
The Renormalization Group and Self-avoiding
Walk

David Brydges

1 Introduction

I am grateful and honoured to be given this opportunity to give an introduction to the
renormalisation group. It is based on recent work with Gordon Slade, and Roland
Bauerschmidt. These notes are intended to be interesting for mathematicians. No
knowledge of physics is assumed, but our topic began life in physics and so I begin
with a review of this background. This review contains references that cannot be
understood without a background in physics. I include them for historical reasons,
not because they are required reading. However it would make me very happy if the
mathematical developments in these notes help someone in my audience understand
physics better.

The renormalisation group (RG) first appeared in quantum electrodynamics with
work by Stueckelberg and Petermann [45] and Gell-Mann and Low [30]. Quantum
electrodynamics is the quantum theory that extends the classical theory of elec-
tromagnetism. Classical electromagnetism is the combination of Maxwell’s partial
differential equations for the electromagnetic field and the Lorentz equation that
describes the force experienced by a charged particle moving in an electromagnetic
field. The force is proportional to the charge and charge is an example of a coupling
constant. Maxwell’s equations are invariant under a common rescaling of space and
time and the charge does not change under such rescaling. However scale invariance
of charge as a coupling constant does not survive in quantum electrodynamics.
These founding papers were statements about how the charge coupling constant
transforms under rescaling. Later the insight of these papers was put in a more
useful form, called the Callan-Symanzik equations, [23, 48, 49]. These equations
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are a set of coupled differential equations for the flow of the coupling constants
under scaling. In these lectures we will see how it can be that coupling constants
depend on scale.

A quite different line of thought started with Symanzik [46] who began the study
of quantum field theory on R

d with the euclidean metric instead of the Minkowski
metric prescribed by Nature. He realised that these, despite the name “quantum
fields”, are random fields in the standard sense of probability. By formulating this
idea also for fields on a lattice such as Z

d these theories were connected with the
scaling limits of lattice spin systems such as the Ising model. This was exploited in
a deep way in [31, 32, 42, 43] where euclidean quantum field theory is studied as the
limit of classical spin systems and, in particular, correlation inequalities are used. In
the other direction, from euclidean field theory to lattice spin systems, Wilson and
Fisher [53] and Wilson [51] showed that the renormalisation group and the Feynman
expansion of quantum field theory can systematically calculate critical exponents
in statistical mechanics. In these lectures we will be explaining some parts of this
method.

Other authors [40, 57] expressed the same ideas for calculating critical exponents
in terms of the Callan-Symanzik equations. In particular, using an idea of de Gennes
[24], Brezin et al. [13] and Duplantier [26] used the Callan-Symanzik equations
to calculate exponents for self-avoiding walk in three and four dimensions. These
authors are assuming that the scaling limit of a lattice spin system in four dimensions
exists as a continuum random field with the scaling properties prescribed by the
Callan-Symanzik equations and that the coefficients in these equations are given by
perturbation theory. They give very efficient calculations of critical exponents based
on these assumptions.

In our work, [10] and the five papers that it references, we avoid such assumptions
by following the work of Ken Wilson, who invented a more detailed form of the
renormalisation group that applies to statistical mechanical models on lattices. It is
in fact a program to prove the existence of scaling limits as quantum field theories.
We only make part of that program mathematically complete, just enough to prove
that the susceptibility of a walk with weak self-repulsion has a log

1
4 correction.

If you are seeing this log correction for the first time then it will not seem very
interesting but think of it as a signal: Wilson’s program is systematic, in the same
sense that calculus is systematic, and it is a calculus for critical statistical mechanics
and scaling limits. It is more complicated than you will like, but most profound
ideas have not been easy at first. I regard the influential lecture course [54] as still
one of the best places to appreciate the ideas and scope of this program. Perhaps
even better and also amusing in places, is his Nobel prize lecture [52].

Wilson and Kogut start with a random field � defined on a lattice Z
d . They

“integrate out” fluctuations in the random field up to some chosen length scale L.
One intuitively attractive way to do this is called the block spin method and it is
defined as follows. The lattice is partitioned into disjoint cubes of side L and the
random field is conditioned on its empirical averages over the cubes. The centres of
the cubes are a new coarser lattice of spacing L and the empirical averages are a new
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random field on this coarser lattice. The coarse lattice is scaled so that it becomes
the unit lattice Z

d. Thus the combination of conditioning followed by rescaling is a
map RG taking the space M of all probability laws for a lattice random field into
itself. Thus RG can be iterated and can be analysed as a dynamical system.

Suppose RG has a fixed point. Then one can define the stable set S to be the
set of all points in M that have orbits under RG that converge to the fixed point.
This S is invariant under RG. The Wilson picture is that points on S are probability
distributions for random fields that are critical, for example an Ising model at
its critical temperature. The set S is the universality class of all random fields
whose scaling limit is the probability distribution represented by the fixed point.
This special probability distribution is expected to have more symmetries than the
distributions represented by points on S. For example it will be scale invariant. In
fact in some cases it is conjectured to satisfy the axioms of euclidean quantum field
theory. To be clearer, the fixed point is a probability distribution for a lattice random
field, but in fact there will be a continuum generalised random field whose empirical
averages over cubes centred on the lattice points are the random variables for the
fixed point model. It is this continuum field that will be scale invariant and may
satisfy the axioms of euclidean quantum field theory. One of the most important
such fixed point distributions is called the massless free field. Wilson argued that in
more than two dimensions the stable set for this fixed point has finite codimension:
you have to carefully select values of finitely many parameters to be a critical
model on the stable set for this fixed point. In four and more dimensions, and for
even measures, Wilson asserts that the codimension is 2. One of the parameters
is a parameter of the massless free field analogous to the variance of the normal
distribution. As in the central limit theorem you have to normalise the empirical
averages correctly in order that the scaling limit be a standard massless free field.
Selecting the other parameter corresponds, for the Ising model, to choosing the
temperature to be critical. In these lectures we will see this codimensionality of
2 for self-avoiding walk in four dimensions.

We implement the Wilson RG a little differently. Our definition of RG relies on
the fact that the gaussian free field � on the lattice Zd is equal in distribution to a sum
� D P

j �j over scales j of independent gaussian fields �j with a strong independence
property: �j;x and �j;y are independent when the spatial points x and y are separated by
at least Lj=2. This suggests an interesting open problem: characterise the gaussian
random fields � which in distribution can be written as such a sum. There is a nice
proof that the lattice gaussian free field has such a decomposition in [7] along with
references to the original constructions of such representations.

The first rigorous control of RG was achieved by Gawedzki and Kupiainen
[28, 29]. Hara and Tasaki [33] used their methods to prove the existence of log
corrections in the �4 lattice field theory. There is a different program with similar
outcomes called the phase cell expansion described in [2]. Using the phase cell
expansion Iagolnitzer and Magnen [34] considered a model that is roughly speaking
an Edwards model in the continuum. They determine the asymptotics of the Greens
function as one spatial argument tends to infinity. A nice feature of their approach is
that it deals quite directly with walks whereas our method transforms self-avoiding
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walk into massless free field language. Balaban has made the most far reaching
accomplishments in the rigorous renormalisation group, for example in his series of
papers on the classical lattice Heisenberg models that starts with [6].

At this time the scaling limit of self-avoiding walk in three dimensions is, for
mathematicians, a complete mystery. It is believed that the scaling limit is a non-
gaussian fixed point for RG and we hardly understand these at all. However in [57]
you can read the remarkable non rigorous progress that started with ideas of Wilson
and Fisher. With � WD 4�d, critical exponents are obtained as expansions in powers
of �. The first few terms of these expansions can be calculated and results in accurate
agreement with simulations of three dimensional self-avoiding walk are obtained by
setting � D 1. A step in this direction of varying a dimension-like parameter has
been made in [41]. Related to this is [1] which, for a �4 theory in three dimensions,
constructs a complete renormalization group trajectory that at one end converges to
a gaussian and at the other end to a non-gaussian fixed point.

2 The Lattice Edwards Model

We start with a continuous time random walk fXtW t � 0g on the euclidean lattice Zd

or on the torus � � .Z=RZ/d where R is a positive integer. The side or period R
of � is chosen from the geometric sequence LN ;N D 1; 2; : : : ; where L � 2 is an
integer. The (negative) generator of the walk is the lattice Laplacian ��, acting on
bounded functions f defined on Z

d or on �. It is given by

.��f /x WD
X

y�x

�
fx � fy

�
; (1)

where y � x means that y is a nearest neighbour to x. On the torus � every lattice
point has 2d neighbours because there is no boundary. We use Pa to denote the
law of the random walk starting at the vertex a 2 � and Ea is the corresponding
expectation. In addition, we consider the random walk that gets killed with a rate
m2 � 0, i.e. the process on either Zd [ ? or � [ ? whose (negative) generator is
given by the following block matrix

� ?

� m2 ��; �m2
� �

? 0; 0

The state � is called the cemetery. The dynamics is easy to describe: the walk waits
for a random time with distribution Exp.m2 C 2d/ and then jumps to a nearest
neighbour with probability 1=.m2C2d/ or to the state ? with probability m2=.m2C
2d/. Further, let us denote by � WD infft � 0W Xt D ?g the killing time, i.e. the first
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hitting time of ?. For any x 2 � we define the local time spent at x by

Lx WD
Z
�fXsDxg ds; (2)

where the integral is over Œ0;1/. The time spent in self-intersection is defined to be

“
�fXsDXt¤�g ds dt (3)

and by (2),

“
�fXsDXt¤�g ds dt D

X

x2�
L2x : (4)

We use P.m/a for the law of random walk starting from a and with killing rate m2 and
E.m/a for the corresponding expectation. Notice that for any function F of the local
times we have

E.m/a

�
F.L/

	 D m2

Z
E.0/a

h
F.LT/

i
e�m2T dT (5)

with

LT
x WD

Z

Œ0;T�
�fXsDxg ds: (6)

Definition 2.1 (Susceptibility) For g � 0 and � 2 R and random walk on Z
d

starting in state a, define

�.g; �/ WD
Z

E.0/a

h
e�g

P
x.L

T
x /
2
i

e��T dT (7)

with values in .0;1�. This is called the infinite volume susceptibility of the lattice
Edwards model. We define the finite volume susceptibility �

�
.g; �/ 2 .0;1/ by

replacing Z
d by � so that the random walk is on �. In the infinite volume case we

define the critical value of � by

�c WD � inf
˚
� 2 RW�.g; �/ < 1�

: (8)

In [10, Lemma A.1] we use standard subadditivity arguments to prove that
�.g; �/ is finite if and only if � is strictly greater than �c. The exponential term
suppresses self-intersection. As g is taken larger the suppression becomes stronger,
but at the same time the speed of the walk increases because the time it spends
between jumps is also being suppressed. The various large g limits are discussed in
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[22]. For g D 0 we have simple random walk for which �c D 0. We will find that �c

is negative for g > 0.
The finite volume susceptibility �� increases to the infinite volume susceptibility

� as � increases through tori of side-length R D LN with N ! 1. This is proved
in [10] by an argument based on wrapping an infinite volume walk onto a torus
and noticing that this increases the number of self-intersections. Furthermore, all
derivatives of �� with respect to � converge to the corresponding derivatives of �
because this is a property of the one-sided Laplace transform and the susceptibility
is a one-sided Laplace transform, with � dual to time. This good property of the
Laplace transform comes about because the one-sided Laplace transform is an
analytic function of � for � in the half-plane <� < �c. By the Vitali theorem
pointwise convergence for real values of � implies uniform convergence on compact
subsets of the half-plane and from this it follows that derivatives converge.

The next theorem on the Edwards model is the focus for these notes. To state it
we define a.�/ � b.�/ to mean that lim�#0 a.�/

b.�/ D 1. Let

� D 1

4
: (9)

We make this definition in order to be able to track the origin of the exponent in the
logarithmic correction through these notes.

Theorem 2.2 (Part of Theorem 1.1 in [10]) Let d WD 4. For g > 0 sufficiently
small, there exists Ag > 0 such that

�
�
g; �c.g/C �

� � Ag

�
log� .1=�/; � # 0: (10)

For simple random walk, �.0; �c C �/ D 1=� for each � > 0 (in all dimensions)
so the log is an effect of g > 0. The conclusion of this theorem can be rewritten as

Z
e��cT E.0/a

h
e�g

P
x.L

T
x /
2
i

„ ƒ‚ …
cT

� e��T dT �
�#0

Ag log
1=4.1=�/: (11)

Thanks to the fact that � e�� TdT is a probability on .0;1/, this may be interpreted
as a weak version of the (conjectural) statement that the quantity cT marked above
obeys

cT �
T!1 Age�cT

�
log T/

1=4: (12)

Remark 2.3 For dimensions d > 4 there will not be a log correction. I do not know
if exactly this result has been proved for the Edwards model but such results are
proved for the standard discrete time self-avoiding walk by the lace expansion [8,
38]. I am not sure if anyone has considered lace expansions for continuous time
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models like the Edwards model. It should be possible and they might even be neater
than the standard discrete case.

3 The Free Field and Local Time

The free field is usually introduced as a real gaussian field. However we will
consider a complex valued free field because the next section requires it and because
the connections we are about to describe between gaussian fields and continuous
time random walk are more general when complex fields are used. We only define
gaussian fields on the torus�. Therefore we consider � 2 C

�, i.e. � D f�xW x 2 �g.
We can also write �x D ux C ivx, where u and v are gaussian fields. A gaussian
complex valued measure has the form

e�.�;A N�/ det.A/
Y

x2�

duxdvx

�
; (13)

where we are using the notation

.�;A N�/ WD
X

x;y2�
�xAxy N�y: (14)

We say that A is dissipative if <e.�;A N�/ � m2
P
�x N�x for some m2 > 0. The above

gaussian complex measure exists for any dissipative matrix A. If Axy D Ayx and A
is real, then the gaussian measure in a genuine probability distribution, in other
words it is not complex valued. Furthermore, the gaussian fields u; v mentioned
above are independent. We will mostly be working with a real symmetric A, but for
the moment let us not make this assumption. Even though there is no probability
measure we will still denote integration with respect to the complex measure by the
symbol E. The following formulas may surprise you a little. The first is an exercise.
The second follows from the invariance of the gaussian density under the change of
variables �x 7! ei˛�x and N�x 7! e�i˛ N�x for all x 2 � with any real ˛. Recall that A
is real. This symmetry is called gauge invariance.

E
� N�x�y

	 D .A�1/xy (15)

while

E
� N�x N�y

	 D 0 D E
�
�x�y

	
: (16)

Definition 3.1 If A WD m2 id � �, then � is called the (complex) free field with
mass m.
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The real field version of the following theorem has been called the Dynkin
Isomorphism since [27], but Dynkin references two earlier papers. One of them
is [19], where this isomorphism appears in Theorem 2.2, but stated in terms of the
skeleton walk defined by a continuous time walk, and the second is [47], which
is the first time a connection between local time of random walk and the square
of a gaussian field was found. Since we and Symanzik are dropping out of sight
in the probability literature on this theorem I am going to come back and haunt
everyone who does not remember us! See [50] where the recent history of this
theorem is discussed. It includes the relation between � N� and the local time of loop
soup discovered first in [47], but admittedly not stated very precisely.

A version [14, Proposition 3.1] of the following theorem is valid when A is a real
matrix such that (1) all row sums are strictly positive, (2) A is dissipative. This is
interesting because this allows A to be the generator of a nonsymmetric walk, but I
do not want to pursue this here and will from now on assume that

A D m2 id �� (17)

for some m2 > 0.

Theorem 3.2 For bounded continuous FWR�C ! R, m2 > 0 and a; b 2 �,

E
�
F.� N�/ N�a�b

	 D m�2
E˝ Ea

h
F.� N� C L/�fX�� Dbg

i
: (18)

Proof By the monotone class theorem and the linearity of both sides in the function
F it suffices to check that both sides are equal for functions of the form F.t/ WD
exp

˚�Px2� wxtx
�

where wx � 0. Let W be the � 	 � diagonal matrix whose
diagonal entries are wx; x 2 �. Then

F.� N�/ D exp
˚�
X

x2�
wx�x N�x

� D exp
˚�.�;W N�/�: (19)

Since this is gaussian the left hand side of (18), up to a normalisation, is the
covariance of a gaussian measure whose density is the exponential of ���; .A C
W/ N��, where A D m2 id ��. Therefore the left hand side of (18) equals

.A C W/�1ab E
�
F.� N�/	: (20)

Now consider the right hand side of (18): our special choice of F is such that F.� N�C
L/ D F.� N�/F.L/ so the right hand side is

m�2
E

h
F.� N�/

i
Ea

h
F.L/�fX��Dbg

i
(21)
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and we are reduced to checking that

.A C W/�1ab D m�2 Ea

h
F.L/�fX��Dbg

i
: (22)

The continuous time walk X defines the sequence Y0; : : : ;Y� of lattice sites visited
by X before it arrives at �. Let WnIab be the set of all nearest neighbour walks y D
.y0; y1; : : : ; yn/ such that y0 D a and yn D b. For y 2 WnIab the probability of
the event Y D y is the probability that the continuous time walk X will make the
independent transitions y0 ! y1, y1 ! y2 and so on ending with yn to �. Therefore

Ea

h
�YDy

i
D
�

1

m2 C 2d

�n m2

m2 C 2d
: (23)

On the event Y D y, for i D 0; : : : ; n the time that X waits at yi is exponential
with parameter m2 C 2d and all these exponential times are independent. Therefore,
recalling that F.L/ D e�P

wxLx ,

Ea

h
F.L/�YDy

i
D m2 C 2d

m2 C 2d C wy0

: : :
m2 C 2d

m2 C 2d C wyn

Ea

h
�YDy

i

D 1

m2 C 2d C wy0

: : :
1

m2 C 2d C wyn

m2: (24)

By summing this last formula over y 2 WnIab and over n,

m�2 Ea

h
F.L/�fX�� Dbg

i
D
X

n�0

X

y2WnIab

1

m2 C 2d C wy0

: : :
1

m2 C 2d C wyn

: (25)

To complete the proof we need the right hand side of this equation to be equal to
.ACW/�1ab . To check this write ACW as a diagonal matrix D minus an off-diagonal
matrix J. By the expansion .D � J/�1 D D�1 C D�1JD�1 C D�1JD�1JD�1 C : : :

with matrix products written out in terms of sums over indices,

.A C W/�1ab D
X

n�0

X

y2WnIab

1

m2 C 2d C wy0

: : :
1

m2 C 2d C wyn

; (26)

as desired. This expansion is a sum of positive terms because J has nonnegative
entries and D has positive diagonal entries. The expansion is convergent because
the number of terms in WnIab is .2d/n whereas the summand is smaller than .2d C
m2/nC1.

Example 3.3 In Theorem 3.2 set

F.t/ WD e�g
P

x t2x : (27)



74 D. Brydges

Then from Theorem 3.2,

E

h
e�P

x g . N�x�x/
2 N�a �b

i
D m�2

Z 1

0

E˝ Ea

h
e�P

x g . N�x�xCLx/
2
i

e�m2T dT: (28)

The left hand side is known as the lattice j�j4 quantum field theory. According to,
for example, Theorem 2 and the last item on page 22 of [35], in

� N�x�x C Lx
�2 D � N�x�x

�2 C L2x C 2 N�x�xLx (29)

the random variables .�x N�x; x 2 �/ have the same distribution as the local times of
loop soup plus a field of independent � variables that represent the local times
of trivial loops that stay at one point. Thus the first term in (29) represents an
interaction between the loops of loop soup and also a self-interaction for each loop.
This interaction suppresses all mutual and self-intersections in the loop soup, much
like the factor in the Edwards model suppresses self-intersections of a continuous
time random walk. In fact, in the second term of (29) we see that as well as the
loops there is a random walk with its own Edwards interaction. The third term
suppresses all intersections between the loops and the walk. Thus the lattice j�j4
quantum field theory is a model of many polymers which mutually repel. This is
what Symanzik discovered in [47]. He was advocating this as a way to understand
euclidean quantum field theory, but it might also be a good way to study polymers
because the correlation inequalities of euclidean quantum field theory are interesting
statements for the polymer model.

4 The Free Field, Local Time and Differential Forms

The main result in this section is Proposition 4.3 which is a variant of Theorem 3.2
that will be used to express the susceptibility of the Edwards model in terms of the
massless free field. However it requires a conceptual extension of the massless free
field and we first prepare the way with a review of differential forms.

4.1 Review of Differential Forms

A good reference for (differential) forms is [5]. As a motivational example let f be
a smooth real function on R

2. Given a point .u; v/ in R
2 let .Pu; Pv/ be also a point

in R
2, but think of it as a direction one can travel in, starting at .u; v/, and call it a

tangent vector at .u; v/. Then define df D df.u;v/, as a linear function on the vector
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space of tangent vectors at .u; v/, by

df W .Pu; Pv/ 7! fu Pu C fv Pv; (30)

where fu D fu.u; v/ and fv D fv.u; v/ are the partial derivatives of f at .u; v/. With
this definition with f replaced first by the function Ou W .u; v/ 7! u and second by
the function Ov W .u; v/ 7! v the reader can verify that df D fud Ou C fvd Ov. It is usual
to leave off the hats as soon as we have understood that u and v are being used in
two senses. Thus, by defining the symbols df ; du; dv as linear functions on tangent
spaces, we gain a precise meaning for

df D fudu C fvdv: (31)

The space of forms at .u; v/ of degree one is the vector space dual to the vector space
of tangent vectors at .u; v/. When we omit the phrase “at .u; v/” and say simply that
“! is a form of degree one” then we mean that for each point .u; v/ in R

2 !.u;v/ is
a form of degree one at .u; v/ and that .u; v/ 7! !.u;v/ is smooth. This statement is
clearly true for du and dv and it follows that it is true for df since fu.u; v/ and fv.u; v/
are smooth functions of .u; v/. It is obvious how to generalise this discussion to R

n.
Given two forms ! and !0 of degree one at a point in R

n, we create a bilinear
form ! ˝ !0 by setting, for any two tangent vectors e and e0,

.! ˝ !0/.e; e0/ D !.e/!0.e0/ (32)

but the bilinear form with geometrical significance is the antisymmetric tensor
product defined by

.! ^ !0/.e; e0/ WD !.e/!0.e0/ � !0.e/!.e/: (33)

For example

.du ^ dv/.e; e0/ WD du.e/dv.e0/� du.e0/dv.e/ (34)

is the (signed) area of the parallelogram generated by e and e0. A form of degree two
on R

n is, by definition, an antisymmetric bilinear function of directions assigned to
points smoothly. All such objects can be written as

P
aijdui ^ duj where aij are

smooth functions on R
n. Similarly forms of degree p on R

n are antisymmetric p-
linear functions of directions assigned smoothly to points. Notice that the degree is
at most p D n because there are no antisymmetric functions of higher degree. By
definition forms of degree 0 are functions on R

n.
Now the textbooks do something that looks strange but works out well: given

two forms ! and !0 of degree p 6D p0 we define the direct sum ! ˚ !0, which we
can do because the set of forms of degree p is a vector space ˝.p/ and so ! ˚ !0
is an element of the vector space ˝.p/ ˚ ˝.p0/. This amounts to saying that when
! ˚ !0 is evaluated on p directions Pu1; : : : ; Pup it equals the evaluation of ! on these
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p directions and likewise when ! ˚ !0 is evaluated on p0 directions it equals the
evaluation of !0 on these p0 directions, and evaluation on q directions is zero for q
not p or p0. Let ˝� D L

˝.p/. This is the vector space of all forms and we write
the addition in this space using C in place of ˚. After defining dui1 ^ � � � ^ duip
by antisymmetrising the tensor product the general form ! 2 ˝� on R

n can be
written as

! D
X

p

X

i1;:::;ip

ai1;:::;ip dui1 ^ � � � ^ duip (35)

where the coefficients are smooth functions on R
n. The important fact is that the ^

product is associative, as well as distributive, over C. When a is a form of degree
zero, that is, a smooth function on R

n, and ! is a general form, then by definition

a! D a
X

p

X

i1;:::;ip

ai1;:::;ip dui1 ^� � �^duip D
X

p

X

i1;:::;ip

aai1;:::;ip dui1 ^� � �^duip (36)

which is the pointwise scalar product of the vector space ˝�. In this case we omit
the wedge. Note that

a.! ^ !0/ D .a!/ ^ !0 D ! ^ .a!0/: (37)

From now on we rarely need to know that a form is a linear combination of
antisymmetric multilinear functions of tangent vectors. Most of the time we only
use the fact that˝� is an algebra with n generators dui; i D 1; : : : ; n, that satisfy the
relations dui ^ dui D 0 for i D 1; : : : ; n. An algebra whose generators satisfy such
relations is called a Grassmann algebra. These relations imply that dui ^ duj D
�duj ^ dui for all i; j D 1; : : : ; n. This means that multiplication is commutative
for forms of even degree and anticommutative for forms of odd degree. In our case
we have a Grassmann algebra over C1.Rn/ which means that for f in C1.Rn/

and forms ! and !0, f .! ^ !0/ D .f!/ ^ !0 D ! ^ .f!0/. The Grassmann algebra
generated by linear functions on a vector space V is called the exterior algebra of V .

Given a form ! as in (35) with integrable coefficients we define

Z

Rn
! D

Z

Rn
a1;2;:::;ndu1 : : : dun: (38)

At first it seems strange that this definition of the integral of a form ignores all
coefficients except the one in the top degree form, but it is consistent with our earlier
remarks about the meaning of addition in the exterior algebra and the idea that
du1 ^ � � � ^ dun is a multilinear function that assigns volume to parallelopipeds of
dimension n. The important point about integration of forms is that the value of the
integral is independent of the choice of coordinates for Rn. To understand this try as
an exercise case n D 2. Let f be a smooth orientation preserving bijection from R

2

to itself. Rewrite ! D P
aijdui ^ duj in terms of .u0

1; u
0
2/ where ui D fi.u0

1; u
0
2/ by
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substituting du D P
fidu0

i into!. Check that
R
! is the same regardless of whether it

is expressed in terms of u or u0. This invariance property of forms is what motivated
Cartan to introduce this formalism.

4.2 Gaussian Integrals in Terms of Forms

We make the natural extension of the previous constructions for Rn to the complex
space C

�. A point in this space is given by � D u C iv where u D .ux/x2� and
v D .vx/x2� are in R

�. For each x 2 �we have a degree one form d�x WD duxCidvx

and

d�x ^ d N�x D .dux C idvx/ ^ .dux � idvx/ D �2 i .dux ^ dvx/: (39)

Let N .�/ denote the exterior algebra over C1�
R
2�
�

generated by fdux; dvxW x 2
�g or, alternatively, fd�x; d N�xW x 2 �g.

Now let’s go back to the definition of the gaussian (complex) measure (13). For
F a random variable (form of degree zero)

E
�
F
	 D

Z

R2�
e�.�;A N�/F det.A/

Y

x2�

duxdvx

�
: (40)

We claim that for any dissipative real matrix A,

E
�
F
	 D

Z

R2�
e�.�;A N�/� 1

2�i .d�^;Ad N�/ F (41)

where

�
d�^;A d N�� WD

X

x;y2�
d�x ^ Axyd N�y (42)

and we really are claiming that there is no constant of normalisation in (41). For ˛
a function and ˇ a form the exponential e˛Cˇ is the element of the algebra N .�/

defined by

e˛Cˇ WD e˛
X

p�0

1

pŠ
ˇ^ p: (43)

The sum is finite because all terms of degree more than 2j�j are zero. For our case

ˇ D � 1

2�i
.d�^;Ad N�/: (44)
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So an expansion of the second term in the exponent results in a linear combination
of forms of various degrees. Recall that the rule of integration (38) of forms is that
the integral of all but the highest-degree form vanishes. The highest degree form is
the term p D j�j in the sum in (43). As an exercise show that this term equals

ˇ2p D .2�i/�p det A
Y

x2�
.�d�x ^ d N�x/ (45)

and complete the proof of (41) using (39).
Let c D 1

2� i and define

.	�/x WD 1

2



�x .�� N�/x C c d�x ^ .��d N�/x

C.���/x N�x C c .��d�/x ^ d N�x

�
(46)

and

	x WD �x N�x C c d�x ^ d N�x: (47)

When .	�/x appears under a sum over x in � the second two terms in .	�/x make
the same contribution as the first two terms, which cancels the 1=2. Let

	�.�/ D
X

x2�
.	�/x; 	.�/ D

X

x2�
	x: (48)

Then, for A D m2 � �, the exponent in (41) is the same as m2	.�/ C 	�.�/, as
claimed in the following definition.

Definition 4.1 (Super-Expectation) The super-expectation for massive free field
is defined for m2 > 0 and for bounded forms F in N .�/ by

E
.m/ŒF� WD

Z

R2�

e�.�;A N�/� c.d�;Ad N�/F D
Z

R2�

e�.m2	C	�/.�/ F (49)

where

A WD m2 ��; c D 1

2�i
: (50)

A bounded form is a form whose coefficients are bounded. Here and from now on
we are omitting the ^ between the exponential and F.

The point of this definition is that the right hand side makes sense if F is a
form in N .�/ but when we evaluate the super-expectation of a form of degree
0, in other words a random variable, by (41) the super-expectation is the same as
the expectation, so we are defining an extension of the standard expectation to the
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algebra of integrable forms. Of course not all properties we are used to remain valid
when we are taking the super-expectation of a form. For example we do not have a
Jensen inequality unless the form under E.m/ is of degree zero.

4.3 The Local Time Isomorphism and Forms

Recall the definition of 	x from (47) and let 	 denote the sequence of forms .	x/,
where x ranges over �. Likewise let � N� denote the sequence .�x N�x/ and c d� ^ d N�
denote the sequence .c d�x ^ d N�x/. For a smooth function F defined on R

�, there is
a multivariable Taylor expansion

F.t C Pt/ �
X

p

1

˛Š
F.˛/.t/Pt˛ (51)

about the point t in R
� in powers Pt˛ D Q

x2� Pt˛x
x of the components .tx/ of t. Let t D

� N� and Pt D c d�^d N� in this Taylor series, replacing
Q

x2� Pt˛x
x by the wedge product

^x2�Pt˛x
x . This product is well defined regardless of the order with which x ranges

over � because the forms c d�x ^ d N�x are even. Also, the series terminates after
finitely many terms because each term is a form of degree 2j˛j1 and forms of degree
larger than 2j�j vanish. Therefore the Taylor expansion with these substitutions
defines a form. We denote this form by F.	/. It is a good notation because F 7! F.	/
is an algebra homomorphism from the algebra of smooth functions into N .�/. Also
the map respects composition f .F.	// D .f ı F/.	/. We will not prove these claims,
but they are consequences of the uniqueness of the Taylor expansion.

Lemma 4.2 For any bounded smooth function FWR� ! R with bounded deriva-
tives and for m2 > 0,

E
.m/
�
F.	/

	 D F.0/: (52)

This also holds for any dissipative matrix A in place of A as defined in (50).

Proof A complete proof is given in [21] but it is instructive to check the claim for
the special case F.	/ WD expf�Px wx	xg with wx � 0. We exhibit dependence on
the matrix A by writing EA. Let W be the diagonal matrix with wx on the diagonal.
Then with this special F we have from Definition 4.1 that EAŒF� D EACW Œ1�

and EACW Œ1� D 1 D F.0/ as desired because the super-expectation equals the
expectation on forms of degree 0.

Recall that when we proved Theorem 3.2 we also checked the special case of
an exponential F and this sufficed to prove the general case because both sides are
linear in F. In this algebra of forms context we no longer have monotone class
theorems to extend from linear combinations of exponentials to the general case.
The idea in [21] is instead to write a general F as the fourier transform of its Fourier
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transform to see that it is a limit of linear combinations of exponentials. The same
idea is at work in the next isomorphism theorem, which I will call the “	 D L”
theorem.

Proposition 4.3 For a bounded smooth function FWR� ! R with bounded
derivatives,

E
.m/
�
F.	/ N�a�b

	 D m�2 Ea
�
F.L/�fX��Dbg

	
: (53)

Proof For a complete proof see [21, Proposition 2.4]. It is again sufficient to prove
it is true for the special case F.	/ WD expf�Px wx	xg with wx � 0. As in the last
proof,

E
.m/
�
F.� N�/ N�a�b

	 D EA
�
F.� N�/ N�a�b

	 D EACW
� N�a�b

	
: (54)

The super-expectation on the right coincides with the expectation so the right hand
side equals .A C W/�1ab and in the proof of Theorem 3.2 we proved that this equals
the right hand side of Proposition 4.3, as desired.

5 Susceptibility as a Gaussian Integral

For the parameters g; � that appeared in the Edwards model and a new one called z
and X � � define

Vg;�;zIx WD g 	2x C � 	x C z.	�/x;

Vg;�;z.X/ D
X

x2X

Vg;�;zIx;

�.X/ D
X

x2X

�x: (55)

Notice that we are starting to omit ^, for example 	2x is really 	x ^ 	x. By choosing
F.	/ D exp

��g 	2x .�/� .��m2/ 	.�/
	

in Proposition 4.3 and using the definition
of the super-expectation we find that

��.g; �/ D
Z

R2�

e�Vg;�;1.�/ N�a �.�/: (56)

Thus the susceptibility is represented as a 2j�j dimensional integral of forms.
Perhaps this does not seem like a very pleasant reward for so much work, but let
us see.

These differential form representations came from [39, 44] and particularly
[37] in the physics literature, where they are instances of supersymmetry. The
results in these papers are expressed in terms of anticommuting numbers which
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are also known as ghosts. Anticommuting numbers are another name for elements
of a Grassmann algebra as defined above. The definition of a Grassmann integral
as the coefficient of the highest degree monomial in a Grassmann algebra is
called the Berezin integral after the standard reference [12]. I first encountered
the identification of anticommuting numbers with differential forms in [36, 55].
I discussed the isomomorphism between local time and the gaussian field for the
complex case with and without Berezin integration in [14].

Lemma 4.2 for the exponential is a special case of the remarkable Duistermaat-
Heckman theorem [25, Theorem 4.1 on p. 267]. We shall not need this theorem but
to see why it is a more general statement note that it applies to even dimensional
spheres. Since we are considering integrals over R2j�j of functions that decay at
infinity we can add a point at infinity and replace R

2j�j by an even dimensional
sphere. The mathematical literature on the Duistermaat-Heckman theorem makes
unfounded assumptions about my education in topology and I found the more
informal Sect. 2.2.2 and the standard example in Appendix A of [56] helpful.

5.1 The Most General Split into Gaussian Plus Perturbation

At the end of the last section we found that the susceptibility has the representation

��.g; �/ D
Z

R2�

e�Vg;�;1.�/ N�a �.�/: (57)

where

Vg;�;1.�/ D
X

x2�
Vg;�;1Ix;

Vg;�;1Ix D �
g	2 C �	 C 	�

�
x: (58)

We are now going to try to regard this as an almost gaussian integral because in
Theorem 2.2 the hypothesis was that g is positive, but small. Since Vg;�;1 has two
quadratic terms a naive attempt is to use them to define the gaussian measure.
However, recall that Theorem 2.2 concerns the case where � is just a little larger
than the critical value �c given by Definition 2.1. Furthermore �c will turn out to be
negative. Therefore we cannot make this naive choice of gaussian measure because
A D �cid �� is not dissipative, which means that the gaussian is not integrable.

Actually we want to choose the gaussian part to be whatever best approximates
the long distance behaviour of the model. As an analogy recall that when we
want to approximate a sum of n identically distributed centred independent random
variables by a gaussian as in the central limit theorem, we have to know (1) to
normalise the sum by

p
n, (2) what the variance of the gaussian will be. (1) and (2)

are both determined by computing the variance of the sum and this can be done



82 D. Brydges

because the variables are independent. In the present case we cannot guess how to
scale � or what the best gaussian will be because there is no obvious independence.
Instead, we consider a general split that is parameterised by two parameters called
m2 and z0 and wait patiently for the renormalisation group to tell us what the values
of the parameters should be.

The most general way to split

Vg;�;1.�/ D �
g	2 C �	 C 	�

�
.�/ (59)

into a quadratic (gaussian) part and a perturbation can be parameterised by two
parameters as follows. First, we introduce a parameter z0 > �1 and split the
coefficient 1 implicit in front of 	� as

1 D 1

1C z0
C z0
1C z0

: (60)

Then we introduce another parameter m2 > 0 to split

� D m2

1C z0
C
�
� � m2

1C z0

�
: (61)

The reason that 1C z0 is written in the denominators is so that we can get rid of it
by rescaling. Introducing the rescaled field O� D .1C z0/�1=2�, we have

Vg;�;1.�/ D V0;m2;1. O�/C Vg0;�0;z0 . O�/; (62)

where

g0 D g.1C z0/
2; �0 D �.1C z0/� m2: (63)

I will call the parameters z0;m2 splitting parameters.
From the representation (57) of �� and noticing that the exponent in the super-

expectation in Definition 4.1 is V0;m2;1.�/, we have

��.g; �/ D .1C z0/E
.m/
h
e�Vg0;�0 ;z0 .�/ N�a �.�/

i
: (64)

We obtained this by rewriting the integral in terms of the scaled variable O� and
then renaming O� back to �. The change of variable does not give a Jacobian factor
because it is a form integral. We define

O��.m2; g0; �0; z0/ DE
.m/
h
e�Vg0;�0;z0 .�/ N�a �.�/

i
; (65)

O�.m2; g0; �0; z0/ D lim
�!Zd

O�
�
.m2; g0; �0; z0/ (66)
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As explained in Sect. 2 the limit as � increases to Z
d exists for �� and partial

derivatives with respect to coupling constants can be taken under this limit.
Therefore we have proved the following splitting lemma

Lemma 5.1 Given � 2 R and g > 0, and given splitting parameters z0 > �1 and
m2 > 0, let

g0 D g .1C z0/
2 and �0 D � .1C z0/ � m2 (67)

then

��.g; �/ D .1C z0/ E
.m/
h
e�Vg0;�0 ;z0 .�/ N�a �.�/

i
: (68)

The infinite volume limit exists and is given by

�.g; �/ D .1C z0/ O�.m2; g0; �0; z0/: (69)

Moreover, for �0 > �c,

@

@�
�.g; �/ D .1C z0/

2 @

@�0
O�.m2; g0; �0; z0/: (70)

5.2 The Proof of Theorem 2.2

The Edwards model that we are studying contains two parameters � and g. Our
general problem is: given �; g calculate the susceptibility for � slightly larger than
the critical value �c.g/. In the last section we introduced a strategy: show that
this model has a gaussian approximation and calculate the susceptibility of this
approximation. This strategy was started by splitting the model into (a scaling of)
a free field with mass m2 and a perturbation described by parameters g0; �0; z0. The
four new parameters m2; �0; g0; z0, are linked by two relations (67) so we expect to
need two more relations to completely specify all of them in terms of the given �; g.
Theorem 5.2 in this section provides these two relations in the form �0 D �c

0.m
2; g0/

and z0 D zc
0.m

2; g0/ and it gives enough information to prove our main Theorem 2.2.
In this Theorem 5.2 appears the expected time

Bm2 D 8

“
P
�
X.t/ D Y.s/

�
e�m2te�m2s dt ds (71)

that two independent simple random walks with killing spend intersecting each
other. In d D 4 dimensions it can be shown that as m2 tends to zero,

Bm2 � 8 log m�2 (72)

with b D 1=.2�2/. In more than four dimensions there is no divergence as m2 ! 0.
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Theorem 5.2 (Theorem 4.1 in [10]) Let d D 4, and let ı > 0 be sufficiently small.
There are continuous real-valued functions �c

0; z
c
0, defined for .m2; g0/ 2 Œ0; ı/2

and continuously differentiable in g0, and there is a continuous function c.g0/ D
1C O.g0/, such that for all m2; g0; Og0 2 .0; ı/,

O� �m2; g0; �
c
0.m

2; g0/; z
c
0.m

2; g0/
� D 1

m2
; (73)

@ O�
@�0

�
m2; g0; �

c
0.m

2; g0/; z
c
0.m

2; g0/
� � � 1

m4

c.Og0/
.Og0Bm2 /

�
as .m2; g0/ ! .0; Og0/:

(74)

The functions �c
0; z

c
0 obey

�c
0.m

2; 0/ Dzc
0.m

2; 0/ D 0;

@�c
0

@g0
.m2; g0/ DO.1/;

@zc
0

@g0
.m2; g0/ DO.1/; (75)

where O.1/ means that these derivatives are bounded on their whole domain by
constants uniform in .m2; g0/.

Remark 5.3 In the standard theory of renormalisation (73) is not a theorem, but
merely the definition of m2. In our work m2 has been defined as the mass in a free
field and we will instead use the renormalisation group to prove that �c

0; z
c
0 exist such

that at large scales this system becomes this free field.

Proof (of Theorem 2.2) Define the map

A W .m2; g0/ 7! �
m2; g0; �

c
0.m

2; g0/; z
c
0.m

2; g0/
�

(76)

with the domain .m2; g0/ 2 Œ0; ı/2 specified in the theorem for �c
0 and zc

0. We
eliminate m�2 in (74) using (73). The elimination includes the m2 in Bm2 using (72).
We obtain

�
@ O�
@�0

�
ı A � �. O� ı A/2

c.Og0/�Og08 b log. O� ı A/
�� ; (77)

We define another map B W .m2; g0; �0; z0/ 7! .g; �/ by solving (67) explicitly. Let
C D B ı A. By Lemma 5.1, we obtain the following equation for � D �.g; �/.

�
@�

@�

�
ı C � �.� ı C/2

c.Og0/�
8bg0 log.� ı C/ � 8bg0 log.1C zc

0/
��

� �.� ı C/2
c.Og0/�

8bg0 log.� ı C/
�� : (78)
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The � allows us to omit the term involving log.1C zc
0/ term because (75) implies it

is bounded as .m2; g0/ ! .0; Og0/, whereas � ı C diverges. The divergence of � ı C
follows from Lemma 5.1 and (73), which together assert that

� ı C D 1C zc
0

m2
; (79)

noting that (75), and decreasing ı if necessary, implies that 1 C zc
0 does not vanish

as m2 # 0.
Proposition 4.2 (ii) in [10] states that the inverse C�1 W .g; �/ 7! .m2; g0/ exists,

is right-continuous in � for g fixed and is defined on a domain 0 < g < ı1, �c.g/ �
� < �c.g/C ı1. In the notation of Bauerschmidt et al. [10], the two components of
C�1 are called Qm2; Qg and they are written as functions of .g; �/ where � D ���c.g/.
By the definition of �c in Definition 2.1 and the comment below this definition,
�.g; �/ is finite for � 2 .�c.g/;1/ and diverges as � # �c.g/. Therefore, by (79),
m2 D 0 when � D �c.g/. By the right continuity of C�1, � # �c

0 with g fixed implies
.m2; g0/ ! .0; Og0/. Therefore (78) simplifies to

@�

@�
� ��2 c.Og0/�

8bg0 log�
�� ; � # �c

0 with g fixed; (80)

where Og0 is the g component of C�1.g; 0/.
We fix g < ı1 and define F.�/ D 1

�.g;�/ for � D �c.g/ C � with � 2 .0; ı1/ and

we set F.0/ D 0. By dividing (80) by �2 (80) becomes, for � # 0,

dF

d�
� 1

Ag
�

log F�1�� ; Ag D .Qg0.g; 0/b/�
c0.g/

(81)

and this differential relation can be easily integrated [10, Lemma 4.3] to show that

F.�c C "/ � A�1
g ".� log "/�� : (82)

Recalling that F D ��1 this is the claim in Theorem 2.2.

5.3 The Susceptibility in Terms of Super-Convolution

Our main result Theorem 2.2 has been reduced to Theorem 5.2. To prepare
for the proof of Theorem 5.2, we put the susceptibility into a form that suits
the renormalisation group which will be introduced in the next sections. The
conclusion of this section is Proposition 5.5. The proof of this Proposition contains
the important idea of using a translation to approximately evaluate a generating
function. This is part of the “evaluation as if gaussian” strategy that started in
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Sect. 5.1. The use of “tilting” in the theory of large deviations is also an instance
of this strategy.

This section and the renormalisation group use super-convolution. In order to
motivate the definition of super-convolution, recall that the convolution of a function
f with a probability measure P is the function x 7! R

f .x C z/P.dz/. In order to
think of this as an operation that transforms f into a new function g we define a
homomorphism � from the algebra of functions of one variable to the algebra of
functions of two variables by: for x 7! f .x/ let � f W .x; z/ 7! f .x C z/. Then the
convolution can be written as f 7! E

.z/� f .

Definition 5.4 Define the algebra homomorphism � WN .�/ ! N .� t �/ to be
the map that replaces � by � C � and d� by d� C d�. Then the super-convolution
of a form F 2 N .�/ by the super-expectation E

.m/ is given by

F 7! E
.m;�/

�
�F
	
; (83)

where E
.m;�/ acts only on �; (Therefore, in Definition 4.1 rename � to � and then

replace F by �F.)

Let F be an element of N .�/. Recall that this means that F is a form whose
coefficients are functions of � and � 2 C

�. The directional derivative of F with
respect to � in the direction f 2 C

� is defined by replacing � by �C zf , N� by N�C NzNf
and evaluating .@=@z/F at z D 0 by the rules @Nz=@z D 0 and @z=@z D 1. These rules
follow from the definition @=@z D 1

2
.@=@x� i@=@y/ when z D xC iy. The directional

derivative of a differential is zero because the replacement of � by �Czf is a change
of variable and f does not depend on � so d.� C zf / D d�. Similarly there is also
the directional derivative of F with respect to N� in the direction Nf .

Let 1 denote the function in C
� which is the constant function 1x D 1 for all x 2

�. In the next Proposition D2F.0I 1; 1/ denotes the result of taking two directional
derivative of F with respect to � in the direction 1 and then setting � D 0 including
d� D 0. (In [10] we used the notation D2F.0; 0I 1; 1/ since � and d� are both set to
zero.)

Recall that the finite volume susceptibility O�� D O��.m2; g0; �0; z0/ was defined
in (65). We repeat the definition here in order to introduce some new notation,

O�� D E
.m/
h
Z0 N�a �.�/

i
; Z0 D e�V0.�/; V0.�/ D Vg0;�0;z0 .�/: (84)

Proposition 5.5 Let m2; g0; �0; z0 be real numbers with g0;m2 positive and z0 >
�1. Then

O��.m2; g0; �0; z0/ D 1

m2
C 1

m4 j�j D2F.0I 1; 1/; (85)

where F D E
.m;�/

�
�Z0

	
.



The Renormalization Group and Self-avoiding Walk 87

To prepare for the proof of this result we first discuss generating functions in this
context. Given an external field J W � ! C, we write

.J; N�/ D
X

x2�
Jx N�x; .NJ; �/ D

X

x2�
NJx�x: (86)

Recall that 1 denotes the function in C
� that is identically one. By translation

invariance,

O�� D j�j�1 E.m/
h
.1; N�/.1; �/Z0

i
: (87)

We define the generating function˙ W C� ! C by

˙.J; NJ/ D E
.m/
h
e.J; N�/C.�;NJ/Z0

i
: (88)

By taking two directional derivatives, one with respect J in the direction 1, the
second with respect to NJ in the direction 1 and setting J D 0 we generate a factor
.1; N�/.1; �/ and so we have

O�� D j�j�1D2
NJ;J˙.0I 1; 1/; (89)

where D2NJ;J indicates two directional derivatives with respect to J and NJ, the argument

0 means the derivative is at J D NJ D 0 and the two arguments 1 indicate the
directions. The evaluation of O�

�
now becomes reduced to the evaluation of D2

NJ;J˙ on
the right-hand side of (89). Here is where the above mentioned strategy of evaluation
as if gaussian (V0 D 0) comes into play. Recall that gaussian integrals are evaluated
by change of variables by an optimal translation that centres the gaussian. By using
such a translation � D � C H, where � is the new integration variable, we obtain

˙.J; NJ/ D e.J;CNJ/ h
E
.m;�/

�
�Z0

	i

j�DCJ;d�D0

; (90)

where C D .��C m2/�1. In more detail, with A D ��C m2 D C�1 and referring
to Definition 4.1,

X

x2�

�
	�;x C m2	x

� � .J; N�/� .�; NJ/

D .�;A N�/C c.d�;^Ad N�/
� .J; N�/� .NJ; �/C .H;A N�/C .�;A NH/

C .H;A NH/� .J; NH/� .NJ;H/

D .�;A N�/C c.d�;^Ad N�/� .J;CNJ/; (91)
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where the last line is obtained by choosing H to make the terms in the second line
sum to zero. This happens when H D CJ, NH D CNJ. Since H does not depend on
�, d� D d.� C H/ D d� and so the form part is as written. The formula (90)
follows immediately. Notice that the translation also changes � in Z0 to � C CJ and
d� to d�. This is implemented in (90) by � which changes � to � C � followed by
evaluation at � D CJ and d� D 0 after taking the super-expectation over �. Since
our strategy was based on the hope that our splitting into gaussian and interaction
is such that V0.�/ can be neglected, Z0 D e�V0.�/ should not be very dependent on
this translation and so this calculation should be a good way to “almost” evaluate
the generating function˙.J; NJ/.
Proof (of Proposition 5.5) We use (89) followed by (90) to obtain

O�
�
.m2; g0; �0; z0/

D j�j�1D2
NJ;J

�
e.J;CNJ/h

E
.m;�/

�
�Z0

	i

j�DCJ;d�D0

�
.0I 1; 1/: (92)

The desired result is obtained by evaluating the directional derivatives in the
direction 1 noting that C1 D .m2 ��/�11 D m�2.

6 The Renormalisation Group

The renormalisation group is a method to evaluate D2F.0I 1; 1/ in the right hand
side of Proposition 5.5. From this point on these notes become a selection of topics
from the six papers that collectively comprise the proof of Theorem 2.2. There are
many references to these papers, but I suggest that anyone who wishes to continue
reading ignore these references until some of the general ideas emphasised by these
notes start to come into focus. Many of the important ideas are also discussed in
great detail in [15] for much simpler problems.

As discussed in Sect. 1 the renormalisation group can be defined in different
ways, which are different interpretations of what the phrase “integrating out
fluctuations” should mean. In our case we are going to write the gaussian field �
as a sum �1 C � � � C �N of independent gaussian fields �j and then integrate over �1,
followed by �2, and so on. First we will discuss the representation in distribution of
� as �1 C � � � C �N . This depends on the following theorem [11, Sect. 6.1] about the
inverse .m2 � �/�1 where � D �� is the finite difference Laplacian for the torus
� defined in (1). Recall that � has period LN .

Theorem 6.1 (Finite Range Decomposition) For m2 > 0 let C D .m2 � ��/
�1,

regarded as a � 	 � matrix. There exist positive-definite � 	 � matrices Cj D
Cj.m2/ defined for j D 1; 2; : : : ;N � 1 and m2 � 0, and there exists CN;N D
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CN;N.m2/ defined for m2 > 0, such that

1. .m2 ���/
�1 D PN�1

jD1 Cj C CN;N,

2. For j D 1; : : : ;N � 1, CjIx;y D 0; if jx � yj � 1
2
Lj,

3. jCjIx;yj � c
�
1C m2L2j

��k
L�2.j�1/, j D 1; : : : ;N � 1.

Finite difference derivatives up to any fixed order p are also bounded, accord-
ing to

jr˛
x rˇ

y CjIx;yj � c.1C m2L2.j�1//�kL�.j�1/.2C.j˛j1Cjˇj1//;

where c D c.p; k; Nm2/ is independent of m2; j;L.

The matrix entries CjIx;y are � independent functions of z 2 Z
d where .x; y/ 7! z is

defined for x; y in � by setting z equal to the minimal Zd representative of x � y in
�. Part (3) also holds for j D N provided m2L2N is bounded away from zero.

Since CjIx;y D 0 when the representative z has jzj � Lj=2 it does not matter how
the minimal representative is chosen when there is more than one. If a covariance
G can be written as a sum of positive-definite matrices as in (1, 2) then we say
that G has a finite range decomposition. Quite a large class of covariances are
shown to have finite range decompositions in [4, 7, 18, 20], where the proof in
[7] is particularly economical. Exactly what class of covariances have finite range
decompositions is an open question of great interest to us.

Property (3) is special to the covariance .m2 � �/�1. It expresses in a crude
way that the covariances Cj are approximately scalings of each other for j such that
m2Lj � 1. When j is too large for this to hold the covariances become small because
these covariances have to be consistent with the exponential decay that Cxy is known
to have for jx � yj  m�1. In fact in the finite range decomposition discovered in
[20] they are double exponentially small in j � N such that m2Lj  1.

Theorem 6.2 (� as Sum of Increments) For each covariance Cj of Theorem 6.1,
let Ej be the super-expectation given by Definition 4.1, but with A D C�1

j , and
denote by �j the associated gaussian field. Let Z W � 7! Z.�/ be a bounded function
defined on C

�. Then

E
.m/
�
Z.�/

	 D EN EN�1 : : :E1
�
Z.�1 C � � � C �N/

	
: (93)

Furthermore, this also holds for smooth bounded forms Z W .�; d�/ 7! Z.�; d�/ in
N .�/, with the understanding that d� becomes d�1 C � � � C d�N on the right hand
side.

For the case where Z is a function on C
�, we have a form of degree zero

which is just another name for a random variable. We have seen that in this case
the super-expectation is the usual expectation of probability; the theorem is just
a restatement of the standard fact that the distribution of a sum of independent
gaussian random variables �1; : : : ; �N is also gaussian with covariance equal to the
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sum of the covariances of the �’s. Thus the new content in this theorem is in the case
where Z is a form. For a proof of an equivalent result see [16, Proposition 2.6].

6.1 Progressive Integration

Now we re-organise Theorem 6.2 into an iterative procedure where the fields
�1; : : : ; �N are successively integrated out. The process is: for each j D 1; : : : ;N,
replace� by �C�j, fix � and integrate over �j with respect to the gaussian probability
distribution with covariance Cj. The accumulation of all these replacements is the
same as replacing� by �C�1C� � �C�N . Setting � D 0 and taking theEj expectations
reproduces the right hand side of Theorem 6.2. Since in this procedure we only deal
with one fluctuation field �j at a time we often write � in place of �j, using the
subscript j on Ej to show which field is being integrated out.

Recall the discussion around Definition 5.4 where we have defined the algebra
homomorphism � WN .�/ ! N .�t�/ to be the map that replaces � by �C� and
d� by d� C d�. Returning to the context of Proposition 5.5, we define a sequence
of forms in N .�/ by the recursion

Z0 D e�V0.�/;

ZjC1 D EjC1
�
�Zj
	
; j D 0; 1; : : : ;N � 1: (94)

We will keep referring back to this important sequence because our goal is
to calculate ZN which is the function F in Proposition 5.5 that determines the
susceptibility O�� that appears in Theorem 5.2.

6.2 First Order Perturbation Theory

The recursion (94) defines forms Zj. We will now be interested in how the functional
dependence of Zj on arguments �; d� changes under the map Zj 7! ZjC1. In this
section we examine this in a preliminary way using perturbation theory. Perturbation
theory is purely algebraic: we fix an order p and regard Zj as a power series in Vj

where

Vj D gj 	
2 C L�2j�j 	 C zj	�: (95)

Then we calculate modulo VpC1
j , or equivalently, modulo monomials of degree pC1

in gj; zj; �j. This is called pth order perturbation theory. Notice that we have started
to write Vj in terms of �j instead of �j, where

�j D L2j�j: (96)
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Also we are writing the parameters in the order gj; zj; �j instead of the former order
gj; �j; zj because of a triangular property of some forthcoming equations for these
coupling constants.

The proof of Theorem 5.2 requires second order perturbation theory, that is p D
3, but first order is easier and shows why coupling constants are scale dependent,
so we do the first order calculation in detail and then summarise the conclusions of
second order calculations. For first order perturbation theory, let gj; �j; zj be given
real numbers, subject to the usual integrability constraints gj > 0; zj > �1. If Zj D
e�Vj.�/ modulo V2

j , then I claim that, modulo V2
j (or V2

jC1/,

ZjC1 D e�VjC1.�/; (97)

where VjC1 is defined with coupling constants

gjC1 D gj;

�jC1 D L2�j C 2L2jC2CjC1;0;0 gj;

zjC1 D zj: (98)

Here we see a very important idea: there is a scale dependent coupling constant
j 7! �j determined by the above recursion. According to part (3) of Theorem 6.1, for
m2 D 0, we have L2jC2CjC1;0;0 D O.1/. In fact in Proposition 6.1 of [11] we prove
that L2jC2CjC1;0;0 has a positive limit as j ! 1 so this recursion of �j becomes
independent of j for j large.

Proof (of Claim) Modulo V2 we have

EjC1
�
�Zj
	 D EjC1

h�
1 � Vj.�/

�i

D 1 � EjC1
�
Vj.�/

	 D e�EjC1ŒVj.�/�: (99)

Therefore it is sufficient to prove that

EjC1
�
�Vj.�/

	 D VjC1.�/: (100)

Let Q WD EjC1�	2x . We start by calculating Q. By the definition (47) of 	 ,

	2x D .�x N�x/
2 C 2 �x N�x c d�x ^ d N�x: (101)

Applying � replaces � by � C � in this expression. Therefore the terms Q.0/ in Q
that do not depend on � are

Q.0/ D EjC1
�
.�x

N�x/
2 C 2 �x

N�x c d�x ^ d N�x
�

(102)
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which is the � expectation of 	2x with � replaced by �. By the last line in Lemma 4.2
applied with F.	/ D 	2x this equals zero. Next we calculate the terms Q.2/ in Q that
are of degree 2 in �; d�. From � applied to (101) and using gauge invariance as
in (16) to escape writing some terms,

Q.2/ D EjC1
�
4�x N�x�x

N�x C 2 �x N�x c d�x ^ d N�x C 2 �x
N�x c d�x ^ d N�x

�

D EjC1
�
2�x N�x�x

N�x C 2�x N�xŒ�x
N�x C c d�x ^ d N�x�C 2 �x

N�x c d�x ^ d N�x
�

D EjC1
�
2�x N�x�x

N�x C 2 �x
N�x c d�x ^ d N�x

� D 2	x EjC1
�
�x

N�x
�
: (103)

In the third equality we used the fact that the expectation of the terms in square
brackets is zero by the last line in Lemma 4.2 applied with F.	/ D 	x. The last
equality holds by the definition (47) of 	 . Since the terms Q.4/ of degree 4 in �; d�
in Q are 	2x and since Q D Q.0/ C Q.2/ C Q.4/ these formulas for Q.0/, Q.2/ and
Q.4/ imply that

EjC1
�
�	2x

	 D 	2x C 2 	x EjC1�x
N�x: (104)

By a much shorter version of the same calculation EjC1�	x D 	x. By summing these
formulas over x in � and using the definition CjC1;x;x D EjC1�x

N�x of the covariance
and translation invariance of the covariance we have proved (100).

6.3 Second Order Perturbation Theory

A much more efficient method for calculating in perturbation theory is used in
[11]. It is based on [16, Proposition 2.6] and [11, Lemma 5.2]. In second order
perturbation theory, where one calculates modulo V3, the function V 7! e�V.�/

does not retain its form under the map EjC1� , and we have modify it so that it
is form invariant. In [11, (3.21)] we construct a sequence of explicit functions
V 7! Wj.V; �/ that are quadratic in V and take values in N .�/. There is a map
[11, (4.11)]

'.0/pt;j W R3 ! R
3 (105)

such that the function

Ij W .V; �/ 7! e�V.�/.1C Wj.V; �// (106)

satisfies, modulo V3,

EjC1
�
�Ij.V; �/

	 D IjC1
�
V ı '.0/pt;j; �

�
; (107)
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where we regard V as a function of its coupling constants so that the composition
V ı '.0/pt;j makes sense. Equation (107) says that integrating out the fluctuation field
�jC1 in �Ij.V; �/ is equivalent to changing the three coupling constants g; �; z in V
according to the map '.0/pt;j. This is what we mean when we say that Ij retains its form
at second order under the map EjC1� .

We will not need the explicit formula [11, (4.11)] for the map '.0/pt;j because it
is conjugate to a simpler map. According to [11, Proposition 4.3], for each scale
j D 0; : : : ;N � 1 there is an explicit quadratic map Tj W R3 ! R

3, which is almost
the identity map,

T0.V/ D V; Tj.V/ D V C O.kVk2/: (108)

Therefore it is invertible near the origin. Furthermore, modulo terms that only
contribute to the discarded O.V3/,

'.0/pt;j D T�1
jC1 ı N'j ı Tj; (109)

where N'j W R3 ! R
3 defines, by .NgjC1; NzjC1; N�jC1/ D N'j.Ngj; Nzj; N�j/, the recursion

NgjC1 D Ngj � ˇj Ng2j ; (110)

NzjC1 D Nzj � �j Ng2j ; (111)

N�jC1 D L2 N�j.1 � �ˇj Ngj/C �j Ngj � �j Ng2j � �j NgjNzj; (112)

for scale dependent coupling constants.
The coefficients ˇj; �j; �j; �j; �j are real coefficients defined precisely in [11,

(3.24), (3.27), (3.28)]. These coefficients, and also those of the transformations
Tj, are independent of the side LN of the torus. This means that all the recursions
obtained as N varies are consistent and it is not necessary to know what N is so
long as N is larger than whatever scale j one is considering. Thus there is a formal
infinite volume recursion where j runs over all integers j � 0, not just j < N. To put
it another way, we can use this infinite volume recursion for j < N since it coincides
with the N recursion until j D N.

The sequence .ˇj/0�j<1 plays a key role in the analysis. These are positive
numbers that have a non zero limit when m2 D 0 and the dimension is 4. For m2 > 0

they decay faster than exponentially to zero, but the decay does not set in until the
scale j is large enough that L2jm2 is roughly 1. We make the following definitions
[9, (1.7)]. Given˝ > 1, we define a scale j˝ as the first scale where the exponential
decay sets in,

j˝ D inffk � 0 W jˇjj � ˝�.j�k/Cˇmax for all j � 0g; (113)

where ˇmax D maxj ˇj. The infimum of the empty set is defined to equal 1, e.g., if
ˇj D b for all j then j˝ D 1. The choice of ˝ is arbitrary; let ˝ D 10. We also
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define

�j D ˝�.j�j˝/C : (114)

Thus the sequence �j is a normalised version of ˇj which equals one for j � ˝ and
decays exponentially for j > ˝ .

Unlike the recursion defined by '.0/pt;j the N' recursion (110)–(112) is triangular:
the Ng-equation does not depend on Nz or N�, the Nz-equation depends only on Ng, and
the N�-equation depends both on Ng and Nz. Therefore we can solve the recursion one
equation at a time and thereby prove the following Proposition, which follows from
[9, Proposition 1.2]. In its statement, z1 denotes the limit z1 D limj!1 zj, and
similarly for �1.

Proposition 6.3 If Ng0 > 0 is sufficiently small, then there exists a unique global
solution .Ngj; Nzj; N�j/j2N0 to the recursion (110)–(112) with initial condition Ng0 and
final condition .Nz1; N�1/ D .0; 0/. This flow satisfies, for any real p 2 Œ1;1/,

�j Ngp
j D O

� Ng0
1C Ng0j

�p

; Nzj D O.�j Ngj/; N�j D O.�j Ngj/; (115)

with constants independent of j˝ and Ng0, and dependent on p in the first bound.
Furthermore, .Ngj; Nzj; N�j/ is continuously differentiable in the initial condition Ng0 and
continuous in the mass parameter m2 � 0, for every j 2 N0.

The proposition shows that when m2 D 0 the coupling constants Ngj tends to
zero like j�1. This is called asymptotic freedom. It suggests that perturbation theory
becomes more accurate at larger scales and the theory becomes more gaussian, as
needed for the “evaluation as if gaussian” strategy that started in Sect. 5.1.

6.4 The Error Coordinate

The perturbation theory of the preceding sections suggests that we approximate
Zj defined in (94) by Ij.Vj; �/ defined in (106) and then, by (107), ZjC1 should
be approximately equal to IjC1.VjC1;�/ where the coupling constants in VjC1 are
obtained by applying the map (109) to the coupling constants in Vj. However our
calculations have given us formulas which hold in a very weak algebraic sense since
we have worked modulo O.V3/. For example there is no uniformity in �. Now we
need a way to include the O.V3/ error terms so that all our formulas hold in the usual
sense of equality. For scale j in the range 0; : : : ;N we will write Zj as a function of
.Vj;Kj/ where Vj specifies the Ij approximation by perturbation theory and the error
coordinate Kj specifies the difference between Zj and perturbation theory. Our main
result for this section is Lemma 6.6 where we show that ZjC1 is the scale equivalent
function of VjC1 and the error coordinate KjC1 on the next scale.
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Fig. 1 Illustration of both blocks B with side length Lj and a polymer at scale j

Lemma 6.6 is an important step in our definition of the renormalisation group
map, but it is not a complete description of our formalism. Firstly, we only give the
version for first order perturbation theory, and secondly it is but one of a family of
ways to define KjC1 such that ZjC1 is represented by .VjC1;KjC1/. This many-to-one
aspect is important for overcoming a problem that we will discuss in Sect. 7.2.

Geometry Let B be a block as in Fig. 1 with side length Lj and denote by Bj.�/

the set of all such j-blocks or blocks at scale j. By definition a j-polymer or polymer
at scale j is a union of j-blocks. A polymer can be the empty set. If X is a j-polymer,
then Bj.X/ denotes the set of j-blocks contained in X. Notice that polymers at scale
j are also polymers at scales smaller than j because we have chosen the sides of
blocks to be powers of L. � is a polymer at all scales and is a single block at scale
N. We denote by Pj.�/ the set of j-polymers in�, and for a j-polymer X let Pj.X/
denote the set of all j-polymers contained in X. Two polymers X;Y are said to touch
if there is a point x in X and a point y in Y such that jx � yj1 D 1. A polymer X
is said to be connected if it is not empty and if whenever Y and Y 0 are nonempty
polymers such that X D Y [Y 0 then Y;Y 0 touch. For each scale j and j-polymer X let

X 7! X� (116)

be an assignment of a polymer X� that contains X. We think of this as an assignment
of a neighbourhood of X to X. The assignment must be translation invariant and
satisfy .X [ Y/� D X� [ Y�. Our specific choice is

X� D
[

fYjY 
 X;Y 2 S g; (117)

where S is an important class of sets specified in
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Definition 6.4 For any scale j we say that a polymer X in Pj.�/ is a small polymer
if X is connected and is a union of at most 2d blocks. Let Sj be the set of small scale
j polymers.

Thus the neighbourhood assigned to a block on scale j has diameter O.Lj/ and,
for L large enough, when j-polymers X and X0 are separated by a distance LjC1,

dist.X�;X0�/ >
1

2
LjC1 (118)

holds for all scales j. We will always assume that L is at least this large.
For X � � let N .X/ be the set of forms in N .�/ that only depend on

�x; d�x (and their conjugates for x 2 X). These sets N .X/ are the form analogues
of �-algebras of random variables. For example, when j-polymers X and X0 are
separated by a distance LjC1, A 2 N .X�/ and B 2 N .X0�/, then �A and �B are �
independent,

EjC1�
h
AB
i

D EjC1
h
.�A/.�B/

i
D EjC1

�
�A
	
EjC1

�
�B
	
; (119)

by item 2 of Theorems 6.1 and (118).
Let B 7! Ij.B/ assign to each block in Bj.�/ a form Ij.B/ 2 N .B�/. For

example our discussion of first order perturbation theory suggests

Ij.B/ D e�Vj.B/; (120)

and in this case the condition Ij.B/ 2 N .B�/ holds since the term zj	�.B/ in Vj.B/
depends only on fields �x for x in B or x a nearest neighbour to some site in B.
The other terms in Vj.B/ only depend on fields in B. For second order perturbation
theory as in (106) the formula [11, (3.21)] for Wj also satisfies Ij.B/ 2 N .B�/. For
a polymerX 2 Pj let

IX D
Y

B2B.X/

I.B/: (121)

Definition 6.5 Let Kj be the set of maps K W Pj.�/ ! N .�/ such that

1. K.¿/ D 1,
2. For X 2 Pj, K.X/ 2 N .X�/,
3. If X and Y are polymers that do not touch then K.X [ Y/ D K.X/K.Y/,
4. Symmetry properties.

The symmetry properties express invariance under lattice automorphism and super-
symmetry. See [17, Definition 1.7] for details, but they are not needed here.
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At scale j D 0, let

I0.B/ D e�V0.B/ and K0.X/ D
(
1; X D ¿
0; else

(122)

then

Z0 D e�V0.�/ D
X

X2P0.�/

I�nX
0 K0.X/: (123)

More generally, for any elements A;B of Kj we define a new element AıB of Kj by

A ı B.Y/ D
X

X2Pj.Y/

A.X/B.Y n X/: (124)

This product is easily verified to be commutative and associative with identity

�¿.X/ D
(
1; X D ¿
0; else

(125)

(which is the same function as K0.) Then, after extending the domain of Ij from
Bj.�/ to Pj.�/ by setting

I0.X/ D IX
0 ; X 2 Pj.�/ (126)

we can now write (123) in the shorter form

Z0 D I0 ı K0.�/: (127)

Notice also that the ı product depends on scale. For example at scale N, BN.�N/

consists only of ¿; �, therefore for A;B that equal 1 when evaluated on the empty
set ¿,

A ı B.�/ D A.�/C B.�/: (128)

The next result, which is the main result of this subsection, is stated for first order
perturbation theory. We use a more complicated second order version in the proof
of Theorem 2.2. We implicitly assume integrability. When we discuss norms there
will be a property called the integration property that takes care of this issue.

Lemma 6.6 Let j be in f0; 1; : : : ;N � 1g and for k D j; j C 1 let Ik D e�Vk . Given
Kj 2 Kj there exists KjC1 2 KjC1 such that

EjC1�
h
Ij ı Kj.�/

i
D IjC1 ı KjC1.�/: (129)
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Thus if .Vj;Kj/ are such that Zj D Ij ı Kj.�/, then ZjC1 D IjC1 ı KjC1.�/. A formula
for KjC1 is given in (137).

In particular, we can make any choice of V1; : : : ;VN and then by induction based
on this Lemma and by (128) there exists KN such that

ZN D IN ı KN.�/ D IN.�/C KN.�/: (130)

By combining this result with Proposition 5.5 we have

O��.m2; g0; �0; z0/ D 1

m2
C 1

m4 j�j
�
D2IN.�I 0I 1; 1/C D2KN.�I 0I 1; 1/� ;

(131)

Notation When we are concerned with a fixed scale and the transition to the next
scale we clean up the equations by suppressing the subscript j, writing I and K in
place of Ij and Kj, etc., and shorten the j C 1 subscript to C so that, for example,
KjC1, EjC1, PjC1 become KC, EC, PC.

I have the following pictorial view of the proof of Lemma 6.6, but you lose
nothing in the logical sense by skipping this. I give the actual proof below. The
representation I ı K.�/ is a sum over ways to partition � into a polymer � n X
weighted by a product of I factors, one per block in�nX, and a polymer X weighted
by K.X/. The left hand side in Fig. 2 represents one term in this sum over partitions:
the white region is the polymer�nX and each square in the white region represents
a block B with a factor I.B/. The blue region is the polymer X for which there is a
factor K.X/. If we apply the algebra homomorphism � to I ı K.�/ then the white
region represents a product over blocks B of �I.B/ and the blue represents �K.X/.
In the first step (133) of the proof below each �I.B/ is expanded into IC C ı (which
defines an error term ı). Thus there arises a sum of ways to colour a subset of the
white blocks red, each red block B denoting a ı.B/. The remaining white blocks are

Fig. 2 Illustration of Eq. (135)
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Fig. 3 Illustration of Eq. (138)

now IC factors as in the right hand side of Fig. 2, which stands for just one term in
a sum over partitions into red, white and blue. The next step (138) in the proof is a
passage to blocks on the next scale, accomplished by considering the smallest scale
jC1 polymer Y that covers the red and blue region, as indicated in the left hand side
of Fig. 3. The right hand side of Fig. 3 represents the sum ˙.Y/ over all red, white
and blue partitions as in the left hand side that generate the same polymer Y. Since
this right hand picture is a partition of � into a white polymer � n Y that represent
products of IC blocks and a blue polymer Y, and since these are polymers on the next
scale, this picture is a term in IC ı ˙ and it tells us to define KC.Y/ D EjC1˙.Y/
because then we match the desired right hand side of the Lemma.

Proof (of Lemma 6.6.) Define B 7! ı.B/ on B.�/ by

ı D �I � IC: (132)

Notice that �I is evaluated on scale j blocks so we have to extend the domain of IC
which is defined on scale j C 1 block to include scale j blocks, but we can do this
easily for first order perturbation theory since VjC1 can be summed over points in
blocks of any scale: we set IjC1.X/ D e�VjC1.X/ for X any scale block. For later in
the proof note that ı depends on � because of the � , but IC is not dependent on �.
For the next equation we also extend the domain of ı from blocks to polymers by
writing ı.X/ D ıX for a X 2 P . Then, for X 2 P ,

� IX D �
IC C ı

�X D
X

Xı2P.X/

IXnXıC ıXı

D
X

Xı2P.X/

IXnXıC ı.X/ D IC ı ı.X/: (133)
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Let

H D ı ı �K: (134)

Then

�.I ı K/.�/ D �I ı �K.�/

D �
IC ı ı� ı �K.�/ D IC ı �ı ı �K

�
.�/

D IC ı H.�/: (135)

For X 2 P.�/, define the closure X of X on the next scale to be smallest polymer
in PC.�/ containing X. For Y in PC let P.Y/ be the set of all polymers in P
whose closure is Y, then

IC ı H.�/ D
X

X2P.�/

I�nX
C H.X/

D
X

Y2PC.�/

X

X2P.Y/

I�nX
C H.X/

D
X

Y2PC.�/

I�nY
C

X

X2P.Y/

IYnX
C H.X/: (136)

For Y in PC.�/ let

KC.Y/ D EC
� X

X2P.Y/

IYnX
C H.X/

�

D
X

X2P.Y/

IYnX
C EC

�
H.X/

	
: (137)

Then by (135)–(137)

EC�
�
Ij ı Kj.�/

	 D
X

Y2PC.�/

I�nY
C EC

� X

X2P.Y/

IYnX
C H.X/

�

D
X

Y2PC.�/

I�nY
C KC.Y/ D IC ı KC.�/; (138)

which verifies the desired property with respect to EC of KC.
We now outline the proof that KC defined by (137) is in KC. This is where

the finite range property of Theorem 6.1 plays its crucial role and part (2) of
Definition 6.5 and the analogous property of I are used. If K

C
is evaluated on X [X0
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where X and X0 are polymers in PC that do not touch, then the distance between
X and X0 is at least LjC1 because they are each unions of j C 1 scale blocks which
cannot touch. Therefore factors of ı evaluated on blocks in X are independent of
factors of ı evaluated on blocks in X0. Furthermore, by part (3) of Definition 6.5
for K, when �K is evaluated on a subset of X [ X0, it is a product of a factor of K
evaluated on a subset of X and a factor of K evaluated on a subset of X0. These are
also independent. Finally it is straightforward to check that the sums defining H and
KC factor into sums of ways to partition X and a separate sum over ways to partition
X0. Taken all together this implies that KC has property (3) of the definition of KC.
The other properties of KC are much easier to check.

7 The Norm of the Error Coordinate

So far all our analysis of the action of EjC1� in terms of .V;K/ has been algebraic
with no hint on how the errors could be controlled. In this section we explain part
of our formalism in [17] for the control of errors. In particular we will see that the
error coordinate at scale j can be regarded as an element of a Banach space Fj. The
spaces Kj; j D 0; 1; : : : ;N, for the error coordinate introduced in Definition 6.5 are
not vector spaces because part (3) of Definition 6.5 is not linear, but the restrictions
of elements of Kj to connected polymers form a vector space as in the following
definition.

Definition 7.1 For j D 0; 1; : : : ;N, let Cj.�/ be the set of connected polymers in
Pj.�/. Let CKj be the complex vector space under pointwise addition and scalar
multiplication of maps K W Cj.�/ ! N .�/ such that

1. For X 2 Cj.�/, K.X/ 2 N .X�/,
2. Symmetry properties,

where the symmetry properties are a repetition of part (4) of Definition 6.5.

Not only does an element of Kj determine an element of CKj by restriction, but,
conversely, given an element K of CKj we can extend its domain from Cj.�/ to
Pj.�/ by imposing property (3) of Definition 6.5: a polymer X in Pj.�/ can be
decomposed into its connected components X1; : : : ;Xn and then we define K.X/ DQn

iD1 K.Xi/. If X is the empty set we define K.X/ D 1.

7.1 The F Norm

7.1.1 Norm on CKj

For each scale j the norm on CKj is constructed from a family of complete norms
kFkj D kFkj;N .X�/, one for each space N .X�/ where X ranges over connected
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j-polymers. Given such norms we define the norm kKkFj for K 2 CK by

kKkFj D sup
X2Cj.�/

W.X/kK.X/kj;N .X�/ (139)

with a weight X 7! W.X/. In these notes we set

W.X/ D ��jXjj ; (140)

where jXjj D jBj.X/j is the number of j-blocks in X and � is a positive parameter
smaller than one. This is not our choice in [17] but could have been and it is
instructive.

7.1.2 The Norm on N .X�/

The definitions are given in [16] and they take time to assimilate, so instead
of repeating them, I list some desired properties and illustrate the role of these
properties by using them axiomatically to prove a bound in the following section.

• Product Property: For all scales j D 0; : : : ;N � 1, for disjoint j-polymers X;Y,
for forms A in N .X�/, B in N .Y�/ and AB in N ..X [ Y/�/,

kABkj � kAkjkBkj: (141)

See [16, Proposition 3.16]. All the spaces N .X/, where X ranges over subsets of
�, are subalgebras of N .�/ so it makes sense to multiply A;B.

• IC Bound: There is a constant ˛I and a coupling constant domain DjC1 for the
coupling constants in VjC1 such that

ke�VjC1.B/kjC1 � ˛I (142)

for B 2 Bj.�/.
• Integration Property: Recall the definition of ı from (132) and let k D j or j C 1.

There is a constant ˛E such that for disjoint X;Y 2 Pj, F.Y/ 2 N .Y�/ and Vk

with coupling constants in Dk,

kEjC1 ıX�F.Y/kjC1 � ˛
jXjjCjYjj
E

�
jXjj
ı kF.Y/kj; (143)

where �ı tends to zero as the coupling constants in Vk tend to zero.
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7.1.3 Comment on Norms

If we were not working with forms, but just functions of fields then the L1 norm
would have these properties. In [16] we show how to construct norms that record
information on derivatives by being equivalent to C p norms, but which also have the
product property. The construction is based on the idea that the Taylor expansion of
a product AB is the product of the Taylor expansions for A and for B. As a corollary
we can extend the norms to forms in N .X�/ using the fact that coefficients of
monomials in d� and d N� are analogous to coefficients in a Taylor expansion.

Another consideration is that at scale j an element F of N .X�/ is not going to be
evaluated on arbitrary fields � 2 C

�, but on fields that are typical for the distribution
of � D P

k>j �k. Therefore, for each polymer X, we consider Kj.X/ as a smooth (C p)
function defined on the vector space C� with norm chosen so that the supremum of
a unit norm field is O.L�j/. This factor is because part (3) of Theorem 6.1 says that
the standard deviation of

P
k>j �k is O.L�j/, provided m2 � O.L�2j/. The norm on

Kj.X/ measures directional derivatives of Kj.X/ as a function of fields in C
�. For

example,

DKj.XI�I P�/ D d

dt j0
Kj.XI� C t P�/ (144)

is bounded in norm by the norm of Kj.X/ times a sup norm of P� divided by L�j. As
an important example for us, let P� be the constant test function 1, then the second
directional derivative D2KN.0I 1; 1/ at � D 0 and d� D 0 satisfies

jD2KN.�I 0I 1; 1/j � kKkFN O.L2N/: (145)

7.2 The Irrelevant Parts of KC

We will now illustrate the use of the properties postulated in Sect. 7.1.2 for the norm
on N .X�/. Lemma 6.6 has provided us with a formula (137) for a map KC W
.Vj;VjC1;Kj/ 7! KjC1 that exactly represents Zj 7! ZjC1 as in (94). The main result
of this section is Proposition 7.2 which shows a very good property of KC. It shows
that KC is contractive in Kj provided Kj, which is a map from connected polymers to
N , restricts to be zero on the connected polymers in the class S of Definition 6.4.

For the rest of this section we omit j subscripts and abbreviate jC1 to C as in the
notation explained below (131). We also suppress the dependence of KC on V and
VC because our estimates are pointwise and uniform for V;VC in domains D ;DC.
Referring to the formula (137) for KC let P .2/.Y/ denote the set of pairs .X;XK/

such that X 2 NPj.Y/ and XK 2 Pj.X/. From (137) and (134),

KC.Y/ D
X

.X;XK/2P.2/.Y/

IYnX
C EC

�
ıXnXK K.XK/

	
: (146)
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(i) We subtract from KC.Y/ the value of KC.Y/ when K D 0 by omitting terms in
the sum which do not depend on K, that is terms where XK D ¿. (ii) We omit terms
where X D XK 2 S , where S is the class of small sets defined in Definition 6.4.
To study the remaining part of KC, let

KIC .Y/ D
X

.X;XK/2I .Y/

IYnX
C EC

�
ıXnXK K.XK/

	
: (147)

where

I .Y/ D P .2/.Y/ n


fXK D ¿g [ fX D XK 2 S g

�
: (148)

Wilson called terms that contract irrelevant so we have used the letter I to label
the set of terms that we can prove are collectively contracted. Wilson called terms
that expand relevant and terms that stay the same size marginal. Thus we use R to
label the complement of the set I , but neither class is in precise correspondence
with Wilson’s classification because although we are capturing his intuition we are
working outside his original context.

For the next section we define KRC be the part of KC that we subtracted out under
item (ii). We could write it in exactly the same form as (147) with the set I .Y/
replaced by

R.Y/ D P .2/.Y/ n


fXK D ¿g [ fX D XK 62 S g

�
; (149)

but it is easy to verify that this is the same as

KRC .Y/ D
X

XK2S W XKDY

IYnXKC EC
�
K.XK/

	
: (150)

If the restriction of K to S is zero then KRC D 0, but in general we have

KC D KCjKD0
C KRC C KIC : (151)

For the main result of this section let � D 1
2
.1 C �/ where � > 1 is defined

by geometry in Lemma 7.3. It follows that � > � > 1 and this is the only fact
about � that is important for us. Recall the definitions of the parameters ˛I; ˛E from
Sect. 7.1.2 and let ˛ be the maximum of ˛I , ˛E and 1. We choose � in (140) smaller
than 1 and such that

� <
2

3
; where � D .3˛/L

d
���1: (152)
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We decrease, if necessary, the domain Dk of the coupling constants gk; zk; �k with
k D j; j C 1 so that, by the remark below (143),

�ı � �� ��2
dC1

: (153)

Let BF be the ball in F given by

kKkF �


��2

dC1
�2
: (154)

Proposition 7.2 With the choices (148)–(154), the function K 7! KIC with domain
BF satisfies

kKIC kFC
� �kKkF ; (155)

and, for K and K0 in the smaller domain 1
4
BF ,

KIC .K0/ � KIC .K/

FC

� 3

2
�kK0 � KkF : (156)

Thus KIC is a contractive map from 1
4
BF to itself. If the restriction of K to S is zero

then KC is contractive.

To prove this Proposition we need the following two geometrical estimates which
show why small sets have an exceptional role. We measure the size of a polymer
at scale j by counting the number of scale j blocks it contains. Similarly the size
of a polymer at scale j C 1 is measured by counting the number of scale j C 1

blocks it contains. Does the closure map X 7! X make a polymer smaller? For
example let X be a polymer that consists of a single block. Then X is also a polymer
which consists of a single block so it is the same size as X. Lemma 7.3 says (1) that
connected polymers that are not small always decrease in size under closure and (2)
that no polymer increases in size under closure.

Lemma 7.3 ([15, Lemma 6.15]) There is an � D �.d/ > 1 such that for all L �
L0.d/ D 2d C 1 and for all connected scale j polymers that are not in Sj,

jXjj � �jXjjC1: (157)

In addition, (157) holds with � replaced by 1 for all X 2 Pj (not necessarily
connected, and possibly small).

Corollary 7.4 ([15, Lemma 6.16]) Let X 2 Pj and let n be the number of
components of X. Then

jXjj � 1

2
.1C �/jXjjC1 � 1

2
.1C �/2dC1n: (158)
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Proof (of Proposition 7.2) The estimate (156) follows from (155) and [3, Lemma 1]
with � D 1

4
. The final claim in Proposition 7.2 follows from (151) and the remark

above this equation. Therefore we are reduced to proving (155).
By applying to (147), the product property (141), the bound (142) on IC and the

integration property (143), for Y 2 C .�/,

kKIC .Y/kjC1 �
X

.X;XK/2I .Y/

˛jYjj�jXnXK jj
ı kK.XK/kj: (159)

The polymer XK may not be connected. Suppose it has connected components
X1; : : : ;Xn. We use property (3) of Definition 6.5 together with the product
property (141) and the definition (139) of kKkF D kKkFj to obtain

kK.XK/kj D
Y

iD1;:::;n
kK.Xi/kj

D �jXK jj Y

iD1;:::;n
��jXi jjkK.Xi/kj � �jXK jj kKkn

F ; (160)

where n D n.XK/ is the number of components in XK . We substitute (160) into (159)
and estimate the sum by noting that it extends over less than 3jYjj terms because this
is the number of ways to partition Y into three disjoint subsets XK ;X n XK ;Y n X that
are each polymers at scale j. Also we can replace Y by X because one of the defining
conditions for I .Y/ is that they are equal. Therefore we have

kKIC .Y/kjC1 � sup
.X;XK/2I .Y/

.3˛/jXjj�jXnXK jj
ı �jXK jj kKkn.XK /

F : (161)

We multiply both sides by ��jYjjC1 which equals ��jXjjC1 and take the supremum
over connected j C 1 scale polymers in order to form the FjC1 D FC norm on the
left hand side and we obtain

kKIC kFC
� sup

.X;XK/2I
F.X;XK/; where

F.X;XK/ D ��jXjjC1 .3˛/jXjj�jXnXK jj
ı �jXK jjkKkn.XK /

F ; (162)

and I D [Y2CC.�/I .Y/. Recall that Y 2 CC.�/ implies that Y is not empty.
Now we cover I by three subsets and it suffices to prove that for .X;XK/ in each
covering set we have F.X;XK/ � �kKkF . We give the proof in most detail for
subset 1 because the proofs are similar for the other sets.
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Subset 1 For .X;XK/ 2 I \ fn.XK/ D 1; jXKj > 2dg, by using Lemma 7.3 twice,
� > � and the hypothesis (153) on �ı and �ı � 1,

�
jXnXK jj
ı �jXK jj � �

jXnXK jjC1

ı ��jXK jjC1

� �� jXnXK jjC1�� jXK jjC1 � �� jXjjC1 : (163)

The final inequality holds because A [ B 
 A [ B since the closure is the
smallest next scale polymer cover. Putting this estimate into (162) and using the
definition (152) of � we have

F.X;XK/ � .3˛/jXjj�.��1/jXjjC1kKkF

D


.3˛/L

d
���1

�jXjjC1 kKkF � �kKkF : (164)

Subset 2 For .X;XK/ 2 I \ fn.XK/ D 1; jX n XK jj � 1g, by Lemma 7.3 and
Corollary 7.4 and the hypothesis (153) on �ı ,

�
jXnXK jj
ı �jXK jj � �

jXnXK jjC1

ı �� jXK jjC1���2dC1 � �� jXjjC1 : (165)

Putting this estimate into (162) we have

F.X;XK/ � .3˛/jXjj�.��1/jXjjC1kKkF
� .3˛/L

d
���1kKkF � �kKkF : (166)

Subset 3 For .X;XK/ 2 I \ fn.XK/ � 2g, by Lemma 7.3 and Corollary 7.4, the
hypothesis (153) on �ı and the domain (154) for K,

�
jXnXK jj
ı �jXK jjkKkn.XK /

F � �
jXnXK jjC1

ı �� jXK jjC1



���2dC1kKkF

�n.XK /

� �� jXjjC1



���2dC1kKkF

�2

� �� jXjjC1kKkF : (167)

Putting this estimate into (162) we have

F.X;XK/ � .3˛/jXjj�.��1/jXjjC1kKkF

�


.3˛/L

d
���1

�jXjjC1 kKkF � �kKkF : (168)
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7.3 The Complete Recursion

We have seen in the previous section that the map .Vj;VjC1;Kj/ 7! KC provided
by Proposition 7.2 is contractive provided Kj vanishes when evaluated on polymers
in the class S of small sets. In this section we will discuss a better choice for KC
which is contractive. Part of the improvement comes from specifying VjC1 carefully,
recalling that Proposition 7.2 put essentially no constraint on it. However we need
also another idea which is a change of variable formula for K. The conclusions
which play a role in the sequel are the recursion (170) and its conjugation (175).

Recall from (142) and (143) that Dj is a domain in R
3 for the coupling constants

gj; zj; �j. Let BFj denote a ball in a Banach space Fj. In [17] we define, for all scales
D 0; 1; : : : ;N � 1, domains Dj 	 BFj and functions

RC W Dj 	 BFj ! R
3; KC W Dj 	 BFj ! BFjC1

: (169)

These functions, together with the second order perturbative map '.0/pt;j appearing
in (105), build a recursion,

.gjC1; zjC1; �jC1/ D '.0/pt;j.gj; zj; �j/C RC.gj; zj; �jI K/;

KjC1 D KC.gj; zj; �jI Kj/; (170)

This recursion, with initial condition .g0; z0; �0I K0/, where K0 D �¿, has the
following properties:

1. KC is contractive in Kj.
2. The recursion generates a sequence .gj; zj; �jI Kj/jD0;:::;jexit;N which terminates at

scale jexit;N , which is the first scale j ^ N such that .gj; zj; �j/ is not in Dj.
3. For Zj given by (94) and Ij D Ij.Vj/ given by (106) and (95), we have

Zj D Ij ı Kj.�/; j � jexit;N : (171)

4. Volume � compatibility.

The existence of R and KC with the first and third properties are parts of Theorem 2.2
of [17]. The second property follows immediately from the domains of the functions
RC and KC. The fourth property is a statement analogous to the statements
below (112). The essential idea is that the recursions for two tori of different sizes
N;N0 generate the “same” gj; zj; �jI Kj for j up to the scale before the smaller of
N;N0. However, it takes time to formulate the meaning of “same” so we refer to
[17, Sect. 1.8.3]. This compatibility enables the definition of the infinite volume
limit of (170) which is a recursion that generates a sequence .gj; zj; �jI Kj/jD0;:::;jexit;1

where Kj is defined on polymers in Z
d and

jexit;1 D lim sup
N

jexit;N : (172)
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To put this into the context of Proposition 7.2 refer to Eq. (151). The term KIC
is contractive. Indeed, the preamble for this Proposition shows that the contractivity
constant � can be made arbitrarily small by choosing � in the norm small and the
ball BFj small. But the term KRC in (151) cannot be contractive. To understand why,
consider (150) when Y is a single block on the scale j C 1. Then the sum over
polymers XK has a range that includes the Ld possible choices of a single block
XK D B in Bj.Y/. This factor of Ld prevents KRC from being contractive.

The function RC in (170) is part of the solution to this problem. By choosing
gjC1; zjC1; �jC1 to be different from '.0/pt;j.gj; zj; �j/ we generate terms in KjC1 that
I will call counterterms. These counterterms cancel most of KR

j in (151) which
enables KC to be contractive. However, to achieve this cancellation, one must have
some way of changing the allocation of the counterterms to the different small sets
XK 2 S , because Proposition 7.2 does not match the counterterms correctly with
the small set parts of Kj. We solve this allocation problem by taking advantage of
the fact that there are re-allocation changes of variable Kj 7! K0

j such that

Ij ı K0
j .�/ D Ij ı Kj.�/: (173)

These changes of variable are supplied by Brydges and Slade [17, Proposition 4.1].
Roughly speaking these changes of variable cancel some part J.X/ of Kj.X/
for small sets X 2 Sj which are not single blocks and compensate by addingP

X�B J.X/ to Kj.B/ for each block B. Using this re-allocation we can prove that
when RC is chosen correctly the small set part of the re-allocated K0

j is almost zero.
Therefore when KC given by (146) is evaluated on the re-allocated K0 the term
KIC is almost zero and Proposition 7.2 proves that the composition is contractive.
Thus the composition of (146) on the right with a re-allocation gives a contractive
formula. In passing let me remark that there is another re-allocation problem that is
solved by a further composition with a re-allocation on the left. This problem is that
one cannot prove that the first term in (151) is O.V3

j / as expected from our choice
of the second order formula for Ij unless the contributions from perturbation theory
are re-allocated. This is happening in Lemmas 4.2 and 5.8 of [17].

Recall from (108) that Tj is a map that conjugates '.0/pt;j to the triangular map N'j.
We rewrite the recursion (170) in terms of new variables defined by

.Lgj; Lzj; L�jI LKj/ D �
Tj.gj; zj; �j/I Kj

�
: (174)

By (109) the new recursion is

.LgjC1; L�jC1; LzjC1/ D N'j.Lgj; L�j; Lzj/C LRC.Lgj; L�j; LzjI LK/;
LKjC1 D LKC.Lgj; L�j; LzjI LKj/; (175)

where LRjC1 D TjC1 ı RjC1 ı T�1
j plus the O.V3/ error in (109) and on the right

hand side of (175) LKjC1 D KjC1 ı T�1
j where T�1

j acts only on the R
3 part.
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As explained in Sect. 6.6 of Bauerschmidt et al. [10] these new functions have
almost the same domains and satisfy essentially the same bounds as the old ones
because the conjugations Tj are close (108) to the identity. In particular LKjC1 is still
contractive.

8 Outline of Proof of Theorem 5.2

This is a survey of the complete argument which is in [10, Sect. 8.3]. I omit the
proofs of (75). One point that I find remarkable is that there are exact formulas for
� and its derivative in terms of the recursion of the coupling constant part of (170).
The error coordinate does not appear in these formulas; the only role it has is to
slightly change, via RC, the recursion of second order perturbation theory. I should
mention that this feature has been strongly emphasised in physics, but it is nice to
be able to verify it here.

8.1 Construction of zc
0
; �c

0

Recall from (172) the definition of jexit;1. The first step is to prove that there exist
functions zc

0 and �c
0 of .m2; g0/ such that jexit;1 D 1 for the (infinite volume limit

of the) recursion (170) with the initial condition

.g0; z0; �0I K0/ such that z0 D zc
0.m

2; g0/; �0 D �c
0.m

2; g0/; K0 D �¿:
(176)

Proposition 7.1 of Bauerschmidt et al. [10] shows that zc
0 and �c

0 exist. This
proposition is proved by showing that the conjugated recursion (175) generates
an infinite sequence .Lgj; Lzj; L�jI LKj/j2N0 with the same initial condition (176). The
initial condition is the same because, by (108), T0 is the identity. The main ideas in
the proof of Proposition 7.1 of Bauerschmidt et al. [10] are that (1) the existence
of infinite sequences for the N' recursion (110)–(112) is given by Proposition 6.3.
(2) Norm estimates on the functions LRC and LKC in the recursion (175) show
that they are always small compared with N' on the infinite sequence supplied by
Proposition 6.3. By the main result of Bauerschmidt et al. [9] there exists a unique
infinite sequence generated by the recursion (175) that stays close to the infinite
sequence supplied by Proposition 6.3.
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8.2 Coupling Constants at Large Scales

The following results are needed for the next steps in the proof. Recall from
Sect. 8.1 that the infinite sequence generated by the recursion (175) stays close to
the infinite sequence supplied by Proposition 6.3. In particular, by Proposition 7.1
of Bauerschmidt et al. [10],

kKjkWj.sj;�N / � O.�j Ng3j /; Lzj D O.�j Lgj/; L�j D O.�j Lgj/; (177)

where Wj.sj; �N/ is a weighted maximum of two different choices of Fj norms.
These bounds are the same as the coupling constant bounds (115) and Kj is third
order which manifests the idea that the recursion is staying close to the second order
perturbative recursion.

The coupling constant Lgj has the same asymptotic behaviour as the solution
to (110), but does not tend to zero unless m2 D 0. By Lemma 8.5 of Bauerschmidt et
al. [10] it tends to a limit Lg1 and, for Og0 small and positive, as m2 # 0 and g0 ! Og0,

Lg1 � 1

Bm2
: (178)

By the formulas for the conjugation Tj which are given in [11, (6.93)], there exist
constants aj D O.1/ such that L�j D �j C aj�

2
j . By (177) and the a-priori limitation

of coupling constants to be in a small domain Dj, this implies that

�j D O.�j Lgj/; �0
j D L�0

j.1C O.�j// � L�0
j; as j ! 1; (179)

where the prime denotes the derivative of with respect to �0. Note that �0 D L�0 D
�0 by (108) and (96). Therefore

L�0
0 D �0

0 D 1: (180)

We will be applying these bounds with j D N which is the scale where the
finite volume recursion parts company with the infinite volume recursion; at the
scale where the torus becomes a single block we are integrating out a field �N with
the � dependent covariance CN;N of Theorem 6.1. But, provided N is large such
that m2L2N � 1, the recursion (170) obeys the same bounds as the infinite volume
recursion and we can set j D N in (177). Since we studying the limits in the order
N ! 1 followed by m2 # 0 we can assume that m2L2N � 1.
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8.3 Proof of (73)

By (131) and (106),

O��.m2; g0; �0; z0/ D 1

m2
C 1

m4 j�j D2IN.�I 0I 1; 1/C 1

m4 j�j D2KN.�I 0I 1; 1/

D 1

m2
C 1

m4j�jD2e�VN .�I 0I 1; 1/C 1

m4j�jD2WN.�I 0I 1; 1/

C 1

m4 j�j D2KN.�I 0I 1; 1/: (181)

where cross-terms in D2IN are zero when � D 0 and d� D 0 because WN defined
in [11, Sect. 3.5] has no monomials of odd degree, in particular of degree one. The
first term on the right-hand side of (181) can be evaluated by direct calculation,
using (95), (46) and (47), to give

D2e�VN .�I 0I 1; 1/ D D2.�VN/.�I 0I 1; 1/
D �

X

x;y

�NL�2Nıxy1x1y �
X

x;y

zN.��xy/1x1y

D ��NL�2N j�j; (182)

since the quartic term 	2 does not contribute, and �1 D 0. Therefore

O�N D 1

m2
� �NL�2N

m4
C 1

m4

1

j�jD2W0
N.0; 0I 1; 1/

C 1

m4

1

j�jD2K0
N.0; 0I 1; 1/: (183)

For m2 fixed the final term tends to zero as N ! 1 like O.�Ng3N/L
�2N . This follows

from (145) and

1. 1
j�j D L�4N .

2. kKNkFN � O.�Ng3N/ by (177).

By (177) �N is bounded and therefore the second term tends to zero like L�2N .
The third term is estimated from the explicit formula for WN and tends to zero as
O.�N Ng2NL�2N/ by Bauerschmidt et al. [10, (8.56)]. Thus we have proved Part (1) of
Theorem 5.2.
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8.4 Proof of (74)

By the remark above Theorem 2.2 we can interchange a derivative with respect to
�0 with the infinite volume limit. Thus we take the derivative of both sides of (183)
with respect to �0 and obtain

@ O�
@�0

D � 1

m4
lim

N!1 L�2N @�N

@�0
D � 1

m4
lim

N!1 L�2N L�0
N ; (184)

where we used (179) to obtain the second equality. As in Sect. 8.3, there are no
contributions to this derivative from the third and fourth terms in (183) because
they decay to zero as N ! 1. To calculate the derivative L�0

N we differentiate
the recursion (175) with respect to �0 and obtain a recursion for the derivatives
.Lg0

j; Lz0
j; L�0

jI LK0
j /. Since there are many terms and the details are given in Sect. 8.3 of

Bauerschmidt et al. [10] we write only the terms that will turn out to be dominant.
From (175) and (112) the L� equation is

L�jC1 D L2 L�j.1 � �ˇj Lgj/C rj; (185)

where rj is the sum of all the other terms. It changes from line to line in the next
equations. Therefore

L�0
jC1 D L2 L�0

j.1 � �ˇj Lgj/C r
0

j

D L2 L�0
j.1 � ˇj Lgj/

� C r
0

j : (186)

From (175) and (110) and an estimate on the Lg component of LRC,

LgjC1 D Lgj � ˇj Lg2j C O.�j Lg3j / D Lgj.1 � ˇj Lgj/C O.�j Lg3j /: (187)

Using this to eliminate .1 � ˇj Lgj/ in (186) and dropping r
0

j we obtain

L�0
jC1 D L2 L�0

j

� LgjC1
Lgj

�� �
1C O.�j Lg2j /

��
: (188)

By iterating this equality and recalling (180) we have

lim
N!1 L�2N L�0

N D c.m2; g0/ L�0
0

� Lg1
Lg0
��

D c.m2; g0/

� Lg1
Lg0
��
; (189)

where Lg1 D lim LgN and c.m2; g0/ arises from the r
0

j terms and the factors 1 C
O.�j Lg2j /. The coefficient c.m2; g0/ has a limit as m2 # 0. We insert (189) into (184)



114 D. Brydges

and obtain

@ O�
@�0

D � 1

m4
c.m2; g0/

� Lg1
Lg0
��
: (190)

By (178), we obtain the desired (74).
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