
2012

Matthew Schwartz

III-9: The renormalization group

1 Introduction

The renormalization group is one of those brilliant ideas that lets you get something for nothing
through clever reorganization of things you already know. It is hard to underestimate the
importance of the renormalization group in shaping the way we think about quantum field
theory. The phrase renormalization group refers to an invariance of observables under changes
in the way things are calculated. There are two versions of the renormalization group used in
quantum field theory:

1. Wilsonian renormalization group. In a finite theory with a UV cutoff Λ, physics at
energies E ≪ Λ is independent of the precise value of Λ. Changing Λ changes the cou-
plings in the theory so that observables remain the same.

2. Continuum renormalization group: Observables are independent of the renormaliza-
tion conditions, in particular, of the scales {p0} at which we choose to define our renor-
malized quantities. This invariance holds after the theory is renormalized and the cutoff
is removed (Λ = ∞, d = 4). In dimensional regularization with MS, the scales {p0} are
replaced by µ, and the continuum renormalization group comes from µ-independence.

The two versions are closely related, but technically different. Much confusion arises from con-
flating them, for example trying to take Λ all the way down to physical low energy scales in the
Wilsonian case or taking µ → ∞ in the continuum case. Although the renormalization group
equations have essentially the same form in the two versions, the two methods really are concep-
tually different and we will try to keep them separate as much as possible, concentrating on the
continuum method, which is more practical for actual QFT calculations.

In both cases, the fact that the theory is independent of something means one can set up a

differential equations like
d

dΛ
X = 0,

d

dp0
X = 0 or

d

dµ
X = 0 where X is some observable. Solving

these differential equations leads to a trajectory in the space of theories. The term renormal-

ization group (RG) or renormalization group evolution refers to the flow along these trajecto-
ries. In practice, there are 3 types of things whose renormalization group evolution we often look
at: coupling constants (like the electric charge) operators (like the current Jµ(x) = eψ̄ (x)γµψ(x))
and Green’s functions.

The Wilsonian renormalization group has its origins in condensed matter physics. Suppose
you have a solid with atoms at evenly-spaced lattice sites. Many physical quantities, such as
resistivity, are independent of the precise inter-atomic spacing. In other words, the lattice
spacing Λ−1 is a UV cutoff which should drop out of calculations of properties of the long-dis-
tance physics. It is therefore reasonable to think about coarse-graining the lattice. This means
that, instead of taking as input to your calculation the spin degrees of freedom for an atom on a
site, one should be able to use the average spin over a group of nearby sites and get the same
answer, with an appropriately rescaled value of the spin-spin interaction strength. Thus there
should be a transformation by which nearby degrees of freedom are replaced by a single effective
degree of freedom and parameters of the theory are changed accordingly. This is known as a
block-spin renormalization group, and was first introduced by Leo Kadanoff in 1966. In the con-
tinuum limit, this replacement becomes a differential equation known as the RG equation, which
was first understood by Ken Wilson in the early 1970s.
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The Wilsonian RG can be implemented through the path integral, an approach clarified by
Joe Polchinski in the mid 1980s. There, one can literally integrate out all the short-distance
degrees of freedom of a field, say at energies E > Λ, making the path integral a function of the
cutoff Λ. Changing Λ to Λ′ and demanding physics be the same (since Λ is arbitrary) means
that the couplings in the theory, such as the gauge coupling g, must depend on Λ. Taking Λ′

close to Λ induces a differential equation on the couplings, also known as the RG equation. This
induces a flow in the coupling constants of the theory as a function of the effective cutoff. Note,
the renormalization group is not a group in the traditional mathematical sense, only in the sense
that it maps G→G where G is the set of couplings in a theory.

Implementing the Wilsonian RG picture in field theory, either through a lattice or through
the path integral, is a mess from a practical point of view. For actual calculations, at least in
high energy contexts, the continuum renormalization group is exclusively used. Then the RG is
an invariance to the arbitrary scale one chooses to define the renormalized couplings. In dimen-
sional regularization, this scale is implicitly set by the dimensionful parameter µ. This approach
to renormalization was envisioned by Stueckelberg and Petermann in 1953 and made precise the
year after by Gell-Mann and Low. It found widespread application to particle physics in the
early 1970s through the work of Callan and Symanzik who applied the renormalization group to
correlation functions in renormalizable theories. Applications of the enormous power of the con-
tinuum renormalization group to precision calculations in non-renormalizable theories, such as
the chiral Lagrangian, the four-Fermi theory, heavy-quark effective theory, etc., have been devel-
oping since the 1970s, and continue to develop today. We will cover these examples in detail in
Part IV.

The continuum renormalization group is an extremely practical tool for getting partial
results for high-order loops from low-order loops. Recall from Lecture III-2 that the difference

between the momentum-space Coulomb potential Ṽ (t) at two scales t1 and t2 was proportional
to α2ln

t1

t2
for t1 ≪ t2. The renormalization group is able to reproduce this logarithm, and similar

logarithms of physical quantities. Moreover, the solution to the RG equation is equivalent to
summing series of logarithms to all orders in perturbation theory. With these all-orders results,
qualitatively important aspects of field theory can be understood quantitatively. Two of the
most important examples are the asymptotic behavior of gauge theories, and critical exponents
near second-order phase transitions. Many other examples will be discussed in later lectures. We
begin our discussion with the continuum renormalization group, since it leads directly to impor-
tant physical results. The Wilsonian picture is discussed in Section 7.

2 Running couplings

Let’s begin by reviewing what we have already shown about scale-dependent coupling constants.
The scale dependent electric charge eeff(µ) showed up as a natural object in Lecture III-2, where
we calculated the vacuum polarization effect, and also in Lecture III-6, where it played a role in
the total cross section for e+e− → µ+µ−(+γ). In this section, we review the effective coupling
and point out some important features exploited by the renormalization group.

2.1 Large logarithms

In Lectures III–2 and III-5 we calculated the vacuum polarization diagrams at 1-loop and found

�

p

k

p

k − p

+

�

=−i (p2gµν − pµpν)(eR
2Π2(p

2) + δ3)

where δ3 is the 1-loop counterterm and

Π2(p
2) =

1

2π2

∫

0

1

dxx(1− x)

[

2

ε
+ ln

(

µ̃2

mR
2 − p2x(1− x)

)]

(1)
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in dimensional regularization, with d= 4 − ε. Then by embedding this off-shell amplitude into a
scattering diagram, we extracted an effective Coulomb potential whose Fourier transform was

Ṽ (p2) = eR
2 1− eR

2Π2(p2)

p2
(2)

Defining the gauge coupling eR so that Ṽ (p0
2) =

eR
2

p0
2 exactly at the scale p0 fixes the counterterm

δ3 and lets us write the renormalized potential as

Ṽ (p2)=
eR
2

p2

{

1+
eR
2

2π2

∫

0

1

dxx(1− x)ln

(

p2x(1− x)−m2

p0
2x(1− x)−m2

)}

(3)

which is finite and ε- and µ-independent.

The entire functional form of this potential is phenomenologically important, especially at
low energies, where we saw it gives the Uehling potential and contributes to the Lamb shift.
However, when p≫m, the mass drops out and the potential simplifies to

Ṽ (p2)=
eR
2

p2

(

1+
eR
2

12π2
ln
p2

p0
2

)

(4)

In this limit, we can see clearly the problem of large logarithms, which the renormalization

group will solve. Normally, one would expect that since the correction is proportional to
eR
2

12π2 ∼
10−3 higher order terms would be proportional to the square, cube, etc. of this term and there-

fore would be negligible. However, there exist scales p2 ≫ p0
2 where ln

p2

p0
2 > 103 so that this cor-

rection is of order 1. When these logarithms are this large, then terms of the form
(

eR
2

12π2
ln

p2

p0
2

)

2
,

which would appear at the next order in perturbation theory, will also be order 1 and so pertur-
bation theory breaks down.

The running coupling was also introduced in Lecture III-2, where we saw that we could sum
additional 1PI insertions into the photon propagator

b +

�

p p
k

p − k +

�

+


to get

Ṽ (p2)=
eR
2

p2

[

1+
eR
2

12π2
ln
p2

p0
2
+

(

eR
2

12π2
ln
p2

p0
2

)

2

+


]

=
1

p2





eR
2

1− eR
2

12π2 ln
p2

p0
2



 (5)

We then defined the effective coupling through the potential by eeff
2 (p2)≡ p2Ṽ (p2). So that

eeff
2 (p2)=

eR
2

1− eR
2

12π2
ln

p2

p0
2

(6)

This is the effective coupling including the 1-loop 1PI graphs, This is called leading-loga-

rithmic resummation.

Once all of these 1PI 1-loop contributions are included, the next terms we are missing should
be subleading in some expansion. The terms included in the effective charge are of the form

eR
2
(

eR
2 ln

p2

p0
2

)n

for n> 0. For the 2-loop 1PI contributions to be subleading, they should be of the

form eR
4
(

eR
2 ln

p2

p0
2

)n

. However, it is not obvious at this point that there cannot be a contribution

of the form eR
6 ln2

p0
2

p2
from a 2-loop 1PI graph. To check, we would need to perform the full O(eR

4 )

calculation, including graphs with loops and counterterms. As you might imagine, trying to
resum large logarithms beyond the leading-logarithmic level diagrammatically is extremely
impractical. The renormalization group provides a shortcut to systematic resummation beyond
the leading-logarithmic level.
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The key to systematizing the above QED calculation is to first observe that the problem we
are trying to solve is one of large logarithms. If there were no large logarithms, we would not
need the renormalization group – fixed-order perturbation theory would be fine. For the
Coulomb potential, the large logarithms related the physical scale p2 where the potential was to

be measured to an arbitrary scale p0
2 where the coupling was defined. The renormalization

group equation (RGE) then comes from requiring that the potential is independent of p0
2

p0
2 d

dp0
2 Ṽ (p2)= 0 (7)

Ṽ (p2) has both explicit p0
2 dependence, as in Eq. (4), and implicit p0

2 dependence, through the

scale where eR is defined. In fact, recalling that eR was defined so that p0
2Ṽ (p0

2) = eR
2 exactly,

and that the effective charge is defined by eeff
2 (p2)≡ p2Ṽ (p2), we can make the p0

2 dependence of

Ṽ (p2) explicit by replacing eR by eeff(p0
2).

So, Eq. (4) becomes

Ṽ (p2)=
eeff
2 (p0

2)

p2

(

1− eeff
2 (p0

2)

12π2
ln
p0
2

p2

)

+
 (8)

Then at 1-loop the RGE is

0= p0
2 d

dp0
2
Ṽ (p2) =

1

p2

(

p0
2deeff

dp0
2
2eeff − eeff

4

12π2
− p0

2deeff

dp0
2

eeff
3

3π2
ln
p0
2

p2
+


)

(9)

To solve this equation perturbatively, we note that
dee ff

dp0
2

must scale like eeff
3 and so the third

term inside the brackets is subleading. Thus the 1-loop RGE is

p0
2deeff

dp0
2 =

eeff
3

24π2
(10)

Solving this differential equation with boundary condition eeff(p0) = eR gives

eeff
2 (p2) =

eR
2

1− eR
2

12π2
ln

p2

p0
2

(11)

which is the same effective charge that we got above by summing 1PI diagrams.

Note however, that we did not need to talk about the geometric series or 1PI diagrams at all
to arrive at equation Eq. (11): we only used the 1-loop graph. In this way, the renormalization
group efficiently encodes information about some higher-order Feynman diagrams without
having to be explicit about which diagrams are included. This improvement in efficiency is
extremely helpful, especially in problems with multiple couplings, or beyond 1-loop.

2.2 Universality of large logarithms

Before getting to the systematics of the renormalization group, let us think about the large loga-
rithms in a little more detail. Large logarithms arise when one scale is much bigger or much
smaller than every other relevant scale. In the vacuum polarization calculation, we considered
the limit where the off-shellness p2 of the photon was much larger than the electron mass, m2.
In the limit where one scale is much larger than all the other scales, we can set all the other
physical scales to zero to first approximation. If we do this in the vacuum polarization diagram

we find from Eq. (1) that full vacuum polarization function Π(p2)= eR
2 Π2(p

2)+ δ3 at order eR
2 is

Π(p2) =
eR
2

12π2

[

2

ε
+ ln

(

µ2

−p2
)

+ const

]

+ δ3 (DR) (12)
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The equivalent result using a regulator with a dimensional UV cutoff, such as Pauli-Villars, is

Π(p2)=
eR
2

12π2

[

ln

(

Λ2

−p2
)

+ const

]

+ δ3 (PV) (13)

As was discussed in Lectures III-7 and III-8, the logarithmic, non-analytic dependence on
momentum is characteristic of a loop effect and a true quantum prediction. The renormalization
group focuses in on these logarithmic terms, which give the dominant quantum effects in certain
limits.

If the only physical scale is p2, the logarithm of p2 must be compensated by a logarithm of
some other unphysical scale, in this case, the cutoff Λ2 (or µ2 in dimensional regularization). If

we renormalize the theory at some scale p0 by defining δ3=− eR
2

12π2 ln
Λ2

−p0
2 then this becomes

Π(p2)=
eR
2

12π2

[

ln

(

p0
2

p2

)

+ const

]

(PV) (14)

In dimensional regularization, the MS prescription is that δ3=
eR
2

12π2

(

−2

ε

)

so that

Π(p2)=
eR
2

12π2

[

ln

(

µ2

p2

)

+ const

]

(DR) (15)

In Eqs. (12)-(15), the logarithmic dependence on the unphysical scales, Λ2, p0
2, or µ2 uniquely

determines the logarithmic dependence of the amplitude on the physical scale p2. The Wilsonian
RG extracts physics from the ln Λ2 dependence (see Section 7), while the continuum renormal-

ization group uses p0
2 or µ2.

In practical applications of the renormalization group, dimensional regularization is almost
exclusively used. It is therefore important to understand the roles of ε = 4 − d, the arbitrary
scale µ2 and scales like p0

2 where couplings are defined. UV divergences show up as poles of the

form
1

ε
. Don’t confuse the scale µ, which was added to make quantities dimensionally correct,

with a UV cutoff! Removing the cutoff is taking ε → 0, not µ → ∞. In minimal subtraction,

renormalized amplitudes depend on µ. In observables, such as the difference p1
2Ṽ (p1

2)− p2
2Ṽ (p2

2),
µ necessarily drops out. However, one can imagine choosing

δ3=
eR
2

12π2

[

−2

ε
− ln

µ2

p0
2

]

(16)

in dimensional regularization so that Eq. (12) turns into Eq. (14). This is equivalent to choosing

µ2 = p0
2 in Eq. (12) and minimally subtracting the

1

ε
term. Thus, people usually think of µ as a

physical scale where amplitudes are renormalized and µ is often called the renormalization

scale.

Although we choose µ to be a physical scale, observables should be independent of µ. At
fixed-order in perturbation theory, verifying µ-independence can be a strong theoretical cross
check on calculations in dimensional regularization. As we will see by generalizing the vacuum
polarization discussion above, the µ-independence of physical amplitudes comes from a cancella-
tion between µ-dependence of loops and µ-dependence of couplings. Since µ is the renormaliza-
tion point, the effective coupling becomes eeff(µ) and the renormalization group equation in Eq.
(10) becomes

µ
deeff(µ)

dµ
=
eeff
3 (µ)

12π2
(17)

and we never have to talk about the physical scale p0 explicitly.
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Although µ is a physical, low-energy scale, not taken to ∞, the dependence of amplitudes on
µ is closely connected with the dependences on

1

ε
. For example, in the vacuum polarization cal-

culation, the ln µ2 dependence came from the expansion

µε

(

2

ε
− ln p2+


)

=
2

ε
+ ln

µ2

p2
+
 (18)

The
1

ε
pole and the ln µ2 in unrenormalized amplitudes are inseparable – in 4 dimensions, there

is no ε and no µ. In particular, the numerical coefficient of
2

ε
is the same as the coefficient of

ln
µ2

p2
. Thus, even in dimensional regularization, the large logarithms of the physical scale p2 are

connected to UV divergences as they would be in a theory with a UV regulator Λ. Since the
large logarithms correspond to UV divergences, it is possible to resum them entirely from the ε
dependence of the counterterms. This leads to the more efficient, but more abstract, derivation
of the continuum RGE, as we now show.

3 Renormalization group from counterterms

We have seen how large logarithms of the form ln
p1
2

p2
2
can be resummed though a differential

equation which establishes that physical quantities are independent of the scale p0
2 where the

renormalized coupling is defined. Dealing directly with physical renormalization conditions for
general amplitudes is extremely tedious. In this section, we will develop the continuum renor-
malization group with dimensional regularization exploiting the observations made in the pre-
vious section: the large logarithms are associated with UV divergences, which determine the µ
dependence of amplitudes; µ2 can be used as a proxy for the (arbitrary) physical renormaliza-

tion scale p0
2; the renormalization group equation will then come from µ-independence of phys-

ical quantities.

Let us first recall where the factors of µ come from. Recall our bare Lagrangian for QED:

L=−1

4
Fµν

2 + ψ̄ 0(i∂− e0 γµAµ
0 −m0)ψ0 (19)

The quantities appearing here are infinite, or if we are in d = 4 − ε dimensions, they are finite
but scale like inverse powers of ε. The dimensions of the fields can be read off from the
Lagrangian:

[Aµ
0 ] =

d− 2

2
, [ψ0] =

d− 1

2
, [m0] = 1, [e0] =

4− d

2
(20)

In particular, notice that the bare charge is only dimensionless if d = 4. In renormalized pertur-
bation theory, the Lagrangian is expressed instead in terms of physical renormalized fields and
renormalized charges. In particular, we would like the charge eR we expand in to be a number,
and the fields to have canonical normalization. We therefore rescale by

Aµ=
1

Z3

√ Aµ
0 , ψ=

1

Z2

√ ψ0, mR=
1

Zm
m0, eR=

1

Ze
µ

d−4

2 e0 (21)

which leads to

L=−1

4
Z3Fµν

2 + i Z2ψ̄ ∂ψ−mRZ2Zmψ̄ψ− µ
4−d

2 eRZeZ2 Z3

√
ψ̄ Aψ (22)

with eR and the ZX dimensionless, even in d=4− ε dimensions. (Note that we will be using the

charge renormalization Ze instead of Z1, which defined in Lecture III-5 as Z1 = ZeZ2 Z3

√
.)

Recall also from Lecture III-5 the 1-loop MS counterterms
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δ2=
eR
2

16π2

[

−2

ε

]

, δ3=
eR
2

16π2

[

− 8

3ǫ

]

, δm=
eR
2

16π2

[

−6

ε

]

, δe=
eR
2

16π2

[

4

3ε

]

(23)

where each of these counterterms is defined by ZX =1+ δX.

Now notice that, since there is µ-dependence in the renormalized Lagrangian but not in the
bare Lagrangian, we must have

0= µ
d

dµ
e0= µ

d

dµ

[

µ
ε

2eRZe

]

= µ
ε

2 eRZe

[

ε

2
+
µ

eR

d

dµ
eR+

µ

Ze

dZe

dµ

]

(24)

At leading order in eR, Ze=1 and so

µ
d

dµ
eR=−ε

2
eR (25)

At next order, we have

µ
d

dµ
Ze= µ

d

dµ

(

1+
eR
2

16π2

4

3ε

)

=
1

ε

eR
6π2

µ
d

dµ
eR=− eR

2

12π2
(26)

where Eq. (25) has been used in the last step. So,

β(eR)≡ µ
d

dµ
eR=−ε

2
eR+

eR
3

12π2
(27)

This is the leading order QED β-function. Taking ε → 0, this agrees with Eq. (17) when we
identify eR(µ) = eeff(µ), but here we calculated the RGE using only counterterms with no men-
tion of logarithms.

It is worth tracing back to which diagrams contributed to the β-function. The β-function

depended on Ze=
Z1

Z2 Z3

√ . In Lecture III-5 we found Z1 from the ψ̄Aµψ vertex, Z3 came from the

vacuum polarization diagrams, and Z2 from the electron self energy. In QED, since Z1 = Z2, the
β-function can be calculated from Z3 alone, which is why Eq. (27) agrees with Eq. (17). In
other theories, such as quantum chromodynamics, Z1 � Z2 and all three diagrams will con-
tribute. As we will see in Lecture IV-2, we will need to use the full relation δe = δ1 − δ2 − 1

2
δ3.

There, and in other examples in this Lecture, it will be clearer why having an abstract way to
calculate the running coupling, through the µ-independence of the bare Lagrangian, is better

than having to deal with explicit observables like Ṽ (p2).

The β-function is sometimes written as a function of α=
eR
2

4π
defined by

β(α)≡ µ
dα

dµ
(28)

The expansion is conventionally written as

β(α)=−2α
[

ε

2
+
(

α

4π

)

β0+
(

α

4π

)

2
β1+

(

α

4π

)

2
β2+


]

(29)

Matching to Eq. (27) in d=4 then gives β0=−4

3
. At leading order (at ε=0), the solution is

α(µ) =
2π

β0

1

ln
µ

ΛQ E D

(30)

which increases with µ. Here, ΛQED is an integration constant fixed by the boundary condition

of the RGE. Using α(me= 511 keV) =
1

137
we find ΛQED = 10286 eV. Since α blows up when µ=

ΛQED, ΛQED is the location of the Landau pole.
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In writing the solution to the RGE in Eq. (30) we have swapped a dimensionless number,
1

137
, for a dimensionful scale ΛQED. This is known as dimensional transmutation. When we

introduced the effective charge, we had specified a scale and the value of α measured at that
scale. But now we see that only a scale is needed. This uncovers a very profound misconception
about nature: electrodynamics is fundamentally not defined by the electric charge, as you
learned classically, but by a dimensionful scale ΛQED. Moreover, this scale only has meaning if
there is another scale in the theory, such as the electron mass, so really it is the ratio me/Λ that
specifies QED completely.

While we have the counterterms handy, let us work out the RGE for the electron mass. The
bare mass m0 must be independent of µ, so

0= µ
d

dµ
m0= µ

d

dµ

(

ZmmR

)

=ZmmR

[

µ

mR

dmR

dµ
+

µ

Zm

dZm

dµ

]

(31)

We conventionally define

γm≡ µ

mR

dmR

dµ
(32)

γm is called an anomalous dimension. (This terminology will be explained in Section 5.4.)
Since Zm only depends on µ through eR, we have

γm=− µ

Zm

dZm

dµ
=− 1

Zm

dZm

deR
µ
deR
dµ

(33)

At 1-loop, Zm=1− 3eR
2

8π2ε
and to leading non-vanishing order µ

deR

dµ
= β(eR)=− ε

2
eR, so

γm=− 1

1+ δm

(

2

eR
δm

)

(

−ε
2
eR

)

= δmε=−3eR
2

8π2
(34)

We will give a physical interpretation of a running mass in Section 6.

4 RGE for the 4-Fermi theory

We have seen that the renormalization group equation for the electric charge allows us to resum
large logarithms of kinematic scales, for example, in Coulomb scattering. In that case, the loga-
rithms were resummed through the running electric charge. Large logarithms can also appear in
pretty much any scattering process, with any Lagrangian, whether renormalizable or not. In
fact, non-renormalizable theories, with their infinite number of operators, provide a great arena
for understanding the variety of possible renormalization group equations. We will begin with a
concrete example: large logarithmic corrections to the muon decay rate from QED. Then we dis-
cuss the generalization for renormalizing operators in the Lagrangian and external operators
inserted into Green’s functions.

The muon decays into an electron and two neutrinos through an intermediate off-shell W -
boson. In the standard model, the decay rate comes from the following tree-level diagram, which
leads to

Γ(µ−→ νµe
−ν̄e)=

1

2mµ

∫

dΠLIPS

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣�

µ−

ν̄e

νµ

W−

e−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

2
√

g2

8mW
2

)

2
mµ

5

192π3
(35)
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plus corrections suppressed by additional factors of
mµ

mW
or

me

mµ
, with g = 0.65 the weak coupling

constant and mW = 80.4 GeV (see Lecture IV-4 for more details). A photon loop gives a correc-
tion to this decay rate of the form

Γ(µ−→ νµe
−ν̄e)=

1

2mµ

∫

dΠLIPS

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣�

µ−

ν̄e

νµ

W−

e−

+

�

µ−
ν̄e

γ

νµ

W−

e−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(36)

=

(

2
√

g2

8mW
2

)

2
mµ

5

192π3

(

1+A
α

4π
ln
mW

mµ
+


)

(37)

We have only shown the term in this correction which dominates for mµ≪mW , which is a large
logarithm. To extract the coefficient A of this logarithm we would need to evaluate the diagram,
which is both difficult and unnecessary. At higher order in perturbation theory, there will be

additional large logarithms, proportional to
(

A
α

4π
ln

mW

mµ

)n

. While we could attempt to isolate

the series of diagrams which contributes these logarithms (as we isolated the geometric series of
1PI corrections to the Coulomb potential in the Section 2) such an approach is not nearly as
straightforward in this case – there are many relevant diagrams with no obvious relation
between them. Instead, we will resum the logarithms using the renormalization group.

In order to use the renormalization group to resum logarithms besides those in the effective
charge, we need another parameter to renormalize besides eR. To see what we can renormalize,
we first expand in the limit that the W is very heavy, so that we can replace

i

p2−mW
2 →− i

mW
2 for

p2≪mW
2 . Graphically, this means

�

µ−

ν̄e

νµ

W−

e−

→

�

µ− ν̄e

νµ

e−

(38)

This approximation leads to the 4-Fermi theory, discussed briefly in Lecture III-8, and to be dis-
cussed in more detail here and extensively in Part IV. The 4-Fermi theory replaces the W boson
with a set of effective interactions involving 4 fermions. The relevant Lagrangian interaction in
this case is

L4F =
GF

2
√ ψ̄µγ

µPLψνµ
ψ̄eγ

µPLψνe+h.c (39)

where PL =
1− γ5

2
projects onto left-handed fermions and GF =

2
√

g2

8mW
2 = 1.166×10−5 GeV−2 (see

Lecture IV-5 for the origin of PL). This leads to a decay rate of Γ(µ− → νµe
−ν̄e) = GF

2 mµ
5

192π3

which agrees with Eq. (35). The point of doing this is twofold: first, the four-Fermi theory is
simpler than the theory with the full propagating W boson; second, we can use the renormaliza-
tion group to compute the RG evolution of GF which will reproduce the large logarithms in Eq.
(37) and let us resum them to all orders in α.

It is not hard to go from the RGE for the electric charge to the RGE for a general operator.

Indeed, the electric charge can be thought of as the coefficient of the operator Oe = ψ̄ Aψ in the

QED Lagrangian. The RGE was determined by the renormalization factor Ze =
Z1

Z2 Z3

√ , which

was calculated from the radiative correction to the ψ̄ Aψ vertex (this gave Z1), and then sub-
tracting off the field strength renormalizations which came from the electron self-energy graph
and vacuum polarization graphs (giving Z2 and Z3, respectively).

RGE for the 4-Fermi theory 9



Unfortunately for the pedagogical purposes of this example, in the actual weak theory, the
coefficient A of the large logarithm in Eq. (37) is 0 (see Problem 1). This fact is closely related
to the non-renormalization of the QED current (see Section 5.1 below) and is somewhat of an
accident. For example, a similar process for the weak decays of quarks does have a nonzero coef-
ficient of the large logarithm, proportional to the strong coupling constant αs (see Lecture IV-6).
To get something non-zero, let us pretend that the weak interaction is generated by the
exchange of a neutral scalar instead, so that the four-Fermi interaction is

L4=
G

2
√ (ψ̄µψe)(ψ̄νeψνµ

) +h.c

In this case, we will get a non-zero coefficient of the large logarithm.

To calculate the renormalization factor for G, we must compute the one-loop correction to
this four-Fermi interaction. There is only one diagram,

iM=

�

µ−

ν̄e
p1 − k

k

νµ

p2 − k

e−

p1

p2

p4

p3

(40)

=
G

2
√ eR

2 µ4−d

∫

ddk

(2π)d
ū (p2)γµ(p2− k+me)(p1− k+mµ)γµu(p1)ū (p3)v(p4)

[(p1− k)2−mµ
2 ][(p2− k)2−me

2]k2
(41)

To get at the renormalization group equation, we just need the counterterm, which comes from
the coefficient of the the UV divergence of this amplitude. To that end, we can set all the
external momenta and masses to zero. Thus,

M=M0

(

−ieR2 µ4−d

∫

ddk

(2π)d
d

k4

)

+finite (42)

with the d coming from γµkkγµ= dk2 and

M0=
G

2
√ ū (p2)u(p1)ū (p3)v(p4) (43)

is the tree-level matrix element from L4. Extracting the pole gives

M=M0

(

eR
2

2π2
µε1

ε

)

+ finite (44)

which is all we will need for the renormalization group analysis.

To remove this divergence, we have to renormalize G. We do so by writing G=GRZG giving

L=
GR

2
√ ZG(ψ̄µψe)(ψ̄νeψνµ

) +h.c (45)

To extract the counterterm, we expand ZG = 1 + δG. The counterterm then contributes M0δG.
To remove the divergence we therefore need to take

δG=− eR
2

16π2

8

ε
(46)

Now that we know the counterterm, we can calculate the RGE, just like for the electric charge.
Expressing the four-Fermi term in terms of bare fields, we find

GR

2
√ ZG(ψ̄µψe)

(

ψ̄νµ
ψνe

)

=
GR

2
√ ZG

Z2µZ2eZ2νµ
Z2νe

√

(

ψ̄µ
(0)
ψe
(0)
)(

ψ̄νe

(0)
ψνµ

(0)
)

(47)
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The coefficient of the bare operator must be independent of µ, since there is no µ in the bare
Lagrangian. So, setting Z2ν = 1 since the neutrino is neutral and therefore not renormalized
until higher order in eR, and using Z2µ = Z2e = Z2 since the muon and electron have identical
QED interactions, we find

0= µ
d

dµ

(

GRZG

Z2

)

=
GRZG

Z2

[

µ

GR

dGR

dµ
+

1

ZG

∂ZG

∂eR
µ
deR
dµ

− 1

Z2

∂Z2

∂eR
µ
deR
dµ

]

(48)

where we have used that ZG and Z2 only depend on µ through eR in the last step. Using the 1-

loop results ZG=1− eR
2

16π2

8

ε
and Z2=1− eR

2

16π2

2

ε
and keeping only the leading terms, we have

γG≡ µ

GR

dGR

dµ
=

(

−∂ZG

∂eR
+
∂Z2

∂eR

)

β(eR) =
3eR
4επ2

(

−ε
2
eR

)

=−3eR
2

8π2
=−3α

2π
(49)

where γG is the anomalous dimension for OG=ZG(ψ̄µψe)
(

ψ̄νµ
ψνe

)

.

Using µ
dα

dµ
= β(α ), the solution to this differential equation is

GR(µ)=GR(µ0)exp

[

∫

α(µ0)

α(µ) γG(α)

β(α)
dα

]

(50)

In particular, with β(α) =−α2

2π
β0=

2α2

3π
at leading order we find

GR(µ)=GR(µ0)exp

[

−9

4

∫

α(µ0)

α(µ) dα

α

]

=GR(µ0)

(

α(µ)

α(µ0)

)

−9

4 (51)

Now, we are assuming that we know the value for G at the scale µ0 = mW where the W boson
(or its equivalent in our toy model) is integrated out and we would like to know the value of G
at the scale relevant for muon decay, µ = mµ. Using Eq. (30), we find α(mµ) = 0.00736 and
α(mW)= 0.00743 so that

GR(mµ) = 1.024×G(mW) (52)

which would have given a 4.8% correction to the muon decay rate, if the muon decay were medi-
ated by a neutral scalar. In the actual weak theory, where muon decay is mediated by a vector
boson coupled to left-handed spinors, the anomalous dimension for the operator in Eq. (39) is
zero and so GF does not run in QED.

5 RGE for general interactions

In the muon decay example, we calculated the running of G, defined as the the coefficient of the
local operator OG = ZG(ψ̄µψe)(ψ̄νe

ψνµ
) in a four-Fermi Lagrangian. More generally, we can con-

sider adding additional operators to QED, with an effective Lagrangian of the form

L=−1

4
Z3Fµν

2 +Z2
iψ̄ii∂ψi−Z2

iZm
i mi

Rψ̄iψi+ZeZ2
i Z3

√
QieR ψ̄iAψi+

∑

j

CjOj(x) (53)

These operators Oj = Zj∂
nγmAµ(x)
Aν(x)ψ̄i(x)
 ψj(x) are composite local operators, with

all fields evaluated at the same spacetime point. They can have any number of photons,
fermions, γ-matrices, factors of the metric, etc. and analytic (power law) dependence on deriva-
tives. Keep in mind that the fields Aµ and ψj are the renormalized fields. The Cj are known as
Wilson coefficients. Note that in this convention, each Zj is grouped with its corresponding
operator, which is composed of renormalized fields; the Zj is not included in the Wilson coeffi-
cient so that Wilson coefficient will be a finite number at any given scale. Since the Lagrangian
is independent of µ, if we assume no mixing, the renormalization group equations take the form

RGE for general interactions 11



µ
d

dµ
(CjOj)= 0 (no sum on j) (54)

These equations (one for each j) let us extract the RG evolution of Wilson coefficients from the
µ-dependence of matrix elements of operators. In general, there can be mixing among the opera-
tors (see Section 6.2 and Lecture IV-6), in which case this equation must be generalized to

µ
d

dµ

(
∑

j
CjOj

)

=0. One can also have mixing between the operators and the other terms in the

Lagrangian in Eq. (53), in which case the RGE is just µ
d

dµ
L=0.

The way these effective Lagrangians are used is that the Cj are first either calculated or

measured at some scale µ0. We can calculate them if we have a (full) theory which is equivalent
to this (effective) one at a particular scale. For example, we found GF by designing the four-
Fermi theory to reproduce the muon decay rate from the full electroweak theory, to leading

order in
1

mW
2

at the scale µ0=mW . This is known as matching. Alternatively, if a full theory to

which our effective Lagrangian can be matched is not known (or is not perturbative), one can
simply measure the Cj at some scale µ0. For example, in the chiral Lagrangian (describing the
low-energy theory of pions) one could in principle match to the theory of strong interactions
(QCD), but in practice it’s easier just to measure the Wilson coefficients. In either case, once
the values of the Cj are set at some scale, we can solve the RGE to resum large logarithms. In
the toy muon decay example, we evolved GR to the scale µ = mµ in order to incorporate large
logarithmic corrections of the form αln

mµ

mW
into the rate calculation.

5.1 External operators

Eq. (54) implies that the RG evolution of Wilson coefficients is exactly compensated for by the
RG evolution of the operators. Operator running provides a useful language in which to consider
physical implications of the renormalization group. An important example is the running of the

current Jµ(x) = ZJψ̄ (x)γµψ(x), which we will now explore. Rather than thinking of Jµ as the
coefficient of Aµ in the QED interaction, we will treat Jµ(x) as an external operator: an oper-
ator which is not part of the Lagrangian, but which can be inserted into Green’s functions.

The running of Jµ is determined by the µ-dependence of ZJ and of the renormalized fields
ψ̄ (x) and ψ(x) appearing in the operator. To find ZJ, we can calculate any Green’s function
involving Jµ. The simplest non-vanishing one is the 3-point function with the current and two
fields, whose Fourier transform we already discussed in the context of the Ward-Takahashi iden-
tity in Lectures II-7 and the proof of Z1=Z2 in Lecture III-5. We define

〈Ω|T {Jµ(x)ψ(x1)ψ̄ (x2)}|Ω〉=
∫

d4p

(2π)4
d4q1
(2π)4

d4q2
(2π)4

e−ipx e−iq1x1 eiq2x2

×iMµ(p, q1, q2)(2π)
4δ4(p+ q1− q2) (55)

so that Mµ is given by Feynman diagrams without truncating the external lines or adding
external spinors. At tree-level

iMtree
µ (p, q1, q2) =

i

q1−m
γµ i

q2−m
(56)

At next-to-leading order, there is a 1PI loop contribution and a counterterm

�

+

�

(57)

12 Section 5



Here the hollow star indicates an insertion of the current and the solid star indicates the coun-
terterm for the current, both with incoming momentum pµ. The counterterm contribution to
the Green’s function comes from expanding ZJ =1+ δJ directly in the Green’s function (we have
not added Jµ to the Lagrangian). These two graphs give, in Feynman gauge,

iM1−loop
µ =

i

q1−m

[

(−ieR)2µ4−d

∫

ddk

(2π)d
iγν(q1− k+m)

(q1− k)2−m2
γµ
i(q2− k+m)γν

(q2− k)2−m2

−i
k2

+ γµδJ

]

i

q2−m

Since we are just interested in counterterm we take k≫ q1, q2. Then this reduces to

iM1−loop
µ =

i

q1−m
γµ i

q2−m

[

−ieR2 µ4−d(2− d)2

d

∫

ddk

(2π)d
1

k4
+δJ

]

(58)

=iMtree
µ

{

eR
2

16π2

[

2

ε

]

+ δJ

}

(59)

Thus δJ =
eR
2

16π2

[

−2

ε

]

, which also happens to equal δ2 and δ1. Thus Z2=ZJ at 1-loop.

Now that we know ZJ we can calculate the renormalization of the current. The bare current
is independent of µ. This is Jbare

µ (x)= ψ̄0γ
µψ0=

1

ZJ
Z2J

µ(x).

0= µ
d

dµ
Jbare
µ = µ

d

dµ

(

Z2

ZJ
Jµ(x)

)

= µ
d

dµ
Jµ(x) (60)

Thus, the current does not run. In other words, whatever scale we measure the current at, it
will have the same value. To be clear, the current is renormalized, but it does not run. Defining
the anomalous dimension γJ for the current by

µ
d

dµ
Jµ= γJJ

µ (61)

we have found that

γJ =0 (62)

That is, the anomalous dimension for the current vanishes.

As you might have figured out by now, the Ward-Takahashi identity implies γJ = 0 to all
orders. In fact, γJ = 0 is just the renormalization group version of the Ward-Takahashi identity,
which actually has a nice physical interpretation. The vanishing anomalous dimension of the
current is equivalent to the statement that the total number of particles minus the number of
antiparticles does not depend on the scale at which we count them. To see this, observe that 0
component of the renormalized current when integrated over all space gives a conserved total
charge:

Q=

∫

d3xJ0=

∫

d3xψ†ψ= total charge (63)

This does not change with time, since the current vanishes at infinity and

∂tQ=

∫

d3x∂0J0=

∫

d3x∇Q · JQ =JQ (∞) = 0 (64)

To see what Q does, note that since the (renormalized) fields at the same time anticommute
{ψ†(x), ψ(y)}= δ3(x− y), we have

ψ(x)Q=

∫

d3yψ(x)ψ†(y)ψ(y)=Qψ(x)+

∫

d3yδ3(x− y)ψ(y) =Qψ(x)+ ψ(x) (65)

Qψ†(x)=

∫

d3yψ†(y)ψ(y)ψ†(x)= ψ†(x)Q+

∫

d3yδ3(x− y)ψ†(y)= ψ†(x)Q+ ψ†(x) (66)
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So,

[Q, ψ] =−ψ, [Q, ψ†] = ψ† (67)

That is, Q counts the number of particles minus antiparticles. The fields ψ can be (and are)
scale dependent. Thus the only way for these equations to be satisfied is if Q does not have
scale dependence itself. Thus the current cannot run.

5.2 Lagrangian operators versus external operators

There is of course not much difference between the calculation of the RGE for the coefficients of
operators in a Lagrangian or for external operators. In fact, the relation

µ
d

dµ
(CjOj)= 0 (68)

implies that the RGE for the Wilson coefficient and the operator it multiplies carry the same
information.

Some distinctions between external operators and operators in the Lagrangian include:

1. External operators do not have to be Lorentz invariant, while operators in the
Lagrangian do.

2. External operators can insert momentum into a Feynman diagram, while operators in the
Lagrangian just give Feynman rules which are momentum conserving.

3. For external operators, it is the operators itself which run, whereas for operators in a
Lagrangian we usually talk about their Wilson coefficients as having the scale depen-
dence.

In this sense, an operator in the Lagrangian is a special case of an external operator, which is
Lorentz invariant and evaluated at p= 0. For example, we can treat the 4-Fermi operator OF =
ψ̄γµPLψψ̄γ

µPLψ as external. Then we can determine its anomalous dimension by evaluating

〈Ω|T {OF(x)ψ̄ (x1)γ
µPLψ(x2)ψ̄ (x3)γ

µPLψ(x4)}|Ω〉 (69)

This will amount to the same Feynman diagram as in Section 4, but now we can have
momentum pµ coming in at the vertex. As far as the RGE is concerned, we only need the UV
divergences, which are independent of external momentum. So in this case we would find that
the operator runs with the same RGE that its Wilson coefficient had before. That is, it runs
with exactly what is required by

d

dµ
(GFOF) = 0.

5.3 RGE for Green’s functions

We have now discussed the renormalization group equation for operators, coupling constants,
and scalar masses. We can also consider directly the running of Green’s functions. Consider, for
example, the bare correlation function of n photons and m fermions in QED

Gn,m
(0)

= 〈Ω|T {Aµ1

0

Aµn

0 ψ1
0

 ψm

0 }|Ω〉 (70)

This is constructed out of bare fields, and since there is no µ in the bare Lagrangian, this is µ-
independent. The bare Green’s function is infinite, but it is related to the renormalized Green’s
function by

Gn,m
(0)

=Z3

n

2Z2

m

2Gn,m (71)

where

Gn,m(p, eR,mR, µ)= 〈Ω|T {Aµ1

Aµn

ψ1
 ψm}|Ω〉 (72)
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The renormalized Green’s function is finite. It can depend on µ explicitly as well as on
momenta, collectively called p, and the parameters of the renormalized Lagrangian, namely the
renormalized coupling eR and the mass mR, which themselves depend on µ. Then,

0= µ
d

dµ
Gn,m

(0)
(73)

=Z3

n

2Z2

m

2

(

µ
∂

∂µ
+
n

2

µ

Z3

dZ3

dµ
+
m

2

µ

Z2

dZ2

dµ
+ µ

∂eR
∂µ

∂

∂eR
+ µ

∂mR

∂µ

∂

∂mR

)

Gn,m (74)

Defining

γ3=
µ

Z3

dZ3

dµ
, γ2=

µ

Z2

dZ2

dµ
(75)

this reduces to
(

µ
∂

∂µ
+
n

2
γ3+

m

2
γ2+ β

∂

∂eR
+ γmmR

∂

∂mR

)

Gn,m=0 (76)

This equation is known variously as the Callan-Symanzik equation, the Gell-Mann-Low

equation, the ’t Hooft-Weinberg equation and the Georgi-Politzer equation. (The dif-
ferences refer to different schemes, such as MS or the on-shell physical renormalization scheme.)
We will restrict our discussion to the MS form given above, and just call it the renormalization
group equation for Green’s functions.

One can also calculate Green’s functions with external operators inserted, such as
〈Ω|T {Jµ(x)ψ1(x1)ψ̄2(x2)}|Ω〉 considered in Section 5.1. For a general operator, we define

µ
d

dµ
O= γOO (77)

Then a Green’s function with an operator O in it satisfies
(

µ
∂

∂µ
+
n

2
γ3+

m

2
γ2+ β

∂

∂eR
+ γmmR

∂

∂mR
+ γO

)

G=0 (78)

If there are more operators, there will be more γO terms.

5.4 Anomalous dimensions

Now let us discuss the term anomalous dimension. We have talked about the mass dimension of
a field many times. For example, in four dimensions, [φ] =M1, [m] =M1, [ψ] =M3/2 and so on.
These numbers just tell us what happens if we change units. To be more precise, consider the
action for φ4:

S =

∫

d4x

[

−1

2
φ(�+m2)φ+ gφ4

]

(79)

This has a symmetry under xµ→ 1

λ
xµ, ∂µ→ λ∂µ, m→ λm, g→ g and φ→ λφ. This operation is

called dilatation and denoted by D. Thus,

D: φ→λd0φ (80)

The d0 are called the classical or canonical scaling dimensions of the various fields and cou-
plings in the theory.

Now consider a correlation function

Gn= 〈Ω|T {φ1(x1)
 φn(xn)}|Ω〉 (81)

In a classical theory, this Green’s function can only depend on the various quantities in the
Lagrangian raised to various powers:

Gn(x, g,m)=magbx1
c1

xn

cn (82)

By dimensional analysis, we must have a− c1−
 − cn=n. Thus we expect that D:Gn→ λnGn.
In the quantum theory, Gn can also depend on the scale where the theory is renormalized, µ.

So we could have

Gn(x, g,m, µ) =magbx1
c1

xn

cnµγ (83)
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where now a − c1 − 
 − cn = n − γ. Note that µ does not transform under D since it does not
appear in the Lagrangian – it is the subtraction point used to connect to experiment. So when
we act with D, only the x and m terms change, thus we find D: Gn → λn−γGn. Thus Gn does
not have the canonical scaling dimension. In particular,

µ
d

dµ
Gn= γGn (84)

which is how we have been defining anomalous dimensions. Thus the anomalous dimensions tell
us about deviations from the classical scaling behavior.

6 Scalar masses and RG flows

In this section we will examine the RG evolution of a super-renormalizable operator, namely a
scalar mass term m2φ2. To extract physics from running masses, we have to think of masses
more generally than just the location of the renormalized physical pole in an S-matrix, since by
definition the pole mass is independent of scale. Rather, we should think of them as a term in a
potential, like a φ4 interaction would be. This language is very natural in condensed matter
physics. As we will now see, in an off-shell scheme (like MS) masses can have scale dependence.
This scale dependence can induce phase-transitions and signal spontaneous symmetry breaking
(cf Lectures IV-4 and IV-9).

6.1 Yukawa potential correction

Recall that the exchange of a massive particle generates a Yukawa potential, with the mass
giving the characteristic scale of the interactions. Just as the Coulomb potential let us under-
stand the physics of a running coupling, the Yukawa potential will help us understand running
scalar masses. For example, consider the Lagrangian

L=−1

2
φ(�+m2)φ− 1

4!
λφ4+ gφJ (85)

which has the scalar field interacting with some external current J . The current-current interac-
tion at leading order comes from an exchange of φ, which generates the Yukawa potential. For
the static potential, we can drop time derivatives and then Fourier transform the propagator,
giving

V (r) = 〈Ω|φ(xQ )φ(0)|Ω〉=−
∫

d3k

(2π)3
g2

kQ
2
+m2

ei k
Q ·xQ =− g2

4πr
e−mr (86)

In the language of condensed matter physics, this correlation function has a correlation length ξ

given by the inverse mass, ξ =
1

m
. In this language, we can easily give a physical interpretation

to a running mass: the Yukawa potential will be modified by m → m(r) with calculable loga-
rithmic dependence on r.

To calculate m(r) we’ll solve the renormalization group evolution induced by the λφ4 interac-
tion. The first step to studying the RGE for this theory is to renormalize it at 1-loop, for which
we need to introduce the various Z-factors into the Lagrangian. In terms of renormalized fields

L=−1

2
Zφφ�φ− 1

2
ZmZφmR

2 φ2− µ4−dλR
4!
ZλZφ

2φ4 (87)

Since φ has mass dimension
d− 2

2
an extra factor of µ4−d has been added to keep λR dimension-

less, as was done for the electric charge in QED. The RGE for the mass comes from the µ-inde-

pendence of the bare mass m2=mR
2Zm:

0= µ
d

dµ
(m2)= µ

d

dµ
(mR

2Zm)=mR
2 Zm

(

1

mR
2
µ
d

dµ
mR

2 +
1

Zm
µ
d

dµ
δm

)

(88)
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Since the only µ-dependence in the Lagrangian comes from the φ4 interaction, we need to com-
pute the dependence of δm on λR and the dependence of λR on µ.

We can extract Zm (and Zφ) from corrections to the scalar propagator. The leading graph is
a seagull graph

iΣ2(p
2)=

�

p p

k

=
−iλR
2

µ4−d

∫

ddk

(2π)d
i

k2−mR
2 =

−iλRµ4−d

2(4π)d/2

(

1

mR
2

)

1−d

2Γ

(

1− d

2

)

The quadratic divergence in this integral shows up in dimensional regularization as a pole at d=
2 but is hidden if one expands near d = 4. Nevertheless, since quadratic divergences are just
absorbed into the counterterms, we can safely ignore them and focus on the logarithmic diver-
gences. After all, it is the non-analytic logarithmic momentum dependence which we will resum
using the renormalization group.

Expanding in d= 4− ε dimensions, Σ2(p
2) =

λRmR
2

16π2

1

ε
. The counterterms from Zφ= 1+ δφ and

Zm=1+ δm give a contribution

iΣct(p
2)=

�

p p
= iδφ(p

2−mR
2 )− iδmmR

2 (89)

So to order λR, δφ=0 and δm=
λR

16π2

1

ε
.

An alternative way to extract these counterterms is to use the propagator of the massless

theory and to treat mR
2 φ2 as a perturbation. This does not change the physics, since the massive

propagator is reproduced by summing the usual geometric series of 1PI insertions of the mass

i

p2
+

i

p2
(−imR

2 )
i

p2
+

i

p2
(−imR

2 )
i

p2
(−imR

2 )
i

p2
+
 =

i

p2−mR
2 (90)

However, one can look at just the first mass insertion to calculate the counterterms. The leading
graph with a insertion of the mass and the coupling λR is

iΣ2(p
2)=
�

p p

k k =(−imR
2 )

−iλR
2

µ4−d

∫

ddk

(2π)d
i

k2
i

k2
(91)

This is now only logarithmically divergent. Extracting the UV divergence with the usual trick

gives Σ2(p
2) =

λRmR
2

16π2

1

ε
and so δm=

λR

16π2

1

ε
, which is the same result we got from the quadratically

divergent integral.

Next, we need the dependence of λR on µ. The RGE for λR is derived by using that the bare
coupling λ= µ4−dλRZλ is µ independent, so

0= µ
d

dµ
(λ)= µ

d

dµ
(µ4−dλRZλ)= µελRZλ

(

ε+
µ

λR

d

dµ
λR+

µ

Zλ

d

dµ
δλ

)

(92)

Then, since δλ starts at order λR we have µ
d

dµ
λR = −ελR + O(λR

2 ). Although not necessary for

the running of mR, it’s not hard to calculate δλ at 1-loop. We can extract it from the radiative
correction to the 4-point function. With zero external momenta, the loop gives

(−iλR)23
2
µ2(4−d)

∫

ddk

(2π)d
i

k2
i

k2
= µ2(4−d) 3λR

2

16π2

i

ε
(93)

So that δλ=
3λR

16π2

1

ε
and then the β-function to order λR

2 is

β(λR)≡ µ
d

dµ
λR(µ)=−ελR− 3λR

2

16π2

1

ε
(−ε)=−ελR+

3λR
2

16π2
(94)

We will use this result below.
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Using the RGE for the mass, Eq. (88), µ
d

dµ
λR=−ελR and δm=

λR

16π2

1

ε
we find

γm≡ µ

mR
2

d

dµ
mR

2 =− 1

Zm

∂δm
∂λR

µ
dλR
dµ

=
λR
2

16π2
+O(λR

3 ) (95)

The solution, treating γm as constant, is

mR
2 (µ)=mR

2 (µ0)

(

µ

µ0

)γm

(96)

You can check in Problem 2 that the more general solution (including the µ-dependence of λR
following Eq. (50)) reduces to Eq. (96) for small λR.

Now let us return to the Yukawa potential. Since µ just represents an arbitrary scale with
dimensions of mass, we can equally well write the solution to the RGE in position space as

m2(r)=m0
2

(

r

r0

)−γm

(97)

where m0=m(r= r0). This leads to a corrected Yukawa potential

V (r)=− g2

4πr
exp[−rm(r)] =− g2

4πr
exp
[

−r1−
γm

2 r0

γm

2 m0

]

(98)

which is in principle measurable. The final form has been written in a suggestive way to connect
to what we will discuss below. Indeed, extracting a correlation length by dimensional analysis,
we find

V (r)=− g2

4πr
exp
[

−(r/ξ)
1−γm

2

]

, ξ= r0
1−2νm0

−2ν , ν=
1

2− γm
(99)

In the free theory, ξ scales like m0
−1, by dimensional analysis. With interactions we see it scales

like m0 to a different power of the mass, determined by ν. This quantity ν is known as a crit-

ical exponent. Dimensional transmutation has given us another scale with dimensions of mass,

r0
−1, which has changed the scaling relation predicted by dimensional analysis. These critical

exponents have been measured in a number of situations. In fact, we are very close to being able
to compare the result of our RG calculation to experimental results.

6.2 Wilson-Fisher fixed point

The classic example of a scalar field with a mass is magnetization M(x). This is a 3-vector field
MQ (x) indicating the local orientation of the magnetic dipole moment in some system. Its norm

M(x) =
∣

∣MQ (x)
∣

∣ is a scalar field. If you take some magnetic material and heat it up past its crit-
ical temperature, TC, its magnetization disappears. Indeed, the magnetization dies with distance
with a characteristic length scale ξ, the correlation length, which has been found to scale with
temperature across many materials like ξ ∼ (T − TC)

−0.63. This 0.63 is known as a critical

exponent and conventionally defined by ξ ∼ (T − TC)
−ν. In addition, many other apparently

unrelated second order phase transitions are characterized by nearly identical scaling.

The universality of this critical exponent suggests that it should be describable without
detailed knowledge of the microscopic system. This leads to a Ginzburg-Landau model, in which
one describes the system with an effective Lagrangian

L=Lkin − 1

2
(T −TC)M2− 1

4!
λM4+
 (100)

Here the T − TC factor just comes from assuming a Taylor exists near TC and nothing special
forces the linear term to vanish. This Lagrangian has the property that, below TC, the effective
mass-squared m2 = T − TC becomes negative, signaling spontaneous symmetry breaking into the
magnetic phase. Moreover, the transition is smooth across TC, as required for a second-order
phase transition. We will discuss spontaneous symmetry breaking more in Lecture IV-4.
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As a quick check, we already know that the 2-point function in a scalar theory like this
should behave like a Yukawa potential

〈Ω|M(r)M(0)|Ω〉∼ 1

r
e−rm=

1

r
exp
(

−r(T −TC)
1/2
)

(101)

Thus the classical theory predicts ν =
1

2
, which is not far from the observed universal value. But

now we know how to correct this value using quantum field theory – we just did the calculation.
We found

ν=
1

2− γm
(102)

So an anomalous dimension allows for this universal scaling behavior, that is, the existence of
universal critical exponents. This suggests that the Ginzburg-Landau effective Lagrangian may
be relevant even if we have no idea how to calculate γm.

There actually is a way to calculate ν using what we’ve already done. Recall that we found

that λR and the effective mass parameter mR
2 =(T −TC) run according to

µ
d

dµ
mR

2 =
λR
2

16π2
mR

2 +O(λR
2 )

µ
d

dµ
λR = −ελR+

3λR
2

16π2
+O(λR

3 )

(103)

For any ε, these equations have a solution with λR = mR = 0. This is known as the Gaussian

fixed point, since at this point the Lagrangian is a free theory of a massless scalar field and the
path integral is an exact Gaussian.

In condensed matter physics we are interested in the macroscopic, long-distance behavior of
a system. In particle physics, we are interested usually in the low-energy limit of a system,
which is most accessible experimentally. So in either case we would like to know what happens
as we lower µ. The behavior of a system as µ is lowered gives the renormalization group trajec-
tory or RG flow of the couplings in a system. For example, suppose we start near (but not on)

the Gaussian fixed point. Then the RG equation for λR at leading order is
d lnλR

d lnµ
= −ε which

implies that if d > 4 (ε < 0), the system will flow back towards the fixed point as µ decreases,
while for d < 4 (ε > 0), the system will flow away from the fixed point. Since many interesting
systems take place in d = 3 where the flow is away from the fixed point, the natural question is,
where do they flow to? As µ→ 0, they can either blow up, go to zero, or go to some non-zero
fixed point.

Instead of going all the way to d = 3, let us explore what happens in d = 4 − ε dimensions.

For 0<ε≪ 1, there exists a value of λR for which
d

dµ
λR=0, namely

λ⋆=
16π2ε

3
(104)

This is known as the Wilson-Fisher fixed point. At this value of the coupling γm=
ε

3
from Eq.

(95) and so, from Eq. (102)

ν =
3

6− ε
(105)

For ε = 1 corresponding to 3 dimensions, ν = 0.6 at this point, which is quite close to the
observed value of 0.63. This questionable practice of expanding around d = 4 to get results in
d=3 is known as the epsilon expansion. You can compute the two-loop value of ν in Problem
?.

Regardless of the validity of ε=1, we can at least trust the qualitative observation of Wilson
and Fisher, that there is a nontrivial fixed point (couplings do not all vanish) in this effective
theory for d < 4. As ε increases, the fixed point will move away from the λ⋆, due to large ε2 cor-
rections. This justifies the universality of the critical exponents in 3-dimensional systems – even
if we cannot calculate the anomalous dimension, we expect that for d< 3 it should still exist and
should be separate from the Gaussian fixed point.
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Fixed points are interesting places. Exactly on the fixed point, the theory is scale invariant,

since µ
d

dµ
mR

2 = µ
d

dµ
λR = 0. While there are many classical theories which are scale invariant

(such as QED with massless fermions) theories which are scale invariant at the quantum level
are much rarer. Such theories are known as conformal field theories. In a conformal theory,
the Poincare group is enhanced to a larger group called the conformal group. Recall that the
Poincare group acting on functions of spacetime is generated by translations, Pµ = −i∂µ, and
Lorentz transformations, Λµν = i(xµ∂ν − xν∂µ). In the conformal group, these are supplemented
with a generator for scale transformations D=−ixµ∂µ and four generators for special-conformal
transformations: Kµ = i(x2∂µ − 2xµxν∂ν). Invariance under the conformal group is so restrictive
that correlation functions in conformal field theories are strongly constrained. On the other
hand, conformal field theories do not have massive particles. In fact they do not have particles
at all. That is, there is no sensible way to define asymptotic single-particle states in such a
theory. Thus they do not have an S-matrix.

One way to find conformal field theories is by looking for fixed points of RG flows in non-
conformal field theories, as in the Wilson-Fisher example. Since conformal field theories have no
inherent scales, dimensional parameters such as mR in the Wilson-Fisher theory become dimen-
sionless. To see how the fixed point is approached, it is natural to rescale away any classical
scaling dimension of the various couplings. In the Wilson-Fisher case, we do this by defining
m̃R(µ)≡ 1

µ
mR(µ) so that m̃R is dimensionless. Then the RG equations become

µ
d

dµ
m̃R

2 =

(

−2+
λR
2

16π2

)

m̃R
2

µ
d

dµ
λR =−ελR+

3λR
2

16π2

(106)

The fixed point is at the same place, λ⋆ =
16π2ε

3
and mR

2 = 0. The RG flow for mR
2 and m̃R

2 are
shown in Figure 1.

ø¨

ΛR

m
R

2

ø¨

ΛR

m
R�

2

RG flow for λR Conventional RG flow diagram
and a dimensionful scale mR in which all parameters are dimensionless

Figure 1. Renormalization group flow in the Wilson-Fisher theory for 0 < ε ≪ 1. The Wilson-Fisher

fixed point indicated by a ⋆ at m = 0 and λ = λ⋆ is attractive. The Gaussian fixed point at m = λ = 0 is

indicated with a ⋄. The arrows denote flow as the length scale is increased, or equivalently, as µ is

decreased. On the left is the RG flow of a dimension one mass parameter, in which it appears that the

fixed-point is attractive. On the right is the flow in terms of a dimensionless m̃R which shows that the

fixed point is only attractive for m̃R=0.
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The different trajectories in an RG flow diagram represent different values of mR
2 and λR

which might correspond to different microscopic systems. For example, changing the tempera-
ture of a system moves it from one trajectory to another. The temperature for which mR = 0 is
the critical temperature where the theory intersects the nontrivial fixed point. In the diagram
on the right, in which all inherent scales have been removed, we see that to get close to the non-
trivial fixed point, one would have to be very close to the mR=0 trajectory.

6.3 Varieties of Asymptotic behavior

One can easily imagine more complicated RG flows than those described by the Wilson-Fisher
theory. With just one coupling, such as in QED or in QCD, the RG flow is determined by the β

function β(α) = µ
d

dµ
α. When the coupling is small, the theory is perturbative, and then the cou-

pling must either increase or decrease with scale. If the coupling increases with µ, as in QED, it
goes to zero at long distances. In this case it is said to be infrared free. If it decreases with µ

(as in QCD, see Lecture IV-2), it goes to zero at short distances and the theory is said to be
asymptotically free. The third possibility in a perturbative theory is that β(e) = 0 exactly, in
which case the theory is scale invariant. If the coupling is nonperturbative one can still define a
coupling through the value of a Green’s function. Then, as long as β(α) > 0 at one α and
β(α) < 0 at a larger α, there is guaranteed to be an intermediate value where β(α⋆) = 0. With
multiple couplings there are other possibilities for solutions to the RGEs. For example, one
could imagine a situation in which couplings circle around each other. It’s certainly easy to
write down coupled differential equations with bizarre solutions; whether such equations corre-
spond to anything in nature or in a laboratory is another question.

There are not many known examples of perturbative conformal field theories in 4 dimen-
sions. One is called N = 4 super Yang-Mills theory. Another possibility is if the leading β-func-
tion coefficient is small, for example if β(α) = β0α

2 + β1α
3 +
 where β0 happens to be of order

α. Then there could be a cancellation between β0 and β1 and a nontrivial fixed point at some
finite value of α. That this might happen in a non-Abelian gauge theory with a large enough
number of matter fields was conjectured by Banks and Zaks and is known as the Banks-Zaks

theory.

7 Wilsonian RGE

So far we have been discussing the RGE as an invariance of physical quantities to the scale µ
where the renormalization conditions are imposed. This is the continuum renormalization group,
where all comparisons are made after the UV regulator has been completely removed. The
Wilsonian picture instead supposes that there is an actual physical cutoff Λ, as there would be
in a metal (the atomic spacing) or string theory (the string scale). Then all loops are finite and
the theory is well-defined. In this case, one can (in principle) integrate over a shell of
momentum in the path integral Λ′ < p < Λ and change the couplings of the theory so that low
energy physics is the same. The Wilsonian RGE describes the resulting flow of coupling con-
stants under infinitesimal changes in Λ. The reason we focused on the continuum renormaliza-
tion group first is that it is easier to connect to observables, which coupling constants are not.
However, the Wilsonian RGE helps explain why renormalizable theories play such an important
role in physics.

You have perhaps heard people say mysterious phrases like “a dimension 6 operator, such as

ψ̄ψψ̄ψ is irrelevant since it should have a coefficient
1

Λ2
, where Λ is an arbitrarily large cutoff.”

You may also have wondered how the word “should” earned a place in scientific discourse. There
is indeed something very odd about this language, since if Λ = 1019 GeV the operator

1

Λ2
ψ̄ψψ̄ψ

can be safely be ignored at low energy, but if Λ is lowered to 1 GeV, this operator becomes
extremely important. This language, although imprecise, actually is logical. It originates from
the Wilsonian renormalization group, as we will now explain.
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To begin, imagine that you have a theory with a physical short distance cutoff ΛH which is
described by a Lagrangian with a finite or infinite set of operators Or of various mass dimen-
sions r. For example, in a metal with atomic spacing ξ the physical cutoff would be ΛH ∼ ξ−1

and some operators might look like
1

ΛH
2 ψ̄ψψ̄ψ where ψ correspond to atoms. Let us write a gen-

eral Lagrangian with cutoff ΛH as L(ΛH) =
∑

Cr(ΛH)ΛH
4−rOr with Cr(ΛH) some dimensionless

numbers. These numbers can be large and are probably impossible to compute. In principle
they could all be measured, and we would need an infinite number of renormalization conditions
for all the Cr(ΛH) to completely specify the theory. The key point, however, as we will show, is
that not all the Cr(ΛH) are important for long-distance physics.

At low energies, we don’t need to take Λ to be as large as ξ−1. As long as Λ is much larger
than any energy scale of interest we can perform loops as if Λ =∞ and cutoff-dependent effects
will be suppressed by powers of

E

Λ
. (For example, for observables with E ∼ 100 GeV, you don’t

need Λ = 1019 GeV; Λ ∼ 1010 GeV works just as well.) So let us compute a different Lagrangian
L(Λ) =∑ Cr(Λ)Λ

4−rOr with a cutoff Λ < ΛH by demanding that physical quantities computed
with the two Lagrangians be the same. With Λ=ΛL≪ΛH, the coefficients Cr(ΛL) will be some
other dimensionless numbers, which may be big or small, and which are (in principle) com-
putable in terms of Cr(ΛH).

Now, if we’re making large distance measurements only, we should be able to work with
L(ΛL) just as well as L(ΛH). So we might as well measure Cr(ΛL) to connect our theory to
experiment. The important point, which follows from the Wilsonian RG is that Cr(ΛL) is inde-

pendent of Cr(ΛH) if r > 4. Since there will only be a finite number of operators in a given
theory with mass dimension r 6 4, if we measure Cr64(ΛL) for these operators (as renormaliza-
tion conditions), we can then calculate Cr>4(ΛL) for all the other operators as functions of the
Cr64(ΛL). An explicit example is given below.

This result motivates the definition of relevant operators as those with r < 4 and irrelevant

operators as those with r > 4. Operators with r = 4 are called marginal. We only need to
specify renormalization conditions for the relevant and marginal operators, of which there are
always a finite number. The Wilson coefficients for the irrelevant operators can be computed
with very weak dependence any boundary condition related to short-distance physics, that is, on
the values of Cr(ΛH).

Thus, it is true that with Λ=ΛH or Λ=ΛL the Lagrangian should have operators with coef-
ficients determined by Λ to some power. Therefore, irrelevant operators do get more important
as the cutoff is lowered. However, the important point is not the size of these operators but that
their Wilson coefficients are computable. In other words

• Values of couplings when the cutoff is low are insensitive to the boundary conditions asso-
ciated with irrelevant operators when the cutoff is high.

If we take the high cutoff to infinity then the irrelevant operators are precisely those for which
there is zero effect on the low-cutoff Lagrangian. Only relevant operators remain when the cutoff
is removed. So,

• The space of renormalizable field theories is the space for which the limit ΛH →∞ exists,
holding the couplings fixed when the cutoff is ΛL.

Another important point is that in the Wilsonian picture one does not want to take ΛL down to
physical scales of interest. One wants to lower Λ enough so that the irrelevant operators become
insensitive to boundary conditions, but then to leave it high enough so one can perform loop
integrals as if Λ=∞. That is

• The Wilsonian cutoff Λ should always be much larger than all relevant physical scales.
This is in contrast the µ in the continuum picture which should be taken equal to a rele-
vant physical scale.

For example, in the electroweak theory, one can imagine take Λ = 100 TeV, not Λ = 1019 GeV
and not Λ= 100GeV.
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7.1 Wilson-Polchinski RGE

To prove the above statements, we need to sort out what is being held fixed and what is
changing. Since the theory is supposed to be finite with UV cutoff Λ, the path integral is finite
(at least to a physicist), and all the physics is contained in the generating functional Z[J ]. The

RGE is then simply Λ
d

dΛ
Z[J ] = 0. If we change the cutoff Λ, then the coupling constants in the

Lagrangian must change to hold Z[J ] constant. For example, in a scalar theory, we might have

Z[J ] =

∫ ΛH

Dφ exp
{

i

∫

d4x

(

−1

2
φ(�+m2)φ+

g3
3!
φ3+

g4
4!
φ4+

g6
6!
φ6

 + φJ

)}

(107)

for some cutoff ΛH on the momenta of the fields in the path integral. All the couplings, m, g3,
g4, etc. are finite. If we change the cutoff to Λ then the couplings change to m′, g3

′, g4
′ etc., so

that Z[J ] is the same.

Unfortunately, actually performing the path integral over a Λ-shell is extremely difficult to
do in practice. A more efficient way to phrase the Wilsonian RGE in field theory was developed
by Polchinski. Polchinski’s idea was first to cut off the path integral more smoothly by writing

Z[J ] =

∫

DφeiS+φJ =

∫

Dφ exp
{

i

∫

d4x

(

−1

2
φ(�+m2)e

�

Λ2φ+
g3
3!
φ3+

g4
4!
φ4+
 + φJ

)}

(108)

The e�/Λ2

factor makes the propagator go like e−p2/Λ2 → 0 at high energy. You can get away
with this only in a scalar theory in Euclidean space, but we will not let such technical details
prevent us from making very general conclusions. It’s easiest to proceed in momentum space,
where φ(x)2→ φ(p)φ(−p). Then

Z[J ] =

∫

DφeiS+φJ =

∫

Dφ exp
{

i

∫

d4p

(2π)4

(

1

2
φ(p)(p2−m2)e

− p2

Λ2φ(−p) +Lint(φ)+ φJ

)}

Taking
d

dΛ
on both sides gives

Λ
d

dΛ
Z[J ] = i

∫

Dφ
∫

d4p

(2π)4

(

φ(p)(p2−m2)φ(−p) p
2

Λ2
e
− p2

Λ2 +Λ
d

dΛ
Lint(φ)

)

eiS+φJ (109)

Since
p2

Λ2e
−p2

Λ2 only has support near p2 ∼ Λ2, this says that the change in Lint comes from that
momentum region. Therefore, the RGE will be local in Λ. This is a general result, independent
of the precise way the cutoff is imposed. It can also be used to define a functional differential
equation known as the exact renormalization group (see Problem 4), which we will not
make use of here.

As a concrete example, consider a theory with a dimension 4 operator (with dimensionless
coupling g4) and a dimension 6 operator (with coupling g6 with mass dimension −2). Then the

RGE Λ
d

dΛ
Z[J ] = 0 would imply some equations we can write as

Λ
d

dΛ
g4= β4(g4,Λ2g6) (110)

Λ
d

dΛ
g6=

1

Λ2
β6(g4,Λ

2g6) (111)

where β4 and β6 are some general, complicated functions. The factors of Λ have all been
inserted by dimensional analysis, since as we just showed, no other scale can appear in Λ

d

dΛ
Z[J ].

To make these equations more homogeneous, let us define dimensionless couplings λ4 = g4 and
λ6=Λ2g6. Then,

Λ
d

dΛ
λ4= β4(λ4, λ6) (112)

Λ
d

dΛ
λ6− 2λ6= β6(λ4, λ6) (113)
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The −2λ6 term implies that if β6 is small, then λ6(Λ) = λ6(ΛH)
(

Λ

ΛH

)

2
is a solution. We would

like this to mean that as the coupling Λ is taken small, Λ≪ ΛH, the higher dimension operators
die away. However, the actual coupling of the operator for this solution is just g6(Λ) =
1

ΛH
2
λ6(ΛH) = g6(ΛH) which does not die off (it doesn’t run since we have set β = 0), so things are

not quite that simple. We clearly need to work beyond 0th order.

It is not hard to solve the RGEs explicitly in the case when β4 and β6 are small. Actually,
one does not need the βi to be small, rather one can start with an exact solution to the full
RGEs and then expand perturbatively around the solution. For simplicity, we will just assume
that the βi can be expanded in their arguments. To linear order, we can write

Λ
d

dΛ
λ4= aλ4+ bλ6 (114)

Λ
d

dΛ
λ6= cλ4+(2+ d)λ6 (115)

and we assume a, b, c, d are small real numbers, so that the anomalous dimension does not over-
whelm the classical dimension (otherwise perturbation theory would not be valid). It is now
easy to solve this vector of homogeneous linear differential equations by changing to a diagonal
basis

λ4̃=− c

∆
λ4− 2+ d− a−∆

2∆
λ6, λ6̃=

c

∆
λ4+

2+ d− a+∆

2∆
λ6 (116)

where ∆= 4bc+(d− a+2)2
√

. The RGEs are easy to solve now:

λ4̃(Λ)=

(

Λ

Λ0

)

d+2+a−∆

2 λ4̃(Λ0), λ6̃(Λ)=

(

Λ

Λ0

)

d+2+a+∆

2 λ6̃(Λ0) (117)

Back in terms of the original basis, we then have

λ4(Λ)=

(

Λ

Λ0

)

d+2+a−∆

2

[(

2+ d− a+∆

2∆

)

λ4(Λ0)− b

∆
λ6(Λ0)

]

+

(

Λ

Λ0

)

d+2+a+∆

2

[

−
(

2+ d− a−∆

2∆

)

λ4(Λ0)+
b

∆
λ6(Λ0)

]}

(118)

λ6(Λ)=

(

Λ

Λ0

)

d+2+a−∆

2

[

− c

∆
λ4(Λ0)−

(

2+ d− a−∆

2∆

)

λ6(Λ0)

]

+

(

Λ

Λ0

)

d+2+a+∆

2

[

c

∆
λ4(Λ0)+

(

2+ d− a+∆

2∆

)

λ6(Λ0)

]}

(119)

which is an exact solution to Eqs (114) and (115). In these solutions, λ4(Λ0) and λ6(Λ0) are free
parameters to be set by boundary conditions.

What we would like to know is the sensitivity of λ6 at some low scale ΛL to its initial condi-
tion at some high scale ΛH for fixed, renormalized, value of λ4(ΛL). For simplicity, let us take
λ6(ΛH) = 0 (any other boundary value would do just as well, but the solution is messier). Then,
Eqs. (118) and (119) can be combined into

λ6(Λ)=
2c
[(

Λ

ΛH

)

∆− 1
]

(2+ d− a+∆)− (2+ d− a−∆)
(

Λ

ΛH

)

∆
λ4(Λ) (120)

Setting Λ=ΛL≪ΛH and assuming a, b, c, d≪ 2, so that ∆≈ 2, we find

λ6(ΛL)=− c
2

(

1− ΛL
2

ΛH
2

)

λ4
L(ΛL) (121)
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In particular, the limit ΛH →∞ exists. Back in terms of g4 and g6 we have fixed g4(ΛL) and set

g6(ΛH) = 0. Thus as ΛH → ∞ we have g6(ΛL) = − c

2

1

ΛL
2
g4(ΛL). That is, the boundary condition

at large ΛH is totally irrelevant to the value of g6 at the low scale. That is why operators with
dimension greater than 4 are called irrelevant. This result is shown in Figure 2.
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Figure 2. Solutions of the Wilsonian RGEs with a= 0.1, b= 0.2, c= −0.5 and d= 0.3. We fix λ4(ΛL) =

0.5 and look at how the value of λ6(ΛL) depends on λ6(ΛH) for some higher ΛH. As ΛH → ∞ the value

of λ6(Λ) goes to a constant value, entirely set by λ4(Λ) and the anomalous dimensions. Arrows denote

RG flow to decreasing Λ. Note the convergence is extremely quick.

To relate all this rather abstract manipulation to physics, recall the calculation of the elec-
tron magnetic moment from Lecture III-3. We found that the moment was g = 2 at tree-level
and g= 2 +

α

π
at 1-loop. If we had added to the QED Lagrangian an operator of the form Oσ =

e

4
ψ̄σµνψFµν with some coefficient Cσ this would have given g= 2 +

α

π
+ Cσ. Since the measured

value of g is in excellent agreement with the calculation ignoring Cσ, we need an explanation of
why Oσ should be absent or have a small coefficient. The answer is given by the above calcula-
tion, with g4 representing α and g6 representing the coefficient of Oσ. Say we do add Oσ to the
QED Lagrangian with even a very large coefficient, but with the cutoff set to some very high
scale, say ΛH ∼MPl ∼ 1019 GeV. Then when the cutoff is lowered down, even a little bit (say to
1015 GeV), whatever you set your coefficient to at MPl would be totally irrelevant: the coefficient
of Oσ would now be determined completely in terms of α, like g6 is determined by g4. Hence g
becomes a calculable function of α. The operator Oσ is irrelevant to the g−2 calculation.

Note that if we lowered the cutoff down to say 1 MeV, then Oσ would indeed give a contri-
bution to g, but a contribution calculable entirely in terms of α. With such a low cutoff, there
would be cutoff dependence in the 1-loop calculation of g − 2 as well (which is tremendously dif-
ficult to actually calculate). Indeed, these two contributions must precisely cancel, since the
theory is independent of cutoff. That is why one does not want to take the cutoff ΛL down to
scales near physics of interest in the Wilsonian picture. To repeat, in the continuum picture, µ
is of order of physical scales, but in the Wilsonian picture, Λ is always much higher than all of
the relevant physical scales.

Returning to our toy RGEs, suppose we set λ4(ΛH)= 0. Then we would have found

λ4(Λ)=
2b
[

1−
(

Λ

ΛH

)

∆
]

2+ d− a−∆− (2+ d− a+∆)
(

Λ

ΛH

)

∆
λ6(Λ) (122)

Expanding this for a, b, c, d≪ 2 gives

λ4(ΛL)=
b

2

(

1− ΛH
2

ΛL
2

)

λ6(ΛL) (123)
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which diverges as ΛH →∞! Thus, we cannot self-consistently hold the irrelevant couplings fixed
at low energy and take the high energy cutoff to infinity.

The same would be true if we had a dimension 4 coupling (like a gauge coupling) and a
dimension 2 parameter, like m2 for a scalar. Then we would have found an extraordinary sensi-
tivity of m2(ΛL) to the boundary condition m2(ΛH) if g(ΛL) is held fixed. Of course, like any
renormalizable coupling, one should fix m2(ΛL) through a low-energy experiment, for example,
measuring the Higgs mass. The Wilsonian RG simply implies that if there is a short-distance
theory with cutoff ΛH in which mh is calculable then mh(ΛH) should have a very peculiar

looking value. For example, suppose m(ΛL) = 10 GeV when ΛL = 105 GeV. Then, there is some
value for m2(ΛH) with ΛH = 1019 GeV. If there were a different short-distance theory for which

m2(ΛH) were different by factor of order
ΛL

2

ΛH
2
= 10−38, then m2(ΛL) would differ by a factor of

order 1 (see Problem 5). This is the fine-tuning problem. It is a sensitivity of long-distance
measurements to small deformations of a theory defined at some short distance scale. The gen-
eral result is that relevant operators, like scalar masses are UV-sensitive.

7.2 Generalization and discussion

The generalization of the above 2-operator example is a theory with an arbitrary set of opera-
tors On. To match onto the Wilson operator language (this is, after all, the Wilsonian RGE), let
us write

Z[J ] =

∫ Λ

Dφ exp
{

i

∫

d4x
∑

n

CnOn(φ)

}

(124)

Since there is a cutoff, all couplings (Wilson coefficients Cn) in the theory are finite. The RGE

in the Wilsonian picture is Λ
d

dΛ
Z[J ] = 0 which forces

Λ
d

dΛ
Cn= βn({Cm},Λ) (125)

for some βn. In the continuum picture, the RGE we used was

µ
d

dµ
Cn= γnmCm (126)

which looks a lot like the linear approximation to the Wilsonian RGE. In fact, we can linearize
the Wilsonian RGE not necessarily by requiring that all the couplings be small, but simply by
expanding around a fixed point, which is a solution of Eq.(125) for which βn=0.

In the continuum language, although the cutoff is removed the anomalous dimensions γmn

are still determined by the UV divergences. So these two equations are very closely related.
However, there is one very important difference: in the continuum picture quadratic and higher-
order power-law divergences are exactly removed by counterterms. In dimensional regulariza-
tion, this is trivial, since power-law divergent integrals just give 0 (they give poles at d = 2, d =
0, etc, but 0 when d→ 4). But for any regulator, the power divergences can be absorbed into the
renormalization of operators in the theory. In the continuum picture of renormalization, the
only UV divergences corresponding to physically observable effects are logarithmic ones (cf. Lec-
ture III-8). With a finite cutoff, one simply has Λ2 terms in the RGE. This Λ2-dependence was
critical for the analysis of g4 and g6 in the previous subsection.

For a theory with general, possibly non-perturbative βn, consider a given subset S of the
operators and its complements S. Choose coefficients for the operators in S to be fixed at a
scale ΛL and set the coefficients for the operators in S to 0 at a scale ΛH. If it is possible to
take the limit ΛH → ∞ so that all operators have finite coefficients at ΛL, the theory restricted
to the set S is called a renormalizable theory. Actually, one does not have to set all the oper-
ators in S to 0 at ΛH; if there is any way to choose their coefficients as a function of ΛH so that
the theory at ΛL is finite, then the theory is still considered renormalizable.
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It is not hard to see that this definition coincides with the one we have been using all along.
As you might imagine, generalizing the g4/g6 example above, any operator with dimension
greater than 4 will be non-renormalizable and irrelevant. Operators with dimension less
than 4 are super-renormalizable and relevant. Marginal operators have dimension equal to
4; however, if the operator has any anomalous dimension at all it will become marginally rele-
vant or marginally irrelevant. From the Wilsonian point of view, marginally irrelevant operators
are the same as irrelevant ones – one cannot keep their couplings fixed at low energy and remove
the cutoff.

Technically, the terms relevant and irrelevant should be applied only to operators corre-
sponding to eigenvectors of the renormalization group. Otherwise there is operator mixing. So
let us diagonalize the matrix γmn and consider its eigenvalues. Any eigenvalue λn of γmn with
λn > 0 will will cause the couplings Cn to decrease as µ is lowered. Thus these operators
decrease in importance at long distances. They are the irrelevant operators. Relevant operators
have λn < 0. These operators increase in importance as µ is lowered. If we try to take the long-
distance limit, the relevant operators blow up. It is sometimes helpful to think of all possible
couplings in the theory as a large multidimensional surface. An RG fixed point therefore lies on
the subsurface of irrelevant operators. Any point on this surface will be attracted to the fixed
point, while any point off the surface will be repelled away from it.

In practice, we do not normally work in a basis of operators which are eigenststates of the
renormalization group. In a perturbative theory (near a gaussian fixed point), operators are usu-
ally classified by their classical scaling dimension dn. The coefficient of such an operator (in 4
dimensions) has classical dimension [Cn] = 4 − dn. If we rescale Cn → Cnµ

dn−4 to make the
coeffieicnt dimensionless, then the γnn component in the matrix Eq. (126) becomes γnn = dn −
4. Thus, at leading order, irrelevant operators are those with dn > 4. In the quantum theory,
loops induce non-diagonal components in γmn. If a relevant or relevant operator mixes into an
irrelevant one, this mixing completely dominates the RG evolution of Cn at low energy. In this
way, an operator which is classified as irrelevant based on its scaling dimension can become
more important at large distances. However, the value of its coefficent quickly becomes a caclu-
lable function of coupling constants corresping to more relevant operators. We saw this through
direct calculation.

8 Problems

1. Show that A= 0 in Eq. (37) by evaluating the anomalous dimension of GF from Eq (39)
in QED. At an intermediate stage, you may want to use the Fierz identity

(ψ̄1PLγ
µγαγβψ2)(ψ̄3PLγ

µγαγβψ4)= 16(ψ̄1PLγ
µψ2)(ψ̄3PLγ

µψ4) (127)

which you derived in problem ??.

2. Show that Eq. (96) follows from the small λR limit of the general solution to mR(µ).

3. Compute the two-loop value of the critical exponent ν in the Wilson-Fisher theory.

4. Derive

Λ
d

dΛ
Lint(φ) =

∫

d4p
(2π)4

p2+m2

p2

Λ2
e

p2

Λ2

[

δLint

δφ(p)

δLint

δφ(−p) −
δ2Lint

δφ(p)δφ(−p)

]

(128)

using the Wilson-Polchinski RGE. Show that the first term corresponds to integrating
out tree-level diagram and the second from loops.

5. Consider a theory with a dimension 2 mass parameter m2 and a dimensionless coupling
g.

a) Write down and solve generic RGEs for this theory, as in Eqs. (114) and (115).

b) Fix g(ΛL) = 0.1 for concreteness with ΛL= 105GeV. What value of m2(ΛH) would

lead to m2(ΛL) = 100GeV?

c) What would m2(ΛL) be if you changed m2(ΛH) by 1 part in 1020?

d) Sketch the RG flows for this theory.
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