Grand Unification in the Spectral Pati-Salam Model

- History of the meter: the spectral approach
- Fermions in spacetime and emerging bosons
- Noncommutative fine structure of spacetime
- Examples: electroweak model, Standard Model
- Beyond the Standard Model: Pati-Salam unification

Meter defined in 1791 as 10^{-7} times one quarter of the meridian of the Earth.

Expedition in 1792: measuring the arc of the meridian between Barcelona-Duinkerken, at the beginning of the French revolution... ^a

^aAdler (2002)

Meter made concrete by platinum bar "mètre-étalon", saved (from 1889) in Pavillon de Breteuil near Paris:

Practical objections mètre-étalon (natural variations):

• 1960: meter defined as a multiple of a transition wavelength in Krypton 86Kr:

• 1967: **second** = 9192631770 periods of a transition radiation between two hyperfine levels in Caesium-133.

 1983: Definition of the meter as the distance that light travels in 1/299792458 second...

So, measuring distances by looking at spectra

A fermion in a spacetime background

Minimal ingredients to describe a free fermion:

• coordinates on spacetime *M*:

$$x_{\mu} \cdot x_{\nu}(p) = x_{\mu}(p)x_{\nu}(p),$$
 etc.,

with $\mu, \nu = 1, ..., 4$.

propagation, described by Dirac operator ∂_M = iγ^μ∂_μ, acting on wavefunctions ψ:

$$S[\psi] = \int \overline{\psi} \partial_M \psi \qquad \rightsquigarrow \text{EOM: } \partial_M \psi = 0.$$

 This combination of coordinate algebra and operators is central to the spectral, or noncommutative approach [C 1994].

Emerging bosons

Our fermionic starting point induces a bosonic theory:

• "Inner fluctuations" by the coordinates [C 1996]:

$$\partial_M \rightsquigarrow \partial_M + \sum_j a_j [\partial_M, a'_j]$$

for functions a_j, a'_j depending on the coordinates x_{μ} .

• Then, by the chain rule:

$$\sum_{j} a_{j}[\partial_{M}, a_{j}'] = A^{\nu} \gamma^{\mu} (\partial_{\mu} x^{\nu}) = A^{\mu} \gamma_{\mu}$$

where A^{μ} is the electromagnetic 4-potential describing the photon.

Moreover, it is possible to derive a bosonic action from the (Euclidean) Dirac operator via the spectral action [CC 1996]:

$$\mathsf{Trace}\, e^{-\partial_M^2/\Lambda^2} \sim c_4 \Lambda^4 \mathsf{Vol}(M) + c_2 \Lambda^2 \int R \sqrt{g} + c_0 \int (\partial_{[\mu} A_{\nu]})^2 + \cdots$$

for some coefficients c_4, c_2, \ldots

We recognize

- The Einstein-Hilbert action $\int R\sqrt{g}$ for (Euclidean) gravity
- The Lagrangian $\int (\partial_{[\mu} A_{
 u]})^2$ for the electromagnetic field

 $\bullet \land \land \land \land \bullet \bullet$

Replace spacetime by spacetime \times noncommutative space: $M \times F$

- F is considered as internal space (Kaluza-Klein like)
- F is described by noncommutative matrices, that play the role of coordinates, just as spacetime is described by x_μ(p).
- 'Propagation' of particles in F is described by a 'Dirac operator'
 *φ*_F which is actually simply a hermitian matrix.

Note that the spectral approach is now the only way to describe the geometry of F.

Example: electroweak theory

Coordinates on F are elements in $\mathbb{C} \oplus \mathbb{H}$

- A complex number z
- A quaternion $q = q_0 + iq_k\sigma^k$; in terms of Pauli matrices:

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{2} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

It describes a two-point space, with internal structure:

Gauge group is given by unitaries: $U(1) \times SU(2)$.

'Dirac operator'

$$\phi_F = \begin{pmatrix} 0 & \overline{c} & 0 \\ c & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• "Inner fluctuations" can be defined as before but now yield:

Almost-commutative spacetimes

We combine this mild (matrix) noncommutativity with spacetime:

• coordinates of the almost-commutative spacetime $M \times F$:

$$\hat{x}^\mu(p)=(z^\mu(p),q^\mu(p))$$

as elements in $\mathbb{C} \oplus \mathbb{H}$ (for each μ and each point p of M)

The combined Dirac operator becomes

$$\partial_{M\times F} = \partial_M + \gamma_5 \partial_F$$

Note that $\partial^2_{M \times F} = \partial^2_M + \partial^2_F$, which will be useful later on.

Walter van Suijlekom

Inner fluctuations on $M \times F$

So, we describe $M \times F$ by:

$$\hat{x}^{\mu}=(z^{\mu},q^{\mu})$$
 ; $\partial_{M imes F}=\partial_{M}+\gamma_{5}\partial_{F}$

As before, we consider inner fluctuations of $\hat{p}_{M \times F}$ by $\hat{x}^{\mu}(p)$:

- The inner fluctuations of ∂_F become scalar fields ϕ_1, ϕ_2 .
- The inner fluctuations of ∂_M become matrix-valued:

$$\sum_{j} a_{j}[\partial_{M}, a_{j}'] = a_{\nu} \gamma^{\mu} (\partial_{\mu} \hat{x}^{\nu}) =: \partial_{M} + A_{\mu} \gamma^{\mu}$$

with A_{μ} taking values in $\mathbb{C} \oplus \mathbb{H}$:

$$A_{\mu} = egin{pmatrix} B_{\mu} & 0 & 0 \ 0 & W^3_{\mu} & W^+_{\mu} \ 0 & W^-_{\mu} & -W^3_{\mu} \end{pmatrix}$$

corresponding to hypercharge and the W-bosons.

Walter van Suijlekom

Action functional: electroweak theory

Use $\partial^2_{M \times F} = \partial^2_M + \partial^2_F$ to compute the spectral action

$$\begin{aligned} \text{Trace } e^{-\hat{\rho}_{M\times F}^{2}/\Lambda^{2}} &= \text{Trace } e^{-\hat{\rho}_{M}^{2}/\Lambda^{2}} \left(1 - \frac{\hat{\rho}_{F}^{2}}{\Lambda^{2}} + \frac{1}{2}\frac{\hat{\rho}_{F}^{4}}{\Lambda^{4}} - \cdots\right) \\ &\sim \left(c_{4}\Lambda^{4}\text{Vol}(M) + c_{2}\Lambda^{2}\int R\sqrt{g} + c_{0}\int F_{\mu\nu}F^{\mu\nu}\right) \left(1 - \frac{|\phi|^{2}}{\Lambda^{2}} + \frac{|\phi|^{4}}{2\Lambda^{4}}\right) + \end{aligned}$$

We now recognize in terms of the field-strength $F_{\mu\nu}$ for A_{μ} :

- The Yang–Mills term $F_{\mu\nu}F^{\mu\nu}$ for hypercharge and W-boson
- The Higgs potential $-c_4\Lambda^2|\phi|^2 + \frac{1}{2}c_4|\phi|^4$

Standard Model as an almost-commutative spacetime

Describe $M \times F_{SM}$ by [CCM 2007]

- Coordinates: x̂^µ(p) ∈ C ⊕ ℍ ⊕ M₃(C) (with unimodular unitaries U(1)_Y × SU(2)_L × SU(3)).
- Dirac operator $\partial_{M \times F} = \partial_M + \gamma_5 \partial_F$ where

$$\partial_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$$

is a 96 \times 96-dimensional hermitian matrix where 96 is:

The Dirac operator on F_{SM}

$$\partial F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$$

• The operator S is given by

$$S_{I} := \begin{pmatrix} 0 & 0 & Y_{\nu} & 0 \\ 0 & 0 & 0 & Y_{e} \\ Y_{\nu}^{*} & 0 & 0 & 0 \\ 0 & Y_{e}^{*} & 0 & 0 \end{pmatrix}, \quad S_{q} \otimes 1_{3} = \begin{pmatrix} 0 & 0 & Y_{u} & 0 \\ 0 & 0 & 0 & Y_{d} \\ Y_{u}^{*} & 0 & 0 & 0 \\ 0 & Y_{d}^{*} & 0 & 0 \end{pmatrix} \otimes 1_{3},$$

where Y_{ν} , Y_e , Y_u and Y_d are 3×3 mass matrices acting on the three generations.

 The symmetric operator T only acts on the right-handed (anti)neutrinos, Tν_R = Y_Rν_R for a 3 × 3 symmetric Majorana mass matrix Y_R, and Tf = 0 for all other fermions f ≠ ν_R.

Inner fluctuations

Just as before, we find

• Inner fluctuations of ∂_M give a matrix

$$A_{\mu} = \begin{pmatrix} B_{\mu} & 0 & 0 & 0 \\ 0 & W_{\mu}^{3} & W_{\mu}^{+} & 0 \\ 0 & W_{\mu}^{-} & -W_{\mu}^{3} & 0 \\ 0 & 0 & 0 & (G_{\mu}^{a}) \end{pmatrix}$$

corresponding to hypercharge, weak and strong interaction.

• Inner fluctuations of \mathcal{D}_F give

$$\begin{pmatrix} Y_{\nu} & 0\\ 0 & Y_{e} \end{pmatrix} \rightsquigarrow \begin{pmatrix} Y_{\nu}\phi_{1} & -Y_{e}\overline{\phi}_{2}\\ Y_{\nu}\phi_{2} & Y_{e}\overline{\phi}_{1} \end{pmatrix}$$

corresponding to SM-Higgs field. Similarly for Y_u , Y_d .

Dynamics and interactions

If we reconsider the spectral action:

$$\mathsf{Trace}\, e^{-\hat{\rho}_{M\times F}^2/\Lambda^2} \sim \left(c_4 \Lambda^4 \mathsf{Vol}(M) + c_0 \int \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}\right) \left(1 - \frac{|\phi|^2}{\Lambda^2} + \frac{|\phi|^4}{2\Lambda^4}\right) +$$

we observe [CCM 2007]:

 The coupling constants of hypercharge, weak and strong interaction are expressed in terms of the single constant c₀ which implies

$$g_3^2 = g_2^2 = \frac{5}{3}g_1^2$$

In other words, there should be grand unification.

• Moreover, the quartic Higgs coupling λ is related via

$$\lambda pprox 24 rac{3+
ho^4}{(3+
ho^2)^2} g_2^2; \qquad
ho = rac{m_
u}{m_{
m top}}$$

Phenomenology of the noncommutative Standard Model

This can be used to derive predictions as follows:

- Interpret the spectral action as an effective field theory at $\Lambda_{GUT}\approx 10^{13}-10^{16}$ GeV.
- Run the quartic coupling constant λ to SM-energies to predict

Three problems

- This prediction is falsified by the measured value.
- In the Standard Model there is not the presumed grand unification.
- S There is a problem with the low value of m_h, making the Higgs vacuum un/metastable [Elias-Miro et al. 2011].

Beyond the SM with noncommutative geometry A solution to the above three problems?

• The matrix coordinates of the Standard Model arise naturally as a restriction of the following coordinates

 $\hat{x}^{\mu}(p) = ig(q^{\mu}_{R}(p),q^{\mu}_{L}(p),m^{\mu}(p)ig) \in \mathbb{H}_{R} \oplus \mathbb{H}_{L} \oplus M_{4}(\mathbb{C})$

corresponding to a Pati-Salam unification:

 $U(1)_Y \times SU(2)_L \times SU(3) \rightarrow SU(2)_R \times SU(2)_L \times SU(4)$

• The 96 fermionic degrees of freedom are structured as

$$\begin{pmatrix} \nu_{R} & u_{iR} & \nu_{L} & u_{iL} \\ e_{R} & d_{iR} & e_{L} & d_{iL} \end{pmatrix}$$
 $(i = 1, 2, 3)$

• Again the finite Dirac operator is a 96 × 96-dimensional matrix (details in [CCS 2013]).

• Inner fluctuations of ∂_M now give three gauge bosons:

$$W^{\mu}_{R}, \qquad W^{\mu}_{L}, \qquad V^{\mu}$$

corresponding to $SU(2)_R \times SU(2)_L \times SU(4)$.

 For the inner fluctuations of *∂_F* we distinguish two cases, depending on the initial form of *∂_F*:

I The Standard Model
$$\partial_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$$

II A more general ∂_F with zero $\overline{f}_L - f_L$ -interactions.

Scalar sector of the spectral Pati-Salam model

Case I For a SM ∂_F , the resulting scalar fields are composite fields, expressed in scalar fields whose representations are:

	$SU(2)_R$	$SU(2)_L$	SU(4)
ϕ^b_a	2	2	1
Δ_{al}	2	1	4
Σ'_J	1	1	15

Case II For a more general finite Dirac operator, we have fundamental scalar fields:

particle	$SU(2)_R$	$SU(2)_L$	SU(4)
Σ^{bJ}_{aJ}	2	2	1 + 15
ц .∫	3	1	10
''àlḃJ \	1	1	6

As for the Standard Model, we can compute the spectral action which describes the usual Pati–Salam model with

unification of the gauge couplings

$$g_R = g_L = g$$
.

• A rather involved, fixed scalar potential, still subject to further study

Phenomenology of the spectral Pati–Salam model

However, independently from the spectral action, we can analyze the running at one loop of the gauge couplings [CCS 2015]:

- We run the Standard Model gauge couplings up to a presumed PS \rightarrow SM symmetry breaking scale m_R
- We take their values as boundary conditions to the Pati-Salam gauge couplings g_R, g_L, g at this scale via

$$\frac{1}{g_1^2} = \frac{2}{3}\frac{1}{g^2} + \frac{1}{g_R^2}, \qquad \frac{1}{g_2^2} = \frac{1}{g_I^2}, \qquad \frac{1}{g_3^2} = \frac{1}{g^2},$$

(3) Vary m_R in a search for a unification scale Λ where

$$g_R = g_L = g$$

which is where the spectral action is valid as an effective theory.

Phenomenology of the spectral Pati–Salam model Case I: Standard Model ∂_F

For the Standard Model Dirac operator, we have found that with $m_R \approx 4.25 \times 10^{13} \text{ GeV}$ there is unification at $\Lambda \approx 2.5 \times 10^{15} \text{ GeV}$:

Phenomenology of the spectral Pati–Salam model Case I: Standard Model ∂_F

In this case, we can also say something about the scalar particles that remain after SSB:

	$U(1)_Y$	$SU(2)_L$	<i>SU</i> (3)
$\begin{pmatrix} \phi_1^0 \\ \phi_1^+ \end{pmatrix} = \begin{pmatrix} \phi_1^1 \\ \phi_1^2 \end{pmatrix}$	1	2	1
$\begin{pmatrix} \phi_2^-\\ \phi_2^0\\ \phi_2^0 \end{pmatrix} = \begin{pmatrix} \phi_2^1\\ \phi_2^2\\ \phi_2^2 \end{pmatrix}$	-1	2	1
σ	0	1	1
η	$\left -\frac{2}{3} \right $	1	3

- It turns out that these scalar fields have a little influence on the running of the SM-gauge couplings (at one loop).
- However, this sector contains the real scalar singlet σ that allowed for a realistic Higgs mass and that stabilizes the Higgs vacuum [CC 2012].

Phenomenology of the spectral Pati–Salam model Case II: General Dirac

For the more general case, we have found that with $m_R \approx 1.5 \times 10^{11} \text{ GeV}$ there is unification at $\Lambda \approx 6.3 \times 10^{16} \text{ GeV}$:

With our walk through the noncommutative garden, we have arrived at a spectral Pati-Salam model that

- goes beyond the Standard Model
- has a fixed scalar sector once the finite Dirac operator has been fixed (only a few scenarios)
- exhibits grand unification for all of these scenarios (confirmed by [Aydemir–Minic–Sun–Takeuchi 2015])
- the scalar sector has the potential to stabilize the Higgs vacuum and allow for a realistic Higgs mass.

A. Chamseddine, A. Connes, WvS.

Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. *JHEP* 11 (2013) 132. [arXiv:1304.8050]

Grand Unification in the Spectral Pati-Salam Model. To appear in *JHEP* [arXiv:1507.08161]

WvS.

Noncommutative Geometry and Particle Physics. Mathematical Physics Studies, Springer, 2015.

and also: http://www.noncommutativegeometry.nl