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Preface

The Standard Model of particle physics is an extremely successful theory, describing
all currently known elementary particles and their non-gravitational interactions.
Experimentally, it is tested with previously unencountered precision. However, at
the same time it is also clear that at some point it will meet its bounds. For instance,
the gravitational force is not included, there are large quadratic corrections to the
Higgs mass and it does not account for dark matter. We are therefore in need of
a new theory, respecting the various constraints from both experiment and theory,
from which the Standard Model emerges as a low energy limit.

The Standard Model can be beautifully derived from geometrical principles using
noncommutative geometry [4,3]]. This includes the Higgs field and the Higgs mech-
anism. Moreover, the Higgs mass could be predicted in this geometrical framework,
but its value turned out to be off (see Section[I.2.3] below). At the same time any
prediction of this sort depends on the contents of the chosen noncommutative man-
ifold (e.g. [2]]). Application of noncommutative geometry thus gives us new ways
to understand the structure of gauge theories in general and the Standard Model in
particular. The question is whether it in addition can teach us more about reality
—via the correct prediction or retrodiction of particle masses— than ordinary field
theory does. In particular, the hope is that there is a theory that can be considered
an extension of the noncommutative Standard Model and that, on top of being phe-
nomenologically viable, yields a sufficiently lower value for the Higgs mass.

The minimally supersymmetric Standard Model (MSSM, Section[I.1.T) is a par-
ticularly prominent example of physics beyond the Standard Model. Although the
question whether supersymmetry is a real symmetry of nature is still open, the mer-
its of the MSSM and models akin alone make them worthwhile to analyze in full
detail.

This is the main motivation to search for a theory from noncommutative geometry that
describes the MSSM (or something alike), which is the main subject of this book.

To this aim, we will first study the more general question if the spectral action
(cf. Equation [I.21] below) that stems from noncommutative geometry can exhibit
supersymmetry. We do this in Chapter 2] If one is after phenomenologically viable
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theories of supersymmetry, the question on how to break it again is an unavoidable
one. We therefore turn to this matter in Chapter [3] Finally, we apply the frame-
work developed in Chapter[2]to the almost-commutative geometry that is to give the
MSSM in this context in Chapter 4]

Previous attempts to reconcile supersymmetry with noncommutative geometry
have been made, see e.g. [[7, 18, 9, 6], but have not led to conclusive answers. We
distinguish ourselves from these approaches in the following ways:

= We try to stay as close as possible to the framework of noncommutative geome-
try, not digressing into superspace and superfields and the likes.
= All attempts were made prior to the introduction of the spectral action (T.2T).

Since the latter has proven itself so well in obtaining the Standard Model and since
the (predictive) power of the noncommutative method relies heavily on it, we choose
it to be our action functional and will ask ourselves in Chapter [2] the question
“for what noncommutative geometries is the action supersymmetric?”’, or “what
are supersymmetric noncommutative geometries?”. This is in contrast to the ques-
tion “what actions are supersymmetric?” that one typically tries to answer using
the superfield formalism. Note the crucial difference here; the intimate connection
between an almost-commutative geometry and its associated action forbids us to
manually add terms to the latter.

Concerning the prerequisites for reading this book, we assume familiarity with
the basic notions in high-energy physics (such as action functionals, Lorentz invari-
ance, gauge symmetries) referring to the standard textbooks such as [10, 11} 5]]. For
the two central themes of this book (noncommutative geometry and supersymmetry)
references to further reading are included in the main text.
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Chapter 1
Introduction

Abstract We introduce the core concepts and formalisms that are needed in our
search for a noncommutative geometric description of supersymmetric theories. We
start with a concise overview of supersymmetry and the minimal supersymmetric
extension of the Standard Model (MSSM). We then provide a bird’s eye view of
noncommutative geometry, geared towards its applications in high-energy physics.

1.1 Supersymmetry

The past decades have witnessed the birth of a plethora of ‘Beyond the Standard
Model’ theories, trying to remedy one or more of its shortcomings such as the ab-
scence of the gravitational force, the large quantum corrections to the Higgs mass
and no account of dark matter. Supersymmetry (SUSY) is a particular example of
such a theory. The purpose of this section is to very briefly discuss its basic notions,
apply it to the Standard Model (SM) and review some relevant properties of the re-
sult. Good introductions to supersymmetry are [17,[29,130} 2]. A more mathematical
approach can be found in [20].

In the 1960s the question was raised whether there might be extensions of the
Poincaré algebra, incorporating a symmetry that would prove to be valuable for
physics. Coleman and Mandula [9] proved that —given certain conditions— the
Poincaré algebra constitutes all the symmetries of the S-matrix.

Several years later however, Haag et al. [23]] showed that extending the Poincaré
algebra can possibly lead to new physics, if one extends the notion of a Lie algebra
(as is the Poincaré algebra) to that of a graded Lie algebra. Elements of such an
algebra have a specific degree which determines whether they satisfy commutator or
anti-commutator relations. The Poincaré algebra (having only zero-degree elements)
is then extended with a set of variables Q! and their conjugates Q! (i = 1,...,N EI

! The possible values for N, the number of supersymmetry generators, depend on the space-time
dimension. For example, ford =4, N =1,2,4 or 8.
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a =1,2) of degree 1 (i.e. they satisfy anti-commutation relations), transforming in
the (%,O) and (0, %) representations of the Lorentz group respectively. This extended
algebra is called the supersymmetry algebra.

Throughout this book we will be considering the case N = 1 only.

The nature of these ‘fermionic’ generators Q,Q is then that they relate bosons
and fermions. Schematically:

Q|boson) = |fermion), Q|fermion) = |boson).

To be a bit more precise:

Definition 1.1 (Supersymmetry transformation) For a constant, infinitesimal two-
component spinor € and its conjugate €, we define (cf. [36l p. 21]) a supersymmetry
transformation on any representation § of the Poincaré algebra as

8¢ :=[(eQ) + (£Q)]C. (LD

Here £Q and £Q denote the usual Lorentz invariant products of two anti-commuting
two-component spinors and conjugate spinors respectively.

If we define such a 5, §;(x) for each of the fields (i, ..., §, appearing in a theory,
we can talk about whether or not its action is invariant under supersymmetry. If

d
0S[¢i,..., 8] = aS[Cl +16:8,..., 8 +18:G) o (1.2)
equals 0, we call the system supersymmetric. A particularly simple example of a
supersymmetric system is the following.

Example 1.2 (Wess-Zumino [37]) The action of a system containing a free Weyl
Sfermion & and complex scalar field ¢, is (in the notation of [[I7]) given by

S9.8.8)= [ (1920 +i0*[2ulE) ' (1.3

where ot = (I, 0%) with 6% a = 1,2,3 the Pauli matrices, & is the Hermitian
conjugate of & and X[0,)Y := 1X 9, Y — 3 (9uX)Y. This action is seen to be invariant
under the transformations

Se¢ = V/2€€, 8:& = —V2ic"8d, ¢, (1.4)
see [[I7) §4.2]. Fields such as ¢ and & are called each other’s superpartners.

Actually, (1.3) is only supersymmetric on shell, i.e. to prove supersymmetry one
has to invoke the equations of motion for &. This is caused by the fields having
the same number of degrees of freedom on shell, but not off shell. We can make
this work off shell as well by introducing a complex scalar (auxiliary) field F that
appears in the Lagrangian through %7 = |F(x)|?>. Modifying the transformations
(T4) slightly to contain F, supersymmetry is seen to hold both on shell and off
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shell. The example above is a nice illustration of the necessary condition that the
total number of fermionic and bosonic degrees of freedom has to be the same in
order for a system to exhibit supersymmetry at all.

Example 1.3 (Wess-Zumino [37]) Another important example of a supersymmet-
ric model is the super Yang-Mills system, whose action is given by

/d4x(— %FHVF"“’+i7LG“ [au]1+%02). (1.5)

Here Fy = dyAy — dyAy is the field strength (curvature) of a u(1) gauge field A,
A a Weyl spinor and D is a real u(1) auxiliary field. The latter must again be added
to ensure an equal number of bosonic and fermionic degrees of freedom both on and
off shell. This action is seen to be invariant under the transformations

8A, = eoy A +Aote
SA = —ia“c"Fuve—&-Ds,
8D =idy(ActE+ A6 e),
where 6% = (I, —0*) (see [I7], Chapters 4.1 and 4.4).

In Table[T.T]the role of the auxiliary fields is explicated for the Wess-Zumino and
the super Yang-Mills models. For both the bosonic degrees of freedom are seen to
be equal to the fermionic ones.

Wess-Zumino: ¢ F & Super Yang-Mills: A, D 4
Off shell: 224 Off shell: 3 14
On shell: 202 On shell: 2 02

Table 1.1: The number of real degrees of freedom both on and off shell for the
Wess-Zumino and Super Yang-Mills models. In all cases the bosonic and fermionic
number of degrees of freedom coincide.

In many of the more advanced treatments of supersymmetry (e.g. [36]), ordinary
space is extended to a superspace (x*,0,0) (where 6 and 6 are two-component
Grassmann variables). The particle content of a certain model is then described in
terms of superfields (fields depending on all coordinates of superspace and con-
taining the particles that are each other’s superpartners). Two key examples are the
chiral superfield ®, with the particle content of Example [.2] and the vector su-
perfield V, whose particle content is that of Example The action is recovered
by integrating certain combinations of the superfields @ and V over superspace by
means of a Berezin integral. In this way the actions (I.3) for the chiral superfield
and (I.3)) for the vector superfield can be recovered.
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1.1.1 The supersymmetric version of the Standard Model

When considering gauge theories, superpartners need to be in the same representa-
tion of the gauge group. It is clear that the Standard Model by itself is not supersym-
metric. We have to introduce its superpartners to make it supersymmetric however:

Example 1.4 (MSSM) The Minimally Supersymmetric Standard Model (MSSM)
is the supersymmetric theory that is obtained by adding to the particle content a su-
perpartnerﬂfor each type of SM particles. In addition an extra Higgs doublet and its
superpartner are introduced with hypercharge opposite to that of the other pair. One
of the two pairs will give mass to the up-type particles, the other to the down-type
ones. The adjective 'minimally’ is justified by the fact that the MSSM is the small-
est (i.e. with the least number of additional superpartners) viable supersymmetric
extension of the SM. See Table[I.2]and e.g. [I7\ 8] for details.

The following nomenclature is used. The name of superpartners of the fermions get
a prefix ‘s’ (i.e. selectron, stop, etc.). The superpartners of the bosons get the suffix
’ino’ (i.e. gluino, higgsino, etc.).

Having two higgsino doublets with opposite hypercharge is necessary because
adding only one higgsino doublet to the fermionic content of the SM will generate
a chiral anomaly. The second higgsino is needed to cancel this anomaly again [17,
§8.2].

The various superpartners are not only distinguished by their spin, but also by
their R-parity. This is a Z;-grading (or ‘discrete gauge symmetry’) that for the
MSSM is equal to

Rp — (_1)2S+3B+L’ (16)

where S is the spin of the particle, B is its baryon number and L its lepton num-
ber. It follows that all SM particles (including the extra Higgses) have R-parity +1,
whereas all superpartners have R-parity —1.

The list of the MSSM’s merits is quite impressive. See [8, ch. 1] for a short
overview. Here we will pick out three:

1. The MSSM makes the Higgs mass more stable. Roughly speaking, for each of
the loop-interactions contributing to the mass of the Higgs there is a second such
interaction that features a superpartner. This second contribution compensates for
the first one.

2. If R-parity is conserved in the MSSM, the lightest particle that has R, = —1
cannot decay and thus provides a cold Dark Matter candidate.

3. The additional particle content of the MSSM makes it possible for the three cou-
pling constants g1, g» and g3 to evolve via the Renormalization Group Equations
in such a way that they exactly meet at one energy scale. This hints at the exis-

2 This makes it an example of N = 1 supersymmetry.
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Superfield Spin  Representation
0 31
Left-handed (s)quark Or qr q. — (1/6,2,3)
Up-type (s)quark Ur ug ug — (2/3,1,3)
Down-type (s)quark Drdg dr — (—1/3,1,3)
Left-handed (s)lepton Lol I - (—1/2,2,1)
Up-type (s)lepton Nr VR Vg = (0,1,1)
Down-type (s)lepton Egr eg eg — (—1,1,1)
Gluon, gluino V - g gu (0,1,8)
SU(2) gauge bosons, gauginos W - 4 W, (0,3,1)
B-boson, bino B - X By (0,1,1)
Up-type Higgs(ino) Hy hy by - (1/2,2,1)
Down-type Higgs(ino) Hy hg hg = (=1/2,2,1)

Table 1.2: The particle content of the VMSSM, the minimal supersymmetric exten-
sion of the Standard Model featuring a right-handed neutrino. Each line represents
one superfield, with particle content as indicated. All superpartners are in the same
representation of the gauge group. The last column gives the representation of the
gauge group that the particles are in. The first number in that column denotes the
hypercharge of the U (1)-representation. The second number denotes the dimension
of the SU(2)-representation: 1 for trivial/singlet, 2 for fundamental/defining and 3
for adjoint. The third number is the dimension of the SU (3)-representation: 1,3 or 8.

tence of a Grand Unified Theory, that is hoped for by many theorists. See also
Section

Despite the theoretical arguments in favour of the MSSM, so far no experimental
hints for its existence have been detected [3]].

1.2 Noncommutative geometry

Although noncommutative geometry (NCG, [[L1]) is a branch of mathematics, there
is a number of applications in physics. The aim of this section is to provide a bird’s
eye view of NCG in relation with its foremost such application. This is the interpre-
tation of the Standard Model as a geometrical theory, a line of thought that started
with the Connes-Lott model [14] and culminated in [7] with the full SM, including
a prediction of the Higgs boson mass. As much as possible we will focus on ideas
and concepts and avoid the use of rigorous but technical statements, refering to the
literature instead. Good general introductions to the field are e.g. [22| [27, [35] and
[33] focusing on the applications to particle physics.



6 1 Introduction

1.2.1 Spectral triples

The basic device in noncommutative geometry is a spectral triple, thought of de-
scribing a noncommutative manifold.

Definition 1.5 ([11]) A spectral triple is a triple (<7 , ¢ ,D), where & is a unital,
involutive algebra that is represented as bounded operators on a Hilbert space 7
on which also a Dirac operator D acts. The latter is an (unbounded) self-adjoint
operator that has compact resolvent and in addition [D, a] is bounded for alla € & .

We will write (.,.) : 5 x ¢ — C for the inner product in S .

This is a rather abstract object. To make it a bit more tangible, we turn to the case
of a compact Hausdorff space M. To make it more interesting for us, we require this
space to be enriched with extra structures. We will restrict ourselves to Riemannian
spin manifolds, spaces that locally look like the Euclidean space R” (for some ) on
which a Riemannian metric g (locally: g,v) exists and that admit spinors.EI

» The algebra C*(M,C) is the subalgebra of C(M,C) containing only smooth
(i.e. infinitely differentiable) functions. It can be made involutive (just as C(M)
itself) by defining f* : M — C through (f*)(x) := f(x) € Cforallx € M.

= The Hilbert space that is compatible with this algebra is L?(M,S) — or L?(S) for
short. It consists of square-integrable, spinor-valued functions y (i.e. for each
X €M, y(x) € Sy is a spinor). The number of components of that spinor depends
on the dimension m of the manifold M: dimS, = 2", withm =2norm =2n+1,
according to whether m is even or odd.

» The Levi-Civita connection —the unique connection on M that is compatible
with the metric g— can be lifted to act on spinor-valued functions. This leads to
the operator

I = iy* (I + o), (1.7)

where the term
1 ~,
(D” = _Zl—[‘la,)/l’yb

accounts for the manifold M being curved [22] §9.3]. Here the latin indices a,b
indicate the use of a frame field /, diagonalising the metric g"¥ = h h) 5 and
Y-matrices

{(r./y=28" PH=ny, (1.8)

and ﬁfa = ljfvhl‘z’hli, with Ffv the Christoffel symbols of the Levi-Civita connec-
tion. From the metric g thus a Dirac operator is derived and conversely [10] the
metric is completely determined by the Dirac operator.

3 One should keep in mind though that Minkowski space is not an example of a Riemannian
manifold. Rather it is pseudo-Riemannian since its metric is diagonal with negative entries.
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Together these three objects form the canonical spectral triple:

Example 1.6 (Canonical spectral triple [11, Ch. 6.1]) The triple
(e, 7,D) = (C(M),L*(M.S),du = i* (du + @)

is called the canonical spectral triple. Here M is a compact Riemannian spin-
manifold and LZ(M ,S) denotes the square-integrable sections of the corresponding
spinor bundle. The Dirac operator @y is associated to the unique spin connection,
which in turn is derived from the Levi-Civita connection on M.

The canonical spectral triple may be said to have served as the motivating example
of the field; NCG is more or less modelled to be a generalization of it.

In the physics parlance the canonical spectral triple roughly speaking determines
a physical system: the algebra encodes space(-time), the Hilbert space contains
spinors ‘living’ on that space(-time) and ¢j; determines how these spinors prop-
agate.

A second important example is that of a finite spectral triple:

Example 1.7 (Finite spectral triple) For a finite-dimensional algebra <7r, a finite-
dimensional left module F of </F and a Hermitian matrix Df : 73 — %, we call
(g, H%,Dr) a finite spectral triple.

We will go into (much) more detail on finite spectral triples in Section [I.2.4]

Given a spectral triple one can enrich it with two operators. The first of these,
indicated by J, has a role similar to that of charge conjugation, whereas the other,
indicated by 7, allows one to make a distinction between positive (‘left-handed’)
and negative (‘right-handed’) chirality elements of a (reducible) Hilbert space:

= We call a spectral triple even if there exists a grading y: 7 — J#, with [y,a] =0
for all a € o/ such that

YD = —Dy. (1.9)

»  We call a spectral triple real if there exists an antiunitary operator (real structure)
J 1 7 — A, satisfying

J? =¢eidy, JD=¢'DJ, g€ e {+}. (1.10)

The real structure implements a right action a° of a € & on J#, via a° := Ja*J*
that is required to be compatible with the left action:

[a,Jb*J ] =0 (1.11)

i.e. (ay)b =a(yb) forall a,b € o,y € 7. The Dirac operator and real struc-
ture are required to be compatible via the first-order condition:

([D,a],Jb*J*| =0 Va,be . (1.12)
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= If a spectral triple is both real and even there is the additional compatibility rela-
tion

Jy=2¢"yJ, e’ e {+£}. (1.13)

We denote such an enriched spectral triple by («7,.5¢,D;J,y) and call it a real,
even spectral triple [12]]. The eight different combinations for the three signs above
determine the KO-dimension of the spectral triple, cf. Table[T.3] For more details we
refer to [[12} 22} [15]].

KO-dimension: 0 1 2 3 4 5 6 7

]2=8idj¢ + 4+ - == =4+
JD=¢DJ] 4+ -—+++—++
Jy=¢€"yJ + - 4+ -

Table 1.3: The various possible KO-dimensions and the corresponding values for
the signs J? = €id s, JD = €'DJ and Jy = €"yJ.

A K> H Y =17 =idr
D* = D, comp. res. @ / \ @ [a,D] € B(H)
ID=¢'DJ \@ ’ / / P =cidy

Jy=¢€"yJ /‘s/@\ / yD = —Dy

[v.]=0 Y _@_ J a’=Ja‘J*[a,b°] =

CHCHRCECHC
® ©® Q06

Fig. 1.1: A pictorial overview of the various relations that hold be-
tween the constituents of a real and even spectral triple. Not de-
picted here is the first order condition (T.12).

Example 1.8 The canonical spectral triple (Example[1.5)) can be extended by a real
structure Jyy (‘charge conjugation’). When dimM is even it can also be extended by
a grading Yy = (—i)3™M/290 M (‘chirality’, often denoted as Y"™M+1). The
KO-dimension of a canonical spectral triple always equals the dimension of the
manifold M [l12)] (see also [22) §9.5]).

For dimM = 4, the case we will be focussing on, we have

Y =-7rrry,
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which, using that {¥,y/} = 287 (cf. (L8)), indeed satisfies (¥°)* = idj2(5) and
(7°)* = 7. This enables us to reduce the space L>(M, ) into eigenspaces of 7>

LX(S) = L*(8)+ ®L*(S)-, L*(S)«={weL*(S), v =1y}

Also, 75 is seen to anticommute with d,,. As for the real structure J, it is given
(cf. [27, §5.7]) pointwise as (Jy)(x) := C(x)¥(x) with C(x) a charge conjugation
matrix and the bar denotes complex conjugation. One obtains [22, §9.4] a charge
conjugation operator that satisfies

c?=-1, Cdy =duC, Y’C=Cy.
Table [I.3]|shows that the KO-dimension indeed equals dim M.

Example 1.9 As in the general case a finite spectral triple (Example[1.7) is called
real if there exists a Jg (implementing a bimodule structure of 7% ) and even when
there exists a grading Vr on .

Given any two spectral triples (527'1’2, A 2,D123J1 2, }/172) their tensor product
(’/‘Z{l ®,,Q{27% ®¢%;Dl ®1 +7’1 ®D27J®a}/l ®’y2)a

is again a spectral triple. Here generally Jg, = J; ® J,, but with the following excep-
tions: Jg, = J171 ® J, when the sum of the respective KO-dimensions is 1 or 5 and
Jo = J1 ®J27» when the KO-dimension of the first spectral triple is 2 or 6 and that of
the other one is even [16,134]. The form of the Dirac operator of the tensor product is
necessary to ensure that it anti-commutes with y; ® 9 and that the resolvent remains
compact. It follows that the KO-dimension of this tensor product is the sum of the
KO-dimensions of the separate spectral triples. In the canonical spectral triple the
algebra encodes space(-time), in a finite spectral triple it will seen to be intimately
connected to the gauge group (see ahead). In describing particle models we
need both. We therefore take the tensor product of a canonical and a finite spectral
triple. In the case that dimM = 4 this reads

(C*(M, ), [*(M,S® H#5),du @1 +7 @Dp, Jy @Jp, Y @71r),  (1.14)

with C* (M) ® ofF ~ C (M, <fF). Spectral triples of this form are generally referred
to as almost-commutative geometries [24]. Noncommutative geometry can thus be
said to put the external and internal degrees of freedom of particles on similar foot-
ing. To obtain one’s favourite particle physics model (in four dimensions) the key is
to construct the right finite spectral triple that accounts for the gauge group and all
internal degrees of freedom and interactions.
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1.2.2 Gauge fields and the action functional

Two more concepts need to be introduced, both arising from the question “what is
the natural notion of equivalence for spectral triples and what is an invariant for this
equivalence?”. To this end we start by defining the notion of unitarily equivalent
spectral triples:

Definition 1.10 (Unitarily equivalent spin geometries) Two (real and even) spec-
tral triples (o7 , 7€ ,D;J,y) and (< , 7€ ,D';J' | ¥) are said to be unitarily equivalent,
if there exists a unitary operator U on F¢ such that

" UaU*=o0(a)Vae o,

s D' =UDU*,
s J =UJU%,
Y =UyU*

Here o denotes an automorphism of the algebra <7 .

Given an algebra .# we can form the group of unitary elements of <7
Ud):={uec o u =u'u=1}
and construct unitary operators U := uJuJ*:
U:H# -, yv—uyu". (1.15)

Using this group we can construct a particular kind of unitary equivalence for
spectral triples, where the automorphism o is seen to be an inner automorphism,
i.e. UaU* = uau*, where we have used (T.IT)) and that J?> = €id. This leads to the
following result [12].

Lemma 1.11 For U = uJuJ* with u € U(/), the real and even spectral triples
(o, ,D;y,J) and
(o, 0, D+A+€JAJ";J,y) with A=ulD,u"|,uclU(), (1.16)

are unitarily equivalent.

This result implies that the class of unitarily equivalent spectral triples for
U = uJuJ*, u € U(&/) differ only by the inner fluctuations of the Dirac operator.
A more general —but also a somewhat more involved— way to look at this is by
using the notion of Morita equivalence of spectral triples [13]]. In this way the inner
fluctuations A of

D—>Dy:=D+A+€JAT

are seen to be the self-adjoint elements of

Ql(e) = {Zan[D,bn], an,bneyf}. (1.17)
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The action of U (Lemmal(l.11)) on D4 (i.e. Do — UDAU*) induces one on the inner
fluctuations:

A~ A" = uAu" +ulD,u’], (1.18)

an expression that is reminiscent of the way gauge fields transform in quantum
field theory. Note that the inner fluctuations that arise using the argument of uni-
tary equivalence in fact only correspond to pure gauges.

In the case of a canonical spectral triple —for which the left and right actions
coincide— that has JD = DJ, the inner fluctuations vanish [27, §8.3]. In the case of
an almost-commutative geometry both components ¢, and Dy of the Dirac operator
generate inner fluctuations. For these we will write

Dyi=da+meP, (1.19)
where g, = iy (9 + 0y ®id g +Ay), with

A=Y (an[&,l,bn] —Jay [&y,bn]J*), an,bp € C*(M, o), (1.20)

n

skew-Hermitian and
® =D+ Z (an[DF7bn] + gljan[DFabn]J*)v an, by € Cw(Ma b‘Z{F)
n

The relative minus sign between the two terms in A, comes from the identity
Juy*Jy = —y* for even-dimensional dim M. The terms will later be seen to contain
all gauge fields of the theory [12]. The inner fluctuations of the finite Dirac operator
Dp (see also (T.34)) are seen to parametrize all scalar fields, such as the Higgs field.
Interestingly, this view places gauge and scalar fields on the same footing, some-
thing that is not the case in QFT. See Table[I.4]for an overview of the origin of the
various fields.

Type of field NCG-object

Fermions L*(M,S) ® %
Scalar bosons Q) (/)

F
Gauge bosons Q;,M(d)

Table 1.4: The various possible fields that are ingredients of physical theories and the
NCG-objects they originate from in the case of an almost-commutative geometry.

The second and last ingredient that we will need here is a natural, gauge invariant,
action functional. For that we want something which only depends on the data that
are present in the spectral triple. The most natural choice [4] for that turns out to be
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S[C.A] = %<JC7DAC>+trf(DA/A)7 Ce %(1 MR Y)H =T, (1.21)

consisting of the fermionic action and the spectral action respectively. Here f is a
positive, even function, A is a (unknown) mass scaleﬂ and the trace of the second
term is over the entire Hilbert space.

Using that J> = €, DJ = €'JD the fermionic action is seen to satisfy

(J€,Dal) =€€'(JC,DsE)  VELeA, (1.22)

i.e. it is either symmetric or antisymmetric. In its original [14} [1]] form, the expres-
sion for the fermionic action did not feature the real structure (nor the factor %)
and did not have elements of only %% as input. It was shown [3] that for a suit-
able choice of a spectral triple it does yield the full fermionic part of the Standard
Model Lagrangian (see Section [I.2.3)), including the Yukawa interactions, but suf-
fered from the fact that the fermionic degrees of freedom were twice what they
should be, as pointed out in [28]]. Furthermore it does not allow a theory with mas-
sive right-handed neutrinos. Adding J to the expression for the fermionic action and
requiring {J,y} = 0 allows restricting its input to 5# " without vanishing altogether.
This expression is seen to solve both problems at the same time [[7] (see also [15]).
We will not further go into details but refer to the mentioned literature instead.

Despite its deceivingly simple form, the second term of (T.2I) is a rather com-
plicated object and in practice one has to resort to approximations for calculating
it explicitly. Most often this is done [3] via a heat kernel expansion [21]. In four
dimensions and for a suitable Dirac operator this reads:

trf(Da/A) ~2A% faao(D}) +2A° fraz (D) + £ (0)as(D3) + O(A7?),  (1.23)

where f>, fa are the second and fourth moments of f and the (Seeley-DeWitt) co-
efficients a0,274(D§) only depend on the square of the Dirac operator. For a general
almost-commutative geometry on a flat 4-dimensional Riemannian spin-manifold
without boundary this reads:

Dy " [£(0) 1 4 2
B ETE——

A? ,  A* _2
— 5Pt ® +27r2f4</V(F)}+ﬁ(A ) (1.24)

where trp denotes the trace over the finite Hilbert space, .4 (F) = dim(7) and
Fyy is the (skew-Hermitian) curvature (or field strength) of A, i.e.

Fuy = [Ou+ Ay, 0y +A,]. (1.25)

# The parameter A more or less serves as a cut-off, and will in the derivation of the SM (Section
@]ahead) be interpreted as the GUT-scale.
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Note that —in contrast to ‘normal’ high energy physics— there is no question
of adding some terms to the action by hand in order to make something work. The
action (T.2T)) is simply fixed by the spectral triple.

1.2.3 The noncommutative Standard Model (NCSM)

We now have all the essential ingredients to obtain the Standard Model [7]. We
take a compact, 4-dimensional Riemannian spin manifold M without boundary and
the corresponding canonical spectral triple. We take the tensor product with a finite
spectral triple whose algebra is

Ay = C@H@M3((C),

where with H we mean the quaternions and M3(C) the complex 3 x 3-matrices.
Note that it is this finite algebra that makes the resulting spectral triple actually
noncommutative. We denote the irreducible representations of its components with
1, 2 and 3 respectively. In addition, we will need the anti-linear representation 1, on
which A € C acts as 1. With 1°, 2, etc. we denote the contragredient module. A
natural bimodule of this algebreﬂ (i.e. the finite Hilbert space),

2el)elel)e(el)e2e3)e(1e3)e(1x3°), (1.26)

turns out to exactly describe the particle content of the Standard Model; /1, Vg, e,
qL, ug and dg respectively. From the noncommutative point of view having a right-
handed neutrino is a desirable feature [7]]. If we want to introduce a real structure
Jr we also need 1 ®2°, etc. (describing the antiparticles). We can construct a grad-
ing yr that distinguishes left- from right-handed particles and that anticommutes
with the real structure. This makes the KO-dimension of the finite spectral triple
equal to 6 and consequently that of the almost-commutative geometry equal to 2.
This makes it possible to reduce the fermionic degrees of freedom [7, §4.4.1]. This
Hilbert space describes only one generation of particles so we need to take three
copies (or generations) of it.

We can check that not only SU (%) (from (I.36)) equals the gauge group of
the Standard Model SU(3) x SU(2) x U(1) (modulo a finite group) but also that
the resulting hypercharges of the representations match those of the particles of the
Standard Model.

Then there is the Dirac operator Dr for the finite spectral triple. It is given by
a hermitian matrix whose non-zero components are determined [7} §2.6] by 3 x 3-
matrices 1y, 1,1,y and a symmetric 3 x 3-matrix g, that mix generations. The
Y, . .q map between the representations in 7% that describe the left- and right-
handed (anti)leptons and (anti)quarks and are interpreted as the fermion mass mix-

3 To be explicit, the element (4,q,m) € o7 acts on —say— 2®3° S VW as qv @ Wwm = qv @ m*w.
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Fig. 1.2: The three (inverse) ’coupling constants’ o = %g%/47r, o = g%/47r and

o= g% /4w as a function of the energy. At high energy they are seen to nearly meet
in one point. The figure is taken from [25]].

ing matrices. The component 1z maps between the representations that describe the
right-handed neutrinos and their antiparticles and serves as a Majorana mass matrix.

A second step is to calculate the inner fluctuations of both Dirac operators. For
@, the inner fluctuations acting on 1 and 1 are both seen to describe the same U (1)
gauge field. To also let the quarks interact with this field in the way they do in the
SM, an additional constraint is imposed. This constraint asserts that the total inner
fluctuations be traceless:

Ay = 0. (1.27)

This is called the unimodularity condition [11,|1]. In addition it reduces the degrees
of freedom of the gauge bosons to the right number. After applying this condition,
the inner fluctuations of @y turn out to exactly describe the gauge bosons of the
Standard Model; the hypercharge field B, the weak-force bosons W, and gluons
gu- The inner fluctuations of Dy on the other hand are seen to describe a scalar field
that —via the action— interacts with a left-handed and a right-handed lepton or
quark: it is the famous Higgs field [[7, §3.5]. Since the finite part of the right-handed
neutrinos is in 1® 1° ~ C, the component T that describes their Majorana masses
does not generate a field via the inner fluctuations (L.17).

If we calculate the spectral action for this spectral triple [[7, §3.7], not only do
we get the action of the full Standard Model but again the Einstein-Hilbert action of
General Relativity too. Various coefficients of terms in the action are determined by
variables that are characteristic for NCG (e.g. the moments f,, A, etc.). This gives
rise to relations between SM-parameters that are not present in the Standard Model.
For example, if we normalize the kinetic terms of the gauge bosons we automatically
find the relation
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> 2 (1.28)

_2_>
83=82=38
between the coupling constants of the strong, weak and hypercharge forces respec-
tively [[7, §4.2]. This relation suggests that the interpretation of the so far unknown
value of A is that of the energy scale at which our theory ‘lives’ and at which the
three forces (electromagnetic, weak and strong) are of the same strength. Looking
at Figure [1.2] this corresponds to the order of 10'* — 107 GeV. There is also an
additional relation
2 b

A=d4g 5, b=ull,"Y, )+ (L )P +3(5, Y, )P +3(1 1 ),

a=1(Y, "X, YL Y + 3L, Y, +30,°7;)

for the coefficient of the Higgs boson self-coupling. Using the value we find for g%
from Figure [I.2] and approximating the coefficients a, b we can infer [7, §5.2] that
A(A) = 0.356. Inserting this boundary condition into the renormalization group
equation for A we obtain a value for the Higgs boson mass at the electroweak scale
in the order of 170 GeV (see [18] for a detailed analysis).

In addition, this scheme allows a retrodiction of the top quark mass. It is found
to be < 180 GeV [[7} §5.4].

This would be a perfect end to the story, if it was not for two things. First of all,
the observed Higgs mass (125.09 +0.24 GeV/c? [[19]) is distinctly different from the
above mass range. Second, though we pretended that the three forces are of equal
strength at one specific energy-scale A, we know from experiment that —at least
for the SM— they are in fact not completely, see Figure [I.2] Nonetheless, the fact
that NCG allows one to come up with a robust prediction of the Higgs mass in the
first place (and that this prediction depends on the particle content, as illustrated by
[6]) is a promising sign of NCG saying something about reality.

1.2.4 Finite spectral triples and Krajewski diagrams

Since we will be using real finite spectral triples (cf. Examples [T1.7] and exten-
sively later on, we cover them in more detail. They are characterized by the follow-
ing properties:

» The finite-dimensional algebra is (by Wedderburn’s Theorem) a direct sum of
matrix algebras:

K
Ty =P My, (F;)  Fi=R,C,H. (1.29)

» The finite Hilbert space is an &< -bimodule, where <7\ is the complexification
of oF. More specifically, it is a direct sum of tensor products of irreducible rep-
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resentations: N; = CM of My, (F;) for F; = C,R and N; = C?M of My, (F;) for
F; = H, with the contragredient representation N7. The latter can be identified
with the dual of N;. Thus ¢ is generically of the form

He= @D (NioNg) T & (N Np) . (1.30)

i<j<K

The non-negative integers My,y; denote the multiplicity of the representation
N;® N‘]’-. When various multiplicities all have one particular value M, we speak
of (M) generations that are part of a family.
In the rest of this book we will not consider representations such as the last part of
(T.30), since these are incompatible with Jryr = —¥rJF, necessary for avoiding
the fermion doubling problem.

= The right .&/r-module structure is implemented by a real structure

JFZN,‘®N(/)-—>NJ'®N;) (1.31)

that takes the adjoint: Jr(n ® {) = { @1, for n € N; and { € N;. To be explicit:
leta:=(ai,...,ax) € randN®¢ € N; ® N9, then

a’ =Jpa li(N®§) =Jra*{ @7 =Jp(a;{ @) =1 ®aji5 n®La;.
(132)

From this it is clear that (I.TI) entails the compatibility of the left and right
action. For the Hilbert space the existence of a real structure (I.31)) implies that
My,N; = My;n;.

= For each component of the algebra for which F; = C we will a priori allow both
the (complex) linear representation N; and the anti-linear representation N;, given
by:

w(m)v :=mv, m € My,(C),v € CM.
= The finite Dirac operator Dr consists of components
D, Ne@Ny — N; @ NJ. (1.33)

The first order condition (1.12) implies that any component is either left- or right-
linear with respect to the algebra [26]]. This means that i =k or j =1 E] In both
cases it is parametrized by a matrix; in the first case it constitutes of right multi-
plication with some 7;; € N; ® N9, in the second case of left multiplication with
some Nix € N; @ N7.

There exists a very useful graphical representation for finite spectral triples,
called Krajewski diagrams [26]. Such a diagram consists of a two-dimensional grid,

% An exception to this rule is when one component of the algebra acts in the same way on more
than one different representations in .#%.
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labeled by the various N; and N7, representing (the irreducible representations of)
the algebra. Any representation N; ® N? that occurs in Z% then can be represented
as a vertex on the point (i, j) in this grid. If the finite spectral triple is even, each
such representation has a value + for the grading yr. We represent it by putting the
sign in the corresponding vertex. For real spectral triples, a diagram has to be sym-
metric with respect to reflection across the diagonal from the upper left to the lower
right corner. This is due to the role of Jr. The reflection of a particular vertex has
the same or an opposite value for the grading, depending on whether Jr commutes
or anticommutes with yr.

We can represent the component D;, jk[ of the Dirac operator in a Krajewski di-
agram by an edge from (k,!) to (i, j). Since the Dirac operator is self-adjoint, this
means that there is also an edge from (i, j) to (k,!) and since it (anti)commutes with
Jr, this means that there must also be an edge from (I,k) to (j,i). From the first
order condition it follows [26] that these lines can only be horizontal or vertical.
We provide a particularly simple example of a Krajewski diagram in Figure[T.3] in
which there are two vertices (and their conjugates) between which there is an edge.

Ni - N; - N
NO o—>0
B
«Dy;"
N
: T
ik
Ny Py

Fig. 1.3: An example of a Krajewski diagram. Each circle in the grid stands for a
representation in .77 . A solid line represents a component of the Dirac operator. As
can be seen from the signs, {Jr, ¥r} = 0 here.

Both as an example of the power of Krajewski diagrams and for future reference
Figure [I.4] shows the diagram that fully determines (the internal structure of) the
Standard Model (c.f. Section [T.2.3). On each point there are in fact three vertices,
corresponding to the three generations of particles. The finite Dirac operator was
seen to be parametrized by the fermion mass mixing matrices 1y, . , 4 € M3(C). Their
inner fluctuations generate scalars that are interpreted as the Higgs boson doublet
(solid lines), connecting the left- and right-handed representations. Furthermore we
have the possibility of adding a Majorana mass 1 for the right handed neutrino
(dotted line).

The important result of [26] is that all properties of a finite spectral triple can
be read off from a Krajewski diagram. Although Krajewski diagrams were thus
developed as a tool to characterize or classify finite spectral triples (see also [33|
Ch. 3]), they have turned out to have an applicability beyond that, e.g. [32]. Here,
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Fig. 1.4: The Krajewski diagram representing the Standard Model. The color of the
edges denotes its parametrization.

we will use them also to determine the value of the trace of the second and fourth
powers of the finite Dirac operator Dr (or @, including its fluctuations), appearing
in the action functional (I.24). We notice [26, §5.4] that

= all contributions to the trace of the nth power of Df are given by continuous,
closed paths that are comprised of n edges in the Krajewski diagram.

» such paths can go back and forth along an edge.

= a step in the horizontal direction corresponds to a component D, jkl of Dr acting
on the left of the bimodule .77, whereas a vertical step corresponds to a compo-
nent D, jkl acting on the right via J (D, jkl)*J *. Due to the tensor product structure,
the trace that corresponds to a certain closed path is therefore the product of the
horizontal and vertical contributions.

= if a closed path extends in only one direction, this means that the operator acts
trivially on either the right or the left of the representation N; ® N% at which the
path started. The trace then yields an extra factor N; or N;, depending on the
direction of the path.

As an example we have depicted in Figure [I.5]all possible contributions to the
trace of the fourth power of a Dr. This is the highest power that we shall encounter,
as we are interested in the action (T.24)). We introduce the notation |X|? := try X*X,
for X*X € My(C). As an illustration of the factors appearing; in the second case a
path can start at any of the three vertices, but when it starts in the middle one, it can
either go first to the left or to the right. In addition, for a real spectral triple, each
path appears in the same way in both directions, giving an extra factor 2. This last
argument does not hold for the last case when k =i and [ = j, however.

A component D, jk/ of the finite Dirac operator will develop inner fluctuations
that are of the form
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Fig. 1.5: All types of paths contributing to the fourth power of a finite Dirac operator.
The last two only occur when it is part of a real spectral triple.

kj kj kj
D;;/ = D +Y anD;; by

= Dijkj +Z(an)i(Dijkj(bn)k - (bn)iDijkj)v an, by, € ﬁf’ (1.34)
n

where (a,); denotes the ith component of the algebra element a,. It describes a
scalar @ in the representation N; @ N¢. In the expansion (T.23) of the action for an
almost commutative geometry the kinetic terms for the components of @ appear via

{047 @D} =iV V[(0a) . id2(5) O P

We determine it for a component D, jkj of @ in particular by applying it to an element
Gy €LP(M,S®Ny® N9) and find that

[(0a)us Dy 16k = (O + o) (P Gty) — igichin PGy + i P G A ju
— D (I + ©u ) (Gkj) + gk PiAwy Crj — 18 P G jA ju
= (O (Pix) — igiAiy Pir + gk PirAry ) Gk
ED#(¢ik)ij, (1.35)

where we have introduced the covariant derivative D), from which the operator @y
has dropped out completely. We have preliminarily introduced coupling constants
gix € Rand wrote Ay, = —ig;A;, + igkAzu (with Ay, Ay, Hermitian) to connect with
the physics notation.

The gauge group that is associated to an algebra of the form (T.29) is given by
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SU(etr) = {u= (ui,...,ux) € U(H),det y (u) =1}, (1.36)

where U (%) was defined in (I.T3) and with det ,; (1) we mean the determinant
of the entire representation of u on J¢%. Applying U = uJuJ* to an element y;; €

N; @ N C #f and typical component D; jkj of the finite Dirac operator yields

Wij — ulul" i) = wiYiju; (1.372)
cf. (T.13) and
D = uu DM u Jut I = widy? D, Mgt = wiD, M, (1.37b)
respectively.

We have now covered the most important ingredients for particle physics using
almost-commutative geometries. In the next Chapter, we proceed by motivating the
choice to search for supersymmetric theories that arise from noncommutative ge-
ometry.
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Chapter 2

Supersymmetric almost-commutative
geometries

Abstract We give a systematic analysis of the possibilities for almost-commutative
geometries on a 4-dimensional, flat background to exhibit not only a particle content
that is eligible for supersymmetry but also have a supersymmetric action. We come
up with an approach in which we identify the basic ‘building blocks’ of potentially
supersymmetric theories and the demands for their action to be supersymmetric.
Examples that satisfy these demands turn out to be sparse.

2.1 Noncommutative geometry and R-parity

One of the key features of many supersymmetric theories is the notion of R-parity;
particles and their superpartners are not only characterized by the fact that they are
in the same representation of the gauge group and differ in spin by %, but in addition
they have opposite R-parity values (cf. [[16} §4.5]). As an illustration of this fact for
the MSSM, see Table[2.1}

Fermions  R-parity Bosons R-parity Multiplicity
gauginos -1 gauge bosons +1 1
SM fermions +1 sfermions -1 3
higgsinos -1 Higgs(es) +1 1

Table 2.1: The R-parity values for the various particles in the MSSM. In the left
column are the fermions, in the right column the bosons. The SM fermions and
their superpartners come in three generations each, whereas there is only one copy
of the other particles. This statement presupposes that we view the up- and downtype
Higgses and higgsinos as being distinct.

23
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In this section we try to mimic such properties, providing an implementation of
this concept in the language of noncommutative geometry:

Definition 2.1 An R-extended, real, even spectral triple is a real and even spectral
triple (of , 7€ ,D;,J) that is dressed with a grading R : 56 — € satisfying

[R,Y]=[R,J]=[Ra]=0Vac .
We will simply write (o , 7€ ,D;7,J,R) for such an R-extended spectral triple.

Note that, as with any grading, R allows us to split the Hilbert space into an R-even
and R-odd part:

H = A=y O Hp=—,  Hp=t = %(1 +R) A .
Consequently the Dirac operator splits in parts that (anti-)commute with R: D =
Dy +D_ with {D_,R} = [D,R] =0. We anticipate what is coming in the next sec-
tion by mentioning that in applying this notion to (the Hilbert space of) the MSSM,
elements of #Zz— should coincide with the SM particles and those of J#z—_; with
the gauginos and higgsinos.

Remark 2.2 In Krajewski diagrams we will distinguish between objects on which
R =1 and on which R = —1 in the following way:

» Representations in % on which R = —1 get a black fill, whereas those on which
R = +1 get a white fill with a black stroke.

»  Scalars (i.e. components of the Dirac operator) that commute with R are repre-
sented by a dashed line, whereas scalars that anti-commute with R get a solid
line.

We immediately use the R-parity operator to make a refinement to the unimodu-
larity condition (1.27)). Instead of taking the trace over the full (finite) Hilbert space,
we only take it over the part on which R equals 1, i.e. it now reads

ot Ay = 0. @2.1)
Analogously, the definition (T.36) of the gauge group must then be modified to
SU(o ) :={ucU(),det y5_, (u) =1}. (2.2)

We will justify this choice later, after Lemma 2.9
Note that adjusting the unimodularity condition has no effect when applying it to
the case of the NCSM, since all SM-fermions have R-parity +1 (Table [2.1).
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2.2 Supersymmetric spectral triples

We give a classification of all almost-commutative geometries whose particle con-
tent and spectral action functional is supersymmetric. Throughout this section we
characterize the finite spectral triples / almost-commutative geometries by their Kra-
jewski diagrams as presented in Section [[.2.4] Since gravity is known to break
global supersymmetry, we shall from the outset restrict ourselves to a canonical
spectral triple on a flat background, i.e. all Christoffel symbols and consequently
the Riemann tensor vanish.
For a given algebra Ar of the form

K
oy = EPMy,(C). (2.3)

1

we now look for supersymmetric ‘building blocks” —made out of representations
N;® N‘; (i,j € {1,...,K}) in the Hilbert space (fermions) and components of the
finite Dirac operator (scalars)— that give a particle content and interactions eligi-
ble for supersymmetry. In particular, these building blocks should be ‘irreducible’;
they are the smallest extensions to a spectral triple that are necessary to retain a
supersymmetric action. We underline that we do not require that the extra action as-
sociated to a building block is supersymmetric in itself. Rather, the building blocks
will be defined such that the total action can remain supersymmetric, or can become
1t again.

2.2.1 First building block: the adjoint representation

For a finite algebra @/ = My; (C) that consists of one component, the finite Hilbert
space can be taken to be N; @ N9 >~ My, (C), the bimodule of the component My, (C)
of the algebra. In order to reduce the fermionic degrees of freedom in the same way
as in the NCSM, we need a finite spectral triple of KO-dimension 6, i.e. one that
satisfies {J, 7} = 0. This requires at least two copies of this bimodule, both having a
different value of the finite gradindﬂ and a finite real structure Jr that interchanges
these copies (and simultaneously takes their adjoint):

Jr(myn) := (n*,m").
We call this

Definition 2.3 A building block of the first type %; (j € {1,...,K}) consists of
two copies of an adjoint representation MNj((C) in the finite Hilbert space, having
opposite values for the grading yr. It is denoted by

! We will distinguish the copies by giving them subscripts L and R.



26 2 Supersymmetric almost-commutative geometries
B = (m,m',0) € My; (C) @ My; (C)r ®End(HF) C .+ ®End(#F).

As for the R-parity operator, we put R| My.(c) = —1. Since Dy maps between
J

R = —1 representations the gauge field has R = 1, indeed opposite to the fermions.
The Krajewski diagram that corresponds to this spectral triple is depicted in Figure

21

N;j

4]

0
Nj e

Fig. 2.1: The first building block consists of two copies in
the adjoint representation MN_/.((C), having opposite grad-
ing. The solid fill means that they have R = —1.

Via the inner fluctuations (T.17) of the canonical Dirac operator ¢y, (T.20) we
obtain gauge fields that act on the My; (C) in the adjoint representation. If we write

(Ajp.Afg) € AT = L*(S4 @ My, (C)) ® L*(S— @ My, (C)g)

for the elements of the Hilbert space as they would appear in the inner product, we
find for the fluctuated canonical Dirac operator (1.20) that:

Ia(Aj, Ajr) = iV (O + Aw) Ajr, Ajg),

with Ay = —igjadA) ;. Here we have written ad(A}, ;)7 g 1= A} ;A; p — A7 gA),;
with A}, ; € End(I'() @ u(N;)) self-adjoint and we have introduced a coupling
constant g;.

2.2.1.1 Matching degrees of freedom

In order for the gauginos to have the same number of finite degrees of freedom
as the gauge bosons —an absolute necessity for supersymmetry— we can simply
reduce their finite part ML_’R to u(Nj;), as described in [2, §4]. However, as is also
explained in loc. cit., even though the finite part of the gauge field A;L ; 1s initially
also in u(N;), the trace part is invisible in the action since it acts on the fermions
in the adjoint representation. To be explicit, writing A;L j=Aujt+ N%_B” jidy;, with
Apj(x) € su(Nj), By j(x) € u(1) (for conciseness we have left out coupling constants
for the moment), we have

ad(Ay,;) = ad(Ay;).
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This fact spoils the equality between the number of fermionic and bosonic degrees of
freedom again. We observe however that upon splitting the fermions into a traceless
and trace part, i.e.

A‘;L,R — AleR + AJ()L,R ide, (24)

the latter part is seen to fully decouple from the rest in the fermionic action:
(IMAjL, Dadig) = (IuAjL, dadjr) + (TuAJL, AuAjg)-
We discard the trace part from the theory.

Remark 2.4 In particular, a building block of the first type with N; = 1 does not
vield an action since the bosonic interactions automatically vanish and all fermionic
ones are discarded. This is remedied again in a set-up such as in the next section.

Note that applying the unimodularity condition (2.1) does not teach us anything
here, for J7%— is trivial.

One last aspect is hampering a theory with equal fermionic and bosonic degrees
of freedom. There is a mismatch between the number of degrees of freedom for the
theory off shell; the equations of motion for the gauge field and gaugino constrain a
different number of degrees of freedom. This is a common issue in supersymmetry
and is fixed by means of a non-propagating auxiliary field. We mimic this procedure
by introducing a variable G, := G4T;' € C™(M,su(N;)) —with T} the generators of
su(Nj)— which appears in the action Viaﬂ

2 4
2 | oy, G3\/gd*x. 2.5)

The factor n; stems from the normalization of the Tj“, tr Tjaij =n j5“b , and is in-

troduced so that in the action (G)? has coefficient 1/2, as is customary. Typically
nj= % Using the Euler-Lagrange equations we obtain G; = 0, i.e. the auxiliary
field does not propagate. This means that on shell the action corresponds to what
the spectral action yields us. In proving the supersymmetry of the action, however,
we will work with the off shell counterpart of the spectral action.

The action of the spectral triple associated to 24, has been determined before
(e.g. [41, [5], [3]) and is given by

f(0)

SJMA] = <‘IM)‘]/'R7JA ]/'L> T a2

/M s FlyFHY + 6(A72),  (2.6)

where we have written the fermionic terms as they would appear in the path integral
(cf. [14] §16.3])Using the notation introduced in (I.32)) we write Ay, = —ig;(Ay;—

2 This auxiliary field is commonly denoted by D. Since this letter already appears frequently in
NCG, we instead take G to avoid confusion.

3 It might seem that there are too many independent spinor degrees of freedom, but this is a char-
acteristic feature for a theory on a Euclidean background, see e.g. [27, 28} 125] for details.
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A} j) and find for the corresponding field strength (1.25)

Fuv = —ig;(Fiv — (Fiv)°),
with  Fi, = du(Av)) — oy (Apj) —igj[Auj,Av)]

Hermitian. Consequently we have in the action

f(O) Jj P 1 <%/] i
_W/Mtr%% FMVIFJ,IJV — ZTJ /MtrNj FHVFJ,LLV7
. 0

with X = %njgﬁ(wj), 2.7)

Here we have used that for X € My, (C) traceless, try, (c)(X —X°)? =2N; try; X?
J

and there is an additional factor 2 since there are two copies of My;(C) in .

The expression for JZ; gets a contribution from each representation on which the
gauge field Ay ; acts, see Remarkm ahead. The factor n;l in front of the gauge
bosons’ kinetic term anticipates the same factor arising when performing the trace
over the generators of the gauge group. The same thing happens for the gauginos
and since we want k]‘-‘, rather than /'Lj, to have a normalized kinetic term, we scale

these according to

1
Aj — ——=Aj, where rTeT? = 1 Ogb- (2.8)
\/rTj J 7

Discarding the trace part of the fermion, scaling the gauginos, introducing the aux-
iliary field G; and working out the second term of (2.6) then gives us for the action

_ 1 1.%; J 1 2
Si[A,A,Gj] = <JMle,aAljR>+ZT /MtrNjFqu/'“v—gj/MtrNj Gj (29)

nj j
with Ajr g € Lz(M,Si ®@su(Nj)Lr),Aj € End(I"(S) @su(N;)),G; € C*(M,su(N;)).

For this action we have:

Theorem 2.5. The action (2.9) of an R-extended almost-commutative geometry that
consists of a building block %; of the first type (Definition with N;j > 2) is
supersymmetric under the transformations

0Aj =c;! [(JMSR, YuliL)w + (Juér, YuljR)Y] ) (2.10a)
OAjLr = C/j)/”')/vF,,{ng,R ‘|‘C/(;_/.Gj8L,R7 (2.10b)
8G; = cg,; [(Iuer, darjL) # + (Juer, daAjr) #] (2.10c)

. / p .
with Cjs €6 CG; € Cif

2ic/j = —c; X, cG; = —c’G/.. (2.11)
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Proof. The entire proof, together with the explanation of the notation, is given in
the Appendix [2.6.1]

We have now established that the building block of Definition[2.3]gives the super
Yang-Mills action, which is supersymmetric under the transformations @E}This
building block is the NCG-analogue of a single vector superfield in the superfield
formalism.

Note that we cannot define multiple copies of the same building block of the first
type without explicitly breaking supersymmetry, since this would add new fermionic
degrees of freedom but not bosonic ones. This exhausts all possibilities for a finite
algebra that consists of one component.

2.2.2 Second building block: adding non-adjoint representations

If the algebra (2.3) contains two summands, we can first of all have two different
building blocks of the first type and find that the action is simply the sum of actions
of the form (2.9) and thus still supersymmetric.

We have a second go at supersymmetry by adding the representation N; @ N
to the finite Hilbert space, corresponding to an off-diagonal vertex in a Krajewski
diagram. This introduces non-gaugino fermions to the theory. A real spectral triple
then requires us to also add its conjugate N; @ N?. To keep the spectral triple of KO-
dimension 6, both representations should have opposite values of the finite grading
¥r. For concreteness we choose N; ® Nf; to have value + in this section, but the op-
posite sign works equally well with only minor changes in the various expressions.
With only this content, the action corresponding to this spectral triple can never be
supersymmetric for two reasons. First, it lacks the degrees of freedom of a bosonic
(scalar) superpartner. Second, it exhibits interactions with gauge fields (via the inner
fluctuations of d,;) without having the necessary gaugino degrees to make the par-
ticle content supersymmetric. However, if we also add the building blocks %; and
%; of the first type to the spectral triple, both the gauginos are present and a finite
Dirac operator is possible, that might remedy this.

Lemma 2.6 For a finite Hilbert space consisting of two building blocks 9; and %,
together with the representation N; ® N‘; and its conjugate the most general finite
Dirac operator on the basis

N; @ N% @ My, (C), & M, (C)r ® My, (C)L &My, (C)r ®N; ®NS. (2.12)

is given by

4 A similar result, without taking two copies of the adjoint representation, was obtained in [2]].
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00 A0 B 0
0 0 M 0 0 JAJ
AAM 0 0 0 0

br=10 0 0 o M BV 2.13)
B0 0 M 0 0
0 JAJF 0 JBJ* 0 0

with A IMNi(C)R — N,'®N;)» and B : MN_/-((C)R — N,'®N?.

Proof. We start with a general 6 x 6 matrix for Dr. Demanding that {Dp, 77} =0
already sets half of its components to zero, leaving 18 to fill. The first order condition
requires all components on the upper-right to lower-left diagonal of to
be zero, so 12 components are left. Furthermore, Dy must be self-adjoint, reducing
the degrees of freedom by a factor two. The last demand JrDr = DpJF links the
remaining half components to the other half, but not for the components that map
between the gauginos: because of the particular set-up they were already linked via
the demand of self-adjointness. This leaves the four independent components A, B,
Ml' and M je

In this Chapter we will set M; = M; = 0 since these components describe supersym-
metry breaking gaugino masses. This will be the subject of the next Chapter.

Lemma 2.7 If the components A and B of 2.13)) differ by only a complex number,
then they generate a scalar field ;j in the same representation of the gauge group
as the fermion.

Proof. We write D, jii = A and D, jj /= B in the notation of (T.33). First of all,
D, : My, (C) — N; ® N9 constitutes of leff multiplication with an element Cj;; ;j,
where 1;; € N; @ N% and Cyj; € C. Similarly, D;;" : My,(C) — N; ® N constitutes
of right multiplication with an element in N; @ N7. If this differs from D, j] /by only
a complex factor, it is of the form C;;n;;, with G;;; € C.

Then the inner fluctuations (I.34)) that D; / 4 develops, are of the form

Dijjj - Dijjj + Z(an)i(Dijjj(bn)j - (bﬂ)iDijjj) = Cijj‘T’ijv (2.14)
n
with which we mean left multiplication by the element
Vij = i+ ) (@)ilMij (bn) j — (ba)imij]
n

times the coupling constant C;;;. The demand JDr = DrJ (cf. Table ['1;3'[) on Dp
means that D, =JD,"J* = J (D, j’k)*J *, from which we infer that the component

Diij " constitutes of left multiplication with C;;;n;;. Its inner fluctuations are of the
form

Diiji - Diiji + Z(aﬂ)i(Diiji(bn)j - (bn)iDiiji) = Cijj ‘IN’ija
n
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which coincides with (2.14). Furthermore, for U = uJuJ* with u € U(<7) we find
for these components (together with the inner fluctuations) that

UD,"U = u:D, "3, UD,’U = uD,/"u;,
establishing the result.

Since the diagonal vertices have an R-value of —1, the scalar field y;; gener-
ated by Dr will always have an eigenvalue of R opposite to that of the repre-
sentation N; ®N‘]’- € . This makes the off-diagonal vertices and these scalars
indeed each other’s superpartners, hence allowing us to call y;; a sfermion. The
Dirac operator (Z.13)) (together with the finite Hilbert space) is visualized by means
of a Krajewski diagram in Figure Note that we can easily find explicit con-
structions for R € @ ® /2. Requiring that the diagonal representations have
an R-value of —1, we have the implementations (1y,,—1n;) ® (=1, 1n;)° and
(v, In;) @ (= 1n;, —1n,)° € o @ /¢, corresponding to the two possibilities of

Figure[2.2]

N; N;j N; N;
N . N o ®
' « GiijVij ' ) « Ciij i
(Cijjwij)* i Cii |
(CiijWij)° 1 | U
| | |
« CijjVij o
Ny e <
(a) The case of an off-diagonal (b) The case of an off-diagonal
representation with R = 1. representation with R = —1.

Fig. 2.2: After allowing for off diagonal representations we need a finite
Dirac operator in order to have a chance at supersymmetry. The component
A of (2.13) corresponds to the upper and left lines, whereas the component
B corresponds to the lower and right lines. The off-diagonal vertex can have
either R = 1 (left image) or R = —1 (right image). The R-value of the com-
ponents of the finite Dirac operator changes accordingly, as is represented
by the (solid/dashed) stroke of the edges.

We capture this set-up with the following definition:

Definition 2.8 The building block of the second type %i consists of adding the
representation N; NG (having Yp-eigenvalue +) and its conjugate to a finite Hilbert
space containing %; and 9B, together with maps between the representations N; ®
N? and N; @ NY and the adjoint representations that satisfy the prerequisites of
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Lemma2.7] Symbolically it is denoted by

B = (ei®éj,¢;®&, D,/ +D,/7) eN;@NJ @ N; ® N & End(/#4)
C F ®End(H%)

When necessary, we will denote the chirality of the representation N; @ N% with a
subscript L, R. Note that such a building block is always characterized by two indices
and it can only be defined when %; and %, have previously been defined. In analogy
with the building blocks of the first type and with the Higgses/higgsinos of the
MSSM in the back of our minds we will require building blocks of the second type
whose off-diagonal representation in 7% has R = —1 to have a maximal multiplicity
of 1. In contrast, when the off-diagonal representation in the Hilbert space has R = 1
we can take multiple copies (‘generations’) of the same representation in 7, all
having the same value of the grading yr. This also gives rise to an equal number
of sfermions, keeping the number of fermionic and scalar degrees of freedom the
same, which effectively entails giving the fermion/sfermion-pair a family structure.
The Cj;; and Cj;; are then promoted to M x M matrices acting on these copies. This
situation is depicted in Figure 2.3] We will always allow such a family structure
when the fermion has R = 1, unless explicitly stated otherwise. There can also be
two copies of a building block Z;; that have opposite values for the grading. We
come back to this situation in Section[2.2.5.21

Fig. 2.3: An example of a building block of the second type for which the
fermion has R = 1 and multiple generations.

Next, we compute the action corresponding to Z;;. For a generic element § on
the finite basis (2.12) we will write

& = (WijL, Aip, Aigs ;La/l;RvWin) N,
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where the prime on the gauginos suggests that they still contain a trace-part (cf. (2.4)).
To avoid notational clutter, we will write yz = Wijr, Wg = W, and ¥ = W1
throughout the rest of this section. The extra action as a result of adding a build-
ing block 93;; of the second type (i.e. additional to that of (2.6) for %; and %)) is
given by

lj[;{’m)’plljlnll/RﬂAl?A]?W? ] l][c A C] Sf-,l'j[CvAaa+Sb,ij[A7€]' (215)

The fermionic part of this action reads

S7iflg8,8) = 5 (Wi, W), da (i, W)
+§< (WL, Ay Ak, jL7 ]/'RvWR)v’J;(D(WLv i/.,L7 i/R7)Lj/'L7)Lj/'R7VR)>
= (Mg, DaWL) + (I Wy, ¥ MpCiitj W) + JMVRJ’SCijj‘T’A}ﬁ
+ WL, Y VG AL + (WL, Y A W C)), (2.16)

prior to scaling the gauginos according to (2.8). Here we have employed (2.14) and
the symmetry of the inner product. The bosonic part of (2.13) is given by

Soifl .8 = [ IADWTE +.05(,T) 1)

(cf. (L.24)) with .#;; = 4} the square root of the positive semi-definite M x M~
matrix

0 * *
‘/1{]2 = J;( 2) (NCu]CUJ +N; Cl]]Cljj)7 (2.18)

where M is the number of particle generations, and

_— F0 _ ~ _
M35 9) = L [NC HHC 2+ N, G5, Co P+ 21Ciy 971G
(2.19)

The first term of this last equation corresponds to paths in the Krajewski diagram
such as in the first example of Figure involving the vertex at (i,i). The second
term corresponds to the same type of path but involving (j, j) and the third term
consists of paths going in two directions such as the fourth example of Figure[I.5]

2.2.2.1 Matching degrees of freedom

As far as the gauginos are concerned, there is a difference compared to the previous
section; there the trace parts of the action fully decoupled from the rest of the ac-
tion, but here this is not the case due to the fermion-sfermion-gaugino interactions
n 2.15). At the same time, the gauge fields A}; and Aj;; do not act on N; ® N¢
and N; ® NY in the adjoint representation, causing their trace parts not to vanish ei-
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ther. We thus have fermionic and bosonic u(1) fields, that are each other’s potential
superpartners.
We distinguish between two cases:

= In the left image of Figure 2.2 #— = N; ® N9 ©N; ® N{ and thus we can
employ the unimodularity condition 2.I)). This yieldﬂ

0= trN;ene 8ikiy + N Ny €A,
=N;gs,Bip +Nigs;Bjy =  Bju=—(N;g5,/Nigs,)Biy,

where we have first identified the independent gauge fields before introducing
the coupling constants g; ;, 8B; (cf. [8, §3.5.2]). Consequently the covariant
derivative acting on the fermion W and scalar ¥ and their conjugates is equal
to d4 = iy* Dy with

. Bi . gB o
D, = VISI — l(g,'Aiu + %B,‘) —‘rl(ngju + V{Bj)
i J

. . . B;
= Vfl —igiAiy +igjA%, — 21g3iﬁi.
This also means that the kinetic terms of the u(1) gauge field now appear in the
action. After applying the unimodularity condition, the kinetic terms of the gauge
bosons, as acting on N; ® N, are given by

/ JIAY
- trN,'@Nj- IF;LVF H

. . 2 . 2
= NN (giF,iv —gjFilv +g5; ﬁBLv) (giFi“ Y —giF" + g, ﬁBfW>
1 1

. . N ,
= Njgi try, Fy F'Y + Nigj oy, Fif F1Y +4ﬁ’_ g5.Bl B!, (2.20)
1

with Bjyy = dj;Bjy). The contribution from N; @ N¢ is the same and those from
N; ® N7 and N; @ N7 have been given in the previous section.

We can use the supersymmetry transformations to also reduce the fermionic de-
grees of freedom:

Lemma 2.9 Requiring the unimodularity condition 2.1)) also for the supersym-
metry transformations of the gauge fields, makes the traces of the gauginos pro-
portional to each other.

Proof. We introduce the notation liL,R = li“L r @ T, summed over the repeated
index a =0,1,...,N? — 1, where T are the generators of u(N;) ~ u(1) & su(N;).

5 When having multiple copies of the representations N; ®@N7 and N; ® N7 all expressions will be
multiplied by the number of copies, since the gauge bosons act on each copy in the same way. This
leaves the results unaffected, however.
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Writing out the unimodularity condition (2.1I)) for the transformation (2.10a)) of
the gauge field reads in this case

0 ZNj(g,'tI‘SA,'u —‘rgB[.SB,"u) —&-Ni(gjtr6Aju +g3_/6B/ll)

Putting in the expressions for the transformations and using that the su(N; j)-parts
of the gauginos are automatically traceless, we only retain the trace parts:

0= Njga, [(Jmer, Wulir) + (Jrer, Yuhig)]
JrNigBj [(-]MSRa Yu/’L]QL) + (IméL, YH;LJQR)]
= (Jmew, Yu (N8B AL+ Nign; Ajp)) + (L4 R), (2.21)

where with ‘(L <> R)” we mean the expression preceding it, but everywhere with
L and R interchanged. Since € = (&, &) can be any covariantly vanishing spinor,
(0, &) with VS&; = 0 and (g,0) with VSg_ = 0 are valid solutions for which one
of the terms in (2.21)) vanishes, but the other does not. The term with left-handed
gauginos is thus independent from that of the right-handed gauginos. Hence, for
any &,

(Jmer, Yu(NjgB, AL+ Nigs, AJL))
must vanish, establishing the result.

Via the transformation (2.10b) for the gaugino, we can also reduce one of the
u(1) parts of G ; = G /T, + H; j € C*(M,u(Ny ;).
This provides us a justification for the choice to take the trace in (2.1) only over
t . For if we had not, we would have been in a bootstrap-like situation in which
the gaugino degrees of freedom would have contributed to the relation that we
have employed to reduce them by.
= In the right image of Figure 2.2] no constraint occurs due to the unimodularity
condition because #z— = 0 and the kinetic terms of the gauge bosons are given
by:
/ JTAY
- trNi®N7 ]F”V]F H
8B 8B,

_ . _ _ 2
= UN;oN¢ (giF;iv —gjFiv + ﬁBiuv - VBjuv)
. : ]

_ 2 LY 2 J ol
= jgitrNiF;ILvFi +Nigth‘NjFquj

gBBi gBij) (gB,-Bl- 3 gB,-Bj>”V
N; N; /Juv\ N; N; '

+NiN; ( (2.22)

Here for the second time we stumble upon problems with the fact that the spectral
action gives us an on shell action only. The problem is twofold. First, there is —as
in the case of %; and %8,— a mismatch in the degrees of freedom off shell between
v = y;; and Y = y;;. We compensate for this by introducing a bosonic auxiliary
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field F;; € C(M,N; ® N%) and its conjugate. They appear in the action via

S Fj] = / trw, i Fijy/gd* . (2.23)

From the Euler-Lagrange equations, it follows that Fj; = F; = 0, i.e. Fj; and its
conjugate only have degrees of freedom off shell. Secondly, the four-scalar self-
interaction of W poses an obstacle for a supersymmetric action; regardless of its
specific form, a supersymmetry transformation of such a term must involve three
scalars and one fermion, a term that cannot be canceled by any other. The standard
solution is to rewrite these terms using the auxiliary fields G, G_’]- that the building
blocks of the first type provide us, such that we recover (2.17) on shell. The next
lemma tells us that we can do this.

Lemma 2.10 If 7% g # 0 then the four-scalar terms 2.19) of an almost-commutative
geometry that consists of a single building block %;; of the second type can be
written in terms of auxiliary fields G; ; € C*(M,su(N; ;)) and H € C*(M,u(1)), as
follows:

~ = 1 1
g(Gi,]’aH’Wa ll,) = _TnitrGiz_ TnjtrG%

1 ~~ —_— ~ ~=
— 5H2 —uGPYy—uGy P y—Hu2'yy, (2.24)

where in the terms featuring G; ; the trace is over the N; j X N; j-matrices and with

“ N ll]Cll]’ H N l]]Cl.]]7
= \/ ) (Cl*,JC,,] +CZ*HCW (2.25)

matrices on M-dimensional family space.

Proof. Required for any building block %;; of the second type are the build-
ing blocks Z%; and %, of the first type, initially providing auxiliary fields G; ; =
G T € C(M, su(N ) and H; j € C*(M,u(1)). Here the T,¢; denote the gener-
ators of su(N; ;) in the fundamental (defining) representation and are normalized
according to tr T,“JT, =1, j6a[,, where n; ; is the constant of the representation. Af-
ter applying the unimodularity condition (2.I) in the case that #&— # 0 (the left
image of Figure . 2.2) for the gauge field and its transformation, only one u(1) aux-
iliary field H remains. We thus consider the Lagrangian (2.24) with 32 , 2 self-
adjoint. (These coefficients are written inside the trace since they may have family
indices. However, the combinations 2/ yy and l,l/,@}l,l/ cannot have family-indices
anymore, since G; and G; do not.) Applying the Euler-Lagrange equations to this

Lagrangian yields
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GY = —uT Py, Gl = —uTi Y2y, H=-t2yy
and consequently (2.24)) equals on shell

Z(Gij,H,y,y) = Etr(Ti ‘@i,wijWij)er Etr(Tj ‘I/ij=@;‘llfij)2 + itf(e@/wz‘j‘l/ij)z

n; ~= 1 1/2 ~
=2 (17wl - 120
1
Nif—= 1 /2 ~ 1 ~
+3 (7ol = 17wl + 510
Here we have employed the identity

1

(T3 (T30 = i (S0 — 5
LJ

Omn 8kl) . (2.26)

With the choices (2.25)) we indeed recover the four-scalar terms (2.19) of the spectral
action.

Even though in the case that 7 r—, = 0O (the right image of Figure the
unimodularity condition cannot be used to relate the u(1) fields H; and H; to each
other, a similar solution is possible:

Corollary 2.11 If 5¢z—, = O then the four-scalar terms (2.19) of a building block
B of the second type can be written off shell using the Lagrangian

~ 1 1 1 1 =
Dg(Gi’j,HiJ,l[/, l[/) = ——trG% - ﬁjﬁ‘G? - EHIZ - Esz —trGiﬁi’y/l]/

21’1,’
— Gy P —Hu 29y —Hit 2y, (2.27)
with
1), 1) o
P = 2 NiCiii gy P i = nTanjCiijijjv

1), . .
9=2= W(Cﬁjcﬁj +C;,Cijj)

not carrying a family-index.

In both cases we have obtained a system that has equal bosonic and fermionic
degrees of freedom, both on shell and off shell.
2.2.2.2 The final action and supersymmetry

We first turn to the case that #z— # 0. Reducing the degrees of freedom by iden-
tifying half of the u(1) fields with the other half and rewriting (2.13)) to an off shell
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action we find the extra contributions
(I W, DaWL) + (I W, ¥ (AigCitj W + Cijj WA )
+ (e, Y (W iij i,L+;L]/‘L$C;Fjj)> +/M [\J%jDu‘mz —try, (PYYG))
—try, (F2)UG;) — Hiry, 2'§§ —wyon FiF; j]
to the total action, with
Al =2+ A0idy,, Af=2;—N;;Alidy,

and G; ; € C*(M,su(N; ;)), H € C*(M,u(1)). For notational convenience we will
suppress the subscripts in the traces when no confusion is likely to arise. In addition,
adding a building block Z;; slightly changes the expressions for the pre-factors of
the kinetic terms of A;;, and A j, (cf. Remark@lbelow).

As a final step we scale the sfermion y;; according to

Vij — N i, V= W (2.28)

and the gauginos according to (2.8) to give us the correctly normalized kinetic terms
for both:

(InWrDavi) + (I Wg, v [)Li/Rai,le/Jr aﬁifl})tjl'RD
+ I,y [ﬁé*Jll/L + A;Lﬁaj,ib + /M [|Du ¥’ —tr (299G;)
—t (P, WG;) — tHOWY — tryyom FLF; ,} . (2.29)
J

Here we have written

oo G oo G g
Cij:= G Cji:= N,
ovm Ty (2.30)

L —1 g —1 o —1 g/ —1
Piji=N; PN 2= DN
for the scaled versions of the parameters. For this action we have:

Theorem 2.12. The total action that is associated to %B; & KB & HB;j, given by 2.9)
and [2.29), is supersymmetric under the transformations (2.10),

8V = cij(IueL, V' Vi).7, SV = c;;(Iuer, Y V)., (2.31a)
Sy = ¢} [dn, Wer+dFijer, SYg=ciV'[da V]eL+dj;Fier  (231b)

and
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8Fij = dij(Inr IaWL).7 +dij i (Inr, ¥ Air W) — dij j (I, Y WAjR) 7,

(2.32a)
SF = djj(ImeL, daWr).7 +dj; (e, Y WAiL) 7 — df; (I, VAL W) o,
(2.32b)
with c,J,clj,d,j, d,],d,/ i and d;; j complex numbers, if and only if
=~ 2 =~ 2 . 2 g-2 . 2 g2 .
Cij=¢&j\/ j?igild”” Cji :Sj,i”ngjldMa P = Zldim Pi= yjj_ldim
(2.33)

for the unknown parameters of the finite Dirac operator (where idy; is the identity
on family-space, which equals unity if W;; has no family index) and

di=cli=e\/2 .Ci:,gjiﬁ.j’

/%d /
d'* €] i _ ljJ cG, = & /%Ci,

with €, j,€;; € {£1} for the transformation constants.

Proof. Since the action (2.9) is already supersymmetric by virtue of Theorem [2.3]
we only have to prove that the same holds for the contribution (2:29) to the action
from %;;. The detailed proof of this fact can be found in Appendix [2.6.2]

Then for C;;; and &7; ; that satisfy these relations (setting % ; = 1), the super-
symmetric action (but omitting the u(1)-terms for conciseness now) reads:

(IMWR, DAWL) + V2 Wk, V (€18 MR W + €], W8 jAjR))
+ V20, Y (€ WgiAiL + €18 AL W)

+/M {|Dul,l~/\2—g,-trNi (VvG:) —gjtry, (WYG)) —tr WF Fyl, (234

i.e. we recover the pre-factors for the fermion-sfermion-gaugino and four-scalar in-
teractions that are familiar for supersymmetry. The signs &; ; and €;; above can be
chosen freely.

Remark 2.13 In the case that 5x—, =0, there is an interaction
uv
« [ BB (2.35)

present (see the last term of (2.22))). Transforming the gauge fields appearing in that
interaction shows that the supersymmetry of the total action requires an interaction

o< <JMA’10) JMA'JO%
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a term that the fermionic action does not provide. Thus, a situation in which there
are two different u(1) fields that both act on the same representation N; ® N? is
an obstruction for supersymmetry. This is also the reason that a supersymmetric
action with gauge groups U (N; ;) is not possible in the presence of a representation
N;® N?, since

—trnone By FHY = trgone (eiFyy — &iFiv) (& — g1
=NjgiteFy F/"Y + Nigitr Fj, FI'Y —2g;g,tr Fjp, tr F1Y,

of which the last term spoils supersymmetry. Averting a theory in which two inde-
pendent u(1) gauge fields act on the same representation will be seen to put an
important constraint on realistic supersymmetric models from noncommutative ge-
ometry.

Note that it is not per se the presence of an R = —1 off-diagonal fermion in the
first place that is causing this; in a spectral triple that contains at least one R = +1
fermion the interaction (2.35)) vanishes due to the unimodularity condition 2:T).

Remark 2.14 In the previous section we have compactly written

= %zzvig%ni
only partly for notational convenience. There are two other reasons. The first is that
since the kinetic terms for the gauge bosons are normalized to —1 /4, J¢; must in the
end have the value of 1. This puts a relation between f(0) and g;. This is the same
as in the Standard Model [8| §17.1]. Secondly, the expression for J%; depends on the
contents of the spectral triple. As 2.20) shows, when the Hilbert space is extended
with N; @ NG and its opposite (both having R = 1), then .7) changes to

0 0
= %g?m@MﬂLMNJ)’ Hj = %gin/'(MM”Nf%
4f(0)N; . 5
= 7M . 2'
A N 2 (2.36)

Here M denotes the number of generations that the fermion—sfermion pair comes in.
In fact, the relation between the coupling constant(s) g; and the function f should
be evaluated only for the full spectral triple. In this case however, setting all three
terms equal to one, implies the GUT-like relation

N4
ni(2N;+ MN;)g} = n;j(2N; +MN;)g; = 4ﬁ{Mg§.
l

What remains, is to check whether there exist solutions for C;;; and C;;; that
satisfy the supersymmetry constraints (2.33).

Proposition 2.15 Consider an almost-commutative geometry whose finite algebra
is of the form My,(C) © My, (C). The particle content and action associated to this
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almost-commutative geometry are both supersymmetric off shell if and only if it
consists of two disjoint building blocks %; ; of the first type, for which N;,N; > 1.

Proof. We will prove this by showing that the action of a single building block %;;
of the second type is not supersymmetric, falling back to Theorem [2.3|for a positive
result. For the action of a %;; of the second type to be supersymmetric requires
the existence of parameters Cj;; and C;;; that —after scaling according to (2.30)—
satisfy (2.33) both directly and indirectly via &7 ; of the form ([2:23). To check
whether they directly satisfy (2.33) we note that the pre-factor Jl{jz for the kinetic
term of the sfermion y;; appearing in (2.30) itself is an expression in terms of Cj;;
and C;;;. We multiply the first relation of (2.33) with its conjugate and multiply with
4;; on both sides to get

%
Cll]Clij

2 2
57 nigi ;-

. . 2
Inserting the expression (2.18) for .#;7, we obtain

f(O) 17y
CiCiy = 8"y — NGy Citj + NiCyCiss |

From (2.30) and (2.33) we infer that C};,C;;; = (njgi/nigl )C};Ciij» i.e. we require:

0
T =—> f( ) [glnN +n;g; N]
If we use the expressions (2.36) for the pre-factors of the gauge bosons’ kinetic

terms to express the combinations f(0)n; ;g7 i/ 7% in terms of N; ; and M, the re-
quirement for consistency reads

- 3N 3N
- \2N;+MN;  MN;+2N; )’

The only solutions to this equation are given by M = 4 and N; = N;. However, insert-
ing the solution ([2.33) for C}; ,;Ciij Into the expression (2.25) for &;, Z; (necessary
to write the action off shell) gives

fO) anj
Lol

— : 2 _
i 2 tgiji/ga (@jié‘-ﬂ

with an idy, where appropriate. We again use Remark toreplace f(0)g?/(m*%;)
by an expression featuring N; j, M and n; ;. This yields
g2 12N g & g2 12N & 72g,

" 2Ni+MN; % /" 2Nj+MN; %; K
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for the values M = 4, N; = N, that gave the correct fermion-sfermion-gaugino inter-
actions. We thus have a contradiction with the demand on 7} ; from (2.33), neces-
sary for supersymmetry.

We shortly pay attention to a case that is of similar nature but lies outside the
scope of the above Proposition.

Remark 2.16 For o/r = C@®C, a building block %;; of the second type does not
have a supersymmetric action either. In this case there are only u(1) fields present
in the theory and G;, G; and H are seen to coincide. It is possible to rewrite the

four-scalar interaction of the spectral action off shell, but this set-up also suffers
from a similar problem as in Proposition

We can extend the result of Proposition to components of the finite algebra
that are defined over other fields than C. For this, we first need the following lemma.

Lemma 2.17 The inner fluctuations (I.17) of dy caused by a component of the
finite algebra that is defined over R or H, are traceless.

Proof. The inner fluctuations are of the form

iv'Ay, Ay =Y adu(b),  with a;,b€C”(M,My(F)), F=RH.
i

This implies that A]E is itself an My (F)-valued function. For the inner fluctuations to
be self-adjoint, AE must be skew-Hermitian. In the case that F = R this implies that
all components on the diagonal vanish and consequently so does the trace. In the
case that F = H, all elements on the diagonal must themselves be skew-Hermitian.
Since all quaternions are of the form

Q%a) a,BeC,

this means that the diagonal of AEI consists of purely imaginary numbers that vanish
pairwise. Its trace is thus also 0.

Then we have

Theorem 2.18. Consider an almost-commutative geometry whose finite algebra is
of the form My,(F;) & My, (F;) with F;,F; = R,C,H. If the particle content and
action associated to this almost-commutative geometry are both supersymmetric off
shell, then it consists of two disjoint building blocks %; ; of the first type, for which
]V,',Nj > 1.

Proof. Not only do we have different possibilities for the fields IF; ; over which the
components are defined, but we can also have various combinations for the values
of the R-parity. We cover all possible cases one by one.
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If R = +1 on the representations in the finite Hilbert space that describe the gaug-
inos, then the gauginos and gauge bosons have the same R-parity and the particle
content is not supersymmetric.

If R = —1 for these representations, and R = +1 on the off-diagonal representa-
tions, suppose at least one of the I;, IF; is equal to R or H. Then using Lemma
we see that after application of the unimodularity condition there is no u(1)-
valued gauge field left. Lemmathen also causes the absence of a u(1)-auxiliary
field that is needed to write the four-scalar action off shell as in Lemma If
both F; and FF; are equal to C we revert to Propositionmto show that there is no
supersymmetric solution for M and N; ; that satisfies the demands for CN‘, s C ;i and
&, j from supersymmetry.

In the third case R = —1 on the off-diagonal representations in %% . If both IF; ;
are equal to R or H then there is no u(1) gauge field and thus the spectral action can-
not be written off shell. If either F; or FF; equals R or IH, then there is one u(1)-field,
but the calculation for the action carries through as in Proposition [2.15] and there is
no supersymmetric solution for M and »; ;. Finally, if both IF; ; are equal to C, there
are two u(1)-fields and the cross term as in Remark spoils supersymmetry.

Thus, all almost-commutative geometries for which @/ = My, (F;) © My, (F)
and that have off-diagonal representations fail to be supersymmetric off shell.

The set-up described in this section has the same particle content as the super-
symmetric version of a single (R = +1) particle—antiparticle pair and corresponds
in that respect to a single chiral superfield in the superfield formalism [16, 4.3]. In
constrast, its action is not fully supersymmetric. We stress however, that the scope
of Proposition [2.15] is that of a single building block of the second type. As was
mentioned before, the expressions for many of the coefficients typically vary with
the contents of the finite spectral triple and they should only be assessed for the full
model.

Another interesting difference with the superfield formalism is that a building
block of the second type really requires two building blocks of the first type, de-
scribing gauginos and gauge bosons. In the superfield formalism a theory consisting
of only a chiral multiplet, not having gauge interactions, is in many textbooks the
first model to be considered. This underlines that noncommutative geometry inher-
ently describes gauge theories.

There are ways to extend almost-commutative geometries by introducing new
types of building blocks —giving new possibilities for supersymmetry— or by com-
bining ones that we have already defined. In the next section we will cover an ex-
ample of the latter situation, in which there arise interactions between two or more
building blocks of the second type.



44 2 Supersymmetric almost-commutative geometries

2.2.2.3 Interaction between building blocks of the second type

In the previous section we have fully exploited the options that a finite algebra with
two components over the complex numbers gave us. If we want to extend our theory,
the finite algebra (2.3) needs to have a third summand — say My, (C). A building
block of the first type (cf. Section can easily be added, but then we already
stumble upon severe problems:

Proposition 2.19 The action (I.24) of an almost-commutative geometry whose fi-
nite algebra consists of three summands My, ; , (C) over C and whose finite Hilbert

1

space features building blocks %’3 and %’i is not supersymmetric.

Proof. The inner fluctuations of the canonical Dirac operator on N; ® N;’. and N; ®
N? read:

8B; 8B; 8B; 8B
Bi—-Bj,  dy+gidi— @Al + B — =k

A — o.AC
Iu+giAi 8j ]+Ni N N N,

Bkv

where A; j = Y”Affj,k, with Afj’k(x) € su(Nj j x) and similarly Bffj’k(x) € u(l). The
unimodularity condition will, in the case that the representation of at least one of
the two building blocks has R = +1, leave two of the three independent u(1) fields
—say— B; and B;. The kinetic terms of the gauge bosons on both representations
will then feature a cross term of different u(1) field strengths, an obstruction
for supersymmetry.

To resolve this, we allow —inspired by the NCSM— for one or more copies of
the quaternions H in the finite algebra. If we define a building block of the first type
over such a component (with the finite Hilbert space M,(C) as a bimodule of the
complexification M (]I-]I)(C = M;(C) of the algebra, instead of H itself, cf. [1} §4.1],
[6]), the self-adjoint inner fluctuations of the canonical Dirac operator are already
seen to be in su(2) (e.g. traceless) prior to applying the unimodularity condition. On
a representation N; @ N7 (from a building block %’lﬂ; of the second type), of which
one of the indices comes from a component H, only one u(1) field will act.

From here on, using three or more components in the algebra, we will always
assume at most two to be of the form My (C) and all others to be equal to H.

The action of an almost commutative geometry whose finite spectral triple fea-
tures two building blocks of the second type sharing one of their indices (i.e. that
are in the same row or column in a Krajewski diagram) contains extra four-scalar
contributions. The specific form of these terms depends on the value of the grad-
ing and of the indices appearing. When the first indices of two building blocks are
the same, and they have the same grading (e.g. 93; and %ﬁ, cf. Figure the
resulting extra interactions are given by

o 0 o
Sij. kWi, W] = %Z)N/ /M 1G9, Cjn Vel /g *x. (2.37)

In the other case (cf. Figure[2.4b) it is given by
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_ . £(0) _ _
Sij e Wij, Win] = ?/M|Cijjwij|2|cjjkij|2\/§d4x- (2.38)

The paths corresponding to these contributions are depicted in Figure 2.4]

N,' Nj Nk

0 0
Ni Ni

uls uls
(a) Contributions when the gradings of (b) Contributions when the gradings of
the building blocks are different. the building blocks are the same.

Fig. 2.4: In the case that there are two building blocks of the second type
sharing one of their indices, there are extra interactions in the action.

However, to write all four-scalar interactions from the spectral action off shell
in terms of the auxiliary fields G; ; x, one requires interactions of the form of both
(2:37) and (238) to be present. The reason for this is the following. Upon writing
the four-scalar part of the action of the building blocks %;; and % in terms of the
auxiliary fields as in Lemma@ we find for the terms with G; in particular:

l —_— ~ ~ —
_Ej trNj G? — tI’Nj Gj (Wij@},il//ij) — tI’Nj Gj (‘@j/}kll/jkll/jk) .

On shell, the cross terms of this expression then give the additional four-scalar in-
teraction
Bt J it

~ ~ n; ~ ~
m| 2Py 2 Pl = 2w 2 Pl @39)
J

When the scaled counterparts @) of &) and & satisfy the constraints (2.33)
for supersymmetry, this interaction reads

~ 1~ 5~
i (190 = <19 P 9 )
J

after scaling the fields. When having two or more building blocks of the second type
that share one of their indices, we have either (2:37) or (2.38) in the spectral action,
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while we need (2.39) for a supersymmetric action. To possibly restore supersymme-
try we need additional interactions, such as those of the next section.

2.2.3 Third building block: extra interactions

N &

0
N, k

Fig. 2.5: A situation in which all three building blocks of the second type
are present whose two indices are either i, j or k.

In a situation in which the finite algebra has three components and there are two
adjacent building blocks of the second type, as depicted in Figure 2.4b] there is
allowed a component

D, N @NJ = N;®NY (2.40)

of the finite Dirac operator. We parametrize it with 1; k=« that acts (non-trivially)
on family space. Such a component satisfies the first order condition and its inner
fluctuations

Y anlD, 7 ba] = ¥ @) (55 (bi)n = (b))

generate a scalar Yy € N; @ NY. Since there is no corresponding fermion yj present,
a necessary condition for restoring supersymmetry is the existence of a building
block Z of the second type. The component (2-40) then gives —amongst others—
an extra fermionic contribution

(JMWZ‘]‘J’SY} b if’iijk)

to the action. Using the transformations (2.31)) and (2.32)), under which a building
block of the second type is supersymmetric, we infer that this new term spoils su-
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persymmetry. To overcome this, we need to add two extra components
D" Ni@N{ — N; @ Ny, D, :N;@ Ny — N; ®NY

to the finite Dirac operator, as well as their adjoints and the components that can
be obtained by demanding that [Dp,Jr] = 0. We parametrize these two components
with 1;’* and TI; o respectively. They give extra contributions to the fermionic ac-
tion that are of the form

(IMV jy. 7’5@1‘15 i) + (ImWij, stl'kﬁfkrf ).

Both components require the representation N; @ Ny to have an eigenvalue of ¥ that
is opposite to those of N; ®N§? and N; ® N7. This is the situation as is depicted in

Figure 2.5]

This brings us to the following definition:

Definition 2.20 For an almost-commutative geometry in which % B and %i
are present, a building block of the third type %, is the collectlon of all allowed
components of the Dirac operator, mapping between the three representations N; ®
N% N; @ N} and Ny @ N and their conjugates. Symbolically it is denoted by

Bk = (0.0, + D, + D, ") € A ©End(H5). (2.41)

The Krajewski diagram corresponding to % i is depicted in Figure
The parameters of (2.41) are chosen such that the sfermions y;; and Y are
generated by the inner ﬂuctuatlons of I / and T respectwely, whereas y, is gen-

erated by I k«_This is because ¥, crosses the partlcle/antlpartlcle diagonal in the
Krajewski diagram. Note that i, j, k are labels, not matrix indices.

There are several possible values of R that the vertices and edges can have.
Requiring a grading that yields —1 on each of the diagonal vertices, all possi-
bilities for an explicit construction of R € o/ ® /¢ are given by R = —P ® P°,

= (£1,=£1,+£1) € o/ where each of the three signs can vary independently. This
yields 8 possibilities, but each of them appears in fact twice. Of the effectively four
remaining combinations, three have one off-diagonal vertex that has R = —1 and in
the other combination all three off-diagonal vertices have R = —1. These four pos-
sibilities are depicted in Figure 2.7} We will typically work in the case of the first
image of Figure[2.7] as is visualised in Figure[2.6b] and will indicate where changes
might occur when working in one of the other possibilities. If in this context the
R =1 representations in %% come in M copies (‘generations’), all components of
the finite Dirac operator are in general acting non-trivially on these M copies, ex-
cept C;;; and Cjj;, since they parametrize components of the finite Dirac operator
mapping between R = —1 representations.

Note that in the action the expressions for the pre-factors 4 jz’ N 2 and
JV,% of the sfermion kinetic terms all get an extra contribution from the new edges
of the Krajewski diagram of Figure[2.6] The first of these becomes
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N?¢

O

Ny ©---mmms

(a) For clarity we have omitted here the (b) The same building block as shown
edges and vertices that stem from the on the left side but with the possible
building blocks of the first and second family structure of the two scalar fields
type. with R = 1 being visualized.

Fig. 2.6: A building block %; . of the third type in the language of Krajewski dia-
grams.

————— e =0
+ 1

1 1

1 1

1 1

\ 1

\ 1

| S—

| S
‘

Fig. 2.7: All possible combinations of values for the R-parity operator in
a building block of the third type. Three of those possibilities have one

representation on which R = —1, in the other possibility all three of them

have R = —1. This last option essentially entails having no family structure.
JVZ%&(N-C* ii +N:CsCiii + N 1) (2.42)

ij o2 \VVitiij il J&ijj e k& L) .

The other two can be obtained replacing N;, C;j, C;j; and 1;’ by their respective
analogues.

The presence of a building block of the third type allows us to take a specific
parametrization of the Cj;; in terms of 1; /. To this end, we introduce the shorthand
notations

g, ri == qgin;, W;j = 1 —r,-Ni—erj (243)

where we can infer from the normalization of the kinetic terms of the gauge bosons
(i.e. setting .#; = 1) that ¢; must be rational. Then, similarly as in Proposition [2.15]

we write out Cj;;Cjjj, with Cj;; satisfying (2.33) from supersymmetry, and insert the



2.2 Supersymmetric spectral triples 49
pre-factor (2.42) of the kinetic term. This reads

C;;-j iij = ri(NiC;-jCi,’j —i—N,ijjC,-j/- + N T ]*Y;- ]).
Using r;iC};,Cij; = r;C;;;Ciij, which can be directly obtained from the result (2.33),

ijj iij
we obtain

) e
Cii Ciij = EJN’(Y;] T (2.44)

for the parametrization of Cj;; that satisfies (2.33). For future convenience we will
take

7 e in1/2
Ci,'j =& j 7601" (NkY; / I; J) / s (245)
i j

with g ; € {£} the sign introduced in Theorem The other parameter, Cj;;, can
be obtained by r; — rj, & j — €; ;. This yields for the pre-factor (2.42) of the kinetic
term of ;;:
f(O) 7 ri . . f(()) 1 . .
NP=" (N +N,—-L +1 N =L —NTY 2.46

ij 27r2 lwij + j (1)1']‘ + k4 i 27[2 a)l‘j k4 i ( )
prior to the scaling (2.28). When ;; has R = 1 and therefore does not carry a family
structure (as in Figure (2.6b)) then the trace over the representations where y;;y;;
and ﬁi j y;; are in, decouples from that over My (C). Consequently, the third term in
(2:42) and the right hand sides of the solutions (2:43)) and (2.46) receive additional
traces over family indices, i.e. NyX;7*Y;” — Nitry X;7*T; /. The strategy to write
C;;j in terms of parameters of building blocks of the third type works equally well
when the kinetic term of ;; gets contributions from multiple building blocks of

the third type. In that case Ni1; 7*Y: 7 must be replaced by a sum of all such terms:
Y NY, T,/ (see e.g. Section|2.2.3.1), where the label  is used to distinguish the

building blocks Z;; that all give a contribution to the kinetic term of ;.
There are several contributions to the action as a result of adding a building block
of the third type. The action is given by

SijklC. 81 = SrielC. C1+SpiilC), (2.47)

with its fermionic part Sy ;x[{, ] reading
Srikl€, E] = (Iu¥;), "}’SWikﬁjij o+ (IMVj, Y1 ViV i)
+ Ve VWL W)+ U Wi V1 W W)
IV YW W) + Wi Y W F ). (2.48)

The bosonic part of the action is given by:



50 2 Supersymmetric almost-commutative geometries

00181 = 2O M 0 P4 M B
+ Netryg (57072 97,
+5b,ij,jk[C] +Sb7ik,jk[a +Sb,ij,ik[g]» (2.49)
with

=~ £(0 e - _ _ ke
Sp.ij.jkC] = %[Niwﬁjllfijr,' Wil N /9, ClacWin P + W 17X e

= kx /~ % \0 ~ oy k~
+ (t“l/jkrj (vi,Ciij)° (Ciij i)Y, " Wi
+ trﬁjkcjjk(ﬁijr j*)o (% j‘T’ij)OCj/k Vi

where the traces above are over (N; @ N?)®™_ The fact that in this context V; ; has
R = 1 makes it possible to separate the trace over the family-index in the last term of
the first line of (2.49). A more detailed derivation of the four-scalar action that corre-
sponds to a building block of the third type, including the expressions for S, i jk[C]

and S;,,,;,-Jk[f], is given in Appendix

The expression (2.49) contains interactions that in form we either have seen ear-
lier (cf. 2:19), (2.37)) or that we needed but were lacking in a set-up consisting only
of building blocks of the second type (cf. (2.38), see also the discussion in Section
[2.2.2.3). In addition, it features terms that we need in order to have a supersymmet-
ric action.

We can deduce from the transformations (2.3T)) that, for the expression (2.48)
(i.e. the fermionic action that we have) to be part of a supersymmetric action, the
bosonic action must involve terms with the auxiliary fields F;;, Fy and Fj; (that are
available to us from the respective building blocks of the second type), coupled to
two scalar fields. We will therefore formulate the most general action featuring these
auxiliary fields and constrain its coefficients by demanding it to be supersymmetric
in combination with (2.48). Subsequently, we will check if and when the spectral
action (2.49) (after subtracting the terms that are needed for (2.38)) is of the correct
form to be written off shell in such a general form. This will be done for the general
case in Section 2.3

The most general Lagrangian featuring the auxiliary fields F;;, Fi, Fj; that can
yield four-scalar terms is

SpaistottlFij Fis Fie, C / Gy iiott(Fij Fe, Fie, ©)/2d%x, 2.51)

with
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Lpijioit(Fijs Fites Fite, E) = —twF3Fj+ (0 F3By, kllfzk‘lfjk +h.c.)
— tr FycFy+ (tr Fy B Wi Wik + hoc.)
—tr F i Fjt (trFkﬁ]k,l//”w,k+hc)
Here f3;; «. Bix,j and B ; are matrices acting on the generations and consequently the
traces are performed over N?M (the first two terms) and N,?M (the last four terms)

respectively. Using the Euler-Lagrange equations the on shell counterpart of (2.51))
is seen to be

Sbijk,onlC] :/M\/§d4x(|ﬁz‘j,kll~/ik¢jk\2+|l3i2,jll~/ijll~fjk|2+|ﬁjk,i$ij171ik|2)

cf. the second and third terms of (2:49). We have the following result:

Theorem 2.21. The action consisting of the sum of [2.48) and @2.51) is supersym-
metric under the transformations 2.31) and (2.32) if and only if the parameters of
the finite Dirac operator are related via

k ~— O\ — j e
Tj Cjkllcz_( ikk) lnk7 ( uk) 1Tk _Y;]Ciij17 YjCljjl__T ijllc (2.52)
and
I T Ha e I A D A 10 i
Bii B = 5 =177, (2.53)
where

I ] -1 ro -1 LBl = -1
Bijx = J’Gk BijxHu s Bixji= ]k ﬁ:kr/’/ Bix,i = N Bjki-Vy
and

S R (R AR vt A/ R £ 00

1

denote the scaled versions of the B ;’s and the Y; 15 respectively.

Proof. See Appendix [2.6.3]
For future use we rewrite (2.52) using the parametrization ([2.43) for the Cj;j,

giving
. ~1
8i7jw/COin;j=—£,‘7k\/a)7,'kY; R Ej ./a)l Sjk\/@T
Tk >k
iV Ok ;" = —& j /O X, (2.55)
where we have written

fij — Y;-j(thrY;.j*T;. j)fl/z’fik — (NJY; ky, k*)fl/le;_ k’

1

PRESS FRl(\5 Vs VO R (2.56)
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There is a trace over the generations in the first term because the corresponding
sfermion y;; has R = 1 and consequently no family-index. Using these demands on
the parameters, the (spectral) action from a building block of the third type becomes
much more succinct. First of all it allows us to reduce all three parameters of the
finite Dirac operator of Definition 2.20] to only one, e.g. T = 1; ’. Second, upon
using the second and third lines of are seen to cancel J] If the demands
and are met, the on shell action that arises from a building block
B ji of the third type reads

= 20 5=~ _ =~
S8, § A = g [ [ P T W) + 50 W0, P YT W)

+ K (In v, P LT i) +hoc'}

S (1 o) [Pl (1 - o) Tl + (1 - o) T 0] @257
m

Here we used the shorthand notations ij — 1, ik — 2, jk — 3 and k; = €;;€;4,
K; = & ;€ 1 to avoid notational clutter as much as possible and where we have writ-
ten everything in terms of T = YN;J (as defined above), the parameter that corre-
sponds to the sfermion having R = 1 (and consequently also multiplicity 1). The
index m in g, and g, can take any of the values that appear in the model, e.g. i, j or
k. As with a building block of the second type there is a sign ambiguity that stems
from those of the Cj;;. In addition, the terms that are not listed here but are in (2.47)
give contributions to terms that already appeared in the action from building blocks
of the second type. See Section [2.3]for details on this.

For notational convenience we have used two different notations for scaled vari-
ables: 1>/ from 2:2.3) and 1;” from (Z.34). Using the expression (2.46) for .4, in
terms of 1/ these are related via

_ 2m? o172 20 =
Y;./kEJ%k ly;.k: mwlk(N] jk jk) /Y;kEgl T;Y;k’ (258)

assuming that W has R = —1. The other two scaled variables give analogous ex-
pressions but the order of 1" and 1"* is reversed and the sfermion with R = 1 gets an
additional trace over family indices.

Remark 2.22 Note that we can use this result to say something about the signs of
the Cj;j appearing in a building block of the third type. We first combine all three

equations of (2.52) into one,

15 = (1) (CirCi ) T (CaCiua) (Cs i)

6 More generally, this also happens for the other combinations: the four-scalar interactions of (Z:99)
are seen to cancel those of (Z:102))
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when it is C;j and C;j; that do not have a family structure. All these parameters are
only determined up to a sign. We will write

ni‘%/j 8i

Clle7 = Sij nj%?j’

1

with s;j .= & j€j; = £1,

¢f. (2.33), etc. which gives T; = —5ijS jkSki kfor the relation above. So for consis-
tency either one, or all three combinations of C;;; and C;j; associated to a building
block %;; that is part of a %, jx must be of opposite sign.

Remark 2.23 If instead of V;j it is Wy or Illjk that has R =1 (see Figure|2.7) the
demand on the parameters Y,”, 1;* and T is a slightly modified version of (2.52):

(T Cjkk) :_( ij;ck)ilnla ( ;kik)ily; _chllj]7 T]Cljjl (T C]/k)
(2.59)

where A" denotes the transpose of the matrix A. This result can be verified by con-
sidering Lemmal[2.43|for these cases.

By introducing a building block of the third type we generated the interactions
that we lacked in a situation with multiple building blocks of the second type. The
wish for supersymmetry thus forces us to extend any model given by Figure[2.5|with
a building block of the third type.

If we again seek the analogy with the superfield formalism, then a building block

of the third type is a Euclidean analogy of an action on a Minkowskian background
that comes from a superpotential term

/ (7 U @ud)| +he ) with F({Bu}) = fomp@uBaBy,  (2.60)
where &, , ,, are chiral superﬁeld_s,_ Jmnp 1s symmetric in its indices [16} §5.l]_ and
with | we mean multiplying by 66 and integrating over superspace [ d?0d?6. To

specify this statement, we write &;; = ¢;; + V26 y;; + 00F;; for a chiral superfield.
Similarly, we introduce ®j; and @y;. We then have that

/M {(Pij‘pjk(pkz} . +he. = /M —Vii 0k Wi — Vi Wik Oki — Oij Wik Wi
+F 0k Oxi + 0 Qi Fri + O i F i Qri + h.c.
This gives on shell the following contribution:
- /M (‘I’ij¢jkllfki + VWi Wik Ori + O Wik Wi

1 1 1
+ §|¢jk¢ki|2 t3 il * + §|¢ki¢ij\2 +h~6‘-),
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to be compared with (2.37). In a set-up similar to that of Figure but with the
chirality of one or two of the building blocks %;;, %, and % being flipped, not all
three components of Dy such as in Definition [2.20] can still be defined, see Figure
[2.8] Interestingly, one can check that in such a case the resulting action corresponds
to a superpotential that is not holomorphic, but e.g. of the form &; jcbikd-"}k instead.
To see this, we calculate the action in this case, giving

/M[(pij¢;k¢ki]F+h'C':/M_l/fijd’;kll’ki+Fij¢;k¢ki+¢ij¢;kai+h~c~v
which on shell equals
* 1 * 2 1 x 12
—/M‘I’ij¢jkll/ki+§|¢jk¢ki| + 51005l +hec.

This is indeed analogous to the interactions that the spectral triple depicted in Figure
[2.8] (still) gives rise to.

N; N; Ny
N? e—
1
@
N}
N ©

Fig. 2.8: A set-up similar to that of Figure
but with the values of the grading reversed for
N; ® N7 and its opposite. Consequently, only one
of the three components that characterize a build-
ing block of the first type can now be defined.

2.2.3.1 Interaction between building blocks of the third type

Suppose we have two building blocks % jx and Z;;; of the third type that share two
of their indices, as is depicted in Figure[2.9] This situation gives rise to the following
extra terms in the action:
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fO) = . = e [ ke~ _ o
?[Ni‘l//jkc;jkcjﬂwf”z+Ni|‘ijTj Yl + 0 PG gl 4 (e )
1(0)

T

~ = kx l~ =
(MtrCiiklllikll/jij Yy Cry
NG G 3 Con G v ;! +h.c.), 2.61)

where with ‘(i <+ j)* we mean the expression preceding it, but everywhere with i and
Jj interchanged. The first line of corresponds to paths within the two building
blocks % jx and %;j; (such as the ones depicted in Figure and the second line
corresponds to paths of which two of the edges come from the building blocks of
the second type that were needed in order to define the building blocks of the third
type (Figure[2.9b).

If we scale the fields appearing in this expression according to (2.28) and use the
identity ([2.52)) for the parameters of a building block of the third type, we can write

(2:61) more compactly as
2T o 2 8m 2T AT o 0
4”jerjgj|‘I/jk‘I/jl| +4qﬂwijNi|ijn RATH
m
2
8 > o P . . *
4 RO Wl W+ ST 0 1)
m

2 a4 ~ = ~ =

+ ka14%(1 — )0y 0l G T Wi Wy + hec, (2.62)
m

where K = Eki€k j, KI = &€ j € {:l:l}, fk = Ti.k J of '@Uk and fl = Ti,l J of f@iﬂ, as

defined in (2:2.3) but with contributions from two building blocks of the third type:

L =0 N, G N T ) (2.63a)

f},z T=0, (N X Y N Y, Ty1e, (2.63b)
This expression can be generalized to any number of building blocks of the third
type. In addition, we have assumed that s;;s;; = s jis j; for the products of the relative
signs between the parameters C;;; and Cy etc. (cf. Remark @])

These new interactions must be accounted for by the auxiliary fields. The first
and second terms are of the form and should therefore be covered by the
auxiliary fields G; ;. The third term is of the form (2.38) and should consequently be
described by the combination of G; ; and the u(1)-field H. The second line of
should be rewritten in terms of the auxiliary field F;;. This can indeed be achieved
via the off shell Lagrangian

— e FiFy+ (wF (B W ji+ Bija Wa W ) + hc.),
which on shell gives the following cross terms:

tr B 1Bijx Vi ik ‘T/jlﬁ'z +h.c. (2.64)
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N; N j Ny N; N; N J N N
Ny L

N —Z < : ;

I H

I 1

! i

I < H
N;-’ S Nj‘«’ >/6
N? o N |o--—--
Ny o o I/ R
(a) Contributions corresponding  to (b) Contributions corresponding to
paths of which all four edges are from paths of which two edges are from
th? building blocks %, and %;;; of the building blocks %y and %;; of the sec-
third type. ond type.

Fig. 2.9: In the case that there are two building blocks of the third type sharing two
of their indices, there are extra four-scalar contributions to the action. They are given

by 2.61).

In form, this indeed corresponds to the second line of (2.62)). In Section[2.3]a more
detailed version of this argument is presented.

Furthermore, it can be that there are four different building blocks of the third
type that all share one particular index —say Bixi, Bikm, Bju and B i, sharing
index k— then there arises one extra interaction, that is of the form

f(0)

Nk? I:try; m*lﬂl\}l‘mﬁjmy‘j m-rj Z*lﬂl}jlﬁiln ! + hc] .

Scaling the fields and rewriting the parameters using (2.33) gives

2 = S, ~ =
4§—”wikwjk 9 D MV v Wy MTTARE R (2.65)
n

where g, can equal any of the coupling constants that appear in the theory and we
have written

L, =1, "(NaX, 0, N, B, )2,
=, k ks k ks kN —
L =0, \(NaX,, T, N, ),

and the same for m <> [. The path to which such an interaction corresponds, is given
in Figure [2.10] One can check that this interaction can only be described off shell
by invoking either one or both of the auxiliary fields F;; and F;,,,. This means that in
order to have a chance at supersymmetry, the finite spectral triple that corresponds
to the Krajewski diagram of Figure requires in addition at least %;; or %,
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N; N; Ny N, Nin
N? ) C)
Bit: Bikm
Ny ° o
Bixi - Bikm
M@ ® ® ®

N @ @

N, @ ®

Fig. 2.10: When four building blocks of the third kind share one
common index (in this case k) and each pair of building blocks
shares one of its two remaining indices (i, j, / or m) with one other
building block, there is an additional path that contributes to the
trace of D‘}p (including its inner fluctuations). The interaction is

given by (2.63).

2.2.4 Higher degree building blocks?

The first three building blocks that gave supersymmetric actions are characterized
by one, two and three indices respectively. One might wonder whether there are
building blocks of higher order, carrying four or more indices.

Each of the elements of a finite spectral triple is characterized by one (compo-
nents of the algebra, adjoint representations in the Hilbert space), two (non-adjoint
representations in the Hilbert space) or three (components of the finite Dirac oper-
ator that satisfy the order-one condition) indices. For each of these elements corre-
sponding building blocks have been identified. Any object that carries four or more
different indices (e.g. two or more off-diagonal representations, multiple compo-
nents of a finite Dirac operator) must therefore be part of more than one building
block of the first, second or third type. These blocks are, so to say, the irreducible
ones.

This does not imply that there are no other building blocks left to be identified.
However, as we will see in the next section, they are characterized by less than four
indices.
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2.2.5 Mass terms

There is a possibility that we have not covered yet. The finite Hilbert space can
contain two or more copies of one particular representation. This can happen in
two slightly different ways. The first is when there is a building block %+ of the
second type, on which the same component C of the algebra acts both on the left
and on the right in the same way. For the second way it is required that there are two
copies of a particular building block Z;; of the second type. If the gradings of the
representations are of opposite sign (in the first situation this is automatically the
case for finite KO-dimension 6, in the second case by construction) there is allowed
a component of the Dirac operator whose inner fluctuations will not generate a field,
rather the resulting term will act as a mass term. In the first case such a term is called
a Majorana mass term. We will cover both of them separately.

2.2.5.1 Fourth building block: Majorana mass terms

The finite Hilbert space can, for example due to some breaking procedure [6} 8],
contain representations

121”91 ®1°~CaC,

which are each other’s antiparticles, e.g. these representations are not in the adjoint
(‘diagonal’) representation, but the same component C of the algebre{] acts on them.
Then there is allowed a component Dl,llll of the Dirac operator connecting the two.
It satisfies the first order condition (T.12)) and its inner fluctuations automatically
vanish. Consequently, this component does not generate a scalar, unlike the typical
component of a finite Dirac operator. Writing (£,£') € (C@® C)®™ (where M de-
notes the multiplicity of the representation) for the finite part of the fermions, the
demand of Dy to commute with Jr reads

(D11'1/1§_7D1'1“/5—/) = (Dl'llll‘glel/l/lé/)'

Using that (D, jlk)* =D, this teaches us that the component must be a symmetric
matrix. It can be considered as a Majorana mass for the particle y;, whose finite
part is in the representation 1® 1’° (cf. the Majorana mass for the right handed
neutrino in the Standard Model [8]]). Then we have

Definition 2.24 For an almost-commutative geometry that contains a building block
2B of the second type, a building block of the fourth type %, consists of a com-
ponent

D" 191’ 51 01°

7 For a component R in the finite algebra this would work as well, but such a component would
not give rise to gauge interactions and is therefore unfavourable.
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of the finite Dirac operator. Symbolically it is denoted by

Bunaj = (0,D,,"V) € A4 ©End(H5),

where for the symmetric matrix that parametrizes this component we write Tp,.

59

In the language of Krajewski diagrams such a Majorana mass is symbolized by a

dotted line, cf. Figure[2.11

1 1
10 e o)
® o
- Ym
@ —

Fig. 2.11: A component of the finite Dirac
operator that acts as a Majorana mass is
represented by a dotted line in a Krajew-

ski diagram.

A PBnaj adds the following to the action (1.24):

%<JMW11’L7 YYawiv) + l<JMV1 vre Y oWy 1g)
+M[|T Vi Chy 2+ Gy 1 G 2
+20r Y T )|
Z(tr Vi Chip) T 'j%/jﬁljciklj
! +trly (‘I’11/C1/1'1) C1/1/,W1'ﬂl’1,

(O
71-2

—HrTmTl, l//l/j(l//“/Tl ) "Illjrl "‘I’l.C.)7

(2.66)

where the traces are over (181 ”)ﬂaM . In this expression, the first contribution comes
from the inner product. The paths in the Krajewski diagram corresponding to the
other contributions are depicted in Figure In this set-up it is Yy ; that does not
have a family index. Consequently we can separate the traces over the family-index
and that over N; in the penultimate term of the second line of (2.66). We would like

to rewrite the above action in terms of I’ = T, /by using the identity (2.39). For this
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we first need to rewrite the Cj;; to the C;;; by employing Remark Writing out
the family indices of the third and fourth line of (2.66) gives

tr((?l I’Crll’)grm)a levj?]jc(Cﬁj(lﬁf j)t)ca —&-tr(Tm(?] I’CT’M)O)acl’l’jiﬁl’jﬁljc(rl j)ca

_ ”1%/1& e = * 0 Jor T o
_ /n,%l o, 110 | 5y o) Ty € (2.67)

where a, b, ¢ are family indices, s;; is the product of the signs of C;;; and C;;; (cf. the
notation in Remark [2.22) and where we have used that 1, is a symmetric matrix.

1 v . / N
0 o & e
: o -
170 @ ee e
(]
1/1) N;) e 0 Q

(a) A path featuring edges
from a building block of the
second type.

(]
N¢ © () e

(c) A path featuring edges
from building blocks of the
second and third type.

(b) A path featuring edges
from a building block of the
third type.

(d) A second path featuring
edges from a building block
of the third type.

Fig. 2.12: In the case that there is a building block of the fourth
type, there are extra interactions in the action.

Then to make things a bit more apparent, we scale the fields in (2.66) (with the
third and fourth line replaced by (2.67)) according to (2.28) and put in the expres-
sions for the Cjj; from (2.45), which gives
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I . 1 -
§<JM‘I’11'L7 YYivi) + EUMV’] vV T W)

+an T2 +2 Y o1 ([Tl [l + 17, 70,1
J

20) j =~ ~ ~ ~ —_
+ KijZzgm\/ le (tr Vi (r 4+ oY 1) T v vy +h-C-)7
j m
(2.68)

where we have written |a|3, = tryya*a for the trace over the family-index, 17'1 =
17’1, !, and where Ky = &y ;€ 1, Kj = € €1 € {£1}. We replaced 1/7(171/ by v,y
since these coincide when v/, s is a gauge singlet. Consequently, the traces are now
over 1M, In addition we used the relation (2:39) between 1,7, 1,/ and 1} V', the
symmetry of 1y, and that g = g/ (which follows from the set-up) and consequently
r1 = ry and @y ; = @y;. In contrast to the previous case, not all scalar interactions
that appear here can be accounted for by auxiliary fields:

Lemma 2.25 For a finite spectral triple that contains, in addition to building blocks
of the first, second and third type, one building block of the fourth type, the only
terms in the associated spectral action that can be written off shell using the avail-
able auxiliary fields are those featuring \J or its conjugate.

Proof. The bosonic terms in (2.66) must be the on shell expressions of an off shell
Lagrangian that features the auxiliary fields available to us. Respecting gauge in-
variance, the latter must be

—twFyy Fy — (thl*v (YW + Y B viv)) + h-C-) - (2.69)
J

On shell this then gives the following contributions featuring ¥, and its conjugate:
el + Y (uy 1/?11/‘!71'1'?1‘;[371/,]' +hc.),
J
which corresponds at least in form to all bosonic terms of (2.68)), except the second

term of the second line.

We can use an argument similar to the one we used for building blocks of the
third type:

Lemma 2.26 The action consisting of the fermionic terms of [2.68)) and the terms
of 2.69) that do not feature B,y j or its conjugate is supersymmetric under the

transformations (2.32)) iff
Y =Yl (2.70)

and the gauginos represented by the black vertices in Figure that have the
same chirality are associated with each other.
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Proof. See Section[2.6.4]

Combining the above two Lemmas, then gives the following result.

Proposition 2.27 The action (2.68) of a single building block of the fourth type
breaks supersymmetry only softly via

2 o1 ([T il + 0T ,1°)
J

1 =k 1 K1’ Ki
r=- and wle}T- :(_Zi 12]

7 . )idM, 2.71)

where the latter should hold for all j appearing in the sum in (2.66). Here ki1 =
evjer1, K = & rejn € {£1}.

Proof. To prove this, we must match the coefficients of the contribution (2.68) to
the spectral action from a building block 4/ to those of the auxiliary fields (2.69).
This requires

i 201, . oo ~ i
N =2V, KiKi2gm, | T’:(rl idy +0,1; T ) Tl =110 (Bly )
2.72)

for all j, where /%’ denotes the phase ambiguity left in X}, from (2-70) and where we
have used the symmetry of 1y,. From supersymmetry 7;y- is in addition constrained
by ([2.70), which requires the first relation of (2.71)) to hold. For the building block
P11} to have a supersymmetric action we demand

" 2@11 7i¢ﬁ. Nt
ﬁ11/,j:gmﬂq7€ J<rj)7

which can be obtained by combining the demand (2.33)) with the relation (2.38)), but
keeping Remarkin mind since it is yy/; that does not have a family index. As
is with 17, the demand (2.53) determines 3/, ;j only up to a phase (})ﬁ/. Comparing
this with the second demand of 2.72)), inserting (2.70) and using the symmetry of
11, we must have

9y =g, modT, 2(ryidy +o1;T; T, ") = k24 /Fridy

Inserting the first relation of (2.71), its second relation follows. The second term of
the second line of (2.68) cannot be accounted for by the auxiliary fields at hand,
which establishes the result.

It is not per se impossible to write all of (2.68) off shell in terms of auxiliary
fields, but to avoid the obstruction from Lemma [2.25] at least requires the presence
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of mass terms for the representation ¥, ; and y/ j such as the ones that are discussed
in the next section.

2.2.5.2 Fifth building block: ‘mass’ terms

If there are two building blocks of the second type with the same indices —say i

and j— but with different values for the grading, we are in the situation as depicted
in Figure[2.13] On the basis

oM
(NN & (N; 0Ny (N; @ NP (N ©N] )| 2.73)

the most general finite Dirac operator that satisfies the demand of self-adjointness,
the first order condition (I.12) and that commutes with J is of the form

0 0 w+p? 0
0 0 0 (W) 4w
Dr = ! J 2.74
Flm+w) 0o 0 0 @79
ul w0 0

with p; € My (C) and p1; € My, (C). The inner fluctuations for general such ma-
trices ; ; will generate scalar fields in the representations My, ; (C). If we want
these components to result in mass terms in the action, we should restrict them both
to only act non-trivially on possible generations, i.e. for a single generation the com-
ponents are equal to a complex number. We will write 1 := ; + 17 € My (C) for
the restricted component.

This gives rise to the following definition.

Definition 2.28 For a finite spectral triple that contains building blocks %li; and

%’i of the second type (both with multiplicity M), a building block of the fifth type
is a component of Dr that runs between the representations of the two building
blocks and acts only non-trivially on the M copies. Symbolically:

PBroass.ij = (O7D,'jLin) € A QEnd(F).

We denote this component with 11 € My (C).
If for convenience we restrict to the upper signs for the chiralities of the building
blocks and write
(WijLs Wijr» Wiirs Wijr)

for the elements of L>(M,S ® ) on the basis (2.73) (where the first two fields
are associated to %’f; and the last two to %l; ), then the contribution of (2.74)) to the
fermionic action reads
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N; N;

e¢————@

(4
N;j D)

| |
Yij

!
Yiir

NY . N E' VijL
Fig. 2.13: The case with two building blocks of the second
type that have the same indices but an opposite grading; a
component of the finite Dirac operator mapping between
the two copies will generate a mass-term, indicated by the
dotted line with the ‘u’.

1 _ _ —
Sf.mass[C] = §<J(‘l’ijL, Viirs ‘lfi/jRﬂI’JijL),}’SDF(‘l/ijL, V/i/jRa Viirs V’;jL))
= (Vs ¥ B WR) + U Wi V1 Wi ) (2.75)

Let ¥ and ' be the sfermions that are associated to %f; and 931; respectively, then
the extra contributions to the spectral action as a result of adding this building block
are given by

Sp,mass[E] = %(Nilu Ciij Wijl* + Nyl Cijjllfij|2+M|“Cz{ijlyi/j‘2+Nj|ucz(jjllli/j|2)
f 0 « 7 1k ~ = ks
+ 7572) Y [Ni el Cif Cinn W W 3 1
X

(N (R T 509 G+ N ) | 276)

where the second and third lines arise in a situation where for some k, %;j; is
present. The paths corresponding to these expressions are depicted in Figure [2.14]
Here, the C;;; with a prime correspond to the components of the Dirac operator of
#;;. We assume that they also satisfy (2.33). In this context Y does not have a
family-index and consequently we could separate the traces in the first term of the

third line of (2.76).

In a similar way as with the building block of the fourth type we can rewrite the

second line of using Remarks [2.22]and 2.23] giving
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f 0 = s ~ = s g x
%[Nitr(WijCz(i/‘)aCiikWiijkb(y} (1) )ba
Nl (G Ve B 10 (C e +
(N iri+Njr;
VN8 j8k

Replacing the second line of (2.76) with (2.77) and then scaling the fields and rewrit-
ing 1}/ and Y, ¥ in terms of T, k =7 using the identities (2.39), reduces the bosonic
contrlbutlon to

)t ry, Clip Tk*llltkwjk ek T hec. 2.77)

.~ ~ 20)1‘ —=/ sy~ =
2(1 _wij)(“i Wij|2+|“wi/j|2) +2Z {Kjgl(l _a)ij)“ Iktr%;ﬂ I yuy i +hc
k
+col-k(Nj|m|§4%k|2+Ni|u?1,7jk|2)], (2.78)

where we have again employed the notation |‘1|12v1 = tryra*a for the trace over the
family-index and used that s;.€; ;& ; = €;,€jx = Kj € {£}. The index [/ can take
any of the values that appear in the model.

Here we have a similar result as in the previous section:

Lemma 2.29 For a finite spectral triple that contains, in addition to building blocks
of the first, second and third type, one building block of the fifth type, the only terms
in the associated spectral action that can be written off shell are those featuring ;;,
yi; or their conjugates.

Proof. In order to rewrite the first terms of (2.78)) in terms of auxiliary fields, we
must introduce an interaction featuring one auxiliary field ' and one sfermion. Since
y;j and ‘T’zlj are in the same representation of the algebra, we can choose whether to
couple ;; to F;; (corresponding to %’Jr) or to F (corresponding to ,@’) The same
holds for y! ;- Transforming the fermlons in li according to (2.31) suggests that,
in order to have a chance at supersymmetry, we must couple F/ ;o yij and F;j to
;. We thus write

—wFFj— wF; Fj— (wF;8,9 + 0 F 89+ hec.) (2.79)

with &;;,8/; € My(C). This yields on shell |5;;¥;|* +[8/;%];|*, which is indeed of
the same form as the first two terms in ([2.78). In the case that there is a building
block Z; j of the third type present, the extra contributions to the action must come

from the cross terms of
—twFjjFj—wFF — [trF* (&, "‘rﬁz]kll/tkwjk) + e F 8+ h. c}

where the interaction with f3;; x corresponds to the second term of (2.5T)). On shell
this gives us the additional interaction
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(a) A path with u, featuring edges from a
building block of the second and third type.
i . Nk
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(b) A path with u, featuring only edges from
building blocks of the third and fifth type.

Fig. 2.14: In the case of a building block of the fifth type, there are various extra
contributions to the action, depending on the content of the finite spectral triple.

= « _ =
;877 Bij kWi W j + hoc. (2.80)

In form, this indeed coincides with the second line of (2.78). The last two terms
of do not appear here and consequently they cannot be addressed using the
auxiliary fields that are available to us when having only building blocks of the first,
second and third type.

Similar as with the previous building blocks we can check what the demands for
off shell supersymmetry are.

Lemma 2.30 The action consisting of the fermionic action and the off shell
action (Z.79) is supersymmetric under the transformations 2.32)) if and only if

88" =u*u, 8’8" =pu*. (2.81)
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Proof. See Section[2.6.3]

Combining the above lemmas gives the following result for a building block of
the fifth type.

Proposition 2.31 For a finite spectral triple that contains, in addition to building
blocks of the first, second and third type, one building block of the fifth type, the
action of a single building block of the fifth type breaks supersymmetry only softly
via

o (N T By T+ NI T )

1
a),»j:E

and the product of the possible phases of 8" and B;j i (cf. 2.81) and @2.53) respec-
tively) is equal to €; ;€ .

Proof. This follows from comparing the spectral action with the off shell
action and using the demands (2.8T)) and 2.53).

The form of the soft breaking term suggests that, in order to let it be part of a
truly supersymmetric action, we have the following necessary requirement. Each
two building blocks of the second type that are connected to each other via an edge
of a building block of the third type, both need to have a building block of the fifth
type defined on them. In the case above this would have been Wy and /jy.

2.3 Conditions for a supersymmetric spectral action

Our aim is to determine whether the total action that corresponds to an almost-
commutative geometry consisting of various of the five identified building blocks,
is supersymmetric. More than once we used the following strategy for that. First,
we identified the off shell counterparts for the contributions of trr &* to the (on
shell) spectral action, using the available auxiliary fields and coefficients whose
values were undetermined still. Second, we derived constraints for these coefficients
based on the demand of having supersymmetry for the fermionic action and this off
shell action. Finally, we should check if the off shell interactions correspond on
shell to the spectral action again, when their coefficients satisfy the constraints that
supersymmetry puts on them. If this is the case then the action from noncommutative
geometry is an on shell counterpart of an off shell action that is supersymmetric.

In the previous sections we have experienced multiple times that the pre-factors
of all bosonic interactions can get additional contributions when extending the
almost-commutative geometry. As was stated before, we should therefore assess
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whether or not the demands from supersymmetry on the coefficients are satisfied
for the final model only. In this section we will present an overview of all four-
scalar interactions that have appeared previously, from which building blocks their
pre-factors get what contributions and which demands hold for them. We identify
several such demands, thus constructing a checklist for supersymmetry.

1. To have supersymmetry for a building block %;; of the second type, the com-
ponents of the finite Dirac operator should satisfy (2.33)), after scaling them. For
a single building block of the second type this demand can only be satisfied for
N; = Nj and M = 4 (Proposition [2.15). When %;; is part of a building block of
the third type the demand is automatically satisfied via the solution (2.43).

2. A necessary requirement to have supersymmetry for any building block %; j; of
the third type (Section [2.2.3), is that the scaled parameters of the finite Dirac
operator that make up such a building block satisfy

0T = 0p TR = 0 YT = Q5,0 (2.82)
JkL j Jj ik Li i 1t i - SEjjk=eijke '
This relation can be obtained from (2.33), multiplying each term with its conju-
gate. For notational convenience we have introduced the variable Qi*].k_Q,- k-

3. Terms < |y; jﬁi j|2 appear for the first time with a building block of the second
type ((2.19) in Section 2.2.2)) but also get contributions from a building block
P jx of the third type (first term of (2.49)). The total expression reads

7(0) f O “Cii Wi W
272 {N"|Ciijciij i Wiyl + NIC Cig W Wy

+ YN0
k

2 12 2
- 2% (Niriz +aijZNk(Qi§injk)2> Vij Vi
! k
2 12
+2q% (N,r§+(1—aij)ZNk(Q;;kQ,-jk)z) ViVl
J k

upon scaling the fields. Here we have introduced a parameter ¢;; € R that tells
how any new contributions are divided over the initial two. Such terms can only
be described off shell using the auxiliary fields G; and G; (cf. Lemma [2.10) via

1 ~ = 1 = ~
——trGi(G,~+2n,~9,'l//,-jl//ij) — 7trGj(Gj+2njl//iit@jl[/ij),
2n,~ 2nj ’
which on shell equals

nj

n; ~ = = ~
Ellgzi‘/’ijl/,iﬂz"_ 5'|‘Ifij<@j‘l’ij\27

cf. (2.24). Comparing this with the above expression sets the coefficients 27; and
gzji
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ng o giz 2 * 2
S =250 (Nt oy Y N(Q5:2i)* )
qi k
n; 82‘
E,@j _2a (erj-i-(l Otz,)zk:Nk(-Qiijuk) )7

where there is an additional trace over the last terms if y;; has no family index.
If the action is supersymmetric then (2.33) can be used with % = J#; = 1 and
the above relations read

ri %
Zt = Nir + 04; Y Netr[(275.Q:0)°],
T

r *
Z] =Njri+ (1 — ) ;zvk (75 2i6)%), (2.83)

when V;; has no family index and
ri. . %
Zt idy = N,-rl-z idy + ZNk(-Qijk'Qijk)zv

,.
Z’idM Nr idy +(1— 045) ZNk Uk.Q,]k , (2.84)

when it does. Here we have used that r; = g;n;.

4. An interaction o< |;;y;|* can receive contributions in two different ways; one
comes from a building block %; i of the third type (2.57), the other comes from
two adjacent building blocks %;;; and %y, (first and second term of (2.62), but
occurs only for particular values of the grading):

gi4qwlj (1 - wzk)| ik llll]llljk|

m

+4(njrj Njg | Wi Wil + thkaNl| i1 gy il ‘VJk|>

From this, however, we need to subtract the value #; g§|f/7, i f/7jk|2 that is expected
from the cross term

_tr(;j(@j’,-ﬁjﬁlij + 32j.k‘7’jk$jk)7

that should already be there when the almost-commutative geometry contains
%li and Z7, but nevertheless does not appear in the spectral action (see Section
@] and the discussion above Theorem [2.47). The remaining terms must be
accounted for by

_trFkFlk + (trFkﬁlk )lljlj W]k—’_h C. ) (2.85)

which equals
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= = nl Ix o
W Wy Bi iBik i Wii Wik
on shell. Since B ;B;. j is positive definite we can also write the above as
l Ix \1/25 =~ 12
|(ﬁik,jﬁik,j) / Vi Wkl

Comparing the above relations, the off shell action (2.83) corresponds on shell to
the spectral action, iff

2 2
ﬁi/k.,jﬁi/;.,j = 8m qr: (1— o)X, ]*Y;,k ! —njgjidy

2 JURS JURNS
+4 <njerjg§idM+f]’"wijwjkN,(ri’l Jrj,l k)*(y;,l jrj,l k)> 7
m

where we have assumed that it is y;; not having a family structure. Furthermore,
from the demand of supersymmetry S/, ; must satisfy

20 ~ i~ ; 2

! Beo g2 ij sy i A 8m o

i Pk = 8m—— 11 =227Q05, Q
qm qm

ie. @) but with Y’ replaced by T using (Z.38). Combining the above two
relations, we require that

075k = 427 (1 — 03 273 Qijc — njgidy
dm qm

2
. 8 S k(3§ k
+4(njerjg; idy —‘rqua),'ja)jkNl(Y;-J /TN )*(T;l jT,J )) ,
m
using the notation introduced in (2:82)). Setting m = j in particular, this reduces
to

2(1 — 26()[]()9;;]{9”’]( —rj idy,

+4 (Nj'? idy -+ 0N (4, T, (4, 7T, k)) =0. (2.86)

5. The interaction o< tr l/NIik? ik lﬁjlﬁﬂ only appears in the case of two adjacent build-

ing blocks %, jx and %;;; of the third type (cf. the Lagrangian (2.62)). Equating
this term to (2.64) that appears from the auxiliary field F;;, gives

2
8 Yy ok o oo~
Kiki4=" (1 — ;) 03 0 ) X "YW 3 W Wy + hoc. =

m

tr ﬁi/;‘ilﬁi/j,k ';‘V’ikﬁjk lﬁjlﬁil +h.c.,

8 In fact, in (Z33) the variables are in reversed order compared to here but looking at Z.153)
—from which the former is derived— one sees immediately that this also holds.
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with Ki = & i€ j, ki = €,;€,j. From the demand of supersymmetry 7, and f;;
should satisfy (2:33). Their phases, if any, must be opposite modulo 7 for the
action to be real. We write ¢; for the remaining sign ambiguity. Inserting these
demands above and using (2.58)) requires that xx4w;;(1 — @;;) = 2¢ w;; for
this interaction to be covered by the auxiliary field F;;. This has two solutions,
the only acceptable of which is

1 1

O = Kk, wj=5 = rNi+rN=3, (2.87)
where we have used (2.43).

6. From the spectral action interactions o< |l/~/,<j\4 only appear in the context of a
building block of the second type as

10

2
- - g -
- (Citj Wi |*Cij Wi > — 4q—’lr,~r,~|y/,~j|4

)

see (2.15). Via the auxiliary fields on the other hand they appear in two ways;
from the G; ; and via the u(1)-field H (see Lemma for both). The latter give
on shell the contributions

2 2 2
Q,J_Hif/"i _n_ﬁ il
2 2N;  '2N; o

where the minus-signs stem from the identity (2.26) between the generators
T%; of su(N; ;). Demanding supersymmetry, 2? must equal g7 and similarly
912 = g?. In order for the interactions from the spectral action to equal the above

equation, lej is then set to be

2
81 roT

9% =°2L(8riri+ L+ L. 2.88

7 q;(rlrj+Ni+Nj> (2.88)

In the case that y;; has family indices, the expressions for @f

multiplied with the M x M identity matrix idy,.

7. Interactions o< |;;|?|¥j|* (having one common index j) appear via the spectral
action in two different ways. First of all from two adjacent building blocks %;;
and Ay of the second type (cf. (2.38)), and secondly from a building block of
the third type (second line of (2.49)). This gives

o

2
X and o@ij must be

~ ~ ~ Psn k ~
(Cijj Wi P [Cin Wi + 19 P15 7Y, ‘I/jk|2)

812 21~ 121 12 ~ 2%k~ 2
%45(0-“%‘/\ Wikl + @@ | Wi |15 7T )

where we have assumed ;; not to have a family-index. We can write this as
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2 o
4%|‘l~’ij’2|(’?idMerijwjk(]C]*Ek)*n“rjk>1/2‘l~’jk|2-

From the auxiliary fields these terms can appear via G; (with coefficients &; ;
and P, i.e. as in (2.39)) and via the u(1)-field H with coefficients 2;; and 2

PPl
{Ql’ja@jk —"/J}\,"k} Wi P W
J

Equating the terms from the spectral action and those from the auxiliary fields,
and inserting the values for the coefficients 2}, 2 (from 2.33)), 2;; and
2. (from (2.88)) that we obtain from supersymmetry, we require

(2r,»r,- 4Ly rj) (zrjrk +-L r"> idy

aN; T AN, aN; AN,
. 12
_ [(r§+4—1<,')idM+w,-jwjk(r,.f*rj")*1cf*1g"} . (2.89)
J

. There are interactions o< ||| y;;|* and o< |y |?|yy|? that arise from two adja-
cent building blocks %;x and %;;; of the third type. The first of these is given
by

2
8 > k3 kx ~ 5 Ixy 1 ~
4qﬁ|(wikﬁ.j e R LY s W R 7 o

see (2.62)). Since the interactions are characterized by four different indices, the
auxiliary fields G; cannot account for these and consequently they should be
described by the u(1)-field H:

1/2~ 2 1/2~ 12
|23 125wl
In order for the spectral action to be written off shell we thus require that

2
8
D2 = 4(7'"95 221
m

With 2 and 2 being determined by (2.88) from the demand of supersym-
metry, we can infer from this that for the squares of these expressions we must
have

ri 193 . *
(Zrirk + 4];[ + TNk) idy = Qiijijk,
rj ry . %
J

. As was already covered in Section [2.2.5.1] a building block %p,; of the fourth
type only breaks supersymmetry softly iff
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o 1 Ky K
n=1g and o1 T, :(—Zi S
(see Proposition|2.27), where the latter should hold for each building block %, /;
of the third type. Here xy/, kj € {1}.
10. Covered in Section[2.2.5.2] a building block & nss,ij of the fifth type also breaks
supersymmertry only softly iff

)idM 2.91)

1

W;j = E, (2.92)

see Proposition [2.31]

To be able to say whether an almost-commutative geometry that is built out of
building blocks of the first to the fifth type has a supersymmetric action then entails
checking whether all the relevant relations above are satisfied.

2.3.1 Applied to a single building block of the third type

We apply a number of the demands above to the case of a single building block of
the third type (and the building blocks of the second and first type that are needed to
define it) to see whether this possibly exhibits supersymmetry. We will assume that
y;j has R = —1 (and consequently no family index), but of course we could equally
well have taken one of the other two (see e.g. Remark [2.23). The generalization of
Remark [2.14] for the expressions of the r; that results from normalizing the gauge
bosons’ kinetic terms is

3 3 3
TTONANAMNe T T NN A MNe T MON AN 12N

For the first of the demands of the previous section, (2.82)), one of the three terms
that are equated to each other reads

kY kx *\ — * *\ — Wiy . I kv~
a)iky;' ky;k = (Ulk(N]Y; ky;k ) I/ZY;' kY;k (NJ ik ik ) 1/2 — VlldM — wikr;k Y;'k7
J

where we have used the definition (Z23) of 1; *. Similarly,

1

0T T = Pidy and 0T = S )

for the other two. Equating these, we obtain:
Wix Ojk

Tk 14y, —
N, MTN,

idy = F’:n’*nf(trlcf*lc’)”, (2.93)
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ie. I / is constrained to be proportional to a unitary matrix. Taking the trace gives
the demand
o, O
M =y = T
N; N; Ny

(2.94)

Given the expressions for r; ; , above, we can test whether this demand admits solu-
tions. Indeed, we find

Ni=Nj=N; =N, M=1V2. (2.95)

In the first case we find that

3 1
riNi =riNj =N = —, ;) = Ok = Ojk = — 5,
4’ 2
whereas in the second case we have
3 1 1 1
riNi =rjNj = 5 NNk = 5 wij =3, Ok = Ojk =~ 15

Next, we have the demand (2:83) to ensure that terms of the form |y;;y; j|2 can
be written off shell in a supersymmetric manner. In this context it reads

=Nir? + aiijwiAzj tr[(ff j*i 3,

M:? NG

— ;P2 + oo el (T 7T 7)),

1 1

for y;; (where the trace in the last term comes from the fact that y;; does not have
family indices) and

Z 1dM Nkrk idpy +0y jN; a) (Tj k*?j k)27
%ld}w er? idy + 0N w]k(r k*r )%,
Z—kidM = NyrZidy -I-OékiNjwik(T 2,
—1dM Nr idy 0N 0; (7; kY; k*)

for yj; and y respectively. Here we have written aj; = 1 — o, etc. We can remove

all variables 17; J, f kand 17] ¥ by using the squares of the expressions in (2:93). This
gives
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2 2
Nir; ; Njr; :
:‘.l = (Mri)2+aiij%M, 721 :(erj)2+aﬁNkV”fM7

! J

2 2

Nirye Wjy Njrj ;
) = (Nkrk)z + ak.ijﬁ7 i‘. ! = (erj)Z + ajkNiVl]_(,

! J

2

Niry 2 w%( Nir; 2 wjk
e (Nire) JrakiNleja 1= (Niry) JraikNjVia

where the M in the first line above comes from taking the trace over idy;. Comparing
the expressions featuring the same combinations r;N;, rjN;, ryNy and using (2.94)
we must have that

0 iNyM = o N, (1—(Xjk)N,': (1—05,'/()Nj, (I—Otij)NkMZ oV
Since both solutions (2.93) to the relation (2.94) have N; = N; = Ny, this solves

1 1 1

%j =5, Qi = 5M, %j = M

and the demands above reduce to

Niri = 4(Niri)? +203M,  Njrj =4(Njrj)* +203M,
Neri = 4(Ner)> + 0 (4 —2M).

We can check that for neither of the two cases of (2.95) these are satisfied. As a
cross check of this result we will employ one more demand.

In the context of a single building block of the third type the demand (2.86)) that is
necessary to write terms of the form |;;/;¢|? off shell in a supersymmetric manner,
reduces to

2(1 — Zwik)a)ik = erja 2(] — ijk)a)jk = r;Nj,
2(1 —2a;j) @Y, Y7 = rNeidy e 75

We can use (2.94) to rewrite the last equation in terms of @ or ®j. In any way,
the LHS are seen to be negative for all values of ®;;, @y and wj; allowed by the
solutions ([2.95)), whereas r;N;, rjN; and rNj are necessarily positive. We thus get a
contradiction.

A single building block of the third type (together with the building blocks
needed to define it) is thus not supersymmetric.

2.4 Summary and conclusions

The main subject of this Chapter has been almost-commutative geometries of the
form
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(C™(M, o), L>(M,S® ),y @1+ %5 @ D3 ¥5 @ Y, Iy @)

of KO-dimension 2 on a flat, 4-dimensional background M. We have dressed these
with a grading R : 5 — S called R-parity. We have shown that such almost-
commutative geometries provide an arena suited for describing field theories that
have a supersymmetric particle content. This was done by identifying five differ-
ent building blocks; constituents of a finite spectral triple that yield an almost-
commutative geometry whose particle content has an equal number of (off shell)
fermionic and bosonic degrees of freedom. In addition they contain the right in-
teractions to make them eligible for supersymmetric theories. These five building
blocks are listed in Table 2.2

Building block  Required Counterpart in superfield formalism
B ( — Vector multiplet
Zij ( B, B Chiral multiplet

Bij» Bix, B jx Superpotential with three chiral superfields

By Majorana mass for W/, Wiy

PBrnass.ij (§2.2.5.2) 38;;, OZ; A mass(-like) term for ;;, W;;

Table 2.2: The building blocks of a supersymmetric spectral triple. In the last column
we have listed their counterparts in the superfield formalism.

Although we have not been using the notion of superspace and superfields, the
building blocks themselves can thus be seen as an alternative. However, a signifi-
cant difference between the two approaches is that if a certain superfield enters the
action, then automatically all its component fields do too. For the components of
our building blocks this need not be true; without demanding supersymmetry we
are free to e.g. define a finite Hilbert space consisting of only the representation
N; @ N? (and its conjugate), without its superpartner arising from a component of
the finite Dirac operator. However, the philosophy to include each component of Dy
that is not explicitly forbidden by the demands on a spectral triple turned out to be
a fruitful one in obtaining models that have a supersymmetric particle content, as
long as we start by adding gauginos to the finite Hilbert space.

It is far from automatic, though, that when the field content is supersymmetric
also the action is. First of all, there is a number of obstructions to a supersymmetric
action:

1. A single building block Z; of the first type (i.e. without a building block Z;; of
the second type, for some j) for which N; = 1, has vanishing bosonic interactions

(Remark [2.4)).
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2. A single building block %;; of the second type that has R = —1, has two dif-
ferent u(1) gauge fields that interact whereas the corresponding gauginos do not
(Remark 2.13).

3. If the finite algebra contains more than two components My,(C), My, (C) and
My, (C) over C and there is a set of two or more building blocks %;;, % that
share three different indices, then there are two different u(1) gauge fields that
interact, whereas the corresponding gauginos do not (Proposition [2.19).

Second, for a set-up that avoids these three obstructions, the question is whether the
four-scalar interactions that are generated by the spectral action are rewritable as an
off shell action in terms of the auxiliary fields that are available to us. On top of this,
the pre-factors of the interactions with the auxiliary fields are dictated by supersym-
metry. Both the form of the action functional used in noncommutative geometry and
supersymmetry thus put demands on the pre-factors of interactions which together
heavily constrain the number of possible solutions. Typical for almost-commutative
geometries is that there are new contributions to various expressions when extend-
ing a model. The question whether for the ‘full theory’ the coefficients are such that
these terms do have an off shell counterpart, is then phrased in terms of the demands
listed in Section 2.3

Despite all these technical calculations and detailed issues, we have a definite
handle on which almost-commutative geometries exhibit a supersymmetric action
and which do not. To obtain an exhaustive list of examples that do satisfy all de-
mands requires an automated strategy, in which step by step models are extended
with building blocks and it is checked whether they satisfy the aforementioned de-
mands. Whatever the outcome of such a strategy will be, the examples of supersym-
metric almost-commutative geometries will be sparse. This is markedly different
from the more generic superfield formalism, but at the same time the models that do
satisfy all demands will enjoy a very special status.

2.5 Appendix 1. The action from a building block of the third
type

In this section we derive in detail the action that comes from a building block %, jx of
the third type (cf. Section[2.2.3), such as that of Figure[2.6] If we constrain ourselves
for now to the off-diagonal part of the finite Hilbert space, then on the basis

Hrott = (Ni@NT)L © (N;@Nr © (N; @NP)L
& (N;ON )R & (Ny@N? )L & (Nt @N%)g

the most general allowed finite Dirac operator is of the form
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00 0 0 nk
r o x’ 0 0 0

0 ij* 0 Y;ko* 0 0

Dr=| o o rk o 15 o (2.96)
0 0 01" o0 x>
rk 0 0o 0 1’ o0

We write for a generic element § of 1(1+Y)L2(S ® 5 f)
& = (WijL, Yikr, WikL, Vijrs Vi W jkr)

where W, € L*(S- @ N; @ N?), etc. Applying the matrix (2.96) to this element
yields

= ko = k~ j ~
YSDFC:YS(‘I/ikR‘I/jij +1;¢ VW jer Wit Xy Wi+ X Wi Wi,
== % — * o~ == k~ —
VL WikR""‘WinY;'k l//ikalekLWikY;k'i'Y} VikVikes
— kosx— — — sk — j ~ =
Vi, Vig + W WY 7WikLY;jWij+l//ikY;kWijL)'

Notice that for the pairs (i, j) and (j,k) we always encounter ;; in combination
with X; 7, whereas for (i, k) it is the combination ¥ and 1; **. This has to do with the
fact that the sfermion y crosses the particle/antiparticle-diagonal in the Krajewski
diagram. Since

JE = J(WijL, Wikr: Wike, Vijr: Wire» V jkr)
= (IMVijrs MW i1 s IMV jigs I WijLs I Wik I W)

the extra contributions to the inner product %(J ¢, ¥’Dr{) are written as

SWEPDY)

= %UMWina J;(WikRﬁjkrj S k*ijR»
S U Wi Y (WX W+ 0 v )

+ <JMijRa75($ijI;j*‘l/ikRﬂLVinY;k*‘T’ik»

o Wi ¥ (W Wl + W)

+ <JMWikRays(ﬁjky}k*WinJerkRﬁin;j*»

+

D= DN = N = N = DN —

Wik, Y (Wi X Wy + W F i)
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Using the symmetry properties of the inner product, this equals
(MY llfikRﬁjij o+ I ijps V5 WV ) + I W ¥ vijLl; Vi)

+ IV V' Wi Wit) + I W s ¥ Wi 57 Vi) + Wi, ¥ WX W)
We drop the subscripts L and R, keeping in mind the chirality of each field, and for
brevity we replace ij — 1, ik — 2, jk — 3:

S3.r[C. L] = UnVi Y2y ls )+ U VY W) + (W, Y Y1 s )
+ UMV, VY W s) + UV, P Y )+ (Tu s, Y U5 wi). (2.97)
The spectral action gives rise to some new interactions compared to those coming

from building blocks of the second type. They arise from the trace of the fourth
power of the finite Dirac operator and are given by the following list.

@
A4 A4

Fig. 2.15: The various contributions to trD4F in the language of Krajewski diagrams
corresponding to a building block %; ; of the third type.

= From paths of the type such as the one in the upper left corner of Figure 2.15]the
contribution is

~ k ~ j ~ ~ = o ~
8 {Ni|Ciij‘lfij1} Wil + Nel X W, Cnac Wil ® + N W,

ijj
+ Nl W30 7 it Wi * + N W G P+ NS |C e Wi Wi kﬂ - (2.98)
Here the multiplicity 8 = 2(1 4 14 2) comes from the fact that there are three

vertices involved in each path, on each of which the path can start. In the case of
the ‘middle’ vertices the path can be traversed in two distinct orders. Furthermore
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a factor two comes from that each path occurs twice; also mirrored along the
diagonal of the diagram.
» From paths such as the upper middle one in Figure [2.13]the contribution is:
~ ke~ = ks (=~ \o j ~ ¢ ~ = = %\
8 [tr(ciij Vi)"Y W X (W Cag) A e (X W) °C e (W31 77)°
+ tr(ﬁijcit‘j)on S W (Ci W) + tr(ﬁiﬂ; Y Ciac W Wy Cog (G W)
= * k~ =~ kx ~ \o
(W Cia) 1 Wi X (Cink Wik )°
(W ) Crin i W p Coe (G4 flv’ik)a} : (2.99)
where the arguments for determining the multiplicity are the same as for the
previous contribution.

» From paths such as the upper right one in Figure[2.15] going back and forth along
the same edge twice, the contribution is:

k~ =~ ks x o~ = j~ =~ %
AN T P N B R N (2.100)

The multiplicity arises from 2 vertices on which the path can start and each such
path occurs again reflected.
» From paths such as the lower left one in Figure [2.15]the contribution is:

819320502 i+ 0 P07, S+ 10 WP ] @a10m)
» From paths such as the lower right one in Figure[2.15|the contribution is:
S j ~ = * = ks (=~ j ~ ~
S[tr("l/ikciik(y;Jll/ij)o(WijCiij)OY;k Vi) + (v X (v ijj)o(Y}J‘I/ij)ocjjk‘I’jk)
(W ) Coa Wi 5 1 (CaraWin)?) + hﬁ} ; (2.102)

corresponding with the blue, green and red paths respectively. The multiplicity
arises from the fact that any such path has four vertices on which it can start
and also occurs reflected around the diagonal. Besides, each path can also be
traversed in the opposite direction, hence the ‘h.c.’.

Adding [2.98), (2.99), (2.100), 2.701) and (2.102) the total extra contribution to
tr D}. from adding a building block 2; jx of the third type, is given by (2:49).

2.6 Appendix 2. Supersymmetric spectral actions: Proofs

In this section we give the actual proofs and calculations of the Lemmas and
Theorems presented in the text. First we introduce some notation. With (.,.) & :
I'*()xI'*(%) — C*(M) we mean the C*(M)-valued Hermitian structure on
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I'(.#). The Hermitian form on I"*(.%) is to be distinguished from the C*(M)-
valued form on 7 = L*(M,S ® /#+):

(s ) i D(F © ) X T(F @ Hir) — C(M)
given by

(v, v2) = (81, 8) .7 (m1,ma)F, Vip=C2®@m 2,

where (., .)r denotes the inner product on the finite Hilbert space .. The inner
product on the full Hilbert space .7 is then obtained by integrating over the mani-
fold M:

(Wi, ¥2) . = /Iw(llfl,llfz),;f\/gd4x.

If no confusion is likely to arise between (.,.).» and (.,.) s, we omit the subscript.

In the proofs there appear a number of a priori unknown constants. To avoid
confusion: capital letters always refer to parameters of the Dirac operator, lowercase
letters always refer to proportionality constants for the superfield transformations.
For the latter the number of indices determines what field they belong to: constants
with one index belong to a gauge boson—gaugino pair, constants with two indices
belong to a fermion—sfermion pair.

2.6.1 First building block

This section forms the proof of Theorem In this case the action is given
by (2.9). Its constituents are the —flat— metric metric g, the gauge field A/ €
End(I' () ® su(N;)) and spinor A; € L*(M,S ® su(N;)), both in the adjoint repre-
sentation and the spinor after reducing its degrees of freedom (see Section[2.2.1.1).

Now for € = (&, &) € L*(M,S), decomposed into Weyl spinors that vanish co-
variantly (i.e. VS& = 0), we define

0A; = Cj?’“ [(JMSRa 'Y/J%’L)y + (JméeL, 'Y,u)LjR)y’]

= p"(8Ayj 1 + 8Au; ), (2.103a)
SAjLr=(cjF +¢5,Gpew,  F/ =7y Fly, (2.103b)
6G;j = cg, [(In, darr) 7 + (Iuer, dadis) ], (2.103c)

where the coefficients ¢ j,c},cGﬂc’Gi are yet to be determined. In the rest of this
section we will drop the index j for notational convenience and discard the factor n;
from the normalization of the gauge group generators, since it appears in the same
way for each term.

»  The fermionic part of the Lagrangian, upon transforming the fields, equals:
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(ImAL, daAR) — /M(JM[C/F—&-C/GG]ELJAAR)%—F (ImAL, dA['F +cGler) v
+ ge(ImAL, 7” ad[(]Meu YulR),sﬁ + (Jue&r, ?’,LL)“L),VMR),%”- (2.104)

Here we mean with ad(X) the adjoint: ad(X)Y := [X,Y].
= The kinetic terms for the gauge bosons transform to:

1 H

Z%/MU'NF“VF”V %67 /MtI'NFuv (8[u [(JMSRa’}/v]AL),}”+(JM8L;’}/v]lR)y]
—ig[(Imer, YuAL).7 + (Im€L, YuAr).7, Av]
—iglAy, (Ju&r, WAL).» + (IneL, YwAr) y]) Ved*x. (2.105)

where A By = AuBy —AyBy.
= And finally the term for the auxiliary fields transforms to

1 n
—3 /M try G2 - —cG /MtI‘N G[(JMSR, JA}LL)y + (]M&'L, JAAR)y] . (2.106)

If we collect the terms of (2.104), (2.103) and (2-106)) containing the same field
content, we get three groups of terms that separately need to vanish in order to have

a supersymmetric theory. These groups are:

= one consisting of only one term with four fermionic fields (coming from the

second line of (2.104)):
ge(ImAL, Y ad(Jyer, YuAr) 7 AR) - (2.107)
There is a second such term with & — & and Ag — A, that is obtained via

(JM8L>’Yu)’R)=7’ — (JMngyﬂ)bL)y-
= one consisting of a gaugino and two or three gauge fields:

H
/M [C/(JM;LL, daFer) w+ ety FHEY (9[;1 (Im&: WiAL) 7
—ig|(Ju&r, YuAL) 7 Av] —ig[Ap, (JM8R7'YV)~L)Y]):| (2.108)
featuring the third term of (2.104) and the terms of (Z.105) featuring A;. There

is another such group with & — & and A; — Ag consisting of the first term of

(2:104) and the other terms of (2.103).

= one consisting of the auxiliary field G, a gauge field and a gaugino:

|| [coture.daGen)r — catey Glmenare) | (2.109)

featuring the second part of the third term of (2.104) and the first term of (2.106).
There is another such group with & — & and Ay, — Ag.
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We will tackle each of these groups separately in the following Lemmas.
Lemma 2.32 The term (2.107) equals zero.

Proof. Evaluating (2.107) point-wise, applying the finite inner product and using
the normalization for the generators of the gauge group, yields up to a constant
factor

T IMA Y AR) 7 (TnErs YuAg) - (2.110)

Here the f%¢ are the structure constants of the Lie algebra SU(N). We employ a
Fierz transformation (See Appendix 2.7.1)), using Cjo = —Ci4 =4, C; = Ci3 = -2,

Ci2 =0, to rewrite (Z.110) as
1
FIMAL VAR) 7 (Tmer Yuhg).r = —Zf“bc [4(JM8La AR)7 (IMAL AR)
—2(Jmer, Yulzg)y(JM/lf, YAR) .7 —2(JméEL, ’YIJ’);AIIQJ)Y(JM;Lgv PrAg)s
—4Iuen PAR) 7 A A |

The first and last terms on the right hand side of this expression are seen to cancel
each other, whereas the second and third term add. We retain

FPIMAL VL) 7 e Wahi) o = FP AL VAR (T, YuAR) -
Since f* is fully antisymmetric in its indices, this expression equals zero.
Lemma 2.33 The term 2.108) equals zero if and only if

2ic = —c K. (2.111)

Proof. 1If we use that the spin connection is Hermitian and employ (2:163), this
yields:

IubAy 4 = c(Jut. WV AL).
Here we have used that [Vfl ,Jy] = 0, that we have a flat metric and that V5S¢ ; = 0.

Now using that Ay (Ju&r, WAL).» = (Ju&,AuvAL)» and inserting these results
into the second part of (Z:.108) gives

H .
C? /MtrNF'uV(JMER,D[“’}/V]lL)y, D“ :Vflfzgad(A”).
Using Lemma 2.53|and employing the antisymmetry of Fy,y we get

Ce/"i// (JMF“vemDu'leL)%-
M



84 2 Supersymmetric almost-commutative geometries

We take the first term of (2.108) and write out the expression g4 F = iy* Dy ' v Fy .
We can commute the Dy, through the ¥’ y*-combination since the metric is flat.
Employing the identity

PP = g ey, @)
yields
aAF = I(Zg“‘/j/l + SG”V)L’);’}/G)D[JFVA7

where the totally antisymmetric pseudotensor €°#¥* is defined such that £'23* = 1.
Applying this operator to & gives

JaF e = 2ig" Y Dy, & = 2iy3 Dy F** &,

for the other term cancels via the Bianchi identity and the fact that VS&; = 0. With
the above results, (2.108) is seen to be equal to

2ic' (JAL, YWD F* &) + ¢ /M(JMF”VER, DyuWAr) - (2.113)
Using the symmetry of the inner product, the result follows.
Lemma 2.34 The term (2.109) equals zero iff
cG=—Cg. (2.114)

Proof. Using the cyclicity of the trace, the symmetry property (2.163) of the inner
product and Lemma [2.53] the second term of (2.109) can be rewritten to

cG /M (ImAL, daGer) 7

from which the result immediately follows.

By combining the above three lemmas we can prove Theorem 2.5}

Proposition 2.35 A spectral triple whose finite part consists of a building block of
the first type (Def-[2.3)) has a supersymmetric action (2.9) under the transformations

@.103) iff

./ /
2ic" = —c X, G = —cg-
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2.6.2 Second building block

We apply the transformations (2.10b), (2.31)) and (2.32) to the terms in the action
that appear for the first timeﬂ as a result of the new content of the spectral triple,
i.e. (2.29). In the fermionic part of the action, the second and fourth terms transform

under (2.3T) to

(JMWg, J;liRai.,le/) — <JMC;;'75[‘;A7 Jer, ¥ AirCi V) + (Und]F;; ERJ;?LzRCz J¥)
+ i JM‘I’R7YSECi,j1I/€R> +CG,- JMWRaySGiCi,jWER>
+ (JMWR,fliRé,jCij(JMSu751!/L)> (2.115)

and

(JMllfLaYS‘I/C AiL) = ¢ JMYS da ER,}’Sﬁ&'%D+d{‘<JMFij8L,75$Efj7LiL>
+ UL, Y Y Y VC Fuver) + ¢, (In v, ¥ WC; GieL)
JM‘I/LJ’SCU JMng’J;WR ML) (2.116)

respectively. We omit the terms with Aj; g instead of A;z g; transformation of these
yield essentially the same terms. For the kinetic term of the R = 1 fermions (the first
term of (2.16))) we have under the same transformations:
(IMWR, IaWL) = (IuclsV [da, e, davi) + gici (U W, V' [(JmeL, Yuhir)
+ (JuEr, Yu i) WL) + (W, dach; Y [da W)
+ (Jud]; Fier, davr) + <JMWR7‘;Adl{jFij8L>~ (2.117)
As with the previous contributions to the action, we omit the terms A j (instead of

JA;) for brevity. In the bosonic action, we have the Kinetic terms of the sfermions,
transforming to

try; D* WDy — +igicitry; (W[(Jner, Yuhir) + (Jurer, Vi) D )
—igicitrn; (DuWI(ImeL, Y M) + (Juer, ¥ Xir.) | W)
+tI‘Nj (D“C?j(JMER, ’)/SWR)D# IT/) +tI'Nj (DuﬁD#C,‘j(JMEL, ];V/L)) (2.118)

(and terms with A; instead of A;) and from the terms with the auxiliary fields we
have

try; P, lT/?G, — try; gz,'C,'j (JMSL, }’SWL)ﬁG; + try; Z; ll,;C;'kj(JMgRa YSWR)Gl
+cg; try; Py (Juer, dariv) + (Iuer, datir)].  (2.119)

9 We need not investigate the terms originating from the Yang-Mills action, since together they
were already supersymmetric.
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And finally we have the kinetic terms of the auxiliary fields F;;, Fij’ that transform to

trF;Fj — trF; [d"f(JMSR, dawi)s +diji(Juer, Y di¥).»
—dij j(JuEr, Y fl}ljR)y} +tr [d,*j (JmEL, daWg)s
+df (U, Y Whin) s = dfs (e, Y A) } Fijp (2120)

where the traces are over N¥™ . Analyzing the result of this, we can put them in

groups of terms featuring the very same fields. Each of these groups should sepa-
rately give zero in order to have a supersymmetric action. We have:

» Terms with four fermionic fields; the fifth term of (Z:113), and part of the second
term of (2.117):

(I Vg, fliRa,jCij(JM&‘u YwL)) + gici (I Wr, Y (In€r, Yair)W).  (2.121)

The third term of (2:116) and the other part of the second term of (Z.117) give a
similar contribution but with &, — €, Az, — Aig.

» Terms with one gaugino and two sfermions, consisting of the first term of (2.113),
part of the first and second terms of (Z.1T8)), and part of the third term of (Z.1T9):

IV (@ as WleL, ¥ AirCij W) + igici / try; (W (ImeL, Yudin) D )

- igiCi/trNj (DuE(JMSL,')/#liR)lT/) —CG; /trN,- t@il[’7$(.]1\/[(‘?[‘,(;AA,I'R).
(2.122)

The first term of (Z.116)), the other parts of the first and second terms of (2-118)
and the other part of the third term of (Z.119) give similar terms but with & — &,
Air — AiL-

= Terms with two gauge fields, a fermion and a sfermion, consisting of the third

term of (2.113), the third term of (2.118) and the third term of 2.117):
IV, Y FCijWer) + / try, (Dyc;(Jmer, Y W) DM W)
+ (I Wg, da ¥ cj[da, Wler) (2.123)

The fourth term of (2:116)), the first term of (2.117)) and the fourth term of (2-118)
make up a similar group but with &g — &, and Y — y.
» Terms with the auxiliary field G;, consisting of the fourth term of (Z.113)) and the

second term of (Z.119):

C/G; <JMVR,y5Gia,jV7£R> - /tI‘Ni f@jlﬁc?j(JMER,YSWR)Gi (2.124)
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The fifth term of (2.116) and the first term of (2.119) make up another such group
but with &g — &7 and Y — yr.
» And finally all terms with either F;; or F};, *, consisting of the second term of

(2173, the second term of (2116}, the fourth and fifth terms of (2177) an

the terms of (2.120) (of which we have omitted the terms with A; for now):

<-IMd/*F SR#S%RCUW <JMdz] z]gRaaAllfL>
/trN/ ij [dl](JMSRaaAWL)S+dl]1 JMER,')/SAqRV/ } (2.125)

and
(InFyjd}jer, Y WC; i) + (I Vg, dad};Fjer)
- /trN_,- [d,'*j(JMsbaAWR)S+d;j’i(JM£La75$)~iL)Y}E'j-
We will tackle each of these five groups in the next five lemmas. For the first
group we have:

Lemma 2.36 The expression 2121)) vanishes, provided that

1~
Eci,jcij = —cig&i (2.126)

Proof. Since the expression contains only fermionic terms, we need to prove this
via a Fierz transformation, which is valid only point-wise. We will write
Li=A@T € L*(S_ @su(N;)r),
VL = Y @i ® 20 € L*(SL @N; @NY),
Vr =V, Rej, &, L*(S-oN;®N?),
where a sum over a, m, n, r and s is implied, to avoid a clash of notation. Here the

T are the generators of su(N;). Using this notation, (Z:121)) is point-wise seen to be
equivalent to

(IMV 1o V' AN InaeL, Y Cijcij Vi) Tt + 8ici (I W s, Y Wij) (InaeL, Yu A“) T

Since it appears in both expressions, we may simply omit 7, from our considera-
tions. For brevity we will omit the subscripts of the fermions from here on. We then
apply a Fierz transformation (see Appendix [2.7.1)) for the first term, giving:
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MV, VA IneL, VW)

C. Cy1
= —%(Jw ¥)Uner A) = = (¥, wqueL,m )
(JMuf Y W) Iner, TuWAY) — —2 (I P W) (Inrer, u 1P A%)
G

44 InV, Y W) (Iner, ¥ AY).

(Note that the sum in the third term on the RHS runs over u < v, see Example
2.56]) We calculate: Cyo = C43 = C44 = —Cyy = —Cyp = 1 and use that y and ¥ are
of opposite parity, as are Y and A, to arrive at

UV, Y AY) (IneL, Y ¥) = JMllf Y v) (Iner, uA?)
1 T a
—Z(JM‘I’J”VSW)(JMSL,V;LVS)“ )
1 T a
= E(JM%Y“‘I’)(JMEL,YMA ).

Remark 2.37 From the action there in fact arises also a similar group of terms as

(]T_fﬂ'[), that reads
(Mg, Y’ Cjicij(Imers Y WL)AR) — 8¢ (I W, Y WL (Imer, Yukjr)),  (2.127)

where the minus sign comes from the one in (I.19). Performing the same calcula-
tions, we find

1 ~
2Cj,c,j cigj (2.128)

here.
Lemma 2.38 The term @ vanishes provided that

L “Cij = —gici = Picg,. (2.129)

Proof. Using that [Jy,7°] =0, (¥°)* = ¥ and (¥°)? = 1, the first term of (2.122)
can be rewritten as

ci; (Imlda, Wler, AirC:; V) =ci; (InWer, datirC;, v,

where we have used the self-adjointness of d4. The third term of 2.122) can be
written as

gici{IuWeL, dakin W) (2.130)
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where we have used that de; = 0. On the other hand, the second and fourth terms
of (2:122)) can be rewritten to yield

+igiCi/trN_, (W(ImeL, YuAir)D* W) — cq, try, 2wy (Iuer, dadir).»
= gicilImWeL, A hir W) (2.131)

provided that g;c; = —Zjcg,. Then the two terms (2.130) and (Z:13T) cancel, pro-
vided that

ng'ai,j +2gic;i =0.
Lemma 2.39 The expression 2123)) vanishes, provided that
cfj = ci; = —2iciC; jg; ' =2icCjig; " (2.132)

Proof. We start with (2.123):

C; <‘IMVR’ 7,51:i6‘i7j ll~/£R> + C;-Fj /trNj (Du (JM£R7 YSWR)D” lINI)

where we have used that {7°,d 4} = 0. Note that the second term in this expression
can be rewritten as

*C;‘j (Mg VsDuDu VeR)

by using the cyclicity of the trace, the Leibniz rule for the partial derivative and
Lemma [2.51] (We have discarded a boundary term here.) Together, the three terms
can thus be written as

_ ~ =~ * 2
(IMVR, Y OVER), O =c|CjF;—c;;DyD" —c};ds,

where we have used that deg = 0. We must show that the above expression can
equal zero. Using Lemma[2.49) we have, on a flat background:

dy+DyDH = _EVAYVFMV = EY”}/V(g,-FﬁV —giFiv)
since Ay = —ig;ad(A,). Comparing the above equation with the expression for &

we see that if —cj; = —c}; = 2ic] Nl ;g ", the operator & —applied to yeg— indeed

equals zero. From transforming the fermionic action we also obtain the term
(InWg, Y Ci jUF &)
from which we infer the last equality of (2:132)

Lemma 2.40 The expression 2124) vanishes, provided that
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* /o~
cij’@i :CGiCi7j (2133)

Proof. The second term of (2.124) is rewritten using Lemmas [2.51] 2.33] and [2.54
to give

=i i{IM g, V'GP er)
establishing the result.

Then finally for the last group of terms we have:

Lemma 2.41 The expression 2123)) vanishes, provided that

iy = d,

Proof. The first two identities of (2.134) are immediate. The third follows from the
term that we have omitted in (Z.123)), which is equal to the other term except that
AirW — WAjx, Cij — C;jand dij; — —dij ;.

diji= d’*Cz J dijj= —dl{;f(?j’i. (2.134)

Combining the five lemmas above, we complete the proof of Theorem [2.12] with
the following proposition:

Proposition 2.42 A supersymmetric action remains supersymmetric 0(A°) after
adding a ‘building block of the second type’ to the spectral triple if the scaled pa-
rameters in the finite Dirac operator are given by

~ /2 . ~ [ 2 .
C,'J:&‘,‘J %gildM? CM:EJ‘_’,' ZgjldM (2.135)

;j:C‘:fj:Eij\/ 2%Ci:—€ji\/2f%/j'6j, (2136&)

and if

. K djj i K dij
=di=¢; 2’ 2= 2’ g (2.136b)
P =gt a (2.136¢)
cG; = &/ e%/ici, (2.136d)

with €ij,€ji, & € {:l:}

Proof. Using Lemmas [2.36] 2.38] 2.39] [2.40] and [2.41] the action is seen to be fully
supersymmetric if the relations (Z.126), (2.129), (Z.132), 2.133) and (2.134) can
simultaneously be met. We can combine (Z.126) and the second equality of (Z.132)

to yield

2g; Cl{s

e ~%
lCiCl-ij,"j—giCi — C C]Cl—_%
1

)
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where in the last step we have used the relation (2.11)) between ¢; and ¢}. Inserting the
expression for C~’l ; from (2.30)) and assuming that ¢; € iR to ensure the reality of C~‘, i
we find the first relation of (2.133). The other parameter, C;;, can be obtained by
invoking Remark 2.37) and using (2.132)), leading to the second relation of (Z:133).
Plugging the former result into (2:132)) and (2:134) (and invoking 2:11))) gives the
second equality in (2:136a) and those of (Z.136b) respectively. Combining (2:133),
(Z:133) and the second equality of (2:136a), we find

cG, = —8 ' HiPci. (2.137)

The combination of the second equality of (2.129) with (2.137) yields (2.136¢).
Finally, plugging this result back into (2:137) gives (2:136d).

Note that upon setting 2% = 1 (as should be done in the end) we recover the
well known results for both the supersymmetry transformation constants and the
parameters of the fermion—sfermion—gaugino interaction.

2.6.3 Third building block

The off shell counterparts of the new interactions that we get in the four-scalar
action, are of the form (c.f. (2.98))

S123.8[C, 57 Fl= /M {trﬂj(ﬁij,k%kﬁjk) +tr(‘l~’jk$ik/3{;,k)Fij +tr Py (Bik j Wi Vi)
(W 3 W3 Bik ) Fir + (B W W) e+ tr(Wiy fl}i/’ﬁfk,i)ij}
= [ [y (BiaT) + (W5 W1 Bo)Fa (BT )5 + hc
- /M [trFl*(ﬁll V) + (W30, B+t (B3, ) Fy +h.c.} . (2.138)
Here we have already scaled the fields according to (2:28) and have written
Bli= MBS Br= AT BT Bii= oA By (2139)
We apply the transformations (2:3T) and (2.32) to the first term of (Z.138) above,
giving:
wF (B§a3) = e | (45 e, 9aT0) +di (e, Y 1 2a)
—di jUue Y2 T) ) (B2 W3)

+trF1*ﬁ1/C2(JM8RaYSWZ)$3 +trF1*ﬁ1/‘I~’2(JM3R7YSV3)C§} , (2.140)
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where ¢ 3 should not be confused with the transformation parameter ¢; of the
building blocks of the first type. We have two more terms that can be obtained from
the above ones by interchanging the indices 1, 2 and 3:

(T3 91BF = ¢ | (V301 B)) (2 (e Iaa) + ol VA W)
—dy k(JueL, VslezlkL))

e (I, V' V3) W1 B P + tr s (Inge, VW, )ﬁéFz} (2.141)

and

wF (B9, 2) — [ (43 Unrer, 9aWa)s + 5 (e, Y i)
—d3 (e, P A s) ) (BL 92)
BBl e Y7 W + 0 F B e (e, Y y) | (2142)
We can omit the other half of the terms in (2.138)) from our considerations.

We introduce the notation
=147, =4, Yo=0 5", (2.143)

for the scaled version of the parameters. Then for three of the fermionic terms of
2.97), after scaling the fields, we get:

<JMV1J’5‘I/2$3T3/*> - <JM(C/1*VS[‘3A7¢1}8L+d/1*F1*8R)775W2$3T3/*>

+ UMWY Y U, Y V) 17)

+ (Unyy, Y (A7 [da, Wole. +d§F25R)$3T3/*>7 (2.144)
IV Y L W) = Uu(cF Y [0a, W) ]e + Frdi &), v " Yo ws)

+ (V1YY e (Tuer, Y V) W)

+ (VLYY W (5 Y [da, whlen + d5 Fi &), (2.145)

and
<JM73’75$1T1/* v2) — <JM(C§*Y5[JA,¢3}3L ‘*‘dg*F;gR)J;?lTl/*‘I’ﬁ
+ (W3, Ve (Ine, Y V)Y y2)
+ (W, PV Y (P da, hWnle + diFagg)).  (2.146)

We can safely omit the other terms of the fermionic action ([2.97).
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Collecting the terms from (2.140) — (2.146) containing the same variables, we
obtain the following groups of terms:

= a group with three fermionic terms:

IV, Y vacs (I, VW) + UiV, P 1 (g, Y ¥0) Ws)
+ (W3, Ve (g, V7)Y y2)
= (W1, Y W2ac3 (I, Y W) (13 )b
+ (U1, Y c2(Ing, Y W2a) W) (15 )b
+ (W3, Pl Ui, Y V1) W2a) (1), (2.147)

consisting of part of the second term of (2.144), the second term of (2.143)) and
the second term of (2:146). Here we have explicitly written possible family in-
dices and have assumed that it is y;; and y;; that lack these.

= Three similar groups containing all terms with the auxiliary fields F*, F> and F5'
respectively:

(Indy Fi &, VW0 Y3 ™) + (nd F &, V1 9 W)
+/A/ItrF1*ﬁ1/62(JM3R>7’5‘I’2)$3 + e F Bl Yacs(Juer, Y W3),  (2.148a)
(I, VR &) + Vs, 7 9 Y do Fagr))
+/Mtf$3CT(JM8Ra75W1)ﬁﬁF2thrC;(JMSR,VSWﬁﬁlﬁéFZ (2.148b)
and
IV, Y Y Yods F &) + (Iud5 Fy &, Y W Y yo)
+ /M By Bici (Iuee, V'V, Vo + 0 F5 By ca(Jue, V' ¥a),  (2.148¢)

where, for example, the first group comes from parts of the first terms of (2.144)
and of (2.143) and from the last two terms of (2.140).
= A group with the gauginos Air, A1

[l O Y Ti2) — di O Y ALT)] (B 72T)
+ (YW, BY) [doi(Tmen, Y A W) — do i (Imen, ¥ ¥olr )|
i [d5 (e, Y Wahie) — di o (I, ¥ A W) (B3, ¥2),  (2.149)

coming from the second and third terms of (2.140), (2.141)) and (2.142)) respec-
tively.
= And finally three groups of terms containing the Dirac operator d 4:
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(I, hda, W)WY eL) + (W, B Uncy [da, W3)eL)

n /M wd; (v, da,) Bl s, (2.150a)
(Iucy [aAvﬁﬂva Wzﬁﬂ;ﬂ + (s [(;Aa$3]8L7$1Y‘1/*W2>
4 /M s 0, Boda (T, Fayn), (2.150b)

and
<JMC'1* [‘;Avﬁl]&‘b Tzl*‘T/ZVQ + <JMW37$1T1/*C,2 [(;A, ‘I~/2]3L>
4 /M trd (Juen, daV3) BV U, (2.150¢)

coming from parts of the first and third terms of (2.144)) — (2.146)) and from the

first terms of (2:140) — 2:142).

Lemma 2.43 The group Z.147) vanishes, provided that
alf =l =" (2.151)

Proof. Since the terms contain four fermions, we must employ a Fierz transforma-
tion (Appendix [2.7.1). Point-wise, we have for the first term of (omitting its
pre-factor for now):

W1, Y V) (I, Y W3)

Cio, —
= " (V1. V3) (e, v2)
Co, o — oy Ci\ a5
— UML) U, Ya Yo v2) — = U W1 PP W) U T ¥2)
Cys

T(JMVD YV3) (Une, Y ¥2)

1 1 _
= *E(JM‘I/1775‘I/3)(JM3R7YS‘I/2) + Z(JM%,7"7”1//3)(JM6R,MVW),

_ G

1 (In¥ 1, 7' 3) (TmEr, Yu ¥2)

where we have used that C49 = C44 = —C4> = 1 and that all fermions are of the same
chirality. (Note that the sum in the last term runs over i < v, see Example [2.56])
Similarly, we can take the third term of (2.147), use the symmetries of the inner
product for both terms, and apply the same transformation. This yields

(T3, 7 (I, V1) )
= (¥, Y V3) (In ¥, V&)

1 _ _ 1
= —i(JMllfz,}’sER)(JM‘I/M;%) +-

4

1 s N
= =3 Une T ¥2) Ui W1, Y ¥3) = 5 Une, VY ) U W1, W W), - (2.152)

(I v, Y7 &) (In V1, W Ws3)
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where we have used the symmetries (2.164) for the second inner product in each of
the two terms of (2.152)). We can add the two results, yielding

W1 Y V) (I, Y V3G 7) + (W, ¥ (e, VW el T yo)

1 syl syl — —
= —5(0171/ + S ) ba (W1, Y W) U Er, ¥ Vaa)

1 kv~ % kv~ % — —
+ Z(C3T3/ — 11 )pa(Tna &, VY W20) (Ut W, VY W)

When 1" = ¢;1/* = ¢, 1;*, this result is seen to cancel the remaining term in

Lemma 2.44 The groups of terms (2.148) vanish, provided that
afi=-di'G",  afi=-d'Y,  ay=-d)
GBl= AT, BT ofl— Y. @15y

Proof. This can readily be seen upon using Lemma [2.5T} the cyclicity of the trace
and Lemma[2.33]

Lemma 2.45 The group of terms 2.149) vanishes, provided that
dipi=—dify,  diBr=di;Bs,  dapBy=—d5iBs (2.154)

Proof. This can readily be seen upon using the cyclicity of the trace and Lemma

233
Lemma 2.46 The three groups of terms (2.150) vanish, provided that

Ix ] Iyl *x R/ IENES IE RNl ! IE RNl Ix ] *x R/
Loy =L =—diB;, '\ =51 =—fdy, oL =1"c; =—d;p;.
(2.155)

Proof. This can be checked quite easily using the symmetry (2.164), the Leibniz
rule for ¢ 4 and the fact that it is self-adjoint, that & g vanish covariantly and Lem-

mas 2,53 and 234

Combining the above lemmas, we get:

Proposition 2.47 The extra action as a result of adding a building block %, of
the third type is supersymmetric if and only if the coefficients X;”, Y. K and T] are
related to each other via

- ) TS .
LG = =G0, LGy =1 C (Cio) ™ 0 = =1 e
(2.156)

the constants of the transformations satisfy

jdi> = |da? = |ds]* = |e1|* = |ea|* = [es? (2.157)
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and the coefficients ﬁ,’j are given by
OB = BB = BUB ST =W S @1sy)

Proof. First of all, we plug the intermediate result (Z.126) for C; ; as given by (Z.30)
(but keeping in mind the results of Remark[2.37) into the Hermitian conjugate of the
result (2.151)) such that pairwise the same combination ¢;g; appears on both sides.
This yields
1/ (—2¢i8)Cy)
- k -
(2exgrCit) T* = 1" (2ck81)C -

= (“2eiCyl ) L¥, 47 (2c¢,C

—1 k —1
i) =1 (=2¢8))Cjji

Using that the ¢; j; are purely imaginary (cf. Theorem [2.42), we obtain (2.156).
Secondly, comparing the relations (2.153) with (2.159) gives

didy = (c2ach) = c3cy,  (dpdh)* =ci1cy =3¢y,  dzdy = c1c) = (cach)*.

Using the relations (2.136a) and (2:136b) between the constraints, (2.157) follows.
Plugging the relations from (2:157) into those of (2.153), we obtain

1/*‘31/ — YS/YS/* — szlyvz/*’ zl*ﬁé — Yi/yvl/* — Y},’YE\’/*, ﬁé*ﬁé — Y‘zly‘zl* — Yi’n'*,
from which (2.158) directly follows.

N.B. Using (2.139) and (2.143) we can phrase the identities (Z.158) in terms of
the unscaled quantities 3 23 and TM 3 as

%71132:[33%71 :Tl *7 '/1/371ﬁ1 :B3f/’/171 :T2*a %7lﬁ2:ﬁ1%71 :TS*7

where we have used that .4{ € R since ¥, has R = 1 (and consequently multiplic-
ity 1).

2.6.4 Fourth building block

Phrased in terms of the auxiliary field F}; =: F, a building block of the fourth type
induces the following action:

1 . 1, _ . =
5<1Mw,mew>+§<JMw,75me>—tr (F W+h-c-).

Here we have written ¥ := Wy, ¥ := ¥, 1g and ¥ := Yy, for conciseness. Trans-
forming the fields that appear in the above action, we have the following.

s From the first term:
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2< (Y [da, Ver +d Fe ), P Tnw) <JM‘I’=7’5T$(0*YS da, Wen+d Fer)).

=  From the second term:

JM Gl da v Jew +dF &), Y TnW) + JM‘V Pl (e[ da v leL+dF g)).

»  From the terms with the auxiliary fields:

—tr {d* (Imen, da W) +d" (uer, Y Whir) —d" (e, 75/111?)} v
— Y (&, VW)
and
—tryy* [d (Juer, daw) +d (Jyer, ¥ Mr W) — d" (Jyrgr, fml/R)}
—ctr(Jye, Y W)Y'F.

Here we have written ¢ := ¢;;, d := d;; (where we have expressed c - as ¢;j and d' *

as d;j using (2.136a) and 2.136b) and &’ :=dyr 1, d" :=dyyr yr. We group all terms
according to the fields that appear in them, leavmg essentlally the following three.

= The group consisting of all terms with F* and y:

—_—

—(JydF &, Y Y W) + JMIII PYdF &) —c* / tr F*y(Jyr, VW)
= <JMF*gR,7f5(dTm—c NY)

[\

where we have used the symmetry of the inner product from Lemma [2.51] and
Lemma [2.53] This group thus only vanishes if

dYy = c*y. (2.159)

There is also a group of terms featuring F and y, but this is of the same form as
the one above.
= A group of three terms with y and y:

3 e Pl Fle PIW) + 5 U P ¥ 0. W)
—/Mtrl/N/V“d(JMSR,aAl[/):<JMC*YS[<7A, J&x, Y Y W) — (I Wer, day dy),

where also here we have used Lemmas [2.5T|and 2.53] Using the self-adjointness
of JA this is only seen to vanish if

Y =y (2.160)
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There is also a group of terms featuring ¥ and ﬁ but these are seen to be of the
same form as the terms above.
= Finally, there are terms that feature gauginos:

- /M {tfd/*(JMEL#S?/hL) —d" Iy, Y Al’Lﬁ)}Yﬁ
- /M gy [d’(JMgR, PArW) —d" Ty, ;ﬁwm)} .
This expression is immediately seen to vanish when
d* My =d" Ay, d' Mg =d" Mg

For this to happen we need that the gauginos are associated to each other and that
dl d//

Combining the demands (2.159) and (2.160) we obtain

i.e.

L =77, |dJ* = [c|*.

2.6.5 Fifth building block

We transform the fields that appear in the action according to (2.31)) and (2:32). We
suppress the indices i and j as much as possible, writing ¢ = ¢;j,d = d;; for the
transformation coefficients (2.32) of the building block %+ of the second type. We
eliminate c;; and d}; in these transformations using the first relatlons of (2:1364) an.

(2:136b) so that we can write ¢’,d’ for those associated to %;;.
The first fermionic term of (]Ql'g[) transforms as

(IMWR, Y UWR) = (In(Vclda, WleL+dF &), v L)
+ (Vg V(Y [Ia, Ve +d"F'er))

The second fermionic term of (2.78) transforms as

UV, P IEWL) = U (P[0 W e +d'F &), 71 yi)
JMWL’YS.U' ’J; JA’ }gR—Fd FSL)>

The four terms in (2.79) transform as
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- /M wF Sy /M (tr [@" (e, 82 W) + e, 9 )
—dz{;,j(JMSR,YSljRW)]5‘I~’+trF/*5C(JM€L,YS‘I’L))7
- /M wF S — — /M (tr 4" Unrer, 9aTie) + i U, ¥ W)
—di (I Y AL 9)] 8 +trF*5’c’(JM8R,y5v/R)),
- /Mtrﬁé*F’ —— /M (trc*(JMsR,fWR)B*F’ +tryS* [d (Jme, davp)
+di; /(Ime, YALy') — di; i(Jue, Yy AiL)] )

and

_ / g 8 F — — / (e e, P T8 F + ¥ 8 [d( e, davn)

M M
+dii(Iurs Y A W) — dij j(Iugr, ¥ WAjr)] )
We group all terms that feature the same fields, which gives
= a group with F and F':
d" (IuWg, Y UF' &) +d* (Iu VL, Y 1" Fev)

_ / (tre" Unien, PTRISF 40" (e, ' 7,)8°F ).

M

Using Lemmas[2.54]and [2.53]and employing the symmetries of the inner product
(Lemma [2.5T)), this is seen to equal

d/*<‘,MWRa’}/5uF/£R> +d*<JM‘I7/L775H*F3L>
— ¢ (IuYg, Y 8 F'&r) — " (I}, Y 8 Fe)
= (IuWp. Y [d"pu— 8| Fe&x) + (I, v [d*u* — "8 Fe)
This only vanishes if
d*u = c*§*, d*u* = c"* 8", (2.161)

= a group with F* and F'*, that vanishes automatically if and only if Z.161) is
satisfied.
» a group featuring Yy and y;:

=. =/

(Imclda, Wle, )+ (nlda, ¥ e, 17 yr)
- /M (trﬁS*d'(JMeL, ) +tr$/6/*d(‘]M€Ra da WL)) :

Employing Lemmas [2.53]and 2:54] this is seen to equal



100 2 Supersymmetric almost-commutative geometries

<JMC[JA’ 8Luu‘,l;€ +C JM[JA, ]gRau WL>
*d/<JMlI/5*8L7(7AlI/R>*d<JM1I/5 &, dayL)

Using the self-adjointness of d A, that [, d 4] = 0 and the symmetries of the inner
product, this reads

~ * =/ * %
(e, [ep —d' 8| dayg) + (InY &, [ —dS" | dayr).
We thus require that
cu =d' &%, du* =dé™ (2.162)
for this to vanish.
= a group with Wy and ¥, that vanishes if and only if (2.162) is satisfied.
= a group with the left-handed gauginos:
- / <tr [d,-’},,-(JMsLa Ysﬁlm) - di*j.,j(]Meu Ysleﬁ)] 5/17’/
M
+tr¢5*[ 1. (Imen, Y L y') — dj; i( (Ime, Y V' AjL) ])
= —(Jn(d};8" \//w+d,] V'Y ) e, Y dir)
(JM(d”qlé’ ”1//6* Ve, Y AjL),
where we have used Lemmas[2.54]and [2.53] For this to vanish, we require that

d; 6" = 07, di; .8 = 0.

ij;i diji ij,J dijj
Inserting (2.162) above this is equivalent to
/% /%

L, c c , C

dij,i; = *dij,iga i g — iy
= A group with the right-handed gauginos
= [ e[ e PV Rir) — i e P 2] 8
_/MU@’S’* (diji(Tner Y AR W) — dij j (I, ¥ WAjR)]
—{Im <d£7i6$$/+dij ill~/$/5/*)€m}’5/1m>
+ (I (diy v S+ dyj v 8" V)&,V Ajr),
which vanishes iff

df; ;6 = —d;j 8", di; ;6 = —d;j ;6"

Combining all relations, above, we require that
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2 2 2 2 2 2 2 2
c*=1d" P =1alr il =1l gl =)
for the transformation constants and
66*:“*u7 6/5/*:““*

for the parameters in the off shell action.

2.7 Appendix 3. Auxiliary lemmas and identities

In this section we provide some auxiliary lemmas and identities that are used in
and throughout the previous proofs. The following two results can be found in any
textbook on spin geometry, such as [23]].

Lemma 2.48 For the spin-connection VS : I'(S) — /(M) ®@c=um) I'(S) on a flat
manifold we have:

VS, 7] =0. (2.163)

Lemma 2.49 Let J, = —ico (VS +A) and Dy = (V5 + A) . For a flat manifold,
we have locally:

2 1
dy+DyD" = —5yﬂyVFw.

Corollary 2.50 By applying the previous result, we have for E,-k € C*(M,N; ® Nx),
e€L*(M,S)

~ ~ 1~ ~ ~
(dalda. Cile + Du[D*, Ci))e = E[F’ Cixle + [DH, Cik]Vflg + [da, G} de,
where the term with R vanished due to the commutator.

Lemma 2.51 Let M be a four-dimensional Riemannian spin manifold and (., .) :
L?(S) x L*(S) — C the inner product on sections of the spinor bundle. For & a
basis element of I (CI(M)), we have the following identities:

(Im81, 28) = (Uuba, 281),  wpe{£},

for any £, 5, the Grassmann variables corresponding to £ , € L2(S). The signs T
are given by '

Ta =1, Ty = —1, Ty = =1 (L <V),
T =1, s =1. (2.164)

Proof. Using that J3; = —1 and (Jy &, Ju &} = (&}, &), we have
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(nll, 28) = ~InllTq28) = —(In 25, 5).

When considering Grassmann variables, we obtain an extra minus sign (see the
discussion in [17 §4.2.6]). From Jyy* = —y*Juy, (Y*)* = y* and y#y¥ = —yVy*
for u # v, we obtain the result.

Corollary 2.52 Similarly ([8 §4]) we find by using that ¢y, = ¢y and Jydy =
iy, that

(ImC1,InG) = (I, du i) (2.165)

for the Grassmann variables corresponding to any two | L€ L2(S).

Lemma 2.53 For any ¥ € C™(M,N;®N9), y € L*(S®N; ®NY) and & € L*(S) we
have

tI‘Ni il}(JMgv W)y = (JITIE, W))f

Proof. This can be seen easily by writing out the elements in full detail:

(=foexd, y=(onef, feC(M,C),{ecLS).

Lemma 2.54 Let y; € L(SON;®N9), yo € (SN @N?), ¥, € L*(S@N; ©
N?), y € C*(M,N; ®N?) and y' € C*(M,N; @ N?), then

Yy, v) =y, yya)  and  Jy,wy) =¥y, ). (2.166)

Proof. This can simply be proven by using that the right action is implemented via
J and that J is an anti-isometry with J> = =+.

2.7.1 Fierz transformations

Details for the Fierz transformation in this context can be found in the Appendix of
[2]] but we list the main result here.

Definition 2.55 (Orthonormal Clifford basis) Let CI(V) be the Clifford algebra
over a vector space V of dimension n. Then Yg := Y, - - Y, for all strictly ordered
sets K ={k; < ... <k} C{l,...,n} form a basis for CL(V). If ¥k is as above,
we denote with yX the element Y ---y*r. The basis spanned by the Yy is said to be
orthonormal if tr yxy, = nngSxr ¥V K, L. Here ng = (—1)""="D/2 where r denotes
the cardinality of the set K and with 8k we mean

1 ifK=L
5KL_{0 S (2.167)
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Example 2.56 Take V =R* and let Cl(4,0) be the Euclidean Clifford algebra [i.e.
with signature (+ + + +)]. Its basis are the sixteen matrices

1
Yu (4 elements)
Yutv (L<v) (6 elements)
Wurh (M<V<A) (4 elements)
NryYs=:—%.

We can identify

NRB=n% NBB=rB NrLu=-1% LhBu=-hr (2.168)
establishing a connection with the basis most commonly used by physicists.

We then have the following result:

Proposition 2.57 ((Generalized) Fierz identity) Iffor any two strictly ordered sets
K, L there exists a third strictly ordered set M and ¢ € N such that Yy, = ¢ Yu, we
have for any Yy, ..., W in the n-dimensional spin representation of the Clifford al-
gebra

1
(w1, Y ) (v, Y wa) = —;ZCKLW%VL%)(%,YLW% (2.169)
L

where the constants Cpx = ny fik, fix € N are defined via yKy‘LyK = fKLy'L (no sum
over L). Here we have denoted by (.,.) the inner product on the spinor representa-
tion.
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Chapter 3
Supersymmetry breaking

Abstract With the previously obtained classification of potentially supersymmetric
models in noncommutative geometry we now address the question on how to natu-
rally break supersymmetry. In this chapter we will shortly review soft supersymme-
try breaking and analyze the question which soft supersymmetry breaking terms are
present in the spectral action. We find that all possible soft supersymmetry break-
ing terms can be generated by simply taking into account additional contributions
to the action that arise from introducing gaugino masses. In addition there can be
contributions from the second Seeley-DeWitt coefficient that is already part of the
spectral action.

3.1 Soft supersymmetry breaking

Already shortly after the advent of supersymmetry (e.g. [20]) it was realized [19]
that if it is a real symmetry of nature, then the superpartners should be of equal
mass. This, however, is very much not the case. If it were, we should have seen
all the sfermions and gauginos that feature in the Minimal Supersymmetric Stan-
dard Model (MSSM, e.g. [7]) in particle accelerators by now. In the context of the
MSSM we need [14] a supersymmetry breaking Higgs potential to get electroweak
symmetry breaking and give mass to the SM particles. Somehow there should be
a mechanism at play that breaks supersymmetry. Over the years many mechanisms
have been suggested that break supersymmetry and explain why the masses of su-
perpartners should be different at low scales. Ideally this should be mediated by a
spontaneous symmetry breaking mechanism, such as D-term [[17] or F-term [9] su-
persymmetry breaking. But phenomenologically such schemes are disfavoured, for
they require that ‘in each family at least one slepton/squark is lighter than the corre-
sponding fermion’ [7, §9.1]. Alternatively, supersymmetry can be broken explicitly
by means of a supersymmetry breaking Lagrangian. In order for the solution to the
hierarchy problem that supersymmetry provides to remain useful, the terms in this
supersymmetry breaking Lagrangian should be soft [[10]]. This means that such terms

105



106 3 Supersymmetry breaking

have couplings of positive mass dimension, not yield quadratically divergent loop
corrections that would spoil the solution to the hierarchy problem (the enormous
sensitivity of the Higgs boson mass to perturbative corrections) that supersymmetry
provides.

More precisely, consider a simple gauge group G, a set of scalar fields { Wy, o =
1,...,N}, all in a representation of G, and gauginos A = 4,7, with T“ the genera-
tors of G. Then the most general renormalizable Lagrangian that breaks supersym-
metry softly is given [12]] by

. I R S _
Lioft = _'Va(m2)ocﬁ Yp + <?,,AaByWa‘VB Yy — EBaﬁ VaYp +CaVa —|—h.c.>

1!

5 (MAuha+hc), 3.1)

where the combinations of fields should be such that each term is gauge invariant.
This expression contains the following terms:

= mass terms for the scalar bosons . For the action to be real, the matrix m?

should be self-adjoint;
= trilinear couplings, proportional to a symmetric tensor A yg, of mass dimension 1;
» bilinear scalar interactions via a matrix Bap of mass dimension two;
= for gauge singlets there can be linear couplings, with Cy € C having mass di-
mension three;
= gaugino mass terms, with M € C.

It is important to note that the Lagrangian (3.1)) corresponds to a theory that is
defined on a Minkowskian background. Performing a Wick transformation t — it
for the time variable to translate it to a theory on a Euclidean background, changes

all the signs in (3-I)):

s ~ 1 ~ - ~ 1 -~ ~
Lot = Vo (M) ap Wip — (S!Aaﬁy‘//a Vs ¥y — 5BapVa¥p +CaVa +h-c->
1
+ E(M/laka +hc.). (3.2)
This expression can easily be extended to the case of a direct product of simple
groups, but its main purpose is to give an idea of what soft supersymmetry breaking
terms typically look like.

3.2 Soft supersymmetry breaking terms from the spectral action

As was mentioned at the end of Section [1.2.2] we have to settle with the terms in
the action that the spectral action principle provides us. The question at hand is thus
whether noncommutative geometry can give us terms needed to break the super-
symmetry. In Chapter we have disregarded the second to last term (o< A2) in the
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expansion (1.24) of the spectral action. Here we will take this term into account.

In the following sections we will check for each of the terms in (3.2) if it can
also occur in the spectral action (I.2T) (with (T.24) for the expansion of its second
term) in the context of the building blocks. We will denote scalar fields generically
by y;; € C*(M,N; @ N%), fermions by y;; € L>(M,S®N; ®N¢) and gauginos by
Ai € L*(M,S @ My, (C)), with My, (C) — su(N;) after reducing the gaugino degrees
of freedom, Section|2.2.1.1

3.2.1 Scalar masses (e.g. Higgs masses)

Terms that describe the masses of the scalar particles such as the first term of
(3:2) are known [I3, §5.4] to originate from the square of the finite Dirac opera-
tor (c.f. (I.24)). In terms of Krajewski diagrams these contributions are given by
paths such as depicted in Figure [3.1]

N; Nj

N?

Ny @ e

Fig. 3.1: A building block of the second type that
defines a fermion—sfermion pair (y;;, ¥;;). Con-
tributions to the mass term of the sfermion corre-
spond to paths going back and forth on an edge, as
is depicted on the top edge.

Then the contribution to the action from a building block of the second type is:
1 1 ~ ~
5 Aty BF = — o A2 (NG P AN G ) (33)

where N; ; are the dimensions of the representations Nj j and ;; is the field that is
generated by the components of Dr parametrized by Cj;; and C;;;. Their expression
depends on which building blocks are present in the spectral triple.
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In the case that there is a building block %, j; of the third type present (parametrized
by —say— 1;”, Y}k and Y}k acting on family-space), we can both get the cor-
rect fermion—sfermion—gaugino interaction and a normalized kinetic term for the
sfermion ;; by on the one hand setting

Ti Jry iy1/2 T
Ciij = €jy | o5~ NI T; )2, Cijj=sij - Giijs - 8ij = &ijEji (3.4)
i j i

where & j,€;;,8i; € {1}, ri == qin; with g; := f(O)giz/nrz, n; the normalization
constant for the generators 7% of su(lV;) in the fundamental representation and o;; :=
1 —riN; —r;N;. On the other hand we scale the sfermion according to

271'20),']‘
f(0)

| 2

(N Y1 1) =172, (3.5)

14 l

~ —1~= . —1
l//ij—></1{j y;j, with </I{j =

There is an extra contribution from try &2 to |y; |~ compared to that of the building
block of the second type. This contribution corresponds to paths going back and
forth over the rightmost and bottommost edges in Figure[2.6] In the parametrizations
(3:4) and upon scaling according to (3.3) these together yield

o
£(0)

|ﬁ}ij|27

(3.6)

1 _ _ .
—ﬁ/\zfz (4N,~|Ci,~,-1//,~,-|2 +4N;(Cij Wi P+ 4N ’llfi/|2> — —4A?

and similar expressions for || and |y;|*. Interestingly, the pre-factor for this
contribution is universal, i.e. it is completely independent from the representation
N;® N? the scalar resides in.

Note that, for A € R and f(x) a positive function (as is required for the spectral
action) in both cases the scalar mass contributions are of the wrong sign, i.e. they
have the same sign as a Higgs-type scalar potential would have. The result would
be a theory whose gauge group is broken maximally. We will see that, perhaps
counterintuitively, we can escape this by adding gaugino-masses.

3.2.2 Gaugino masses

Having a building block of the first type, that consists of two copies of My(C)
for a particular value of N, allows us to define a finite Dirac operator whose two
components map between these copies, since both are of opposite grading. On the
basis J#F = My(C), @ My (C)g this is written as

0G
DF: <G* 0), GZMN(C)R%MN((C)L,
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since it needs to be self-adjoint. This form for Dy automatically satisfies the or-
der one condition ([.T2) and the demand JD = DJ (see (I.I0)) translates into
G = JG*J*. If we want this to be a genuine mass term it should not generate any
scalar field via its inner fluctuations. For this G must be a multiple of the identity
and consequently we write G = Midy, M € C. This particular pre-factor is dictated
by how the term appears in (3.2).

For the fermionic action we then have

1 1 1_
§<J(7LL,7LR)7YSDF(1L,1R)> = §M<JM1R,7’57LR> + §M<JM7LL7757LL>a 3.7

where (A, Ag) € AT =L*(S; @ My(C)L) ® L*(S— @ My(C)g), with Sy the space
of left- resp. right-handed spinors. This indeed describes a gaugino mass term for a
theory on a Euclidean background (cf. [2], equation 4.52).

A gaugino mass term in combination with building blocks of the second type
(for which two gaugino pairs are required), gives extra contributions to the spectral
action. From the set up as is depicted in Figure one can see that tr D}. receives
extra contributions coming from paths that traverse two edges representing a gaug-
ino mass and two representing the scalar y;;. In detail, the extra contributions are
given by:

(O £(0 B R
%UF P = %(Ni|Mi|2|Ciij‘I/ij|2+Nj|Mj|2|Cijjwij|2)
= 2NV N M) (3.8)

upon scaling the fields.

N; N;

Ny o Q
M; /
Ny @ ]

Fig. 3.2: A building block of the second type that defines a fermion—
sfermion pair (y;;, ¥ij), dressed with mass terms for the corresponding
gauginos (dashed edges, labeled by M; ;).

This means that there is an extra contribution to the scalar mass terms, that is of
opposite sign (i.e. positive) as compared to the one from the previous section. When
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2riN;|Mi|* + 27N, | M |* > 42 p2
iV |V JAVj L f )
f(0)
then the mass terms of the sfermions have the correct sign, averting the problem of
a maximally broken gauge group that was mentioned in the previous section. Com-
paring this with the expression for the Higgs mass(es) raises interesting questions
about the physical interpretation of this result. In particular, if we would require the
mass terms of the sfermions and Higgs boson(s) to have the correct sign already at
the scale A on which we perform the expansion of the spectral action, this seems to
suggest that at least some gaugino masses must be very large.
Note that a gauge singlet W, € L>(M,S®1®1’°) (such as the right-handed
neutrino) can be dressed with a Majorana mass matrix 1p, in family space (see [2}
§2.6] and Figure[3.3). This yields extra supersymmetry breaking contributions:

0 o o o o
%tr {4(C111’l//sin)rm(cll1’Wsin)M+4(C11’1’l//sin)rm(cll’1’V’sin)M/ +h.c.

—r(M+M)u Ty, +hc. (3.9)

where M and M’ denote the gaugino masses of the two one-dimensional building
blocks A, %) of the first type respectively and the trace is over family space.
This expression is independent of whether there are building bocks of the third type
present.

Note furthermore that the gaugino masses do not give rise to mass terms for
the gauge bosons. In the spectral action such terms could come from an expression
featuring both Dy = iy* D, and Dr twice. We do have such a term in but since
it appears with a commutator between the two and since we demanded the gaugino
masses to be a multiple of the identity in My (C), such terms vanish automatically.
(In contrast, the Higgs boson does generate mass terms for the W*- and Z-bosons,
partly since the Higgs is not in the adjoint representation.)

3.2.3 Linear couplings

The fourth term of (3.2)) can only occur for a gauge singlet, i.e. the representation
1® 1 (or, quite similarly, the representation 1®1°). The only situation in which
such a term can arise is with a building block of the second type — defining a
fermion—sfermion pair (Wsin, Ysin) and their antiparticles (see Figure 3.3). Moreover
in this case a Majorana mass 1}, is possible, that does not generate a new field.

Any such term in the spectral action must originate from a path in this Krajewski
diagram consisting of either two or four steps (corresponding to the second and
fourth power of the Dirac operator), ending at the same vertex at which it started
(if it is to contribute to the trace) and traversing an edge labeled by ;, only once.
From the diagram one readily checks that such a contribution cannot exist.
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1 1

10 [+ o
A
M/
/
1 @ ]

Fig. 3.3: A building block of the second type that defines a gauge singlet
fermion—sfermion pair (Wi, Wsin ). Moreover, a Majorana mass term 1, is
possible.

3.2.4 Bilinear couplings

If a bilinear coupling (such as the third term in (3.2)) is to be a gauge singlet, the two
fields y;; and v/ ; appearing in the expression should have opposite finite representa-
tions, e.g. y;; € C*(M,N; @ N9), yj; € C*(M,N; @ N?). We will rename y; —>$;j
for consistency with The building blocks of the second type by which they
are defined are depicted in Figure[3.4]

N; N j N; Nf
M;
NY :
Vij Vij
Wt{jL
AW R
(4 e, o .

N i Nj N é-a—g M;
(a) When the gradings of the represen- (b) When the gradings of the represen-
tations are equal. tations differ.

Fig. 3.4: Two building blocks of the second type defining two fermion—
sfermion pairs (;;, ;) and (y};, y;;) in the same representation.

The gradings of both representations are either the same (left image of Figure
[3.4), or they are of opposite eigenvalue (the right image). A contribution to the action
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that resembles the third term in needs to come from paths in the Krajewski
diagram of Figure [3.4] consisting of either two or four steps, ending in the same
point as where they started and traversing an edge labeled by y;; and l/~/i'j only once.

One can easily check that in the left image of Figure [3.4no such paths exist. In
the second case (right image of Figure[3.4), however, there arises the possibility of
a component u of the finite Dirac operator that maps between the vertices labeled
by y;; and y/ ; (and consequently also between ¥;; and v, ;). This corresponds to a
building block of the fifth type (Section[2.2.5.2)). There is a contribution to the action
(via trD%) that comes from loops traversing both an edge representing a gaugino
mass and one representing u. If the component u is parameterized by a complex
number, then the contribution is

f(O) AP ~ o -~
— 2(riNiMi + riN;M;) pte 7, ), + hec., (3.10)

where the traces are over N]@M , with M the number of copies of N; ® N;. This indeed
yields a bilinear term such as the third one of (3.2)).

3.2.5 Trilinear couplings

Trilinear terms such as the second term of (3.2)) might appear in the spectral action.
For that we need three fields y;; € C*(M,N; ® N9), y € C*(M,N; @ N}) and
Wy € C°(M,N; ®N7), generated by the finite Dirac operator. Such a term can only
arise from the fourth power of the finite Dirac operato which is visualized by paths
in the Krajewski diagram consisting of four steps, three of which correspond to a
component that generates a scalar field, the other one must be a term that does not
generate inner fluctuations, e.g. a mass term. Non-gaugino fermion mass terms were
already covered in Chapter [2]and were seen to generate potentially supersymmetric
trilinear interactions, so the mass term must be a gaugino mass.

If the component of the finite Dirac operator that does not generate a field is a
gaugino mass term (mapping between —say— My, (C)g and My, (C)y), then two of
the three components that do generate a field must come from building blocks of the
second type, since they are the only ones connecting to the adjoint representations.
If we denote the non-adjoint representations from these building blocks by N; @ N¢
and N; ® N} then we can only get a contribution to trD4F if there is a component
of D connecting these two representations. If Nj = Nk, such a component could
yield a mass term for the fermion in the representation N; ® N, and we revert to
the previous section. If Nj # N then the remaining component of Dy must be part
of a building block of the third type, namely %, . This situation is depicted in

! Here we assume that each component of the finite Dirac operator generates only a single field,
instead of —say— two composite ones.
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Figure It gives rise to three different trilinear interactions corresponding to the
paths labeled by arrows in the figure. Each of these three paths actually represents
four contributions: one can traverse each path in the opposite direction, and for
each path one can reflect it around the diagonal, giving another path with the same
contribution to the action.

0
Ny

0
Nk

Fig. 3.5: A situation in which there are three building blocks %; ;  of the
first type (black vertices), three building blocks %;; ji ik of the second type
and a building block %; j of the third type. Adding gaugino masses (dashed
edges) gives rise to trilinear interactions, corresponding to the paths in the
diagram marked by arrows.

Calculating the spectral action we get for each building block %, j; of the third
type the contributions

f 0 — k~ —~ % ~ —_— ~ = ~
% (NiMi ;Wi W Gy Cit Vi + NjM; trCrc W Wi T “Ci

+ N Mg trCiug Wi W Ci X, i j) the. G.11)

where all traces are over N?M . A careful analysis of the demand for supersymmetry
in this context (see Section @ requires the parameters 1;/, X;* and T ¥ to be
related via
k j j k

Ciuli" = -TG"Cin,  G¥Cuj=—CY;’,  %/Ciu=-1,"Cyj;  (3.12)
where Cj;; and Cjj; act trivially on family space if y;; is assumed to have R = 1.
From this relation we can deduce that s;;s;s jx = —1 for the product of the three signs
defined in @ If we replace Ciit = Cites Ciij — Cijj, ijk — Cjkk and Cijj — Ciij
in the first two terms of (3.11) using (3.4)), employ (2.53)), then (3.11)) can be written
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as

f(O) ( wri —rj — o= i
,(52*) (NiMiT,i +N,-M,i +NkMk) trCira Wi W Cine s Wij + hec.

We then scale the sfermions according to (3.5), again using (3.4) for Cji and C},
to obtain

;; — J— — e~ o~ =
2K.81 Zq—l/(r,»N,-M,-—&-erij—&-rkaMk)trTy/ijy/jkl,llik—&—h.c., (3.13)
V 1
where we have written
T =1 (N 1)

for the scaled version of the parameter 1; J , K := & ;& and the index [ can take
any of the values that appear in the theory.

3.3 Summary and conclusions

We have now considered all terms featuring in (3.2). At the same time the reader
can convince himself that this exhausts all possible terms that appear via trD4F and
feature a gaugino mass. As for the fermionic action, a component of Dy mapping
between two adjoint representations can give gaugino mass terms (3.7). As for the
bosonic action, any path of length two contributing to the trace and featuring a
gaugino mass, cannot feature other fields. In contrast, a path of length four in a
Krajewski diagram involving a gaugino mass can feature:

= only that mass, as a constant term (see the comment at the end of this section);

= two times the scalar from a building block of the second type, when going in one
direction (3-8);

= two times the scalar from a building block of the second type, when going in
two directions and when a Majorana mass is present (only possible for singlet
representations, (3.9));

= two scalars from two different building blocks of the second type having opposite
grading in combination with a building block of the fifth type (3.10).

» three scalars, partly originating from a building block of the second type and
partly from one of the third type (3.13).

Furthermore, via trDlzF there are contributions to the scalar masses from building
blocks of the second and third type (3.3). We can combine the main results of the
previous sections into the following theorem.

Theorem 3.1. All possible terms that break supersymmetry softly and that can orig-
inate from the spectral action (1.24) of an almost-commutative geometry consisting
of building blocks are mass terms for scalar fields and gauginos and trilinear and
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bilinear couplings. More precisely, the most general Lagrangian that softly breaks
supersymmetry and results from almost-commutative geometries is of the form

N6 = 2 4 20 4 2B 4 g® 4 ) (3.14)

S

where

20 = %MKJM/MR,YS%M + %Mi<JM)~iLaYSAiL> (3.152)

for each building block %; of the first type,

(2):2 iN'Mi2 NMZ_ZLAZ TG 3.15b
&z (r i|Mi|” + 1N M| 7(0) )Wftﬂ, ( )

Sfor each building block %;; of the second type for which there is at least one building
block B, i of the third type present (knowing that a single %;; cannot be supersym-
metric by itself;, Section[2.2.2)),

;i _— _— _— i~ ~ =
$(3> =2K;.8; 27U (r,'N,'M,' + erij + rkaMk) trrl[l,'jl[{jkl,t/ik +h.c., (3.15¢)
V @
Sfor each building block %,y of the third type,

LY = (M+M) Ty, +hec. (3.15d)

Sfor each building block Py of the fourth type (with the trace over a possible family
index), and

20 =2(riNiMi+erij)l~ltr$ij‘T’;j+h~c- (3.15¢)

for each building block PBrass of the fifth type.

It should be remarked that the building blocks of the fourth and fifth type typically
already provide soft breaking terms of their own (see Sections[2.2.5.1and [2.2.5.2).

Interestingly, all supersymmetry breaking interactions that occur are seen to be
generated by the gaugino masses (except the ones coming from the trace of the
square of the finite Dirac operator) and each of them can be associated to one of
the five supersymmetric building blocks. Note that the gaugino masses give rise to
extra contributions that are not listed in (3.14). For each gaugino mass M; there is
an additional contribution

_fO)
EMI' - 47[2 |M1|

2
%A2|M,-\2.

Since such contributions do not contain fields, they are not breaking supersymmetry,
but might nonetheless be interesting from a gravitational perspective.
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Chapter 4

The noncommutative supersymmetric Standard
Model

Abstract We apply our formalism for supersymmetric theories in the context of
noncommutative geometry to explore the existence of a noncommutative version of
the minimal supersymmetric Standard Model (MSSM). We obtain the exact particle
content of the MSSM and identify (in form) its interactions, but conclude that their
coefficients are such that the standard action functional used in noncommutative
geometry is in fact not supersymmetric.

4.1 Obstructions for a supersymmetric theory

The results of Chapter [2] allow us to determine a model in a constructive way by
defining the building blocks that it consists of. This does not imply automatically
that the corresponding action is also supersymmetric: we have come across a num-
ber of possible obstacles for a supersymmetric action. These are the following:

» the three obstructions from Remark Remark and Proposition of
Chapter [2] concerning the set up of the almost-commutative geometry. The first
excludes a finite algebra that is equal to C with the corresponding building block
A, since it lacks gauge interactions and thus cannot be supersymmetric. The
second excludes a finite algebra consisting of two summands that are both matrix
algebras over C in the presence of only building blocks of the second type whose
off-diagonal representations in the Hilbert space have R-parity equal to —1. The
third obstruction says that for an algebra consisting of three or more summands
My ;,(C) we cannot have two building blocks %;; and % of the second type
that share one of their indices. To avoid this obstruction, we can maximally have
two components of the algebra that are a matrix algebra over C.

= to obtain the fermion—sfermion—gaugino interactions needed for a supersymmet-
ric action, the parameters C;;; and C;;; of the finite Dirac operator associated to a
building block %;; of the second type —that read C~', ;j and c ;i after normalizing
the kinetic terms of the sfermions— should satisfy

117
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~ /2 . ~ 2
Cij= ¢, %gilde Cji= gj,i\/;gj idys . 4.1
! J

Here &; ; and €;; are signs that we are free to choose. The .%; ; are the pre-factors
of the kinetic terms of the gauge bosons that correspond to the building blocks
% ; of the first type and should be set to 1 to give normalized kinetic terms (the
consequences of this will be reviewed at the end of Section[d.3). The g; ; are cou-
pling constants. Furthermore, these variables should act trivially on family space
(consisting of M generations), indicated by the identity idy, on family space.
Similarly, when a building block %, of the third type is present, its fermionic
interactions can only be part of a supersymmetric action if the parameters 1 J,
T * and I, ¥ of the finite Dirac operator satisfy
e (T A (A )

iij

. o
LG = =1 e
4.2)
For any building block of the third type it is necessary that either one or all three
representations N; @ N9, N; @ N7 and N; ® Ny in the Hilbert space have R-parity
—1. The above relation assumes N; ® N to have R = —1, but the identities for
the other cases are very similar (Section @
= for the four-scalar interactions to have an off shell counterpart that satisfies the
constraints supersymmetry puts on them, the coefficients of the interactions with
the auxiliary fields G;, H and F;; should satisfy the demands listed in Section

For each almost-commutative geometry that one defines in terms of the building
blocks, we should explicitly check that the obstructions are avoided and the appro-
priate demands are satisfied.

In the next section we will list the basic properties of the almost-commutative
geometry that is to give the MSSM, including the building blocks it consists of and
show that this set up avoids the three possible obstructions from the first item in the
list above. To confirm that we are on the right track we identify all MSSM particles
and examine their properties in Section[4.3] Finally, in Section .4 we will confront
our model with the demands from the last item in the list above. Throughout, we
will a priori allow for a number of generations other than 3.

4.2 The building blocks of the MSSM

We start by listing the properties of the finite spectral triple that, when part of an
almost-commutative geometry, should correspond to the MSSM.

1. The gauge group of the MSSM is (up to a finite group) the same as that of the SM.
In noncommutative geometry there is a strong connection between the algebra .
of the almost-commutative geometry and the gauge group ¢ of the corresponding
theory. There is more than one algebra that may yield the correct gauge group
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(Lemma 1 of [1]) but any supersymmetric extension of the SM also contains the
SM particles, which requires an algebra that has the right representations (see
just below the aforementioned Lemma). This motivates us to take the Standard
Model algebra:

Note that with this choice we already avoid the third obstruction for a supersym-
metric theory from the first item in the list above, since only two of the summands
of this algebra are defined over C.

In the derivation [4] of the SM from noncommutative geometry the authors first
start with the ‘proto-algebra’

o r=CaoH; ¢ Hr dM3(C) 4.4)

(cf. [4, §2.1]) that breaks into the algebra above after allowing for a Majorana
mass for the right-handed neutrino [4, §2.4]. Although we do not follow this
approach here, we do mention that this algebra avoids the same obstruction too.

2. As is the case in the NCSM, we allow four inequivalent representations of the
components of {@3): 1, 1, 2 and 3. Here 1 denotes the real-linear representation
(A = Av, for v € iﬂ This results in only three independent forces —with
coupling constants g1, g» and g3— since the inner fluctuations of the canonical
Dirac operator acting on the representations 1 and 1 of C are seen to generate
only a single u(1) gauge field [4] §3.5.2] (see also Section[4.3.2).

3. If we want a theory that contains the superpartners of the gauge bosons, we need
to define the appropriate building blocks of the first type (cf. Section 2.2.T)). In
addition, we need these building blocks to define the superpartners of the various
Standard Model particles. We introduce

%17 %11?7 %TR’ QZL, %35 (45)

whose representations in 7% all have R = —1 to ensure that the gauginos and
gauge bosons are of opposite R-parity. The Krajewski diagram that corresponds
to these building blocks is given in Figure[.Ta] For reasons that will become clear
later on, we have two building blocks featuring the representation 1, and one fea-
turing 1. We distinguish the first two by giving one a subscript R. This notation
is not related to R-parity but instead is inspired by the derivation of the Standard
Model where, in terms of the proto-algebra (@.4), the component C is embedded
in the component Hy via A — diag(A,A). The initially two-dimensional rep-
resentation 2g of this component (making the right-handed leptons and quarks
doublets) thus breaks up into two one-dimensional representations 1z and I
(corresponding to right-handed singlets).

At this point we thus have too many fermionic degrees of freedom, but these will
be naturally identified to each other in Section[4.3]

! Keep in mind that we ensure the Hilbert space being complex by defining it as a bimodule of the
complexification o7 C of o7, rather than of .« itself [3].
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4. For each of the Standard Model fermionsﬂ we define the corresponding building
block of the second type:

%iel : (VRaVR)7 ‘%{Rl : (eRagR)a %;Ll : (lLafle)a (463)

B3+ (ug,iig), By (drodr), By (qudn).  (4.6b)

Of each of the representations in the finite Hilbert space we will take M copies
representing the M generations of particles, also leading to M copies of the
sfermions. We can always take M = 3 in particular. Each of these fermions has
R = +1. We do the same for representations in which the SM Higgs resides:

B, (), Bi o, ¢ (haha), (4.6¢)

save that their representations in the Hilbert space have R = —1 and consequently
we take only one copy of both. For the two Higgs/higgsino building blocks we
can choose the grading still. We will set them both to be left-handed and justify
that choice later.

The Krajewski diagram that corresponds to these building blocks is given by
Figure

The fact that there is at least one building block % j J = 1r,21,3, avoids the
first of the three obstructions for a supersymmetric theory mentioned in the first
item of the list above.

The building blocks introduced above fully determine the finite Hilbert space.
For concreteness, it is given by

Hir = Hp gy & Hipeo, @.7)
with A p—y = %(1 + R) % (cf. Section reading

Hirpes = (£ )M, E= 2,010 1R)® (1D 3)°
Hppe = F S F°, F =121 3101 @ 202°
O 3030 (1gd1g)®27.
Here & contains the finite part of the left- and right-handed leptons and quarks.
The first four terms of .% represent the u(1), su(2) and su(3) gauginos and the
last term the higgsinos. For the (MS)SM the number of generations M is equal to

3.
5. In terms of the ‘proto-algebra’ {.4) the operator

R= _(+7_7_7+) ® (+7_7_7+)0

2 In the strict sense the Standard Model does not feature a right handed neutrino (nor does the
MSSM), but allows for extensions that do. On the other hand the more recent derivations of the SM
from noncommutative geometry naturally come with a right-handed neutrino. We will incorporate
it from the outset, always having the possibility to discard it should we need to.
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gives the right values for R-parity to all the fermions: R = 41 for all the SM-
fermions, R = —1 for the higgsino-representations that are in 2z ® 27 before
breaking to (1 & 1g) ®29.

Since there is at least one building block of the second type whose represen-
tation in the finite Hilbert space has R = +1, also the second obstruction for a
supersymmetric theory mentioned above is avoided.

6. The MSSM features additional interactions, such as the Yukawa couplings of
fermions with the Higgs. In the superfield formalism, these are determined by
a superpotential. Its counterpart in the language of noncommutative geometry
is given by the building blocks %, of the third type. These should at least
contain the Higgs-interactions of the Standard Model (but with the distinction
between up- and down-type Higgses). The values of the grading on the repre-
sentations in the finite Hilbert space are such that they allow us to extend the
Higgs-interactions to the following building blocks:

%l],ﬂu <@liRZLa %1R2L37 ZIRZL:‘" (48)

The four building blocks %, i, are depicted in Figure (For conciseness we
have omitted here the building blocks of the first type and the components of Dr
from the building blocks of the second type.)

Note that all components of D_, the part of D that anticommutes with R, that are
allowed by the principles of NCG are in fact also non-zero now. This is in contrast
with those of D, on which the (ad hoc) requirement [4, §2.6] to commute with

Cr := {(A,diag(1,1),0),A € C} C oy

is imposed. The reason for this is to keep the photon massless and to get the
interactions of the SM. Requiring the same for the entire finite Dirac operator
would forbid the majority of the components that determine the sfermions, not
requiring it at all would lead to extra, non-supersymmetric interactions such as
1®1° — 3®1°. Thus, we slightly change the demand, reading

[D..,Cr] =0. (4.9)

Relaxing this demand does not lead to a photon mass since it only affects the
sfermions that have R = —1 whereas any photon mass would arise from the ki-
netic term of the Higgses, having R = +1.
At this point we can justify the choice for the grading of the up- and down-type
higgsinos. If the grading of any of the two would have been of opposite sign,
none of the building blocks of the third type that feature that particular higgsino
could have been defined. The interactions that are still possible then cannot be
combined into building blocks of the third type, which is an undesirable property.
It corresponds to a superpotential that is not holomorphic (see Section [2.2.3)).

7. Having a right-handed neutrino in 1gr ® 17, that is a singlet of the gauge group,
we are allowed to add a Majorana mass for it via
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Brmaj (4.10)

such as in[2.2.5.1] This is represented by the dotted diagonal line in Figure .1d]
The building block is parametrized by a symmetric M x M—matrix 1j .

1 1 2 3
1() e A{)LﬁR l(}
Ca® 4.5
To ee A(gl,R To
20 Qe A’L>R 21)
30 SLx ee 30
(a) Blocks of the first type. (b) Blocks of the second type. Each

white off-diagonal node corresponds to
a SM (anti)particle.

1 1 2 3
VR
o e
1 ('B Tz
TO
2()
30

(c) Blocks of the third type,
parametrized by the Yukawa ma-

trices Ty o,0q- (d) The block of the fourth type, repre-

senting a Majorana mass for the right-
handed neutrino.

Fig. 4.1: All building blocks that together represent the particle content and
interactions of the MSSM.

Summarizing things, the finite spectral triple of the almost-commutative geome-
try that should yield the MSSM then reads
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Br© By ® By ® By ® B3 DBy, DB
CEZ @931}1@'%’21 @%;{@%’{Rﬁﬁ%

@%nRzL@%HﬂL@,@mzﬁ ®$1R2L3@%maj 4.11)

One of its properties is that all components that are not forbidden by the principles
of NCG and the additional demand (4.9) are in fact also non-zero, save for the
supersymmetry-breaking gaugino masses (Chapter [3) that we will not cover here.

Remark 4.1 Running ahead of things a bit already we note that there is an impor-
tant difference with the MSSM. In the superfield-formalism there is an interaction
that reads

uH;-H,, 4.12)

where H, 4 represent the up-/down-type Higgs/higgsino superfields [9, §8.3]. Sup-
pose that E@I;ZL and %’f;zL indeed describe the up- and down-type Higgses and
higgsinos. Because their vertices are on different places in the Krajewski diagram
and in addition they have the same value for the grading, there is no building block
of the fifth type possible that would be the equivalent of @I12). Moreover, in the
MSSM there is a soft supersymmetry-breaking interaction

Buhy - hy+h.c.

In this framework also such an interaction can only be generated via a building
block of the fifth type (in combination with gaugino masses, see Section |3.2.4)).
Not having these interactions would at least leave several of the tree-level mass-
eigenstates that involve the Higgses massless [9, §10.3]. We can overcome this prob-
lem by adding two more building blocks %2, and %y ,,, of the second type whose
values of the grading are opposite to the ones previously defined. With these values
no additional components for the finite Dirac operator are possible, except for two
building blocks of the fifth type that run between the representations of g%’izL and
between those of %’izL. If we then identify the degrees of freedom of 93;;% to those

- + — . . . .
of '%TRZL and those of ’%TRZL to those of 9‘31R2L’ this would give us the interactions

that correspond to the term (&12). The additions to the finite spectral triple (&.11))
that correspond to these steps are given by

gliRZL ® L%);RZL ® %mass,lRZL & ‘%)mass,TRZL' (4.13)

This situation is depicted in Figure

We proceed by ensuring that we are indeed talking about the noncommutative
counterpart of the MSSM by identifying the MSSM particles and checking that the
number of fermionic and bosonic degrees of freedom are the same.
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1 1 2 3
10 a
L@
111 0
_ - p e
ha T
. e e
Nt )
hy, hy

Fig. 4.2: The extra building blocks of the second
type featuring a Higgs/higgsino-pair and the build-
ing blocks of the fifth type that are consequently
possible.

4.3 Identification of particles and sparticles

4.3.1 The gauge group and hypercharges

To justify the nomenclature we have been using in the previous section we need
to test the properties of the new particles by examining how they transform under
the gauge group (e.g. [16, §7.1]). We do this by transforming elements of the finite
Hilbert space and finite Dirac operator under the gauge group according to

Aoy = Uy, Dr — UDrU",

with U = uJuJ*, u € SU (<), but with a definition of the gauge group featuring the
R-parity operator:

SU(A):={uc o |u" =uu=1,dety,  (u)=1}.

(See the discussion in Section ) Since we have J¢7 r—y = ¢ sy, the space that
describes the SM fermions, this determinant gives

SU(esm) = {(A,q,m) € U(1) x SU(2) x U(3), [Adet(m)]*M =1}, (4.14)

The factor M again represents the number of particle generations and stems from
the fact that the algebra acts trivially on family-space. Unitary quaternions g auto-
matically have determinant 1 and consequently all contributions to the determinant
come from

E'=103)® (2 01r®1g)°
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defined above, instead of from & . The power 4 =2+ 1+ 1 above comes from the
second part of the tensor product on which the unitary elements U (<) act trivially.
From (@.14) we infer that the U (1)-part of SU (%) (the part that commutes with
all other elements) is given by

{(A,1,27'313),2 € U(1)} C SU(om).- (4.15)

This part determines the hypercharges of the particles; these are given by the power
with which A acts on the corresponding representations. This result makes the iden-
tification of the fermions that have R = +1 exactly the same as in the case of the SM
([4} §2.5]). Applying it to the gaugino and higgsino sectors of the Hilbert space, we
find that:

= there are the gauginos g € 3 ® 3° whose traceless part transforms as g — vgV/,
with ¥ € SU(3) (i.e. it is in the adjoint representation of SU(3)) and whose trace
part transforms trivially;

= there are the gauginos W € 2®2° whose traceless part transforms according to
W — gWq* with g € SU(2) (i.e. the adjoint representation of SU(2)) and whose
trace part transforms trivially;

= the higgsinos in 1g ®21,° and 1g ®21,° transform in the representation 2 of SU (2)
and have hypercharge +1 and —1 respectively;

= the gauginos in 1® 1?2, 2®2° and 3 ® 3 all have zero hypercharge.

The new scalars, parametrized by the finite Dirac operator, generically transform
as @ — UPU". In particular, we separately consider the elements U = uJuJ* with
u=(A,1,A71313), (1,9,1) and (1,1,7). This gives the following:

» withu = (A,1,47'/313) we find for the hypercharges of the various sfermions:

~ . 1 ~ . 4 7. 2
qL - 3 UR : 3 dR' 3
0, er: —2.

I : —1, VR :

The conjugates are found to carry the opposite charge.

= withu = (1,g,1) we find the following sfermions that transform non-trivially: g;,
and I~L, each coming in M generations.

= with u = (1,1,7) we find the following sfermions that transform in the funda-
mental representation of SU (3): gy, ug and JR, each coming in M generations.

This completes the identification of the new elements in the theory with the gaug-
inos, higgsinos and sfermions of the MSSM.

4.3.2 Unimodularity in the MSSM

Having identified the particles there is one other thing to check; that the number
of bosonic and fermionic degrees of freedom are indeed the same. We can quite
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easily see that at least initially this is not the case for the following reason. In order
to be able to define the building blocks %’{R . %’{R , and ﬂi 2 of the second type
(describing the right-handed (s)electron and (s)quark and down-type Higgs/higgsino
respectively), we defined the building blocks %7 and %, of the first type. Each
provides extra u(1) fermionic degrees of freedom, but no bosonic ones (see below).
In addition, the gaugino W contains a trace part, whereas the corresponding gauge
boson does not.
We will employ the unimodularity condition

tr%/FAR#A” =0 4.16)

to reduce the bosonic degrees of freedom on the one hand and see what its conse-
quences are, using the supersymmetry transformations.

First of all, we note that the inner fluctuations on the 1 and 1 give rise to only one
u(1) gauge field (cf. [4, §15.4]). Initially there are

A =i Y Auhj, and A =iy Y Ai0uAj,
J J

but since A must be self-adjoint (as dy; is), Ay =iY;A /B”?L]’- is real-valued. Con-
sequently A (x) = —Ay(x) and they indeed generate the same gauge field. But via
the supersymmetry transformations this also means that

SA o< 5A/,

i.e. the corresponding gauginos whose finite parts are in 1®1° and T® 1” should be
associated to each other.

Second, the inner fluctuations of the quaternions H generate an su(2)-valued
gauge field. This can be seen as follows. The quaternions form a real algebra,
spanned by {15,ic%}, with 6 the Pauli matrices. Since dj; commutes with the
basis elements, the inner fluctuations

J
can again be written as a quaternion-valued function, i.e. of the form

ijo [dnSfjol + Fialduif}a 07
j

for certain fo, £, fias f3, € C°(M,R). Using that [@y,x]* = —[dyr,x*], only the
second term above, which we will denote with Q, is seen to satisfy the demand of
self-adjointness for the Dirac operator. Since the Pauli matrices are traceless, the
self-adjoint inner fluctuations of H are automatically traceless as well.
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Using the supersymmetry transformations on the gauge field O, we demand that
tr6Q = 0, which sets the trace of the corresponding gaugino and auxiliary field
equal to zero.

Third, the inner fluctuations of the component M3(C) of the algebra generate a
gauge field

V':ij[a,m/jL mj,m; € M3(C).
J

Because Dy is self-adjoint V' must be too and hence V'(x) € u(3). We can employ
the unimodularity condition (.16), which for .7 given by (4.7) reads

4M(A +tV') =0.

The contributions to this expression again only come from &° and the factor 4 =
2+ 141 arises from the gauge fields acting trivially on the second part of its tensor
product. The inner fluctuations of the quaternions do not appear in this expression,
since they are traceless. A solution to the demand above is

1
V' = —V—g/\ id3, 4.17)

with V(x) € su(3). The sign of V is chosen such that the interactions match those of
the Standard Model [4, §3.5].

In order to introduce coupling constants into the theory, we have to redefine the
fields at hand:

Au = 81By, Ou = g2Wy, Vi = 838u-

Note that we parametrize the gauge fields differently than in [4]. Then looking at the
supersymmetry transformation of V/, we infer that its superpartner, the u(3) ‘gluino’
g1 g and corresponding auxiliary field G5 can also be separated into a trace part and
a traceless part. We parametrize them similarly as

1 . 1.
SR =8LR— g%L,Rlds, Gy =Gs— §G1 ids, (4.18)

with %L,R the superpartner of By, and G the associated auxiliary field.

The unimodularity condition reduced a bosonic degree of freedom. Employing
it in combination with the supersymmetry transformations allowed us to reduce
fermionic and auxiliary degrees of freedom as well. A similar result comes from
1 and 1 generating the same gauge field. All in all we are left with three gauge
fields, gauginos and corresponding auxiliary fields:

By €C*(M,u(1)),  2Aorgr € L*(M,S®u(1)), G €C*(M,u(1)),
Wy € C(M,su(2)),  Arg € L*(M,S®@su(2)), Gy € C™(M,su(2)),
gu € C™(M,su(3)), 8LR ELZ(M,S®SM(3)>, G3 € C”(M,su(3)),
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exactly as in the MSSM.

With the finite Hilbert space being determined by the building blocks of the first
and second type, we can also obtain the relation between the coupling constants
g1, &2 and g3 that results from normalizing the kinetic terms of the gauge bosons,
appearing in (I.24). The latter are of the form

1 . (0 r;
Z‘%/f/ Flapiany = %gﬁnj (2Nj+ZMjka) =7 (2Nj+ZM;ka),
M k k

(4.19)

where the label j denotes the type (i.e. u(1), su(2) or su(3)) of gauge field and the
index a runs over the generators of the corresponding gauge group. The expressions
for J#; include a factor 2 that comes from summing over both particles and anti-
particles. Its first term stems from a building block %; of the first type and the other
terms come from the building blocks ;. of the second type, having multiplicity
M ;.. The symbol n; comes from the normalization

apb __  Sab
wT{'T; =n;o

of the gauge group generators 7''. For su(2) and su(3) these have the value np 3 = %,
for u(1) we have n; = 1. In addition, each contribution to the kinetic term of the
u(1) gauge boson must be multiplied with the square of the hypercharge of the
building block the contribution comes from. The contributions (see [[1, §4.3]) from
each representation to each kinetic term appearing in the MSSM are given in Table

41l

Particle Representation %] h W2
Aorrg 1®1° 0 0 0
Arr  2®2° 0 4 0
gLr 3I®3 0 0 6
VR 1® !” 0 0 0
er 1®1° am 0 0
I, 1®2° 2M M 0
dr 1g3° 3(~1+4)°M0 M
ug 123° 3(1+4)°M 0 M
qr 2®3° 6(3)°M M 2M
hy 12 2 1 0
hy, 1®2° 2 1 0
Total 44120M/9 6+4M 6+4M

Table 4.1: The contributions to the pre-factors (@.19) of the gauge bosons’ kinetic
terms for all of the representations of the MSSM. The number of generations is
denoted by M.
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Summing all contributions, we find

= éfz)nlg%(u 120M/9) = %‘(4+ 120M/9),
f0) _n

Ho = 32 nyg3(6+4M) = §(6+4M)’
f0) _n

A = Wn3g3(6—|—4M) = §(6+4M),

for the coefficients of the gauge bosons’ kinetic terms. We have to insert an extra
factor % into 71, since we must divide the hypercharges by two to compare with [4]],
that has a different parametrization of the gauge fields. Normalizing these kinetic
term by setting %] » 3 = 1, we obtain for the r; (defined in @.19)):

3 9
=p=— =—. 4.20
BERT e ram T3 0m (420)
Consequently, we find for the coefficients
;= l—riM—erj “4.21)

the following values:

o — 10M — 15 o — 20M?% — 12M — 27
10M+3 20M2 +36M +9 ’
w]3:40M2—54M—63 @3:4M—9'
40M2 +72M 418’ AM +6

From (@.20) it is immediate that, upon taking M = 3 and inserting the values of
n12,3, the three coupling constants are related by

1,

—g=—g% (4.22)

§ 9

This is different than for the SM [4, §4.2], where it is the well-known g% = g% = % g%.
For this value of M, the w;; have the following values:

13 5

1
13 o — S 423
3 13 23 (4.23)

5
011 = 7, W2 = 2 6

11
Remark 4.2 In Remark .1 we have suggested to add one extra copy of the two
building blocks that describe the Higgses and higgsinos, to match the interactions
of the MSSM. Such an extension gives extra contributions to the kinetic terms of the
su(2) and u(1) gauge bosons, leading to

3 3 9

BT sram T am ATV

(4.24)
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Consequently,
o — M6 o — 10M? +2M — 15
N s+ 3 2T 22 +M)(3+5M)
o — 20M* —21M — 36 _ AM*-M—15
3= 2B 2M)(3+5M)’ 3= 22T MY(3 1 2M)

for the parameters ®;;. From the ratios of the ry, r and r3 we derive for the coupling
constants when M = 3:

10 4

2 _ 2_22
83**982 381
The w;j then read
® 1 o — 9 ® 1 1
11—2, 12—207 13—4, wz3—5-

4.4 Supersymmetry of the action

Even though the three obstructions mentioned at the beginning of Section {.1] are
avoided and the particle content of this theory coincides with that of the MSSM, we
do not know if the action associated to it is in fact supersymmetric. In this section
we check this by examining (some of) the requirements from the list in Section

Before we get to that, we note that each of the fields y;; appears at least once
in one of the building blocks of the third type. This can easily be seen by taking all
combinations (i, j), (i,k) and (j,k) of the indices i, j, k of each of the building blocks
of the third type that we have. Put differently, there is at least one horizontal line
between each two ‘columns’ in the Krajewski diagram of Figure This means
that for each sfermion field ¥;; of the MSSM that is defined via the building block
H;j, we can meet the demand (2.33) on the parameters Cj;j, C;;; that supersymmetry
sets on them. We do this by setting them to be of the form

z -
Ciij = €.y aT,-j(NkTEJ r7)'? (4.25)

where r; and o;; were introduced in and respectively, and Y’ is the pa-
rameter of the building block % jx that generates y;; (cf. Section. With the right
choice of the signs & ;, €;,; for these parameters, the fermion—sfermion—gaugino in-
teractions that come from the building blocks of the second type coincide with those
of the MSSM.

= For each of the four building blocks 21,2,, B1z2,3» %’11R2L and %1R2L3 of the
third type that we have, there is the necessary requirement (2.52)) for supersym-
metry. In the parametrization (2.44) of the C;;; these relations read:
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~ . ~ ~ . ~ g
€0 Y = €/ o X, &)/ 1! = €4 /Ou Y7,
= ~ &
iV Ok ;" = —& j /O X, (4.26)
where we have written
Y. i ey Jy—1/2 Tk ky kx\—1/2v k
L =2 (N, )2, L= (NG )T
Sk kne kxye ky—1/2
A A

for the ‘scaled’ versions of the parameters 1; J, Y; K and TJ K of the building block

Biji. Here it is y; that is assumed to have R = 1 and consequently no family
structure. (See Chapter 2} Remark for the case that it is W or ;i instead.)
To connect with the notation of the noncommutative Standard Model, we will
write

Y, =1 % Y, =1

Ig,l u 1,3

for the parameters of the building blocks #1,12, and %B1,3;, that generate the
up-type Higgs fields and

Y;‘ =1z 2L7 Y‘d =1 2

Tr.1

for those of Ay, ,, and Hy,3,, that generate the down-type Higgs fields. Fur-
thermore, we write

a, =ty (1, °T, 431, °Y, ), aqg =try (X, °Y, +31, Y )

for the expressions that we encounter in the kinetic terms of the Higgses:

2 /|D[Jhu|2; 2 _ f(0) la
M

1R2, 1R2L. = o2 o) u

and

2 2 »  f(0) 1
M, [ IPukal M =5

respectively. (Here, the parametrization of Section [2.3]is used). The factors 3
above come from the dimension of the representation 3 of M3(C). Inserting the
expressions for the 1}’ the above identity reads for the building block %) 12, :

1 1% 1 I«) 1
_ w12(rz,1 Ly "+ht I ) L,
| Liye 1) 1/2 L'
= €12, €11, VON T (21&2 I, ) :SzL.,lezL,lR\/wm\/a—~
u

For By 12, » B1p32,» B3z, 1t reads
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1 s 1 1\ V2
- wlz(Tz,l Ly " +h; L ) hs
1 1% 1 -1/2 Tet
= €12,8 1,V O}, (ZTT.,z I, ) :€2L,182L,IR\/6712@»

~12
3 3k 3 3% 3
—Voshy, (Tz,l Ly +h h; )

172 Y,
3 3% 3 u
283,2L€3,1R\/w13(21ﬁ,z I, ) T, = 8V O,

u

and

~1/2
3 3% 3 3% 3
Vo3l (Tz,l L, + 1 )

—1/2 T
3 3 3 d
=8€2,8 IR\/w13<2T12 5, *) 1,7 =8&,38, i,V0n

’ 5 5 5 ’ /ad

respectively. We have suppressed the subscripts L and R here for notational con-
venience and used Remark 28 for the identities associated to P12, and B, .
giving rise to the transposes of the matrices 1, and 1, above. Not only do these
identities help to write some expressions appearing in the action more compactly,
it also gives rise to some additional relations between the parameters. Taking the
second equality of each of the four groups, multiplying each side with its conju-
gate and taking the trace, this gives

M * M *
?(Dllau = Wi try Tv Tv R E(Dllad = W12 tI'MTe Te s (4.27a)
M N M N
- 0130y = opty X, 'Y, , - 01304 = oty 1; 7Yy, (4.27b)

where on the LHS there is a factor M coming from the identity on family-space.
Summing the first and three times the third equality (or, equivalently, the second
and three times the fourth), we obtain

2
o +3w3 = M(D]g. (4.28)

Similarly, we can equate the first and last terms of each of the four groups of
equalities, multiply each side with its conjugate and subsequently sum the first
two (or last two) of the resulting equations. This gives
ldM — Y‘V I(TV *)t + Y; [(T; *)t
ay ag

(4.292)

and
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(U) ay aq

(4.29b)

respectively. By adding the first relation to three times the second relation and
taking the trace on both sides, we get

3M

[0} = —
12 oM

3. (4.30)

We combine both results in the following way. We add the relations of (#.27a)
and insert (#.29a) to obtain

M M T, T, LT,
— W+ =01 = D12 try +try = 02M,
2 2 a, ay

i.e.
1] = 013. “4.31)

Similarly, we add the relations of #.27b), insert (4.29b) and get

O3M = o try (Z’BidM>, or o3 = 3. (4.32)
12

= We have four combinations of two building blocks %, and %;;; of the third

type that share two of their indices (Section 2.2.3.T). Together, these give two

extra conditions from the demand for supersymmetry, i.e. that @;; (as defined in

([@21)) must equal 3 (cf. Section :

PBreot & Bigoz: 0=, (4.33a)

N ==

PBopip & Bryoyi,: O3 = (4.33b)

The other two combinations, By, | & Hj,,,3 and B 1, & Py, 1, both give
the first condition again.
Combining the conditions (#.28)), (#30) and (4.33) we at least need that

1

O =012 = 013 = W3 = 5

for supersymmetry. However, if we combine this result with #.28) and @30) it
requires for the number M of generations:

1
2-M=3M and 4= = M= (4.34)
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4.5 Summary and conclusions

We have applied the general analysis of Chapter [2] of supersymmetric almost-
commutative geometries to the case of the minimally supersymmetric Standard
Model. We successfully obtained a noncommutative description of the particle con-
tent of the MSSM. However, supersymmetry of the spectral action turned out to
demand the number of generations to be a rational number. We summarize this in
the following theorem.

Theorem 4.3. There is no number of particle generations for which the action
(1.21)) associated to the almost-commutative geometry determined by (@.11)), which
corresponds to the particle-content and superpotential of the MSSM, is supersym-
metric.

Since the extension (@.13) of the finite spectral triple with extra Higgs/higgsino
copies does not have an effect on which building blocks of the third type can be
defined, the calculations presented in this section and hence also the conclusion
above are unaffected by this.

Does this mean that all is lost? Suppose we focus on further extensions of the
MSSM, such as that of Theorem 10 of [1]. Since such extensions have extra rep-
resentations in 77, this also creates the possibility of additional components for
Dr. Which components these are exactly, depends on the particular values of the
gradings ¥r and R on the representations. However, for the extension mentioned
above in particular, we can check that for all combinations of values, the permitted
components can never all be combined into building blocks of the third type, thus
obstructing supersymmetry.

In general, any other extension might allow for extra building blocks of the third
type, making the results and subject to change. The demands
that follow from adjacent building blocks of the third type remain, however. If we
add a building block of the fourth type for the right-handed neutrino, this requires
r = j—‘ (see Propositionin Chapter . This can only hold simultaneously with
@33) if

1 1 1
rl—Z, rz—g, r3—E.
Enticingly, for M < 3 these required values are all smaller than or equal to the actual
ones of and (@.24)), implying that there might indeed be extensions of 7% for
which they coincide.
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