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Spectral geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the
spectrum of wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?
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The disc
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Wave numbers on the disc
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Wave numbers on the disc: high frequencies
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The square
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Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac’s question is no.
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Weyl’s estimate

Nevertheless, certain information can be extracted from spectrum,
such as dimension n of M:

N(Λ) = #wave numbers ≤ Λ

∼ ΩnVol(M)

n(2π)n
Λn

For the disc and square this is confirmed by the parabolic shapes
(
√

Λ):
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Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz
equation.

• The Dirac operator is a ‘square-root’ of the Laplacian, so that
its spectrum give the wave numbers k .

• First found by Paul Dirac in flat space, but exists on any
Riemannian spin manifold M.

• Let us give some examples.
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The circle

• The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

• The Dirac operator on the circle is

DS1 = −i d
dt

with square ∆S1 .

• The eigenfunctions of DS1 are the complex exponential
functions

e int = cos nt + i sin nt

with eigenvalue n ∈ Z.
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The 2-dimensional torus

• Consider the two-dimensional torus T2 parametrized by two
angles t1, t2 ∈ [0, 2π).

• The Laplacian reads

∆T2 = − ∂2

∂t2
1

− ∂2

∂t2
2

.

• At first sight it seems difficult to construct a differential
operator that squares to ∆T2 :(

a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t2
1

+ 2ab
∂2

∂t1∂t2
+ b2 ∂

2

∂t2
2
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• This puzzle was solved by Dirac who considered the possibility
that a and b be complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0

• The Dirac operator on the torus is

DT2 =

 0
∂

∂t1
+ i

∂

∂t2

− ∂

∂t1
+ i

∂

∂t2
0

 ,

which satisfies (DT2)2 = − ∂2

∂t2
1

− ∂2

∂t2
2

.

• The spectrum of the Dirac operator DT2 is

{√
n2

1 + n2
2 : n1, n2 ∈ Z

}
;
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The 4-dimensional torus

• Consider the 4-torus T4 parametrized by t1, t2, t3, t4 and the
Laplacian is

∆T4 = − ∂2

∂t2
1

− ∂2

∂t2
2

− ∂2

∂t2
3

− ∂2

∂t2
4

.

• The search for a differential operator that squares to ∆T4

again involves matrices, but we also need quaternions:

i2 = j2 = k2 = ijk = −1.

• The Dirac operator on T4 is

DT4 =

(
0 ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4

− ∂
∂t1

+i ∂
∂t2

+j ∂
∂t3

+k ∂
∂t4

0

)
• The relations ij = −ji , ik = −ki , et cetera imply that its

square coincides with ∆T4 .
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Hearing the shape of a drum
Connes, 1989

• As said, the geometry of M is not fully determined by
spectrum of DM .

• This can be improved by considering besides DM also the
algebra C∞(M) of smooth (coordinate) functions on M

• In fact, the distance function on M is equal to

d(x , y) = sup
f ∈C∞(M)

{|f (x)− f (y)| : gradient f ≤ 1}

b b

x y

f

b b

x y

• The gradient of f is given by the commutator

[DM , f ] = DM f − fDM (e.g. [DS1 , f ] = −i df
dt

)
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A fermion in a spacetime background

The combination of coordinates and Dirac operator is of course
also central in the description of fermion propagation:

• coordinates on spacetime M:

xµ · xν(p) = xµ(p)xν(p), etc .,

with µ, ν = 1, . . . , 4.

• propagation, described by Dirac operator ∂/M = iγµ∂µ, acting
on wavefunctions ψ:

S [ψ] =

∫
ψ∂/Mψ  EOM: ∂/Mψ = 0.
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Emerging bosons

Our fermionic starting point induces a bosonic theory:

• “Inner fluctuations” by the coordinates [C 1996]:

∂/M  ∂/M +
∑
j

aj [∂/M , a
′
j ]

for functions aj , a
′
j depending on the coordinates xµ.

• Then, by the chain rule:∑
j

aj [∂/M , a
′
j ] = Aνγµ(∂µx

ν) = Aµγµ

where Aµ is the electromagnetic 4-potential describing the
photon.
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Moreover, it is possible to derive a bosonic action from the
(Euclidean) Dirac operator via the spectral action [CC 1996]:

Trace e−∂/
2
M/Λ2 ∼ c4Λ4Vol(M) + c2Λ2

∫
R
√
g + c0

∫
(∂[µAν])

2 + · · ·

for some coefficients c4, c2, . . ..

We recognize

• The Einstein-Hilbert action

∫
R
√
g for (Euclidean) gravity

• The Lagrangian

∫
(∂[µAν])

2 for the electromagnetic field
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Noncommutative fine structure of spacetime

Replace spacetime by
spacetime × noncommutative space: M × F

• F is considered as finite internal space (Kaluza–Klein like)

• F is described by noncommutative matrices, that play the role
of coordinates, just as spacetime is described by xµ(p).

• ‘Propagation’ of particles in F is described by a ’Dirac
operator’ ∂/ F which is actually simply a hermitian matrix.
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Finite commutative spaces

• Finite space F

F = 1 • 2 • · · · · · · N•

• Coordinate functions on F are given by N-tuples in CN , and
the corresponding algebra C∞(F ) corresponds to diagonal
matrices 

f (1) 0 · · · 0
0 f (2) · · · 0
...

. . .
...

0 0 . . . f (N)


• The finite Dirac operator is an arbitrary hermitian matrix DF ,

giving rise to a distance function on F as

d(p, q) = sup
f ∈C∞(F )

{|f (p)− f (q)| : ‖[DF , f ]‖ ≤ 1}
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Example: two-point space

F = 1 • 2•

• Then the algebra of smooth functions

C∞(F ) :=

{(
λ1 0
0 λ2

) ∣∣∣∣λ1, λ2 ∈ C
}

• A finite Dirac operator is given by

DF =

(
0 c
c 0

)
; (c ∈ C)

• The distance formula then becomes

d(1, 2) =
1

|c |
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Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F .

• Instead of diagonal matrices, we consider block diagonal
matrices

A =


a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 . . . aN

 ,

where the a1, a2, . . . , aN are square matrices of size
n1, n2, . . . , nN .

• Hence we will consider the matrix algebra

AF := Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN (C)

where C can be replaced by R or H.

• A finite Dirac operator is still given by a hermitian matrix.
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Example: noncommutative two-point space

Coordinates on F are elements in C⊕H
• A complex number z

• A quaternion q = q0 + iqkσ
k ; in terms of Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
It describes a two-point space, with internal structure:

b b

21

z q

Gauge group is given by unitaries: U(1)× SU(2).
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’Dirac operator’

∂/ F =

0 c 0
c 0 0
0 0 0


• “Inner fluctuations” can be defined as before but now yield:

∑
j

(
zj 0
0 qj

)[
∂/ F ,

(
z ′j 0
0 q′j

)]
=:

 0 cφ1 cφ2

cφ1 0 0
cφ2 0 0


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Almost-commutative spacetimes

∂/M

∂/ F

We combine this mild (matrix) noncommutativity with spacetime:

• coordinates of the almost-commutative spacetime M × F :

x̂µ(p) = (zµ(p), qµ(p))

as elements in C⊕H (for each µ and each point p of M)
• The combined Dirac operator becomes

∂/M×F = ∂/M + γ5∂/ F

Note that ∂/ 2
M×F = ∂/ 2

M + ∂/ 2
F , which will be useful later on.
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Inner fluctuations on M × F

So, we describe M × F by:

x̂µ = (zµ, qµ) ; ∂/M×F = ∂/M + γ5∂/ F

As before, we consider inner fluctuations of ∂/M×F by x̂µ(p):

• The inner fluctuations of ∂/ F become scalar fields φ1, φ2.

• The inner fluctuations of ∂/M become matrix-valued:∑
j

aj [∂/M , a
′
j ] = aνγ

µ(∂µx̂
ν) =: ∂/M + Aµγ

µ

with Aµ taking values in C⊕H:

Aµ =

Bµ 0 0

0 W 3
µ W+

µ

0 W−
µ −W 3

µ


corresponding to hypercharge and the W-bosons.

Walter van Suijlekom Grand Unification in the Spectral Pati-Salam Model 27 / 44



Action functional: electroweak theory

Use ∂/ 2
M×F = ∂/ 2

M + ∂/ 2
F to compute the spectral action

Trace e−∂/
2
M×F /Λ2

= Trace e−∂/
2
M/Λ2

(
1−

∂/ 2
F

Λ2
+

1

2

∂/ 4
F

Λ4
− · · ·

)
∼
(
c4Λ4Vol(M) + c2Λ2

∫
R
√
g + c0

∫
FµνF

µν

)(
1−|φ|

2

Λ2
+
|φ|4

2Λ4

)
+· · ·

We now recognize in terms of the field-strength Fµν for Aµ:

• The Yang–Mills term FµνF
µν

for hypercharge and W -boson

• The Higgs potential
−c4Λ2|φ|2 + 1

2c4|φ|4
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Standard Model as an almost-commutative spacetime

Describe M × FSM by [CCM 2007]

• Coordinates: x̂µ(p) ∈ C⊕H⊕M3(C) (with unimodular
unitaries U(1)Y × SU(2)L × SU(3)).

• Dirac operator ∂/M×F = ∂/M + γ5∂/ F where

∂/ F =

(
S T ∗

T S

)
is a 96× 96-dimensional hermitian matrix where 96 is:

3 × 2 ×( 2⊗ 1 + 1⊗ 1 + 1⊗ 1 + 2⊗ 3 + 1⊗ 3 + 1⊗ 3 )

families

anti-particles

(νL, eL) νR eR (uL, dL) uR dR
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The Dirac operator on FSM

∂/ F =

(
S T ∗

T S

)

• The operator S is given by

Sl :=


0 0 Yν 0
0 0 0 Ye

Y ∗ν 0 0 0
0 Y ∗e 0 0

 , Sq ⊗ 13 =


0 0 Yu 0
0 0 0 Yd

Y ∗u 0 0 0
0 Y ∗d 0 0

⊗ 13,

where Yν , Ye , Yu and Yd are 3× 3 mass matrices acting on
the three generations.

• The symmetric operator T only acts on the right-handed
(anti)neutrinos, TνR = YRνR for a 3× 3 symmetric Majorana
mass matrix YR , and Tf = 0 for all other fermions f 6= νR .
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Inner fluctuations

Just as before, we find

• Inner fluctuations of ∂/M give a matrix

Aµ =


Bµ 0 0 0

0 W 3
µ W+

µ 0

0 W−
µ −W 3

µ 0
0 0 0 (G a

µ)


corresponding to hypercharge, weak and strong interaction.

• Inner fluctuations of ∂/ F give(
Yν 0
0 Ye

)
 

(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
corresponding to SM-Higgs field. Similarly for Yu,Yd .
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Dynamics and interactions

If we reconsider the spectral action:

Trace e−∂/
2
M×F /Λ2

∼
(
c4Λ4Vol(M) + c0

∫
FµνF

µν

)(
1− |φ|

2

Λ2
+
|φ|4

2Λ4

)
+· · ·

we observe [CCM 2007]:

• The coupling constants of hypercharge, weak and strong
interaction are expressed in terms of the single constant c0

which implies

g2
3 = g2

2 =
5

3
g2

1

In other words, there should be grand unification.

• Moreover, the quartic Higgs coupling λ is related via

λ ≈ 24
3 + ρ4

(3 + ρ2)2
g2

2 ; ρ =
mν

mtop
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Phenomenology of the noncommutative Standard Model

This can be used to derive predictions as follows:

• Interpret the spectral action as an effective field theory at
ΛGUT ≈ 1013 − 1016 GeV.

• Run the quartic coupling constant λ to SM-energies to predict

m2
h =

4λM2
W

3g2
2

2 4 6 8 10 12 14 16

1.1

1.2

1.3

1.4

1.5

1.6

log10 HΜ�GeVL

Λ

This gives [CCM 2007]

167 GeV ≤ mh ≤ 176 GeV
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Three problems

1 This prediction is falsified by the
now measured value.

2 In the Standard Model there is
not the presumed grand
unification.

3 There is a problem with the low
value of mh, making the Higgs
vacuum un/metastable
[Elias-Miro et al. 2011].
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Beyond the SM with noncommutative geometry
A solution to the above three problems?

• The matrix coordinates of the Standard Model arise naturally
as a restriction of the following coordinates

x̂µ(p) =
(
qµR(p), qµL (p),mµ(p)

)
∈ HR ⊕HL ⊕M4(C)

corresponding to a Pati–Salam unification:

U(1)Y × SU(2)L × SU(3)→ SU(2)R × SU(2)L × SU(4)

• The 96 fermionic degrees of freedom are structured as(
νR uiR νL uiL
eR diR eL diL

)
(i = 1, 2, 3)

• Again the finite Dirac operator is a 96× 96-dimensional
matrix (details in [CCS 2013]).
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Inner fluctuations

• Inner fluctuations of ∂/M now give three gauge bosons:

W µ
R , W µ

L , V µ

corresponding to SU(2)R × SU(2)L × SU(4).

• For the inner fluctuations of ∂/ F we distinguish two cases,
depending on the initial form of ∂/ F :

I The Standard Model ∂/ F =

(
S T ∗

T S

)
II A more general ∂/ F with zero f L − fL-interactions.
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Scalar sector of the spectral Pati–Salam model

Case I For a SM ∂/ F , the resulting scalar fields are composite fields,
expressed in scalar fields whose representations are:

SU(2)R SU(2)L SU(4)

φbȧ 2 2 1
∆ȧI 2 1 4

ΣI
J 1 1 15

Case II For a more general finite Dirac operator, we have fundamental
scalar fields:

particle SU(2)R SU(2)L SU(4)

ΣbJ
ȧJ 2 2 1 + 15

HȧI ḃJ

{
3
1

1
1

10
6
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Action functional

As for the Standard Model, we can compute the spectral action
which describes the usual Pati–Salam model with

• unification of the gauge couplings

gR = gL = g .

• A rather involved, fixed scalar potential, still subject to further
study
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Phenomenology of the spectral Pati–Salam model

However, independently from the spectral action, we can analyze
the running at one loop of the gauge couplings [CCS 2015]:

1 We run the Standard Model gauge couplings up to a
presumed PS → SM symmetry breaking scale mR

2 We take their values as boundary conditions to the
Pati–Salam gauge couplings gR , gL, g at this scale via

1

g2
1

=
2

3

1

g2
+

1

g2
R

,
1

g2
2

=
1

g2
L

,
1

g2
3

=
1

g2
,

3 Vary mR in a search for a unification scale Λ where

gR = gL = g

which is where the spectral action is valid as an effective
theory.
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Phenomenology of the spectral Pati–Salam model
Case I: Standard Model ∂/ F

For the Standard Model Dirac operator, we have found that with
mR ≈ 4.25× 1013 GeV there is unification at Λ ≈ 2.5× 1015 GeV:
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Phenomenology of the spectral Pati–Salam model
Case I: Standard Model ∂/ F

In this case, we can also say something about the scalar particles
that remain after SSB:

U(1)Y SU(2)L SU(3)(
φ0

1

φ+
1

)
=

(
φ1

1̇
φ2

1̇

)
1 2 1(

φ−2
φ0

2

)
=

(
φ1

2̇
φ2

2̇

)
−1 2 1

σ 0 1 1

η −2

3
1 3

• It turns out that these scalar fields have a little influence on
the running of the SM-gauge couplings (at one loop).

• However, this sector contains the real scalar singlet σ that
allowed for a realistic Higgs mass and that stabilizes the Higgs
vacuum [CC 2012].
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Phenomenology of the spectral Pati–Salam model
Case II: General Dirac

For the more general case, we have found that with
mR ≈ 1.5× 1011 GeV there is unification at Λ ≈ 6.3× 1016 GeV:
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Conclusion

We have arrived at a spectral Pati–Salam model that

• goes beyond the Standard Model

• has a fixed scalar sector once the finite Dirac operator has
been fixed (only a few scenarios)

• exhibits grand unification for all of these scenarios (confirmed
by [Aydemir–Minic–Sun–Takeuchi 2015])

• the scalar sector has the potential to stabilize the Higgs
vacuum and allow for a realistic Higgs mass.
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