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Quantum field theory can be considered as one of the
cornerstones of modern physics. Historically, it origi-
nates from the problem of quantizing the electromagnetic
field, dating back to shortly after the advent of quantum
mechanics. This amounts to understanding the quantiza-
tion of a system with infinitely many degrees of free-
dom, namely, the values of the electromagnetic field at all
spacetime points. It turned out that precisely this property
would form the main obstacle in the search for a mathe-
matical formalism for quantum field theories.

In the 1950s this led to a separation of the field. On
the one hand perturbation theory led to a computationally

yet undefeated approach, where in particular Feynman’s graphical method stream-
lined the analysis of physical probability amplitudes. On the other hand, an elegant
axiomatic approach to quantum fields emerged through the work of Haag, Kastler,
Wightman and others, leading to the subject known as algebraic quantum field theory.
For a historical account we refer to [7]. Even though the two approaches ought to be
complementary, it turned out that the separation only became larger and larger to-
wards the end of the last century. This was mainly due to the fact that physically
relevant interacting quantum fields were found difficult to be included in the strict
algebraic formulation, while at the same time the computational approach of Feyn-
man amplitudes mistified the mathematical structure behind this successful branch of
physics.
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The last fifteen years, however, have seen a lot of progress that gives reason to
be more optimistic. This is partly based on the work that is done in the analysis of
the mathematical structure of Feynman amplitudes and, at the same time, on the for-
mulation of perturbative algebraic quantum field theory. The book under review is a
valuable witness to a wide range of recent developments that aim at unraveling the
mathematics of quantum field theory. As such, it touches on several newly devel-
oped fields in mathematics that are either inspired by quantum field theory or play an
important role towards understanding it.

In contrast to textbooks such as [4–6, 9] that present the physicists’ rudiments
of quantum field theory to a mathematical audience, the approach taken by Paugam
can be described as the opposite, let us say top-down, approach. It rather describes
the moving forefront of the field, where new mathematics is explored and developed
to build a rigorous formalism for quantum field theory. This makes the textbook an
exciting one, presenting an original view on quantum field theory, but also of a more
advanced level. The graduate students to which the author addresses his book are
therefore warned to come well-prepared. For one thing, the central pillar of the book
is formed by categorial logic and category theory on which the author admits in his
preface that “[the] distilled axioms are pretty indigestible”, suggesting to read the
relevant chapters simultaneously with the later, more explicit chapters. I would add to
that the suggestion that to understand the motivation for setting up this mathematical
formalism, some background on quantum field theory might be useful, referring the
reader to one of the above more “bottom-up” textbooks.

The book is divided into three parts. The first part presents the toolbox of higher
category theory and its use in an original and concise description of differential geom-
etry, partial differential equations, affine group theory and Hopf algebras, symplectic
and Poisson geometry and, finally, homotopical algebra.

The second part deals with classical physics, focussing mainly on variational prob-
lems. An extensive list of physical models are nicely described in the mathematical
language of the first part. The discussion of each of the models is rather brief—the
Standard Model of particle physics for instance only takes two pages—but it is always
accompanied by a reference for further reading.

In the third part we come to the main topic of this book: quantum fields. In an
attempt to complement the top-down viewpoint of the book, let me describe this part
in somewhat more detail, also including the references back to the relevant chapters
in Part I and II.

The first approach to quantum field theory addressed in Paugam’s book is the con-
ventional one, using functional integrals and perturbative methods. The central in-
gredient is Feynman’s path integral that is supposed to compute physical probability
amplitudes. A priori, this path integral is ill-defined and the main challenge is to give
at least some computational significance to it. With the desired constructive formula-
tion of quantum fields still lacking (see [8] for an overview) this is most successfully
accomplished in a perturbative approach: one perturbs a free quantum field by in-
teractions, organized in a nice graph theoretical way by Feynman diagrams. Each of
these diagrams corresponds to a so-called Feynman integral (not to be confused with
the path integral) that contributes to the physical probability amplitudes.

In Paugam’s book we find the free scalar quantum field in Chap. 17 using the
Klein–Gordon equation (cf. Chap. 15.1), following a discussion on quantization of
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classical hamiltonian systems (cf. Chap. 8). Functional integrals and Feynman’s per-
turbative approach are the subject of Chap. 18, also including the physically relevant
class of gauge field theories. Note that for the expected link to functorial analysis
developed in Chap. 4, the reader has to wait until the beginning of Chap. 20.

There is at least one caveat in the above perturbative approach to quantum field
theory: the Feynman integrals corresponding to Feynman diagrams are divergent in-
tegrals. This is the beginning of the process of renormalization, which, in short, is
similar to Cauchy’s principal value that assigns a finite value to a divergent integral.
For Feynman integrals one finds the further complication of subdivergences corre-
sponding to subgraphs, but whose renormalization can be organized in a recursive
manner. Such renormalization schemes have been vital in the formulation of Yang–
Mills gauge theories and eventually of the extremely successful Standard Model of
particle physics.

At the beginning of the new millennium an algebraic structure underlying renor-
malization was discovered by Connes and Kreimer. They build a Hopf algebra on
Feynman diagrams and realized renormalization as a Birkhoff decomposition for the
affine group scheme dual to the Hopf algebra. This was later worked out by Kreimer
and the reviewer for gauge theories, where Hopf ideals corresponding to quantum
gauge symmetries were identified.

The renormalization Hopf algebra for Feynman diagrams in gauge theories is pre-
sented in Chap. 19 where also the dual affine group schemes are identified. Here the
general theory on affine group schemes and Hopf algebras is used from Chaps. 5
and 6.

An alternative approach to quantum field theory is Wilson’s effective field theory.
The idea is to enhance the classical Lagrangian or action functional to take also quan-
tum effects into account. One then proceeds to study the flow of these effective action
functionals as energy varies by analyzing the renormalization group equations.

These methods are well-established by physicists and have recently been put into
a mathematical formalism by Costello in [3]. This includes gauge theories where the
BV-approach plays a prominent role, even though Yang–Mills theory can only be cast
into this formalism in its first-order formulation.

Paugam presents Costello’s approach in Chap. 21, including the BV-formalism
that reflects some of the structure of BV-algebras found in Chap. 13.

One of the recent exciting developments in algebraic quantum field theory is the
opening to a perturbative description through the work of Brunetti, Dütsch and Fre-
denhagen [1] and further developed by others. The idea is to formulate perturbation
theory using a ∗-product deformation of the free quantum field theory, thereby using
Epstein–Glaser renormalization.

Chapter 22 gives an overview of the results in this direction, including the case
of gauge theories and also linking to Hopf algebraic renormalization methods in the
final section.

The ∗-product of the previous paragraph is a concept coming from deformation
quantization. A central result by Kontsevich is the construction of a ∗-product for
any Poisson manifold, deforming the pointwise product of smooth functions thereon.
It is tempting to apply this directly to the field theory setting and try to arrive at a non-
perturbative algebraic quantum field theory, but for now Kontsevich’s construction is
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restricted to the finite-dimensional case. Nevertheless, a link between deformation
quantization and quantum fields has been established by Cattaneo and Felder [2] by
writing the ∗-product as a path integral expectation value for the Poisson σ -model.

Paugam gives an overview of deformation quantization including this link to quan-
tum field theory in Chap. 23, with the mathematical preliminaries found in Chap. 10,
and the Poisson σ -model briefly explained in Chap. 16.3. The author’s generalization
to non-topological quantum field theories using factorization spaces can be found in
Chap. 24, whose mathematical basis is laid in Chap. 12.

In summary, “Towards the Mathematics of Quantum Field Theory” is precisely
what the title tells you: it gives an overview of some of the mathematical research
that is done on unravelling the structure of rigorous quantum field theory. Though at
some points quite advanced and concise—requiring the reader to consult additional
literature—the book is well written with an original organization of the material. Its
reductionist viewpoint makes it a valuable textbook, especially for the more experi-
enced practitioners in this domain of mathematical physics.
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