in the per-
turbation semigroup. Thus

with

Pert(M;(C))* = {A € GLo(C) | Aey = e1, QA — AQ}.

Just as for Pert(M;(C)), we want to know how the unitaries are embedded in
Pert(Ms3(C)). However for N = 2 we had two possible unitary matrices, if N be-
comes larger, there are also more possible unitary matrices. The approach is similar.
We construct a transformation matrix using the eigenvectors. Note that the columns
need to be orthogonal. For the unitary matrix u we use that >-; u;u; = 5i. This way,
though a lot of work, we can determine the embedding of the unitaries in Pert(M;5(C)).

3.2.3 A= MC)

The last case which will be discussed before we take a look at the general case is A =
M,(C). We do this to get more insight in the structure of the perturbation semigroup.
In terms of our coefficients Cj; ; described above, the normalization condition reads

4
> Crige=1for ke {1,...,4},

i=1

4
> Cria=0fork,le{l,...,4},k #1.

i=1
Once again when combining two arbitrary basis elements in the perturbation semi-
group we make the following identification
M4((C) & M4((C)Op — M16<(C),
€ij @ €p) > €ij @ Clp = €a(i—1)41,4(j— 1)+
in terms of the basis e;; ® ej;. The self-adjoint condition is now given by Cj; u = Ci ji,

which will be proven in section 3.2.4. Taking the identification into account and applying
these conditions we get for A € Pert(M,(C))
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I
<1
24
<7
zZ1
Ty
210
213
24
Z10
T
<16
Z7
Z13
216
T10

219 %21 223 k19 T2 224 R22 221 R24 X3 220 k23 R22 20 -2 —29 — 23
231 R35 239 k65 A2 273 RU7T 278 K74 2R3 266 R40 236 <32 —R1 — 22 — X3
243  Z47 251  R69 AR5 281 R8T R88 R82 K6 R0 Rb52 R48 44 —R4 — 25 — Z¢
255 X59 263 A7 A8 285 262 261 R86 <9 258 264 260 <56 —R7 T 28 — %9
265 278 240 231 k2 k74 236 235 273 23 232 239 277 %66 —Z1 — 23— 23
2111 291  R99 <111 Tz 2109 <92 291 <109 Le 2112 <99 K92 X112 1—24— a5 — 6
295 2101 2105 <97 211 2107 <104 <103 <108 <12 <98 2106 <102 <96 —Z10 T ”11 — f12
271 290 Rp4  R45  Z14 284 AR50 249 <83 R15  R246  R53 289 272 —Z13 — 214 — %15
260 288 252 243 25 282 248 247 281 26 244 251 287 270 —Z4 — 25 — %
297 2103 <106 <95 <11 2108 <102 <101 2107 <12 296 <105 <104 <98 —Z210 — ”11 — 212
2113 293 2100 <113 T8 2110 <94 R93 2110 L9 2114 <100 <94 <114 1 —x7 — 28 — 29
267 <80 <42 k33  Z17  R76  R38 R37  R75  R18 R34 R41  R79 <68 —Z16 — 17 — <18
257 261 264 255 28 286 260 <59 285 29 256 263 262 258 —27 — 28 — 29
245 249 253 R71 214 283 289 290 R84 R15 272 R54 250 246 —Z13 T 214 — %15
233 R37 R41 k67 217”75 R79 280  R76 218 268 R42 238 R34 —Z216 — 17 — 218
295 Zor  Za9  Zas X1l 230 228 221 230 T2 226 229  Rog R26 1 — Tig — T — T2
Zl,...,2114EC$1,...,J)12 € R.

Now suppose A € Mj(C) then we obtain the above form by demanding that
A(el + €5 + €11 + 616) = (61 + eg + €11 + 616)

and

where

o)

I
SO DD DO DO OO oo oo
SO OO OO oo oo
el eleolelBeoBeoleolBolBeoNeoBeoBel ™
S OO DD O DO OO o+ OO0 oo o

S OO OO OO OO OO oo oo
SO DD DD DD OO DD OO OO
DO DD DD DR DODDODDODODODOo O o oo
SO R OO OO0 oOo o oo
S OO OO O OO OO o oo OO
S OO DD DD DD DODOoOH OO OO oo
S OO OO OO OO o oo oo
O R O DD DO DODDODDOoDDoo oo o oo
SO DD DD DO DD OO oo 0o RHOOO
DO DD DD DD O OO O oo
S OO O H OO oo o oo
_ O O OO OO OO oo oo oo

o]
]
]
]

We can rewrite this € as a block matrix

€11 €21 €31 €41 €11 €12 €13 €1
T T T _T
O |12 €22 €32 Ca2| _ [Ca € €3 Coa| _
= = F F P F|=Dee
€13 €23 €33 €43 €31 €32 €33 €3y
T T T T
€14 €24 €34 €44 €41 €49 €43 €y



The eigenvectors are given by e; ® ex &+ e, ® ¢; for | # k, with eigenvalues 1 and —1
depending on the sign, and e; ® ¢; for i = 1,...,4 with eigenvalue 1. We now see that

doei®e

is also an eigenvector with eigenvalue one. We can diagonalize Q with a new basis
consisting of these eigenvectors, which will lead to

I
o=l V)
0 —1I
As we can see e; is an eigenvector of €2 and if we identify e; in terms of the new basis
with the vector Y e; ®e¢; in the old basis, we see that e; is also an eigenvector of a matrix

A in the perturbation semigroup. Combining this gives

Pert(M,(C)) = {A € Myg(C) | Aer = eq, OA — AQ},

(Lo O
o (i 1),

The invertible elements in this perturbation semigroup are given by

with

Pert(M,(C))* {A € GL1s(C) | Aey = er, QA = AQ}.

In a similar way as for Pert(M;3(C)) we can construct the embedding of the unitaries
in Pert(M,(C)). We construct a transformation matrix using the eigenvectors. Note that
the columns need to be orthogonal. For the unitary matrix u we use that 3=, u;;ug; = 5t
This way, though a lot of work, we can determine the embedding of the unitaries in
Pert(M,(C)).

3.2.4 A= My(C)

With these examples in mind we now proceed and determine Pert(My(C)). First
note that the matrices in the perturbation semigroup Pert(My(C)) will be elements
of My2(C). For the normalization condition we have the following proposition

Proposition 3.4. Fori=1,..., N the normalization condition is equivalent to
> Cigi =1
J
and fori,l=1,..., N and i # [ it is equivalent to
> Cij=0.
J
Proof. An element 3" a; ® 07" € My(C) ® My(C)® has to be normalized, which means

> ab =1,
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where the 1 is the unit in My(C). Therefore, in terms of our basis e;; and coefficients

Cij,kh we get
Z Cij,klez‘jekl = Z €ii,

where the right hand side is the unit 1. Using (3.2) we see that we can rewrite it as
> Cijmcids = > e

For ¢ = [ the coeflicients on the LHS need to equal 1, hence
> Cijji=1.
J

For i # [ the coeflicients on the RHS equal zero, so
J

O

Remark 3.5. Note that this proposition, and hence the normalization condition, implies
that 3", e; ® e; is an eigenvector for such a matriz A in the perturbation semigroup with
etgenvalue 1.

While in the previous section we determined the general form of a matrix in the
semigroup after which we found two defining properties, this time we do it the other
way around. We now determine a matrix Q) which will give the general form of matrices
in the perturbation semigroup, but first let us look at the following lemma

Lemma 3.6. For A = Y Cjjnei; @ ep) the self-adjointness condition is equivalent to
demanding
Cijet = Cikji-

Proof. Let A = A*, then we have

_ op

A = Y Cinei; ® ey
_ *op
- Z Cij,kZEZZ & eij .
_ op
= Y Ciymen @ €ji

If we now relabel the last expression, we get
> Cujieij @ e

hence
Cijkt = Cii ji

We now have the following proposition.

Proposition 3.7. Let A =Y Cjjueij®ep. Then Cijr = Cuji if and only if OA = AQ
with € = Zei]’ & egjp € MN<(C) X MN((C)OP.
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Proof. We can write Q as Q = 307 6%e,, @ €. Starting with the right hand side of
the equation we get

AQ = (S Cijmes; ® ) (S 0 8emn ® €2)
= Z Cij,klérné‘zeijemn & (ersekl)op
= E Clj,kléfn(ﬁ&;’%fem & 6%7

E Cij,klégéfbem X 6%1

= Y Cimein® ejo-f-

The left hand side of the equation reads

QA = (L op05emn ® ) (X Cyei; ® ef)
= Y Ciji6), 05 emnei; @ (exrers)”?
= X Cijuly, 0707 €mj ® Ope3

3= Cijki0h, 05 emy @ €7

> Cijre @ e

= Y. Cipjicir @ e?f-

Thus we have Cjj 3 = Ciy, ji if and only if QA = AQ. O
We now make the following identification

My(C) ® My (C)” — My:(C),

Cijmei; @ ep — Cijueij @ e = Cij k€N (i—1)+1, N(j—1)+k>
after which we can bring ) into a more appealing form as a block matrix. So we get
0= Z €ij ® €ji-

Lemma 3.8. The eigenvectors ofﬁ are given by ep ® e; £ €; ® e, with etgenvalue 1 and

—1 (k#1).

Proof. First suppose k # [, then we have

~

Q(@k & €] + €] & €k) = (E €ij X eji)(ek X €] + €] X 6k),
= Y ejer @ eje k) ee @ ejiey,
= Y el @e;d £ e @ e,
= 6[®€k:l:€k®€l,
= i(ek®eliel®ek).

Thus e, ® ¢; £ ¢; ® e}, is indeed an eigenvector with eigenvalue 1 or —1 depending on the
sign.

Now suppose k = [. We now need to show that e, ® e;, is an eigenvector of Q for all
k. This is indeed the case, since we have

~

Qer®er) = (e ®ej)(er ® ex),
= Y eijer @ ejiex,

Z 61(% ® €j ]i,

= e Q ek,
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Therefore e, ® ey is an eigenvector with eigenvalue 1. Note that we now have all the
eigenvectors since there are N(N +1) eigenvectors e ®e; 4 €; ® ey, however interchanging
[ and k will not change the eigenvector, so essentially we have N (N + 1)/2 eigenvectors
of this form. We also have N(N — 1) eigenvectors e, @ €, — e, ® e (for | # k), but
once again interchanging k and [ will give a minus sign and therefore we essentially
have N(N — 1)/2 eigenvectors of this form. If we now add these we see that we have
N(N +1)/2+ N(N —1)/2 = N? eigenvectors, hence the lemma is proven. O

Since e; ® e, is an eigenvector for all k£ and the eigenvalue is 1 for all these vectors,
we see that their sum must be an eigenvector with eigenvalue 1 as well, i.e. we have

Q(Z@Z X ei) = Z@i R e;.

We change to a basis consisting of eigenvectors, where we take Y e; ® e; in terms of
the old basis to be identified with e; in the new basis. This will give us

0 —In(v-1)/2

Note that the number of minus ones and plus ones match the number of eigenvalues.
As we have seen before " e; ® e; in terms of our old basis, is an eigenvector of a matrix
A in the perturbation semigroup. In the new basis e; is thus an eigenvector of such a
matrix A. Combining the above results gives the following theorem

Theorem 3.9. We have

Pert(My (C)) = {A € My:(C) | Aey = e1, QA = AQ} (3.4)
where
O In(vt1y /2 0
0 —Inv-1y2)

The semigroup structure is given by matriz multiplication.

Proof. We have already seen that
Mpy(C) @ My(C)? = My(C) @ My(C) = My2(C),

hence the perturbation semigroup consists of matrices in My2(C). As seen in the above
propositions the normalization condition and the self-adjointness can be translated into
two defining properties. Let A € Pert(My(C)) then

A€1 = €1
and
OA = AQ,
where
a_ In(Ni1y /2 0
0 —Inv-1y2)
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Thus the elements in the perturbation semigroup are matrices A € My2(C) which
fulfill two conditions, hence we get

Pert(My(C)) = {A € My:>(C) | Aey = ey, QA — AQ}.
We now need to prove that for A, B € Pert(Mx(C)) also AB € Pert(My(C)). So
suppose A, B € Pert(My(C)), then
(AB)el = A(Bel) = A€1 = €

and.

Q(AB) = QAB = AQB = ABQ = (AB)Q.

Hence AB € Pert(My(C)). Therefore the perturbation semigroup is closed under the
operation. O

Similarly the invertible elements in the perturbation semigroup are given by
Pert(My(C))* {A € GLy:(C) | Aey = 1, A = AQ}.

Now let us take a closer look at Pert(My(C)) again. Let A € My2(C) with Ae; = ey,
then we get that
1 v
A= (O B) |

Here v is a row vector of length N? — 1, while B € My2_;(C). However, we also know
that QA = AQ. If we set

QO — IN(N+1)/2—1 0 _ I(N+2)(N—1)/2 0
0 —Inv-1)/2 0 —Inw-1)2)’

then the condition that QA = AQ can be rewritten as
'B = B,
and
v =),
Note that the equality 7 = v{2’ does indeed hold. If we work this out we see that
v = (vl ivg) ,

where v; and vy are both real row vectors of resp. length (N —1)(N +2)/2 and N(N —

1)/2. We also see that
(B, iB
5= (5 ).

where By, ..., By are all real matrices. The dimensions of these matrices are (N —1)(N +
2)/2x(N=1)(N+2)/2, N(N—1)/2x(N—-1)(N+2)/2, (N—1)(N+2)/2x N(N —-1)/2,
N(N —1)/2 x N(N —1)/2, resp.

Now define
V = lveC¥ o= UQ’},
S = {Ae My ,(C)| VA= AQ’}.

We can now construct the semidirect product of V' and S which gives
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Lemma 3.10. Let V, S be as above, then V x S is in fact a semigroup defined by
(v, A) - (V' A)) = (v +vA’, AA)).
Proof. First note that vA’ € V since
vA'QY = vgﬁ,

TA,
= vA.

Of course AA’ € S since S is a semigroup. Therefore this semigroup is closed under the
operation. The unit of this semigroup is given by

1=1(0,1),
since
(v,A)-(0,1) = (040l Al) = (v, A).
Thus it is in fact a semigroup with the above operation. O

With this lemma we get

Theorem 3.11. For V and S as above we can write
Pert(My(C)) =V x S.

Proof. Let A, A’ € Pert(My(C)), then we have
1 v
(o 5)
, (1
=0 )

for suitable v,v’ € V and B, B’ € S. If we now multiply A and A" we get
, (1 v\ (1 2\ (1 v+ovB
Ad = (0 B) (0 B’) - (o BB )
1 v+vB
0 BB

can be parameterized by the second column and that column equals the semidirect
product defined in the previous lemma. So we get

and

The matrix

Pert(My(C)) =V x S.

First consider the following lemma
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Lemma 3.12. Let V' be a vectorspace and G a group which acts on V', then V x G is
a group, with the operation

(v, A) - (v, A) = (v +vA’, AA").

Proof. That the group is closed under the operation and that there is a unit has already
been proven in the previous proposition. All that is left is to prove that there is an
inverse element. In fact we have

(v, A)7' = (—vA™H ATY,
because
(v, A) - (—vA A = (v (—vA HAAAY) = (v -, ) = 1.
We know that A~! exists, since G is a group. O

We can now look at the invertible elements in the perturbation semigroup, but first
let
T =5 ={A€cGLy(C) | VA =AY}

Then we have

Proposition 3.13. For V' a vector space and S a semigroup working on V we have
(Vx8) =V x5~

This follows from
1 v

0 B = det(B),

0 # det(A) = ‘

where A € Pert(My(C)). This gives

Proposition 3.14. Let
V={vec" " v=0}

and

T={A€GLy(C) | QA = AQ'}

then we have
Pert(My(C))* =V x T.

In general one can find the embedding of the unitaries in Pert(My(C)) using a
transformation matrix consisting of eigenvectors. However, these eigenvectors need to
be orthogonal. Note that we can use Gramm-Schmidt orthogonalization in order to
construct these eigenvectors. We only need to orthogonalize the vectors with eigenvalue
1 and —1 seperately, since the eigenvectors with eigenvalue 1 are orthogonal to the
eigenvectors with eigenvalue —1. If we look at the eigenvectors with eigenvalue 1 (or
—1) we see that every linear combination of them is also an eigenvector with eigenvalue
1 (or —1). For the unitary matrix u we use that " u;;ur; = ;. This way, though a lot
of work, we can determine the embedding of the unitaries in Pert(My(C)).
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3.3 Perturbation semigroup of real matrix algebras

Now that we have the semigroup Pert(My(C)) we can take a look at the perturbation
semigroup of a real matrix algebra, to wit Pert(My(R)) and Pert(My(H)).

3.3.1 A= My(R)

We can start with the results we obtained for Pert(My(C)). In the calculations we did
use that fact the the entries were complex, in the sense that Cj;nu = Ciji. We can
however use the same reasoning for real entries and neglect complex conjugation, so

Pert(My (R)) = {A € My:(R) | Aey = e1, QA — AQ},
where

0_ In(Ny1)/2 0
0 —Inv-1y2)

The invertible elements in the perturbation semigroup are then given by
Pert(My(R))* = {A € GLy2(R) | Aey = er, QA = AQ}.

If we now take a closer look at Pert(My(R)) we see that we get

1 U1 0
0 By O
0 0 DBy

Note that this equals the general form we have seen for Pert(My(C)), however the
complex parts now equal zero. If we now, once again, multiply two of such matrices,
say A and A’, we see that

1 U1 0 1 w1 0 1 wy + UlBg 0
AA' =0 By 0 0 C; 0[=10 BC} 0
O O BQ O 0 CQ 0 0 BQCQ

The upper left 2 x 2-block looks exactly like the matrix we got in the previous section.
While the lower right entry is just simple matrix multiplication. Using our knowledge
about a semidirect product gives us

Theorem 3.15. We have

Pert(My(R)) = (R<N_1)<N+2)/2 X M(Nl)(N+2)/2(R)) X My(n-1)2(R).

Proof. The first part is just the application of Lemma 3.10 with V = ROW-DWV+2)/2 g
S = M(n-1)(v+2)/2(R). Note that we do not have to impose extra conditions on V' and
S with respect to €2, since the matrix got this form from 2. The second part is the lower
right entry, which behaves as simple matrix multiplication. O

30



Taking a closer look at the invertible elements we see that matrices A € Pert(My(R))
have a rather interesting form

1 v O
A=10 C 0],
0 0 D

where visa 1 x (N —1)(N+2)/2-matrix, C'a (N—1)(N+2)/2x (N —1)(N+2)/2-matrix
and D a N(N —1)/2x N(N —1)/2-matrix. Note that this is the same matrix as in the
Mny(C) case, but the complex entries now equal zero. If A is invertible then so are C'
and D because we have

Cc 0

O%det(A):L‘O D

’ = det(C)det(D).

If we now multiply two matrices in the perturbation semigroup, say A, B, we see that

1 v 0 1 w 0 1 w+vD 0
AB=10 C 0]|=(0 F 0|=10 CFE 0
0O 0 D 0O 0 F 0 0 DF

Here the second column behaves similar as in the complex-case, while the last column
is just matrix multiplication. Note that the only condition we have on the vector and
the matrices is that the entries are real. So if we use the result about V x G from the
previous section,
(v, A) - (v, A") = (v + vA", AA")
with
V = RN-D(N+2)/2

Y

G = GL(n-1)y(n+2)2(R),

we get
Pert(MN(R))X = <R<Nl)(N+2)/2 X GL(N_l)(N+2)/2<R)> X GLN(N_l)/Q(R)

In a similar way as for Pert(Mx(C)) we can find the embedding of the unitaries
in Pert(My(R)). There is however one difference, namely that for the unitary matrix
we have > u;up; = 5};. This way we can determine the embedding of the unitaries in
Pert(My(R)). Note that the moment we will find the embedding of the unitaries in
Pert(My(C)), we have also found the embedding in Pert(My(R)), since we can neglect
the complex terms.

332 A=H

We want to determine the perturbation semigroup of the quaternions, notated by H.

First, recall that
_) (e B
H= { <—5 a) |a,6€(C}.

For matrices in H we have the following lemma
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Lemma 3.16. For A € My(C) to be in H we have JA = AJ where

~ 0 1
J = (_1 0) = €12 — €91.

Proof. For A € M,(C) we can write

with «, 3,7,6 € C. The RHS reads

~— (0 1\(a B\ _ (7 9
m ()6 D)
-~ (a B 0 1\ (-8 «
=38 (G )= (59)
Therefore a = 6 and 3 = —7. Hence
)GH

— Ofi
A (n

while the LHS reads

ol ™

]

Since the quaternions form a real subalgebra of M,(C) we can start by looking at
the matrices in Pert(M;(C)). Recall that the general form of the matrices was given by

X1 Zo Z9 1— T
21 24 25 —Z1
21z Za T2
To 23 23 1— )

A:

ziE(C, forizl,...,5, [L'l,.CEQER.

We now have to impose our condition regarding J in order to get a matrix in Pert(H).
In the tensor product Ms(C) ® My(C)% this J behaves almost the same way. Now for

A® B? € My(C) ® My(C) to be in H® H we have

(J @ JP)(A® B?) = (J® JP) (AR B”) = (A® B?)(J @ JP).

Once again using the identification

My (C) @ My(C)P — My (C),
€ij & el — €i; X e

we get

J® JP s J = (e12 — €21) ® (€12 — €21)" =

o= O O
o O = O
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So for a matrix A € Pert(H) we need to have
JA=AJ.

The matrix A in the perturbation semigroup can now be written as

T 29 Z 1—=x
21 z3 24 —z1
A= - - = -
21 Z4 Z3 —Z2

l—a2 —20 —7%5 T

where © € R, 21, 2, 23,24 € C. Since this is the same form as for A € Pert(M(C)) it
follows that we have a similar commutation relation for this A with , namely QA = AQ.
Once again we can diagonalize () to

0
0
€= 0

S O O =
O O = O
o = O O

-1

This new basis consists of eigenvectors, which are
e1 ® ey ey ® e,
e1®e; ey ®es.

Recall that these are indeed eigenvectors of Q. Let us now write J = J ® J in terms
of this new basis. We see that

(612 — 621) & (621 — 612) (61 X €9 + €9 & 61) = :i:(€1 X €9 + €9 X 61),
(12 —e21) ® (€21 —e12))(e1 ®er L ea ®er) = Fleg ®er £ea ®ey).

Sincg the first eigenvector of {2 was e; ® e + €3 ® e we retrieve the following expression
for J in terms of the new basis

100 0
0 10 0
=10 01 o0
0 00 —1

We see that e; in this new basis, e; ® e; + €5 ® €5 in the old, is an eigenvector of J. With
this we can find the general expression for Pert(H).

Proposition 3.17. We have
Pert(H) = {A € My(C) | Aey = ey, QA = AQ, JA = AJ}.

Proof. Since we started with the perturbation semigroup Pert(M3(C)), we only have
to show that imposing the condition JA = AJ gives Pert(H). But we know that
for a general 2 x 2-matrix B, we can retrieve the general form of a quaternion by
demanding that JB = BJ. We also saw that a similar relation holds in the tensor
product of two such matrices, this time with J. If we now choose the matrices A such
that A € Pert(My(C)) the same reasoning holds and thus the matrix has the same
commutation relation with J. Changing to the new basis then gives J and this gives
the result. O
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Since 2 and J have the same commutation relation with A € Pert(H), also the sum
and difference of 2 and J must have this commutation relation with A. If we now set

100 0
0000
T=(Q-J)/2= 0000
0000
000 O
010 O
'=(Q+J)/2= 001 0
000 -1

we get

Pert (H) = {A € My(C) | Aey = e1,TA = AT, TA = Ar}.

Now let A € Pert(H) then by Ae; = e; we get

1 X1
o 0 Ty
A= 0 Ty
0 z0
Now I'A = AT gives
1 0
. 0 T
A= 0 T4
0 Ty
and YA = AY then gives
1 0
. 0 T
A= 0 T3
0 iys
where z1, ..., 25,91, ...
see that

o)
Ts
I
Ti1

D)
Ts
Ts

1Ys

v e) (o )

for given C;D. Thus AB is again in the perturbation semigroup. Note that we can
parameterize A with a given 3 x 3-matrix. Now define

1 0 0
0

=10 1

0 0

= (o ¢n)

T3
Le
Ty
T12

0
T3
Te
Ty

0
11
1Yo
Ts

Y

,ys € R. If we now have two of such matrices, say A and B we

0

b

—1

so I' without the first row and column. Then we have

Proposition 3.18. The perturbation semigroup for H is given by
Pert(H) = {A € M3(C) | T"A = AT},

which s a monoid.
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Proof. We got a general form for A € Pert(H) which can be parameterized by a 3 x 3-
matrix which has a commutation relation with I". This gives the expression Pert(H).
We also have I3 € Pert(H), since

'l =11 =T" = LI".

Also for A, B € Pert(H) we have

I"(AB) = (I'A)B = AT'B = ABI" = (AB)I",
hence AB € Pert(H), which proves the proposition. O
For A € Pert(H), A invertible, we have A~' € Pert(H), since

VA T=TA'= (@AY ' =AM ' =[4) ' =A "= AT
Corollary 3.19. The invertible elements are given by
Pert(H)* = {A € GL3(C) | T"A = A"},

In order to find the embedding of the unitaries in Pert(H) we can use the result we
have found for Pert(M>(C)). The unitary 2 by 2 matrices are given by

a —b* a b
(b a*) and (b —a*)’

where |a|>+[b|* = 1. We see that the first matrix is in fact an element of H. The second
matrix is not an element of H, because in order for it to be, we need to have a = 0 and
b= 0. So we only need to look at

a —b*

b a* )’

The computation has already been done in section 3.2.1. We get the general form

la|> —ab —ab |b|?
ab  a® —b —ab
ab —-bv* @ —abl’

b2 ab  ab |al?
which can be brought to

0 0 0
la]? —|b]?  —2R(ab)  —2iS(abd)
2R(ab)  R(a® —b*) iS(a® —b?)
2i3(ab)  iS(a® + %) R(a® +b?)

o O O =

by a basis transformation. The embedding is then given by

o> = [b]>  —2R(ab)  —2iS(ab)
U(H) — { 2R(ab)  R(a® —1?) iS(a® —0?) | | |a]® + |b]* = 1}.

2iS(ab)  iS(a® 4+ b%)  R(a* +b?)
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3.3.3 A= My(H)

We now want to determine the perturbation semigroup for A = My (H). For a matrix
in Pert(My(H)) we have a matrix similar to J that we had for Pert(H), we call this

matrix L. We had JA = AJ, this becomes LB = BL, for B € Pert(My(H)).

Lemma 3.20. We can retrieve Pert(My(H)) from Pert(Man(C)) by imposing
LA = AL
on A € Pert(Myy(C)). Here L = In> ® J.

Proof. Let A € Myn2(C) and let L = In2®.J. If we now think of A as a N2 x N2-matrix,
with as entries 4 by 4 matrices, we can write A = Y e;; ® A;;, with e;; the standard
basis for My (C) and A;; € My(C).

Now we compute both LA and AL. Computing LA gives

while AL gives

Thus we get N B B N
LA=AL & JA;; = AjjJ & A e He H?,

where we have used equation (3.5).
So by imposing LA = AL, for A € Pert(Myn(C)), we retrieve Pert(My(H)) from
Pert(Man(C)). O

We now want to diagonalize L just as we did with .J for H. In order to do so we will
prove that Q and L commute. First let us define the basis {ei; ® faptij=1,. Nap=1,2 for
both L and Q. So fap is the standard basis for My(C), while e; ; is the standard basis
for My (C). In terms of this basis we can write

L= (Zekk ® (f12 — f21)) ® (Zekk ® (fa1 — f12))

and ~
Q=3 (e ® fap) ® (€ ® fa)-

Note that fis, fo1 are the basis vectors of J. We now have the following proposition

Proposition 3.21. Let Z, Q be as above, then we have
LO = QL.
Proof. By multiplying L and Q) we can show that the LHS reads

L = ((Z exk @ (fiz — f21)) @ (X et ® (for — f12))) (Z(eij ® fap) ® (€ji ® fﬂa)):
= Y (X ewei; @ (fiz — f21)fa6)) ® (Zekkeji ® (fa1 — le)fBa)u
= (e ® (f1902 = f260L)) @ (e5i ® (faa0h — f1a03))-
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If we now just consider the f,s part of the equation we get

> (f1802 — fapbs) © (f2a5é - flafi%) = 11 ® fao + fo2 ® f11 — f12® fa1 — f21 @ fra.
The RHS however reads
OL = (Z(eij ® fap) ® (€i ® fﬁa)) ((Z exk ® (fi2 — fa1)) @ (X exr @ (for — f12))),

= Y (X eijerr @ fap(fiz — f21)) ® (Zejz'@kk ® faalfo1 — f12>)7
= ¥ (e ® (fa20h — far03)) @ (i ® (£102 — f520L)).

If we now once again consider the f,3 part of the equation we get

Z(fa25/13 - faléé) ® (f,815(21 - fﬁ25i) = —f12® fo1r — fo1 @ fi2 + [11 ® fao + fo2 ® fu1.
Hence the two terms are equal, thus the two matrices commute. O
Corollary 3.22. Q and L have a common set of eigenvectors.

We know that L has the same amount of eigenvectors with eigenvalue 1 as —1.
Diagonalizing then gives us

O_ Inens) 0
0 —In@N-1)

—Ix 0 0
L = 0 IQN2 0 )
0 0 —Inen-1

such that for A € Pert(My(H)) : QA = AQ and LA = AL. We thus get

and

Pert( My (H)) = {A € Myn=(C) | Aey = 1, A = AQ, LA = AL}.

As we have shown ) and L commute, so every linear combination of these two must
satisfy a similar commutation relation with A. Now let us define

1 0 0
\I/(QL)/2(0 Ino 0)
0

0 O
and
0 0 0
@:(Q—I-L)/QZ 0 Ione 0 ,
0 0 —Iyen-y
also let

@, _ ]2N2 O
0 —Iyenv-n)’

The reason why we choose this particular notation will become clear in the following
theorem, but first notice that we now have

Pert(My (H)) = {A € Myn2(C) | Aey = 1, VA — AV, OA — A@}.
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Theorem 3.23. We have
Pert(My (H)) = (RY™" x My_1(R)) x T,

where
T = {A € Myn> n(C) | 074 = A@'}.

Proof. Let us start with a matrix A € M,y2 and let us write A in the following suggestive
form

a (%1 (%) U3

b By Bia Bis

¢ By By By’

d B3y DBsy Bag

where a,b,c,d € C, Byy € My_1(C), Byy € Myn2(C) and Bsg € My@en-1)(C). The
other block matrices B;; and the vectors v; are chosen in a similar suitable way. Then

the first condition Ae; = e; implies that a = 1 and b = ¢ = d = 0. The second condition
VA = AV gives

A:

1 77 T T3 1 v, 00
0 By Bz Bis| [0 By 00
0 0 0 0] [0 By 0 0f
0 0 0 0 0 B3s; 0 O

hence all vy, v3, B1s, B13, Bo1, B31 equal zero, while v; is a real vector and Bj; is a real
matrix. The third and final condition, ©A = A®©, implies

0 0 0y o0 o
0 Bu B |-[0 B -
0 —Bsy —DBs3 0 B3y —DBsg

So we see that Bgs, B3z are real, while Bag, B3y are pure complex. Thus, we have obtained
the following general form

1v10
A=10 By 0],
0o 0 C

where C' € T. As we have seen multiple times before the upper left 2 x 2 block can be
parameterized by a semidirect product, namely RY=! x My_;(R), while the lower right
entry has no further condition, but to be in T". This gives

Pert(My(H)) = (RV™ »x My_1(R)) x T,
which proves the theorem. O]

Note that this result is in accordance with the perturbation semigroup for H, since
the semidirect product vanishes for N = 1.

For the embedding of the unitaries in Pert(My(H)) we follow the same steps as we
would take for Pert(My(C)). We construct a transformation matrix (this can be the
same as for Pert(Man(C)). The columns of this transformation matrix (the eigenvectors
of a matrix A) need to be orthogonal, which can be established by Gramm-Schmidt
orthogonlization. For the unitary matrix u we use that 3 u;;ug; = ;. However, we also
demand that uw € My(H). This way we can determine the embedding of the unitaries
in Pert(My(H)). Note that we can get the embedding of the unitaries in Pert(My(H))
from Pert(M,y(H)) by imposing a commutation relation with L.
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Chapter 4

(General cases

When we know the perturbation semigroup of two x-algebras, we would also like to
know the perturbation semigroup of their direct sum and the perturbation semigroup
of their tensor product. This is important in order to reach our final goal, namely to
determine the perturbation semigroup of the Standard Model of Particle Physics, which
uses both of these structures.

4.1 Perturbation semigroup of direct sum

If the perturbation semigroup of two *-algebras is known, we would like to construct
the perturbation semigroup of their direct sum. We have the following result.

Theorem 4.1. Let A, B be x-algebras, then we have
Pert(A & B) = Pert(A) x Pert(B) x (A® B? & B® AP)** (4.1)
where s.a. stands for the self-adjoint elements as we have for the perturbation semigroup.

The self-adjoint elements have the general form 3 a; ® b + bf ® a;, which is in
fact self-adjoint. Note that for A, B matrix algebras the last term reduces to A ® B.

Proof. We have by definition

op Zajbj =1

Pert(A @ B) = {Za] 2 e (AaB) @ (AsB) Zaj®bqp:Zb%®a,fop}.
J J J

Now define
¢: Pert(Aa® B) — Pert(A) x Pert(B),
Sag,b7) ® @F,6,") = (Sa; @@, Tb; @),
Note that ¢ is surjective, since ¢(3(a;, 1) ® (a3, 1)) will give Pert(A). The same goes
for Pert(B) with ¢(3(1,b;) ® (1,b,7)).
Note that elements which are normalized, are mapped to normalized elements, since

for 3> (a;, b;) ® (a3, b;") e (A®B) @ (A® B)? one gets

S(aj,0)(@5,b) = S(a;dz,bby),

= Z(ajajao)"i_(ovbjbj)L
(Zajaj70)+(0azbjbj)a
— 1=(L1).
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For the self-adjointness the same reasoning holds, it is preserved by ¢. Now let us
consider the kernel of ¢. The kernel appears to consists of elements of the form
>(a;,0) ® (0,b;") and 3(0,b;) ® (a3’,0). However these elements alone are not self-
adjoint. Combining them gives self-adjoint elements in the kernel. This gives

2(07 bj) ® (a;?pv O) + (CL;, 0) ® (07 bjop)
for the elements in the kernel. But one quickly sees that

> (0,b) @ (a7, 0) + (aj,0) @ (0,b;7) € B& A & A B

7

However, as we just saw, not every element of B® A% @& A ® B is in ker(¢), only the
self-adjoint elements are. Hence

ker(¢) = (B® AP & A® BP)™,

the self-adjoint elements. By the first isomorphism theorem for semigroups we now know
that
Pert(A @ B)/ ker(¢) = Im(¢) = Pert(A) x Pert(B).

However, we also know that
(AeB) @ (AeB)P=ARB?HBRIAY S AR AP G B B*.

For the perturbation semigroup we need to impose a normalization condition and a self-
adjoint condition on the above expression. We see that, with the self-adjoint condition,
the first two terms are precisely ker(¢). We already saw that

Pert(A @ B)/ ker(¢) = Pert(A) x Pert(B),
hence this equals
Pert(A ® B) = Pert(A) x Pert(B) x (B® A? @& A @ B?)>°.

[]

The self-adjoint part will reduce to a simple tensor product between A and B in the
cases we will consider.

Example 4.2. Let CV and CM be two *-algebras, then Pert(CN*M) o= CN+HM)(N+M—1)/2
and Pert(CNTM) = Pert(CN @ CM). We also see that

Pert((CN) XPert((CM) % (CN®(CM> ~ (CN(N—I)/Q XCM(M_l)/2 X(CNM ~ C(N—FM)(N—‘:—M—I)/Q'
Hence, we have
Pert(CY @ CM) = Pert(CV) x Pert(CM) x CV @ CM,

or
CWNH+M)(N+M=1) o oN(N=1)/2 o ¢M(M=1)/2 o N o oM
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4.2 Perturbation semigroup of tensor product

Just as for the perturbation semigroup of the direct sum of two *-algebras, we would
like to get an explicit expression for the perturbation semigroup of the tensor product
of two *x-algebras. This is however more difficult, as we will now explain.

Let us take a look at Pert(A ® B), we know that the elements of Pert(A @ B) have
the general form

Y (a;@b) @ @Feb") e (A2 B)@ (A B)?

such that i
Y (a;0b)@reb”) =
and
Slas @ b) @ (@ ©87) = (@ 06" © (@7 9 57).
By the isomorphism
(A®B)® (A” @ B?) = (A® A?) @ (B® B?),

we can modify the terms in the self-adjointness condition to get

Ya;@b) @ @ eb”) 2y (a;@a%); @ (b;@b;")

and
S @b) @ (@Tb?) 23 (@ @ d”) ® (b ©b®).
Thus
> (a;®@a) =) (@) ® a;”)
and

7~ op T *0,
Dby @b ) =D (b ®b7).
So this would give the impression that the perturbation semigroup of a tensor product

splits in the two separate perturbation semigroups plus an extra term. However, let us
now consider the normalization condition. This can be rewritten as

Z(QJ gp®bb )

An easy conclusion could be that both > aJNOP and Y b; b ¥ need to equal 1. However,
the tensor product is linear over C. Therefore it is p0551ble that Zaf"p = )\, while

> b;b;” = A~ for A # 0, which still gives

Z(aj yp®bb )

Hence, it is not possible to say that both sums need to be normalized, thus the pertur-
bation semigroup can not split in two separate perturbation semigroup.
. ~ op
Let us now take a look at an element >>(a; ® b;) ® (aj” ®b; ™. such that > aja; = 0.

Then it is possible that > (a; ® b;) ® (a” ® ;") =0, Whlle > b; @b, #0. So this way
we have an element which equals zero in Pert(A4 ® B) but is non-zero in Pert(B).
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Chapter 5

Perturbation semigroup of the
Standard Model

We now want to determine the perturbation semigroup of the Standard Model of particle
physics, that is [3]

Pert <O°°(M,C@H@M3(<C))>, (5.1)

where M is a manifold. With C*°(M, A) we mean the smooth functions over M which
takes values in the x-algebra A. Before we can determine the perturbation semigroup
of the Standard Model, we need to know what Pert(C*(M)) and Pert(C*(M, A)) are.

5.1 Perturbation semigroup Pert(C*(M))

Let us first take a look at the definition of our perturbation semigroup and what it
means for C*°(M). The definition reads

OO O] o0 o0 O Zg = 1
P p j
Pert(C*( { > g; @Y € C(M)® C™(M) S ® hop S h @ gl }

However, we know that C*°(M) = C°°(M)°, thus we get elements in C*°(M )@ C>(M).

A corollary from the Arzela-Ascoli theorem [7][8] states that C°°(M x M) is dense in
C>®(M)® C>(M). Therefore we will look at functions in two variables instead. We get

Pert(C*(M)) = {f(x, y) € C°(M x M) | normalized and Self—adjoint}.

We now need to write the normalization and self-adjointness in terms of these new
functions f(z,y). We have

Co (M) ® C(M) — C=(M x M)
229; ® hy = f.

So g; is the first component of f, while h; is the second. Hence we can write

ZQJ hop f(z,y)
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and
>0 @g”" = fly,@)".
We also know that f* = f. So the self-adjointness condition becomes

flz,y) = fly,z)

in terms of the new functions.

If we take a similar look at the functions 3° g; ® hj” for the normalization condition,
thus g; as the first component and h; as the second, we see that only the function values
f(z, x) need to be normalized. This gives

Pert(C(M)) = {f € C®(M x M) | f(z,2) = 1, f(z.9) = fy.2)}.

5.2 Perturbation semigroup Pert(C*>(M, A))

In the previous section we considered smooth functions over a manifold M which took
values in C. Now we have smooth functions over a manifold M, but it takes values in a
finite dimensional matrix algebra A.

Proposition 5.1. Let M be a manifold and A a matriz algebra, then
C®(M,A) = C*(M)® A.

In general this can be proven for nuclear Frechet spaces [9]. However for us it is
enough if we look at matrix algebras A.

Proof. Let {a;}; be a basis for the vector space A and let z € M then for f € C*(M, A)

we can say
flx)=a= ch-ai,

for a,a; € A and coefficients ¢;. We now want to construct a function h € C*°(M) ® A
such that we have equality. Let g; € C*°(M),a; € A such that we have Y g;(z) ® a;.
Now define g;(x) = ¢;, where ¢; is taken as above. Then we have equality, since the
element f(r) = a = 3 ¢;a; can be written as Y cia;, ® 1 = > ¢; ® a; = X gi(r) ® a; by
C-linearity. So we get h(x) =3 gi(v) ® a;. O

Remark 5.2. For matrixz algebras the LHS consists of functions which map to matrices,
while the RHS consists of matrices with as entries functions from M to R or C.

Corollary 5.3. For M a manifold and A, B matriz algebras we have
C*(M, A& B)=C*(M,A) ® C*(M,B).

We can now look at the perturbation semigroup for C*°(M, A). Let us first introduce
the semigroup homomorphism g defined by

w: AR AP — A, (5.2)
a® bP — ab.

We then have
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Theorem 5.4. Let A be a x-algebra and M a manifold, then
Pert(C™(M x M, A ® A7) = C¥(M, Pert(A)) x C¥(M x M — A, A© A7)

With A we mean the diagonal of M and with s.a. we mean the self-adjoint elements
again in terms of our perturbation semigroup.

Proof. First we make the identification

C(M) @ C®(M) = C=(M x M)
D> g ®h;— f.

So we only need to consider functions in two variables which map to A ® A°. The
self-adjoint condition behaves the same way as it did for Pert(C*°(M)). However, we
now have functions that map to an element in A ® A°. Therefore, instead of complex
conjugation we now have

flz,y) = f(y, )",
where the * is the * from .A.

For Pert(C*(M)) we saw that only the elements f(z,z) had to be normalized. For
Pert(C* (M, A)) we have

f(l’,ﬂ?) = Zai ®b?p
for given a;,b; € A. We now use the semigroup homomorphism g to define the normal-
ization condition. We have

p(f(z,x) = p(d_ai@b’) = aib = 1.

Note that we have used that y is a semigroup homomorphism.

As we have seen all the elements need to be self-adjoint, while only the elements
f(x, ) need to be normalized. Now split the manifold M x M in M x M — A and A,
where A stands for the diagonal. So again for every element we have the self-adjointness
condition, while we only have the normalization condition for elements on the diagonal.
So the elements of C*(M x M — A, A® A%) only need to be self-adjoint, while the
elements of C*(A, A ® A°) need to be both self-adjoint and normalized. However, the
elements of A ® A which are normalized and self-adjoint are precisely the elements in
Pert(A). If we also use that A = M we get

Pert(COO(M’ A)) = COO(M, Pert(A)) X C’OO(M x M — A,A@AOP)S“Z',

]

5.3 Perturbation semigroup of the Standard Model

With all the examples we have worked out and the general theory on perturbation
semigroups, we can now construct the perturbation semigroup of the Standard Model
of Particle Physics. Recall that we can write the Standard Model of Particle Physics as

A=C™(M)® (CoHe Ms(C)).
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Here C describes the photon v, H describes the bosons for the weak nuclear force, namely
Z and W=, while M3(C) describes the gluons [5]. Note that the quarks and leptons,
which are fermions, are not described by this expression. Instead they are described by
the Hilbert space H. For the Standard Model we have H = C%. The reason we get
96 and not something else can be found in the Standard Model of Particle Physics by
looking at the elementary particles. We see that we have leptons and quarks, for every
quark and lepton we have two types. There is also an antiparticle for every quark and
for every lepton, while only quarks can have a color. Every particle can also be either
right handed or left handed. We also know that for both leptons and quarks there are
three generations. So we get

2:2:2-34+2-2-2-3-3=24+72=096.

Leptons Quarks

We can now determine the perturbation semigroup of the Standard Model of Particle
Physics. In order to do so we use the results we have acquired in the previous sections,
which then gives us

Pert <C’°O(M) ®(CoHs Mg(c))) ~

C*(M,C) x C*°(M, Pert(H)) x C*(M, Pert(M3(C))) x C°(M x M — A, C)**x
C®(M x M — A H @ HP)** x C°(M x M — A, My(C) @ M;(C))**x

(C"O(M, C) @ C(M,H) & C*(M,C) @ C=(M, My(C))&
C®(M, H) ® C*(M,C) & C=(M,H) ® C(M, Ms(C))®
C™° (M, My(C)) ® C(M, H) @& C*(M, My(C)) @ C*(M, <c>>s'a'. (5.3)

Note that we have used that C = C ® C°P.
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Chapter 6

Action of the perturbation
semigroup

Now that we have determined the perturbation semigroup for several cases, we would like
to obtain some physics from them. Since the application of the perturbation semigroup
to the full Standard Model of Particle Physics would go beyond the scope of this text,
we will restrict ourselves to some toy models. In non-commutative geometry one has
finite spectral triples and in particular one has a hermitian matrix D and this matrix is
precisely what we will look at. We will consider the action of the perturbation semigroup
on the hermitian matrix D. Let 3= a; ® b5” € Pert(.A), then this element acts on D by

6.1 Diagonal hermitian matrices

Let us first consider the case where A = C? and H = C?. Also let D be a diagonal
hermitian matrix, such that D has the following form

a 0
p=(3 )

where a,b € R and a # b. If a = b, then D is just the identity matrix multiplied by a
constant in which case the action does nothing with D. We now have the spectral triple

((:2,@2, ( g))

let us first look at the action of Pert(C?). For convenience we rewrite the basis elements.
Let e;; := e; thus the matrix with a one at position (i,7) and zeros everywhere else.
Note that the normalization condition and self-adjointness condition still hold, since
eiiej; = 0%eyi. The coefficients Cj; now become Ci; j;.

Example 6.1. The action is given by
> CiigieiDejj.
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We know that Ch111 = Ca 2 = 1 and Ciy 20 = Caa 11, so we get as action

0 0 0 0
611D€11 + 622D622 + Z€11D€22 + 2622D€11 = <8 O) + (0 b) +04+0= (8 b) =D.

So the cross terms zeyyDegs and ZegsDeyy vanishes.  This is expected from equation
(3.1). We know that D = aeqy + beas, so the only non vanishing terms are ey Deyy and
egaDegs. So the action of Pert(C?) on D is trivial.

Now let us consider the same hermitian matrix, but now with the perturbation semi-
group Pert(M>(C)). As we have already seen matrices A in the perturbation semigroup
have the general form

T 24 Z4 1-— I

z1 Zy 23z  —21

Z1 3 % T2
1— Xo 25 Z5 T

Z1y...R5 GC, T1,T9 € R.

We can rewrite this matrix A as

1 T1 24 1 (21 21
A= 5611® +§ . ®€11
A Z4 22

1 Zy 1—m 1 23
t3612® | 2l | ®ea
z3 —21 — T —Z2
1 Z1 z3 1 [ ?1 1-— T
1-— Ty Z5 Z3 Z5
1 Z —Z1 1 %2 %5
+§€22 Q| = + 5 X e99.
z5 i) —Z21 X9

This seems like a lot of unnecessary work, but as we will see in the next example it
makes live easier. Since we did nothing, but rewrite A as a sum of Kronecker products
we see that in this form A is still self-adjoint. First note that for Pert(My(C)) we have

the spectral triple
5 (a 0

Example 6.2. Let us now look at the action of the perturbation semigroup of Ms(C) on
a 0
D= (O b) |

D~ Z CLijj

The action

is now given by
1 [ar1 azy 1 faz1 O 1 bzs —bz 1 bzg 0
2(0 0>+2<az4 o>+2<0 0 >+2<—bzl 0

1

2

az] aZ3 210 azs 2 \bzs by 2\0 bzy)-



Which sums up to

azi + 2(z5 + 23) $(azq — bz +az + bzs)
s(azg — bz + azy + bzs) (az3 + az3) + bas
which can be rewritten as
axy + bR(z3) $(azq — bz + az + bzs)
s(azg — bz +az + bzs) by + a%(z3)

Note that the result is in fact still hermitian as it should.

Now we want to consider a diagonal hermitian matrix D in dimension N, such that
N

D = ¥ Aexr. We consider the action of Pert(CY) on this D. Let the basis element
k=1

of Pert(C¥) be given by e; which can be identified with e; just as we did above. The
coefficients Cj; translate to Cj; j;. Then we have the following theorem.

N
Theorem 6.3. Let D = > Aperr be a hermitian matrix, then the action
k=1

D Z aijj
of the perturbation semigroup Pert(CN) is trivial.

Proof. The elements in the perturbation semigroup are given by > Cj; jiei; ® 6%’ . The

action is then given by
D ZC’ii,jjeiiDejj.

If we work this out we get

N
> Ciigjeii( 2 Meern)es; = ik Ciijj MeCiiCrki
k=1
_ i Sk
= 2igk Ciijj A€ 01,07,
=g Cii,jj)\ieij5;‘7
=2 Cii,ii)\ieii-

We also know that from the normalization condition follows that Cj; ;; = 1 if i = j.

Hence
D Z )\16“ = D,

so Pert(CV) acts on D as
Dw— D.

Note that in the above theorem we had the spectral triple

N
(CN, CN, Z )\kekk>-

k=1
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6.2 Off-diagonal hermitian matrices

In this section we want to take a look at off-diagonal hermitian matrices D. First let us

take a look at
0 c
p=(¢ )

and at the action of Pert(C?) and Pert(M,(C)) on this D. Let us take the same basis
vectors as in the previous section for Pert(C?). Note that the spectral triples for these

examples are given by
2 2 0 c
((C ,C%, (c 0

(M2((C),<CQ, (g g))

Example 6.4. Let D be as above and let

and

> Cijien ® € € Pert(C?)

be the elements which act on D, then the action of the perturbation semigroup on D is
given by
D ZC’iiyjjeiiDejj.

If we work this out numerically we see that

> Cii,jjeiiDejj => Cii,jjeii(cem + 5621)63:]'7
= E Cii,jj (061]51(5]2 + E@ijéééjl),

= Ch122ce12 + Caz 11C€91.

We also know that by self-adjointness Ciy 20 = Caz 11, so let Chy 22 = ¢ then

0 co
D~ <C¢ O) .
In a similar way we can look at the action of Pert(M;(C)) on this D. Recall from
the previous section that the elements A € Pert(My(C)) were given by

1 T1 24 1 ({1 2z1
A= jen® T3l — | ®en
21 22 24 22
1 zs 1—m 1 24 Z3
+§€12 (%9 = + 5 T ® €21

3 —Z21

1 zZ1 zZ3 1 [z 1 —a
+5€91 & + 5 _ ® el
2 1—x29 25 2 Z

1 Zo —Z 1{ 22 %5
+§€22 ® | - + 5 X e9o.
25 T2 1 T2

49



Example 6.5. The action of Pert(My(C)) on

is given by

D &) 0 0 +C§ % 0 +C§ 0 0 >+C2< )

0 0 01—z 0 0 0 =z
1 21 2) | sl 1 2
+c3 (1 o z5> + ¢35 <0 = ) +¢5 (zz —Z1> + ¢35 (0 —z1> .

Upon summing this we get

Dy L Ccz1 +CZ1 +CZ4 + cz4 Czp +C—Cr1+C—Cra+ C2o
CZy +C—Cx1+C—CTy + 2o Czs + CZ5 — CzZ1 — €21

_ %(621 + 624) Cz9 +C— S(ZEl + 9:2)
% + ¢ — 5(21 + 22) R(czs — cz1) ’

The result is a perturbed matriz D, which is still hermitian.

Now let us take a look at a more physics related example. Let

0 ¢ O
D=|c 00
000

and consider the action of Pert(C @ M,(C)). Note that the spectral triple is now given
by
0

c 0
((C@ M(C),C* |c 0 0 )
0 00
Example 6.6. We know by equation (4.1) that
Pert(C @ My(C)) = Pert(C) x Pert(My(C)) x My(C) @ C,

since Pert(C) = {1} s trivial, its action will not do anything with D. We also know
that M(C) @ C = My(C), hence

Pert(C @ My(C)) = Pert(My(C)) x My(C).

Thus we only need to know the action of Pert(My(C)) and the action of My(C) on D.
The perturbation semigroup Pert(My(C)) is embedded in Pert(C @& My(C)) as

0 O 0 0 0 0
0 a1 a| ®|0 by bio
0 as; a9 0 by Do
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where
(an a12> 2 (bll b12> = A® B € Pert(M,(C)).

Q21 Q22 )

The way we have written the matriz A in the previous examples can be used in this
example as well. However, where we first had a tensor product of 2 X 2-matrices, we
now have a tensor product of 3 x 3-matrices

0 5)e (o 5)

where A, B are such 2 X 2-matrices. So we get

0O 0 O 0O 0 O
A® B = %622@) 0 x1 2z +% 0 1 Zi | ®ex
0 21 = 0 zz =
0 0 0 0 0 0
+%€23® 0 zz 1—-m +% 0 Z4 23 | @ ez
0 z3 —21 01—y —7¢
0 0 0 0 O 0
ten® [0z Z[4+5[0 21 1—2 | @es
0 1—1’2 Z5 0 Z3 Z5
0 0 0 0 O 0
tie® [0z —Z | +5(0 2 2| @ess.
0 Z5 X9 0 —Z1 T2

Note that both the first row and the first column are zero for every matrixz. Hence, if we

look at the action
D Z Clijj,

we see that the multiplication Db; annihilates the first column of D, while the multipli-
cation a;D annihilates of the first row of D. Thus the action of Pert(My(C)) on D is
trivial.

Now consider the term My(C), recall that we had (M3(C) @ C @ C ®@ My(C))** as
in equation (4.1). Note that M>(C) @ C is embedded in Pert(C & My(C)) by

0 0 0 A0 O
0 by biz|®|0 0 0
0 boy bos 0 0O

In a similar way we get an expression for the term C® My(C). Since the tensor product
is C—linear we can set A = 1. By self-adjointness we now get

00 0 100 100 00 0
0 ¢ d3|®[0 0 0[+[000|®@[0 ¢ ¢
0 ¢y &4 000 000 0 ¢3 ¢4
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The action on D is now given by

00 0\ /0 0\ /100 1 00y/0c0\/0 0 0
D=0 ¢ ¢3||c 0 0|[o0 ol+]00o0|]lcoo0||l0 ¢ ¢
0 ¢ ¢/ \0 0 0/ \0 0 0 000/\0oo0o0/\0o & ¢

0 00
:C¢1OO+

cps 0 0
0 Cp, CThy
=|cpr O 0
cpy 0 0

Remark 6.7. It turns out that the two fields ¢1 and ¢o parameterize the famous Higgs
field in physics [10][11].

Remark 6.8. Note that this was in fact the action of Pert(C & H) as in the Standard
Model. Again Pert(H) acts trivial and for H we have ¢3 = —¢o and ¢4 = ¢1. However,
03, ¢4 do not matter for the fluctuated D, hence we get the same result

Remark 6.9. Note that this example appears in equation (5.3) as the term
(COO(M, C) @ C(M,H) & C=(M, H) © C=(M, @)) "

The action of Pert(C @ M;(C)) can be generalized to the action of Pert(C® My (C)),
but first let
D =¢eq; + cen

fori=1,..., N + 1, such that the spectral triple is given by
(c & My(C), CN* zey; + ceﬂ).
Example 6.10. We know by equation (4.1) that
Pert(C @ My(C)) = Pert(C) x Pert(My(C)) x My(C) ® C.
Since Pert(C) is trivial and we have the identification Mn(C) @ C = My (C) we get
Pert(C & My (C)) = Pert(My(C)) x My(C).

Let us first look at the action of Pert(My(C)). This perturbation semigroup is embedded
in Pert(C & My(C)) by
0 0
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where A € My(C). Note that (Fa)ij = 0 ifi =1 orj = 1. Now let 3, A; ® B* €
Pert(Mn(C)) then 3= Fa, ® Fgor € Pert(C® Mn(C)). The action on D is now given by

D X Fa,DFgor
=Y Fy,(cer; + cejl)Fpr
= % (EX(Fa)mer;Fpor + ¢ 5 Faeji(Fpor)mp)
= 5 (EX(Fa)ki0t For + €5 Fa, (Fien) 1,03,
= 0.

So Pert(My(C)) acts trivial on D.
We now only need to consider the action of My(C) on D. In a similar way as for
My (C), the elements of Mn(C) are embedded in Pert(C & My(C)) as

o o0 ... 0 A0 ... 0 A0 ... 0 o 0 ... 0

0 an ... ain 00 ... 0 00 ... 0 0 a1 ... amv1
A= el . el . e, . .

0 anNy ... QNN 00 ... 0 00 ... 0 0 aiNy ... QNN

However without loss of generality we can set X = 1, since we have a C-linear tensor
product. The action is now given by

D — B(cey; + ceji)err + eqi(Cerj + cejn) BT,

where
o 0 ... 0
B= 0 ¢.H . gbl.N
0 on1 ... OnNN

If we work this out we get
D f—>BCGj1 + 661]‘B*
= Z cer1Prj + Zaﬁu@@;
i i

where we have used that ¢;; = ¢Tl For 7 =1 we get

(Y.

while for j =2,...,N +1 we get

0 6@517]'_1 e 6¢N,j—1
C¢17j_1 0 Ce 0
C(bN,jfl 0 Ce 0

This last example is a generalization of a part of the standard model (namely the
part C @ M3(C)) and its action on an off-diagonal hermitian operator D. Note that one
is not restricted to the forms we have considered for D. The only restriction we have on
D is that D is self-adjoint.
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Appendix A

Other results for semigroups

In order to get a better understanding of semigroups and monoids in general we try to
generalize some theorems which hold for groups to theorems which hold for semigroups.
Note that this in indeed a generalization, since every group is in particular a semigroup.

A.1 Definitions

Let us first start with some definitions.

Definition A.1. A semigroup S is a set with an associative operation o : § x § — S.
If S has a unit it is called a monoid.

Definition A.2. A group G is a set with an associative operation o : G x G — G, an
identity element e such that ge = g = eg for all ¢ € G and for every g € G there is an
element ¢g~! € G such that gg~! = e = g~ 1g. We will refer to ¢! as the inverse element
of g, since g~! is unique for every g.

Remark A.3. Fvery group G is thus in particular a monoid and a semigroup.
Just as for groups we have homomorphism between semigroups.

Definition A.4. Let S, T be two semigroups, then the function ¢ : S — T is called a
semigroup homomorphism if

o(zy) = o(x)9(y)
for all z,y € S.

Notation A.5. For a semigroup (or a monoid) S we write S* for the group of invertible
elements in S.

It is also possible that we have a semigroup S and a subset 7' of this semigroup.
Some special subsets are

Definition A.6. Let S be a semigroup and 7' C S, we say that
i T is a subsemigroup of S, if st € T for all s,t € T}

ii T is a submonoid of S, if T" is a subsemigroup of S and e, € T;
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iii T is a subgroup of S (T' < 5), if T is a submonoid of S and T is a group.

Definition A.7. Let S be a semigroup and 7" a subset of S. We say that 7" is a normal
subsemigroup, or T is normal, < sT = T's for all s € S.

Remark A.8. If S is a group, the definition can be reformulated as: T" is normal
& T =5Ts! forallseS.

A.2 (Generalized isomorphism theorems

A semigroup homomorphism which is bijective is called a semigroup isomorphism. For
group isomorphisms we have three well known theorems, namely

Theorem A.9. (First group isomorphism theorem) Let G, H be groups and ¢ : G — H
a group homomorphism, then we have

i kerp <G, i.e. ker p is a normal subgroup of G,
1 Imp < H, i.e. Imp is a subgroup of H,
it Imp = G/ ker .
Corollary A.10. If ¢ is surjective we get
H = G/ ker ¢.

Theorem A.11. (Second group isomorphism theorem) Let G be a group, H < G and
N <G, then

it HN <G,
1w HNN<H,
it (HN)/N = H/(HNN).

Theorem A.12. (Third group isomorphism theorem) Let G be a group, N, M <G such
that M C N C G, then

i N/M<G/M,
i (G/M)/(N/M) = G/N.

However in general these theorems do not apply for semigroups, since the notion
of quotients is not defined for semigroups. Furthermore is the notion of a kernel not
defined for semigroups, since

kerp={g€ G |p(g) =en}

and semigroups do not need to have an identity element. We need to modify the theo-
rems in order to be able to generalize them. The solution has been found in congruence
relations.
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Definition A.13. A relation ~ is called a congruence relation, or congruence, if it is
an equivalence relation and if z ~ y, 2 ~ w then xz ~ yw.

We can now form a new definition for the kernel of a homomorphism.

Definition A.14. Let ¢ : G — H be a homomorphism between two semigroups, then
define the congruence

(2,y) € kerp & @(x) = @(y).

Note that this indeed is a generalization of the definition of the kernel for a group
homomorphism, since ¢(eg) = ey, and if p(x) = p(y) then p(zy™!) = p(eq) and
xy~! € ker ¢.

Theorem A.15 (First isomorphism theorem). Let ¢ : S — T be a semigroup homo-
morphism then ker ¢ is a congruence, Im ¢ is a subsemigroup of T and S/ ker p = Im .

We follow the proof as in [12].

Proof. First we prove that ker ¢ is a congruence. That ker ¢ is a equivalence relation
is trivial. Now suppose x ~ y,z ~ w then we now that p(z) = p(y) and p(z) = p(w).
But then we get

p(rz) = p(z)p(2) = p(y)p(w) = p(yw),
Tz ~ Yw.

Thus ker ¢ is a congruence. Also Im ¢ is a subsemigroup of T', because if ¢(s), p(t) €
Im ¢ then ¢(s)p(t) = @(st) € Imp since st € S. Now define ¢ : S/kerp — T, [x] —
©(x), this is a semigroup homomorpishm, since

Y([x][y]) = Y([zy]) = p(zy) = w(x)e(y) = V(@)Y ([y])-

Furthermore is ¢ injective. Suppose ([z]) = ([y]) then we have p(z) = ¢(y), so
[x] = [y]. And we have that 1 is onto Im ¢, because if ¢ € Im ¢ then there isa s € S
such that p(s) = t. By construction this means ¢t = ¢ ([s]) and since Im¢ C T we get
the result

S/ ker = Im

]

We also have a generalization for the second and third isomorphism theorems. For
the proofs we roughly follow [13].

Theorem A.16 (Second isomorphism theorem). Let S be a semigroup, T' a subsemi-
group and p a congruence, then ¢ == p N (T x T) is a congruence, T := Uger|] is a
subsemigroup of S and T'/o =T /p

Proof. Let ¢ : S — S/p be the natural quotient homomorphism and let ¢|7 be the
restriction of ¢ to 7. Then we see that Im(¢|r) = T'/p. Since the image of T is T
modulo the congruence p. We also have that the kernel is equal to o, so therefore p is

~Y

a congruence. Applying the first isomorphism theorem gives us T'/o = T'/ker(¢|r) =
Im(¢lr) =T/p O
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Theorem A.17 (Third isomorphism theorem). Let S be a semigroup, o, congruence
relations on S such that o C w, then w/p is a congruence relation on S/o and (S/w) =

(S/0)/(w /o).

Proof. Let ¢ : S — S/w be a semigroup homomorphism, then is the kernel given by .
However since ¢ C w we get that ¢’ : S/p — S/w, which maps congruence classes to
congruence classes, is also a semigroup homomorphism. But the kernel of this map is
w/p, and every kernel is a congruence relation and vice versa, so w/p is a congruence.
If we now apply the first isomorphism theorem and use the fact that ¢’ is onto, we get

(S/w) =1Im(¢') = (S/0)/Ker(¢') = (S/0)/(w/0), which gives the result. O

A.3 General theory on semigroups

A.3.1 Morphisms between semigroups

Let ¢ : S — T be a semigroup homomorphism. We now want to construct a function,
say ¢ : 8™ — T, between the invertible elements.

Proposition A.18. Let ¢ : S — T be a semigroup homomorphism, then ¢:S8% = T*,
defined by ¢ := ¢lgx is a group homomorphism.

Proof. 1f S has no identity we are done, since then S* = (). So suppose S has an identity
and S* is not trivial then we see that the invertible elements of S has to be mapped on
the invertible elements in T'. This follows from

er = ¢es) = ¢xz™") = d(x)p(z7") = o) = ¢(a) 7,
where x € S* arbitrary. Note that the above ¢ can be replaced by ¢ since z € S*.
Thus ¢ := ¢|gx : S* — T is a group homomorphism O]

A.3.2 Semidirect product
Let us start with the definition of a semidirect product.

Definition A.19. Let S be a semigroup and 7' a semigroup which works on S. Then
we define the semidirect product S x T" by

(51,t1) - (52,t2) = (S1901, (52), t1ta)
with ¢ : T'— Aut(5).

If we have a semidirect product between a vector space and a semigroup, which works
on the vector space, we saw that the invertible elements were the invertible elements of
the semigroup which worked on the vector space. So

(VxS8) =V =S8~

where S is a semigroup and V' is a vector space on which S acts. But if we have two
semigroups instead of a vector space and a semigroup, then what are the invertible
elements?
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Lemma A.20. Let S be a semigroups and T a semigroup which works on S then we

have
(SxT) =8 xT" (A1)

Proof. That we have the term T is clear, since the second component of the semidirect
product reads t1t,. So for this to be the unit, we need to have t, = ¢; .

Now suppose that s; & S*, but that sy, (s2) = es. We then see that ¢y, (s2) is the
inverse of s1. Also ¢y, (s2) € S, since ¢ : T'— Aut(S) and sy € S by definition. Then
we see that s; € S* since (s1)7t = ¢, (s2). Of course is ¢y, invertible, since it is an
automorphism and therefore also sy € S*, which gives (A.1). O
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