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Overview

• Spectral geometry

• Matrix algebra and noncommutative geometry

• Semigroup of perturbations

• Examples of perturbation semigroup
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Spectral geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?
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The disc
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Wave numbers on the disc
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Wave numbers on the disc: high frequencies

50 100 150 200

10

20

30

40

Walter van Suijlekom May 28, 2015 Semigroup of inner perturbations in NCG 7 / 35



The square
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Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac’s question is no.
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Weyl’s estimate

Nevertheless, certain information can be extracted from spectrum, such as
dimension n of M:

N(Λ) = #wave numbers ≤ Λ

∼ ΩnVol(M)

n(2π)n
Λn

For the disc and square this is confirmed by the parabolic shapes (
√

Λ):
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Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

• The Dirac operator is a ‘square-root’ of the Laplacian, so that its
spectrum give the wave numbers k .

• First found by Paul Dirac in flat space, but exists on any Riemannian
spin manifold M.

• Let us give some examples.
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The circle

• The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

• The Dirac operator on the circle is

DS1 = −i
d

dt

with square ∆S1 .

• The eigenfunctions of DS1 are the complex exponential functions

e int = cos nt + i sin nt

with eigenvalue n ∈ Z.
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The 2-dimensional torus

• Consider the two-dimensional torus T2 parametrized by two angles
t1, t2 ∈ [0, 2π).

• The Laplacian reads

∆T2 = − ∂2

∂t2
1

− ∂2

∂t2
2

.

• At first sight it seems difficult to construct a differential operator that
squares to ∆T2 :(

a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t2
1

+ 2ab
∂2

∂t1∂t2
+ b2 ∂

2

∂t2
2
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• This puzzle was solved by Dirac who considered the possibility that a
and b be complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0

• The Dirac operator on the torus is

DT2 =

(
0 ∂

∂t1
+ i ∂

∂t2

− ∂
∂t1

+ i ∂
∂t2

0

)
,

which satisfies (DT2)2 = − ∂2

∂t2
1
− ∂2

∂t2
2
.

• The spectrum of the Dirac operator DT2 is

{√
n2

1 + n2
2 : n1, n2 ∈ Z

}
;
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The 4-dimensional torus

• Consider the 4-torus T4 parametrized by t1, t2, t3, t4 and the Laplacian is

∆T4 = − ∂2

∂t2
1

− ∂2

∂t2
2

− ∂2

∂t2
3

− ∂2

∂t2
4

.

• The search for a differential operator that squares to ∆T4 again involves
matrices, but we also need quaternions:

i2 = j2 = k2 = ijk = −1.

• The Dirac operator on T4 is

DT4 =

(
0 ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4

− ∂
∂t1

+i ∂
∂t2

+j ∂
∂t3

+k ∂
∂t4

0

)
• The relations ij = −ji , ik = −ki , et cetera imply that its square

coincides with ∆T4 .
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Spectral action functional
Chamseddine–Connes, 1996

• Reconsider Weyl’s estimate, in a smooth version:

Tr f

(
DM

Λ

)
=
∑
λ

f

(
λ

Λ

)
for a smooth cutoff function f : R→ R.

• For simplicity, restrict to a Gaussian function

f (x) = e−x
2

so that we can use heat asymptotics: Tr e−D
2
M/Λ2 ∼ Vol(M)Λn

(4π)n/2
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Hearing the shape of a drum
Connes, 1989

• As said, the geometry of M is not fully determined by spectrum of DM .

• This can be improved by considering besides DM also the algebra
C∞(M) of smooth functions on M, with pointwise product and addition

• In fact, the distance function on M is equal to

d(p, q) = sup
f ∈C∞(M)

{|f (p)− f (q)| : gradient f ≤ 1}

b b

x y

f

b b

x y

• The gradient of f is given by the commutator [DM , f ] = DM f − fDM .
For example, on the circle we have [DS1 , f ] = −i dfdt
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Finite spaces

• Finite space F , discrete topology

F = 1 • 2 • · · · · · · N•

• Smooth functions on F are given by N-tuples in CN , and the
corresponding algebra C∞(F ) corresponds to diagonal matrices

f (1) 0 · · · 0
0 f (2) · · · 0
...

. . .
...

0 0 . . . f (N)


• The finite Dirac operator is an arbitrary hermitian matrix DF , giving rise

to a distance function on F as

d(p, q) = sup
f ∈C∞(F )

{|f (p)− f (q)| : ‖[DF , f ]‖ ≤ 1}
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Example: two-point space

F = 1 • 2•

• Then the algebra of smooth functions

C∞(F ) :=

{(
λ1 0
0 λ2

) ∣∣∣∣λ1, λ2 ∈ C
}

• A finite Dirac operator is given by

DF =

(
0 c
c 0

)
; (c ∈ C)

• The distance formula then becomes

d(p, q) =

{
|c |−1 p 6= q
0 p = q
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Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F .

• Instead of diagonal matrices, we consider block diagonal matrices

A =


a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 . . . aN

 ,

where the a1, a2, . . . , aN are square matrices of size n1, n2, . . . , nN .

• Hence we will consider the matrix algebra

AF := Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN (C)

• A finite Dirac operator is still given by a hermitian matrix.

Walter van Suijlekom May 28, 2015 Semigroup of inner perturbations in NCG 21 / 35



Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by considering
the algebra AF of 3× 3 block diagonal matrices of the following formλ 0 0

0 a11 a12

0 a21 a22


A finite Dirac operator for this example is given by a hermitian 3× 3 matrix,
for example

DF =

0 c 0
c 0 0
0 0 0


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Perturbation semigroup

We make the above more dynamical by perturbing DF by matrices in AF .

Definition (Chamseddine–Connes-vS, 2013)

Let AF be the above algebra of block diagonal matrices (fixed size). The
perturbation semigroup of AF is defined as

Pert(AF ) :=

∑
j

Aj ⊗ Bj ∈ AF ⊗ AF

∣∣∣∣ ∑j Aj(Bj)
t = I∑

j Aj ⊗ Bj =
∑

j Bj ⊗ Aj

 ,

where t denotes matrix transpose, I is the identity matrix in AF , and
denotes complex conjugation of the matrix entries.

The semigroup law in Pert(AF ) is given by the matrix product in AF ⊗ AF :

(A⊗ B)(A′ ⊗ B ′) = (AA′)⊗ (BB ′).
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• The two conditions in the above definition,∑
j

Aj(Bj)
t = I

∑
j

Aj ⊗ Bj =
∑
j

Bj ⊗ Aj

are called normalization and self-adjointness condition, respectively.

• Let us check that the normalization condition carries over to products,∑
j

Aj ⊗ Bj

(∑
k

A′k ⊗ B ′k

)
=
∑
j ,k

(AjA
′
k)⊗ (BjB

′
k)

for which indeed∑
j ,k

AjA
′
k(BjB

′
k)t =

∑
j ,k

AjA
′
k(B ′k)t(Bj)

t = I

Walter van Suijlekom May 28, 2015 Semigroup of inner perturbations in NCG 24 / 35



Example: perturbation semigroup of two-point space

• Now AF = C2, the algebra of diagonal 2× 2 matrices.

• In terms of the standard basis of such matrices

e11 =

(
1 0
0 0

)
, e22 =

(
0 0
0 1

)
we can write an arbitrary element of Pert(C2) as

z1e11 ⊗ e11 + z2e11 ⊗ e22 + z3e22 ⊗ e11 + z4e22 ⊗ e22

• Matrix multiplying e11 and e22 yields for the normalization condition:

z1 = 1 = z4.

• The self-adjointness condition reads

z2 = z3

leaving only one free complex parameter so that Pert(C2) ' C.

• More generally, Pert(CN) ' CN(N−1)/2 with componentwise product.
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Example: perturbation semigroup of M2(C)

• Let us consider a noncommutative example, AF = M2(C).

• We can identify M2(C)⊗M2(C) with M4(C) so that elements in
Pert(M2(C) are 4× 4-matrices satisfying the normalization and
self-adjointness condition. In a suitable basis:

Pert(M2(C)) =




1 v1 v2 iv3

0 x1 x2 ix3

0 x4 x5 ix6

0 ix7 ix8 x9

∣∣∣∣ v1, v2, v3 ∈ R
x1, . . . x9 ∈ R


and one can show that

Pert(M2(C)) ' R3 o S .
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Perturbation semigroup for all matrix algebras
with Niels Neumann (B.Sc.)

• More generally, consider

AF := Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN (C)

• For direct sums we have

Pert(A⊕ B) ∼= Pert(A)× Pert(B)× (A⊗ B◦ ⊕ B ⊗A◦)s.a.

and we compute that

Pert(MN(C)) ∼=
{(

1 v
0 B

)
: v = vΩ,ΩB = BΩ

}
∼= V o S .

where

Ω =

(
I(N+2)(N−1)/2 0

0 −IN(N−1)/2

)
.

• This is compatible with the decomposition CN ⊗ CN ∼= C⊕ CN2−1 into
irreps of U(N).

• Similar decompositions can be shown to hold for Pert(MN(R) and irreps
of O(N), and Pert(MN(H)) and irreps of Sp(N).
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Example: perturbation semigroup of a manifold

• The perturbation semigroup can be defined for any involutive unital
associative algebra A, in particular for C∞(M).

• We can consider functions in the tensor product C∞(M)⊗ C∞(M) as
functions of two-variables, i.e. elements in C∞(M ×M).

• The normalization and self-adjointness condition in Pert(C∞(M))
translate accordingly and yield

Pert(C∞(M)) =

{
f ∈ C∞(M ×M)

∣∣∣∣ f (x , x) = 1

f (x , y) = f (y , x)

}
,
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Structure of Pert(AF )

Proposition

Let U(AF ) be the unitary block diagonal matrices in AF . This space forms a
group which is a subgroup of the semigroup Pert(AF ) via U 7→ U ⊗ U.

This is in agreement with the results for matrix algebras, for which
U(MN(R)) = O(N); U(MN(C)) = U(N); U(MN(H)) = Sp(N).

• Action of Pert(AF ) on hermitian matrices DF :

DF 7→
∑
j

AjDFBt
j

• This action is compatible with the semigroup law, since∑
j ,k

(AjB
′
k)DF (BjB

′
k)t =

∑
j

Aj

(∑
k

A′kDF (B ′k)t

)
(Bj)

t

• The restriction of this action to the unitary group U(AF ) gives

D 7→ UDU∗.
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Perturbations on noncommutative two-point space

• Consider noncommutative two-point space described by C⊕M2(C):

Pert(C⊕M2(C)) ' M2(C)× Pert(M2(C))

• Only M2(C) ⊂ Pert(C⊕M2(C)) acts non-trivially on DF :

DF =

0 c 0
c 0 0
0 0 0

 7→
 0 cφ1 cφ2

cφ1 0 0
cφ2 0 0


• Physicists call φ1 and φ2 the Higgs field.

• The group of unitary block diagonal matrices is now U(1)× U(2) and
an element (λ, u) therein acts as(

φ1

φ2

)
7→ λu

(
φ1

φ2

)
.

Walter van Suijlekom May 28, 2015 Semigroup of inner perturbations in NCG 30 / 35



Perturbations on a Riemannian spin manifold

• The action of Pert(C∞(M)) on the partial derivatives appearing in a
Dirac operator DM is given by

∂

∂xµ
7→ ∂

∂xµ
+

∂

∂yµ
f (x , y)

∣∣∣∣
y=x

; (µ = 1 . . . , n),

where f ∈ C∞(M ×M) is such that f (x , x) = 1 and f (x , y) = f (y , x).

• In physics, one writes

Aµ :=
∂

∂yµ
f (x , y)

∣∣∣∣
y=x

which turns out to be the electromagnetic potential
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Applications to particle physics

• Combine (4d) Riemannian spin manifold M with finite noncommutative
space F :

M × F

• F is internal space at each point of M

• Described by matrix-valued functions on M: algebra C∞(M,AF )
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Dirac operator on M × F

• Recall the form of DM :

DM =

(
0 D+

M
D−M 0

)
.

• Dirac operator on M × F is the combination

DM×F =

(
DF D+

M
D−M −DF

)
.

• The crucial property of this specific form is that it squares to the sum of
the two Laplacians on M and F :

D2
M×F = D2

M + D2
F

• Using this, we can expand:

Tr e−D
2
M×F /Λ2

=
Vol(M)Λ4

(4π)2
Tr

(
1−

D2
F

Λ2
+

D4
F

2Λ4

)
+O(Λ−1).
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The Higgs mechanism

We apply this to the noncommutative two-point space described before

• Algebra AF = C⊕M2(C)

• Perturbation of Dirac operator DF parametrized by φ1, φ2.

• Potential for the perturbed Dirac operator is

V (φ) = −2Λ2(|φ1|2 + |φ2|2) + (|φ1|2 + |φ2|2)2

• Minimum breaks symmetry spontaneously, giving mass to Higgs boson
(125.5 GeV, corresponding to 10−18m).
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The spectral Standard Model and beyond

• The full Standard Model is based on the algebra AF = C⊕H⊕M3(C)
• The finite Dirac operator is given by a 96× 96-dimensional hermitian

matrix, containing masses for the leptons and quarks.
• This allows for a derivation of the particle content of the Standard

Model from pure geometry (Chamseddine–Connes–Marcolli, 2007)

• The spectral action functional describes their dynamics and interactions
• Possibility to go beyond with Pati–Salam (Chamseddine–Connes–vS):

AF = H⊕H⊕M4(C)
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