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Can one hear the shape of a drum?
e Fermions in spacetime and emerging bosons

e Noncommutative fine structure of spacetime

Examples: electroweak model, Standard Model
Beyond the Standard Model: Pati—Salam unification
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Spectral geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the
spectrum of wave numbers k in the Helmholtz equation

Apu= k%u

determine the geometry of M?
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Wave numbers on the disc
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Wave numbers on the disc: high frequencies
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Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R?:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no.
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Weyl's estimate

Nevertheless, certain information can be extracted from spectrum,
such as dimension n of M:

N(A) = #wave numbers < A
QaVol(M) .,
n(2m)"

For the disc and square this is confirmed by the parabolic shapes

(VA):
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Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz
equation.

e The Dirac operator is a ‘square-root’ of the Laplacian, so that
its spectrum give the wave numbers k.

e First found by Paul Dirac in flat space, but exists on any
Riemannian spin manifold M.

e Let us give some examples.
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e The Laplacian on the circle St is given by
2

Aot = =g

(t €]0,27))

e The Dirac operator on the circle is

d
DSl — —/a

with square Ag:.

e The eigenfunctions of Dg:1 are the complex exponential
functions

e'™ = cosnt + isin nt

with eigenvalue n € Z.
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The 2-dimensional torus

o Consider the two-dimensional torus T? parametrized by two
angles ty, t € [0, 27).
e The Laplacian reads
02 0?

Ap=-2_2
T o2 ot

o At first sight it seems difficult to construct a differential
operator that squares to Aq2:

( d a>2 2 o2 , 02

— +b 2ab b*—=
oty + Oty ot 2 +ea 0t 10ty + 81’22
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e This puzzle was solved by Dirac who considered the possibility
that a and b be complex matrices:

() ()

then a®> = b = —1 and ab + ba = 0
e The Dirac operator on the torus is

o 9.0
Dp2 = P P oty Oty ’
—a i 0
oty Oty
. - 02 92
which satisfies (Dp2)? = _(971.“12 — 87t22

e The spectrum of the Dirac operator D2 is

{\/n%jtn% : nl,nzeZ};
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The 4-dimensional torus

e Consider the 4-torus T* parametrized by ti, t, t3, t4 and the
Laplacian is

o2 o2 o2 o2

e The search for a differential operator that squares to Aqa
again involves matrices, but we also need quaternions:

i2=j2=k?=jjk=-1.
e The Dirac operator on T# is

Dou — ( 0 +10t2+j8t3+k0t4>
T4 — el -8 6 el

e The relations ij = —ji, ik = —ki, et cetera imply that its
square coincides with Ara.
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Hearing the shape of a drum
Connes, 1989

e As said, the geometry of M is not fully determined by
spectrum of Dy,.

e This can be improved by considering besides Dy, also the
algebra C°°(M) of smooth (coordinate) functions on M

e In fact, the distance function on M is equal to

d(x,y)= sup {|f(x)—f(y)|: gradient f <1}
fecoo(M)

e The gradient of f is given by the commutator

df
[Dm, f] = Dyf — Dy (e.g. [Ds, f] = _,'E)
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A fermion in a spacetime background

The combination of coordinates and Dirac operator is of course
also central in the description of fermion propagation:

e coordinates on spacetime M:

Xy Xu(p) = Xu(p)xy(p), etc.,

with p,v=1,...,4.

e propagation, described by Dirac operator 9y = iv*0,, acting
on wavefunctions 1:

S[¥] =/wﬁw ~~ EOM: Ppep = 0.

° > °
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Emerging bosons

Our fermionic starting point induces a bosonic theory:
e “Inner fluctuations” by the coordinates [C 1996]:

v~ Pm+ Y alPm, a]]
j

for functions aj, aj— depending on the coordinates x,.
e Then, by the chain rule:
> alPm, &l = A (0x") = A,

J

where A" is the electromagnetic 4-potential describing the
photon.
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Moreover, it is possible to derive a bosonic action from the
(Euclidean) Dirac operator via the spectral action [CC 1996]:

Trace e Pu/N ~ caN*Vol(M) + C2/\2/ R\/g + CO/(a[uAI/])2 +

for some coefficients ¢4, co, . . ..

We recognize

e The Einstein-Hilbert action / R./g for (Euclidean) gravity

e The Lagrangian /(G[HA,,])2 for the electromagnetic field

AVAVAVAVAVE
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Noncommutative fine structure of spacetime

Replace spacetime by
spacetime X noncommutative space: M x F

e F is considered as finite internal space (Kaluza—Klein like)

e [ is described by noncommutative matrices, that play the role
of coordinates, just as spacetime is described by x,,(p).

e ‘Propagation’ of particles in F is described by a 'Dirac
operator’ @ ¢ which is actually simply a hermitian matrix.
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Finite commutative spaces

e Finite space F
F = 1@ P IR Ne®

e Coordinate functions on F are given by N-tuples in CV, and
the corresponding algebra C°°(F) corresponds to diagonal

matrices
(1) 0 0
0 f(2) 0
0 0 ... f(N)

e The finite Dirac operator is an arbitrary hermitian matrix Df,
giving rise to a distance function on F as

d(p; q) = reup {l(p) = f(a)l - [[DF, flll <1}
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Example: two-point space

F: 1. 20

e Then the algebra of smooth functions

“er={(c 3)

e A finite Dirac operator is given by

DF—<2 g) (ceC)

e The distance formula then becomes

)\1, )\2 S (C}

1
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Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F.

e Instead of diagonal matrices, we consider block diagonal

matrices
2 0 -+ 0
0 a - 0
A - . ’
0 0 ... an
where the a1, ap, ..., ay are square matrices of size
ny,no,...,NpyN.

e Hence we will consider the matrix algebra
Af = My (C)®d Mp,(C) & - - - & M,, (C)

where C can be replaced by R or H.
e A finite Dirac operator is still given by a hermitian matrix.
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Example: noncommutative two-point space

Coordinates on F are elements in C & H

e A complex number z
e A quaternion ¢ = qo + iqkak; in terms of Pauli matrices:

y (01 o (0 i s (1 0
"_<1 o>’ U_(—i 0>’ 7=\ -1

It describes a two-point space, with internal structure:

= @ —-=-=-x
o<

Gauge group is given by unitaries: U(1) x SU(2).

24 / 44
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'Dirac operator’

0 co0
ﬁ/:: c 00
0 00

e “Inner fluctuations” can be defined as before but now yield:

, 0 C¢; <oy
zi 0 z: 0
S(F o) o8 §)]= (e o o

j cp2 00
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Almost-commutative spacetimes

We combine this mild (matrix) noncommutativity with spacetime:
e coordinates of the almost-commutative spacetime M x F:

%"(p) = ("(p), ¢"(p))]

as elements in C @ H (for each p and each point p of M)
e The combined Dirac operator becomes

‘ﬁMxF =0wm +'Y5ﬁF‘

Note that @3, F = #%, + %, which will be useful later on.
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Inner fluctuations on M x F

So, we describe M x F by:

=(2",q");  DmxF=Pm+sPF
As before, we consider inner fluctuations of Jp«r by X(p):
e The inner fluctuations of ¢ become scalar fields ¢1, ¢o.
e The inner fluctuations of @y, become matrix-valued:

Z aj[ﬁMa aj] = al/y“(é?u%”) = @M + Au,),u

J

with A, taking values in C @ H:

B, 0 0
Ar=10 w} wf
— 3
o w, -w

corresponding to hypercharge and the W-bosons.
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Action functional: electroweak theory

Use P2, F = P2 + P2 to compute the spectral action

2 4
. 19

I ﬁ%\/le/A2— I _ﬁz /A2 ]__7@’: ol SRR
race e racee "M A2 —+ > Nd

2 4
~ <C4/\4V0|(M) + o\ / R\g + co / FWF“”> (1_% + ‘2(15/\|4>+. .

e The Yang-Mills term F,, F*”
for hypercharge and W-boson

e The Higgs potential
—al?|p? + Saalol*
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Standard Model as an almost-commutative spacetime

Describe M x Fsp by [CCM 2007]

e Coordinates: X*(p) € C®» H @ M3(C) (with unimodular
unitaries U(1)y x SU(2), x SU(3)).

e Dirac operator Dy« = Om + 50 F where
ST*
Pr= <T 5)
is a 96 x 96-dimensional hermitian matrix where 96 is:

3 x2 x(2®1 + 1

&
X
families \ \

anti-particles

(VL, eL) VR e
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The Dirac operator on Fgy

e The operator S is given by

Y,

AN

0 O 0 0 0 Yy

0 0 0 0 0
S = 0 0 Oe . Sq®13= 0 ® 13,
0 0

og§

*

Y.

e

o;i
ooo‘fo

0

0
Y; 0
where Y,, Ye, Y, and Yy are 3 X 3 mass matrices acting on
the three generations.

e The symmetric operator T only acts on the right-handed
(anti)neutrinos, Tvg = YgUR for a 3 x 3 symmetric Majorana
mass matrix Yg, and Tf = 0 for all other fermions f # vg.
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Inner fluctuations

Just as before, we find

e Inner fluctuations of Py give a matrix

B, 0 0 0
A0 W owroo
= - 3
N R/
0o 0 0 (G

corresponding to hypercharge, weak and strong interaction.
e Inner fluctuations of JF give

(v,, o) . (Ym - ecbz)
0 Ye Yoga  Yedy
corresponding to SM-Higgs field. Similarly for Y}, Yy.
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Dynamics and interactions

If we reconsider the spectral action:

Trace e Puxe/N o cN*Vol(M) + / FF* | [ 1— % + @ +-
g AZ T 2N

we observe [CCM 2007]:

e The coupling constants of hypercharge, weak and strong
interaction are expressed in terms of the single constant ¢y
which implies

5
£=é=§ﬁ

In other words, there should be grand unification.

e Moreover, the quartic Higgs coupling X is related via

3+p4 B
G+ 7 e

A~ 24
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Phenomenology of the noncommutative Standard Model

This can be used to derive predictions as follows:

e Interpret the spectral action as an effective field theory at
Acut ~ 1013 — 106 GeV.
e Run the quartic coupling constant A to SM-energies to predict

16
15F

14F \

2 \
4)\MW A \

m,2, = 3g22 13f \
12f \ /

11

logy, (1/GeV)

This gives [CCM 2007]

\167 GeV < mp, < 176 GeV
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@ This prediction is falsified by the
now measured value.

In the Standard Model there is
not the presumed grand
unification.

2]

There is a problem with the low
value of my, making the Higgs
vacuum un/metastable
[Elias-Miro et al. 2011].

gauge couplings

Z o

B -nm

oo

0.0 -

Grand Unification in th

Three problems
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Beyond the SM with noncommutative geometry

A solution to the above three problems?

e The matrix coordinates of the Standard Model arise naturally
as a restriction of the following coordinates

%(p) = (ar(p), a/'(p), m"(p)) € Hr & Hy & Ma(C)
corresponding to a Pati—Salam unification:
U(1)y x SU(2). x SU(3) — SU(2)r x SU(2), x SU(4)
e The 96 fermionic degrees of freedom are structured as
VR UR
er dir
e Again the finite Dirac operator is a 96 x 96-dimensional
matrix (details in [CCS 2013]).

vy ujr .
e di ) (I - 17273)
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Inner fluctuations

e Inner fluctuations of Py now give three gauge bosons:
W§, wy, %

corresponding to SU(2)g x SU(2), x SU(4).
e For the inner fluctuations of @ we distinguish two cases,
depending on the initial form of Pf:

ST*
| The Standard Model 9 = (T 5)
[I' A more general P with zero fi — fi-interactions.
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Scalar sector of the spectral Pati—-Salam model

Case | For a SM (), the resulting scalar fields are composite fields,
expressed in scalar fields whose representations are:

| SUQ)r  SU2)L SU(4)

b 2 2 1
Ay | 2 1 4
Y/ 1 1 15

Case Il For a more general finite Dirac operator, we have fundamental
scalar fields:

particle | SU(2)g  SU(2). SU(4)

yb 2 2 1415
3 1 10
HéIbJ 1 1 6
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Action functional

As for the Standard Model, we can compute the spectral action
which describes the usual Pati-Salam model with

e unification of the gauge couplings

&R = 8L = &

e A rather involved, fixed scalar potential, still subject to further
study
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Phenomenology of the spectral Pati-Salam model

However, independently from the spectral action, we can analyze
the running at one loop of the gauge couplings [CCS 2015]:

@ We run the Standard Model gauge couplings up to a
presumed PS — SM symmetry breaking scale mg

® We take their values as boundary conditions to the
Pati—Salam gauge couplings gr, g1, g at this scale via

1 _21 1 11 11
g 382 g3 g g’ gs g%

©® Vary mg in a search for a unification scale A where

ErR=8L— &

which is where the spectral action is valid as an effective
theory.
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Phenomenology of the spectral Pati-Salam model

Case |: Standard Model Jr

For the Standard Model Dirac operator, we have found that with
mgr =~ 4.25 x 10*3 GeV there is unification at A ~ 2.5 x 10*> GeV:

0.70 J3
0.65
12}
(=]
£
_%060
8" 92
()
j=2) N
g ~
@ 0.55 —
5 =
G <. ]
~. —_——
0.50 ~. X
9>~
10 12 14 16 18
log1o(L/GeV)
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Phenomenology of the spectral Pati-Salam model
Case I: Standard Model P

In this case, we can also say something about the scalar particles
that remain after SSB:
| ULy SUR). SU()

G-()) =
(B)-()) ~ =
o 02 1 1
n —3 1 3

e It turns out that these scalar fields have a little influence on
the running of the SM-gauge couplings (at one loop).

e However, this sector contains the real scalar singlet o that
allowed for a realistic Higgs mass and that stabilizes the Higgs
vacuum [CC 2012].
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Phenomenology of the spectral Pati-Salam model
Case II: General Dirac

For the more general case, we have found that with
mr =~ 1.5 x 10'* GeV there is unification at A = 6.3 x 10'® GeV:

0.70 Js

gauge couplings

10 12 14 16 18
log1o(k/GeV)
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Conclusion

We have arrived at a spectral Pati—-Salam model that
e goes beyond the Standard Model

e has a fixed scalar sector once the finite Dirac operator has
been fixed (only a few scenarios)

e exhibits grand unification for all of these scenarios (confirmed
by [Aydemir-Minic—Sun—Takeuchi 2015])

e the scalar sector has the potential to stabilize the Higgs
vacuum and allow for a realistic Higgs mass.
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Further reading

A. Chamseddine, A. Connes, WVS.

Beyond the Spectral Standard Model: Emergence of
Pati-Salam Unification. JHEP 11 (2013) 132.
[arXiv:1304.8050]

Grand Unification in the Spectral Pati-Salam Model. JHEP 11
(2015) 011. [arXiv:1507.08161]

W\VS.

Noncommutative Geometry and Particle Physics.
Mathematical Physics Studies, Springer, 2015.

and also: http://www.noncommutativegeometry.nl
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