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Preface

The seeds of this book have been planted in the far east, where I wrote
lecture notes for international schools in Tianjin, China in 2007 and in
Bangkok, Thailand in 2011. I then realized that an up-to-date text for
beginning noncommutative geometers on the applications of this rather new
mathematical field to particle physics was missing in the literature.

This made me decide to transform my notes into the form of a book.
Besides the given challenge inherent in such a project, this was not made
easy because of recent, rapid developments in the field, making it difficult
to choose what to include and to decide where to stop in my treatment.
The current state of affairs is at least touched upon in the final chapter
of this book, where I discuss the latest particle physics models in noncom-
mutative geometry, and compare them to the latest experimental findings.
With this, I hope to have provided a path that starts with the basic prin-
ciples of noncommutative geometry and leads to the forefront of research in
noncommutative geometry and particle physics.

The intended audience consists of mathematicians with some knowledge
of particle physics, and of theoretical physicists with some mathematical
background. Concerning the level of this textbook, for mathematicians I
assume prerequisites on gauge theories at the level of e.g. [32, 19], and
recommend to first read the book [72] to really appreciate the last few
chapters of this book on particle physics/the Standard Model. For physi-
cists, I assume knowledge of some basic algebra, Hilbert space and operator
theory (e.g. [185, Chapter 2]), and Riemannian geometry (e.g. [116, 155]).
This makes the book particularly suitable for a starting PhD student, af-
ter a master degree in mathematical/theoretical physics including the above
background.

I would like to thank the organizers and participants of the aforemen-
tioned schools for their involvement and their feedback. This also applies
to the MRI-Masterclass in Utrecht in 2010 and the Conference on index
theory in Bogotá in 2008, where Chapter 5 finds its roots. Much feedback
on previous drafts was gratefully received from students in my class on non-
commutative geometry in Nijmegen: Bas Jordans, Joey van der Leer and
Sander Uijlen. I thank my students and co-authors Jord Boeijink, Thijs
van den Broek and Koen van den Dungen for allowing me to transcribe
part of our results in the present book form. Simon Brain, Alan Carey and
Adam Rennie are gratefully acknowledged for their feedback and suggested
corrections. Strong motivation to writing this book was given to me by
my co-author Matilde Marcolli. I thank Gerard Bäuerle, Gianni Landi and
Klaas Landsman for having been my main tutors in writing, and Klaas in
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particular for a careful final proofreading. I also thank Aldo Rampioni at
Springer for his help and guidance. I thank Alain Connes for his inspiration
and enthousiasm for the field, without whose work this book could of course
not have been written.

I am thankful to my family and friends for their continuous love and
support. My deepest gratitude goes to Mathilde for being my companion
in life, and to Daniël for making sure that the final stages of writing were
frequently, and happily, interrupted.

Walter van Suijlekom
April 2014
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CHAPTER 1

Introduction

Ever since the early days of noncommutative geometry it has become
clear that this field of mathematics has close ties with physics, and with
gauge theories in particular. In fact, non-abelian gauge theories, and even
more prominently, the Standard Model of particle physics, were a guiding
principle in the formulation of noncommutative manifolds in [62, 63].

For one thing, noncommuting operators appear naturally in quantum
mechanics. As a matter of fact, there is a rather direct path from experi-
mentally measured atomic spectra to Heisenberg’s matrix mechanics which
is one of the motivating examples of noncommutative geometry [60, Section
I.1].

In the other direction, it turns out that the main technical device in
noncommutative geometry, a spectral triple, naturally gives rise to a gauge
theory. This holds in full generality, but the great potential of the noncom-
mutative approach, at least in particle physics, becomes really visible when
specific examples are considered that in fact correspond to familiar gauge
theories arising in physics. This is crowned by the derivation [54] of the full
Standard Model of particle physics together with all its subtleties, including
the Higgs field, the spontaneous symmetry breaking mechanism, neutrino
mixing, see-saw mechanism, et cetera.

It is the goal of this book to explore this path, and, starting with the
basics, to work towards applications in particle physics, notably to the Stan-
dard Model of elementary particles.

The first ingredient of a spectral triple is an involutive or ∗-algebra A of
operators in a Hilbert space H, with the involution given by the hermitian
adjoint of an operator. This immediately gives rise to a gauge group G de-
termined by the unitary elements in A. In general, if A is noncommutative,
then this group is non-abelian.

The gauge fields arise from a second, purely spectral data, in the guise
of a self-adjoint operator D in H, satisfying suitable conditions (cf. Defi-
nition 4.30 below). The operator D is modeled on the Dirac operator on
a Riemannian spin manifold M , an elliptic first-order differential operator
whose square coincides, up to a scalar term, with the Laplacian.

A key role will be played by the spectrum of D, assumed discrete; we
will list its eigenvalues (with multiplicities) as {λn}n∈Z. The gauge group G
acts on D by conjugation with a unitary operator, D 7→ UDU∗. Unitarity
guarantees invariance of the spectrum under such a gauge transformation.

1



2 CHAPTER 1. INTRODUCTION

Hence a spectral invariant is in particular gauge invariant, and it is
natural to define the so-called spectral action as [49, 50]∑

n∈Z
f

(
λn
Λ

)
.

Here the function f is a suitable cutoff function that makes the outcome of
the sum finite, and Λ is a real cutoff parameter. The spectral action is inter-
preted as an action functional that describes the dynamics and interactions
of the gauge fields constituting D.

The fermionic fields that are associated to a spectral triple are sim-
ply vectors ψ in the given Hilbert space, and their natural invariant is the
fermionic action:

(ψ,Dψ) .

The previous paragraphs sketch the derivation of a generalized gauge
theory from any spectral triple. When one restrict to a particular class of
spectral triples, this leads to ordinary gauge theory defined on a manifold
M in terms of vector bundles and connections. The idea is very simple,
essentially dating back to [59]: one considers the noncommutative space
M × F given by the product of M with a finite, noncommutative space F .
The space F gives rise to the internal, gauge degrees of freedom. In fact, it
is described by a finite-dimensional algebra of matrices, for which the gauge
group becomes a matrix Lie group, such as SU(N). The self-adjoint operator
DF is given by a hermitian matrix. Combined with the background manifold
M , these objects are turned into global ones: A consists of the sections of
a bundle of matrix algebras, and D is a combination of DF and the Dirac
operator on M (assumed to be a Riemannian spin manifold). The operator
D is found to be parametrized by gauge fields and scalar fields in suitable
representations of the gauge group G. The fermionic fields ψ are sections of
a spinor bundle on which D acts as a linear differential operator, minimally
coupled to the gauge fields.

As we already said, the spectral action is manifestly gauge invariant,
and for this latter class of examples it describes a scalar gauge theory for
the group G. As a bonus, it is minimally coupled to (Euclidean) gravity, in
that the gravitational degrees of freedom are present as a background field
in the Dirac operator on M . Moreover, the fermionic action then gives the
usual coupling of the fermionic fields to the gauge, scalar and gravitational
fields.

In this respect, one of the great achievements of noncommutative geom-
etry is the derivation of the full Standard Model of particle physics from a
noncommutative space M × FSM [54]. In fact, from this geometric Ansatz
one obtains the Standard Model gauge fields, the scalar Higgs field, and
the full fermionic content of the Standard Model. Moreover, the spectral
and fermionic action on M × FSM give the full Lagrangian of the Standard
Model, including (amongst other benefits) both the Higgs spontaneous sym-
metry breaking mechanism and minimal coupling to gravity. In addition,
the spectral action introduces relations between the coupling constants and
the masses of the Standard Model. This allows one to derive physical pre-
dictions such as the Higgs mass, finally bringing us back to experiment.

NCG and Particle Physics, W.D. van Suijlekom



3

This book is divided into two parts. Part 1 presents the mathematical
basics of noncommutative geometry and discusses the local index formula
as a mathematical application. As a stand alone, it may be used as a first
introduction to noncommutative geometry.

The second part starts in the same mathematical style, where in the
first two chapters we analyze the structure of a gauge theory associated
to any spectral triple. Comparable to a kaleidoscope, we then focus on a
specific class of examples, and within this class select the physically relevant
models. In the last two chapters this culminates in the derivation of the
full Standard Model of particle physics. All these examples heavily exploit
the results from Part 1. Hence the reader who is already somewhat familiar
with noncommutative geometry, but is interested in the gauge-theoretical
aspects, may want to skip Part 1 and jump immediately to the second part.

Let us quickly go through the contents of each of the chapters. Chapter
2 and 3 present a ‘light’ version of noncommutative geometry, restricting
ourselves to finite noncommutative spaces. In other words, we here only
consider finite-dimensional spectral triples and avoid technical complications
that arise in the general case. Besides the pedagogical advantage, these finite
spaces will in fact turn out to be crucial to the physical applications of the
later chapters, where they describe the aforementioned internal space F .

Thus, in Chapter 2 we start with finite discrete topological spaces and
replace them by matrix algebras. The question whether this procedure can
be reversed leads naturally to the notion of Morita equivalence between ma-
trix algebras. The next step is the translation of a metric structure into a
symmetric matrix, motivating the definition of a finite spectral triple. We
discuss Morita equivalence for spectral triples and conclude with a diagram-
matic classification of finite spectral triples.

In Chapter 3 we enrich finite spectral triples with a real structure and
discuss Morita equivalences in this context. We give a classification of finite
real spectral triples based on Krajewski diagrams [127] and relate this to
the classification of irreducible geometries in [51].

Chapter 4 introduces spectral triples in full generality. Starting with
some background on Riemannian spin geometry, we motivate the general
definition of a real spectral triple by the Dirac operator on a compact Rie-
mannian spin manifold.

As a first application of spectral triples, we present a proof of the local
index formula of Connes and Moscovici [66] in Chapter 5, following Higson’s
proof [109].

In the second part of this book we start to build gauge theories from
real spectral triples. Chapter 6 takes a very general approach and associates
a gauge group and a set of gauge fields to any real spectral triple. An
intriguing localization result can be formulated in terms of a bundle of C∗-
algebras on a background topological space. The gauge group acts fiberwise
on this bundle and the gauge fields appear as sections thereof.

Maintaining the same level of generality, we introduce gauge invariant
quantities in Chapter 7, to wit the spectral action, the topological spectral
action (which is closely related to the above index), and the fermionic action
[49, 50]. We discuss two possible ways to expand the spectral action, either

NCG and Particle Physics, W.D. van Suijlekom



4 CHAPTER 1. INTRODUCTION

asymptotically in terms of the cutoff Λ, or perturbatively in terms of the
gauge fields parametrizing D.

In Chapter 8 we introduce the important class of examples alluded to
before, i.e. noncommutative spaces of the form M × F with F finite. Here,
Chapters 2 and 3 prove their value in the description of F . Following [186]
we analyze the structure of the gauge group GF for this class of examples,
and determine the gauge fields and scalar fields as well as the corresponding
gauge transformations. Using heat kernel methods, we obtain an asymptotic
expansion for the spectral action on M×F in terms of local formulas (on M).
We conclude that the spectral action describes the dynamics and interactions
of a scalar gauge theory for the group GF , minimally coupled to gravity. This
general form of the spectral action on M × F will be heavily used in the
remainder of this book.

As a first simple example we treat abelian gauge theory in Chapter 9,
for which the gauge group GF ' U(1). Following [187] we describe how to
obtain the Lagrangian of electrodynamics from the spectral action.

The next step is the derivation of non-abelian Yang–Mills gauge theory
from noncommutative geometry, which we discuss in Chapter 10. We ob-
tain topologically non-trivial gauge configurations by working with algebra
bundles, essentially replacing the above direct product M × F by a fibered
product [35].

Chapter 11 contains the derivation of the Standard Model of particle
physics from a noncommutative manifold M × FSM , first obtained in [54].
We apply our results from Chapter 8 to obtain the Standard Model gauge
group and gauge fields, and the scalar Higgs field. Moreover, the compu-
tation of the spectral action can be applied to this example and yields the
full Lagrangian of the Standard Model, including Higgs spontaneous sym-
metry breaking and minimally coupled to gravity. We also give a detailed
discussion on the fermionic action.

The phenomenology of the noncommutative Standard Model is discussed
in Chapter 12. Indeed, the spectral action yields relations between the cou-
pling constants and masses of the Standard Model, from which physical
predictions can be derived. Here, we adopt the well-known renormalization
group equations of the Standard Model to run the couplings to the relevant
energy scale. This gives the notorious prediction for the Higgs mass at the
order of 170 GeV. As this is at odds with the experiments at the Large
Hadron Collider at CERN, we give a careful analysis of the hypotheses used
in the derivation of the Standard Model Lagrangian from noncommutative
geometry. We argue that if we drop some of these hypotheses, noncommuta-
tive geometry can guide us to go beyond the Standard Model. In particular,
we will discuss a recently proposed model [53, 56, 55] that enlarges the
particle content of the Standard Model by a real scalar singlet. We conclude
by showing that this noncommutative model is indeed compatible with the
experimentally measured Higgs mass.

In order not to interrupt the text too much, I have chosen to collect
background information and references to the literature as ‘Notes’ at the
end of each Chapter.

NCG and Particle Physics, W.D. van Suijlekom
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CHAPTER 2

Finite noncommutative spaces

In this chapter (and the next) we consider only finite discrete topolog-
ical spaces. However, we will stretch their usual definition, which is per-
haps geometrically not so interesting, to include the more intriguing finite
noncommutative spaces. Intuitively, this means that each point has some
internal structure, described by a particular noncommutative algebra. With
such a notion of finite noncommutative spaces, we search for the appro-
priate notion of maps between, and (geo)metric structure on such spaces,
and arrive at a diagrammatic classification of such finite noncommutative
geometric spaces. Our exposition of the finite case already gives a good
first impression of what noncommutative geometry has in store, whilst hav-
ing the advantage that it avoids technical complications that might obscure
such a first tour through noncommutative geometry. The general case is
subsequently treated in Chapter 4.

2.1. Finite spaces and matrix algebras

Consider a finite topological space X consisting of N points (equipped
with the discrete topology):

1• 2• · · · · · · N•
The first step towards a noncommutative geometrical description is to trade
spaces for their corresponding function algebras.

Definition 2.1. A (complex, unital) algebra is a vector space A (over
C) with a bilinear associative product A × A → A denoted by (a, b) 7→ ab
(and a unit 1 satisfying 1a = a1 = a for all a ∈ A).

A ∗-algebra (or, involutive algebra) is an algebra A together with a
conjugate-linear map (the involution) ∗ : A → A such that (ab)∗ = b∗a∗

and (a∗)∗ = a for all a, b ∈ A.

In this book, we restrict to unital algebras, and simply refer to them as
algebras.

In the present case, we consider the ∗-algebra C(X) of C-valued functions
on the above finite space X. It is equipped with a pointwise linear structure,

(f + g)(x) = f(x) + g(x), (λf)(x) = λ(f(x)),

for any f, g ∈ C(X), λ ∈ C and for any point x ∈ X, and with pointwise
multiplication

fg(x) = f(x)g(x).

There is an involution given by complex conjugation at each point:

f∗(x) = f(x).

7



8 CHAPTER 2. FINITE NONCOMMUTATIVE SPACES

The C in C(X) stands for continuous and, indeed, any C-valued function
on a finite space X with the discrete topology is automatically continuous.

The ∗-algebra C(X) has a rather simple structure: it is isomorphic to the
∗-algebra CN with each complex entry labeling the value the function takes
at the corresponding point, with the involution given by complex conjugation
of each entry. A convenient way to encode the algebra C(X) ' CN is in
terms of diagonal N ×N matrices, representing a function f : X → C as

f  


f(1) 0 · · · 0

0 f(2) · · · 0
...

...
. . .

...
0 0 . . . f(N)

 .

Hence, pointwise multiplication then simply becomes matrix multiplication,
and the involution is given by hermitian conjugation.

If φ : X1 → X2 is a map of finite discrete spaces, then there is a corre-
sponding map from C(X2)→ C(X1) given by pullback:

φ∗f = f ◦ φ ∈ C(X1); (f ∈ C(X2)).

Note that the pullback φ∗ is a ∗-homomorphism (or, ∗-algebra map)
under the pointwise product, in that

φ∗(fg) = φ∗(f)φ∗(g), φ∗(f) = φ∗(f), φ∗(λf + g) = λφ∗(f) + φ∗(g).

For example, let X1 be the space consisting of three points, and X2 the
space consisting of two points. If a map φ : X1 → X2 is defined according
to the following diagram,

X1 : •

��

•

��

•

��
X2 : • •

then

φ∗ : C2 ' C(X2)→ C3 ' C(X1)

is given by

(λ1, λ2) 7→ (λ1, λ2, λ2).

Exercise 2.1. Show that φ : X1 → X2 is an injective (surjective) map
of finite spaces if and only if φ∗ : C(X2)→ C(X1) is surjective (injective).

Definition 2.2. A (complex) matrix algebra A is a direct sum

A =
N⊕
i=1

Mni(C),

for some positive integers ni and N . The involution on A is given by hermit-
ian conjugation, and we simply refer to the ∗-algebra A with this involution
as a matrix algebra.

NCG and Particle Physics, W.D. van Suijlekom



9 2.1. FINITE SPACES AND MATRIX ALGEBRAS

Hence, we have associated a matrix algebra C(X) to the finite space X,
which behaves naturally with respect to maps between topological spaces
and ∗-algebras. A natural question is whether this procedure can be in-
verted. In other words, given a matrix algebra A, can we obtain a finite
discrete space X such that A ' C(X)? Since C(X) is always commutative
but matrix algebras need not be, we quickly arrive at the conclusion that
the answer is negative. This can be resolved in two ways:

(1) Restrict to commutative matrix algebras.
(2) Allow for more morphisms (and consequently, more isomorphisms)

between matrix algebras, e.g. by generalizing ∗-homomorphisms.

Before explaining each of these options, let us introduce some useful def-
initions concerning representations of finite-dimensional ∗-algebras (which
are not necessarily commutative) which moreover extend in a straightfor-
ward manner to the infinite-dimensional case (cf. Definitions 4.26 and 4.27).
We first need the prototypical example of a ∗-algebra.

Example 2.3. Let H be an (finite-dimensional) inner product space,
with inner product (·, ·) → C. We denote by L(H) the ∗-algebra of opera-
tors on H with product given by composition and the involution is given by
mapping an operator T to its adjoint T ∗.

Note that L(H) is a normed vector space: for T ∈ L(H) we set

‖T‖ = sup
h∈H
{(Th, Th) : (h, h) ≤ 1}.

Equivalently, ‖T‖ is given by the square root of the largest eigenvalue of
T ∗T .

Definition 2.4. A representation of a finite-dimensional ∗-algebra A
is a pair (H,π) where H is a (finite-dimensional, complex) inner product
space and π is a ∗-algebra map

π : A→ L(H).

A representation (H,π) is called irreducible if H 6= 0 and the only subspaces
in H that are left invariant under the action of A are {0} or H.

We will also refer to a finite-dimensional inner product space as a finite-
dimensional Hilbert space.

Example 2.5. Consider A = Mn(C). The defining representation is
given by H = Cn on which A acts by left matrix multiplication; hence it is
irreducible. An example of a reducible representation is H = Cn ⊕Cn, with
a ∈Mn(C) acting in block-form:

a ∈Mn(C) 7→
(
a 0
0 a

)
∈ L(Cn ⊕ Cn) 'M2n(C)

which therefore decomposes as the direct sum of two copies of the defining
representation. See also Lemma 2.15 below.

Exercise 2.2. Given a representation (H,π) of a ∗-algebra A, the com-
mutant π(A)′ of π(A) is defined as

π(A)′ = {T ∈ L(H) : π(a)T = Tπ(a) for all a ∈ A}.

NCG and Particle Physics, W.D. van Suijlekom



10 CHAPTER 2. FINITE NONCOMMUTATIVE SPACES

(1) Show that π(A)′ is also a ∗-algebra.
(2) Show that a representation (H,π) of A is irreducible if and only if

the commutant π(A)′ of π(A) consists of multiples of the identity.

Definition 2.6. Two representations (H1, π1) and (H2, π2) of a ∗-algebra
A are unitarily equivalent if there exists a unitary map U : H1 → H2 such
that

π1(a) = U∗π2(a)U.

Definition 2.7. The structure space Â of A is the set of all unitary
equivalence classes of irreducible representations of A.

We end this section with an illustrative exercise on passing from repre-
sentations of a ∗-algebra to matrices over that ∗-algebra.

Exercise 2.3. (1) If A is a unital ∗-algebra, show that the n× n-
matrices Mn(A) with entries in A form a unital ∗-algebra.

(2) Let π : A → L(H) be a representation of a ∗-algebra A and set
Hn = H ⊕ · · · ⊕ H (n copies). Show that the following defines a
representation π̃ : Mn(A)→ L(Hn) of Mn(A):

π̃ ((aij)) = (π(aij)) ; ((aij) ∈Mn(A)).

(3) Let π̃ : Mn(A) → L(Hn) be a representation of the ∗-algebra
Mn(A). Show that the following defines a representation π : A →
L(Hn) of the ∗-algebra A:

π(a) = π̃ (aIn)

where In is the identity in Mn(A).

2.1.1. Commutative matrix algebras. We now explain how option
(1) on page 9 above resolves the question raised by constructing a space
from a commutative matrix algebra A. A natural candidate for such a space

is, of course, the structure space Â, which we now determine. Note that any
commutative matrix algebra is of the form A ' CN , for which by Exercise
2.2(2) any irreducible representation is given by a map of the form

πi : (λ1, . . . , λN ) ∈ CN 7→ λi ∈ C

for some i = 1, . . . , N . We conclude that Â ' {1, . . . , N}.
We conclude that there is a duality between finite spaces and commu-

tative matrix algebras. This is nothing but a finite-dimensional version of
Gelfand duality (see Theorem 4.28 below) between compact Hausdorff topo-
logical spaces and unital commutative C∗-algebras. In fact, we will see later
(Proposition 4.25) that any finite-dimensional C∗-algebra is a matrix alge-
bra, which reduces Gelfand duality to the present finite-dimensional duality.

2.1.2. Finite spaces and matrix algebras. The above trade of finite
discrete spaces for finite-dimensional commutative ∗-algebras does not really
make them any more interesting, for the ∗-algebra is always of the form CN .
A more interesting perspective is given by the noncommutative alternative,
viz. option (2) on page 9. We thus aim for a duality between finite spaces
and equivalence classes of matrix algebras. These equivalence classes are

NCG and Particle Physics, W.D. van Suijlekom



11 2.1. FINITE SPACES AND MATRIX ALGEBRAS

described by a generalized notion of isomorphisms between matrix algebras,
also known as Morita equivalence.

Let us first recall the notion of an algebra (bi)module.

Definition 2.8. Let A,B be algebras (not necessarily matrix algebras).
A left A-module is a vector space E that carries a left representation of A,
i.e. there is a bilinear map A× E 3 (a, e) 7→ a · e ∈ E such that

(a1a2) · e = a1 · (a2 · e); (a1, a2 ∈ A, e ∈ E).

Similarly, a right B-module is a vector space F that carries a right repre-
sentation of B, i.e. there is a bilinear map F ×B 3 (f, b) 7→ f · b ∈ F such
that

f · (b1b2) = (f · b1) · b2; (b1, b2 ∈ B, f ∈ F ).

Finally, an A−B-bimodule E is both a left A-module and a right B-module,
with mutually commuting actions:

a · (e · b) = (a · e) · b; (a ∈ A, b ∈ B, e ∈ E).

When no confusion can arise, we will also write ae instead of a · e to
denote the left module action.

There is a natural notion of (left) A-module homomorphism as a
linear map φ : E → F that respect the representation of A:

φ(a · e) = a · φ(e); (a ∈ A, e ∈ E).

Similarly for right modules and bimodules.
We introduce the following notation:

• AE for a left A-module E;
• FB for a right B-module F ;
• AEB for an A−B-bimodule E.

Exercise 2.4. Check that a representation π : A→ L(H) of a ∗-algebra
A (cf. Defn. 2.4) turns H into a left A-module AH.

Exercise 2.5. Show that A is itself an A − A-bimodule AAA, with left
and right actions given by the product in A.

If E is a right A-module, and F is a left A-module, we can form the
balanced tensor product:

E ⊗A F := E ⊗ F/

{∑
i

eiai ⊗ fi − ei ⊗ aifi : ai ∈ A, ei ∈ E, fi ∈ F

}
.

In other words, the quotient imposes A-linearity of the tensor product, i.e.
in E ⊗A F we have

ea⊗A f = e⊗A af ; (a ∈ A, e ∈ E, f ∈ F ).

Definition 2.9. Let A,B be matrix algebras. A Hilbert bimodule for
the pair (A,B) is given by an A − B-bimodule E together with a B-valued
inner product 〈·, ·〉E : E × E → B satisfying

〈e1, a · e2〉E = 〈a∗ · e1, e2〉E ; (e1, e2 ∈ E, a ∈ A),

〈e1, e2 · b〉E = 〈e1, e2〉Eb; 〈e1, e2〉∗E = 〈e2, e1〉E ; (e1, e2 ∈ E, b ∈ B),

〈e, e〉E ≥ 0 with equality if and only if e = 0; (e ∈ E).
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12 CHAPTER 2. FINITE NONCOMMUTATIVE SPACES

The set of Hilbert bimodules for (A,B) will be denoted by KKf (A,B).

In the following, we will also write 〈·, ·〉 instead of 〈·, ·〉E , unless confusion
might arise.

Exercise 2.6. Check that a representation π : A → L(H) (cf. Defn.
2.4 and Exc. 2.4) of a matrix algebra A turns H into a Hilbert bimodule for
(A,C).

Exercise 2.7. Show that the A−A-bimodule given by A itself (cf. Exc.
2.5) is an element in KKf (A,A) by establishing that the following formula
defines an A-valued inner product 〈·, ·〉A : A×A→ A:

〈a, a′〉A = a∗a′; (a, a′ ∈ A).

Example 2.10. More generally, let φ : A→ B be a ∗-algebra homomor-
phism between matrix algebras A and B. From it, we can construct a Hilbert
bimodule Eφ in KKf (A,B) as follows. Let Eφ be B as a vector space with
the natural right B-module structure and inner product (cf. Exc. 2.7), but
with A acting on the left via the homomorphism φ:

a · b = φ(a)b; (a ∈ A, b ∈ Eφ).

Definition 2.11. The Kasparov product F ◦ E between Hilbert bimod-
ules E ∈ KKf (A,B) and F ∈ KKf (B,C) is given by the balanced tensor
product

F ◦ E := E ⊗B F ; (E ∈ KKf (A,B), F ∈ KKf (B,C)),

so that F ◦E ∈ KKf (A,C), with C-valued inner product given on elementary
tensors by

〈e1 ⊗ f1, e2 ⊗ f2〉E⊗BF = 〈f1, 〈e1, e2〉Ef2〉F ,(2.1.1)

and extended linearly to all of E ⊗ F .

Note that this product is associative up to isomorphism.

Exercise 2.8. Show that the association φ Eφ from Example 2.10 is
natural in the sense that

(1) EidA ' A ∈ KKf (A,A),
(2) for ∗-algebra homomorphisms φ : A → B and ψ : B → C we have

an isomorphism

Eψ ◦ Eφ ≡ Eφ ⊗B Eψ ' Eψ◦φ ∈ KKf (A,C),

that is, as A− C-bimodules.

Exercise 2.9. . In the above definition:

(1) Check that E ⊗B F is an A− C-bimodule.
(2) Check that 〈·, ·〉E⊗BF defines a C-valued inner product.
(3) Check that 〈a∗(e1 ⊗ f1), e2 ⊗ f2〉E⊗BF = 〈e1 ⊗ f1, a(e2 ⊗ f2)〉E⊗BF .

Conclude that F ◦ E is indeed an element of KKf (A,C).

Let us consider the Kasparov product with the Hilbert bimodule for
(A,A) given by A itself (cf. Exercise 2.7). Then, since for E ∈ KKf (A,B)
we have E ◦ A = A ⊗A E ' E, the bimodule AAA is the identity element
with respect to the Kasparov product (up to isomorphism). This motivates
the following definition.
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Definition 2.12. Two matrix algebras A and B are called Morita equiv-
alent if there exist elements E ∈ KKf (A,B) and F ∈ KKf (B,A) such that

E ⊗B F ' A, F ⊗A E ' B,
where ' denotes isomorphism as Hilbert bimodules.

If A and B are Morita equivalent, then the representation theories of
both matrix algebras are equivalent. More precisely, if A and B are Morita
equivalent, then a right A-module is sent to a right B-module by tensoring
with − ⊗A E for an invertible element E in KKf (A,B).

Example 2.13. As seen in Exercises 2.4 and 2.6, the vector space E =
Cn is an Mn(C)− C-bimodule; with the standard C-valued inner product it
becomes a Hilbert module for (Mn(C),C). Similarly, the vector space F = Cn
is a C −Mn(C)-bimodule by right matrix multiplication. An Mn(C)-valued
inner product is given by

〈v1, v2〉 = v1v
t
2 ∈Mn(C).

We determine the Kasparov products of these Hilbert bimodules as

E ⊗C F 'Mn(C); F ⊗Mn(C) E ' C.

In other words, E ∈ KKf (Mn(C),C) and F ∈ KKf (C,Mn(C)) are each
other’s inverse with respect to the Kasparov product. We conclude that
Mn(C) and C are Morita equivalent.

This observation leads us to our first little result.

Theorem 2.14. Two matrix algebras are Morita equivalent if and only
if their structure spaces are isomorphic as finite discrete spaces, i.e. have
the same cardinality.

Proof. Let A and B be Morita equivalent. Thus there exists Hilbert
bimodules AEB and BFA such that

E ⊗B F ' A, F ⊗A E ' B.

If [(πB, H)] ∈ B̂ then we can define a representation πA by setting

(2.1.2) πA : A→ L(E ⊗B H); πA(a)(e⊗ v) = ae⊗ v.

Vice versa, we construct πB : B → L(F⊗AW ) from [(πA,W )] ∈ Â by setting
πB(b)(f ⊗w) = bf ⊗w and these two maps are one another’s inverse. Thus,

Â ' B̂ (see Exercise 2.10 below).
For the converse, we start with a basic result on irreducible representa-

tions of Mn(C).

Lemma 2.15. The matrix algebra Mn(C) has a unique irreducible repre-
sentation (up to isomorphism) given by the defining representation on Cn.

Proof. It is clear from Exercise 2.2 that Cn is an irreducible represen-
tation of A = Mn(C). Suppose H is irreducible and of dimension K, and
define a linear map

φ : A⊕ · · · ⊕A︸ ︷︷ ︸
K copies

→ H∗; φ(a1, . . . , aK)→ e1 ◦ at1 + · · ·+ eK ◦ atK
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14 CHAPTER 2. FINITE NONCOMMUTATIVE SPACES

in terms of a basis {e1, . . . eK} of the dual vector space H∗. Here v ◦ a
denotes pre-composition of v ∈ H∗ with a ∈ A, acting on H. This is a
morphism of Mn(C)-modules, provided a matrix a acts on the dual vector
space H∗ by sending v 7→ v ◦ at. It is also surjective, so that the dual
map φ∗ : H → (AK)∗ is injective. Upon identifying (AK)∗ with AK as
A-modules, and noting that A = Mn(C) ' ⊕nCn as A-modules, it follows
that H is a submodule of AK ' ⊕nKCn. By irreducibility H ' Cn. �

Now, if A,B are matrix algebras of the following form

A =
N⊕
i=1

Mni(C), B =
M⊕
j=1

Mmj (C),

then Â ' B̂ implies that N = M . Then, define

E :=

N⊕
i=1

Cni ⊗ Cmi ,

with A acting by block-diagonal matrices on the first tensor and B acting in
a similar way by right matrix multiplication on the second leg of the tensor
product. Also, set

F :=
N⊕
i=1

Cmi ⊗ Cni ,

with B now acting on the left and A on the right. Then, as above,

E ⊗B F '
N⊕
i=1

(Cni ⊗ Cmi)⊗Mmi (C) (Cmi ⊗ Cni)

'
N⊕
i=1

Cni ⊗
(
Cmi ⊗Mmi (C) Cmi

)
⊗ Cni

'
N⊕
i=1

Cni ⊗ Cni ' A,

and similarly we obtain F ⊗A E ' B, as required. �

Exercise 2.10. Fill in the gaps in the above proof:

(a) Show that the representation πA defined by (2.1.2) is irreducible if
and only if πB is.

(b) Show that the association of the class [πA] to [πB] through (2.1.2)
is independent of the choice of representatives πA and πB.

We conclude that there is a duality between finite spaces and Morita
equivalence classes of matrix algebras. By replacing ∗-homomorphisms A→
B by Hilbert bimodules for (A,B), we introduce a much richer structure at
the level of morphisms between matrix algebras. For example, any finite-
dimensional inner product space defines an element in KKf (C,C), whereas
there is only one map from the corresponding structure space consisting of
one point to itself. When combined with Exercise 2.10 we conclude that
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Hilbert bimodules form a proper extension of the ∗-morphisms between ma-
trix algebras.

2.2. Noncommutative geometric finite spaces

Consider again a finite space X, described as the structure space of a
matrix algebra A. We would like to introduce some geometry on X and, in
particular, a notion of a metric on X.

Thus, the question we want to address is how we can (algebraically)
describe distances between the points in X, say, as embedded in a metric
space. Recall that a metric on a finite discrete space X is given by an array
{dij}i,j∈X of real non-negative entries, indexed by a pair of elements in X
and requiring that dij = dji, dij ≤ dik + dkj , and dij = 0 if and only if i = j:

1• oo d13 //ff

d12 &&

•3>>

d23~~
•2

Example 2.16. If X is embedded in a metric space (e.g. Euclidean
space), it can be equipped with the induced metric.

Example 2.17. The discrete metric on the discrete space X is given
by:

dij =

{
1 if i 6= j
0 if i = j.

In the commutative case, we have the following remarkable result, which
completely characterizes the metric on X in terms of linear algebraic data.
It is the key result towards a spectral description of finite geometric spaces.

Theorem 2.18. Let dij be a metric on the space X of N points, and set

A = CN with elements a = (a(i))Ni=1, so that Â ' X. Then there exists a
representation π of A on a finite-dimensional inner product space H and a
symmetric operator D on H such that

(2.2.1) dij = sup
a∈A
{|a(i)− a(j)| : ‖[D,π(a)]‖ ≤ 1} .

Proof. We claim that this would follow from the equality

(∗) ‖[D,π(a)]‖ = max
k 6=l

{
1

dkl
|a(k)− a(l)|

}
.

Indeed, if this holds, then

sup
a
{|a(i)− a(j)| : ‖[D, a]‖ ≤ 1} ≤ dij .

The reverse inequality follows by taking a ∈ A for fixed i, j to be a(k) = dik.
Then, we find |a(i) − a(j)| = dij , while ‖[D,π(a)]‖ ≤ 1 for this a follows
from the reverse triangle inequality for dij :

1

dkl
|a(k)− a(l)| = 1

dkl
|dik − dil| ≤ 1.
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16 CHAPTER 2. FINITE NONCOMMUTATIVE SPACES

We prove (∗) by induction on N . If N = 2, then on H = C2 we define a
representation π : A→ L(H) and a hermitian matrix D by

π(a) =

(
a(1) 0

0 a(2)

)
, D =

(
0 (d12)−1

(d12)−1 0

)
.

It follows that ‖[D, a]‖ = (d12)−1|a(1)− a(2)|.
Suppose then that (∗) holds for N , with representation πN of CN on an

inner product space HN and symmetric operator DN ; we will show that it
also holds for N + 1. We define

HN+1 = HN ⊕
N⊕
i=1

H i
N

with H i
N := C2. Imitating the above construction in the case N = 2, we

define the representation πN+1 by

πN+1(a(1), . . . , a(N + 1)) = πN (a(1), . . . , a(N))

⊕
(
a(1) 0

0 a(N + 1)

)
⊕ · · · ⊕

(
a(N) 0

0 a(N + 1)

)
,

and define the operator DN+1 by

DN+1 = DN ⊕
(

0 (d1(N+1))
−1

(d1(N+1))
−1 0

)
⊕ · · · ⊕

(
0 (dN(N+1))

−1

(dN(N+1))
−1 0

)
.

It follows by the induction hypothesis that (∗) holds for N + 1. �

Exercise 2.11. Make the above proof explicit for the case N = 3. In
other words, compute the metric of (2.2.1) on the space of three points from
the set of data A = C3, H = (C2)⊕3 with representation π : A → L(H)
given by

π(a(1), a(2), a(3)) =

(
a(1) 0

0 a(2)

)
⊕
(
a(1)

a(3)

)
⊕
(
a(2)

a(3)

)
,

and hermitian matrix

D =

(
0 x1

x1 0

)
⊕
(

0 x2

x2 0

)
⊕
(

0 x3

x3 0

)
,

with x1, x2, x3 ∈ R.

Exercise 2.12. Compute the metric on the space of three points given
by formula (2.2.1) for the set of data A = C3 acting in the defining repre-
sentation on H = C3, and

D =

 0 d−1 0
d−1 0 0
0 0 0

 ,

for some non-zero d ∈ R.
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Even though the above translation of the metric on X into algebraic data
assumes commutativity of A, the distance formula itself can be extended to
the case of a noncommutative matrix algebra A. In fact, suppose we are
given a ∗-algebra representation of A on an inner product space, together
with a symmetric operator D on H. Then we can define a metric on the

structure space Â by

(2.2.2) dij = sup
a∈A
{|Tr a(i)− Tr a(j)| : ‖[D, a]‖ ≤ 1},

where i labels the matrix algebra Mni(C) in the decomposition of A. This
distance formula is a special case of Connes’ distance formula (see Note 12
on Page 60) on the structure space of A.

Exercise 2.13. Show that the dij in (2.2.2) is a metric (actually, an

extended metric, taking values in [0,∞]) on Â by establishing that

dij = 0 ⇐⇒ i = j, dij = dji, dij ≤ dik + dkj .

This suggests that the above structure consisting of a matrix algebra
A, a finite-dimensional representation space H, and a hermitian matrix D
provides the data needed to capture a metric structure on the finite space

X = Â. In fact, in the case that A is commutative, the above argument
combined with our finite-dimensional Gelfand duality of Section 2.1.1 is a
reconstruction theorem. Indeed, we reconstruct a given metric space (X, d)
from the data (A,H,D) associated to it.

We arrive at the following definition, adapted to our finite-dimensional
setting.

Definition 2.19. A finite spectral triple is a triple (A,H,D) consisting
of a unital ∗-algebra A represented faithfully on a finite-dimensional Hilbert
space H, together with a symmetric operator D : H → H.

We do not demand that A is a matrix algebra, since this turns out to
be automatic:

Lemma 2.20. If A is a unital ∗-algebra that acts faithfully on a finite-
dimensional Hilbert space, then A is a matrix algebra of the form

A '
N⊕
i=1

Mni(C).

Proof. Since A acts faithfully on a Hilbert space it is a ∗-subalgebra
of a matrix algebra L(H) = Mdim(H)(C); the only such subalgebras are
themselves matrix algebras. �

Unless we want to distinguish different representations of A on H, the
above representation will usually be implicitly assumed, thus considering
elements a ∈ A as operators on H.

Example 2.21. Let A = Mn(C) act on H = Cn by matrix multiplication,
with the standard inner product. A symmetric operator on H is represented
by a hermitian n× n matrix.
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We will loosely refer to D as a finite Dirac operator, as its infinite-
dimensional analogue on Riemannian spin manifolds is the usual Dirac op-
erator (see Chapter 4). In the present case, we can use it to introduce a
‘differential geometric structure’ on the finite space X that is related to the
notion of divided difference. The latter is given, for each pair of points
i, j ∈ X, by

a(i)− a(j)

dij
.

Indeed, these divided differences appear precisely as the entries of the com-
mutator [D, a] for the operator D as in Theorem 2.18.

Exercise 2.14. Use the explicit form of D in Theorem 2.18 to confirm
that the commutator of D with a ∈ C(X) is expressed in terms of the above
divided differences.

We will see later that in the continuum case, the commutator [D, ·]
corresponds to taking derivatives of functions on a manifold.

Definition 2.22. Let (A,H,D) be a finite spectral triple. The A-bimodule
of Connes’ differential one-forms is given by

Ω1
D(A) :=

{∑
k

ak[D, bk] : ak, bk ∈ A

}
.

Consequently, there is a map d : A→ Ω1(A), given by d(·) = [D, ·].
Exercise 2.15. Verify that d is a derivation of a ∗-algebra, in that:

d(ab) = d(a)b+ ad(b); d(a∗) = −d(a)∗.

Exercise 2.16. Verify that Ω1
D(A) is an A-bimodule by rewriting the

operator a(ak[D, bk])b (a, b, ak, bk ∈ A) as
∑

k a
′
k[D, b

′
k] for some a′k, b

′
k ∈ A.

As a first little result —though with an actual application to matrix
models in physics— we compute Connes’ differential one-forms for the above
Example 2.21.

Lemma 2.23. Let (A,H,D) = (Mn(C),Cn, D) be the finite spectral triple
of Example 2.21 with D a hermitian n×n matrix. If D is not a multiple of
the identity, then Ω1

D(A) 'Mn(C).

Proof. We may assume that D is a diagonal matrix: D =
∑

i λieii
in terms of real numbers λi (not all equal) and the standard basis {eij} of
Mn(C). For fixed i, j choose k such that λk 6= λj . Then(

1

λk − λj
eik

)
[D, ekj ] = eij .

Hence, since eik, ekj ∈ Mn(C), any basis vector eij ∈ Ω1
D(A). Since also

Ω1
D(A) ⊂ L(Cn) 'Mn(C), the result follows. �

Exercise 2.17. Consider the following finite spectral triple:(
A = C2, H = C2, D =

(
0 λ

λ 0

))
,

with λ 6= 0. Show that the corresponding space of differential one-forms
Ω1
D(A) is isomorphic to the vector space of all off-diagonal 2× 2 matrices.
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2.2.1. Morphisms between finite spectral triples. In a spectral
triple (A,H,D) both the ∗-algebra A and a finite Dirac operator D act on
the inner product space H. Hence, the most natural notion of equivalence
between spectral triples is that of unitary equivalence.

Definition 2.24. Two finite spectral triples (A1, H1, D1) and (A2, H2, D2)
are called unitarily equivalent if A1 = A2 and if there exists a unitary oper-
ator U : H1 → H2 such that

Uπ1(a)U∗ = π2(a); (a ∈ A1),

UD1U
∗ = D2.

Exercise 2.18. Show that unitary equivalence of spectral triples is an
equivalence relation.

Remark 2.25. A special type of unitary equivalence is given by the uni-
taries in the matrix algebra A itself. Indeed, for any such unitary element
u the spectral triples (A,H,D) and (A,H, uDu∗) are unitarily equivalent.
Another way of writing uDu∗ is D + u[D,u∗], so that this type of unitary
equivalence effectively adds a differential one-form to D.

Following the spirit of our extended notion of morphisms between alge-
bras, we might also deduce a notion of “equivalence” coming from Morita
equivalence of the corresponding matrix algebras. Namely, given a Hilbert
bimodule E in KKf (B,A), we can try to construct a finite spectral triple
on B starting from a finite spectral triple on A. This transfer of metric
structure is accomplished as follows. Let (A,H,D) be a spectral triple; we
construct a new spectral triple (B,H ′, D′). First, we define a vector space

H ′ = E ⊗A H,

which inherits a left action of B from the B-module structure of E. Also, it
is an inner product space, with C-valued inner product given as in (2.1.1).

The naive choice of a symmetric operator D′ given by D′(e⊗ξ) = e⊗Dξ
will not do, because it does not respect the ideal defining the balanced tensor
product over A, being generated by elements of the form

ea⊗ ξ − e⊗ aξ; (e ∈ E, a ∈ A, ξ ∈ H).

A better definition is

(2.2.3) D′(e⊗ ξ) = e⊗Dξ +∇(e)ξ,

where ∇ : E → E ⊗A Ω1
D(A) is some map that satisfies the Leibniz rule

(2.2.4) ∇(ea) = ∇(e)a+ e⊗ [D, a]; (e ∈ E, a ∈ A).

Indeed, this is precisely the property that is needed to make D′ a well-defined
operator on the balanced tensor product E ⊗A H:

D′(ea⊗ ξ − e⊗ aξ) = ea⊗Dξ +∇(ea)ξ − e⊗D(aξ)−∇(e)aξ = 0.

A map ∇ : E → E ⊗A Ω1
D(A) that satisfies Equation (2.2.4) is called a

connection on the right A-module E associated to the derivation d : a 7→
[D, a] (a ∈ A).
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Theorem 2.26. If (A,H,D) is a finite spectral triple and E ∈ KKf (B,A),
then (in the above notation) (B,E ⊗A H,D′) is a finite spectral triple, pro-
vided that ∇ satisfies the compatibility condition

(2.2.5) 〈e1,∇e2〉E − 〈∇e1, e2〉E = d〈e1, e2〉E ; (e1, e2 ∈ E).

Proof. We only need to show that D′ is a symmetric operator. Indeed,
for e1, e2 ∈ E and ξ1, ξ2 ∈ H we compute

〈e1 ⊗ ξ1, D
′(e2 ⊗ ξ2)〉E⊗AH = 〈ξ1, 〈e1,∇e2〉Eξ2〉H + 〈ξ1, 〈e1, e2〉EDξ2〉H

= 〈ξ1, 〈∇e1, e2〉Eξ2〉H + 〈ξ1, d〈e1, e2〉Eξ2〉H
+ 〈Dξ1, 〈e1, e2〉Eξ2〉H − 〈ξ1, [D, 〈e1, e2〉E ]ξ2〉H

= 〈D′(e1 ⊗ ξ1), e2 ⊗ ξ2〉E⊗AH ,
using the stated compatibility condition and the fact that D is symmetric.

�

Theorem 2.26 is our finite-dimensional analogue of Theorem 6.15, to be
obtained below.

Exercise 2.19. Let ∇ and ∇′ be two connections on a right A-module E.
Show that their difference ∇−∇′ is a right A-linear map E → E⊗AΩ1

D(A).

Exercise 2.20. In this exercise, we consider the case that B = A and
also E = A. Let (A,H,D) be a spectral triple, we determine (A,H ′, D′).

(1) Show that the derivation d(·) = [D, ·] : A→ A⊗A Ω1
D(A) = Ω1

D(A)
is a connection on A considered a right A-module.

(2) Upon identifying A⊗AH ' H, what is the operator D′ of Equation
(2.2.3) when the connection ∇ on A is given by d as in (1)?

(3) Use (1) and (2) of this exercise to show that any connection ∇ :
A→ A⊗A Ω1

D(A) is given by

∇ = d + ω,

with ω ∈ Ω1
D(A).

(4) Upon identifying A⊗AH ' H, what is the operator D′ of Equation
(2.2.3) with the connection on A given as ∇ = d + ω.

If we combine the above Exercise 2.20 with Lemma 2.23, we see that
∇ = d − D is an example of a connection on MN (C) (as a module over
itself and with ω = −D), since Ω1

D(A) ' MN (C). Hence, for this choice of
connection the new finite spectral triple as constructed in Theorem 2.26 is
given by (MN (C),CN , D′ = 0). So, Morita equivalence of algebras does not
carry over to an equivalence relation on spectral triples. Indeed, we now
have Ω1

D′(MN (C)) = 0, so that no non-zero D can be generated from this
spectral triple and the symmetry of this relation fails.

2.3. Classification of finite spectral triples

Here we classify finite spectral triples on A modulo unitary equivalence,
in terms of so-called decorated graphs.

Definition 2.27. A graph is an ordered pair (Γ(0),Γ(1)) consisting of a

set Γ(0) of vertices and a set Γ(1) of pairs of vertices (called edges).
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n1 · · · ni · · · nj · · · nN

Figure 2.1. A node at ni indicates the presence of the sum-
mand Cni ; the double node at nj indicates the presence of
the summand Cnj ⊕ Cnj in H.

We allow edges of the form e = (v, v) for any vertex v, that is, we allow
loops at any vertex.

Consider then a finite spectral triple (A,H,D); let us determine the
structure of all three ingredients and construct a graph from it.
The algebra: We have already seen in Lemma 2.20 that

A '
N⊕
i=1

Mni(C),

for some n1, . . . , nN . The structure space of A is given by Â ' {1, . . . , N}
with each integer i ∈ Â corresponding to the equivalence classes of the
representation of A on Cni . If we label the latter equivalence class by ni we

can also identify Â ' {n1, . . . ,nN}.

The Hilbert space: Any finite-dimensional faithful representation H of
such a matrix algebra A is completely reducible (i.e. a direct sum of irre-
ducible representations).

Exercise 2.21. Prove this result for any ∗-algebra by establishing that
the complement W⊥ of an A-submodule W ⊂ H is also an A-submodule of
H.

Combining this with the proof of Lemma 2.15, we conclude that the
finite-dimensional Hilbert space representation H of A has a decomposition
into irreducible representations, which we write as

H '
N⊕
i=1

Cni ⊗ Vi,

with each Vi a vector space; we will refer to the dimension of Vi as the
multiplicity of the representation labeled by ni and to Vi itself as the
multiplicity space. The above isomorphism is given by a unitary map.

To begin the construction of our decorated graph, we indicate the pres-

ence of a summand ni in H by drawing a node at position ni ∈ Â in a

diagram based on the structure space Â of the matrix algebra A (see Fig-
ure 2.1 for an example). Multiple nodes at the same position represent
multiplicities of the representations in H.

The finite Dirac operator: Corresponding to the above decomposition
of H we can write D as a sum of matrices

Dij : Cni ⊗ Vi → Cnj ⊗ Vj ,
NCG and Particle Physics, W.D. van Suijlekom
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n1 · · · ni · · · nj · · · nN

Figure 2.2. The edges between the nodes ni and nj , and ni
and nN represent non-zero operators Dij : Cni → Cnj ⊗ C2

(multiplicity 2) and DiN : Cni → CnN , respectively. Their
adjoints give the operators Dji and DNi.

restricted to these subspaces. The condition that D is symmetric implies
that Dij = D∗ji. In terms of the above diagrammatic representation of H,

we express a non-zero Dij and Dji as a (multiple) edge between the nodes
ni and nj (see Figure 2.2 for an example).

Another way of putting this is as follows, in terms of decorated graphs.

Definition 2.28. A Λ-decorated graph is given by an ordered pair (Γ,Λ)
of a finite graph Γ and a finite set Λ of positive integers, with a labeling:

• of the vertices v ∈ Γ(0) by elements n(v) ∈ Λ;

• of the edges e = (v1, v2) ∈ Γ(1) by operators De : Cn(v1) → Cn(v2)

and its conjugate-transpose D∗e : Cn(v2) → Cn(v1) ,

so that n(Γ(0)) = Λ.

The operators De between vertices that are labeled by ni and nj , re-
spectively, add up to the above Dij . Explicitly,

Dij =
∑

e=(v1,v2)
n(v1)=ni
n(v2)=nj

De,

so that also D∗ij = Dji. Thus we have proved the following result.

Theorem 2.29. There is a one-to-one correspondence between finite
spectral triples modulo unitary equivalence and Λ-decorated graphs, given
by associating a finite spectral triple (A,H,D) to a Λ-decorated graph (Γ,Λ)
in the following way:

A =
⊕
n∈Λ

Mn(C), H =
⊕
v∈Γ(0)

Cn(v), D =
∑
e∈Γ(1)

De +D∗e .

Example 2.30. The following Λ-decorated graph

De

n

corresponds to the spectral triple (Mn(C),Cn, D = De + D∗e) of Example
2.21.

Exercise 2.22. Draw the Λ-decorated graph corresponding to the spectral
triple A = C3, H = C3, D =

0 λ 0

λ 0 0
0 0 0

 ; (λ 6= 0).
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Exercise 2.23. Use Λ-decorated graphs to classify all finite spectral
triples (modulo unitary equivalence) on the matrix algebra A = C⊕M2(C).

Exercise 2.24. Suppose that (A1, H1, D1) and (A2, H2, D2) are two fi-
nite spectral triples. We consider their direct sum and tensor product and
give the corresponding Λ-decorated graphs.

(1) Show that (A1 ⊕A2, H1 ⊕H2, (D1, D2)) is a finite spectral triple.
(2) Describe the Λ-decorated graph of this direct sum spectral triple in

terms of the Λ-decorated graphs of the original spectral triples.
(3) Show that (A1 ⊗ A2, H1 ⊗H2, D1 ⊗ 1 + 1⊗D2) is a finite spectral

triple.
(4) Describe the Λ-decorated graph of this tensor product spectral triple

in terms of the Λ-decorated graphs of the original spectral triples.

Notes

Section 2.1. Finite spaces and matrix algebras

1. The notation KKf in Definition 2.9 is chosen to suggest a close connection to Kasparov’s
bivariant KK-theory [121], here restricted to the finite-dimensional case. In fact, in the
case of matrix algebras the notion of a Kasparov module for a pair of C∗-algebras (A,B)
(cf. [30, Section 17.1] for a definition) coincides (up to homotopy) with that of a Hilbert
bimodule for (A,B) (cf. [132, Section IV.2.1] for a definition).

2. Definition 2.12 agrees with the notion of equivalence between arbitrary rings introduced
by Morita [153]. Moreover, it is a special case of strong Morita equivalence between C∗-
algebras as introduced by Rieffel [166].

3. Theorem 2.14 is a special case of a more general result on the structure spaces of Morita
equivalent C∗-algebras (see e.g. [164, Section 3.3]).

Section 2.2. Noncommutative geometric finite spaces

4. Theorem 2.18 can be found in [112].

5. The reconstruction theorem mentioned in the text before Definition 2.19 is a special
case, to wit the finite-dimensional case, of a result by Connes [69] on a reconstruction of
Riemannian (spin) manifolds from so-called spectral triples (cf. Definition 4.30 and Note
13 on Page 60 below).

6. A complete proof of Lemma 2.20 can be found in [90, Theorem 3.5.4].

7. For a complete exposition on differential algebras, connections on modules, et cetera,
we refer to [131, Chapter 8] and [3] and references therein.

8. The failure of Morita equivalence to induce an equivalence between spectral triples
was noted in [65, Remark 1.143] (see also [192, Remark 5.1.2]). This suggests that it is
better to consider Hilbert bimodules as correspondences rather than equivalences, as was
already suggested by Connes and Skandalis in [67] and also appeared in the applications
of noncommutative geometry to number theory (cf. [65, Chapter 4.3]) and quantization
[133]. This forms the starting point for a categorical description of (finite) spectral triples
themselves. As objects the category has finite spectral triples (A,H,D), and as morphisms
it has pairs (E,∇) as above. This category is the topic of [150, 151], working in the more
general setting of spectral triples, hence requiring much more analysis as compared to our
finite-dimensional case. The category of finite spectral triples plays a crucial role in the
noncommutative generalization of spin networks in [145].
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CHAPTER 3

Finite real noncommutative spaces

In this chapter, we will enrich the finite noncommutative spaces as ana-
lyzed in the previous chapter with a real structure. For one thing, this makes
the definition of a finite spectral triple more symmetric by demanding the
inner product space H be an A − A-bimodule, rather than just a left A-
module. The implementation of this bimodule structure by an anti-unitary
operator has close ties with the Tomita–Takesaki theory of Von Neumann
algebras, as well as with physics through charge conjugation, as will become
clear in the applications in the later chapters of this book. Our exposition
includes a diagrammatic classification of finite real spectral triples for all so-
called KO-dimensions, and also identifies the irreducible finite geometries
among them.

3.1. Finite real spectral triples

First, the structure of a finite spectral triple can be enriched by intro-
ducing a Z2-grading γ on H, i.e. γ∗ = γ, γ2 = 1, demanding that A is even
and D is odd with respect to this grading:

γD = −Dγ, γa = aγ; (a ∈ A).

Next, there is a more symmetric refinement of the notion of finite spectral
triple in which H is an A − A-bimodule, rather than just a left A-module.
Recall that an anti-unitary operator is an invertible operator J : H → H
that satisfies 〈Jξ1, Jξ2〉 = 〈ξ2, ξ1〉 for all ξ1, ξ2 ∈ H.

Definition 3.1. A finite real spectral triple is given by a finite spec-
tral triple (A,H,D) and an anti-unitary operator J : H → H called real
structure, such that a◦ := Ja∗J−1 is a right representation of A on H, i.e.
(ab)◦ = b◦a◦. We also require that

(3.1.1) [a, b◦] = 0, [[D, a], b◦] = 0,

for all a, b ∈ A. Moreover, we demand that J , D and (in the even case) γ
satisfy the commutation relations:

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ.

for numbers ε, ε′, ε′′ ∈ {−1, 1}. These signs determine the KO-dimension k
(modulo 8) of the finite real spectral triple (A,H,D; J, γ) defined according
to Table 3.1.

The signs in Table 3.1 are motivated by the classification of Clifford
algebras, see Section 4.1 below. The two conditions in (3.1.1) are called
the commutant property, and the first-order or order one condition,
respectively. They imply that the left action of an element in A and Ω1

D(A)

25



26 CHAPTER 3. FINITE REAL NONCOMMUTATIVE SPACES

k 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

Table 3.1. The KO-dimension k of a real spectral triple is
determined by the signs {ε, ε′, ε′′} appearing in J2 = ε, JD =
ε′DJ and Jγ = ε′′γJ .

commutes with the right action of A. This is equivalent to the commutation
between the right action of A and Ω1

D(A) with the left action of A.

Remark 3.2. The so-called opposite algebra A◦ is defined to be equal
to A as a vector space but with opposite product ◦:

a ◦ b := ba.

Thus, a◦ = Ja∗J−1 defines a left representation of A◦ on H: (a◦b)◦ = a◦b◦.

Example 3.3. Consider the matrix algebra MN (C), acting on the inner
product space H = MN (C) by left matrix multiplication, and with inner
product given by the Hilbert–Schmidt inner product:

〈a, b〉 = Tr a∗b.

Define

γ(a) = a, J(a) = a∗; (a ∈ H).

Since D must be odd with respect to the grading γ, it vanishes identically.

Exercise 3.1. In the previous example, show that the right action of
MN (C) on H = MN (C) as defined by a 7→ a◦ is given by right matrix
multiplication.

The following exercises are inspired by Tomita–Takesaki theory of Von
Neumann algebras.

Exercise 3.2. Let A =
⊕

iMni(C) be a matrix algebra, which is repre-
sented on a vector space H =

⊕
iCni ⊗Cmi, i.e. is such that the irreducible

representation ni has multiplicity mi.

(1) Show that the commutant A′ of A is isomorphic to
⊕

iMmi(C). As
a consequence, the double commutant coincides with A, that is to
say A′′ ' A.

We say that ξ ∈ H is a cyclic vector for A if

Aξ := {aξ : a ∈ A} = H.

We call ξ ∈ H a separating vector for A if

aξ = 0 =⇒ a = 0; (a ∈ A).

(2) Show that if ξ is a separating vector for the action of A, it is cyclic
for the action of A′. (Hint: Assume ξ is not cyclic for the action
of A′ and try to derive a contradiction).
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Exercise 3.3. Suppose that (A,H,D = 0) is a finite spectral triple such
that H possesses a cyclic and separating vector ξ for A.

(1) Show that the formula S(aξ) = a∗ξ defines an anti-linear operator
S : H → H.

(2) Show that S is invertible.
(3) Let J : H → H be the operator appearing in the polar decomposition

S = J∆1/2 of S with ∆ = S∗S. Show that J is an anti-unitary
operator.

Conclude that (A,H,D = 0; J) is a finite real spectral triple. Can you find
such an operator J in the case of Exercise 3.2?

3.1.1. Morphisms between finite real spectral triples. We are
now going to extend the notion of unitary equivalence (cf. Definition 2.24)
to finite real spectral triples.

Definition 3.4. We call two finite real spectral triples (A1, H1, D1; J1, γ1)
and (A2, H2, D2; J2, γ2) unitarily equivalent if A1 = A2 and if there exists a
unitary operator U : H1 → H2 such that

Uπ1(a)U∗ = π2(a); (a ∈ A1),

UD1U
∗ = D2, Uγ1U

∗ = γ2, UJ1U
∗ = J2.

Building on our discussion in Section 2.2.1, we can also extend Morita
equivalence to finite real spectral triples. Namely, given a Hilbert bimodule
E for (B,A), we will construct a finite real spectral triple (B,H ′, D′; J ′, γ′)
on B, starting from a finite real spectral triple (A,H,D; J, γ) on A.

Definition 3.5. Let E be a B−A-bimodule. The conjugate module E◦

is given by the A−B-bimodule

E◦ = {e : e ∈ E},

with a · e · b = b∗ · e · a∗ for any a ∈ A, b ∈ B.

This implies for any λ ∈ C that λe = λe, which explains the suggestive
notation e for the elements of E◦. The bimodule E◦ is not quite a Hilbert
bimodule for (A,B), since we do not have a natural B-valued inner product.
However, there is a A-valued inner product on the left A-module E◦ given
by

〈e1, e2〉 = 〈e2, e1〉; (e1, e2 ∈ E).

As opposed to the inner product in Definition 2.9, this inner product is left
A-linear: 〈ae1, e2〉 = a〈e1, e2〉 for all a ∈ A, as can be easily checked.

Exercise 3.4. Show that E◦ is a Hilbert bimodule for (B◦, A◦).

Let us then start the construction of a finite real spectral triple on B by
setting

H ′ := E ⊗A H ⊗A E◦.
There is a (C-valued) inner product on H ′ given by combining the A-valued
inner products on E, E◦ with the C-valued inner product on H, much as in
(2.1.1). The action of B on H ′ is given by

(3.1.2) b(e1 ⊗ ξ ⊗ e2) = (be1)⊗ ξ ⊗ e2,
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using just the B − A-bimodule structure of E. In addition, there is a right
action of B on H ′ defined by acting on the right on the component E◦. In
fact, it is implemented by the following anti-unitary,

J ′(e1 ⊗ ξ ⊗ e2) = e2 ⊗ Jξ ⊗ e1,

i.e. b◦ = J ′b∗(J ′)−1 with b∗ ∈ B acting on H ′ according to (3.1.2).
Moreover, there is a finite Dirac operator given in terms of the connection

∇ : E → E ⊗A Ω1
D(A) as in Section 2.2.1. First, we need the result of the

following exercise.

Exercise 3.5. Let ∇ : E → E ⊗A Ω1
D(A) be a right connection on E

and consider the following anti-linear map

τ : E ⊗A Ω1
D(A)→ Ω1

D(A)⊗A E◦;
e⊗ ω 7→ −ω∗ ⊗ e.

Show that the map ∇ : E◦ → Ω1
D(A)⊗A E◦ defined by ∇(e) = τ ◦ ∇(e) is a

left connection, i.e. show that it satisfies the left Leibniz rule:

∇(ae) = [D, a]⊗ e+ a∇(e).

The connections ∇ and ∇ give rise to a Dirac operator on E⊗AH⊗AE◦:
D′(e1 ⊗ ξ ⊗ e2) = (∇e1)ξ ⊗ e2 + e1 ⊗Dξ ⊗ e2 + e1 ⊗ ξ(∇e2).

The right action of ω ∈ Ω1
D(A) on ξ ∈ H is then defined by ξ 7→ ε′Jω∗J−1ξ.

Finally, for even spectral triples one defines a grading on E⊗AH ⊗AE◦
by γ′ = 1⊗ γ ⊗ 1.

Theorem 3.6. Suppose (A,H,D; J, γ) is a finite real spectral triple of
KO-dimension k, and let ∇ : E → E ⊗A Ω1

D(A) be a compatible connection
(cf. Equation (2.2.5)). Then (B,H ′, D′; J ′, γ′) is a finite real spectral triple
of KO-dimension k.

Proof. The only non-trivial thing to check is that the KO-dimension
is preserved. In fact, one readily checks that (J ′)2 = 1 ⊗ J2 ⊗ 1 = ε and
J ′γ′ = ε′′γ′J ′. Also,

J ′D′(e1 ⊗ ξ ⊗ e2) = J ′ ((∇e1)ξ ⊗ e2 + e1 ⊗Dξ ⊗ e2 + e1 ⊗ ξ(τ∇e2))

= ε′D′(e2 ⊗ Jξ ⊗ e1) ≡ ε′D′J ′(e1 ⊗ ξ ⊗ e2),

where we have used J ′(e1 ⊗ JωJ−1ξ ⊗ e2) = e2 ⊗ ωJξ ⊗ e1. �

3.2. Classification of finite real spectral triples

In this section, we classify all finite real spectral triples (A,H,D; J, γ)
modulo unitary equivalence using Krajewski diagrams. These play a
similar role for finite real spectral triples as Dynkin diagrams do for simple
Lie algebras. Moreover, they extend our Λ-decorated graphs of the previous
chapter to the case of real spectral triples.

The algebra: First, we already know from our classification of finite spec-
tral triples in Section 2.3 that

A '
N⊕
i=1

Mni(C),
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for some n1, . . . , nN . Thus, the structure space of A is again given by Â =
{n1, . . . ,nN} where ni denotes the irreducible representation of A on Cni .
The Hilbert space: As before, the irreducible, faithful representations of
A =

⊕N
i=1Mni(C) are given by corresponding direct sums:

N⊕
i=1

Cni

on which A acts by left block-diagonal matrix multiplication.
Now, besides the representation of A, there should also be a represen-

tation of A◦ on H which commutes with that of A. In other words, we
are looking for the irreducible representations of A ⊗ A◦. If we denote the
unique irreducible representation of Mn(C)◦ by Cn◦, this implies that any
irreducible representation of A⊗A◦ is given by a summand in

N⊕
i,j=1

Cni ⊗ Cnj◦.

Consequently, any finite-dimensional Hilbert space representation of A has
a decomposition into irreducible representations

H =

N⊕
i,j=1

Cni ⊗ Cnj◦ ⊗ Vij ,

with Vij a vector space; we will refer to the dimension of Vij as the multi-
plicity of the representation Cni ⊗ Cnj◦.

The integers ni and n◦j form the grid of a diagram (cf. Figure 3.1 for

an example). Whenever there is a node at the coordinates (ni,n
◦
j ), the

representation Cni ⊗ Cnj◦ is present in the direct sum decomposition of H.
Multiplicities are indicated by multiple nodes.

Example 3.7. Consider the algebra A = C ⊕M2(C). The irreducible
representations of A are given by 1 and 2. The two diagrams

1 2

1◦

2◦

1 2

1◦

2◦

correspond to H1 = C ⊕M2(C) and H2 = C ⊕ C2, respectively. We have
used the fact that C2 ⊗ C2◦ ' M2(C). The left action of A on H1 is given
by the matrix (

λ 0
0 a

)
,

with a ∈ M2(C) acting on M2(C) ⊂ H1 by left matrix multiplication. The
right action of A on H1 corresponds to the same matrix acting by right
matrix multiplication.

On H2, the left action of A is given by matrix multiplication by the above
matrix on vectors in C⊕C2. However, the right action of (λ, a) ∈ A is given
by scalar multiplication with λ on all of H2.
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n1 · · · ni · · · nj · · · nN

n◦1

...

n◦i

...

n◦j

...

n◦N

Figure 3.1. A node at (ni,n
◦
j ) indicates the presence of

the summand Cni⊗Cnj◦ in H; the double node indicates the
presence of (Cni ⊗ Cni◦)⊕ (Cni ⊗ Cni◦) in H.

The real structure: Before turning to the finite Dirac operator D, we
exploit the presence of a real structure J : H → H in the diagrammatic
approach started above.

Exercise 3.6. Let J be an anti-unitary operator on a finite-dimensional
Hilbert space. Show that J2 is a unitary operator.

Lemma 3.8. Let J be an anti-unitary operator on a finite-dimensional
Hilbert space H with J2 = ±1.

(1) If J2 = 1 then there is an orthonormal basis {ek} of H such that
Jek = ek.

(2) If J2 = −1 then there is an orthonormal basis {ek, fk} of H such
that Jek = fk (and, consequently, Jfk = −ek).

Proof. (1) Take any v ∈ H and set

e1 :=

{
c(v + Jv) if Jv 6= −v
iv if Jv = −v,

with c a normalization constant. Then J(v + Jv) = Jv + J2v = v + Jv and
J(iv) = −iJv = iv in the two respective cases, so that Je1 = e1.

Next, take a vector v′ that is orthogonal to e1. Then

(e1, Jv
′) = (J2v′, Je1) = (v′, Je1) = (v′, e1) = 0,

so that also Jv′ ⊥ e1. As before, we set

e2 :=

{
c(v′ + Jv′) if Jv′ 6= −v′
iv′ if Jv′ = −v′,

which by the above is orthogonal to e1. Continuing in this way gives a basis
{ek} for H with Jek = ek.
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(2) Take any v ∈ H and set e1 = cv with c a normalization constant. Then
f1 = Je1 is orthogonal to e1, since

(f1, e1) = (Je1, e1) = −(Je1, J
2e1) = −(Je1, e1) = −(f1, e1).

Next, take another v′ ⊥ e1, f1 and set e2 = c′v′. As before, f2 := Je2 is
orthogonal to e2, and also to e1 and f1:

(e1, f2) = (e1, Je2) = −(J2e1, Je2) = −(e2, Je1) = −(e2, f1) = 0,

(f1, f2) = (Je1, Je2) = (e2, e1) = 0.

Continuing in this way gives a basis {ek, fk} for H with Jek = fk. �

We will now apply these results to the anti-unitary operator given by
a real structure on a spectral triple. Recall that in this case, J : H → H
implements a right action of A on H, via

a◦ = Ja∗J−1

satisfying [a, b◦] = 0. Together with the block-form of A, this implies that

J(a∗1 ⊕ · · · ⊕ a∗N ) = (a◦1 ⊕ · · · ⊕ a◦N )J.

We conclude that the Krajewski diagram for a real spectral triple must be
symmetric along the diagonal, J mapping each subspace Cni ⊗ Cnj◦ ⊗ Vij
bijectively to Cnj ⊗ Cni◦ ⊗ Vji.

n1 · · · ni · · · nj · · · nN

n◦1

...

n◦i

...

n◦j

...

n◦N

Figure 3.2. The presence of the real structure J implies a
symmetry in the diagram along the diagonal.

Proposition 3.9. Let J be a real structure on a finite real spectral triple
(A,H,D; J).

NCG and Particle Physics, W.D. van Suijlekom



32 CHAPTER 3. FINITE REAL NONCOMMUTATIVE SPACES

(1) If J2 = 1 (KO-dimension 0,1,6,7) then there is an orthonormal

basis {e(ij)
k } (i, j = 1, . . . , N, k = 1, . . . ,dimVij) with e

(ij)
k ∈ Cni ⊗

Cnj◦ ⊗ Vij such that

Je
(ij)
k = e

(ji)
k ; (i, j = 1, . . . , N ; k = 1, . . . ,dimVij).

(2) If J2 = −1 (KO-dimension 2,3,4,5) then there is an orthonormal

basis {e(ij)
k , f

(ji)
k } (i ≤ j = 1, . . . , N, k = 1, . . . ,dimVij) with e

(ij)
k ∈

Cni ⊗ Cnj◦ ⊗ Vij , f (ji)
k ∈ Cnj ⊗ Cni◦ ⊗ Vji and such that

Je
(ij)
k = f

(ji)
k ; (i ≤ j = 1, . . . , N ; k = 1, . . . ,dimVij).

Proof. We imitate the proof Lemma 3.8.

(1) If i 6= j, take v ∈ Cni ⊗Cnj◦⊗Vij and set e
(ij)
1 = cv. Then, by the above

observation, e
(ji)
1 = Je

(ij)
1 is an element in Cnj ⊗ Cni◦ ⊗ Vji . Next, take

v′ ∈ Cni ⊗ Cnj◦ ⊗ Vij with v′ ⊥ v and apply the same procedure to obtain

e
(ij)
2 and e

(ji)
2 . Continuing in this way gives an orthonormal basis {e(ij)

k } for

Cni⊗Cnj◦⊗Vij , and an orthonormal basis {e(ji)
k } for Cnj ⊗Cni◦⊗Vji which

satisfy Je
(ij)
k = e

(ji)
k .

If i = j, then Lemma 3.8(1) applies directly to the anti-unitary operator
given by J restricted to Cni ⊗ Cni◦ ⊗ Vii.

(2) can be proved along the same lines. �

Note that this result implies that in the case of KO-dimension 2, 3, 4 and
5, the diagonal Cni ⊗ Cni◦ ⊗ Vii needs to have even multiplicity.

The finite Dirac operator: Corresponding to the above decomposition
of H we can write D as a sum of matrices

Dij,kl : Cni ⊗ Cnj◦ ⊗ Vij → Cnk ⊗ Cnl◦ ⊗ Vkl,

restricted to these subspaces. The condition D∗ = D implies that Dkl,ij =
D∗ij,kl. In terms of the above diagrammatic representation of H, we express

a non-zero Dij,kl as a line between the nodes (ni,n
◦
j ) and (nk,n

◦
l ). Instead

of drawing directed lines, we draw a single undirected line, capturing both
Dij,kl and its adjoint Dkl,ij .

Lemma 3.10. The condition JD = ±DJ and the order one condition
given by [[D, a], b◦] = 0 forces the lines in the diagram to run only vertically
or horizontally (or between the same node), thereby maintaining the diagonal
symmetry between the nodes in the diagram.

Proof. The condition JD = ±DJ easily translates into a commuting
diagram:

Cni ⊗ Cnj◦ ⊗ Vij
D

//

J
��

Cnk ⊗ Cnl◦ ⊗ Vkl

J
��

Cnj ⊗ Cni◦ ⊗ Vji ±D
// Cnl ⊗ Cnk◦ ⊗ Vlk

thus relating Dij,kl to Dji,lk, maintaining the diagonal symmetry.
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If we write the order one condition [[D, a], b◦] = 0 for diagonal elements
a = λ1In1⊕· · ·⊕λN InN ∈ A and b = µ1In1⊕· · ·⊕µN InN ∈ A with λi, µi ∈ C,
we compute

Dij,kl(λi − λk)(µj − µl) = 0,

for all λi, µj ∈ C. As a consequence, Dij,kl = 0 whenever i 6= k or j 6= l. �

· · · ni · · · nj · · ·
...

n◦i

...

n◦j

...

Figure 3.3. The lines between two nodes represent a non-
zero Dii,ji : Cni ⊗ Cn◦i → Cnj ⊗ Cn◦i , as well as its adjoint

Dji,ii : Cnj ⊗ Cn◦i → Cni ⊗ Cn◦i . The non-zero components
Dii,ij and Dij,ii are related to ±Dii,ji and ±Dji,ii, respec-
tively, according to JD = ±DJ .

Grading: Finally, if there is a grading γ : H → H, then each node in the
diagram gets labeled by a plus or minus sign. The rules are that:

• D connects nodes with different signs;
• If the node (ni,n

◦
j ) has sign ±, then the node (nj ,n

◦
i ) has sign ±ε′′,

according to Jγ = ε′′γJ .

Finally, we arrive at a diagrammatic classification of finite real spectral
triples of any KO-dimension.

Definition 3.11. A Krajewski diagram of KO-dimension k is given
by an ordered pair (Γ,Λ) of a finite graph Γ and a finite set Λ of positive
integers with a labeling:

• of the vertices v ∈ Γ(0) by elements ι(v) = (n(v),m(v)) ∈ Λ ×
Λ, where the existence of an edge from v to v′ implies that either
n(v) = n(v′), m(v) = m(v′), or both;

• of the edges e = (v1, v2) ∈ Γ(1) by non-zero operators:

De : Cn(v1) → Cn(v2) if m(v1) = m(v2);

De : Cm(v1) → Cm(v2) if n(v1) = n(v2),

and their adjoints D∗e ,

together with an involutive graph automorphism j : Γ → Γ so that the fol-
lowing conditions hold:
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(1) every row or column in Λ×Λ has non-empty intersection with ι(Γ);
(2) for each vertex v we have (n(j(v)) = m(v);
(3) for each edge e we have De = ε′Dj(e);
(4) if the KO-dimension k is even, then the vertices are additionally

labeled by ±1 and the edges only connect opposite signs. The signs
at v and j(v) differ by a factor ε, according to the table of Definition
3.1;

(5) if the KO-dimension is 2,3,4,5 then the inverse image under ι of
the diagonal elements in Λ×Λ contains an even number of vertices
of Γ.

Note that this definition allows for different vertices of Γ to be labeled
by the same element in Λ×Λ; this accounts for the multiplicities appearing
in Vij that we have encountered before.

This indeed gives rise to a diagram of the above type, by putting a node
at position (ni,n

◦
j ) for each vertex carrying the label (ni,nj) ∈ Λ×Λ. The

notation n◦j instead of nj is just for a convenient diagrammatic exposition.

The operators De between vertices that are labeled by (ni,nj) and (nk,nl),
respectively, add up to the above Dij,kl. Explicitly,

Dij,kl =
∑

e=(v1,v2)∈Γ(1)

ι(v1)=(ni,nj)
ι(v2)=(nk,nl)

De,

so that indeed D∗ij,kl = Dkl,ij . Moreover, the only non-zero entries Dij,kl will
appear when i = k, or j = l, or both. Thus, we have shown

Theorem 3.12. There is a one-to-one correspondence between finite real
spectral triples of KO-dimension k modulo unitary equivalence and Krajew-
ski diagrams of KO-dimension k. Specifically, one associates a real spectral
triple (A,H,D; J, γ) to a Krajewski diagram in the following way:

A =
⊕
n∈Λ

Mn(C);

H =
⊕
v∈Γ(0)

Cn(v) ⊗ Cm(v)◦;

D =
∑
e∈Γ(1)

De +D∗e .

Moreover, the real structure J : H → H is given as in Proposition 3.9, with
the basis dictated by the graph automorphism j : Γ→ Γ. Finally, a grading
γ on H is defined by setting γ to be ±1 on Cn(v)⊗Cm(v)◦ ⊂ H according to
the labeling by ±1 of the vertex v.

Example 3.13. Consider the case A = C ⊕ C. There are ten possible
Krajewski diagrams in KO-dimension 0 with multiplicities less than or equal

to 1: in terms of Â = {11,12}, we have
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where the diagonal vertices are labeled with a plus sign, and the off-diagonal
vertices with a minus sign.

Let us consider the last diagram in the top row in more detail and give
the corresponding spectral triple:

11 12

1◦1

1◦2

First, the inner product space is H = C3, where we choose the middle copy
of C to correspond to the node on the diagonal. The edges indicate that there
are non-zero components of D that map between the first two copies of C in
H and between the second and third copy of C. In other words,

D =

0 λ 0

λ 0 µ
0 µ 0


for some λ, µ ∈ Hom(C,C) ' C that are the given labels on the two edges.
In this basis,

γ =

−1 0 0
0 1 0
0 0 −1

 .

Finally, J is given by the matrix K composed with complex conjugation on
H, where

K =

0 0 1
0 1 0
1 0 0

 .

From this it is clear that we indeed have

Dγ = −γD; DJ = JD; Jγ = γJ.

Exercise 3.7. Use the ten Krajewski diagrams of the previous example
to show that on A = C ⊕ C a finite real spectral triple of KO-dimension 6
with dimH ≤ 4 must have vanishing finite Dirac operator.

Example 3.14. Consider A = Mn(C) so that Â = {n}. We then have
a Krajewski diagram

n

n◦

The node can be labeled only by either plus or minus one, the choice being
irrelevant. This means that H = Cn ⊗ Cn◦ ' Mn(C) with γ the trivial
grading. The operator J is a combination of complex conjugation and the flip
on n⊗n◦: this translates to Mn(C) as taking the matrix adjoint. Moreover,
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since the single node has label ±1, there are no non-zero Dirac operators.
Hence, the finite real spectral triple of this diagram corresponds to

(A = Mn(C), H = Mn(C), D = 0; J = (·)∗, γ = 1),

and was encountered already in Exercise 3.3.

3.3. Real algebras and Krajewski diagrams

Thus far, we have considered finite spectral triples on complex algebras.
In practice, it is useful to allow real ∗-algebras in Definition 2.19 as well.

Definition 3.15. A real algebra is a vector space A over R with a
bilinear associative product A×A→ A denoted by (a, b) 7→ ab and a unit 1
satisfying 1a = a1 = a for all a ∈ A.

A real ∗-algebra (or, involutive algebra) is a real algebra A together with
a real linear map (the involution) ∗ : A → A such that (ab)∗ = b∗a∗ and
(a∗)∗ = a for all a, b ∈ A.

Example 3.16. A particularly interesting example in this context is
given by H, the real ∗-algebra of quaternions, defined as a real subalgebra
of M2(C):

H =

{(
α β

−β α

)
: α, β ∈ C

}
.

This is indeed closed under multiplication. As a matter of fact, H consists
of those matrices in M2(C) that commute with the operator I defined by

I

(
v1

v2

)
=

(
−v2

v1

)
.

The involution is inherited from M2(C) and is given by hermitian conjuga-
tion.

Exercise 3.8. (1) Show that H is a real ∗-algebra which contains
a real subalgebra isomorphic to C.

(2) Show that H⊗R C 'M2(C) as complex ∗-algebras.
(3) Show that Mk(H) is a real ∗-algebra for any integer k.
(4) Show that Mk(H)⊗R C 'M2k(C) as complex ∗-algebras.

When considering Hilbert space representations of a real ∗-algebra, one
must be careful, because the Hilbert space will be assumed to be a complex
space.

Definition 3.17. A representation of a finite-dimensional real ∗-algebra
A is a pair (H,π) where H is a (finite-dimensional, complex) Hilbert space
and π is a real-linear ∗-algebra map

π : A→ L(H).

Also, although there is a great deal of similarity, we stress that the
definition of the real structure J in Definition 2.19 is not related to the
algebra A being real or complex.

Exercise 3.9. Show that there is a one-to-one correspondence between
Hilbert space representations of a real ∗-algebra A and complex representa-
tions of its complexification A ⊗R C. Conclude that the unique irreducible
(Hilbert space) representation of Mk(H) is given by C2k.
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Lemma 3.18. Suppose that a real ∗-algebra A is represented faithfully
on a finite-dimensional Hilbert space H through a real-linear ∗-algebra map
π : A→ L(H). Then A is a matrix algebra:

A '
N⊕
i=1

Mni(Fi),

where Fi = R,C or H, depending on i.

Proof. The representation π allows to consider A as a real ∗-subalgebra
of MdimH(C), hence A + iA can be considered a complex ∗-subalgebra of
MdimH(C). Thus A + iA is a matrix algebra, and we may restrict to the
case A+iA = Mk(C) for some k ≥ 1. Note that A∩iA is a two-sided ∗-ideal
in Mk(C). As such, it must be either the whole of Mk(C), or zero. In the
first case, A + iA = A ∩ iA so that A = Mk(C). If A ∩ iA = {0}, then we
can uniquely write any element in Mk(C) as a+ ib with a, b ∈ A. Moreover,
A is the fixed point algebra of the anti-linear automorphism α of Mk(C)
given by α(a + ib) = a − ib (a, b ∈ A). We can implement α by an anti-
linear isometry I on Ck such that α(x) = IxI−1 for all x ∈ Mk(C). Since
α2 = 1, the operator I2 commutes with Mk(C) and is therefore proportional
to a complex scalar. Together with I2 being an isometry, this implies that
I2 = ±1 and that A is precisely the commutant of I. We now once again
use Lemma 3.8 to conclude that

• If I2 = 1, then there is a basis {ei} of Ck such that Iei = ei. Since
a matrix in Mk(C) that commutes with I must have real entries,
this gives

A = Mk(R).

• If I2 = −1, then there is a basis {ei, fi} of Ck such that Iei = fi
(and thus k is even). Since a matrix in Mk(C) that commutes with
I must be a k/2× k/2-matrix with quaternionic entries, we obtain

A = Mk/2(H). �

We now reconsider the diagrammatic classification of finite spectral
triples, with real ∗-algebras represented faithfully on a Hilbert space. In
fact, as far as the decomposition of H into irreducible representations is
concerned, we can replace A by the complex ∗-algebra

A+ iA '
N⊕
i=1

Mni(C).

Thus, the Krajewski diagrams in Definition 3.11 classify such finite real
spectral triples as well as long as we take the Fi for each i into account.
That is, we enhance the set Λ to be

Λ = {n1F1, . . . ,nNFN},

reducing to the previously defined Λ when all Fi = C.
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3.4. Classification of irreducible geometries

We now classify irreducible finite real spectral triples of KO-dimension
6. This leads to a remarkably concise list of spectral triples, based on the
matrix algebras MN (C)⊕MN (C) for some N .

Definition 3.19. A finite real spectral triple (A,H,D; J, γ) is called
irreducible if the triple (A,H, J) is irreducible. More precisely, we demand
that:

(1) The representations of A and J in H are irreducible;
(2) The action of A on H has a separating vector (cf. Exercise 3.2).

Theorem 3.20. Let (A,H,D; J, γ) be an irreducible finite real spectral
triple of KO-dimension 6. Then there exists a positive integer N such that
A 'MN (C)⊕MN (C).

Proof. Let (A,H,D; J, γ) be an arbitrary finite real spectral triple,
corresponding to e.g. the Krajewski diagram of Figure 3.2. Thus, as in
Section 2.3 we have

A =

N⊕
i=1

Mni(C), H =

N⊕
i,j=1

Cni ⊗ Cnj◦ ⊗ Vij ,

with Vij corresponding to the multiplicities as before. Now each Cni ⊗
Cnj is an irreducible representation of A, but in order for H to support
a real structure J : H → H we need both Cni ⊗ Cnj and Cnj ⊗ Cni to
be present in H. Moreover, Lemma 3.8 with J2 = 1 assures that already
with multiplicities dimVij = 1 there exists such a real structure. Hence, the
irreducibility condition (1) above yields

H = Cni ⊗ Cnj ⊕ Cnj ⊗ Cni ,

for some i, j ∈ {1, . . . , N}. Or, as a Krajewski diagram:

ni nj

n◦i
n◦j

Then, let us consider condition (2) on the existence of a separating vector.
Note first that the representation of A in H is faithful only if A = Mni(C)⊕
Mnj (C). Second, the stronger condition of a separating vector ξ then implies
ni = nj , as it is equivalent to A′ξ = H for the commutant A′ of A in H (see
Exercise 3.2). Namely, since A′ = Mnj (C)⊕Mni(C) with dimA′ = n2

i +n2
j ,

and dimH = 2ninj we find the desired equality ni = nj . �

With the complex finite-dimensional algebras A given by MN (C) ⊕
MN (C), the additional demand that H carries a symplectic structure I2 =
−1 yields real algebras of which A is the complexification (as in the proof of
Lemma 3.18). In view of Exercise 3.8(4) we see that this requires N = 2k so
that one naturally considers triples (A,H, J) for which A = Mk(H)⊕M2k(C)

and H = C2(2k)2 . The case k = 2 will come back in the final Chapter 11 as
the relevant one to consider in particle physics applications that go beyond
the Standard Model.
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Notes

Section 3.1. Finite real spectral triples

1. The operator D in Definition 3.1 is a first-order differential operator on the bimodule
H in the sense of [83].

2. Exercises 3.2 and 3.3 develop Tomita–Takesaki theory for matrix algebras, considered
as finite-dimensional Von Neumann algebras. For a complete treatment of this theory for
general Von Neumann algebras, we refer to e.g. [184].

Section 3.2. Classification of finite real spectral triples

3. Krajewski’s work on the classification of all finite real spectral triples (A,H,D; J, γ)
modulo unitary equivalence (based on a suggestion in [63]) is published in [127]. Similar
results were obtained independently in [158]. We have extended Krajewski’s work —
which is in KO-dimension 0— to any KO-dimension. The classification of finite real
spectral triples (but without Krajewski diagrams) is also the subject of [42]. The KO-
dimension 6 case —which is of direct physical interest as we will see below in Chapter
11— was also handled in [118].

4. Lemma 3.8 is based on [197], where Wigner showed that anti-unitary operators on
finite-dimensional Hilbert spaces can be written in a normal form. His crucial observation
is that J2 is unitary, allowing for a systematic study of a normal form of J for each of
the eigenvalues of J2 (these eigenvalues form a discrete subset of the complex numbers
of modulus one). In our case of interest, J is a real structure on a spectral triple (as in
Definition 3.1), so that J2 = ±1.

5. In the labelling of the nodes in a Krajewski diagram with ±-signs, it is important
whether or not we adopt the so-called orientation axiom [63]. In the finite-dimensional
case, this axiom demands that the grading γ can be implemented by elements xi, yi ∈ A as
γ =

∑
i xiy

◦
i . Hence, this is completely dictated by the operator J and the representation

of A. In terms of our diagrams, this translates to the fact that the grading of a node only
depends on the label (ni,n

◦
j ). In this book, we will not assume the orientation axiom.

Section 3.4. Classification of irreducible geometries

6. Finite irreducible geometries have been classified by Chamseddine and Connes in [51],
using different methods. We here confront their result with the above approach to finite
spectral triples using Krajewski diagrams and find that they are compatible.

NCG and Particle Physics, W.D. van Suijlekom





CHAPTER 4

Noncommutative Riemannian spin manifolds

We now extend our treatment of noncommutative geometric spaces from
the finite case to the continuum. This generalizes spin manifolds to the
noncommutative world. The resulting spectral triples form the key technical
device in noncommutative geometry, and in the physical applications of Part
2 of this book in particular.

We start with a treatment of Clifford algebras, as a preparation for the
definition of a spin structure on a Riemannian manifold, and end with a
definition of its noncommutative generalization.

4.1. Clifford algebras

Let V be a vector space over a field F (= R,C or H), equipped with a
quadratic form Q : V → F, i.e.

Q(λv) = λ2Q(v); (λ ∈ F, v ∈ V ),

Q(v + w) +Q(v − w) = 2Q(v) + 2Q(w); (v, w ∈ V ).

Definition 4.1. For a quadratic form Q on V , the Clifford algebra
Cl(V,Q) is the algebra generated (over F) by the vectors v ∈ V and with
unit 1 subject to the relation

(4.1.1) v2 = Q(v)1.

Note that the Clifford algebra Cl(V,Q) is Z2-graded, with grading χ
given by

χ(v1 · · · vk) = (−1)kv1 · · · vk,

which is indeed compatible with relation (4.1.1). Accordingly, we decompose

Cl(V,Q) =: Cl0(V,Q)⊕ Cl1(V,Q)

into an even and odd part.

Exercise 4.1. Show that in Cl(V,Q) we have

vw + wv = 2gQ(v, w),

where gQ is the pairing V × V → F associated to Q, given by

gQ(v, w) =
1

2
(Q(v + w)−Q(v)−Q(w)) .

We also introduce the following convenient notation for the Clifford alge-
bras for the vector spaces Rn and Cn equipped with the standard quadratic
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form Qn(x1, . . . , xn) = x2
1 + · · ·x2

n:

Cl+n := Cl(Rn, Qn);

Cl−n := Cl(Rn,−Qn);

Cln := Cl(Cn, Qn).

Both Cl+n and Cl−n are algebras over R generated by e1, . . . , en with relations

(4.1.2) eiej + ejei = ±2δij ,

for all i, j = 1, . . . , n. Moreover, the even part (Cl±n )0 of Cl±n consists of
products of an even number of ei’s, and the odd part (Cl±n )1 of products of
an odd number of ei’s.

The Clifford algebra Cln is the complexification of both Cl+n and Cl−n ,
and is therefore generated over C by the same e1, . . . , en satisfying (4.1.2).

Exercise 4.2. (1) Check that Equation (4.1.2) indeed corresponds
to the defining relations in Cl±n .

(2) Show that the elements ei1 · · · eir with 1 ≤ i1 < i2 < · · · < ir ≤ n
form a basis for Cl±n .

(3) Conclude that dimR Cl±n = 2n and, accordingly, dimCCln = 2n.
(4) Find an isomorphism Cl(Cn, Qn) ' Cl(Cn,−Qn) as Clifford alge-

bras.

Proposition 4.2. The even part (Cl−n+1)0 of Cl−n+1 is isomorphic to

Cl−n .

Proof. We construct a map Ψ : Cl−n 7→ (Cl−n+1)0 given on generators
by

Ψ(ei) = en+1ei.(4.1.3)

Indeed, for i, j = 1, . . . , n we have

Ψ(ei)Ψ(ej) + Ψ(ej)Ψ(ei) = eiej + ejei = −2δij = Ψ(−2δij),

using eier+1 = −er+1ei and er+1er+1 = −1. Thus, Ψ extends to a homo-
morphism Cl−n 7→ (Cl−n+1)0. Moreover, since Ψ sends basis vectors in Cl−n to

basis vectors in (Cl−n+1)0 and the dimensions of Cl−n and (Cl−n+1)0 coincide,
it is an isomorphism. �

Exercise 4.3. Show that the same expression (4.1.3) induces an iso-
morphism from Cl−n to the even part (Cl+n+1)0 and conclude that (Cl+n+1)0 '
(Cl−n+1)0.

Next, we compute the Clifford algebras Cl±n and Cln. We start with a
recursion relation:

Proposition 4.3. For any k ≥ 1 we have

Cl+k ⊗R Cl−2 ' Cl−k+2,

Cl−k ⊗R Cl+2 ' Cl+k+2 .
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Proof. The map Ψ : Cl−k+2 → Cl+k ⊗R Cl−2 given on generators by

Ψ(ei) =

{
1⊗ ei i = 1, 2
ei−2 ⊗ e1e2 i = 3, . . . , n

extends to the desired isomorphism. �

Let us compute some of the Clifford algebras in lowest dimensions.

Proposition 4.4.

Cl+1 ' R⊕ R, Cl−1 ' C,
Cl+2 'M2(R), Cl−2 ' H.

Proof. The Clifford algebra Cl+1 is generated (over R) by 1 and e1 with
relation e2

1 = 1. We map Cl+1 linearly to the algebra R⊕ R by sending

1 7→ (1, 1), e1 7→ (1,−1).

A dimension count shows that this map is a bijection.
The Clifford algebra Cl+2 is generated by 1, e1, e2 with relations

e2
1 = 1, e2

2 = 1, e1e2 = −e2e1.

A bijective map Cl+2
∼→M2(R) is given on generators by

1 7→
(

1 0
0 1

)
, e1 7→

(
1 0
0 −1

)
, e2 7→

(
0 1
1 0

)
.

We leave the remaining Cl−1 and Cl+2 as an illustrative exercise to the reader.
�

Exercise 4.4. Show that Cl−1 ' C and Cl−2 ' H.

Combining the above two Propositions, we derive Table 4.1 for the Clif-
ford algebras Cl±n and Cln for n = 1, . . . , 8. For instance,

Cl+3 ' Cl−1 ⊗R Cl+2 ' C⊗R M2(R) 'M2(C)

and

Cl+4 ' Cl−2 ⊗R Cl+2 ' H⊗R M2(R) 'M2(H)

and so on. In particular, we have

Cl+n ⊗Cl+4 ' Cln+4

and

Cl+n+8 ' Cl+n ⊗Cl+8 .

With Cl+8 'M16(R) we conclude that Cl+k+8 is Morita equivalent to Cl+k (cf.

Theorem 2.14). Similarly, Cl−k+8 is Morita equivalent to Cl−k . Thus, in this

sense Table 4.1 has periodicity eight and we have determined Cl±n for all n.
For the complex Clifford algebras, there is a periodicity of two:

Cln⊗CCl2 ' Cln+2,

so that with Cl2 'M2(C) we find that Cln is Morita equivalent to Cln+2.
The (semi)simple structure of Cln is further clarified by
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n Cl+n Cl−n Cln

1 R⊕ R C C⊕ C
2 M2(R) H M2(C)
3 M2(C) H⊕H M2(C)⊕M2(C)
4 M2(H) M2(H) M4(C)
5 M2(H)⊕M2(H) M4(C) M4(C)⊕M4(C)
6 M4(H) M8(R) M8(C)
7 M8(C) M8(R)⊕M8(R) M8(C)⊕M8(C)
8 M16(R) M16(R) M16(C)

Table 4.1. Clifford algebras Cl±n and their complexifications
Cln for n = 1, . . . , 8.

Definition 4.5. The chirality operator γn+1 in Cln is defined as the
element

γn+1 = (−i)me1 · · · en,
where n = 2m or n = 2m+ 1, depending on whether n is even or odd.

Exercise 4.5. Show that

(1) if n = 2m is even, then γn+1 generates the center of Cln,
(2) if n = 2m+ 1 is odd, then γn+1 lies in the odd part Cl12k+1, and the

center of Cln is generated by 1 and γn+1.

4.1.1. Representation theory of Clifford algebras. We determine
the irreducible representations of the Clifford algebras Cl±n and Cln. Let us
start with the complex Clifford algebras.

Proposition 4.6. The irreducible representations of Cln are given as

C2m ; (n = 2m),

C2m ,C2m ; (n = 2m+ 1).

Proof. Since the Cln are matrix algebras we can invoke Lemma 2.15
to conclude that in the even-dimensional case the irreducible representation
of Cl2m ' M2m(C) is given by the defining representation C2m . In the
odd-dimensional case we have

Cl2m+1 'M2m(C)⊕M2m(C),

so that the irreducible representations are given by two copies of C2m , cor-
responding to the two summands in this matrix algebra. �

For the real Clifford algebras Cl±n we would like to obtain the irre-
ducible representations from those just obtained for the complexification
Cln ' Cl±n ⊗RC. As Cl±n are matrix algebras over R and H, this leads us to
the following possibilities:

(1) Restrict an (irreducible) representation of Cln to a real subspace,
stable under Cl±n ;

(2) Extend an (irreducible) representation of Cln to a quaternionic
space, carrying a representation of Cl±n .
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This is very similar to our approach to real algebras in Section 3.3. In fact,
we will use an anti-linear map J±n on the representation space, furnishing
it with a real ((J±n )2 = 1) or quaternionic structure ((J±n )2 = −1) to select
the real subalgebra Cl±n ⊂ Cln. For the even-dimensional case we search
for operators J±2m such that on the irreducible Cl2m-representations C2m we
have

(4.1.4) Cl±2m '
{
a ∈ Cl2m : [J±2m, a] = 0

}
.

The odd case is slightly more subtle, as only the even part (Cl±n )0 of Cl±n
can be recovered in this way:

(4.1.5) (Cl±2m+1)0 '
{
a ∈ Cl02m+1 : [J±2m+1, a] = 0

}
.

Proposition 4.7. For any m ≥ 1 there exist anti-linear operators J±2m :
C2m → C2m and J±2m+1 : C2m → C2m such that the Equations (4.1.4) and
(4.1.5) hold.

Proof. From Proposition 4.2 and Exercise 4.3 we see that (Cl±2m+1)0 '
Cl−2m and (Cl2m+1)0 ' Cl2m so that the odd case follows from the even case.

By periodicity we can further restrict to construct only J±2m for m =
1, 2, 3, 4. For m = 1 we select the real form Cl+2 ' M2(R) in Cl2 ' M2(C)
as the commutant of J+

2 with

J+
2 : C2 → C2;(
v1

v2

)
7→
(
v1

v2

)
.

Instead, as in Example 3.16, Cl−2 ' H can be identified as a real subalgebra
Cl2 'M2(C) with the commutant of J−2 , where

J−2 : C2 → C2;(
v1

v2

)
7→
(
−v2

v1

)
.

For m = 2 the sought-for operator J+
4 ≡ J

−
4 on C4 is given by J−2 ⊕ J

−
2 .

For m = 3 we set J+
6 = (J−2 )⊕4 to select Cl+6 ' M4(H) inside Cl6, and

J−6 = (J+
2 )⊕4 to select Cl−6 'M8(R).

Finally, for m = 4 the operator J+
8 ≡ J−8 := (J+

2 )⊕8 selects the two
isomorphic real forms Cl±8 ⊂ Cl8. �

The signs for the squares (J±n )2 are listed in Table 4.2. The isomorphisms
between the odd- and even-dimensional cases are illustrated by the fact that

(J±2m+1)2 = (J−2m)2.

with periodicity eight. We also indicated the commutation between J±n and
odd elements in Cl±n and between J±n and the chirality operator γn+1. For
the derivation of the former note that for n even J±n commutes with all
elements in Cl±n , whereas for n odd we follow the proof of Proposition 4.7:

• n = 1: J−1 is equal to J−0 , which is given by J−0 (z) = z for z ∈ C,
and (4.1.5) selects (Cl−1 )0 ' R in Cl−1 ' C. Thus, the remaining
part (Cl−1 )1 ' iR so that odd elements x ∈ (Cl−1 )1 anti-commute
with J−1 .
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n 1 2 3 4 5 6 7 8

(J+
n )2 = ±1 1 1 −1 −1 −1 −1 1 1

(J−n )2 = ±1 1 −1 −1 −1 −1 1 1 1

J−n x = (±1)xJ−n , x odd −1 1 1 1 −1 1 1 1
J−n γn+1 = (±1)γn+1J

−
n −1 1 −1 1

Table 4.2. The real and quaternionic structures on the irre-
ducible representations of Cln that select Cl±n via (4.1.4) for
n even and (Cl±n )0 via (4.1.5) for n odd. For later reference,
we also indicated the commutation or anti-commutation of
J−n with the chirality operator γn+1 defined in Definition 4.5
and odd elements in (Cl±n )1 ⊂ Cl±n .

• n = 3: J−3 is equal to J−2 , which is given by the standard quater-
nionic structure on C2. It then follows that all of Cl−3 ' H ⊕ H
commutes with J−3 .
• n = 5: in this case J−5 is equal to J−4 , which is two copies of
J−2 . This selects (Cl−5 )0 ' M2(H) in Cl−5 ' M4(C). Again, the
remaining part (Cl−5 )1 ' iM2(H) so that odd elements x ∈ (Cl−5 )0

anti-commute with J−5 .
• n = 7: J−7 is equal to J−6 , which is given by component-wise com-

plex conjugation of vectors in C8. It follows that all of Cl−7 '
M8(R)⊕M8(R) commutes with J−6 .

Finally, in the even case n = 2m the (anti)-commutation between the chi-
rality operator γn+1 and the anti-linear operator J−n depends only on the
power of the factor im. Indeed, the even product of ei’s in Definition 4.5
already commutes with J−n , so that the signs (−1)m for n = 2m follow from

J−n i
m = (−i)mJ−n .

The last three rows of Table 4.2 give precisely the sign table that appears for
real spectral triples below, where n is the corresponding KO-dimension, and
hence coincide with Table 3.1 of Definition 3.1. We will now slowly move to
the spin manifold case, tracing KO-dimension back to its historical roots.

4.2. Riemannian spin geometry

We here give a concise introduction to Riemannian spin manifolds and
work towards a Dirac operator. For convenience, we restrict to compact
manifolds.

4.2.1. Spin manifolds. The definition of Clifford algebras can be ex-
tended to Riemannian manifolds, as we will now explain. First, for com-
pleteness we recall the definition of a Riemannian metric on a manifold.

Definition 4.8. A Riemannian metric on a manifold M is a symmetric
bilinear form on vector fields Γ(TM)

g : Γ(TM)× Γ(TM)→ C(M)

such that
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(1) g(X,Y ) is a real function if X and Y are real vector fields;
(2) g is C(M)-bilinear:

g(fX, Y ) = g(X, fY ) = fg(X,Y ); (f ∈ C(M));

(3) g(X,X) ≥ 0 for all real vector fields X and g(X,X) = 0 if and
only if X = 0.

The non-degeneracy condition (3) allows us to identify Γ(TM) with
Ω1

dR(M) = Γ(T ∗M).
A Riemannian metric g on M gives rise to a distance function on M ,

given as an infimum of path lengths

(4.2.1) dg(x, y) = inf
γ

{∫ 1

0

√
g(γ̇(t), γ̇(t))dt : γ(0) = x, γ(1) = y

}
.

Moreover, the inner product that g defines on the fibers TxM of the
tangent bundle allows us to define Clifford algebras at each point in M as
follows. With the inner product at x ∈M given explicitly by gx(Xx, Yx) :=
g(X,Y )|x we consider the quadratic form on TxM defined by

Qg(Xx) = gx(Xx, Xx).

We can then apply the construction of the Clifford algebra of the previous
section to each fiber of the tangent bundle. At each point x ∈M this gives
rise to Cl(TxM,Qg) and its complexification Cl(TxM,Qg). When x varies,
these Clifford algebras combine to give a bundle of algebras.

Definition 4.9. The Clifford algebra bundle Cl+(TM) is the bundle
of algebras Cl(TxM,Qg), with the transition functions inherited from TM .
Namely, transition functions on the tangent bundle are given for open U, V ⊂
M by tUV : U ∩ V → SO(n) where n = dimM . Their action on each fiber
TxM can be extended to Cl(TxM,Qx) by

v1v2 · · · vk 7→ tUV (v1) · · · tUV (vk); (v1, . . . , vk ∈ TxM).

The algebra of continuous real-valued sections of Cl+(TM) will be denoted
by Cliff+(M) = Γ(Cl+(TM)).

Similarly, replacing Qg by −Qg, we define Cliff−(M) as the space of
sections of Cl−(TM).

Finally, we define the complexified algebra

Cliff(M) := Cliff+(M)⊗R C,

consisting of continuous sections of the bundle of complexified algebras Cl(TM),
which is defined in a similar manner.

Let us determine local expressions for the algebra Cliff+(M). If {xµ}nµ=1

are local coordinates on a chart U ofM , the algebra of sections of Cliff+(M)|U
is generated by γµ with relations

(4.2.2) γµγν + γνγµ = 2gµν ,

with gµν = g(∂µ, ∂ν). After choosing an orthonormal basis for Γ(TM)|U
with respect to the metric g, at a point of U this relation reduces precisely
to the relation (4.1.2).
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Let us see if we can import more of the structure for Clifford algebras
explored so far to the setting of a Riemannian manifold. First, recall that

Cl2m ∼= M2m(C), Cl02m+1
∼= M2m(C).

Another way of phrasing this is to say that the (even parts of the) Clifford
algebras Cln are endomorphism algebras End(C2m). The natural question
that arises in the setting of Riemannian manifolds is whether or not this
holds for all fibers of the Clifford algebra bundle, in which case it would
extend to a global isomorphism of algebra bundles.

Definition 4.10. A Riemannian manifold is called spinc if there exists
a vector bundle S →M such that there is an algebra bundle isomorphism

Cl(TM) ' End(S) (M even-dimensional),

Cl(TM)0 ' End(S) (M odd-dimensional).

The pair (M,S) is called a spinc structure on M .

If a spinc structure (M,S) exists we refer to S as the spinor bundle
and the sections in Γ(S) as spinors. Using the metric and the action of
Cliff+(M) by endomorphisms on Γ(S) we introduce the following notion.

Definition 4.11. Let (M,S) be a spinc structure on M . Clifford mul-
tiplication is defined by the linear map

c : Ω1
dR(M)× Γ(S)→ Γ(S);

(ω, ψ) 7→ ω# · ψ,

where ω# is the vector field in Γ(TM) corresponding to the one-form ω ∈
Ω1

dR(M) via the metric g. This vector field acts as an endomorphism on
Γ(S) via the embedding Γ(TM) ↪→ Cliff+(M) ⊂ Γ End(S).

In local coordinates on U ⊂ M , we can write ω|U = ωµdx
µ with ωµ ∈

C(U) so that Clifford multiplication can be written as

c(ω)ψ|U ≡ c(ω, ψ)|U = ωµ(γµψ)|U ; (ψ ∈ Γ(S)),

with γµ = gµνγν and γν as in (4.2.2) but now represented as endomorphisms
on the fibers of S. The appearance of γµ comes from the identification of
the basis covector dxµ ∈ Ω1

dR(M)|U with the basis vector ∂µ ∈ Γ(TM)|U
using the metric, which is then embedded in Cliff+(M). That is, we have

dxµp = g(∂µ, ·)p

as (non-degenerate) maps from TpM to C with p ∈ U ⊂M .
Recall that if M is compact, then any vector bundle carries a continu-

ously varying inner product on its fibers,

〈·, ·〉 : Γ(S)× Γ(S)→ C(M).

Exercise 4.6. Use a partition of unity argument to show that any vec-
tor bundle on a compact manifold M admits a continuously varying inner
product on its fibers.
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Definition 4.12. The Hilbert space of square-integrable spinors L2(S)
is defined as the completion of Γ(S) in the norm corresponding to the inner
product

(ψ1, ψ2) =

∫
M
〈ψ1, ψ2〉(x)

√
gdx,

where
√
gdx is the Riemannian volume form.

Recall that in the previous subsection we selected the real Clifford alge-
bras Cl±n as subalgebras in Cln that commute with a certain anti-linear op-
erator J±n . We now try to select Cliff±(M) ⊂ Cliff(M), considered as endo-
morphisms on Γ(S), through a globally-defined operator JM : Γ(S)→ Γ(S),
so that

(JMψ)(x) = J±n (ψ(x)),

for any section ψ ∈ Γ(S), where n = dimM . Such a global operator does
not always exist: this gives rise to the notion of a spin manifold. It is con-
ventional to work with J−n to select Cliff−(M) ⊂ Cliff(M), making our sign
Table 4.2 fit with the usual definition of KO-dimension in noncommutative
geometry.

Definition 4.13. A Riemannian spinc manifold is called spin if there
exists an anti-unitary operator JM : Γ(S)→ Γ(S) such that:

(1) JM commutes with the action of real-valued continuous functions
on Γ(S);

(2) JM commutes with Cliff−(M) (or with Cliff−(M)0 in the odd case).

We call the pair (S, JM ) a spin structure on M and refer to the operator
JM as the charge conjugation.

If the manifold M is even dimensional, we can define a grading

(γMψ)(x) = γn+1(ψ(x)); (ψ ∈ Γ(S)).

Then, the sign rules of Table 4.2 for the square of J−n and the (anti)-
commutation of J−n with γn+1 and odd elements in Cl−n hold in each fiber
of Γ(S). Hence, we find that also globally

J2
M = ε, JMx = ε′xJM ; (x ∈ (Cliff−(M))1, JMγM = ε′′γMJM ,

with ε, ε′, ε′′ ∈ {±1} being the signs in Table 4.2 with n = dimM modulo
eight. This will be crucial for our definition of a real spectral triple in the
next section, where these signs determine the KO-dimension of a noncom-
mutative Riemannian spin manifold.

4.2.2. Spin connection and Dirac operator. The presence of a spin
structure on a Riemannian manifold allows for the construction of a first-
order differential operator that up to a scalar term squares to the Laplacian
associated to g. This is the same operator that Dirac searched for (with
success) in his attempt to replace the Schrödinger equation by a more gen-
eral covariant differential equation in Minkowski space. The Dirac operator
that we will describe below is the analogue for Riemannian spin manifolds
of Dirac’s operator on flat Minkowski space. In order to allow for differen-
tiation, we will restrict to smooth, rather than continuous sections.
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Definition 4.14. A connection on a vector bundle E →M is given by
a C-linear map on the space of smooth sections:

∇ : Γ∞(E)→ Ω1
dR(M)⊗C∞(M) Γ∞(E)

that satisfies the Leibniz rule

∇(fη) = f∇(η) + df ⊗ η; (f ∈ C∞(M), η ∈ Γ∞(E)).

The curvature ΩE of ∇ is defined by the C∞(M)-linear map

ΩE := ∇2 : Γ∞(E)→ Ω2(M)⊗C∞(M) Γ∞(E).

Finally, if 〈·, ·〉 is a smoothly varying (i.e. C∞(M)-valued) inner product on
Γ∞(E), a connection is said to be hermitian, or compatible if

〈∇η, η′〉+ 〈η,∇η′〉 = d〈η, η′〉; (η, η′ ∈ Γ∞(E)).

Equivalently, when evaluated on a vector field X ∈ Γ∞(TM) a connec-
tion gives rise to a map

∇X : Γ∞(E)→ Γ∞(E).

More precisely, the relation with the above definition is given by

∇X(η) := ∇(η)(X),

for all X ∈ Γ∞(TM) and η ∈ Γ∞(E). The corresponding curvature then
becomes

(4.2.3) ΩE(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]; (X,Y ∈ Γ∞(TM)),

i.e. it is a measure of the defect of ∇ to be a Lie algebra map.

Example 4.15. Consider the tangent bundle TM →M on a Riemann-
ian manifold (M, g). A classical result is that there is a unique connection
on TM that is compatible with the inner product g on Γ(TM), i.e.

〈∇XY,Z〉+ 〈Y,∇XZ〉 = X(〈Y,Z〉)
and that is torsion-free, i.e.

∇XY −∇YX = [X,Y ]; (X,Y ∈ Γ∞(TM)).

This connection is called the Levi–Civita connection and can be written in
local coordinates {xµ}nµ=1 on a chart U ⊂M as ∇(∂ν) = Γκµνdx

µ ⊗ ∂κ, or

∇∂µ(∂ν) = Γκµν∂κ.

The C∞(U)-valued coefficients Γκµν are the so-called Christoffel symbols and
torsion-freeness corresponds to the symmetry Γκµν = Γκνµ.

Recall also the definition of the Riemannian curvature tensor on (M, g)
as the curvature of the Levi–Civita connection, i.e.

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] ∈ Γ(EndTM),

which is indeed a C∞(M)-linear map. Locally, we have for its components

Rµνκλ := g(∂µ, R(∂κ, ∂λ)∂ν).

The contraction Rνλ := gµκRµνκλ is called the Ricci tensor, and the subse-

quent contraction s := gνλRνλ ∈ C∞(M) is the scalar curvature.
Similar results hold for the cotangent bundle, with the unique, compati-

ble, torsion-free connection thereon related to the above via the metric g.
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Definition 4.16. If ∇E is a connection on a vector bundle E, the Lapla-
cian associated to ∇E is the second order differential operator on E defined
by

∆E := −Trg(∇⊗ 1 + 1⊗∇E) ◦ ∇E : Γ∞(E)→ Γ∞(E),

where

∇⊗ 1 + 1⊗∇E : Ω1
dR(M)⊗C∞(M) Γ∞(E)

→ Ω1
dR(M)⊗C∞(M) Ω1

dR(M)⊗C∞(M) Γ∞(E)

is the combination of the Levi–Civita connection on the cotangent bun-
dle with the connection ∇E and Trg is the trace associated to g mapping
Ω1

dR(M)⊗C∞(M) Ω1
dR(M)→ C∞(M).

Locally, we find

∆E = −gµν(∇Eµ∇Eν − Γκµν∇Eκ ).

If M is a Riemannian spinc manifold, then the above Levi–Civita connection
can be lifted to the spinor bundle. First, choose a local orthonormal basis
for TM |U :

{E1, . . . , En} for Γ(TM)|U : g(Ea, Eb) = δab.

The corresponding dual orthonormal basis of T ∗M |U is denoted by θa. We
can then write the Christoffel symbols in this basis, namely by

∇Ea =: Γ̃bµadx
µ ⊗ Eb

on vector fields, and on one-forms by

∇θb = −Γ̃bµadx
µ ⊗ θa.

The local orthonormal basis for TM |U allows us to write Clifford relations
for (globally) fixed matrices γa:

(4.2.4) γaγb + γbγa = 2δab; (a, b = 1, . . . , n).

Definition 4.17. Let M be a spinc manifold. The spin connection ∇S
on the spinor bundle S →M is given as the lift of the Levi–Civita connection
to the spinor bundle, written locally as

∇Sµψ(x) =

(
∂µ −

1

4
Γ̃bµaγ

aγb

)
ψ(x).

Proposition 4.18. If M is a spin manifold and JM is the corresponding
anti-unitary operator on Γ(S), then the spin connection commutes with JM .

Proof. Observe that the product γaγb = −(iγa)(iγb) is in the even
part of the Clifford algebra Cl−n , since

(iγa)(iγb) + (iγb)(iγa) = −2δab.

Since by definition the operator J−n commutes with the even elements in
Cl−n acting fiberwise on the spinor bundle, the result follows. �
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Definition 4.19. Let M be a spin manifold, with spin structure (S, JM ).
The Dirac operator DM is the composition of the spin connection on S with
Clifford multiplication of Definition 4.11:

DM : Γ∞(S)
∇S−→ Ω1

dR(M)⊗C∞(M) Γ∞(S)
−ic−→ Γ∞(S).

In local coordinates, we have

DMψ(x) = −iγµ
(
∂µ −

1

4
Γ̃bµaγ

aγb

)
ψ(x).

The final result from this subsection forms the starting point for an
operator-algebraic formulation of noncommutative Riemannian spin mani-
folds.

Theorem 4.20. The operator DM is self-adjoint on L2(S) with compact
resolvent (i+D)−1, and has bounded commutators with elements in C∞(M).
In fact

[DM , f ] = −ic(df),

so that ‖[DM , f ]‖ = ‖f‖Lip is the Lipschitz (semi)-norm of f :

‖f‖Lip = sup
x 6=y

{
f(x)− f(y)

dg(x, y)

}
.

Proof. See Note 7 on Page 60. �

4.2.3. Lichnerowicz formula. Let us come back to the original moti-
vation of Dirac, which was to find an operator whose square is the Laplacian.
Up to a scalar this continues to hold for the Dirac operator on a Riemannian
spin manifold, a result that will turn out to be very useful later on in our
physical applications. For this reason we include it here with proof.

Theorem 4.21. Let (M, g) be a Riemannian spin manifold with Dirac
operator DM . Then

D2
M = ∆S +

1

4
s,

in terms of the Laplacian ∆S associated to the spin connection ∇S and the
scalar curvature s.

Proof. We exploit the local expressions for DM , ∆S and s, as the
above formula is supposed to hold in each chart that trivializes S. With
DM = −iγµ∇Sµ we compute

D2
M = −γµ∇Sµγν∇Sν = −γµγν∇Sµ∇Sν − γµc(∇µdxκ)∇Sκ

= −γµγν(∇Sµ∇Sν − Γκµν∇Sκ).

We then use the Clifford relations (4.2.2) to write γµγν = 1
2 [γµ, γν ] + gµν ,

and combine this with torsion freedom Γκµν = Γκνµ to obtain

D2
M = −gµν(∇Sµ∇Sν − Γκµν∇Sκ)− 1

2
[γµ, γν ]∇Sµ∇Sν ≡ ∆S − 1

2
γµγνRS(∂µ, ∂ν),
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in terms of the Laplacian for ∇S on S and the curvature RS thereof. The
latter is given by −1

4Rκλµνγ
κγλ, as one can easily compute from the explicit

local form of ∇S in Definition 4.17. Thus,

D2
M = ∆S − 1

8
Rµνκλγ

µγνγκγλ.

Using the cyclic symmetry of the Riemann curvature tensor in the last three
indices, and the Clifford relations (4.2.2) we find that the second term on the
right-hand side is equal to 1

4Rνλg
νλ = 1

4s, in terms of the scalar curvature
defined in Example 4.15. �

4.3. Noncommutative Riemannian spin manifolds: spectral
triples

This section introduces the main technical device that generalizes Rie-
mannian spin geometry to the noncommutative world. The first step towards
noncommutative manifolds is to arrive at an algebraic characterization of
topological spaces. This is accomplished by Gelfand duality, giving a
one-to-one correspondence between compact Hausdorff topological spaces
and commutative C∗-algebras. Let us recall some definitions.

Definition 4.22. A C∗-algebra A is a (complex) ∗-algebra (Definition
2.1) that is complete with respect to a multiplicative norm (i.e. ‖ab‖ ≤
‖a‖‖b‖ for all a, b ∈ A) that satisfies the C∗-property:

‖a∗a‖ = ‖a‖2.

Example 4.23. The key example of a commutative C∗-algebra is the
algebra C(X) for a compact topological space X. Indeed, uniform continuity
is captured by the norm

‖f‖ = sup{|f(x)| : x ∈ X}

and involution defined by f∗(x) = f(x). This indeed satisfies ‖f∗f‖ = ‖f‖2.

Example 4.24. Another key example where A is noncommutative is
given by the ∗-algebra of bounded operators B(H) on a Hilbert space H,
equipped with the operator norm.

The following result connects with the matrix algebras of Chapter 2.

Proposition 4.25. If A is a finite-dimensional C∗-algebra, then it is
isomorphic to a matrix algebra:

A '
N⊕
i=1

Mni(C).

Proof. See Note 9 on Page 60. �

In Chapter 2 we defined the structure space of a ∗-algebra A to consist
of (equivalence classes of) irreducible representations of A. Let us extend
this definition to C∗-algebras.
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Definition 4.26. A representation of a C∗-algebra A is a pair (H, π)
where H is a Hilbert space and π is a ∗-algebra map

π : A→ B(H).

A representation (H, π) is irreducible if H 6= 0 and the only closed subspaces
in H that are left invariant under the action of A are {0} and H.

Two representations (H1, π1) and (H2, π2) of a C∗-algebra A are unitar-
ily equivalent if there exists a unitary map U : H1 → H2 such that

π1(a) = U∗π2(a)U.

Definition 4.27. The structure space Â of a C∗-algebra A is the set of
all unitary equivalence classes of irreducible representations of A.

In Chapter 4 we considered the commutative matrix algebra CN whose
structure space was the finite topological space consisting ofN points. Let us
sketch the generalization to compact Hausdorff topological spaces, building
towards Gelfand duality. As a motivating example, we consider the C∗-
algebra C(X) for a compact Hausdorff topological space X (cf. Example
4.23). As this C∗-algebra is commutative, a standard argument shows that
any irreducible representation π of C(X) is one-dimensional. In fact, any
such π is equivalent to the evaluation map evx at some point x of X, given
by

evx : C(X)→ C;

f 7→ f(x).

Being a one-dimensional representation, evx is automatically an irreducible
representation. It follows that the structure space of C(X) is given by the
set of points of X. But more is true, as the topology of X is also captured by
the structure space. Namely, since in the commutative case the irreducible
representations are one-dimensional π : A → C the structure space can be
equipped with the weak ∗-topology. That is to say, for a sequence {πn}n
in Â, πn converges weakly to π if πn(a)→ π(a) for all a ∈ A.

We state the main result, generalizing our finite-dimensional version of
Section 2.1.1 to the infinite-dimensional setting.

Theorem 4.28 (Gelfand duality). The structure space Â of a commu-
tative unital C∗-algebra A is a compact Hausdorff topological space, and

A ' C(Â) via the Gelfand transform

a ∈ A 7→ â ∈ Â; â(π) = π(a).

Moreover, for any compact Hausdorff topological space X we have

Ĉ(X) ' X.

Proof. See Note 10 on Page 60. �

The next milestone which we need to reach noncommutative Riemannian
spin geometry is the translation of the Riemannian distance (4.2.1) on a
compact Riemannian spin manifold into functional analytic data. Indeed,
we will give an alternative formula as a supremum over functions in C∞(M).
The translation from points in M to functions on M is accomplished by
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b b

x y

f

b b

x y

Figure 4.1. The translation of the distance between points
x, y in M to a formulation in terms of functions of slope ≤ 1.

imposing that the gradient of the functions is less than 1 (see Figure 4.1).
This is a continuous analogue of Theorem 2.18.

Proposition 4.29. Let M be a Riemannian spinc-manifold with Dirac
operator DM . The following formula defines a distance between points in

Ĉ(M) 'M :

d(x, y) = sup
f∈C∞(M)

{|f(x)− f(y)| : ‖[DM , f ]} ≤ 1} .

Moreover, this distance function d coincides with the Riemannian distance
function dg.

Proof. First, note that the relation ‖f‖Lip = ‖[DM , f ]‖ ≤ 1 (cf. The-
orem 4.19) already ensures that d(x, y) ≤ dg(x, y). For the opposite in-
equality we fix y ∈ M and consider the function fg,y(z) = dg(z, y). Then
‖fg,y‖Lip ≤ 1 and

d(x, y) ≥ |fg,y(x)− fg,y(y)| = dg(x, y),

as required. �

Thus, we have reconstructed the Riemannian distance on M from the
algebra C∞(M) of functions on M and the Dirac operator DM , both act-
ing in the Hilbert space L2(S) of square-integrable operators. Note that
the triple (C∞(M), L2(S), DM ) consists of mere functional analytical, or
‘spectral’ objects, instead of geometrical. Upon allowing for noncommuta-
tive algebras as well, we arrive at the following spectral data required to
describe a noncommutative Riemannian spin manifold.

Definition 4.30. A spectral triple (A,H, D) is given by a unital ∗-
algebra A represented as bounded operators on a Hilbert space H and a
self-adjoint operator D in H such that the resolvent (i+D)−1 is a compact
operator and [D, a] is bounded for each a ∈ A.

A spectral triple is even if the Hilbert space H is endowed with a Z2-
grading γ such that γa = aγ and γD = −Dγ.

A real structure of KO-dimension n ∈ Z/8Z on a spectral triple is an
anti-linear isometry J : H → H such that

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ (even case),
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n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

Table 4.3. The KO-dimension n of a real spectral triple is
determined by the signs {ε, ε′, ε′′} appearing in J2 = ε, JD =
ε′DJ and Jγ = ε′′γJ .

where the numbers ε, ε′, ε′′ ∈ {−1, 1} are given as a function of n modulo 8,
as they appear in Table 4.3.

Moreover, with b0 = Jb∗J−1 we impose the commutant property and the
order one condition:

[a, b0] = 0, [[D, a], b0] = 0; (a, b ∈ A).(4.3.1)

A spectral triple with a real structure is called a real spectral triple.

Remark 4.31. The notation (A,H, D) is chosen to distinguish a general
spectral triple from the finite spectral triples considered in Chapter 2 and 3,
which were denoted as (A,H,D).

The basic example of a spectral triple is the canonical triple associated
to a compact Riemannian spin manifold:

• A = C∞(M), the algebra of smooth functions on M ;
• H = L2(S), the Hilbert space of square integrable sections of a

spinor bundle S →M ;
• D = DM , the Dirac operator associated to the Levi–Civita connec-

tion lifted to the spinor bundle.

The real structure J is given by the charge conjugation JM of Definition 4.13.
If the manifold is even dimensional then there is a grading on H, defined
just below Definition 4.13. Since the signs in the above table coincide with
those in Table 4.2, the KO-dimension of the canonical triple coincides with
the dimension of M .

Example 4.32. The tangent bundle of the circle S1 is trivial and has
one-dimensional fibers, so that spinors are given by ordinary functions on
S1. Moreover, the Dirac operator DS1 is given by −id/dt where t ∈ [0, 2π),
acting on C∞(S1) (which is a core for DS1). The eigenfunction of DS1 are
the exponential function eint with eigenvalues n ∈ Z. As such, (i + DS1)−1

is a compact operator. Moreover [DS1 , f ] = df/dt is bounded. Summarizing,
we have the following spectral triple:(

C∞(S1), L2(S1),−i d
dt

)
.

Note that the supremum norm of a function f ∈ C∞(S1) coincides with the
operator norm of f considered as multiplication operator on L2(S1). A real
structure is given by complex conjugation on L2(S1), making the above a real
spectral triple of KO-dimension 1.
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Example 4.33. Since the tangent bundle of the torus T2 is trivial, we
have Cliff(T2) ' C(T2)⊗Cl2. As a consequence, the spinor bundle is trivial,
S = T2×C2, and L2(S) = L2(T2)⊗C2. The generators γ1 and γ2 are given
by

γ1 =

(
0 −i
i 0

)
, γ2 =

(
0 1
1 0

)
,

which satisfy (4.2.4). The chirality operator is then given by

γT2 = −iγ1γ2 =

(
−1 0
0 1

)
,

and the real structure JT2 that selects Cl−2 ⊂ Cl2 is

JT2

(
v1

v2

)
=

(
−v2

v1

)
.

Finally, the Dirac operator on T2 is

DT2 = −iγµ∂µ =

(
0 −∂1 − i∂2

∂1 − i∂2 0

)
.

The eigenspinors of DT2 are given by the vectors

φ±n1,n2
(t1, t2) :=

1√
2

(
ei(n1t1+n2t2)

± in1+n2√
n2
1+n2

2

ei(n1t1+n2t2)

)
; (n1, n2 ∈ Z),

with eigenvalues ±
√
n2

1 + n2
2. Again, this ensures that (i + DT2)−1 is a

compact operator. For the commutator with a function f ∈ C∞(T2) we
compute

[DT2 , f ] =

(
0 −∂1f − i∂2f

∂1f − i∂2f 0

)
,

which is bounded because ∂1f and ∂2f are bounded. The signs in the com-
mutation between JT2 , DT2 and γT2 makes the following a spectral triple of
KO-dimension 2: (

C∞(T2), L2(T2)⊗ C2, DT2 ; JT2 , γT2

)
.

Other examples are given by finite spectral triples, discussed at length
—and classified— in Chapter 2. Indeed, the compact resolvent condition is
automatic in finite-dimensional Hilbert spaces; similarly, any operator such
as [D, a] is bounded as in this case also D is a bounded operator.

Definition 2.24 encountered before in the context of finite spectral triples
can be translated verbatim to the general case:

Definition 4.34. Two spectral triples (A1,H1, D1) and (A2,H2, D2) are
called unitarily equivalent if A1 = A2 and if there exists a unitary operator
U : H1 → H2 such that

Uπ1(a)U∗ = π2(a); (a ∈ A1),

UD1U
∗ = D2,

where we have explicitly indicated the representations πi of Ai on Hi (i =
1, 2).
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Corresponding to the direct product of manifolds, one can take the prod-
uct of spectral triples as follows (see also Exercise 2.24). Suppose that
(A1,H1, D1; γ1, J1) and (A2,H2, D2; γ2, J2) are even real spectral triples,
then we define the product spectral triple by

A = A1 ⊗A2;

H = H1 ⊗H2;

D = D1 ⊗ 1 + γ1 ⊗D2;

γ = γ1 ⊗ γ2;

J = J1 ⊗ J2.

If (A2,H2, D2; J2) is odd, then we can still form the product when we leave
out γ. Note that D2 = D2

1 ⊗ 1 + 1⊗D2
2, since the cross-terms vanish due to

the fact that γ1D1 = −D1γ1.

Example 4.35. In the physical applications later in this book (Chapter 8
and afterwards) we are mainly interested in almost-commutative manifolds
which are defined as products of a Riemannian spin manifold M with a finite
noncommutative space F . More precisely, we will consider

M × F := (C∞(M), L2(S), DM ; JM , γM )⊗ (AF , HF , DF ; JF , γF ),

with (AF , HF , DF ; JF , γF ) as in Definition 2.19. Note that this can be iden-
tified with:

M×F = (C∞(M,AF ), L2(S⊗(M×HF )), DM⊗1+γM⊗DF ; JM⊗JF , γM⊗γF ),

in terms of the trivial vector bundle M ×HF on M .

Returning to the general case, any spectral triple gives rise to a dif-
ferential calculus. This generalizes our previous Definition 2.22 for the
finite-dimensional case. Again, we focus only on differential one-forms, as
this is sufficient for our applications to gauge theory later on.

Definition 4.36. The A-bimodule of Connes’ differential one-forms is
given by

Ω1
D(A) :=

{∑
k

ak[D, bk] : ak, bk ∈ A

}
,

and the corresponding derivation d : A → Ω1(A) is given by d = [D, ·].

Exercise 4.7. (1) In the case of a Riemannian spin manifold M ,
verify that we can identify Ω1

DM
(C∞(M)) ' Ω1

dR(M), the usual De
Rham differential one-forms.

(2) In the case of an almost-commutative manifold M × F , verify that
we have

Ω1
DM⊗1+γM⊗DF (C∞(M,AF )) ' Ω1

dR(M,AF )⊕ C∞(M,Ω1
DF

(AF )).

4.3.1. Commutative subalgebra. In general, given a real spectral
triple (A,H, D; J) we can construct a spectral triple on some commutative
subalgebra of A, derived from this data. Indeed, set

AJ := {a ∈ A : aJ = Ja∗} .
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As we will see shortly, this is a complex subalgebra, contained in the center
of A (and hence commutative). Later, in Chapter 8, this subalgebra will
turn out to be very useful in the description of the gauge group associated
to any real spectral triple.

Proposition 4.37. Let (A,H, D; J) be a real spectral triple. Then

(1) AJ defines an involutive commutative complex subalgebra of the
center of A.

(2) (AJ ,H, D; J) is a real spectral triple.
(3) Any a ∈ AJ commutes with the algebra generated by the sums∑

j aj [D, bj ] ∈ Ω1
D(A) with aj , bj ∈ A.

Proof. (1) If a ∈ AJ then also Ja∗J−1 = (JaJ−1)∗ = a, since J is
isometric. Hence, AJ is involutive. Moreover, for all a ∈ AJ and b ∈ A we
have [a, b] = [Ja∗J−1, b] = 0 by the commutant property (4.3.1). Thus, AJ
is in the center of A.

(2) Since AJ is a subalgebra of A, all conditions for a spectral triple are
automatically satisfied.

(3) This follows from the order-one condition (4.3.1):

[a, [D, b]] = [Ja∗J−1, [D, b]] = 0,

for a ∈ AJ and b ∈ A. �

Example 4.38. In the case of a Riemannian spin manifold M with real
structure JM given by charge conjugation, one checks that

C∞(M)JM = C∞(M).

More generally, under suitable conditions on the triple (A,H, D; J) the
spectral triple (AJ ,H, D) is a so-called commutative spin geometry. Then,
Connes’ Reconstruction Theorem (cf. Note 13 on Page 60) establishes the
existence of a compact Riemannian spin manifold M such that there is
an isomorphism (AJ ,H, D) ' (C∞(M), L2(S⊗E), DE). The spinor bundle
S →M is twisted by a vector bundle E →M and the twisted Dirac operator
is of the form DE = DM + ρ with ρ ∈ Γ∞(End(S ⊗ E)).

Notes

Section 4.1. Clifford algebras

1. In our treatment of Clifford algebras, we stay close to the seminal paper by Atiyah,
Bott and Shapiro [8], but also refer to the standard textbook [135] and the book [103,
Chapter 5]. We also take inspiration from the lecture notes [190] and [134].

2. The definition of a quadratic form given here is equivalent with the usual definition,
which states that Q is a quadratic form if Q(v) = S(v, v) for some symmetric bilinear
form S (cf. Exercise 4.1). This is shown by Jordan and von Neumann in [115].

3. The periodicity eight encountered for the real Clifford algebras Cl±k is closely related
to the eightfold periodicity of KO-theory [6]. The periodicity two encountered for the
complex Clifford algebras Cln is closely related to Bott periodicity in K-theory [14].

Section 4.2. Riemannian spin geometry

4. A standard textbook on Riemannian geometry is [116]. For a complete treatment of
Riemannian spin manifolds we refer to e.g. [135, 27]. A noncommutative approach to
(commutative) spin geometry can be found in [103, Chapter 9] or [189, 190].
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5. In Definition 4.10 a Riemannian manifold is said to be spinc if Cl(TM) ' End(S) (even
case). Glancing back at Chapter 2 we see that Cln is Morita equivalent to C (n even).
With Definition 6.9 of the next Chapter, we conclude that a manifold is spinc precisely if
Cliff(M) is Morita equivalent to C(M). This is the algebraic approach to spinc manifolds
laid out in [103, Section 9.2].

6. Just as for the Levi–Civita connection on the tangent bundle, there is a uniqueness
result for the spin connection on spin manifolds, under the condition that ∇SX commutes
with JM for real vector fields X and that

∇S(c(ω)ψ) = c(∇ω)ψ + c(ω)∇Sψ; (ω ∈ Ω1
dR(M), ψ ∈ Γ∞(S)),

where ∇ is the Levi–Civita connection on one-forms. See for example [103, Theorem 9.8].

7. A proof of Theorem 4.20 can be found in [60, Section VI.1] (see also [103, Theorem
11.1].

Section 4.3. Noncommutative Riemannian spin manifolds: spectral triples

8. A complete treatment of C∗-algebras, their representation theory and Gelfand duality
can be found in [31] or [183].

9. A proof of Lemma 4.25 can be found in [183, Theorem 11.2].

10. A proof of Theorem 4.28 can be found in e.g. [31, Theorem II.2.2.4] or [183, Theorem
3.11].

11. Spectral triples were introduced by Connes in the early 1980s. See [60, Section IV.2.δ]
(where they were called unbounded K-cycles) and [62].

12. The distance formula appearing in Proposition 4.29, as well as the proof of this
Proposition can be found in [60, Sect. VI.1]. Moreover, it extends to a distance formula
on the state space S(A) of a C∗-algebra A as follows. Recall that a linear functional
ω : A → C is a state if it is positive ω(a∗a) > 0 for all non-zero a ∈ A, and such that
ω(1) = 1. One then defines a distance function on S(A) by [62]

d(ω1, ω2) = sup
a∈A
{|ω1(a)− ω2(a)| : ‖[D, a]‖ ≤ 1} .

It is noted in [167, 74] that this distance formula, in the case of locally compact complete
manifolds, is in fact a reformulation of the Wasserstein distance in the theory of optimal
transport. We also refer to [75, 147, 148].

13. Proposition 4.29 establishes that from the canonical triple on a Riemannian spin
manifold M one can reconstruct the Riemannian distance on M . As a matter of fact,
there is a reconstruction theorem for the smooth manifold structure of M as well [69].
It states that if (A,H, D; J, γ) is a real spectral triple with A commutative, then under
suitable conditions [63] there is a Riemannian spin manifold (M, g) with spin structure
(S, JM ) such that (A,H, D; J, γ) is given by (C∞(M), L2(S), DM ; JM , γM ) (see also the
discussion in [103, Section 11.4]).

14. Real spectral triples as defined in Definition 4.30 are noncommutative generalization
of Riemannian spin manifolds. An immediate question that arises is whether noncommu-
tative generalizations of Riemannian spinc manifolds, or even just Riemannian manifolds
can be defined. In fact, building on the algebraic approach to defining spinc manifolds
as in [103] (as also adopted above) the authors [140] introduce such noncommutative
analogues. For earlier attempts, refer to [94].

15. Products of spectral triples are described in detail in [188], and generalized to include
the odd case as well in [73].

16. The differential calculi that are associated to any spectral triple are explained in [60,
Section VI.1] (see also [131, Chapter 7]).

17. The definition of the commutative subalgebra AJ in Section 4.3.1 is quite similar
to the definition of a subalgebra of A defined in [54, Prop. 3.3] (cf. [65, Prop. 1.125]),
which is the real commutative subalgebra in the center of A consisting of elements for
which aJ = Ja. Following [186] we propose a similar but different definition, since this
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subalgebra will turn out to be very useful for the description of the gauge group associated
to any real spectral triple.
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CHAPTER 5

The local index formula in noncommutative
geometry

In this chapter we present a proof of the Connes–Moscovici index for-
mula, expressing the index of a (twisted) operator D in a spectral triple
(A,H, D) by a local formula. First, we illustrate the contents of this chap-
ter in the context of two examples in the odd and even case: the index on
the circle and on the torus.

5.1. Local index formula on the circle and on the torus

5.1.1. The winding number on the circle. Consider the canonical
triple on the circle (Example 4.32):(

C∞(S1), L2(S1), DS1 = −i d
dt

)
.

The eigenfunctions of DS1 are given for any n ∈ Z by en(t) = eint, where
t ∈ [0, 2π). Indeed, DS1en = nen and {en}n∈Z forms an orthonormal basis
for L2(S1). We denote the projection onto the non-negative eigenspace of
DS1 by P , i.e.

Pen =

{
en if n ≥ 0
0 otherwise

This is equivalent to defining P = (1+F )/2, where F = DS1 |DS1 |−1 (defined
to be +1 on kerDS1). Concretely, F is the Hilbert transform:

F

(∑
n∈Z

ψnen(t)

)
= −

∑
n<0

ψnen +
∑
n≥0

ψnen,

with complex coefficients ψn (n ∈ Z).
Let u be a unitary in C∞(S1), say u = em for some m ∈ Z. The index

we are interested in is given by the difference between the dimensions of the
kernel and cokernel of PuP : PL2(S1)→ PL2(S1):

indexPuP = dim kerPuP − dim kerPu∗P.

Indeed, ImT⊥ = kerT ∗ for any bounded operator. We wish to write this
index as a local, integral expression. First, we check that the index is well
defined by noting that PuP has finite-dimensional kernel and cokernel. In
fact, the kernel of PuP (with u = em) consists of ψ =

∑
n≥0 ψnen ∈ PL2(S1)

such that

P

∑
n≥0

ψnem+n

 = 0.
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In other words, the kernel of PuP consists of linear combinations of the
vectors e0, . . . , e−m+1 for m < 0. We conclude that dim kerPuP = m if m <
0. If m > 0 then this dimension is zero, but in that case dim kerPu∗P = m.
In both cases, and also in the remaining case m = 0, for u = em we find
that

indexPuP = −m.

Exercise 5.1. In this exercise we show that indexPuP is well defined
for any unitary u ∈ C∞(S1).

(1) Show that [F, em] is a compact operator for any m ∈ Z.
(2) Show that [F, f ] is a compact operator for any function f =

∑
n fnen ∈

C∞(S1) (convergence is in sup-norm).
(3) Atkinson’s Theorem states that an operator is Fredholm (i.e. has

finite kernel and cokernel) if it is invertible modulo compact oper-
ators. Use this to show that PuP is a Fredholm operator.

On the other hand, we can compute the following zeta function given by
the trace (taken for simplicity over the complement of kerDS1):

Tr
(
u∗[DS1 , u]|DS1 |−2z−1

)
= mTr |DS1 |−2z−1 = 2mζ(1 + 2z),

since [DS1 , u] = mu for u = em. Here ζ(s) is the well-known Riemann zeta
function. Since ζ(s) has a pole at s = 1, we conclude that

indexPuP = −resz=0 Tr
(
u∗[DS1 , u]|DS1 |−2z−1

)
.

This is a manifestation of the noncommutative index formula in the simple
case of the circle, expressing the winding number m (cf. Figure 5.1) of the
unitary u = em as a ‘local’ expression. In fact,

resz=0 Tr
(
u∗[DS1 , u]|DS1 |−2z−1

)
=

1

2πi

∫
S1
u∗du,

as one can easily check. The right-hand side is indeed a local integral ex-
pression for the (global) index of PuP .

In this chapter, we generalize this formula to any (odd) spectral triple,
translating this locality to the appropriate algebraic notion, namely, in terms
of cyclic cocycles.

Exercise 5.2. Prove the following index formula, for a unitary u = em,
say, with m < 0:

indexPuP = −1

4
TrF [F, u∗][F, u].

5.1.2. The winding number on the torus. The same winding num-
ber —now in one of the two circle directions— can also be obtained as an
index on the two-dimensional torus, as we will now explain.

Consider the even canonical triple on the 2-dimensional torus (Example
4.33): (

C∞(T2), L2(T2)⊗ C2, DT2 =

(
0 −∂1 − i∂2

∂1 − i∂2 0

))
.
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Figure 5.1. The map em : t ∈ [0, 2π) 7→ eimt winds m times
around the circle; this winding number is (minus) the index
of the operator PemP .

The eigenspinors of DT2 are given by the vectors

φ±n1,n2
(t1, t2) :=

1√
2

(
ei(n1t1+n2t2)

± in1+n2√
n2
1+n2

2

ei(n1t1+n2t2)

)
; (n1, n2 ∈ Z),

with eigenvalues ±
√
n2

1 + n2
2.

Instead of unitaries, we now consider projections p ∈ C∞(T2) or rather,
projections in matrix algebras with entries in C∞(T2). Indeed, there are no
non-trivial projections p in C(T2): a continuous function with the property
p2 = p is automatically 0 or 1. Thus, we consider the following class of
projections in M2(C∞(T2)):

(5.1.1) p =

(
f g + hU∗

g + hU 1− f

)
,

where f, g, h are real-valued (periodic) functions of the first variable t1, and
U is a unitary depending only on the second variable t2, say U(t2) = em(t2).
The projection property p2 = p translates into the two conditions

gh = 0, g2 + h2 = f − f2.

A possible solution of these relations is given by

0 ≤ f ≤ 1 such that f(0) = 1, f(π) = 0,

and then g = χ[0,π]

√
f − f2 and h = χ[π,2π]

√
f − f2, where χX is the

indicator function for the set X (see Figure 5.2).
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Figure 5.2. Functions f, g, h that ensure that p in (5.1.1)
is a projection.

The Fredholm operator we would like to compute the index of is p(DT2⊗
I2)p, acting on the doubled spinor Hilbert space L2(S)⊗C2 ' L2(T2)⊗C2⊗
C2. This doubling is due to the fact that we take a 2×2 matricial projection.
To avoid notation cluttery, we will simply write DT2 for DT2 ⊗ I2.

The local index formula which we would like to illustrate on the torus is

index pDT2p = −resz=0 Tr
(
γ
(
p− 1

2

)
[DT2 , p][DT2 , p]|DT2 |−2−2z

)
,

where the trace is both over the matrix indices of p and over the spinor
indices.

Proposition 5.1. With U(t2) = em(t2) and p of the above form, we
have

resz=0 Tr
(
γ
(
p− 1

2

)
[DT2 , p][DT2 , p]|DT2 |−2−2z

)
= m.

Proof. We first prove the following formula, which holds for any F ∈
C∞(T2):

(5.1.2) TrF |DT2 |−2s = 2F (0, 0)ζE(s),

where the trace is over spinor indices, and where ζE is the Epstein zeta
function, defined by

ζE(s) =
∑

n1,n2∈Z
(n2

1 + n2
2)−s.

Equality (5.1.2) will be proved in Exercise 5.3. Since ζE has a pole at s = 1
with residue π, we conclude that

resz=0 TrF |D|−2−2z = 2πF (0, 0).
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Returning to the claimed equality, we compute the trace over spinor indices:

Tr γ
(
p− 1

2

)
[DT2 , p]2 = Tr(p− 1

2)

(
0 −∂1p− i∂2p

∂1p− i∂2p 0

)2

= 2i(p− 1
2) (∂1p∂2p− ∂2p∂1p) .

Since g and h in (5.1.1) have disjoint support, g′h = 0, we have

∂1p∂2p = −∂2p∂1p = −im
(
−hh′ f ′hU∗

f ′hU hh′

)
.

Hence, taking the remaining trace over the indices of the projection, we find

Tr 2i(p− 1
2) (∂1p∂2p− ∂2p∂1p) = 4m

(
−2fhh′ + hh′ + 2f ′h2

)
.

Inserting this back in (5.1.2) we see that we have to determine the value of
−2fhh′+hh′+2f ′h2 at 0 or, equivalently, integrate this expression over the
circle. A series of partial integrations yields(
−2fhh′ + hh′ + 2f ′h2

)
(0) =

1

2π

∫
−2fhh′ + hh′ + 2f ′h2 =

1

2π

∫
3f ′h2.

Inserting the explicit expression of h, we easily determine∫
f ′h2 =

∫ 2π

π
(f − f2)f ′ =

∫ 1

0
(x− x2)dx =

1

6
.

Combining all coefficients, including the residue of Epstein’s zeta function,
we finally find

resz=0 Tr
(
γ
(
p− 1

2

)
[DT2 , p]2|DT2 |−2−2z

)
= 4m

3

2π

1

6
π = m,

as required. �

Thus, we recover the winding number of the unitary U , winding m times
around one of the circle directions in T2, just as in the previous subsection.
The case m = 2 is depicted in Figure 5.3; it shows the winding of the range
of p in C2 at t1 = 3π/4 and with t2 varying from 0 to 2π.

The fact that the index of pDT2p is also equal to (minus) this winding
number is highly non-trivial and much more difficult to prove. Therefore,
already this simple example illustrates the power of the Connes–Moscovici
index formula, expressing the index by a local formula. We will now proceed
and give a proof of the local index formula for any spectral triple.

Exercise 5.3. Prove Equation (5.1.2) and show that for any function
F ∈ C∞(T2) we have

TrF |DT2 |−2s =
ζE(s)

π

∫
T2

F.

5.2. Hochschild and cyclic cohomology

We introduce cyclic cohomology, which can be seen as a noncommutative
generalization of De Rham homology.
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Figure 5.3. Winding twice around one of the circle di-
rections on the torus. Let the range of the projection p
be v(t1, t2)s with s ∈ C and v(t1, t2) ∈ C2 varies with
(t1, t2) ∈ T2. We have drawn the real and imaginary parts
of the first component v1(t1 = 3π/4, t2)s with 0 ≤ t2 ≤ 2π
and −1 ≤ s ≤ 1. The other component v2(t1 = 3π/4, t2) is
constant.

Definition 5.2. If A is an algebra, we define the space of n-cochains,
denoted by Cn(A), as the space of (n + 1)-linear functionals on A with the
property that if aj = 1 for some j ≥ 1, then φ(a0, . . . , an) = 0. Define
operators b : Cn(A)→ Cn+1(A) and B : Cn+1(A)→ Cn(A) by

bφ(a0, a1, . . . , an+1) :=
n∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , an+1)

+ (−1)n+1φ(an+1a0, a1, . . . , an),

Bφ(a0, a1, . . . , an) :=

n∑
j=0

(−1)njφ(1, aj , aj+1, . . . , aj−1).

Exercise 5.4. Show that b2 = 0, B2 = 0, and bB +Bb = 0.

This means that a cochain which is in the image of b is also in the kernel
of b, and similarly for B. We say that b and B define complexes of cochains

· · · b // Cn(A)
b // Cn+1(A)

b // · · ·

· · · Cn(A)
Boo Cn+1(A)

Boo · · ·Boo ,

where the maps have the (complex) defining property that composing them
gives zero: b ◦ b = 0 = B ◦B. This property of b and B being a differential
is a crucial ingredient in cohomology, where so-called cohomology groups are
defined as the quotients of the kernel by the image of the differential. In our
case, we have
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Definition 5.3. The Hochschild cohomology of A is given by the quo-
tients

HHn(A) =
ker b : Cn(A)→ Cn+1(A)

Im b : Cn−1(A)→ Cn(A)
; (n ≥ 0).

Elements in ker b : Cn(A)→ Cn+1(A) are called Hochschild n-cocycles, and
elements in Im b : Cn−1(A)→ Cn(A) are called Hochschild n-coboundaries.

Exercise 5.5. (1) Characterize the cohomology group HH0(A) for
any algebra A.

(2) Compute HHn(C) for any n ≥ 0.
(3) Establish the following functorial property of HHn: if ψ : A → B

is an algebra map, then there is a homomorphism of groups ψ∗ :
HHn(B)→ HHn(A).

Example 5.4. Let M be a compact n-dimensional manifold without
boundary. The following expression defines an n-cochain on A = C∞(M):

φ(f0, f1, . . . , fn) =

∫
M
f0df1 · · · dfn.

In fact, one can compute that bφ = 0 so that this is an n-cocycle which
defines a class in the Hochschild cohomology group HHn(C∞(M)).

Exercise 5.6. Check that bφ = 0 in the above example.

Next, we turn our attention to the differential B, and its compatibility
with b. Namely, b and B define a so-called double complex:

...
...

...
...

· · · B // C3(A)
B //

b

OO

C2(A)
B //

b

OO

C1(A)
B //

b

OO

C0(A)

b

OO

· · · B // C2(A)
B //

b

OO

C1(A)
B //

b

OO

C0(A)

b

OO

· · · B // C1(A)
B //

b

OO

C0(A)

b

OO

· · · B // C0(A)

b

OO

The totalization of this double complex by definition consists of the even
and odd cochains:

Cev(A) =
⊕
k

C2k(A);

Codd(A) =
⊕
k

C2k+1(A),

and these also form a complex, now with differential b+B:

· · · b+B// Cev(A)
b+B // Codd(A)

b+B // Cev(A)
b+B // · · ·
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Definition 5.5. The periodic cyclic cohomology of A is the cohomol-
ogy of the totalization of this complex. That is, the even and odd cyclic
cohomology groups are given by

HCP ev(A) =
ker b+B : Cev(A)→ Codd(A)

Im b+B : Codd(A)→ Cev(A)
,

HCP odd(A) =
ker b+B : Codd(A)→ Cev(A)

Im b+B : Cev(A)→ Codd(A)
.

Elements in ker b+B are called (even or odd) (b, B)-cocycles, and elements
in Im b+B are called (even or odd) (b, B)-coboundaries.

Explicitly, an even (b, B)-cocycle is given by a sequence

(φ0, φ2, φ4, . . .),

where φ2k ∈ C2k(A), and

bφ2k +Bφ2k+2 = 0,

for all k ≥ 0. Note that only finitely many φ2k are non-zero.
Similarly, an odd (b, B)-cocycle is given by a sequence

(φ1, φ3, φ5, . . .),

where φ2k+1 ∈ C2k+1(A) and

bφ2k+1 +Bφ2k+3 = 0,

for all k ≥ 0, and also Bφ1 = 0. Again, only finitely many φ2k+1 are
non-zero.

The following result allows us to evaluate an even (odd) (b, B)-cocycle
on a projection (unitary) in a given ∗-algebra A.

Proposition 5.6. Let A be a unital ∗-algebra.

• If φ = (φ1, φ3, . . .) is an odd (b, B)-cocycle for A, and u is an
unitary in A, then the quantity

〈φ, u〉 :=
1

Γ(1
2)

∞∑
k=0

(−1)k+1k!φ2k+1(u∗, u, . . . , u∗, u)

only depends on the class of φ in HCP odd(A).
• If φ = (φ0, φ2, . . .) is an even (b, B)-cocycle for A, and p is an

projection in A, then the quantity

〈φ, p〉 := φ0(p) +
∞∑
k=1

(−1)k
(2k)!

k!
φ2k(p− 1

2 , p, p, . . . , p)

only depends on the class of φ in HCP ev(A).

Proof. We show that 〈(b+B)Θ, u〉 = 0 for any even cochain (Θ0,Θ2, . . .)
and that 〈(b+B)Θ, e〉 = 0 for any odd cochain (Θ1,Θ3, . . .).

The former equation would follow from

(−1)k+1k!bΘ2k(u
∗, u, . . . , u∗, u) + (−1)k(k − 1)!BΘ2k(u

∗, u, . . . , u∗, u) = 0,
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for any k ≥ 0. Using the definition of b and B, we compute that indeed:

(−1)k+1k!
[
Θ2k(1, u

∗, u, . . . , u∗, u) + (−1)2k+1Θ2k(1, u, u
∗, . . . , u, u∗)

]
+ (−1)k(k − 1)! [kΘ2k(1, u

∗, u, . . . , u∗, u)− kΘ2k(1, u, u
∗, . . . , u, u∗)] = 0.

The second claim would follow from

(−1)k+1 (2k + 2)!

(k + 1)!
bΘ2k+1(p−1

2 , p, . . . , p)+(−1)k
(2k)!

k!
BΘ2k+1(p−1

2 , p, . . . , p) = 0,

for any k ≥ 1, and indeed

−2bΘ1(p− 1
2 , p, p) +BΘ1(p) = 0.

Let us start with the latter, for which we compute

− 2
[
2Θ1(p− 1

2p, p)−Θ1(p− 1
2 , p)

]
+ Θ1(1, p) =

− 2Θ1(p, p) + 2Θ1(p, p)−Θ1(1, p) + Θ1(1, p) = 0.

The same trick applies also to the first expression, for any k ≥ 1:

(−1)k+1 (2k + 2)!

(k + 1)!

[
2Θ2k+1(p− 1

2p, p, . . . , p)−Θ2k+1(p− 1
2 , p, . . . , p)

]
+ (−1)k

(2k)!

k!
[(2k + 1)Θ2k+1(1, p, . . . , p)] = 0,

which follows directly from the identity

1

2

(2k + 2)!

(k + 1)!
− (2k + 1)

(2k)!

k!
= 0. �

Exercise 5.7. Let φ ∈ Ck(A) be a b-cocycle (i.e. bφ = 0) that also
satisfies the following condition:

φ(a0, a1, . . . ak) = (−1)kφ(ak, a0, a1, . . . ak−1),

for all a0, a1, . . . ak ∈ A. Show that (0, . . . , 0, φ, 0, . . .) (with φ at the k’th
position) is a (b, B)-cocycle.

Exercise 5.8. In the example of the circle, show that the odd cochain
(φ1, 0, . . .) on C∞(S1) with (cf. Exc. (5.2))

φ1(f0, f1) = TrF [F, f0][F, f1]; (f0, f1 ∈ C∞(S1)),

is an odd (b, B)-cocycle.

5.3. Abstract differential calculus

Starting with a spectral triple, we now introduce a differential calculus.
In the case of the canonical triple of a spin manifold M , this will agree with
the usual differential calculus on M .

Let (A,H, D) be a spectral triple; we assume that D is invertible. We
introduce Sobolev spaces Hs as follows:

Hs := Dom |D|s; (s ∈ R).

These spaces are naturally normed by

‖ξ‖2s = ‖ξ‖2 + ‖|D|sξ‖2,
and are complete in this norm. Moreover, for s > t the inclusion Hs → Ht
is continuous.
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Exercise 5.9. Prove this last statement.

Obviously H0 = H, while at the other extreme we have the intersection

H∞ :=
⋂
s≥0

Hs.

Definition 5.7. For each r ∈ R we define operators of analytic order
≤ r to be operators in H∞ that extend to bounded operators from Hs to
Hs−r for all s ≥ 0. We denote the space of such operators by opr.

In order to find interesting differential operators coming from our spec-
tral triple, we introduce some smoothness conditions. The first is that the
spectral triple is finitely summable, i.e. there exists p so that |D|−p is a
trace class operator.

Definition 5.8. A spectral triple (A,H, D) is called regular if A and
[D,A] = {[D, a] : a ∈ A} belong to the smooth domain of δ(·) = [|D|, ·].
That is, for each k ≥ 0 the operators δk(a) and δk([D, a]) are bounded.

We will denote by B the algebra generated by δk(a), δk([D, a]) for all
a ∈ A and k ≥ 0.

Definition 5.9. Let (A,H, D) be a finitely-summable regular spectral
triple. The dimension spectrum Sd is the subset of {z ∈ C : <(z) ≥ 0} of
singularities of the analytic functions

ζb(z) = Tr b|D|−z; (b ∈ B).

We say the the dimension spectrum is simple when the functions ζb have at
most simple poles.

In our treatment we restrict to finitely-summable, regular spectral triples
with simple dimension spectrum and for which there is a finite number of
poles in Sd.

Lemma 5.10. The algebra B maps H∞ to itself.

Proof. This follows by induction from the identity

‖Tξ‖2s = ‖Tξ‖2 + ‖|D|sTξ‖2

= ‖T‖2‖ξ‖2 +
(
‖|D|s−1δ(T )ξ‖+ ‖|D|s−1T |D|ξ‖

)2
,

for any operator T in the smooth domain of δ and any s ≥ 0. �

We will regard the elements in B as pseudodifferential operators of order
0, according to the following definition.

Definition 5.11. A pseudodifferential operator of order k ∈ Z associ-
ated to a regular spectral triple (A,H, D) is given by a finite sum:

bk|D|k + bk−1|D|k−1 + · · · ,
where bk, bk−1, · · · ∈ B. We denote the space of pseudodifferential operators
of order k by Ψk(A,H, D), or simply Ψk(A).

Lemma 5.12. The subspaces Ψk(A) (k ∈ Z) furnish a Z-filtration on the
algebra Ψ(A) of pseudodifferential operators.
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Proof. This follows directly from the expression:

b1|D|k1 · b2|D|k2 =

k1∑
j=0

(
k1

j

)
b1δ

j(b2)|D|k1+k2−j . �

On this algebra, the map δ(·) = [|D|, ·] acts as a derivation, preserving
the filtration. For any operator T inH we also define the following (iterated)
derivation,

∇(T ) = [D2, T ]; T (k) := ∇k(T ).

Exercise 5.10. Prove that for any P ∈ Ψ(A) we have

∇(P ) = 2δ(P )|D|2 + δ2(P ).

Conclude that ∇ : Ψk(A)→ Ψk+1(A).

Proposition 5.13. Let P ∈ Ψk(A). Then P : Hs+k → Hs is a continu-
ous map. Hence, such a P has analytic order ≤ k and we have Ψk(A) ⊂ opk.

Using this abstract pseudodifferential calculus, we now introduce the
functionals of relevance for the index formula.

Definition 5.14. Let (A,H, D; γ) be a regular spectral triple. For pseu-
dodifferential operators X0, X1, . . . Xp ∈ Ψ(A) and <(z)� 0 define

〈X0, X1, . . . , Xp〉z =

(−1)p
Γ(z)

2πi
Tr

(∫
λ−zγX0(λ−D2)−1X1(λ−D2)−1 · · ·Xp(λ−D2)−1dλ

)
.

Let us show that this expression is well defined, i.e. that the integral is
actually trace class. We first practice with this expression in a special case.

Exercise 5.11. Assume that Xj ∈ Ψkj (A) commutes with D for all
j = 0, . . . , p.

(1) Use Cauchy’s integral formula to show that

〈X0, X1, . . . , Xp〉z =
Γ(z + p)

p!
Tr(γX0 · · ·Xp|D|−2z−2p).

(2) Show that this expression extends to a meromorphic function on C.

This exercise suggests that, in the general case, we move all terms (λ−
D2)−1 in 〈X0, X1, . . . , Xp〉z to the right. This we will do in the remainder
of this section. First, we need the following result.

Lemma 5.15. Let X ∈ Ψq(A) and let n > 0. Then for any positive
integer k, we have

(λ−D2)−nX = X(λ−D2)−n + nX(1)(λ−D2)−(n+1)

+
n(n+ 1)

2
X(2)(λ−D2)−(n+2) + · · ·

+
n(n+ 1) · · · (n+ k)

k!
X(k)(λ−D2)−(n+k) +Rk,

where the remainder Rk is of analytic order q − 2n− k − 1 or less.
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Proof. This follows by repeatedly applying the formula

(λ−D2)−1X = X(λ−D2)−1 + [(λ−D2)−1, X]

= X(λ−D2)−1 + (λ−D2)−1[D2, X](λ−D2)−1.

This yields an asymptotic expansion

(λ−D2)−1X ∼
∑
i≥0

X(i)(λ−D2)−1−i,

so that for each m� 0 every sufficiently large finite partial sum agrees with
the left-hand side up to an operator of analytic order m or less. Indeed,
truncating the above sum at i = k, we find that the remainder is

(λ−D2)−1X(k+1)(λ−D2)−1−k,

which is of analytic order −2 + (q + k + 1)− 2(k + 1) = q − k − 3 or less.
More generally for any positive integer n one has:

(λ−D2)−nX ∼
∑
k≥0

(−1)k
(
−n
k

)
X(k)(λ−D2)−n−k.

Estimates similar to those above show that the remainder has the claimed
analytic order. �

We now arrive at the final result of this section which will form the main
ingredient in the next section, where we will introduce the (b, B)-cocycles
relevant for the index formula.

Proposition 5.16. The expression 〈X0, . . . , Xp〉z in Definition 5.14
seen as a function of z extends meromorphically to C.

Proof. We use Lemma 5.15 to bring all (λ − D2)−1 to the right. We
first introduce the combinatorial quantities:

c(k1, . . . , kj) =
(k1 + · · ·+ kj + j)!

k1! · · · kj !(k1 + 1) · · · (k1 + · · · kj + j)
,

for non-negative integers k1, . . . , kj . These satisfy

c(k1, . . . , kj) = c(k1, . . . , kj−1)
(k1 + · · ·+ kj−1 + j) · · · (k1 + · · ·+ kj + j − 1)

kj !
,

while c(k1) = 1 for all k1.
From Lemma 5.15 we know that there is the following asymptotic ex-

pansion:

(λ−D2)−1X1 ∼
∑
k1≥0

c(k1)X1(k1)
(λ−D2)−k1 .

Then, in the subsequent step we find

(λ−D2)−1X1(λ−D2)−1X2 ∼
∑
k1≥0

c(k1)X1(k1)
(λ−D2)−(k1+2)X2

∼
∑

k1,k2≥0

c(k1, k2)X1(k1)
X2(k2)

(λ−D2)−(k1+k2+2),
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and finally

(λ−D2)−1X1 · · · (λ−D2)−1Xp ∼
∑
k≥0

c(k)X1(k1) · · ·Xp(kp)(λ−D2)−(|k|+p),

where k = (k1, . . . , kp) is a multi-index and |k| = k1 + . . .+ kp.
Multiplying this with γX0 and integrating as in Definition 5.14, this

yields

(−1)p
Γ(z)

2πi

∫
λ−zγX0(λ−D2)−1X1 · · · (λ−D2)−1Xp(λ−D2)−1dλ

∼
∑
k≥0

c(k)γX0X1(k1) · · ·Xp(kp)(−1)p
Γ(z)

2πi

∫
λ−z(λ−D2)−(|k|+p+1)dλ

=
∑
k≥0

c(k)γX0X1(k1) · · ·Xp(kp)(−1)pΓ(z)

(
−z
|k|+ p

)
|D|−2(z+|k|+p),

where we have used the integral formula, valid for real λ0:

(5.3.1)
1

2πi

∫
λ−z

(λ− λ0)N+1
dλ =

(
−z
N

)
λ
−(N+z)
0 .

Finally, using the functional equation for the gamma function,

(−1)pΓ(z)

(
−z
|k|+ p

)
= (−1)|k|

Γ(z + p+ |k|)
(|k|+ p)!

,

we obtain an asymptotic expansion

(5.3.2) 〈X0, . . . , Xp〉z ∼
∑
k≥0

(−1)|k|
Γ(z + p+ |k|)

(|k|+ p)!
c(k)

× Tr
(
γX0X1(k1) · · ·Xp(kp)|D|−2(z+|k|+p)

)
.

As |k| becomes large the remainder in the truncated expansion on the right-
hand side becomes trace class. �

Exercise 5.12. Use Cauchy’s integral formula to prove Equation (5.3.1).

5.4. Residues and the local (b, B)-cocycle

In this section we derive even and odd (b, B)-cocycles on a given algebra
A from the functionals 〈X0, X1, . . . , Xp〉z defined in the previous section.
First, we derive some useful relations between them. We denote the Z2-
grading of an operator X by (−1)X , according to the grading γ on H.
Moreover, for such an operator X we denote the graded commutator by
[D,X] = DX − (−1)XXD. Note that with these conventions we have

[D, [D,T ]] = [D2, T ] ≡ ∇(T ),

for any even operator T .
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Lemma 5.17. The meromorphic functions 〈X0, . . . , Xp〉z satisfy the fol-
lowing functional equations:

〈X0, . . . , Xp〉z = (−1)X
p〈Xp, X0, . . . , Xp−1〉z;(a)

〈X0, . . . , Xp〉z+1 =

p∑
j=0

〈X0, . . . , Xj−1, 1, Xj , . . . , Xp〉z;(b)

〈X0, . . . , [D2, Xj ], . . . , Xp〉z = 〈X0, . . . , Xj−1Xj , . . . , Xp〉z(c)

− 〈X0, . . . , XjXj+1, . . . , Xp〉z;
p∑
j=0

(−1)X
0···Xj−1〈X0, . . . , [D,Xj ], . . . , Xp〉z = 0.(d)

Proof. (a) follows directly from the property of the trace in 〈X0, . . . , Xp〉z,
taking into account the commutation of Xp with the grading γ. For (b),
note that the integral of the following expression vanishes:

d

dλ

(
λ−zX0(λ−D2)−1 · · ·Xp(λ−D2)−1

)
= −zλ−z−1X0(λ−D2)−1 · · ·Xp(λ−D2)−1

−
p∑
j=0

λ−zX0(λ−D2)−1 · · ·Xj(λ−D2)−1 · · ·Xp(λ−D2)−1.

Equation (c) follows from

(λ−D2)−1[D2, Xj ](λ−D2)−1 = (λ−D2)−1Xj −Xj(λ−D2)−1.

Finally, (d) is equivalent to

Tr γ

[
D,

∫
λ−zX0(λ−D2)−1 · · ·Xp(λ−D2)−1dλ

]
= 0,

which is the supertrace of a (graded) commutator. �

Definition 5.18. For any p ≥ 0, define a (p + 1)-linear functional on
A with values in the meromorphic functions on C by

Ψp(a
0, . . . , ap) = 〈a0, [D, a1], . . . , [D, ap]〉s− p

2
.

Proposition 5.19. The even (b, B)-cochain Ψ = (Ψ0,Ψ2, . . .) is an (im-
proper) even (b, B)-cocycle in the sense that

bΨ2k +BΨ2k+2 = 0.

Similarly, the odd (b, B)-cochain Ψ = (Ψ1,Ψ3, . . .) is an (improper) odd
(b, B)-cocycle.
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Proof. It follows from the definition of B and a subsequent application
of (a) and (b) of Lemma 5.17 that

BΨ2k+2(a0, . . . , a2k+1) =
2k+1∑
j=0

(−1)j〈1, [D, aj ], . . . , [D, aj−1]〉s−(k+1)

=
2k+1∑
j=0

〈[D, a0], . . . , [D, aj−1], 1, [D, aj ], . . . [D, a2k+1]〉s−(k+1)

= 〈[D, a0], . . . , [D, a2k+1]〉s−k.

Also, from the definition of b and the Leibniz rule

[D, ajaj+1] = aj [D, aj+1] + [D, aj ]aj+1

it follows that

bΨ2k(a
0, . . . , a2k+1) = 〈a0a1, [D, a2], . . . [D, a2k+1]〉s−k

− 〈a0, a1[D, a2], . . . [D, a2k+1]〉s−k
− 〈a0, [D, a1]a2, . . . [D, a2k+1]〉s−k
+ 〈a0, [D, a1], a2[D, a3], . . . [D, a2k+1]〉s−k
+ 〈a0, [D, a1], [D, a2]a3, . . . [D, a2k+1]〉s−k
− · · ·

− 〈a2k+1a0, [D, a1], . . . [D, a2k]〉s−k,

which, by Lemma 5.17(c), becomes

2k+1∑
j=0

(−1)j−1〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, a2k+1]〉s−k.

Combining these expressions for BΨ2k+2 and bΨ2k and writing X0 = a0,
and Xj = [D, aj ] for j ≥ 1, we obtain

BΨ2k+2(a0, . . . , a2k+1) + bΨ2k(a
0, . . . , a2k+1)

=
2k+1∑
j=0

(−1)X
0···Xj 〈X0, . . . , [D,Xj ], . . . , X2k+1〉s−k,

which vanishes because of Lemma 5.17(d).
In the odd case, a similar argument shows that bΨ2k−1+BΨ2k+1 = 0. �

The above cocycles have been termed improper because all Ψp might be
non-zero, on top of which (rather than in C) they take values in the field
of meromorphic functions on C. By taking residues of the meromorphic
functions Ψp we obtain a proper even or odd (b, B)-cocycle. This is the
residue cocycle that was introduced by Connes and Moscovici.

Theorem 5.20. For any p ≥ 0 and all a0, . . . , ap ∈ A the following
formulas define an even or odd (b, B)-cocycle:

ress=0Ψ0(a0) = Tr γa0|D|−2s|s=0,
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and

ress=0Ψp(a
0, . . . , ap)

=
∑
k≥0

cp,kress=0 Tr
(
γa0[D, a1](k1) · · · [D, ap](kp)|D|−p−2|k|−2s

)
,

for p ≥ 1, where the constants cp,k are given in terms of the (non-negative)
multi-indices (k1, . . . , kp) by

cp,k :=
(−1)|k|

k!

Γ(|k|+ p
2)

(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · kp + p)
.

Proof. We use the asymptotic expansion (5.3.2). Indeed, setting z =
s − p

2 in that expression and taking residues at s = 0 gives the desired
expansion, with the coefficients cp,k appearing because

cp,k ≡ (−1)|k|Γ(|k|+ p

2
)

c(k)

(p+ |k|)!
.

�

5.5. The local index formula

Let (A,H, D) be a regular spectral triple, as above. The local index
formula expresses the index of twisted Dirac operators in terms of cocycles
in the (b, B) bicomplex, which are easier to compute. We are interested in
the indices of the following two Fredholm operators.

Suppose that (A,H, D) is even. If p ∈ A is a projection, then Dp = pDp
is a Fredholm operator on the Hilbert space H. This follows from the fact
thatDp is essentially a finite-dimensional extension of the Fredholm operator
D. We are interested in the index of this so-called twisted Dirac operator
Dp.

In case that (A,H, D) is an odd spectral triple, we take a unitary u ∈ A
and define Du = PuP , where P = 1

2(1 + SignD). Again, Du is a Fredholm
operator on H and we are interested in the index of Du.

Theorem 5.21. Let (A,H, D) be a regular spectral triple with simple and
finite dimension spectrum Sd and let ress=0Ψ be the (even or odd) (b, B)-
cocycle derived previously.

• If (A,H, D) is even and p is a projection in A, then

indexDp = 〈ress=0Ψ, p〉.
• If (A,H, D) is odd and u is a unitary in A, then

indexDu = 〈ress=0Ψ, u〉.

Remark 5.22. Sometimes a projection or a unitary is given in MN (A)
instead of A. The above result can be extended easily to this case, namely
by constructing a spectral triple on MN (A) and doing the index computation
there. Indeed, it would follow from Theorem 6.15 that if (A,H, D) is a
spectral triple, then so is (MN (A),H⊗ CN , D ⊗ IN ).

Proof of Theorem 5.21. We will prove the even case in two steps
(for the odd case see Note 13 on Page 81),
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(1) the Atiyah–Bott formula for the index:

indexDp = ress=0Γ(s) Tr γ|Dp|−2s.

(2) Change the representative of the class ress=0Ψ in HCP ev(A) to
reduce to the case that D commutes with p, so that

〈ress=0Ψ, p〉 = ress=0Γ(s) Tr γp|D|−2s.

For (1) let us first prove another well-known formula.

Lemma 5.23 (McKean–Singer formula). Let (A,H, D) be an even spec-
tral triple. Then

indexD = Tr γe−tD
2
.

Proof. SinceD is odd with respect to γ, its spectrum lies symmetrically
around 0 in R, including multiplicities. If we denote the λ-eigenspace in H
by Hλ we therefore have dimHλ = dimH−λ for any non-zero eigenvalue λ.
Including also the kernel of D, we have

Tr γe−tD
2

=
∑
λ>0

(dimHλ − dimH−λ) e−tλ
2

+ TrH0 γ = TrkerD γ,

which is nothing but the index of D. �

Note that the McKean–Singer formula tells us in particular that Tr γe−tD
2

does not depend on t. Using the integral formula of the gamma function,
we can write:

Tr γ|D|−2s =
1

Γ(s)

∫ ∞
0

Tr γe−tD
2
ts−1dt.

We analyze the behaviour of the right-hand side as s→ 0. For this, we use

1

Γ(s)
∼ s, s→ 0.

Thus, only the pole part of the above integral contributes to the zeta function
evaluated at s = 0. This is given by∫ 1

0
Tr γe−tD

2
ts−1dt =

1

s
indexD,

where we have used the McKean–Singer formula. The remaining integral
from 1 to ∞ gives an entire function of s, because by finite summability the
eigenvalues of D grow as j1/p for some p > 0. In other words,

indexD = Tr γ|D|−2s|s=0,

which proves (1).
Let us then continue with (2). Consider the family of operators

Dt = D + t[p, [D, p]]; (t ∈ [0, 1]).

We have D0 = D and D1 = pDp + (1 − p)D(1 − p) so that [D1, p] = 0.
Moreover, indexDt depends continuously on t, and (being an integer) it is
therefore constant in t.

Next, we consider a family of improper cocycles Ψt which are defined by
replacing D by Dt in Definition 5.18 .
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Lemma 5.24. The derivative of Ψt is an (improper) even cyclic cobound-
ary, i.e. there exists a cochain Θt such that

d

dt
Ψt
p +BΘt

p+1 + bΘt
p−1 = 0,

which is explicitly given by

Θt
p(a

0, . . . , ap) =

p∑
j=0

(−1)j−1〈a0, . . . [D, aj ], Ḋ, [D, aj+1], . . . [D, ap]〉s− p+1
2
,

with Ḋ = d
dtDt ≡ [p, [D, p]].

Proof. Imitating the proof of Proposition 5.19 one can show the fol-
lowing identity (see also Note 15 on Page 81).

BΘt
2k+1(a0, . . . , a2k) + bΘt

2k−1(a0, . . . , a2k)

= −
2k∑
j=0

〈a0, [D, a1], . . . [D, aj ], [D, Ḋ], . . . , [D, a2k]〉s−k

−
2k∑
j=1

〈a0, [D, a1], . . . [Ḋ, aj ], , . . . , [D, a2k]〉s−k.

The fact that d
dtΨ

t coincides with the right-hand side follows from

d

dt
(λ−D2

t )
−1 = (λ−D2

t )
−1
(
DḊ + ḊD

)
(λ−D2

t )
−1. �

Continuing the proof of the theorem, we integrate the resulting cobound-
ary to obtain

B

∫ 1

0
Θt

2k+1dt+ b

∫ 1

0
Θt

2k−1dt = Ψ0
2k −Ψ1

2k.

In other words, ress=0Ψ0 and ress=0Ψ1 define the same class in even cyclic
cohomology HCP ev(A). So, with the help of Proposition 5.6, we can com-
pute 〈ress=0Ψ, p〉 using Ψ1 instead of Ψ0 ≡ Ψ, with the advantage that D1

commutes with p. Indeed, this implies that

Ψ1
2k(p− 1

2 , p, . . . , p) = 0,

for all k ≥ 1, so that

〈ress=0Ψ1, p〉 ≡ ress=0Ψ1
0(p) +

∑
k≥1

(−1)k
(2k)!

k!
ress=0Ψ1

2k(p− 1
2 , p, . . . , p)

= ress=0Ψ1
0(p)

= ress=0Γ(s) Tr γp|D1|−2s.

This completes the proof of Theorem 5.21, as by the Atiyah–Bott formula
the latter expression is the index of Dp. �
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Notes

1. The local index formula was obtained by Connes and Moscovici in [66]. In our proof
of the local index formula, we closely follow Higson [109]. More general proofs have been
obtained in [46, 47, 48], see Note 12 of this Chapter.

Section 5.1. Local index formula on the circle and on the torus

2. The Theorem of Atkinson that appears in Exercise 5.1 can be found in [160, Proposition
3.3.11].

3. The index formula on the circle of Exercise 5.2 is a special case of [58, Theorem 5].

4. In Section 5.1.2 we follow [141], where a class of projections on the torus was con-
structed, much inspired by the so-called Powers–Rieffel projections on the noncommuta-
tive torus [165].

5. The zeta function ζE that appears in (5.1.2) is a special case of an Epstein zeta function,
introduced and analyzed in [87]. It turns out that ζE has a pole at s = 1 with residue π.
That (5.1.2) holds also follows from the general result [66, Theorem I.2].

Section 5.2. Hochschild and cyclic cohomology

6. In [58] Connes introduced cyclic cohomology as a noncommutative generalization of
De Rham homology, and showed that for the algebra C∞(M) cyclic cohomology indeed
reduces to De Rham homology. Besides the original article there are many texts in which
this is worked out in full detail (e.g. [60, 103, 123, 139]).

7. Example 5.4 is a special case of the fact that HHk(C∞(M)) ' Ωk(M), the space of
De Rham k-currents. The latter are by definition continuous linear forms on the space of
De Rham differential k-forms ΩkdR(M). This isomorphism is proved in [58].

8. Proposition 5.6 was established in [60]. The statement can be slightly enhanced.
Namely, the quantities in Proposition 5.6 also only depend on the classes of u and p in
the (odd and even) K-theory of A. We refer to [60, Section IV.1.γ] for more details.

9. Originally, Connes introduced cyclic cohomology by means of cocycles satisfying such a
cyclic condition, explaining the terminology. It turns out that this is equivalent to taking
an even/odd cocycle in the (b,B)-bicomplex. For more details we refer to [58, Theorem
II.40] (or [60, Theorem III.1.29]).

Section 5.3. Abstract differential calculus

10. In our development of an abstract differential calculus we closely follow Connes and
Moscovici [66]. In the case of the canonical triple of a spin manifold M , this will reproduce
(part of) the usual differential calculus on M . We refer to [109] for a more detailed
treatment. Note that the hypothesis that D is invertible can be removed, as described in
[109, Section 6.1].

11. The notion of finite summability for spectral triples was introduced in [60, Section
IV.2.γ] (see also [103, Definition 10.8]).

12. Even though we restrict to finitely-summable, regular spectral triples with simple
dimension spectrum and for which there is a finite number of poles in Sd, the index
formula can be proved in the presence of essential and infinitely many singularities as well
[46, 47, 48].

Section 5.5. The local index formula

13. In our proof of Theorem 5.21 we follow Higson [109]. For the odd case, we refer to
the original paper by Connes and Moscovici [66] (see also the more general [46]).

14. The McKean–Singer formula is due to [149].

15. For more details on the ‘transgression formula’ that is essential in the proof of Lemma
5.24 we refer to the discussion resulting in [103, Eq. 10.40].
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16. It is noted in [66, Remark II.1] that if (A,H, D) is the canonical triple associated to
a Riemannian spin manifold M , then the local index formula of Connes and Moscovici
reduces to the celebrated Atiyah–Singer index theorem for the Dirac operator [12, 13].
Namely, the operator Dp is then the Dirac operator with coefficients in a vector bundle
E → M . The latter is defined as a subbundle of the trivial bundle M × CN using the
projection p ∈ MN (C(M)): one sets the fiber to be Ex = p(x)CN at each point x ∈ M .
We then have

indexDp = (2πi)−
n
2

∫
M

Â(R) ∧ ch(E),

where Â(R) is the Â-form of the Riemannian curvature of M and ch(E) is the Chern
character of the vector bundle E (cf. [27]). The proof exploits Getzler’s symbol calculus
[97, 98, 99], as in [33]. See also [162].
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Noncommutative geometry and
gauge theories





CHAPTER 6

Gauge theories from noncommutative manifolds

In this Chapter we demonstrate how every noncommutative (Riemann-
ian spin) manifold, viz. every spectral triple, gives rise to a gauge theory
in a generalized sense. We derive so-called inner fluctuations via Morita
equivalences and interpret these as generalized gauge fields. This is quite
similar to the construction in the finite case in Chapters 2 and 3. We then
interpret our generalized gauge theory in terms of a C∗-bundle on which the
gauge group acts by vertical automorphisms.

6.1. ‘Inner’ unitary equivalences as the gauge group

In Chapter 2 we already noticed the special role played by the unitary
elements in the matrix algebras, and how they give rise to equivalences of
finite noncommutative spaces (cf. Remark 2.25). We now extend this to
general real spectral triples (A,H, D; J, γ).

Definition 6.1. A ∗-automorphism of a ∗-algebra A is a linear invert-
ible map α : A → A that satisfies

α(ab) = α(a)α(b), α(a∗) = α(a)∗.

We denote the group of automorphisms of the ∗-algebra A by Aut(A).
An automorphism α is called inner if it is of the form α(a) = uau∗ for

some element u ∈ U(A) where

U(A) = {u ∈ A : uu∗ = u∗u = 1}

is the group of unitary elements in A. The group of inner automorphisms
is denoted by Inn(A).

The group of outer automorphisms of A is defined by the quotient

Out(A) := Aut(A)/ Inn(A).

Note that Inn(A) is indeed a normal subgroup of Aut(A) since

β ◦ αu ◦ β−1(a) = β
(
uβ−1(a)u∗

)
= β(u)aβ(u)∗ = αβ(u)(a),

for any β ∈ Aut(A).
An inner automorphism αu is completely determined by the unitary

element u ∈ U(A), but not in a unique manner. In other words, the map
φ : U(A) → Inn(A) given by u 7→ αu is surjective, but not injective. The
kernel is given by ker(φ) = {u ∈ U(A) | uau∗ = a, a ∈ A}. In other words,
kerφ = U(Z(A)) where Z(A) is the center of A. We conclude that the group
of inner automorphisms is given by the quotient

Inn(A) ' U(A)/U(Z(A)).(6.1.1)
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MANIFOLDS

This can be summarized by the following exact sequences:

1 // Inn(A) // Aut(A) // Out(A) // 1,

1 // U(Z(A)) // U(A) // Inn(A) // 1.

Example 6.2. If A is a commutative ∗-algebra, then there are no non-
trivial inner automorphisms since Z(A) = A. Moreover, if A = C∞(X)
with X a smooth compact manifold, then Aut(A) ' Diff(X), the group of
diffeomorphisms of X. Explicitly, a diffeomorphism φ : X → X yields an
automorphisms by pullback of a function f :

φ∗(f)(x) = f(φ(x)); (x ∈ X).

Compare this with the discussion in the case of finite discrete topological
spaces in Section 2.1. More generally, there is a continuous version of
the above group isomorphism, relating Aut(C(X)) one-to-one to homeomor-
phisms of X. This follows from functoriality of Gelfand duality. Namely,
the Gelfand transform in Theorem 4.28 naturally extends to homomorphisms
between commutative unital C∗-algebras, mapping these to homeomorphism
between the corresponding structure spaces.

The fact that all automorphisms of C∞(X) come from a diffeomorphism
of X can be seen as follows. Consider a smooth family {αt}t∈[0,1] of auto-
morphisms of C∞(X) from αt=0 = id to αt=1 = α. The derivative at t = 0
of this family, α̇ := dαt/dt|t=0, is a ∗-algebra derivation, since

α̇(f1f2) =
d

dt
αt(f1f2)|t=0 =

d

dt
αt(f1)αt(f2)|t=0 = α̇(f1)f2 + f1α̇(f2).

As such, α̇ corresponds to a smooth vector field on X and the end point
φt=1 of the flow φt of this vector field is the sought-for diffeomorphism of
X. Its pullback φ∗t=1 on smooth functions coincides with the automorphism
αt=1 = α.

Example 6.3. At the other extreme, we consider an example where all
automorphisms are inner. Let A = MN (C) and let u be an element in the
unitary group U(N). Then u acts as an automorphism on a ∈ MN (C) by
sending a 7→ uau∗. If u = λIN is a multiple of the identity with λ ∈ U(1),
this action is trivial, hence the group of automorphisms of A is the projective
unitary group PU(N) = U(N)/U(1), in concordance with (6.1.1).

The fact that all automorphisms are inner follows from the following ob-
servation. First, any ∗-algebra map α : MN (C)→MN (C) can be considered
a representation of A on CN . As the unique irreducible representation space
of MN (C) is given by the defining representation (Lemma 2.15) we conclude
that the representation α is unitarily equivalent to the defining representa-
tion on CN . Hence, α(a) = uau∗ with u ∈ U(N).

Exercise 6.1. Show that Aut(MN (C)⊕MN (C)) ' (U(N)×U(N))oS2

with the symmetric group S2 acting by permutation on the two copies of
U(N).

Inner automorphisms αu not only act on the ∗-algebra A, via the rep-
resentation π : A → B(H) they also act on the Hilbert space H present in
the spectral triple. In fact, with U = π(u)Jπ(u)J−1, the unitary u induces

NCG and Particle Physics, W.D. van Suijlekom



87 6.1. ‘INNER’ UNITARY EQUIVALENCES AS THE GAUGE GROUP

a unitary equivalence of real spectral triples in the sense of Definition 3.4,
as the following exercise shows.

Exercise 6.2. Use Definition 4.30 to establish the following transfor-
mation rules for a unitary U = π(u)Jπ(u)J−1 with u ∈ U(A):

Uπ(a)U∗ = π ◦ αu(a);(6.1.2)

Uγ = γU ;

UJU∗ = J.

We conclude that an inner automorphism αu of A induces a unitary
equivalent spectral triple (A,H, UDU∗; J, γ), where the action of the ∗-
algebra is given by π ◦ αu. Note that the grading and the real structure
are left unchanged under these ‘inner’ unitary equivalences; only the opera-
tor D is affected by the unitary transformation. For the latter, we compute,
using (4.3.1),

(6.1.3) D 7→ UDU∗ = D + u[D,u∗] + ε′Ju[D,u∗]J−1,

where as before we have suppressed the representation π. We recognize the
extra terms as pure gauge fields udu∗ in the space of Connes’ differential
one-forms Ω1

D(A) of Definition 4.36. This motivates the following definition

Definition 6.4. The gauge group G(A,H; J) of the spectral triple is

G(A,H; J) :=
{
U = uJuJ−1 | u ∈ U(A)

}
.

Recall (from Section 4.3.1) the construction of a complex subalgebra AJ
in the center of A from a real spectral triple (A,H, D; J), given by

AJ := {a ∈ A : aJ = Ja∗}.

Proposition 6.5. There is a short exact sequence of groups

1→ U(AJ)→ U(A)→ G(A,H; J)→ 1.

Moreover, there is a surjective map G(A,H; J)→ Inn(A).

Proof. Consider the map Ad: U(A)→ G(A,H; J) given by u 7→ uJuJ−1.
This map Ad is a group homomorphism, since the commutation relation
[u, JvJ−1] = 0 of (4.3.1) implies that

Ad(v) Ad(u) = vJvJ−1uJuJ−1 = vuJvuJ−1 = Ad(vu).

By definition Ad is surjective, and ker(Ad) = {u ∈ U(A) | uJuJ−1 = 1}.
The relation uJuJ−1 = 1 is equivalent to uJ = Ju∗ which is the defining
relation of the commutative subalgebra AJ . This proves that ker(Ad) =
U(AJ). The map G(A,H; J) → Inn(A) is given by (6.1.2), from which
surjectivity readily follows. �

Corollary 6.6. If U(AJ) = U(Z(A)), then G(A,H; J) ' Inn(A).

Proof. This is immediate from the above Proposition and (6.1.1). �
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We summarize this by the following sequence, which is exact in the
horizontal direction:

1 // U(AJ) //

��

U(A) // G(A,H; J) //

��

1

1 // U(Z(A)) // U(A) // Inn(A) // 1

6.1.1. The gauge algebra. A completely analogous discussion applies
to the definition of a gauge Lie algebra, where instead of automorphisms we
now take (inner and outer) derivations of A. The following definition
essentially gives the infinitesimal version of G(A,H; J).

Definition 6.7. The gauge Lie algebra g(A,H; J) of the spectral triple
is

g(A,H; J) :=
{
T = X + JXJ−1 | X ∈ u(A)

}
,

where u(A) consists of the skew-hermitian elements in A.

One easily checks using the commutant property,

[T, T ′] = [X,X ′] + J [X,X ′]J−1,

so that g(A,H; J) is indeed a Lie algebra.

Proposition 6.8. There is a short exact sequence of Lie algebras

0→ u(AJ)→ u(A)→ g(A,H; J)→ 0.

There are also inner derivations of A that are of the form a → [X, a];
these form a Lie subalgebra DerInn(A) of the Lie algebra of all derivations
Der(A). If u(AJ) = u(Z(A)) then

g(A,H; J) ' DerInn(A),

which essentially is the infinitesimal version of Corollary 6.6.

Exercise 6.3. Show that Der(MN (C)) ' su(N) as Lie algebras.

6.2. Morita self-equivalences as gauge fields

We have seen that a non-abelian gauge group appears naturally when
the unital ∗-algebra A in a real spectral triple is noncommutative. Moreover,
noncommutative algebras allow for a more general – and in fact more nat-
ural – notion of equivalence than automorphic equivalence, namely Morita
equivalence. We have already seen this in Chapter 2. Indeed, let us imi-
tate the construction in Theorem 2.26 and Theorem 3.6 and see if we can
lift Morita equivalence to the level of spectral triples in this more general
setting.

Let us first recall some of the basic definitions. We keep working in the
setting of unital algebras, which greatly simplifies matters (See Note 4 on
Page 97).
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6.2.1. Morita equivalence. Recall Definition 2.8 of algebra modules.
For two right A-modules E and F we denote the space of right A-module
homomorphisms by HomA(E ,F), i.e.

(6.2.1) HomA(E ,F) := {φ : E → F : φ(ηa) = φ(η)a for all η ∈ E , a ∈ A} .
We also write EndA(E) := HomA(E , E) for the algebra of right A-module
endomorphisms of E .

Definition 6.9. Two unital algebras A and B are called Morita equiv-
alent if there exists a B − A-bimodule E and an A − B-bimodule F such
that

E ⊗A F ' B, F ⊗B E ' A,
as B and A-bimodules, respectively.

Exercise 6.4. Taking inspiration from Exercise 2.9, show that Morita
equivalence is an equivalence relation.

Exercise 6.5. Define AN = A⊕· · ·⊕A (N copies) as an A−MN (A)-
bimodule.

(1) Show that AN ⊗A AN 'MN (A), as MN (A)−MN (A)-bimodules.
(2) Show that AN⊗MN (A)AN ' A, so that MN (A) is Morita equivalent

to A.

A convenient characterisation of Morita equivalent algebras is given by
the concept of endomorphism algebras of so-called finitely generated projec-
tive modules, as we now explain.

Definition 6.10. A right A-module is called finitely generated projec-
tive (or, briefly, finite projective) if there is an idempotent p = p2 in MN (A)
for some N such that E ' pAN .

Lemma 6.11. A right A-module is finitely generated projective if and
only if

EndA(E) ' E ⊗A HomA(E ,A).

Proof. First note that the right-hand side can be considered to be a
two-sided ideal in EndA(E). Namely, we consider an element η ⊗A φ in
E ⊗A HomA(E ,A) as an element in EndA(E) by mapping

ξ 7→ ηφ(ξ); (ξ ∈ E).

That this map is injective and that its image forms an ideal in EndA(E) is
readily checked. Hence, the above isomorphism is equivalent to the existence
of an element in E ⊗A HomA(E ,A) that acts as the identity map idE on E .

Suppose that E is finite projective, E ' pAN for some idempotent p ∈
MN (A). We identify two maps

λ : E → AN ,
ρ : AN → E ,

which are injective and surjective, respectively. These maps are related to
the identification of E with a direct summand of AN , via the obvious direct
sum decomposition AN = pAN ⊕ (1 − p)AN . Namely, λ identifies E with
pAN ⊂ AN , whereas ρ projects AN onto the direct summand pAN and then
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identifies it with E . Let us write λk for the k’th component of λ mapping
E to AN ; thus, λk : E → A is right A-linear for any k = 1, . . . , N . We
write ρk := ρ(ek) ∈ E , where {ek}Nk=1 is the standard basis of AN . The

composition
∑N

k=1 ρk ⊗ λk then acts as the identity operator on E .
Conversely, suppose idE can be written as a finite sum

(6.2.2)
N∑
k=1

ρk ⊗ λk ∈ E ⊗A HomA(E ,A).

Reversing the construction in the previous paragraph, we are now going to
define an idempotent p ∈MN (A) such that E ' pAN . Thus, we define maps

λ : E → AN ; η 7→ (λ1(η), . . . , λN (η)) ,

ρ : AN → E ; (a1, . . . , aN ) 7→ ρ1a1 + · · ·+ ρNaN .

From their very definition, these maps satisfy ρ ◦ λ = idE , so that p = λ ◦ ρ
is the sought-for idempotent in MN (A). �

Exercise 6.6. In this exercise we are going to analyze the ambiguity
due to the balanced tensor product that appears in the decomposition (6.2.2)
of idE .

(1) If E = A then idE = 1⊗ 1 ⊂ E ⊗A HomA(E ,A) but also

idE = 1⊗ 1 + a⊗ 1 + 1⊗ (−a),

for any a ∈ A. Show that the projection corresponding to the latter
decomposition of idE is

p =

1 1 −a
a a −a2

1 1 −a

 .

(2) Show that there is a similarity transformation S such that

SpS−1 =

1 0 0
0 0 0
0 0 0

 .

Therefore, the projection corresponding to idE = 1⊗1 appears as the
first diagonal entry, and we can conclude that both decompositions
give isomorphic projective modules pA3 ' A.

(3) Extend this argument to any finite projective E to show that the
construction of a projection p from (6.2.2) is well defined.

Proposition 6.12. Two unital algebras A and B are Morita equivalent
if and only if B ' EndA(E), with E a finite projective A-module.

Proof. If B ' EndA(E) for some finite projective E , then F = HomA(E ,A)
is the required A−B-bimodule implementing the desired Morita equivalence,
with bimodule structure given by

(6.2.3) (a · φ · b)(η) = aφ(b · η); (φ ∈ HomA(E ,A)).

The property E ⊗A F ' B follows from Lemma 6.11, and the isomorphism
F ⊗B E ' A is implemented by the evaluation map, that is,

(φ⊗ η) ∈ HomA(E ,A)⊗B E 7→ φ(η) ∈ A.
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Conversely, suppose A and B are Morita equivalent. If B ' E ⊗A F , then
B ' EndB(B) ' EndB(E ⊗A F), and there is an algebra map

EndA(E)→ EndB(E ⊗A F);

φ 7→ φ⊗ 1F .

On the other hand, EndA(B⊗B E) ' EndA(E), and there is an algebra map

EndB(B)→ EndA(B ⊗B E);

φ′ 7→ φ′ ⊗ 1E .

Identifying E ⊗A F ' B and F ⊗B E ' A, one readily checks that these two
maps are each other’s inverses. This shows that B ' EndA(E).

Finally, the fact that the right A-module E is finitely generated and pro-
jective follows mutatis mutandis from the proof of Lemma 6.11, after realiz-
ing that the isomorphism F ⊗B E ' A associates an element in HomA(E ,A)
to any element in F . �

Exercise 6.7. Show that (6.2.3) is a well-defined A−B-bimodule struc-
ture on HomA(E ,A), i.e. show that it respects the right A-linearity of the
map φ : E → A.

We conclude this subsection by specializing from algebras to ∗-algebras.
The above results on Morita equivalence still hold, with the additional re-
quirement that in the definition of finite projectivity the idempotent p ∈
MN (C) needs to be self-adjoint: p∗ = p. That is to say, p is an orthogonal
projection.

As in Definition 3.5, we define the conjugate module E◦ to a right
A-module E as

E◦ = {ξ : ξ ∈ E},

equipped with a left A action defined by aξ = ξa∗ for any a ∈ A.

Proposition 6.13. If A is a ∗-algebra and E is a finite projective right
A-module, then we can identify HomA(E ,A) as a left A-module with the
conjugate module E◦,

Proof. If E ' pAN then EndA(E) ' pMN (A)p, as one can easily show
using the maps λ and ρ from the first part of the proof of Lemma 6.11.
Hence E ⊗A HomA(E ,A) ' pMN (A)p. But also pAN ⊗A ANp ' pMN (A)p
(cf. Exercise 6.5), so HomA(E ,A) ' ANp as left A-modules. We now show
that E◦ ' ANp as well.

For that, write ξ ∈ E ' pAN as a column vector:

ξ =


∑N

j=1 p1jaj
...∑N

j=1 pNjaj

 .

The corresponding element ξ in E◦ is identified with(∑N
j=1 a

∗
jpj1 · · ·

∑N
j=1 a

∗
jpjN

)
,
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written as a row vector in ANp. Note that the relation between ξ and this
row vector is essentially given by the involution on AN , exploiting the self-
adjointness of p, that is, p∗ji = pij . Consequently, the element aξ = ξa∗ is
mapped to

a
(∑N

j=1 a
∗
jpj1 · · ·

∑N
j=1 a

∗
jpjN

)
,

as required. �

Proposition 6.14. Let A be a ∗-algebra and E a finite projective right
A-module. Then there exists a hermitian structure on E, that is to say, there
is a pairing 〈·, ·〉E : E × E → A on E that satisfies (as in Definition 2.9)

〈η1, η2 · a〉E = 〈η1, η2〉Ea; (η1, η2 ∈ E , a ∈ A),

〈η1, η2〉∗E = 〈η2, η1〉E ; (η1, η2 ∈ E),

〈η, η〉E ≥ 0, with equality if and only if η = 0; (η ∈ E).

Proof. On AN we have a hermitian structure given by

〈η, ξ〉 =

N∑
j=1

η∗j ξj ,

which satisfies the above properties. By restriction to pAN we then obtain
a hermitian structure on E ' pAN . �

6.2.2. Morita equivalence and spectral triples. For a given spec-
tral triple (A,H, D) and for a given finite projective right A-module E , we
try to construct another spectral triple (B,H′, D′) where B = EndA(E).
This generalizes the finite-dimensional constructions of Chapters 2 and 3.
Naturally,

H′ := E ⊗A H
carries an action of φ ∈ B:

φ(η ⊗ ψ) = φ(η)⊗ ψ; (η ∈ E , ψ ∈ H).

Moreover, by finite projectivity of E , H′ is a Hilbert space. Indeed, we have

H′ ' pAN ⊗A H ' pHN ,

and since p is an orthogonal projection it has closed range.
However, the naive choice of an operator D′ by D′(η ⊗ ψ) = η ⊗ Dψ

will not do, because it does not respect the ideal defining the tensor product
over A, which is generated by elements of the form

ηa⊗ ψ − η ⊗ aψ; (η ∈ E , a ∈ A, ψ ∈ H).

A better definition is

D′(η ⊗ ψ) = η ⊗Dψ +∇(η)ψ.

where ∇ : E → E ⊗A Ω1
D(A) is a connection associated to the derivation

d : a 7→ [D, a] (a ∈ A). This means that ∇ is a linear map that satisfies the
Leibniz rule:

∇(ηa) = (∇η)a+ η ⊗A da; (η ∈ E , a ∈ A).
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Exercise 6.8. (1) Let ∇ and ∇′ be two connections on a right A-
module E. Show that their difference ∇ − ∇′ is a right A-linear
map E → E ⊗A Ω1

D(A).
(2) Show that the following map defines a connection on E = pAN :

∇ = p ◦ d,

with d acting on each copy of A as the commutator [D, ·]. This
connection is referred to as the Grassmann connection on E.

Theorem 6.15. If (A,H, D) is a spectral triple and ∇ is a connection
on a finite projective right A-module E, then (B,H′, D′) is a spectral triple,
provided that ∇ is a hermitian connection, i.e. provided that

(6.2.4) 〈η1,∇η2〉E − 〈∇η1, η2〉E = d〈η1, η2〉E ; (η1, η2 ∈ E).

Proof. Suppose E = pAN , so that B = EndA(E) ' pMN (A)p and
E ⊗AH ' pHN . The boundedness of the action of B on E ⊗AH then follows
directly from the boundedness of the action of A on H. Similarly, for φ ∈ B
the commutator [D,φ] can be regarded as a matrix with entries of the form
[D, a] with a ∈ A. These commutators are all bounded, so that [D,φ] is
bounded. Let us prove compactness of the resolvent. By Exercise 6.8 any
connection can be written as ∇ = p ◦ [D, ·] + ω for a right A-linear map
ω : E → E ⊗A Ω1

D(A). Hence, after making the above identifications we see
that the operator ∇⊗ 1 + 1⊗D coincides with pDp+ω. The action of ω is
as a bounded operator, which by (6.2.4) is self-adjoint. Moreover, it is given
by a matrix acting on pHN with entries in Ω1

D(A). Since for any self-adjoint
operator T we have

(i+ T + ω)−1 = (i+ T )−1
(
1− ω(i+ T + ω)−1

)
,

with
(
1− ω(i+ T + ω)−1

)
bounded, compactness of the resolvent of pDp+ω

would follow from compactness of (ip+ pDp)−1 (note that p is the identity
on the Hilbert space pHN ). The required compactness property is a conse-
quence of the identity

(ip+ pDp)p(i+D)−1p = p[i+D, p](i+D)−1p+ p.

Indeed, when multiplied on the left with (ip+pDp)−1 we find that on pHN :

(ip+ pDp)−1 = p(i+D)−1p− (ip+ pDp)−1p[D, p](i+D)−1p,

which is compact since (i + D)−1 is compact by definition of a spectral
triple. �

Analogously, for a given real spectral triple (A,H, D, J) we define an-
other real spectral triple (B,H′, D′, J ′) by setting

H′ := E ⊗A H⊗A E◦.
Then, φ ∈ B acts on H′ by

φ(η ⊗ ψ ⊗ ξ) = φ(η)⊗ ψ ⊗ ξ,

and the operator D′ and J ′ may be defined by

D′(η ⊗ ψ ⊗ ξ) = (∇η)ψ ⊗ ξ + η ⊗Dψ ⊗ ξ + η ⊗ ψ(∇ξ),
J ′(η ⊗ ψ ⊗ ξ) = ξ ⊗ Jψ ⊗ η.
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Finally, for even spectral triples one defines a grading γ′ on E ⊗A H⊗A E◦
by γ′ = 1⊗ γ ⊗ 1. We have therefore proved:

Theorem 6.16. If (A,H, D; J, γ) is a real spectral triple and ∇ is a
hermitian connection, then (B,H′, D′; J ′, γ′) is a real spectral triple.

We now focus on Morita self-equivalences, for which B = A and
E = A so that EndA(E) ' A. Let us look at connections

∇ : A → Ω1
D(A).

Clearly, by the Leibniz rule we must have ∇ = d +ω (see also Exercise 6.8),
where ω = ∇(1) =

∑
j aj [D, bj ] is a generic element in Ω1

D(A) acting as a

bounded operator on H. Similarly, ψ∇a = (ε′JdaJ−1 + ε′JωaJ−1)ψ. Since
H′ ' H, under this identification we have,

D′(ψ) ≡ D′(1⊗ ψ ⊗ 1) = ∇(1)ψ + ψ∇(1) +Dψ = Dψ + ωψ + ε′JωJ−1ψ.

In other words, D is ‘innerly perturbed’ by the given Morita self-equivalence
to

Dω := D + ω + ε′JωJ−1,

where ω∗ = ω ∈ Ω1
D(A) is called a gauge field, alternatively called an

inner fluctuation of the operator D, since it is the algebra A that —
through Morita self-equivalences— generates the field ω.

Proposition 6.17. A unitary equivalence of a real spectral triple (A,H, D; J)
as implemented by U = uJuJ−1 with u ∈ U(A) (discussed before Defini-
tion 6.4) is a special case of a Morita self-equivalence, arising by taking
ω = u[D,u∗].

Proof. This follows upon inserting ω = u[D,u∗] in the above formula
for Dω, yielding (6.1.3). �

In the same way there is an action of the unitary group U(A) on the new
spectral triple (A,H, Dω) by unitary equivalences. Recall that U = uJuJ−1

acts on Dω by conjugation:

(6.2.5) Dω 7→ UDωU
∗.

This is equivalent to
ω 7→ uωu∗ + u[D,u∗],

which is the usual rule for a gauge transformation on a gauge field.

6.3. Localization

Recall (from Section 4.3.1) the construction of a complex subalgebra AJ
in the center of A from a real spectral triple (A,H, D; J), given by

AJ := {a ∈ A : aJ = Ja∗}.
AsAJ is commutative, Gelfand duality (Theorem 4.28) ensures the existence
of a compact Hausdorff space such that AJ ⊂ C(X) as a dense ∗-subalgebra.
Indeed, the C∗-completion of AJ in B(H) is commutative and hence isomor-
phic to such a C(X). We consider this space X to be the ‘background space’
on which (A,H, D; J, γ) describes a gauge theory, as we now work out in
detail.
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Heuristically speaking, the above gauge group G(A,H; J) considers only
transformations that are ‘vertical’, or ‘purely noncommutative’ with respect
to X, quotienting out the unitary transformations of the commutative sub-
algebra AJ . Let us make this precise by identifying a bundle B → X of
C∗-algebras such that:

• the space of continuous sections Γ(X,B) forms a C∗-algebra iso-
morphic to A = A, the C∗-completion of A;
• the gauge group acts as bundle automorphisms covering the iden-

tity.

Moreover, we search for a bundle of C∗-algebras of which the gauge fields
ω ∈ Ω1

D(A) are sections and on which the gauge group again acts by bundle
automorphisms.

We avoid technical complications that might arise from working with
dense subalgebras of C∗-algebras, and work with the C∗-algebras AJ and
A themselves, as completions of AJ and A, respectively. First, note that
there is an inclusion map C(X) ' AJ ↪→ A. This means that A is a so-
called C(X)-algebra, which by definition is a C∗-algebra A with a map from
C(X) to the center of A. Indeed, it follows from Proposition 4.37 that AJ
is contained in the center of A.

In such a case A is the C∗-algebra of continuous sections of an upper
semi-continuous C∗-bundle over X. We will briefly sketch the setup (see
Note 7 on Page 98). Recall that a function f : A → C is upper semi-
continuous at a0 ∈ A if lim supa→a0 ‖f(a)‖ ≤ ‖f(a0)‖.

Definition 6.18. An upper semi-continuous C∗-bundle over a compact
topological space X is a continuous, open, surjection π : B → X together
with operations and norms that turn each fiber Bx = π−1(x) into a C∗-
algebra, such that (1) the map a 7→ ‖a‖ is upper semi-continuous, (2) all
algebraic operations are continuous on B, (3) if {ai} is a net in B such that
‖ai‖ → 0 and π(ai) → x in X, then ai → 0x, where 0x is the zero element
in Bx.

A (continuous) section of B is a (continuous) map s : X → B such that
π(s(x)) = x.

A base for the topology on B is given by the following collection of open
sets:

(6.3.1) W (s,O, ε) := {b ∈ B : π(b) ∈ O and ‖b− s(π(b))‖ < ε},

indexed by continuous sections s ∈ Γ(X,B), open subsets O ⊂ X and ε > 0.

Proposition 6.19. The space Γ(X,B) of continuous sections forms a
C∗-algebra when it is equipped with the norm

‖s‖ := sup
x∈X
‖s(x)‖Bx .

Proof. See Note 7 on Page 98. �

In our case, after identifying C(X) with AJ , we can define a closed
two-sided ideal in A by

(6.3.2) Ix := {fa : a ∈ A, f ∈ C(X), f(x) = 0}− .
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We think of the quotient C∗-algebra Bx := A/Ix as the fiber of A over x
and set

(6.3.3) B :=
∐
x∈X

Bx,

with an obvious surjective map π : B → X. If a ∈ A, then we write a(x)
for the image a + Ix of a in Bx, and we think of a as a section of B. The
fact that all these sections are continuous and that elements in A can be
obtained in this way is guaranteed by the following result.

Theorem 6.20. The above map π : B→ X with B as in (6.3.3) defines
an upper semi-continuous C∗-bundle over X. Moreover, there is a C(X)-
linear isomorphism of A onto Γ(X,B).

Proof. See Note 7 on Page 98. �

Having obtained the C∗-algebra A as the space of sections of a C∗-
bundle, we are ready to analyze the action of the gauge group on A. Staying
at the C∗-algebraic level, we consider the continuous gauge group

G(A,H; J) ' U(A)

U(AJ)
.

This contains the gauge group G(A,H; J) of Definition 6.4 as a dense sub-
group in the topology induced by the C∗-norm on A. The next result realizes
the gauge group as a group of vertical bundle automorphisms of B.

Proposition 6.21. The action α of G(A,H; J) on A by inner C∗-
algebra automorphisms induces an action α̃ of G(A,H; J) on B by con-
tinuous bundle automorphisms that cover the identity. In other words, for
g ∈ G(A,H; J) we have

π(α̃g(b)) = π(b); (b ∈ B).

Moreover, under the identification of Theorem 6.20 the induced action α̃∗

on Γ(X,B) given by
α̃∗g(s)(x) = α̃g(s(x))

coincides with the action α on A.

Proof. The action α induces an action onA/Ix = π−1(x), since αg(Ix) ⊂
Ix for all g ∈ G(A,H; J). We denote the corresponding action of G(A,H; J)
on B by α̃, so that, indeed,

π(α̃g(b)) = π(b); (b ∈ π−1(x)).

Let us also check continuity of this action. In terms of the base W (s,O, ε)
of (6.3.1), we find that

α̃g(W (s,O, ε)) = W (α̃∗g(s),O, ε),
mapping open subsets one-to-one and onto open subsets.

For the second claim, it is enough to check that the action α̃∗ on the
section s : x 7→ a + Ix ∈ Bx, defined by an element a ∈ A, corresponds to
the action α on that a. In fact,

α̃∗g(s)(x) = α̃g(s(x)) = αg(a+ Ix) = αg(a) + Ix,

which completes the proof. �
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At the infinitesimal level, the derivations in the gauge algebra g(A,H; J)
also act vertically on the C∗-bundle B defined in (6.3.3), and the induced
action on the sections Γ(X,B) agrees with the action of g(A,H; J) on A.

6.3.1. Localization of gauge fields. Also the gauge fields ω that
enter as inner fluctuations of D can be parametrized by sections of some
bundle of C∗-algebras. In order for this to be compatible with the vertical
action of the gauge group found above, we will write any connection in the
form,

∇ = d + ω0 + ω,

where d = [D, ·] and ω0, ω ∈ Ω1
D(A). The action of a gauge transformation

on ∇ then induces the following transformation:

ω0 7→ uω0u
∗ + u[D,u∗]; ω 7→ uωu∗.

The C∗-algebra generated by A and [D,A] is a C(X)-algebra, since
C(X) ' AJ , which according to Proposition 4.37 commutes with bothA and
[D,A]. Thus, a similar construction as in the previous subsection establishes
the existence of an upper semi-continuous C∗-bundle BΩ over X, explicitly
given by

BΩ =
∏
x∈X

C∗(A, [D,A])/I ′x,

where C∗(A, [D,A]) is the C∗-algebra generated by a and [D, b] for a, b ∈ A,
and I ′x is the two-sided ideal in C∗(A, [D,A]) generated by Ix that has been
defined before (see Equation (6.3.2)). Again, one can show that Γ(X,BΩ)
is isomorphic to this C∗-algebra and establish the following result.

Proposition 6.22. Let π : BΩ → X be as above.

(1) The gauge field ω defines a continuous section of BΩ.
(2) The gauge group G(A,H; J) acts fiberwise on this bundle, and the

induced action on Γ(X,BΩ) agrees with the action on C∗(A, [D,A]).

Consequently, if we regard ω ∈ Ω1
D(A) as a continuous section ω(x) of BΩ,

an element uJuJ−1 ∈ G(A,H; J) acts as

ω(x) 7→ (uωu∗)(x) ≡ uω(x)u∗.

Notes

Section 6.1. ‘Inner’ unitary equivalences as the gauge group

1. The interpretation of the inner automorphism group as the gauge group is presented
in [63].

2. For a precise proof of the isomorphism between Aut(C(X)) and the group of homeo-
morphisms of X, we refer to [31, Theorem II.2.2.6]. For a more detailed treatment of the
smooth analogue, we refer to [103, Section 1.3].

3. The gauge group G(A,H; J) introduced in Definition 6.4 (following [63, 65, 186])
is a natural lift of the group of inner automorphisms of the algebra A, as is proved in
Proposition 6.5. Another approach to lifting Inn(A) to be represented on H is by central
extensions; this is described in [136].

Section 6.2. Morita self-equivalences as gauge fields

4. For unital algebras algebraic Morita equivalence [153] coincides with Rieffel’s notion
of strong Morita equivalence for C∗-algebras [166]. This is proved in [24] and explains
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why we can safely work with algebraic tensor products. We also refer for a more general
treatment to e.g. [103, Section 4.5] and [131, Section A.3 and A.4].

5. Besides Morita equivalence, also the more general notion of KK-equivalence can be
lifted to spectral triples, but this requires much more analysis [17, 129, 151].

6. Theorem 6.15 and Theorem 6.16 are due to Connes in [63].

Section 6.3. Localization

7. The notion of C(X)-algebra was introduced by Kasparov in [122]. Proposition 6.19
and Theorem 6.20 are proved in [124, 157] (see also Appendix C in [198]). Note that the
bundles are in general only upper semi-continuous, and not necessarily continuous. For a
discussion of this point, see [157].

8. Later, in Chapters 8 to 11 we will work towards physical applications in which the
above C∗-bundle is a locally trivial (or, even a globally trivial) ∗-algebra bundle with
finite-dimensional fiber. The above generalized gauge theories then become ordinary gauge
theories, defined in terms of vector bundles and connections. It would be interesting to
study the gauge theories corresponding to the intermediate cases, such as continuous
trace C∗-algebras (cf. [164] for a definition), or the more general KK-fibrations that were
introduced in [84]. First examples in this direction are studied in [37].
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CHAPTER 7

Spectral invariants

In the previous chapter we have identified the gauge group canonically
associated to any spectral triple and have derived the generalized gauge
fields that carry an action of that gauge group. In this chapter we take the
next step and search for gauge invariants of these gauge fields, to wit, the
spectral action, the topological spectral action and the fermionic action. We
derive (asymptotic) expansions of the spectral action.

7.1. Spectral action functional

The simplest spectral invariant associated to a spectral triple (A,H, D) is
given by the trace of some function ofD. We also allow for inner fluctuations,
and more generally consider the operators Dω = D + ω + ε′JωJ−1 with
ω = ω∗ ∈ Ω1

D(A).

Definition 7.1. Let f be a suitable positive and even function from R
to R. The spectral action is defined by

(7.1.1) Sb[ω] := Tr f(Dω/Λ),

where Λ is a real cutoff parameter. The minimal condition on the function
f is that it makes f(Dω/Λ) a traceclass operator, requiring sufficiently rapid
decay at ±∞.

The subscript b refers to bosonic since in the later physical applications
ω will describe bosonic fields.

There is also a topological spectral action, which is defined in terms of
the grading γ by

(7.1.2) Stop[ω] = Tr γf(Dω/Λ).

The term ‘topological’ will be justified below. First, we prove gauge invari-
ance of these functionals.

Theorem 7.2. The spectral action and the topological spectral action
are gauge invariant functionals of the gauge field ω ∈ Ω1

D(A), assumed to
transform under Adu = uJuJ−1 ∈ G(A,H; J) as

ω 7→ uωu∗ + u[D,u∗].

Proof. By (6.2.5) this is equivalent toDω 7→ UDωU
∗ with U = uJuJ−1.

Since the eigenvalues of UDωU
∗ coincide with those of Dω and the (topolog-

ical) spectral action is defined on the spectrum of Dω, the result follows. �

Another gauge invariant one can naturally associate to a spectral triple
is of a fermionic nature, as opposed to the above bosonic spectral action
functional. This invariant is given by combining the operator Dω with a
Grassmann vector in the Hilbert space (cf. Appendix 9.A), as follows.
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100 CHAPTER 7. SPECTRAL INVARIANTS

Definition 7.3. The fermionic action is defined by

Sf [ω, ψ] = (Jψ̃,Dωψ̃)

with ψ̃ ∈ H+
cl where

H+
cl =

{
ψ̃ : ψ ∈ H+

}
is the set of Grassmann variables in H in the +1-eigenspace of the grading
γ.

Theorem 7.4. The fermionic action is a gauge invariant functional of
the gauge field ω and the fermion field ψ, the latter transforming under
Adu ∈ G(A,H; J) as

ψ 7→ uJuJ−1ψ.

Moreover, if the KO-dimension of (A,H, D; γ, J) is 2 modulo 8, then (ψ,ψ′) 7→
〈Jψ,Dωψ

′〉 defines a skew-symmetric form on the +1-eigenspace of γ in H.

Proof. Again, Dω 7→ UDωU
∗ with U = uJuJ−1, whilst ψ 7→ Uψ. The

claim then follows from the observation UJ = JU .
Skew-symmetry follows from a small computation:

〈Jψ,Dψ′〉 = −〈Jψ, J2Dψ′〉 = −〈JDψ′, ψ〉 = −〈DJψ′, ψ〉 = −〈Jψ′, Dψ〉.

where we used Table 4.2 for DJ = JD in KO-dimension 2 modulo 8. �

The above skew-symmetry is in concordance with the Grassmann nature

of fermionic fields ψ̃, guaranteeing that Sf as defined above is in fact non-
zero.

7.2. Expansions of the spectral action

We assume that f is given by a Laplace–Stieltjes transform:

f(x) =

∫
t>0

e−tx
2
dµ(t),

with µ some measure on R+. Under this assumption, we can expand Sb in
two ways: either asymptotically, in powers of Λ, or in powers of the gauge
field ω. But first, let us find an expression for the topological spectral action.

Proposition 7.5. Suppose f is of the above form. Then,

Stop[ω] = f(0) indexDω.

Proof. This follows from the McKean-Singer formula (Lemma 5.23):

indexDω = Tr γe−tD
2
ω/Λ

2
.

Since this expression is independent of Λ and t, an integration over t yields∫
t>0

dµ(t) = f(0). �
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7.2.1. Asymptotic expansion. The asymptotic expansion of S can
be derived from the existence of a heat kernel expansion of the form

(7.2.1) Tr e−tD
2

=
∑
α

tαcα,

as t→ 0. Note that this is written down here for the unperturbed operator
D, but similar expressions hold for any bounded perturbation of D, such as
Dω.

Lemma 7.6. If (A,H, D) is a regular spectral triple with simple dimen-
sion spectrum (see Definition 5.9), then the heat kernel expansion (7.2.1) is
valid as an asymptotic expansion as t→ 0. Moreover, for α < 0 we have

resz=−2αζ1(z) =
2cα

Γ(−α)
,

with ζb(z) = Tr b|D|−z.

Proof. This follows from the Mellin transform:

|D|−z =
1

Γ(z/2)

∫ ∞
0

e−tD
2
tz/2−1 dt,

or, after inserting the heat kernel expansion,

Tr |D|−z =
1

Γ(z/2)

∑
α

∫ ∞
0

cαt
α+z/2−1 dt

=
1

Γ(z/2)

∑
α

∫ 1

0
cαt

α+z/2−1 dt+ holomorphic

=
∑
α

cα
Γ(z/2)(α+ z/2)

+ holomorphic.

Taking residues at z = −2α on both sides gives the desired result. �

Using the Laplace–Stieltjes transform, we now derive an asymptotic ex-
pansion of the spectral action in terms of the heat coefficients cα.

Proposition 7.7. Under the above conditions, the spectral action is
given asymptotically (as Λ→∞) by

(7.2.2) Tr f(D/Λ) =
∑
β∈Sd

fβΛβ
2

Γ(β/2)
c
−1

2β
+ f(0)c0 +O(Λ−1),

where fβ :=
∫
f(v)vβ−1dv and Sd is the dimension spectrum of (A,H, D).

Proof. This follows directly after inserting the heat expansion in the
Laplace–Stieltjes transform:

(7.2.3) Tr f(D/Λ) =
∑
α

∫
t>0

tαΛαcα dµ(t).

The terms with α > 0 are of order Λ−1; if α < 0, then

tα =
1

Γ(α)

∫
v>0

e−tvv−α−1 dv.
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Applying this to the integral (7.2.3) gives

Λ−2αcα

∫
t>0

tα dµ(t) = Λ−2αcα

∫
t>0

∫
v>0

e−tvv−α−1 dvdµ(t)

= 2Λ−2αcα

∫
t>0

∫
v>0

e−tv
2
v−2α−1 dvdµ(t)

= 2Λ−2αcα

∫
v>0

f(v)v−2α−1 dv ≡ 2Λ−2αcαf−2α,

substituting v 7→ v2 in going to the second line. Since cα = 0 unless −2α ∈
Sd, we substitute β = −2α to obtain (7.2.2). �

Corollary 7.8. For the perturbed operator Dω we have

Sb[ω] =
∑
β∈Sd

fβΛβresz=β Tr |Dω|−z + f(0) Tr |Dω|−z
∣∣
z=0

+O(Λ−1).

7.2.2. Perturbative expansion in the gauge field. Another ap-
proach to analyze Sb is given by expanding in ω, rather than in Λ. We first

take a closer look at the heat operator e−tD
2

and its perturbations.

Lemma 7.9. Let ω be a bounded operator and denote Dω = D+ω. Then

e−t(Dω)2 = e−tD
2 − t

∫ 1

0
ds e−st(Dω)2P (ω)e−(1−s)tD2

,

with P (ω) = Dω + ωD + ω2.

Proof. Note that e−tD
2
ω is the unique solution of the Cauchy problem{

(dt +Dω)u(t) = 0
u(0) = 1,

with dt = d/dt. Using the fundamental theorem of calculus, we find

dt

[
e−tD

2 −
∫ t

0
dt′e−(t−t′)D2

ωP (ω)e−t
′D2

]
= −D2

ω

(
e−tD

2 −
∫ t

0
dt′e−(t−t′)D2

ωP (ω)e−t
′D2

)
,

showing that the bounded operator e−tD
2 −

∫ t
0 dt

′e−(t−t′)D2
ωP (ω)e−t

′D2
also

solves the above Cauchy problem. �

In what follows, we will repeatedly apply this Lemma to obtain a per-

turbative expansion for e−t(Dω)2 in powers of ω in terms of multiple integrals
of heat operators. We introduce the following convenient notation, valid for
operators X0, . . . Xn:

〈X0, . . . , Xn〉t,n := tn Tr

∫
∆n

X0e
−s0tD2

X1e
−s1tD2 · · ·Xne

−sntD2
dns.

Here, the standard n-simplex ∆n is the set of all n-tuples (t1, . . . , tn) sat-
isfying 0 ≤ t1 ≤ . . . ≤ tn ≤ 1. Equivalently, ∆n can be given as the set of
n + 1-tuples (s0, s1, . . . , sn) such that s0 + . . . + sn = 1 and 0 ≤ si ≤ 1 for
any i = 0, . . . , n. Indeed, we have s0 = t1, si = ti+1 − ti and sn = 1 − tn
and, vice versa, tk = s0 + s1 + · · · sk−1.

We recall the notion of Gâteaux derivatives.
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Definition 7.10. The Gâteaux derivative of a map F : X → Y (between
locally convex topological vector spaces) at x ∈ X is defined for h ∈ X by

F ′(x)(h) = lim
u→0

F (x+ uh)− F (x)

u
.

In general, the map F ′(x)(·) is not linear, in contrast with the Fréchet
derivative. However, if X and Y are Fréchet spaces, then the Gâteaux
derivatives actually defines a linear map F ′(x)(·) for any x ∈ X. In this
case, higher order derivatives are denoted as F ′′, F ′′′, et cetera, or more con-
veniently as F (k) for the k’th order derivative. The latter will be understood
as a bounded operator from X × · · ·×X (k+ 1 copies) to Y , which is linear
in the k last variables.

Theorem 7.11 (Taylor’s formula with integral remainder). For a Gâteaux
k + 1-differentiable map F : X → Y between Fréchet spaces X and Y ,

F (x) = F (a) + F ′(a)(x− a) +
1

2!
F ′′(a)(x− a, x− a) + · · ·

+
1

n!
F (k)(a)(x− a, . . . , x− a) +Rk(x),

for x, a ∈ X, with remainder given by

Rk(x) =
1

k!

∫ 1

0
F (k+1)(a+ t(x− a))((1− t)h, . . . , (1− t)h, h)dt.

In view of this Theorem, we have the following asymptotic Taylor ex-
pansion (around 0) in ω ∈ Ω1

D(A) for the spectral action Sb[ω]:

(7.2.4) Sb[ω] =

∞∑
n=0

1

n!
S

(n)
b (0)(ω, . . . , ω),

provided we make the following

Assumption 1. For all α > 0, β > 0, γ > 0 and 0 ≤ ε < 1, there exist
constants Cαβγε such that∫

t>0
Tr tα|D|βe−t(εD2−β) |dµ(t)| < Cαβγε.

Proposition 7.12. If n = 0, 1, . . . and ω ∈ Ω1
D(A), then S

(n)
b (0)(ω, . . . , ω)

exists, and

S
(n)
b (0)(ω, . . . , ω) = n!

n∑
k=0

(−1)k
∑

ε1,...,εk

〈1, (1− ε1){D,ω}+ ε1ω
2, . . . ,

(1− εk){D,ω}+ εkω
2〉t,k dµ(t),

where the sum is over multi-indices (ε1, . . . , εk) ∈ {0, 1}k such that
∑k

i=1(1+
εi) = n.
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Proof. We prove this by induction on n, the case n = 0 being trivial.
By definition of the Gâteaux derivative and using Lemma 7.9,

S
(n+1)
b (0)(ω, . . . , ω) = n!

n∑
k=0

∑
ε1,...,εk

[
k∑
i=1

(−1)k+1〈1, (1− ε1){D,ω}+ ε1ω
2,

. . . , {D,ω}
i

, . . . , (1− εk){D,ω}+ εkω
2〉t,k+1

+
k∑
i=1

(−1)k〈1, (1− ε1){D,ω}+ ε1ω
2, . . . , 2(1− εi)ω2,

. . . , (1− εk){D,ω}+ εkω
2〉t,k

]
dµ(t).

The first sum corresponds to a multi-index ~ε ′ = (ε1, . . . , εi−1, 0, εi, . . . , εk),
the second corresponds to ~ε ′ = (ε1, . . . , εi + 1, . . . , εk) if εi = 0, counted
with a factor of 2. In both cases, we compute that

∑
j(1 + ε′j) = n+ 1. In

other words, the induction step from n to n+ 1 corresponds to inserting in
a sequence of 0’s and 1’s (of, say, length k) either a zero at any of the k+ 1
places, or replacing a 0 by a 1 (with the latter counted twice). In order to
arrive at the right combinatorial coefficient (n + 1)!, we have to show that
any ~ε ′ satisfying

∑
i(1 + ε′i) = n+ 1 appears in precisely n+ 1 ways from ~ε

that satisfy
∑

i(1 + εi) = n. If ~ε ′ has length k, it contains n+ 1− k times 1
as an entry and, consequently, 2k − n − 1 a 0. This gives (with the double
counting for the 1’s) for the number of possible ~ε:

2(n+ 1− k) + 2k − n− 1 = n+ 1,

as claimed. This completes the proof. �

Example 7.13.

S
(1)
b (0)(ω) =

∫ (
− 〈1, {D,ω}〉t,1

)
dµ(t),

S
(2)
b (0)(ω, ω) = 2

∫ (
− 〈1, ω2〉t,1 + 〈1, {D,ω}, {D,ω}〉t,2

)
dµ(t),

S
(3)
b (0)(ω, ω, ω) = 3!

∫ (
〈1, ω2, {D,ω}〉t,2 + 〈1, {D,ω}, ω2〉t,2

− 〈1, {D,ω}, {D,ω}, {D,ω}〉t,3
)
dµ(t).

7.2.2.1. Taylor expansion of the spectral action. We fix a complete set
of eigenvectors {ψn}n of D with eigenvalues λn ∈ R, respectively, forming
an orthonormal basis for H. We also write ωmn := (ψm, ωψn) for the ma-
trix coefficients of ω with respect to this orthonormal basis. Recall from
Appendix 7.A the notion of divided difference f [x0, x1, . . . , xn] of a function
f : R→ R.

Theorem 7.14. If f satisfies Assumption 1 and ω ∈ Ω1
D(A), then

S
(n)
b (0)(ω, . . . , ω) = n!

∑
i1,...,in

ωini1ωi1i2 · · ·ωin−1inf [λip , λi1 , . . . , λin ].
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Proof. Proposition 7.12 gives us an expression for S
(n)
b in terms of the

brackets 〈· · · 〉t. For these we compute:

(−1)k〈1, (1− ε1){D,ω}+ ε1ω
2, . . . , (1− εk){D,ω}+ εkω

2〉t,k dµ(t)

= (−1)k
∑

i0=ik,i1,...,ik

∫
∆k

 k∏
j=1

(
(1− εj)(λij−1 − λij )ω + εjω

2
)
ij−1ij


× e−(s0tλ2i0

+···+sktλ2ik )
dksdµ(t)

=
∑

i0=ik,i1,...,ik

 k∏
j=1

(
(1− εj)(λij−1 − λij )ω + εjω

2
)
ij−1ij

 g[λ2
i0 , . . . , λ

2
ik

].

Glancing back at Proposition 7.19, we are finished if we establish a one-to-
one relation between the order index sets I = {0 = i0 < i1 < · · · < ik = n}
such that ij−1− ij ≤ 2 for all 1 ≤ j ≤ k and the multi-indices (ε1, . . . , εk) ∈
{0, 1}k such that

∑k
i=1(1 + εi) = n. If I is such an index set, we define a

multi-index

εj =

{
0 if {ij − 1, ij} ⊂ I,
1 otherwise.

Indeed, ij = ij−1 + 1 + εj , so that

k∑
i=1

(1 + εi) = i0 +

k∑
i=1

(1 + εi) = ik = n.

It is now clear that, vice-versa, if ε is as above, we define

I = {0 = i0 < i1 < · · · < ik = n}
by ij = ij−1 + 1 + εj , and starting with i0 = 0. �

Corollary 7.15. If n ≥ 0 and ω ∈ Ω1
D(A), then

S
(n)
b (0)(ω, . . . , ω) = (n− 1)!

∑
i1,...in

ωi1i2 · · ·ωini1f ′[λi1 , . . . , λin ].

Consequently,

Sb[ω] =
∞∑
n=0

1

n

∑
i1,...in

ωi1i2 · · ·ωini1f ′[λi1 , . . . , λin ].

An interesting consequence is the following.

Corollary 7.16. If n ≥ 0 and ω ∈ Ω1
D(A) and if f ′ has compact

support, then

S
(n)
b (0)(ω, . . . , ω) =

(n− 1)!

2πi
Tr

∮
f ′(z)ω(z −D)−1 · · ·ω(z −D)−1,

where the contour integral encloses the intersection of the spectrum of D
with suppf ′.

Proof. This follows directly from Cauchy’s formula for divided differ-
ences (see Note 13 on Page 108):

g[x0, . . . xn] =
1

2πi

∮
g(z)

(z − x0) · · · (z − xn)
dz,
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with the contour enclosing the points xi. �

7.A. Divided differences

We recall the definition of and some basic results on divided differences.

Definition 7.17. Let f : R→ R and let x0, x1, . . . xn be distinct points
in R. The divided difference of order n is defined by the recursive relations

f [x0] = f(x0),

f [x0, x1, . . . xn] =
f [x1, . . . xn]− f [x0, x1, . . . xn−1]

xn − x0
.

On coinciding points we extend this definition as the usual derivative:

f [x0, . . . , x . . . , x . . . xn] := lim
u→0

f [x0, . . . , x+ u . . . , x . . . xn].

Finally, as a shorthand notation, for an index set I = {i1, . . . , in} we write

f [xI ] = f [xi1 , . . . , xin ].

Also note the following useful representation:

Proposition 7.18. For any x0, . . . , xn ∈ R,

f [x0, x1, . . . , xn] =

∫
∆n

f (n) (s0x0 + s1x1 + · · ·+ snxn) dns.

Proof. See Note 12 on Page 108. �

Exercise 7.1. Prove Proposition 7.18 and show that it implies
n∑
i=0

f [x0, . . . , xi, xi, . . . , xn] = f ′[x0, x1, . . . , xn].

Proposition 7.19. For any x1, . . . xn ∈ R for f(x) = g(x2) we have,

f [x0, · · · , xn] =
∑
I

 ∏
{i−1,i}⊂I

(xi + xi+1)

 g[x2
I ],

where the sum is over all ordered index sets I = {0 = i0 < i1 < . . . < ik = n}
such that ij− ij−1 ≤ 2 for all 1 ≤ j ≤ k (i.e. there are no gaps in I of length
greater than 1).

Proof. This follows from the chain rule for divided differences (see Note
13 on Page 108): if f = g ◦ φ, then

f [x0, . . . xn] =
n∑
k=1

∑
0=i0<i1<...<ik=n

g[φ(xi0), . . . , φ(xik)]
k−1∏
j=0

φ[xij , . . . , xij+1 ].

For φ(x) = x2 we have φ[x, y] = x + y, φ[x, y, z] = 1 and all higher divided
differences are zero. Thus, if ij+1 − ij > 2 then φ[xij , . . . , xij+1 ] = 0. In the
remaining cases one has

φ[xij , . . . , xij+1 ] =

{
xij + xij+1 if ij+1 − ij = 1
1 if ij+1 − ij = 2,

and in the above summation this selects precisely the index sets I. �
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Example 7.20. For the first few terms, we have

f [x0, x1] = (x0 + x1)g[x2
0, x

2
1],

f [x0, x1, x2] = (x0 + x1)(x1 + x2)g[x2
0, x

2
1, x

2
2] + g[x2

0, x
2
2],

f [x0, x1, x2, x3] = (x0 + x1)(x1 + x2)(x2 + x3)g[x2
0, x

2
1, x

2
2, x

2
3]

+ (x2 + x3)g[x2
0, x

2
2, x

2
3] + (x0 + x1)g[x2

0, x
2
1, x

2
3].

Notes

Section 7.1. Spectral action functional

1. The spectral action principle was introduced by Chamseddine and Connes in [49, 50].

2. Note that we have put two restrictions on the fermions in the fermionic action Sf of
Definition 7.3. The first is that we restrict ourselves to even vectors in H+, instead of
considering all vectors in H. The second restriction is that we do not consider the inner

product 〈Jψ̃′, Dωψ̃〉 for two independent vectors ψ and ψ′, but instead use the same vector
ψ on both sides of the inner product. Each of these restrictions reduces the number of
degrees of freedom in the fermionic action by a factor of 2, yielding a factor of 4 in total. It
is precisely this approach that solves the problem of fermion doubling pointed out in [138]
(see also the discussion in [65, Ch. 1, Sect. 16.3]). We shall discuss this in more detail in
Chapter 9 and Chapter 11, where we calculate the fermionic action for electrodynamics
and the Standard Model, respectively.

Section 7.2. Expansions of the spectral action

3. For a complete treatment of the Laplace–Stieltjes transform, see [196].

4. Lemma 7.6 appeared as [65, Lemma 1.144].

5. Corollary 7.8 is [65, Theorem 1.145]. An analysis of the term Tr |Dω|−z
∣∣
z=0

therein,

including a perturbative expansion in powers of ω has been obtained in [70].

6. Section 7.2.2 is based on [178].

7. The notation 〈X0, . . . , Xn〉t,n should not be confused with the zeta functions 〈X0, . . . , Xn〉z
introduced in Chapter 5. However, they are related through the formula

〈X0, . . . , Xn〉t,n =
(−1)p

2πi
Tr

∫
e−tλX0(λ−D2)−1X1 · · ·An(λ−D2)−1dλ.

Multiplying this expression by tz−1 and integrating over t eventually yields 〈X0, . . . , Xn〉z.
For details, we refer to [109, Appendix A].

8. For more details on Gâteaux derivatives, we refer to [105]. For instance, that the
Gâteaux derivative of a linear map F between Fréchet spaces is a linear map F ′(x)(·) for
any x ∈ X is shown in [105, Theorem 3.2.5].

9. The expansion in Equation 7.2.4 is asymptotic in the sense that the partial sums∑N
n=0

1
n!
S

(n)
b (0)(ω, . . . , ω) can be estimated to differ from Sb[ω] by O(‖ω‖N+1). This is

made precise in [178].

10. Theorem 7.14 was proved in [178]. A similar result was obtained in finite dimensions
in [106] and in a different setting in [171]. Corollary 7.16 was obtained at first order for
bounded operators [101].

11. There is a close connection between the spectral action, the Krein spectral shift
function [137, 128], as well as the spectral flow of Atiyah and Lusztig [9, 10, 11]. One
way to see this is from Theorem 7.11, where we can control the asymptotic expansion of
the spectral action using the remainder terms Rk. In [171] these terms are analyzed and
related to a spectral shift formula [137, 128] (see also the book [200] and the review [29],
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and references therein). In fact, under the assumption that f has compact support, the

first rest term Sb[ω]− S(0)
b (0) becomes

Tr f(D + ω)− Tr f(D) =

∫
R
f(x)d(TrED+ω(x))−

∫
R
f(x)d(TrED(x)),

where ED+ω and ED are the spectral projections of D + ω and D, respectively. After a
partial integration, we then obtain [171, Theorem 3.9]

(∗) Tr f(D + ω)− Tr f(D) =

∫
R
f ′(x)ξ(x)dx,

where
ξ(x) = Tr (ED+ω(x)− ED(x))

is the so-called spectral shift function. Moreover, it turns out that the higher-order rest
terms are related to higher-order spectral shift functions [126, 163].

Let us also briefly describe the intriguing connection between the spectral shift func-
tion and the local index formula of Chapter 5. In fact, [44] (using a result from [161,
Appendix B]) relates the index of PuP which appears in the odd local index formula (The-
orem 5.21) to the spectral flow sf({Dt}) of the family Dt = (1−t)D+tuDu∗ = D+tu[D,u∗]
for 0 ≤ t ≤ 1. Roughly speaking, the spectral flow of such a family of operators is given
by the net number of eigenvalues of Dt that pass through 0 in the positive direction when
t runs from 0 to 1. One then has

indexPuP = sf({Dt}t∈[0,1]).
The connection between spectral flow and the spectral shift function was first hinted at
in [154] and has been worked out in [16, 15]. Essentially, these latter papers build on
the observation that the spectral flow from D0 − x to D1 − x for any real number x is
equal to the spectral shift function ξ(x) defined above in terms of the spectral projections
of D0 and D1. Note that for a path connecting D and the unitarily equivalent operator
uDu∗ the spectral shift function is a constant. In fact, since D and uDu∗ have identical
spectrum, the left-hand side of (∗) vanishes. Integration by parts on the right-hand side
then ensures that ξ is constant (and in fact equal to the above index).

Eventually, a careful analysis of the spectral flow [46] (and [47] for the even case)
allows one to prove the local index formula in the much more general setting of semi-finite
spectral triples [44, 25, 43, 45].

Another encounter of spectral shift and spectral flow is in the computation of the
index of the operator d/dt + A(t) with A(t) a suitable family of perturbations (t ∈ R).
In fact, they were the operators studied by Atiyah, Patodi and Singer in [9, 10, 11].
The index of d/dt+A(t) can be expressed in terms of the spectral flow of A(t) under the
assumptions that A(±∞) is boundedly invertible, and that A(t) has discrete spectrum for
all t ∈ R. We refer to [96] for a careful historical account, and the extension of this result
to relatively trace class perturbations A(t).

12. Proposition 7.18 is due to Hermite [107].

13. The chain rule for divided differences is proved in [92]. For Cauchy’s formula for
divided differences, we refer to [78, Ch. I.1].
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CHAPTER 8

Almost-commutative manifolds and gauge theories

In this chapter we analyze the gauge theories corresponding (in the sense
of Chapter 6) to a special class of noncommutative manifolds, to wit almost-
commutative, or AC manifolds. We will see that this class leads to the usual
gauge theories in physics. After identifying the gauge group, the gauge
fields and the scalar fields, we compute the spectral action that yields the
Lagrangian of physical interest.

8.1. Gauge symmetries of AC manifolds

We consider almost-commutative manifolds M×F that are the products
of a Riemannian spin manifold M with a finite noncommutative space F .

As such, these are reminiscent of the original Kaluza–Klein theories
where one considers the product M × S1. The crucial difference is that
the space F is finite so that no extra dimensions appear, while it can have
non-trivial (noncommutative) structure.

Definition 8.1. Let M be a Riemannian spin manifold with canonical
triple (C∞(M), L2(S), DM ; JM , γM ), and let (AF , HF , DF ; JF , γF ) be a fi-
nite real spectral triple. The almost-commutative manifold M × F is given
by the real spectral triple:

M×F = (C∞(M,AF ), L2(S⊗(M×HF )), DM⊗1+γM⊗DF ; JM⊗JF , γM⊗γF ).

Recall the definition of the gauge group of a real spectral triple (cf.
Definition 6.4). In the case of AC manifolds, it is given by

G(M × F ) :=
{
uJuJ−1 : u ∈ C∞(M,U(AF ))

}
,

with J = JM⊗JF . Here we have identified U(C∞(M,AF )) = C∞(M,U(AF )).
For the Lie algebra of the gauge group we have

g(M × F ) :=
{
X + JXJ−1 : X ∈ C∞(M, u(AF ))

}
.

In the same way, we also obtain the groups G(M) and G(F ). For the
canonical triple on the spin manifold M , we have seen in Example 4.38 that
C∞(M)JM = C∞(M), which means that the group G(M) is just the trivial
group. For the finite space F , we obtain the local gauge group G(F ). Let
us have a closer look at the structure of this local gauge group. We define
two subsets of AF by

H(F ) := U
(
(AF )JF

)
,(8.1.1a)

h(F ) := u
(
(AF )JF

)
.(8.1.1b)

Note that the group H(F ) is the counterpart for the finite space F of the
group U(AJ) in Proposition 6.5, and h(F ) is its Lie algebra.
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Proposition 8.2. Let M be simply connected. Then the gauge group
G(M × F ) of an almost-commutative manifold is given by C∞(M,G(F )),
where G(F ) = U(AF )/H(F ) is the gauge group of the finite space. Conse-
quently, the gauge Lie algebra g(M × F ) is given by C∞(M, g(F )), where
g(F ) = u(AF )/h(F ).

Proof. This follows from Propositions 6.5 and 6.8, combined with the
fact that for the algebra A = C∞(M,AF ) we have U(A) ' C∞(M,U(AF )),
while U(AJ) = C∞(M,H(F )). The quotient of the latter two groups is
isomorphic to C∞(M,G(F )) if the following homomorphism

C∞(M,U(AF ))→ C∞(M,U(AF )/H(F ))

is surjective. This happens when M is simply connected, as in that case
there exists a global lift from U(AF )/H(F ) to U(AF ) (see Note 4 on Page
125). �

This is in concordance with the picture derived in Section 6.3, where
the gauge group acts fiberwise on a C∗-bundle. Namely, in the case of an
almost-commutative manifold we have a globally trivial C∗-bundle M ×AF
for which A are the (smooth) sections. Since G(M × F ) ' C∞(M,G(F )),
the gauge group is given by sections of the group bundle M ×G(F ), which
then naturally acts fiberwise on the C∗-bundle M ×AF .

Combined with the outer automorphisms on C∞(M), we arrive at the
full symmetry group of an almost-commutative manifold M × F as a semi-
direct product, where the ‘internal symmetries’ are given by the gauge group
G(M × F ). Furthermore, we also still have invariance under the group of
diffeomorphisms Diff(M), as in Example 6.2. There exists a group homo-
morphism θ : Diff(M)→ Aut

(
G(M × F )

)
given by

θ(φ)U := U ◦ φ−1,

for φ ∈ Diff(M) and U ∈ G(M × F ). Hence, we can describe the full
symmetry group by the semi-direct product

G(M × F ) o Diff(M).

8.1.1. Unimodularity. Suppose thatAF is a complex unital ∗-algebra,
conform Definition 2.1. This algebra has a unit 1, and by complex linearity
we see that C1 ⊂ (AF )JF . Restricting to unitary elements, we then find
that U(1) is a subgroup of H(F ). Because H(F ) is commutative, U(1) is
then automatically a normal subgroup of H(F ).

If, on the other hand, AF is a real algebra, we can only say that R1 ⊂
(AF )JF . Restricting to unitary (i.e. in this case orthogonal) elements, we
then only obtain the insight that {1,−1} is a normal subgroup of H(F ).

Proposition 8.3. If AF is a complex algebra, the gauge group is iso-
morphic to

G(F ) ' SU(AF )/SH(F ),
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where

SU(AF ) := {g ∈ U(AF ) | detHF g = 1},
SH(F ) := SU(AF ) ∩ H(F ).

In this case the gauge algebra is

g(F ) ' su(AF )/sh(F ),

with

su(AF ) := {X ∈ u(AF ) | TrHF X = 0},
sh(F ) := su(AF ) ∩ hF .

Proof. Elements of the quotient G(F ) = U(AF )/H(F ) are given by the
equivalence classes [u] for u ∈ U(AF ), subject to the equivalence relation
[u] = [uh] for all h ∈ H(F ). Similarly, the quotient SU(AF )/SH(F ) consists
of classes [v] for v ∈ SU(AF ), with the equivalence relation [v] = [vg] for
all g ∈ SH(F ). We first show that this quotient is well defined, i.e. that
SH(F ) is a normal subgroup of SU(AF ). For this we need to check that
vgv−1 ∈ SH(F ) for all v ∈ SU(AF ) and g ∈ SH(F ). We already know that
vgv−1 ∈ H(F ), because H(F ) is a normal subgroup of U(AF ). We then also
see that detHF (vgv−1) = detHF g = 1, so vgv−1 ∈ SH(F ), and the quotient
SU(AF )/SH(F ) is indeed well defined.

As to for the claimed isomorphism, consider the map ϕ : U(AF ) →
SU(AF )/SH(F ) given by

ϕ(u) = [λu
−1u],

where λu ∈ U(1) is an element in U(1) such that λu
N = detu, where N is

the dimension of the finite-dimensional Hilbert space HF .
Since U(1) is a subgroup of U(AF ) (because we assume AF to be a

complex algebra), we see that indeed λu
−1u ∈ SU(AF ). Let us also check

that ϕ does not depend on the choice of the N ’th root λu of detu we take.

Suppose λ′u is such that λ′u
N = detu. We then must have λu

−1λ′u ∈ µN ,
where µN is the multiplicative group of the N ’th roots of unity. Since
U(1) is a subgroup of H(F ), we see that µN is a subgroup of SH(F ), so

[λu
−1u] = [λ′u

−1u], and hence the image of ϕ is indeed independent of the
choice of λu.

Next, since SU(AF ) ⊂ U(AF ), the homomorphism ϕ is clearly surjective.
We determine its kernel:

kerϕ =
{
u ∈ U(AF ) : λ−1

u u ∈ H(F )
}
' {u ∈ U(AF ) : u ∈ H(F )} ≡ H(F ),

since λu ∈ H(F ). �

The significance of Proposition 8.3 is that in the case of a complex al-
gebra with a complex representation, equivalence classes of the quotient
G(F ) = U(AF )/H(F ) can always be represented (though not uniquely) by
elements of SU(AF ). In that sense, all elements g ∈ G(F ) naturally satisfy
the so-called unimodularity condition, i.e. they satisfy

detHF g = 1.
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In the case of an algebra with a real representation, this is not true and it is
natural to impose the unimodularity condition for such representations by
hand. We will see later in Chapter 11 how this works in the derivation of
the Standard Model from noncommutative geometry.

Example 8.4. Define the so-called Yang–Mills finite spectral triple
(cf. Example 3.14)

FYM = (MN (C),MN (C), D = 0; JF = (·)∗, γF = 1).

One easily checks that the commutative subalgebra (AF )JF is given by CIN .
The group H(F ) of unitary elements of this subalgebra is then equal to the
group U(1)IN . Note that in this case H(F ) is equal to the subgroup U(Z(AF ))
of U(N) that commutes with the algebra MN (C). We thus obtain that the
gauge group is given by the quotient G(FYM) = U(N)/U(1) =: PU(N),
which by Example 6.3 is equal to the group of inner automorphisms of
MN (C). As in Proposition 8.3, this group can also be written as SU(N)/µN ,
where the multiplicative group µN of N ’th roots of unity is the center of
SU(N). The Lie algebra g(FYM) consists of the traceless anti-hermitian
matrices, i.e. it is su(N).

The almost-commutative manifold M × FYM will be referred to as the
Yang–Mills manifold. By Proposition 8.2, in the simply connected case
the global gauge group G(M × FYM) is given by maps C∞(M,PU(N)), or,
equivalently, by the space of smooth sections of the trivial group bundle M ×
PU(N).

Exercise 8.1. In the context of the above example, check that indeed:

(1) the commutative subalgebra MN (C)JF ' CIN ,
(2) SH(F ) = µN , the multiplicative group of N ’th roots of unity.

Explain the difference with the case of MN (R).

8.2. Gauge fields and scalar fields

Let us apply the discussion in Section 6.2 on Morita self-equivalences to
the almost-commutative manifold M × F and see what the corresponding
gauge fields look like. For convenience, we restrict ourselves to simply con-
nected manifolds M of dimension dimM = 4 and F of even KO-dimension
so that ε′F = 1 in Table 3.1; this is sufficient for the physical applications
later on.

Thus, we determine Ω1
D(A) for almost-commutative manifolds, much as

in Exercise 4.7. The Dirac operator D = DM ⊗ 1 + γM ⊗DF consists of two
terms, and hence we can also split the inner fluctuation ω = a[D, b] into two
terms. The first term is given by

a[DM ⊗ 1, b] = −iγµ ⊗ a∂µb =: γµ ⊗Aµ,(8.2.1)

where Aµ := −ia∂µb ∈ iA must be hermitian.1 The second term yields

a[γM ⊗DF , b] = γM ⊗ a[DF , b] =: γM ⊗ φ,(8.2.2)

1Note that iA = A for complex algebras only.
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for hermitian φ := a[DF , b]. Thus, the inner fluctuations of an even almost-
commutative manifold M × F take the form

ω = γµ ⊗Aµ + γM ⊗ φ,(8.2.3)

for certain hermitian operators Aµ ∈ iA and φ ∈ Γ
(

End(V )
)
, where V is

the trivial vector bundle V = M ×HF .

The ‘fluctuated’ Dirac operator is given by Dω = D + ω + ε′JωJ−1 (cf.
Section 6.2.2 above), for which we calculate

γµ ⊗Aµ + ε′Jγµ ⊗AµJ−1 = γµ ⊗
(
Aµ − JFAµJ−1

F

)
=: γµ ⊗Bµ,(8.2.4)

which defines Bµ ∈ Γ
(

End(V )
)
, and where we have used that JMγ

µJ−1
M =

−γµ in dimension 4. Note that if ∇E denotes the twisted connection on the
tensor product bundle E := S ⊗ V , i.e.

∇Eµ = ∇Sµ ⊗ 1 + i1⊗Bµ,
we see that we can rewrite

DM ⊗ 1 + γµ ⊗Bµ = −iγµ∇Eµ .

For the remainder of the fluctuated Dirac operator, we define Φ ∈ Γ
(

End(E)
)

by

Φ := DF + φ+ JFφJ
−1
F .(8.2.5)

The fluctuated Dirac operator of a real even AC-manifold then takes the
form

Dω = DM ⊗ 1 + γµ ⊗Bµ + γM ⊗ Φ = −iγµ∇Eµ + γM ⊗ Φ.(8.2.6)

In Section 8.1 we obtained the local gauge group G(F ) with Lie algebra
g(F ). For consistency we should now check that the gauge field Aµ arising
from the inner fluctuation indeed corresponds to this same gauge group.

The requirement that Aµ is hermitian is equivalent to (iAµ)∗ = −iAµ.
Since Aµ is of the form −ia∂µb for a, b ∈ A (see (8.2.1)), we see that iAµ is
an element of the algebra A (also if A is only a real algebra). Thus we have
Aµ(x) ∈ i u(AF ).

The only way in which Aµ appears in Dω is through the action of Aµ −
JFAµJ

−1
F . If we take A′µ = Aµ − aµ for some aµ ∈ ih(F ) = i u

(
(AF )JF

)
(which commutes with JF ), we see that A′µ − JFA′µJ−1

F = Aµ − JFAµJ−1
F .

Therefore we may without any loss of generality assume that Aµ(x) is an
element of the quotient ig(F ) = i(u(AF )/h(F )

)
). Since g(F ) is the Lie

algebra of the gauge group G(F ), we have therefore confirmed that

Aµ ∈ C∞(M, ig(F ))(8.2.7)

is indeed a gauge field for the local gauge group G(F ). For the field Bµ
found in (8.2.6), we can also write

Bµ = ad(Aµ) := Aµ − JFAµJ−1
F .

So, we conclude that Bµ is given by the adjoint action of a gauge field Aµ
for the gauge group G(F ) with Lie algebra g(F ).

If the finite noncommutative space F has a grading γF , the field φ sat-
isfies φγF = −γFφ and the field Φ satisfies ΦγF = −γFΦ and ΦJF = JFΦ.
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These relations follow directly from the definitions of φ and Φ and the com-
mutation relations for DF according to Definition 3.1.

Using the cyclic property of the trace, it is easy to see that the traces of
the fields Bµ, φ and Φ over the finite-dimensional Hilbert space HF vanish
identically: for Bµ we find

TrHF
(
Bµ
)

= TrHF
(
Aµ − JFAµJ−1

F

)
= TrHF

(
Aµ −AµJ−1

F JF
)

= 0,

whereas for the field φ we find

TrHF
(
φ
)

= TrHF
(
a[DF , b]

)
= TrHF

(
[b, a]DF

)
.

Since the grading commutes with the elements in the algebra and anti-
commutes with the Dirac operator, it follows that this latter trace also
vanishes. It then automatically follows that Φ = DF + φ + JFφJ

−1
F is

traceless too.

Example 8.5. For the Yang–Mills manifold M×FYM of Example 8.4 the
inner fluctuations take the form ω = γµ ⊗ Aµ for some traceless hermitian

field Aµ = A∗µ ∈ C∞(M, isu(N)). Since JFAµJ
−1
F m = mAµ for m ∈

MN (C), we see that for the field Bµ = Aµ − JFAµJ−1
F we obtain the action

m 7→ Bµm = Aµm−mAµ = [Aµ,m] = (adAµ)m.

Thus Aµ is a PU(N) gauge field which acts on the fermions in L2(S) ⊗
MN (C) in the adjoint representation.

8.2.1. Gauge transformations. Recall from Section 6.2 that an ele-
ment U ∈ G(A,H; J) acts on the inner fluctuations as a gauge transforma-
tion. In fact, the rule Dω 7→ UDωU

∗ with U = uJuJ−1 can be implemented
by

u : ω 7→ ωu := uωu∗ + u[D,u∗],(8.2.8)

so that UDωU
∗ = Dωu . In physics, the resulting transformation on the

inner fluctuation ω 7→ ωu will be interpreted as a gauge transformation of
the gauge field.

Note that for an element U = uJuJ−1 in the gauge group G(M × F ),
there is an ambiguity in the corresponding transformation of ω. Namely, for
u ∈ U(A) and h ∈ U(AJ), we can also write U = uhJuhJ−1. Replacing u
with uh using (4.3.1) we then obtain

ωuh = uωu∗ + u[D,u∗] + h[D,h∗].

However, when considering the total inner fluctuation ωuh + JωuhJ−1, the
extra term h[D,h∗] cancels out:

h[D,h∗] + Jh[D,h∗]J−1 = h[D,h∗] + [D,h]h∗ = [D,hh∗] = 0.

Hence the transformation of Dω = D + ω + JωJ−1 is well defined.
For an AC-manifold M × F , by (8.2.3) we have ω = γµ ⊗ Aµ + γM ⊗ φ

and D = −iγµ∇Sµ⊗1+γM⊗DF , and, using [∇Sµ , u∗] = ∂µu
∗, we thus obtain

Aµ → uAµu
∗ − iu∂µu∗,

φ→ uφu∗ + u[DF , u
∗].(8.2.9)

The first equation is precisely the gauge transformation for a gauge field
Aµ ∈ C∞(M, ig(F )), as desired. However, the transformation property of
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the field φ is a bit surprising. In the Standard Model, the Higgs field is in
the defining representation of the gauge group. The transformation for φ
derived above, on the other hand, is in the adjoint representation. From
the framework of noncommutative geometry this is no surprise, since both
bosonic fields Aµ and φ are obtained from the inner fluctuations of the Dirac
operator, and are thereby expected to transform in a similar manner. Fortu-
nately, for particular choices of the finite space F , the adjoint transformation
property of φ reduces to that of the defining representation. The key exam-
ple of this will be discussed in Chapter 11, where we present the derivation
of the Standard Model from an almost-commutative manifold.

8.3. The heat expansion of the spectral action

In the remainder of this chapter we shall derive an explicit formula for
the bosonic Lagrangian of an almost-commutative manifold M × F from
the spectral action of Definition 7.1. We start by calculating a general-
ized Lichnerowicz formula for the square of the fluctuated Dirac operator.
Subsequently, we show how we can use this formula to obtain an asymp-
totic expansion of the spectral action in the form of (7.2.1). We explicitly
calculate the coefficients in this heat kernel expansion, allowing for a
derivation of the general form of the Lagrangian for an almost-commutative
manifold.

8.3.1. A generalized Lichnerowicz formula. Suppose we have a
vector bundle E → M . We say that a second-order differential operator H
is a generalized Laplacian if it is of the form H = ∆E − F , where ∆E is a
Laplacian in the sense of Definition 4.16 and F ∈ Γ(End(E)).

Our first task is to show that the fluctuated Dirac operator Dω on an
almost-commutative manifold squares to a generalized Laplacian, D2

ω =
∆E − F , and then determine F . Before we prove this, let us first have
a closer look at some explicit formulas for the fluctuated Dirac operator.
Recall from (8.2.6) that we can write

Dω = −iγµ∇Eµ + γM ⊗ Φ

for the connection ∇Eµ = ∇Sµ ⊗ 1 + 1 ⊗ (∂µ + iBµ) on E = S ⊗ V , and
the scalar field Φ ∈ Γ(End(E)). Let us evaluate the relations between the
connection, its curvature and their adjoint actions. We define the operator
Dµ as the adjoint action of the connection ∇Eµ , i.e. Dµ = ad

(
∇Eµ
)
. In other

words, we have

DµΦ = [∇Eµ ,Φ] = ∂µΦ + i[Bµ,Φ].(8.3.1)

We define the curvature Fµν of the gauge field Bµ as usual by

Fµν := ∂µBν − ∂νBµ + i[Bµ, Bν ].(8.3.2)
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Recall the curvature of the connection ∇E from (4.2.3). Since in local
coordinates we have [∂µ, ∂ν ] = 0, we find

ΩE
µν = ∇Eµ∇Eν −∇Eν ∇Eµ

= (∇Sµ ⊗ 1 + i1⊗Bµ)(∇Sν ⊗ 1 + i1⊗Bν)

− (∇Sν ⊗ 1 + i1⊗Bν)(∇Sµ ⊗ 1 + i1⊗Bµ)

= ΩS
µν ⊗ 1 + i1⊗ ∂µBν − i1⊗ ∂νBµ − 1⊗ [Bµ, Bν ].

Inserting (8.3.2), we obtain the formula

ΩE
µν =

[
∇Eµ ,∇Eν

]
= ΩS

µν ⊗ 1 + i1⊗ Fµν .(8.3.3)

Next, let us have a look at the commutator
[
Dµ, Dν

]
. Using the defini-

tion of Dµ and the Jacobi identity, we obtain

[Dµ, Dν ]Φ = ad
(
∇Eµ
)

ad
(
∇Eν
)
Φ− ad

(
∇Eν
)

ad
(
∇Eµ
)
Φ

=
[
∇Eµ , [∇Eν ,Φ]

]
−
[
∇Eν , [∇Eµ ,Φ]

]
=
[
[∇Eµ ,∇Eν ],Φ]

]
=
[
ΩE
µν ,Φ

]
= ad

(
ΩE
µν

)
Φ.

Since ΩS
µν commutes with Φ, we obtain the relation[

Dµ, Dν

]
= i ad

(
Fµν

)
.

Note that this relation simply reflects the fact that ad : g→ End(g) is a Lie
algebra homomorphism.

In local coordinates, the Laplacian is given by

∆E = −gµν
(
∇Eµ∇Eν − Γρµν∇Eρ

)
.

We can then calculate the explicit formula

∆E = −gµν
(
∇Eµ∇Eν − Γρµν∇Eρ

)
= ∆S ⊗ 1− gµν

(
i(∇Sµ ⊗ 1)(1⊗Bν) + i(1⊗Bµ)(∇Sν ⊗ 1)

− 1⊗BµBν − iΓρµν ⊗Bρ
)

= ∆S ⊗ 1− 2i(1⊗Bµ)(∇Sµ ⊗ 1)− igµν(1⊗ ∂µBν)

+ 1⊗BµBµ + igµνΓρµν ⊗Bρ.(8.3.4)

We are now ready to prove that the fluctuated Dirac operator Dω of an
almost-commutative manifold satisfies the following generalized Lichnerow-
icz formula or Weitzenböck formula. First, for the canonical Dirac operator
DM on a compact Riemannian spin manifold M , recall the Lichnerowicz
formula of Theorem 4.21:

(8.3.5) D2
M = ∆S +

1

4
s,

where ∆S is the Laplacian of the spin connection ∇S , and s is the scalar
curvature of M .

Proposition 8.6. The square of the fluctuated Dirac operator on an
almost-commutative manifold is a generalized Laplacian of the form

Dω
2 = ∆E − F,
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where the endomorphism F is given by

F = −1

4
s⊗ 1− 1⊗ Φ2 +

1

2
iγµγν ⊗ Fµν − iγMγµ ⊗DµΦ,(8.3.6)

in which Dµ and Fµν are defined in (8.3.1) and (8.3.2), respectively.

Proof. Rewriting the formula for Dω, we have

Dω
2 = (DM ⊗ 1 + γµ ⊗Bµ + γM ⊗ Φ)2

= D2
M ⊗ 1 + γµγν ⊗BµBν + 1⊗ Φ2 + (DMγ

µ ⊗ 1)(1⊗Bµ)

+ (1⊗Bµ)(γµDM ⊗ 1) + (DM ⊗ 1)(γM ⊗ Φ) + (γM ⊗ Φ)(DM ⊗ 1)

+ (γµ ⊗Bµ)(γM ⊗ Φ) + (γM ⊗ Φ)(γµ ⊗Bµ).

For the first term we use the Lichnerowicz formula of (8.3.5). We rewrite
the second term into

γµγν ⊗BµBν =
1

2
γµγν ⊗ (BµBν +BνBµ + [Bµ, Bν ])

= 1⊗BµBµ +
1

2
γµγν ⊗ [Bµ, Bν ],

where we have used the Clifford relation (4.2.2) to obtain the second equality.
For the fourth and fifth terms we use the local formula DM = −iγν∇Sν to
obtain

(DMγ
µ ⊗ 1)(1⊗Bµ) + (1⊗Bµ)(γµDM ⊗ 1)

= −(iγν∇Sν γµ ⊗ 1)(1⊗Bµ)− (1⊗Bµ)(γµiγν∇Sν ⊗ 1).

Using the identity [∇Sν , c(α)] = c(∇να) for the spin connection, we find
[∇Sν ⊗ 1, (γµ ⊗ 1)(1⊗Bµ)] = c

(
∇ν(dxµ ⊗Bµ)

)
. We thus obtain

(DMγ
µ ⊗ 1)(1⊗Bµ) + (1⊗Bµ)(γµDM ⊗ 1)

= −i(γν ⊗ 1)c
(
∇ν(dxµ ⊗Bµ)

)
− i(γνγµ ⊗ 1)(1⊗Bµ)(∇Sν ⊗ 1)− i(1⊗Bµ)(γµγν∇Sν ⊗ 1)

= −i(γν ⊗ 1)c
(
dxµ ⊗ (∂νBµ)− Γρµνdx

µ ⊗Bρ
)
− 2i(1⊗Bν)(∇Sν ⊗ 1)

= −i(γνγµ ⊗ 1)
(

1⊗ ∂νBµ − Γρµν ⊗Bρ
)
− 2i(1⊗Bν)(∇Sν ⊗ 1)

= −i(γνγµ ⊗ 1)(1⊗ ∂νBµ) + igµνΓρµν ⊗Bρ − 2i(1⊗Bν)(∇Sν ⊗ 1).

The sixth and seventh terms are rewritten into

(DM ⊗ 1)(γM ⊗ Φ) + (γM ⊗ Φ)(DM ⊗ 1) = −(γM ⊗ 1)
[
DM ⊗ 1, 1⊗ Φ

]
= (γM ⊗ 1)(iγµ ⊗ ∂µΦ) = iγMγ

µ ⊗ ∂µΦ.

The eighth and ninth terms are rewritten as

(γµ ⊗Bµ)(γM ⊗ Φ) + (γM ⊗ Φ)(γµ ⊗Bµ) = −γMγµ ⊗ [Bµ,Φ].

Summing all these terms then yields the formula

Dω
2 = (∆S +

1

4
s)⊗ 1 + (1⊗BµBµ) +

1

2
γµγν ⊗ [Bµ, Bν ]

+ 1⊗ Φ2 − i(γνγµ ⊗ 1)(1⊗ ∂νBµ) + igµνΓρµν ⊗Bρ
− 2i(1⊗Bν)(∇Sν ⊗ 1) + iγMγ

µ ⊗ ∂µΦ− γMγµ ⊗ [Bµ,Φ].
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Inserting the formula for ∆E from (8.3.4), we obtain

Dω
2 = ∆E +

1

4
s⊗ 1 +

1

2
γµγν ⊗ [Bµ, Bν ]

+ 1⊗ Φ2 − i(γνγµ ⊗ 1)(1⊗ ∂νBµ) + igµν(1⊗ ∂µBν)

+ iγMγ
µ ⊗ ∂µΦ− γMγµ ⊗ [Bµ,Φ].

Using (8.3.2), we rewrite

−i(γνγµ ⊗ 1)(1⊗ ∂νBµ) + igµν(1⊗ ∂µBν)

= −i(γνγµ ⊗ 1)(1⊗ ∂νBµ) +
1

2
i(γµγν + γνγµ)⊗ (∂µBν)

= −1

2
iγµγν ⊗ (∂µBν) +

1

2
iγνγµ ⊗ (∂µBν)

= −1

2
iγµγν ⊗ Fµν −

1

2
γµγν ⊗ [Bµ, Bν ].

Using (8.3.1), we finally obtain

Dω
2 = ∆E +

1

4
s⊗ 1 + 1⊗ Φ2 − 1

2
iγµγν ⊗ Fµν + iγMγ

µ ⊗DµΦ,

from which we can read off formula (8.3.6) for F . �

8.3.2. The heat expansion. Below, we present two important the-
orems (without proof) which we will need to calculate the spectral action
of almost-commutative manifolds. The first of these theorems states that
there exists a heat expansion for a generalized Laplacian. The second the-
orem gives explicit formulas for the first three non-zero coefficients of this
expansion. Next, we will show how these theorems can be applied to obtain
a perturbative expansion of the spectral action for an almost-commutative
manifold, just as in Proposition 7.7.

Theorem 8.7. For a generalized Laplacian H = ∆E − F on E we have
the following asymptotic expansion as t→ 0, known as the heat expansion:

(8.3.7) Tr
(
e−tH

)
∼
∑
k≥0

t
k−n
2 ak(H),

where n is the dimension of the manifold, the trace is taken over the Hilbert
space L2(E) and the coefficients of the expansion are given by

(8.3.8) ak(H) :=

∫
M
ak(x,H)

√
gd4x,

where
√
gd4x denotes the Riemannian volume form. The coefficients ak(x,H)

are called the Seeley-DeWitt coefficients.

Proof. See Note 6 on Page 126. �
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Theorem 8.8. For a generalized Laplacian H = ∆E−F (as in Theorem
8.7), the Seeley-DeWitt coefficients are given by

a0(x,H) = (4π)−
n
2 Tr(id),

a2(x,H) = (4π)−
n
2 Tr

(s
6

+ F
)
,

a4(x,H) = (4π)−
n
2

1

360
Tr
(
− 12∆s+ 5s2 − 2RµνR

µν + 2RµνρσR
µνρσ

+ 60sF + 180F 2 − 60∆F + 30ΩE
µν(ΩE)µν

)
,

where this time the traces are taken over the fibre Ex. Here s is the scalar
curvature of the Levi-Civita connection ∇, ∆ is the scalar Laplacian, and
ΩE is the curvature of the connection ∇E corresponding to ∆E. All ak(x,H)
with odd k vanish.

Proof. See Note 6 on Page 126. �

We saw in Proposition 8.6 that the square of the fluctuated Dirac opera-
tor of an almost-commutative manifold is a generalized Laplacian. Applying
Theorem 8.7 to Dω

2 in dimension n = 4 then yields the heat expansion:

(8.3.9) Tr
(
e−tDω

2
)
∼
∑
k≥0

t
k−4
2 ak(Dω

2),

where the Seeley-DeWitt coefficients are given by Theorem 8.8. In the fol-
lowing proposition, we use this heat expansion for Dω

2 to obtain an expan-
sion of the spectral action.

Proposition 8.9. For an almost-commutative manifold M × F with
M of dimension 4, the spectral action given by (7.1.1) can be expanded
asymptotically (as Λ→∞) as

Tr

(
f
(Dω

Λ

))
∼ a4(Dω

2)f(0)+2
∑

0≤k<4
k even

f4−kΛ
4−kak(Dω

2)
1

Γ
(

4−k
2

)+O(Λ−1),

where fj =
∫∞

0 f(v)vj−1dv are the moments of the function f , j > 0.

Proof. Our proof is based on Proposition 7.7. Let g be the function
g(u2) = f(u), so that its Laplace–Stieltjes transform

g(v) =

∫ ∞
0

e−svdµ(s).

We can then formally write

g(tDω
2) =

∫ ∞
0

e−stDω
2

dµ(s).

We now take the trace and use the heat expansion of Dω
2 to obtain

Tr
(
g(tDω

2)
)

=

∫ ∞
0

Tr
(
e−stDω

2)
dµ(s) ∼

∫ ∞
0

∑
k≥0

(st)
k−4
2 ak(Dω

2)dµ(s)

=
∑
k≥0

t
k−4
2 ak(Dω

2)

∫ ∞
0

s
k−4
2 dµ(s).(8.3.10)

NCG and Particle Physics, W.D. van Suijlekom



120
CHAPTER 8. ALMOST-COMMUTATIVE MANIFOLDS AND GAUGE

THEORIES

The parameter t is considered to be a formal expansion parameter. From
here on, we will drop the terms with k > 4. The term with k = 4 equals

a4(Dω
2)

∫ ∞
0

s0dµ(s) = a4(Dω
2)g(0).

We can rewrite the terms with k < 4 using the definition of the Γ-function
as the analytic continuation of

(8.3.11) Γ(z) =

∫ ∞
0

rz−1e−rdr,

for z ∈ C with <(z) > 0, and by inserting r = sv, we see that (for k < 4)
we have

Γ
(4− k

2

)
=

∫ ∞
0

(sv)
4−k
2
−1e−svd(sv) = s

4−k
2

∫ ∞
0

v
4−k
2
−1e−svdv.

From this, we obtain an expression for s
k−4
2 , which we insert into equation

(8.3.10), and then we perform the integration over s to obtain

Tr
(
g(tDω

2)
)
∼ a4(Dω

2)f(0)

+
∑

0≤k<4

t
k−4
2 ak(Dω

2)
1

Γ
(

4−k
2

) ∫ ∞
0

v
4−k
2
−1g(v)dv +O(Λ−1).

Now we choose the function g such that g(u2) = f(u). We rewrite the
integration over v by substituting v = u2 and obtain∫ ∞

0
v

4−k
2
−1g(v)dv =

∫ ∞
0

u4−k−2g(u2)d(u2) = 2

∫ ∞
0

u4−k−1f(u)du,

which by definition equals 2f4−k. Upon writing t = Λ−2, we have modulo
Λ−1,

Tr

(
f
(Dω

Λ

))
= Tr

(
g(Λ−2Dω

2)
)

∼ a4(Dω
2)f(0) + 2

∑
0≤k<4

f4−kΛ
4−kak(Dω

2)
1

Γ
(

4−k
2

) +O(Λ−1).

Using ak(Dω
2) = 0 for odd k, the claim follows. �

8.4. The spectral action on AC manifolds

In the previous section we obtained a perturbative expansion of the spec-
tral action for an almost-commutative manifold. We now explicitly calcu-
late the coefficients in this expansion, first for the canonical triple (yielding
the (Euclidean) Einstein–Hilbert action of General Relativity) for a four-
dimensional Riemannian spin manifold M and then for a general almost-
commutative manifold M × F .

By Proposition 8.9 we have an asymptotic expansion as Λ→∞:
(8.4.1)

Tr

(
f
(Dω

Λ

))
∼ 2f4Λ4a0(Dω

2) + 2f2Λ2a2(Dω
2) + f(0)a4(Dω

2) +O(Λ−1).
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Proposition 8.10. For the canonical triple (C∞(M), L2(S), DM ), the
spectral action is given by:

(8.4.2) Tr

(
f
(DM

Λ

))
∼
∫
M
LM (gµν)

√
gd4x+O(Λ−1),

where the Lagrangian is defined by

LM (gµν) :=
f4Λ4

2π2
− f2Λ2

24π2
s+

f(0)

16π2

( 1

30
∆s− 1

20
CµνρσC

µνρσ +
11

360
R∗R∗

)
.

Here the Weyl tensor Cµνρσ is given by the traceless part of the Riemann
curvature tensor, so that

CµνρσC
µνρσ = RµνρσR

µνρσ − 2RνσR
νσ +

1

3
s2,(8.4.3)

and R∗ is related to the Pontryagin class:

R∗R∗ = s2 − 4RµνR
µν +RµνρσR

µνρσ.(8.4.4)

Proof. We have n = 4, and Tr(id) = dimSx = 4 where Sx is the fiber
of S at some x ∈M . Inserting this into Theorem 8.8 gives

a0(D2
M ) =

1

4π2

∫
M

√
gd4x.

From the Lichnerowicz formula (8.3.5) we see that F = −1
4s id, so

a2(D2
M ) = − 1

48π2

∫
M
s
√
gd4x.

Moreover,

5s2id + 60sF + 180F 2 =
5

4
s2id.

Inserting this into a4(D2
M ) gives

a4(D2
M ) =

1

16π2

1

360

∫
M

Tr
(
3∆s id +

5

4
s2id− 2RµνR

µν id

+ 2RµνρσR
µνρσid + 30ΩS

µνΩSµν
)√
gd4x.

The curvature ΩS of the spin connection is defined as in (4.2.3), and its
components are ΩS

µν = ΩS(∂µ, ∂ν). The spin curvature ΩS is related to the
Riemannian curvature tensor by (see Note 7 on Page 126),

ΩS
µν =

1

4
Rµνρσγ

ργσ.(8.4.5)

We use this as well as the trace identity

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ)

to calculate the last term of a4(D2
M ):

Tr(ΩS
µνΩSµν) =

1

16
RµνρσR

µν
λκ Tr(γργσγλγκ)

=
1

4
RµνρσR

µν
λκ (gρσgλκ − gρλgσκ + gρκgσλ) = −1

2
RµνρσR

µνρσ,(8.4.6)
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where the first term in the second line vanishes because of the antisymmetry
of Rµνρσ in ρ and σ, and the other two terms contribute equally. We thus
obtain

a4(D2
M ) =

1

16π2

1

360

∫
M

(
12∆s+ 5s2 − 8RµνR

µν − 7RµνρσR
µνρσ

)√
gd4x.

(8.4.7)

We rewrite this into a more convenient form, using (8.4.3) and (8.4.4), which
together yield:

− 1

20
CµνρσC

µνρσ +
11

360
R∗R∗

= − 1

20
RµνρσR

µνρσ +
1

10
RνσR

νσ − 1

60
s2

+
11

360
RµνρσR

µνρσ − 44

360
RνσR

νσ +
11

360
s2

=
1

360

(
− 7RµνρσR

µνρσ − 8RνσR
νσ + 5s2

)
.

Therefore, we may rewrite (8.4.7) so as to obtain

a4(D2
M ) =

1

16π2

∫
M

( 1

30
∆s− 1

20
CµνρσC

µνρσ +
11

360
R∗R∗

)√
gd4x.

Inserting the obtained formulas for a0(D2
M ), a2(D2

M ) and a4(D2
M ) into (8.4.1)

proves the proposition. �

Remark 8.11. In general, an expression of the form

as2 + bRνσR
νσ + cRµνρσR

µνρσ,

for certain constants a, b, c ∈ R, can always be rewritten in the form αs2 +
βCµνρσC

µνρσ +γR∗R∗, for new constants α, β, γ ∈ R. One should note here
that the term s2 is not present in the spectral action of the canonical triple
as calculated in Proposition 8.10. The only higher-order gravitational term
that arises is the conformal gravity term CµνρσC

µνρσ.
Note that alternatively, using only (8.4.4), we could also have written

a4(D2
M ) =

1

16π2

1

30

∫
M

(
∆s+ s2 − 3RµνR

µν − 7

12
R∗R∗

)√
gd4x.

The integral over ∆s only yields a boundary term, so if the manifold M is
compact without boundary, we can discard the term with ∆s. Furthermore,
for a 4-dimensional compact orientable manifold M without boundary, we
have the formula ∫

M
R∗R∗

√
gdx = 8π2χ(M),

where χ(M) is Euler characteristic. Hence the term with R∗R∗ only yields
a topological contribution to the action, which we will also disregard. From
here on, we will therefore consider the Lagrangian

LM (gµν) =
f4Λ4

2π2
− f2Λ2

24π2
s− f(0)

320π2
CµνρσC

µνρσ,(8.4.8)
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or, which is the same,

LM (gµν) =
f4Λ4

2π2
− f2Λ2

24π2
s+

f(0)

480π2

(
s2 − 3RµνR

µν
)
.(8.4.9)

Proposition 8.12. The spectral action of the fluctuated Dirac operator
of an almost-commutative manifold with dimM = 4 is given by

Tr

(
f
(Dω

Λ

))
∼
∫
M
L(gµν , Bµ,Φ)

√
gd4x+O(Λ−1),

where

L(gµν , Bµ,Φ) := NLM (gµν) + LB(Bµ) + Lφ(gµν , Bµ,Φ).

Here LM (gµν) is defined in Proposition 8.10, N is the dimension of the
finite-dimensional Hilbert space HF , and LB gives the kinetic term of the
gauge field as

LB(Bµ) :=
f(0)

24π2
Tr(FµνF

µν),

and Lφ gives a scalar-field Lagrangian including its interactions plus a bound-
ary term as

(8.4.10)

Lφ(gµν , Bµ,Φ) := −2f2Λ2

4π2
Tr(Φ2) +

f(0)

8π2
Tr(Φ4) +

f(0)

24π2
∆
(

Tr(Φ2)
)

+
f(0)

48π2
sTr(Φ2) +

f(0)

8π2
Tr
(
(DµΦ)(DµΦ)

)
.

Proof. The proof is very similar to Proposition 8.10, but we now use
the formula for Dω

2 given by Proposition 8.6. The trace over the Hilbert
space HF yields an overall factor N := Tr(1HF ), so we have

a0(Dω
2) = Na0(D2

M ).

The square of the Dirac operator now contains three extra terms. The trace
of γMγ

µ vanishes, which follows from cyclicity of the trace and the fact that
γMγ

µ = −γµγM . Since Tr(γµγν) = 4gµν and Fµν is anti-symmetric, the
trace of γµγνFµν also vanishes. Thus we find that

a2(Dω
2) = Na2(D2

M )− 1

4π2

∫
M

Tr(Φ2)
√
gd4x.

Furthermore we obtain several new terms from the formula for a4(Dω
2).

First, we calculate

1

360
Tr(60sF ) = −1

6
s
(
Ns+ 4 Tr(Φ2)

)
.

The next contribution arises from the trace over F 2, which equals

F 2 =
1

16
s2 ⊗ 1 + 1⊗ Φ4 − 1

4
γµγνγργσ ⊗ FµνFρσ

+ γµγν ⊗ (DµΦ)(DνΦ) +
1

2
s⊗ Φ2 + traceless terms.
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Taking the trace then yields

1

360
Tr(180F 2) =

N

8
s2 + 2 Tr(Φ4) + Tr(FµνF

µν)

+ 2 Tr
(
(DµΦ)(DµΦ)

)
+ sTr(Φ2).

Another contribution arises from −∆F . Again, we can simply ignore the
traceless terms and obtain

1

360
Tr(−60∆F ) =

1

6
∆
(
Ns+ 4 Tr(Φ2)

)
.

The final contribution comes from the term ΩE
µνΩEµν , where the curvature

ΩE is given by (8.3.3); we obtain

ΩE
µνΩEµν = ΩS

µνΩSµν ⊗ 1− 1⊗ FµνFµν + 2iΩS
µν ⊗ Fµν .

Using (8.4.5), by the anti-symmetry of Rρσµν we find

Tr(ΩS
µν) =

1

4
Rρσµν Tr(γργσ) =

1

4
Rρσµνg

ρσ = 0,

so the trace over the cross-terms in ΩE
µνΩEµν vanishes. From (8.4.6) we then

obtain

1

360
Tr(30ΩE

µνΩEµν) =
1

12

(
−N

2
RµνρσR

µνρσ − 4 Tr(FµνF
µν)

)
.

Gathering all terms, we obtain

a4(x,Dω
2) =

1

(4π)2

1

360

(
− 48N∆s+ 20Ns2 − 8NRµνR

µν

+ 8NRµνρσR
µνρσ − 60s

(
Ns+ 4 Tr(Φ2)

)
+ 360

(
N

8
s2 + 2 Tr(Φ4) + Tr(FµνF

µν)

+ 2 Tr
(
(DµΦ)(DµΦ)

)
+ sTr(Φ2)

)
+ 60∆

(
Ns+ 4 Tr(Φ2)

)
− 30

(
N

2
RµνρσR

µνρσ + 4 Tr(FµνF
µν)

))

=
1

(4π)2

1

360

(
12N∆s+ 5Ns2 − 8NRµνR

µν

− 7NRµνρσR
µνρσ + 120sTr(Φ2)

+ 360

(
2 Tr(Φ4) + 2 Tr

(
(DµΦ)(DµΦ)

))
+ 240∆

(
Tr(Φ2)

)
+ 240 Tr(FµνF

µν)

)
.
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Comparing the first line of the second equality to (8.4.7), we see that

a4(x,Dω
2) = Na4(x,D2

M ) +
1

4π2

(
1

12
sTr(Φ2) +

1

2
Tr(Φ4)

+
1

2
Tr
(
(DµΦ)(DµΦ)

)
+

1

6
∆
(
Tr(Φ2)

)
+

1

6
Tr(FµνF

µν)

)
.

Inserting these Seeley-DeWitt coefficients into (8.4.1) proves the proposition.
�

Note that the above Lagrangian is indeed gauge invariant. This is of
course a consequence of the manifest gauge invariance of the spectral action,
which follows from the invariance of the spectrum under unitary transfor-
mations.

Example 8.13. Let us return to the Yang–Mills manifold M × FYM of
Examples 8.4 and 8.5. We have already seen that the inner fluctuations
are parametrized by a PU(N) gauge field Aµ, which acts in the adjoint
representation Bµ = adAµ on the fermions. There is no scalar field φ and
Φ = DF = 0. We can insert these fields into the result of Proposition 8.12.
The dimension of the Hilbert space HF = MN (C) is N2. We then find that
the Lagrangian of the Yang–Mills manifold is given by

L(gµν , Bµ) := N2LM (gµν) +
f(0)

24π2
LYM(Bµ).

Here LYM is the Yang–Mills Lagrangian given by

LYM(Bµ) := Tr(FµνF
µν),

where Fµν denotes the curvature of Bµ.

Notes

Section 8.1. Gauge symmetries of AC manifolds

1. Kaluza–Klein theories date back to [119, 125].

2. The name almost-commutative manifolds was coined in [114], suggesting that the non-
commutativity is mild since it is simply given by the matrix product in AF , pointwise on
M . Almost-commutative manifolds essentially already appeared in [59], and somewhat
later in the work of Connes and Lott [71]. Around the same time, a similar structure
appeared in a series of papers by Dubois-Violette, Kerner and Madore [79, 80, 81, 82],
who studied the noncommutative differential geometry for the algebra of functions ten-
sored with a matrix algebra, and its relevance to the description of gauge and scalar
Higgs fields. Almost-commutative manifolds were later used by Chamseddine and Connes
[49, 50], and by Chamseddine, Connes and Marcolli in [54] to geometrically describe
Yang–Mills theories and the Standard Model of elementary particles, as we will see in the
next chapters. We here base our treatment on [186].

3. We can regard C∞(M,AF ) as the space of smooth sections of a globally trivial ∗-algebra
bundle M×AF . The natural question whether the above definition can be extended to the
topologically non-trivial case is addressed in [40, 41, 34]. The special case of topologically
non-trivial Yang–Mills theories is treated in [35] and in the next Chapter.

4. In the proof of Proposition 8.2 we have exploited a lift of group bundles, which exists if
the manifold is simply connected. We refer to [34] for a careful discussion on this point.

Section 8.3. The heat expansion of the spectral action
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5. For more details on generalized Laplacians we refer to [27, Sect. 2.1].

6. Theorem 8.7 is proved by Gilkey in [100, Sect. 1.7]. Theorem 8.8 can be found as [100,
Theorem 4.8.16]. For a more physicist-friendly approach, we refer to [191]. Note that the
conventions used by Gilkey for the Riemannian curvature R are such that gµρgνσRµνρσ
is negative for a sphere, in contrast to our own conventions. Therefore we have replaced
s = −R.

7. The relation (8.4.5) is derived in [103, p.395].

8. The derivation of Yang–Mills gauge theory from a noncommutative spin manifold as
in Example 8.13 is due to Chamseddine and Connes in [49, 50].
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CHAPTER 9

The noncommutative geometry of electrodynamics

In the previous chapters we have described the general framework for
the description of gauge theories in terms of noncommutative manifolds.
The present chapter serves two purposes. First, we describe abelian gauge
theories within the framework of noncommutative geometry, which at first
sight appears to be a contradictio in terminis. Second, in Section 9.2 we
show how this example can be modified to provide a description of one of
the simplest examples of a field theory in physics, namely electrodynamics.
Because of its simplicity, it helps in gaining an understanding of the formu-
lation of gauge theories in terms of almost-commutative manifolds, and as
such it provides a first stepping stone towards the derivation of the Standard
Model from noncommutative geometry in Chapter 11.

9.1. The two-point space

In this section we discuss one of the simplest finite noncommutative
spaces, namely the two-point space X = {x, y}. Recall from Chapters 2 and
3 that such a space can be described by an even finite real spectral triple:

FX :=
(
C(X) = C2, HF , DF ; JF , γF

)
.(9.1.1)

As we require the action of C(X) on the finite-dimensional Hilbert space
HF to be faithful, HF must at least be 2-dimensional. For now we restrict
ourselves to the simplest case, taking HF = C2. We use the Z2-grading γF
to decompose HF = H+

F ⊕H
−
F = C⊕C into the two eigenspaces H±F = {ψ ∈

HF | γFψ = ±ψ}. The action of C(X) on HF respects this decomposition,
whereas DF interchanges the two subspaces H±F , say

DF =

(
0 t
t 0

)
,

for some t ∈ C.

Proposition 9.1. The finite space FX of (9.1.1) can only have a real
structure JF if DF = 0. In that case, its KO-dimension is 0,2 or 6.

Proof. The diagonal representation of the algebra C⊕C on C⊕C gives
rise to one of the following two Krajewski diagrams (cf. Example 3.13):

1 1
1◦

1◦

1 1
1◦

1◦

As a Dirac operator DF that fulfills the first-order condition 3.1.1 (for ar-
bitrary JF ) should connect nodes either vertically or horizontally, we find
that DF = 0.
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The diagram on the left corresponds to KO-dimension 2 and 6, while the
diagram on the right corresponds to KO-dimension 0 and 4. KO-dimension 4
is ruled out because of Lemma 3.8, combined with the fact that dimH±F = 1,
which does not allow for a JF with J2

F = −1. �

9.1.1. The product space. Let M be a compact 4-dimensional Rie-
mannian spin manifold. We now consider the almost-commutative manifold
M×FX given by the product of M with the even finite space FX correspond-
ing to the two-point space (9.1.1). Thus we consider the almost-commutative
manifold given by the data

M × FX :=
(
C∞(M,C2), L2(S)⊗ C2, DM ⊗ 1; JM ⊗ JF , γM ⊗ γF

)
,

where we still need to make a choice for JF . The algebra of this almost-
commutative manifold is given by C∞(M,C2) ' C∞(M) ⊕ C∞(M). By
Gelfand duality (Theorem 4.28) this algebra corresponds to the space

N := M ×X 'M tM,

which consists of the disjoint union of two copies of the space M , so we
can write C∞(N) = C∞(M) ⊕ C∞(M). We can also decompose the total
Hilbert space as H = L2(S)⊕ L2(S). For a, b ∈ C∞(M) and ψ, φ ∈ L2(S),
an element (a, b) ∈ C∞(N) then simply acts on (ψ, φ) ∈ H as (a, b)(ψ, φ) =
(aψ, bφ).

Remark 9.2. Let us consider Connes’ distance formula (cf. Note 12 on
Page 60) on M × FX. First, as in (2.2.2), on the structure space X of AF
we may write a metric by:

dDF (x, y) = sup {|a(x)− a(y)| : a ∈ AF , ‖[DF , a]‖ ≤ 1} .
Note that now we only have two distinct points x and y in the space X,
and we are going calculate the distance between these points. An element
a ∈ C2 = C(X) is specified by two complex numbers a(x) and a(y), so a
small computation of the commutator with DF gives

[DF , a] =
(
a(y)− a(x)

)( 0 t
−t 0

)
.

The norm of this commutator is given by |a(y)− a(x)| |t|, so ‖[DF , a]‖ ≤ 1
implies |a(y)−a(x)| ≤ 1

|t| . We therefore obtain that the distance between the

two points x and y is given by

dDF (x, y) =
1

|t|
.

If there is a real structure JF , we have t = 0 by Proposition 9.1, so in that
case the distance between the two points becomes infinite.

Let p be a point in M , and write (p, x) and (p, y) for the two correspond-
ing points in N = M×X. A function a ∈ C∞(N) is then determined by two
functions ax, ay ∈ C∞(M), given by ax(p) := a(p, x) and ay(p) := a(p, y).
Now the distance function on N is given by

dDM⊗1(n1, n2) = sup {|a(n1)− a(n2)| : a ∈ A, ‖[DM ⊗ 1, a]‖ ≤ 1} .
If n1 and n2 are points in the same copy of M , for instance, if n1 = (p, x) and
n2 = (q, x) for points p, q ∈M , then their distance is determined by |ax(p)−
NCG and Particle Physics, W.D. van Suijlekom
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ax(q)|, for functions ax ∈ C∞(M) for which ‖[DM , ax]‖ ≤ 1. Therefore, in
this case we recover the geodesic distance on M , i.e.

dDM⊗1(n1, n2) = dg(p, q).

However, if n1 and n2 lie in different copies of M , for instance if, n1 =
(p, x) and n2 = (q, y), then their distance is determined by |ax(p)−ay(q)| for
two functions ax, ay ∈ C∞(M), such that ‖[DM , ax]‖ ≤ 1 and ‖[DM , ay]‖ ≤
1. However, these requirements yield no restriction on |ax(p)− ay(q)|, so in
this case the distance between n1 and n2 is infinite. We find that the space
N is given by two disjoint copies of M that are separated by an infinite
distance.

It should be noted that the only way in which the distance between the two
copies of M could have been finite, is when the commutator [DF , a] would
be nonzero. This same commutator generates the scalar field φ of (8.2.2),
hence finiteness of the distance is related to the existence of scalar fields.

9.1.2. U(1) gauge theory. We determine the gauge theory that cor-
responds to the almost-commutative manifold M × FX . The gauge group
G(A,H; J) from Definition 6.4 is given by the quotient U(A)/U(AJ), so if
we wish to obtain a nontrivial gauge group, we need to choose J such that
U(AJ) 6= U(A). Or, which in view of Example 4.38 is the same, we need
to choose JF so that U((AF )JF ) 6= U(AF ). Looking at the form of JF for
the different (even) KO-dimensions (see the proof of Proposition 9.1), we
conclude that we need KO-dimension 2 or 6. As we will see in the non-
commutative description of the Standard Model in Chapter 11, the correct
signature for the internal space is KO-dimension 6. Therefore, we choose to
work in KO-dimension 6 as well. The almost-commutative manifold M×FX
then has KO-dimension 6 + 4 mod 8 = 2. This also means that we can use
Definition 7.3 to calculate the fermionic action.

Summarizing, we will consider the finite space FX given by the data

FX :=

(
C2,C2, DF =

(
0 0
0 0

)
; JF =

(
0 C
C 0

)
, γF =

(
1 0
0 −1

))
,

with C denoting complex conjugation, defining a real even finite space of
KO-dimension 6. In the classification of irreducible geometries of Theorem
3.20, this space corresponds to the first case.

Proposition 9.3. The gauge group G(F ) of the two-point space is given
by U(1).

Proof. First, note that U(AF ) = U(1) × U(1). We now show that
U((AF )JF ) ≡ U(AF )∩ (AF )JF ' U(1) so that the quotient G(F ) ' U(1) as
claimed. Indeed, for a ∈ C2 to be in (AF )JF it has to satisfy JFa

∗JF = a.
Since

JFa
∗J−1
F =

(
0 C
C 0

)(
a1 0
0 a2

)(
0 C
C 0

)
=

(
a2 0
0 a1

)
,

this is the case if and only if a1 = a2. Thus, (AF )JF ' C, whose unitary
elements form the group U(1), contained in U(AF ) as the diagonal subgroup.

�
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In Proposition 8.12 we calculated the spectral action of an almost-
commutative manifold. Before we can apply this to the two-point space,
we need to find the exact form of the field Bµ. Since we have (AF )JF ' C,
we find h(F ) = u

(
(AF )JF

)
' iR. From Proposition 8.3 and (8.2.7) we then

see that the gauge field

Aµ(x) ∈ igF = i
(
u(AF )/(iR)

)
= i su(AF ) ' R

becomes traceless.
Let us also explicitly derive this U(1) gauge field. An arbitrary hermitian

field of the form Aµ = −ia∂µb would be given by two U(1) gauge fields
X1
µ, X

2
µ ∈ C∞(M,R). However, because Aµ only appears in the combination

Aµ − JFAµJ−1
F , we obtain

Bµ = Aµ − JFAµJ−1
F =

(
X1
µ 0

0 X2
µ

)
−
(
X2
µ 0

0 X1
µ

)
=:

(
Yµ 0
0 −Yµ

)
= Yµ ⊗ γF ,

where we have defined the U(1) gauge field

Yµ := X1
µ −X2

µ ∈ C∞(M,R) = C∞(M, i u(1)).

Thus, the fact that we only have the combination Aµ−JFAµJ−1
F effectively

identifies the U(1) gauge fields on the two copies of M , so that Aµ is de-
termined by only one U(1) gauge field. This ensures that we can take the
quotient of the Lie algebra u(AF ) with h(F ). We can then write

Aµ =
1

2

(
Yµ 0
0 −Yµ

)
=

1

2
Yµ ⊗ γF ,

which yields the same result:

Bµ = Aµ − JFAµJ−1
F = 2Aµ = Yµ ⊗ γF .(9.1.2)

We summarize:

Proposition 9.4. The inner fluctuations of the almost-commutative
manifold M × FX described above are parametrized by a U(1)-gauge field
Yµ as

D 7→ D′ = D + γµYµ ⊗ γF .
The action of the gauge group G(M × FX) ' C∞(M,U(1)) on D′, as in
(8.2.8), is implemented by

Yµ 7→ Yµ − iu∂µu∗; (u ∈ G(M × FX)).

9.2. Electrodynamics

Inspired by the previous section, which shows that one can use the frame-
work of noncommutative geometry to describe a gauge theory with abelian
gauge group U(1), we proceed and try to describe the full theory of elec-
trodynamics by an almost-commutative manifold. Our approach provides a
unified description of gravity and electromagnetism, albeit at the classical
level.

We have seen that the almost-commutative manifold M × FX describes
a gauge theory with local gauge group U(1), where the inner fluctuations
of the Dirac operator provide the U(1) gauge field Yµ. There appear to be
two problems if one wishes to use this model for a description of (classical)
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electrodynamics. First, by Proposition 9.1, the finite Dirac operator DF

must vanish. However, we want our electrons to be massive, and for this
purpose we need a finite Dirac operator that is non-zero.

Second, the Euclidean action for a free Dirac field is of the form

S = −
∫
iψ(γµ∂µ −m)ψd4x,(9.2.1)

where the fields ψ and ψ must be considered independent variables. Thus,
we require that the fermionic action Sf should also yield two independent
Dirac spinors. Let us write {e, e} for the set of orthonormal basis vectors of
HF , where e is the basis element of H+

F and e of H−F . Note that on this basis,
we have JF e = e, JF e = e, γF e = e and γF e = −e. The total Hilbert space
H is given by L2(S) ⊗ HF . Since by means of γM we can also decompose
L2(S) = L2(S)+ ⊕ L2(S)−, we obtain that the positive eigenspace H+ of
γ = γM ⊗ γF is given by

H+ = L2(S)+ ⊗H+
F ⊕ L

2(S)− ⊗H−F .

Consequently, an arbitrary vector ξ ∈ H+ can uniquely be written as

ξ = ψL ⊗ e+ ψR ⊗ e,

for two Weyl spinors ψL ∈ L2(S)+ and ψR ∈ L2(S)−. One should note here
that ξ is completely determined by only one Dirac spinor ψ := ψL + ψR,
instead of the required two independent spinors. Thus, the restrictions that
are incorporated into the fermionic action of Definition 7.3 in fact constrain
the finite space FX too much.

9.2.1. The finite space. It turns out that both problems sketched
above can be simply solved by doubling our finite-dimensional Hilbert space.
Essentially, we introduce multiplicities in the Krajewski diagram that ap-
peared in the proof of Proposition 9.1.

Thus, we start with the same algebra C∞(M,C2) that corresponds to
the space N = M ×X 'M tM . The finite-dimensional Hilbert space will
now be used to describe four particles, namely both the left-handed and
the right-handed electrons and positrons. We choose the orthonormal basis
{eR, eL, eR, eL} for HF = C4, with respect to the standard inner product.
The subscript L denotes left-handed particles, and the subscript R denotes
right-handed particles, and we have γF eL = eL and γF eR = −eR.

We choose JF such that it interchanges particles with their antiparticles,
so JF eR = eR and JF eL = eL. We again choose the real structure such that
it has KO-dimension 6, so we have J2

F = 1 and JFγF = −γFJF . This
last relation implies that the element eR is left-handed, whereas eL is right-
handed.

The grading γF decomposes the Hilbert space HF into H+
F ⊕H

−
F , where

the bases of H+
F and H−F are given by {eL, eR} and {eR, eL}, respectively.

Alternatively, we can decompose the Hilbert space into He ⊕He, where He

contains the electrons {eR, eL}, and He contains the positrons {eR, eL}.
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The elements a ∈ AF = C2 now act as the following matrix with respect
to the basis {eR, eL, eR, eL}:

a =

(
a1

a2

)
→


a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2

 .(9.2.2)

Note that this action commutes with the grading, as it should. We can also
easily check that [a, b0] = 0 for b0 := JF b

∗J−1
F , since both the left and the

right action are given by diagonal matrices. For now, we still take DF = 0,
and hence the order one condition is trivially satisfied. We have therefore
obtained the following result:

Proposition 9.5. The data(
C2,C2, DF =

(
0 0
0 0

)
; JF =

(
0 C
C 0

)
, γF =

(
1 0
0 −1

))
define a real even spectral triple of KO-dimension 6.

This can be summarized by the following Krajewski diagram, with two
nodes (of opposite grading) of multiplicity two:

1 1
1◦

1◦

9.2.2. A non-trivial finite Dirac operator. Let us now consider the
possibilities for adding a non-zero Dirac operator to the finite space FED.
From the above Krajewski diagram, it can be easily seen that the only
possible edges exist between the multiple vertices. That is, the only possible
Dirac operator depends on one complex parameter and is given by

DF =


0 d 0 0

d 0 0 0

0 0 0 d
0 0 d 0

 .(9.2.3)

From here on, we will consider the finite space FED given by

FED := (C2,C4, DF ; JF , γF ).

9.2.3. The almost-commutative manifold. Taking the product with
the canonical triple, the almost-commutative manifold M × FED (of KO-
dimension 2) under consideration is given by the spectral triple

(9.2.4) M × FED :=(
C∞(M,C2), L2(S)⊗ C4, DM ⊗ 1 + γM ⊗DF ; JM ⊗ JF , γM ⊗ γF

)
.

As in Section 9.1, the algebra decomposes as

C∞(M,C2) = C∞(M)⊕ C∞(M),

and we now decompose the Hilbert space as

H = (L2(S)⊗He)⊕ (L2(S)⊗He).
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The action of the algebra on H, given by (9.2.2), is then such that one
component of the algebra acts on the electron fields L2(S) ⊗ He, and the
other component acts on the positron fields L2(S)⊗He.

The derivation of the gauge group for FED is exactly the same as in
Proposition 9.3, so again we have the finite gauge group G(F ) ' U(1). The
field Bµ := Aµ − JFAµJ−1

F now takes the form

Bµ =


Yµ 0 0 0
0 Yµ 0 0
0 0 −Yµ 0
0 0 0 −Yµ

 for Yµ(x) ∈ R.(9.2.5)

Thus, we again obtain a single U(1) gauge field Yµ, carrying an action of
the gauge group G(M × FED) ' C∞(M,U(1)) (as in Proposition 9.4).

As mentioned before, our space N consists of two copies of M and if
DF = 0 the distance between these two copies is infinite (see Remark 9.2).
This time we have introduced a non-zero Dirac operator, but it commutes
with the algebra, i.e. [DF , a] = 0 for all a ∈ A. Therefore, the distance
between the two copies of M is still infinite.

To summarize, the U(1) gauge theory arises from the geometric space
N = M t M as follows. On one copy of M , we have the vector bundle
S⊗(M×He), and on the other copy we have the vector bundle S⊗(M×He).
The gauge fields on each copy of M are identified with each other. The
electrons e and positrons e are then both coupled to the same gauge field,
and as such the gauge field provides an interaction between electrons and
positrons. For comparison with Kaluza–Klein theories, note the different
role that is played by the internal space.

9.2.4. The spectral action. We are now ready to explicitly calcu-
late the Lagrangian that corresponds to the almost-commutative manifold
M × FED, and we will show that this yields the usual Lagrangian for elec-
trodynamics (on a curved background manifold), as well as a purely grav-
itational Lagrangian. It consists of the spectral action Sb of Definition 7.1
and the fermionic action Sf of Definition 7.3, which we calculate separately
(here and in the next section).

The spectral action for an almost-commutative manifold has been cal-
culated in Proposition 8.12, and we only need to insert the fields Bµ (given
by (9.2.5)) and Φ = DF . We obtain the following result:

Proposition 9.6. The spectral action of the almost-commutative man-
ifold M × FED defined in (9.2.4) is given by

Tr

(
f
(Dω

Λ

))
∼
∫
M
L(gµν , Yµ)

√
gd4x+O(Λ−1),

with Lagrangian

L(gµν , Yµ) := 4LM (gµν) + LY (Yµ) + Lφ(gµν , d).

Here LM (gµν) is defined in Proposition 8.10; the term LY gives the kinetic
term of the U(1) gauge field Yµ as

LY (Yµ) :=
f(0)

6π2
YµνY

µν ,
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where the curvature Yµν of the field Yµ is given by

Yµν := ∂µYν − ∂νYµ.
The scalar potential Lφ (ignoring the boundary term) gives two constant
terms which add to the cosmological constant, plus an extra contribution to
the Einstein–Hilbert action:

Lφ(gµν) := −2f2Λ2

π2
|d|2 +

f(0)

2π2
|d|4 +

f(0)

12π2
s|d|2,

where the constant d originates from (9.2.3).

Proof. The trace over the Hilbert space C4 yields an overall factor
N = 4. The field Bµ is given by (9.2.5), and we obtain Tr(FµνF

µν) =
4YµνY

µν . Inserting this into Proposition 8.12 provides the Lagrangian LY .
In addition, we have Φ2 = DF

2 = |d|2, and the scalar-field Lagrangian Lφ
only yields extra numerical contributions to the cosmological constant and
the Einstein–Hilbert action. �

9.2.5. The fermionic action. We have written the set of basis vectors
of HF as {eR, eL, eR, eL}, and the subspaces H+

F and H−F are spanned by
{eL, eR} and {eR, eL}, respectively. The total Hilbert space H is given by
L2(S)⊗HF . Since we can also decompose

L2(S) = L2(S)+ ⊕ L2(S)−

by means of γM , we obtain for the +1-eigenspace of γM ⊗ γF :

H+ = L2(S)+ ⊗H+
F ⊕ L

2(S)− ⊗H−F .

A spinor ψ ∈ L2(S) can be decomposed as ψ = ψL + ψR. Each subspace
H±F is now spanned by two basis vectors. A generic element of the tensor
product of two spaces consists of sums of tensor products, so an arbitrary
vector ξ ∈ H+ can be uniquely written as

ξ = χR ⊗ eR + χL ⊗ eL + ψL ⊗ eR + ψR ⊗ eL,(9.2.6)

for Weyl spinors χL, ψL ∈ L2(S)+ and χR, ψR ∈ L2(S)−. Note that this
vector ξ ∈ H+ is now completely determined by two Dirac spinors χ :=
χL + χR and ψ := ψL + ψR.

Proposition 9.7. The fermionic action of the almost-commutative man-
ifold M × FED defined in (9.2.4), is given by

Sf = −i
(
JM χ̃, γ

µ(∇Sµ − iYµ)ψ̃
)

+ (JM χ̃L, dψ̃L)− (JM χ̃R, dψ̃R).

Proof. The fluctuated Dirac operator is given by

Dω = DM ⊗ 1 + γµ ⊗Bµ + γM ⊗DF .

An arbitrary ξ ∈ H+ has the form of (9.2.6), from which we obtain the
following expressions:

Jξ = JMχR ⊗ eR + JMχL ⊗ eL + JMψL ⊗ eR + JMψR ⊗ eL,
(DM ⊗ 1)ξ = DMχR ⊗ eR +DMχL ⊗ eL +DMψL ⊗ eR +DMψR ⊗ eL,
(γµ ⊗Bµ)ξ = γµχR ⊗ YµeR + γµχL ⊗ YµeL − γµψL ⊗ YµeR − γµψR ⊗ YµeL,

(γM ⊗DF )ξ = γMχL ⊗ deR + γMχR ⊗ deL + γMψR ⊗ deR + γMψL ⊗ deL.
NCG and Particle Physics, W.D. van Suijlekom



135 9.2. ELECTRODYNAMICS

We decompose the fermionic action into the three terms

1

2
(Jξ̃,Dω ξ̃) =

1

2
(Jξ̃, (DM ⊗ 1)ξ̃) +

1

2
(Jξ̃, (γµ ⊗Bµ)ξ̃) +

1

2
(Jξ̃, (γM ⊗DF )ξ̃),

and then continue to calculate each term separately. The first term is given
by

1

2
(Jξ̃, (DM ⊗ 1)ξ̃) =

1

2
(JM χ̃R, DM ψ̃L) +

1

2
(JM χ̃L, DM ψ̃R)

+
1

2
(JM ψ̃L, DM χ̃R) +

1

2
(JM ψ̃R, DM χ̃L).

Using the facts that DM changes the chirality of a Weyl spinor, and that
the subspaces L2(S)+ and L2(S)− are orthogonal, we can rewrite this term
as

1

2
(Jξ̃, (DM ⊗ 1)ξ̃) =

1

2
(JM χ̃,DM ψ̃) +

1

2
(JM ψ̃,DM χ̃).

Using the symmetry of the form (JM χ̃,DM ψ̃), we obtain

1

2
(Jξ̃, (DM ⊗ 1)ξ̃) = (JM χ̃,DM ψ̃) = −i(JM χ̃, γµ∇Sµψ̃).

Note that the factor 1
2 has now disappeared from the result, which is the

reason why this factor had to be included in the definition of the fermionic
action. The second term is given by

1

2
(Jξ̃, (γµ ⊗Bµ)ξ̃) = −1

2
(JM χ̃R, γ

µYµψ̃L)− 1

2
(JM χ̃L, γ

µYµψ̃R)

+
1

2
(JM ψ̃L, γ

µYµχ̃R) +
1

2
(JM ψ̃R, γ

µYµχ̃L).

In a similar manner, we obtain

1

2
(Jξ̃, (γµ ⊗Bµ)ξ̃) = −(JM χ̃, γ

µYµψ̃),

where we have used the anti-symmetry of the form (JM χ̃, γ
µYµψ̃). The third

term is given by

1

2
(Jξ̃, (γM ⊗DF )ξ̃) =

1

2
(JM χ̃R, dγM ψ̃R) +

1

2
(JM χ̃L, dγM ψ̃L)

+
1

2
(JM ψ̃L, dγM χ̃L) +

1

2
(JM ψ̃R, dγM χ̃R).

The bilinear form (JM χ̃, γM ψ̃) is again symmetric in the Grassmann vari-

ables χ̃ and ψ̃, but we now face the extra complication that two terms
contain the parameter d, while the other two terms contain d. Therefore we
are left with two distinct terms:

1

2
(Jξ̃, (γM ⊗DF )ξ̃) = (JM χ̃L, dψ̃L)− (JM χ̃R, dψ̃R). �

Remark 9.8. It is interesting to note that the fermions acquire mass
terms without being coupled to a scalar field. However, it seems that we ob-
tain a complex mass parameter d, where we would desire a real parameter m.
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Simply requiring that our result should reproduce (9.2.1), we will therefore
choose d := −im, so that

(JM χ̃L, dψ̃L)− (JM χ̃R, dψ̃R) = i
(
JM χ̃,mψ̃

)
.

The results obtained in this section can now be summarized into the
following theorem.

Theorem 9.9. The full Lagrangian of the almost-commutative manifold
M × FED as defined in Equation (9.2.4), can be written as the sum of a
purely gravitational Lagrangian,

Lgrav(gµν) = 4LM (gµν) + Lφ(gµν),

and a Lagrangian for electrodynamics,

LED = −i
〈
JM χ̃, (γ

µ(∇Sµ − iYµ)−m)ψ̃
〉

+
f(0)

6π2
YµνY

µν .

Proof. The spectral action Sb and the fermionic action Sf are given by
Propositions 9.6 and 9.7. This immediately yields Lgrav. To obtain LED, we
need to rewrite the fermionic action Sf as the integral over a Lagrangian.
The inner product (·, ·) on the Hilbert space L2(S) is given by

(ξ, ψ) =

∫
M
〈ξ, ψ〉√gd4x,

where the hermitian pairing 〈·, ·〉 is given by the pointwise inner product on
the fibres. Choosing d = −im as in Remark 9.8, we can then rewrite the
fermionic action into

Sf = −
∫
M
i
〈
JM χ̃,

(
γµ(∇Sµ − iYµ)−m

)
ψ̃
〉√

gd4x. �

9.2.6. Fermionic degrees of freedom. To conclude this chapter, let
us make a final remark on the fermionic degrees of freedom in the Lagrangian
derived above. We refer the reader to Appendix 9.A for a short introduction
to Grassmann variables and Grassmann integration.

As mentioned in Note 2 on Page 107, the number of degrees of freedom
of the fermion fields in the fermionic action is related to the restrictions
that are incorporated into the definition of the fermionic action. These
restrictions make sure that in this case we obtain two independent Dirac
spinors in the fermionic action.

In fact, in quantum field theory one would consider the functional inte-
gral of eS over the fields. We hence consider the case that A is the antisym-
metric bilinear form on H+ given by

A(ξ, ζ) := (Jξ,Dωζ), for ξ, ζ ∈ H+,

and A′ is the bilinear form on L2(S) given by

A′(χ, ψ) := −i
(
JMχ,

(
γµ(∇Sµ − iYµ)−m

)
ψ
)
, for χ, ψ ∈ L2(S).

We have shown in Proposition 9.7 that for ξ = χL ⊗ eL + χR ⊗ eR + ψR ⊗
eL + ψL ⊗ eR, where we can define two Dirac spinors by χ := χL + χR and
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ψ := ψL + ψR, we obtain

1

2
A(ξ, ξ) = A′(χ, ψ).

Using the Grassmann integrals of (9.A.1) and (9.A.2), we then obtain for
the bilinear forms A and A′ the equality

Pf(A) =

∫
e

1
2
A(ξ̃,ξ̃)D[ξ̃] =

∫
eA
′(χ̃,ψ̃)D[ψ̃, χ̃] = det(A′).

9.A. Grassmann variables, Grassmann integration and Pfaffians

We will give a short introduction to Grassmann variables, and use those
to find the relation between the Pfaffian and the determinant of an antisym-
metric matrix.

For a set of anti-commuting Grassmann variables θi, we have θiθj =
−θjθi, and in particular, θ2

i = 0. On these Grassmann variables θj , we
define an integral by∫

1dθj = 0,

∫
θjdθj = 1.

If we have a Grassmann vector θ consisting of N components, we define
the integral over D[θ] as the integral over dθ1 · · · dθN . Suppose we have two
Grassmann vectors η and θ of N components. We then define the integration
element as D[η, θ] = dη1dθ1 · · · dηNdθN .

Consider the Grassmann integral over a function of the form eθ
TAη for

Grassmann vectors θ and η of N components. The N × N -matrix A can
be considered as a bilinear form on these Grassmann vectors. In the case
where θ and η are independent variables, we find∫

eθ
TAηD[η, θ] = detA,(9.A.1)

where the determinant of A is given by the formula

det(A) =
1

N !

∑
σ,τ∈SN

(−1)|σ|+|τ |Aσ(1)τ(1) · · ·Aσ(N)τ(N),

in which SN denotes the set of all permutations of {1, 2, . . . , N}. Now let us
assume that A is an antisymmetric N ×N -matrix A for N = 2l. If we then
take θ = η, we find ∫

e
1
2
ηTAηD[η] = Pf(A),(9.A.2)

where the Pfaffian of A is given by

Pf(A) =
(−1)l

2ll!

∑
σ∈S2l

(−1)|σ|Aσ(1)σ(2) · · ·Aσ(2l−1)σ(2l).

Finally, using these Grassmann integrals, one can show that the determinant
of a 2l × 2l skew-symmetric matrix A is the square of the Pfaffian:

detA = Pf(A)2.

NCG and Particle Physics, W.D. van Suijlekom



138
CHAPTER 9. THE NONCOMMUTATIVE GEOMETRY OF

ELECTRODYNAMICS

So, by simply considering one instead of two independent Grassmann vari-

ables in the Grassmann integral of eθ
TAη, we are in effect taking the square

root of a determinant.

Notes

Section 9.1. The two-point space

1. The two-point space was first studied in [59, 71].

2. The need for KO-dimension 6 for the noncommutative description of the Standard
Model has been observed independently by Barrett [20] and Connes [64].

3. In [131, Chapter 9] a proof is given for the claim that the inner fluctuation ω+JωJ−1

vanishes for commutative algebras. The proof is based on the assumption that the left
and right action can be identified, i.e. a = a0, for a commutative algebra. Though this
holds in the case of the canonical triple describing a spin manifold, it need not be true
for arbitrary commutative algebras. Indeed, the almost-commutative manifold M × FX
provides a counter-example.

What we can say about a commutative algebra, is that there exist no non-trivial inner
automorphisms. Thus, it is an important insight that the gauge group G(A,H; J) from
Definition 6.4 is larger than the group of inner automorphisms, so that a commutative
algebra may still lead to a non-trivial (necessarily abelian) gauge group.

4. It is shown in [28] that one can also obtain abelian gauge theories from a one-point
space when one works with real algebras (cf. Section 3.3).

Section 9.2. Electrodynamics

5. Earlier attempts at a unified description of gravity and electromagnetism originate from
the work of Kaluza [119] and Klein [125] in the 1920’s. In their approach, a new (compact)
fifth dimension is added to the 4-dimensional spacetime M . The additional components
in the 5-dimensional metric tensor are then identified with the electromagnetic gauge
potential. Subsequently, it can be shown that the Einstein equations of the 5-dimensional
spacetime can be reduced to the Einstein equations plus the Maxwell equations on 4-
dimensional spacetime.

6. An interesting question that appears in the context of this Chapter is whether it is
possible to describe the abelian Higgs mechanism (see e.g. [120, Section 8.3]) by an
almost-commutative manifold. As already noticed, for M × FED no scalar fields Φ are
generated since AF commutes with DF . In terms of the Krajewski diagram for M ×FED,

1 1

1◦

1◦

it follows that a component that runs counterdiagonally fails on the first-order condition
(cf. Lemma 3.10). One is therefore tempted to look at the generalization of inner fluc-
tuations to real spectral triples that do not necessarily satisfy the first-order condition,
as was proposed in [56]. This generalization is crucial in the applications to Pati–Salam
unification (see Note 13 on Page 185), but also in the present case one can show that non-
zero off-diagonal components in (9.2.3) then generate a scalar field for which the spectral
action yields a spontaneous breaking of the abelian gauge symmetry.

Section 9.A. Grassmann variables, Grassmann integration and Pfaffians

7. For more details we refer the reader to [26].
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CHAPTER 10

The noncommutative geometry of Yang–Mills
fields

In this Chapter we generalize the noncommutative description of Yang–
Mills theory to topologically non-trivial gauge configurations.

10.1. Spectral triple obtained from an algebra bundle

Recall from Examples 8.4 and 8.5 that topologically trivial Yang–Mills
gauge theory can be described by the almost-commutative manifold

M × FYM =(
C∞(M)⊗MN (C), L2(S)⊗MN (C), DM ⊗ 1; JM ⊗ (·)∗, γM ⊗ 1

)
.

In fact, the tensor product of C∞(M) with the matrix algebra MN (C) ap-
pearing here is equivalent to restricting the gauge theory to be defined on
a trivial vector bundle. Indeed, C∞(M)⊗MN (C) is the algebra of smooth
sections of the trivial algebra bundle M × MN (C) on M . For the topo-
logically non-trivial case, this suggests considering an arbitrary ∗-algebra
bundle with fiber MN (C). We work in a slightly more general setting more
general ∗-algebras are allowed.

Thus, let B be some locally trivial ∗-algebra bundle whose fibers are
copies of a fixed (finite-dimensional) ∗-algebra A. Furthermore, we require
that for each x the fiber Bx is endowed with a faithful tracial state τx,
such that for each s ∈ Γ∞(B) the function x 7→ τxs(x) is smooth. The
corresponding Hilbert–Schmidt inner product in the fiber Bx that is induced
by τx is denoted by (·, ·)Bx . Consequently, the C∞(M)-valued form

〈·, ·〉B : Γ∞(B)× Γ∞(B)→ C∞(M); 〈s, t〉B(x) = (s(x), t(x))Bx

is a hermitian structure on the C∞(M)-module Γ∞(B), satisfying the con-
ditions of Proposition 6.14.

As in the previous chapters, we assume that M is a compact Riemannian
spin manifold on which S → M is a spinor bundle and DM = −ic ◦ ∇S
is the Dirac operator. Combining the inner product on spinors with the
above hermitian structure naturally induces the following inner product on
Γ∞(B⊗ S):

(10.1.1) (ξ1, ξ2) :=

∫
M

(ξ1(x), ξ2(x))Bx⊗Sx ; (ξ1, ξ2 ∈ Γ∞(B⊗ S)),

turning it into a pre-Hilbert space. Its completion with respect to the norm
induced by this inner product consists of all square-integrable sections of
B⊗ S, and is denoted by L2(B⊗ S).
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Remark 10.1. Note that we can identify Γ∞(B) ⊗C∞(M) Γ∞(S) with
Γ∞(B ⊗ S) as C∞(M)-modules. In what follows, we will use this identifi-
cation without further notice. The above inner product (10.1.1) can then be
written as

(s1 ⊗ ψ1, s2 ⊗ ψ2) = (ψ1, 〈s1, s2〉Bψ2),

where 〈s1, s2〉B ∈ C∞(M) acts on Γ∞(S) by pointwise multiplication.

Theorem 10.2. In the above notation, let ∇B be a hermitian connection
(with respect to the Hilbert–Schmidt inner product) on the ∗-algebra bundle
B and let DB = −iγµ(∇B

µ ⊗ 1 + 1 ⊗ ∇Sµ) be the twisted Dirac operator on
B⊗ S. Then

(Γ∞(B), L2(B⊗ S), DB)

is a spectral triple.

Proof. First, it is obvious that fiberwise multiplication of a ∈ Γ∞(B)
on Γ∞(B⊗ S) extends to a bounded operator on L2(B⊗ S), since

‖as⊗ ψ‖2 =

∫
M

(
ψ(x), (a(x)s(x), a(x)s(x))Bx ψ(x)

)
Sx
dx

≤ sup
x∈M
{‖a(x)‖2x}‖s⊗ ψ‖2.

Here ‖ · ‖x denotes the fiberwise operator C∗-norm. Since M is a compact
manifold, the compactness of the resolvent follows from ellipticity of the
twisted Dirac operator DB. Moreover, the commutator [DB, a] is bounded
for a ∈ Γ∞(B) since DB is a first-order differential operator. More precisely,
in local coordinates one computes

[DB, a](s⊗ ψ) = −i
(
∂µa+ [ωB

µ , a]
)
s⊗ γµψ,

where ∇B
µ = ∂µ + ωB

µ . This operator is bounded on L2(B⊗ S), provided a

is differentiable and ωB
µ is smooth. �

Next, we would like to extend our construction to arrive at a real spectral
triple. For this, we introduce an anti-linear operator on L2(B ⊗ S) of the
form

J(s⊗ ψ) = s∗ ⊗ JMψ,
with JM charge conjugation on M as in Definition 4.13. For this operator
to be a real structure on our spectral triple (Γ∞(B), L2(B ⊗ S), DB), we
need some extra conditions on the connection ∇B on B.

Definition 10.3. Let B be a ∗-algebra bundle over a manifold M . A
∗-algebra connection ∇ on B is a connection on B that satisfies

∇(st) = s∇t+ (∇s)t, (∇s)∗ = ∇s∗; (s, t ∈ Γ∞(B)).

If B is a hermitian ∗-algebra bundle and ∇ is also a hermitian connection,
then ∇ is called a hermitian ∗-algebra connection.

Lemma 10.4. Every locally trivial hermitian ∗-algebra bundle B defined
over a compact space M admits a hermitian ∗-algebra connection.

NCG and Particle Physics, W.D. van Suijlekom



141
10.1. SPECTRAL TRIPLE OBTAINED FROM AN ALGEBRA

BUNDLE

Proof. Let {Ui} be a finite open covering ofM such that B is trivialized
over Ui for each i. Then on each Ui there exists a hermitian ∗-algebra
connection ∇i, for instance the trivial connection d on Ui. Now, let {fi} be
a partition of unity subordinate to the open covering {Ui} (note that all fi
are real-valued). Then the linear map ∇ defined by

(∇s)(x) =
∑
i

fi(x)(∇is)(x); (x ∈M)

is a hermitian ∗-algebra connection on Γ∞(B). �

Remark 10.5. The fact that locally, i.e. on some trivializing neighbor-
hood, the exterior derivative d is a hermitian ∗-algebra connection shows that
on such a local chart every hermitian ∗-algebra connection is of the form

d+ ωB,

where ωB is a real connection one-form with values in the real Lie algebra
of ∗-derivations of the fiber that are anti-hermitian with respect to the inner
product on the fiber. For instance, when the fiber is the ∗-algebra MN (C)
endowed with the Hilbert–Schmidt inner product, this Lie algebra is precisely
ad(u(N)) ∼= su(N).

Theorem 10.6. In addition to the conditions of Theorem 10.2, suppose
that ∇B is a hermitian ∗-algebra connection and set γ = 1 ⊗ γM as a self-
adjoint operator on L2(B⊗ S). Then

(Γ∞(B), L2(B⊗ S), DB; J, γ)

is a real and even spectral triple whose KO-dimension is equal to the dimen-
sion of M .

Proof. First of all, we check that J is anti-unitary:

(J(s⊗ ψ), J(t⊗ η)) = (JMψ, 〈s∗, t∗〉JMη) =
(
JMψ, JM 〈s∗, t∗〉η

)
=
(
〈s∗, t∗〉η, ψ

)
= (〈s, t〉η, ψ) = (t⊗ η, s⊗ ψ) ,

where we used in the second step that JMf = fJM for every f ∈ C∞(M),
in the third step that JM is anti-unitary, and in the fourth step that 〈s, t〉 =
〈t∗, s∗〉 (by definition of the hermitian structure as a fiberwise trace). More-
over, if J2

M = ε it follows that J2 = ε.
We next establish DJ = ε′JD by a local calculation:

(JD − ε′DJ)(s⊗ ψ) = J
(
∇B
µ s⊗ (−iγµψ) + s⊗DMψ

)
− ε′DB (s∗ ⊗ JMψ)

= (∇B
µ s)
∗ ⊗ iJMγµψ + s∗ ⊗ JMDMψ

− ε′∇B
µ s
∗ ⊗ (−iγµJMψ)− ε′s∗ ⊗DMJMψ

= i
(

(∇B
µ s)
∗ −∇B

µ s
∗
)
⊗ JMγµψ = 0,

since JMγ
µ = −ε′γµJM , and the last step follows from the definition of a

∗-algebra connection, i.e. (∇s)∗ = ∇s∗ for all s ∈ Γ∞(B).
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The commutant property follows easily:

[a, b0](s⊗ ψ) = aJb∗J−1(s⊗ ψ)− Jb∗J−1a(s⊗ ψ)

= aJ(b∗s∗ ⊗ J∗Mψ)− Jb∗(s∗a∗ ⊗ J∗Mψ)

= asb⊗ ψ − asb⊗ ψ = 0,

where a, b ∈ Γ∞(B) and s ⊗ ψ ∈ Γ∞(B) ⊗C∞(M) Γ∞(S). Since [a, b0] = 0
on Γ∞(B) ⊗C∞(M) Γ∞(S) ∼= Γ∞(B ⊗ S), it is zero on the entire Hilbert

space L2(B⊗ S). It remains to check the order one condition for the Dirac
operator. First note that

[[D, a], b0](s⊗ ψ) = −iγµ([[∇µ, a], b0](s⊗ ψ)); (a, b, s ∈ Γ∞(B)).

This is zero because [[∇, a], b0](s⊗ ψ) is zero:

([∇µ, a]sb)⊗ ψ − Jb∗J−1([∇µ, a]s⊗ ψ)

= ∇µ(asb)⊗ ψ − a∇µ(sb)⊗ ψ −∇µ(as)b⊗ ψ + a(∇µs)b⊗ ψ
= ((∇µa)sb+ a(∇µs)b+ as(∇µb)− a(∇µs)b
− as(∇µb)− (∇µa)sb− a(∇µs)b+ a(∇µs)b)⊗ ψ,

= 0

using the defining property for ∇B to be a ∗-algebra connection. Thus, J
fulfills all of the necessary conditions for a real structure on the spectral triple
(Γ∞(B), L2(B⊗ S), DB). The conditions on γ to be a grading operator for
this spectral triple are easily checked too. �

10.2. Yang–Mills theory as a noncommutative manifold

The real spectral triple (Γ∞(B), L2(B⊗S), DB; J, γ) that we obtained in
Theorem 10.6 will turn out to be the correct triple to describe a topologically
non-trivial PU(N)-gauge theory on the spin manifold M if the fibers of B
are taken to be isomorphic to the ∗-algebra MN (C). Moreover, this triple
not only describes a non-trivial PU(N)-gauge theory: every PU(N)-gauge
theory on M is described by such a triple. In this section we prove these
claims by first showing how a principal PU(N)-bundle can be constructed
from this spectral triple. As in the topologically trivial case (cf. Remark
8.13) the spectral action applied to this triple will give the Einstein–Yang–
Mills action, but now the gauge potential can be interpreted as a connection
one-form on the PU(N)-bundle P . In fact, the original algebra bundle B
will turn out to be an associated bundle of the principal bundle P . From
now on, then, the fibers of B are assumed to be MN (C).

10.2.1. From algebra bundles to principal bundles. In order to
construct a principal PU(N)-bundle P out of B, first of all note that since
all ∗-automorphisms of MN (C) are obtained by conjugation with a unitary
element u ∈MN (C) (see Example 6.3), the transition functions of the bundle
Γ∞(B) take their values in

Ad U(N) ∼= U(N)/Z(U(N)) ∼= PU(N).

Thus the bundle B provides us with an open covering {Ui} of M as well as
transition functions {gij} with values in PU(N). Using the reconstruction
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theorem for principal bundles, we can then construct a principal PU(N)-
bundle. By construction, the bundle B is an associated bundle to P .

Furthermore, for the real spectral triple

(Γ∞(B), L2(B⊗ S), DB; J, γ)

of Theorem 10.6, the hermitian connection ∇B on the bundle B can lo-
cally be written as ∇B = d + ωB, where ωB is a su(N)-valued one-form,
(cf. Remark 10.5). Moreover, the transformation rule for ωB is ωB

i =

g−1
ij dgij + g−1

ij ω
B
j gij , with gij the PU(N)-valued transition function of B.

Comparing this expression with the usual transformation property of a con-
nection one-form, one concludes that the hermitian ∗-algebra connection∇B

on B induces a connection one-form on the principal bundle P constructed
in the previous paragraph.

Conversely, given a PU(N)-gauge theory (P, ωP ) on some compact Rie-
mannian spin manifold, we can construct the locally trivial hermitian ∗-
algebra bundle B := P ×PU(N) MN (C), where PU(N) acts on MN (C) in

the usual way. Moreover, the connection ωP on P induces a hermitian ∗-
algebra connection on B. Following the steps described in the previous
paragraph, it is not difficult to see that the principal bundle and connection
obtained from the ensuing spectral triple,

(Γ∞(B), L2(B⊗ S),−iγµ(∇B
µ ⊗ 1 + 1⊗∇Sµ); J, γ),

coincide with (P, ωP ).

Proposition 10.7. Let (Γ∞(B), L2(B⊗ S), DB; J, γ) be as before with
M simply connected and B a locally trivial ∗-algebra bundle with fiber MN (C)
and a faithful smoothly-varying tracial state. Then:

(1) there exists a principal PU(N)-bundle P such that B is an as-
sociated bundle of P , as well as a connection one-form ωP on P
corresponding to ∇B;

(2) the gauge group G(Γ∞(B), L2(B⊗ S); J) of this spectral triple (as
in Definition 6.4) is isomorphic to the space of smooth sections of
the associated group bundle AdP := P ×PU(N) PU(N).

Every PU(N)-gauge theory (P, ωP ) on M is determined by such a spectral
triple.

Proof. The only statement left to prove is (2). If B = P ×PU(N)

MN (C), then U(Γ∞(B)) = Γ∞(P ×PU(N) U(N)). As a consequence,

G(Γ∞(B), L2(B⊗ S); J) ' {uJuJ−1 : u ∈ Γ∞(P ×PU(N) U(N)}
' Γ∞(P ×PU(N) PU(N)),

where we argue as in the proof of Proposition 8.2 (see also Note 4 on Page
125). �

10.2.2. Inner fluctuations and spectral action. In this section, we
calculate the spectral action for the real spectral triple of Theorem 10.6 in
the case that dimM = 4. We show that the spectral action applied to the
spectral triple (Γ∞(B), L2(B ⊗ S), DB; J, γ) produces the Einstein–Yang–
Mills action for a connection one-form on the PU(N)-bundle P . If B is a
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trivial algebra bundle, this reduces to Example 8.13. In fact, most of these
local computations can be adopted in this case as well, since locally the bun-
dle B is trivial. Nevertheless, for completeness we include the computations
in the case at hand.

First of all, in Remark 10.5 we noticed that locally, i.e. on some local
trivialization U , the connection ∇B is expressed as d+ ωB, where ωB is an
su(N)-valued one-form that acts in the adjoint representation on Γ∞(B).
Therefore, ωB already induces a connection one-form on P . To get the full
gauge potential we need to take the fluctuations of the Dirac operator into
account as well.

Recall from Section 6.2 that inner fluctuations of the Dirac operator are
given by a perturbation term of the form

(10.2.1) ω =
∑
j

aj [D, bj ]; (aj , bj ∈ Γ(B)),

with the additional condition that
∑

j aj [D, bj ] is a self-adjoint operator.
Explicitly, we have

ω =
∑
j

−iγµ ◦ (aj [∇µ, bj ]⊗ 1).

Locally, on some trivializing neighborhood U , the expression in (10.2.1) can
be written as

ω = γµAµ,

where Aµ are the components of the one-form
∑

j aj [∇, bj ] with values in

Γ∞(B). Since ω is self-adjoint, the one-form Aµ can be considered a real
one-form taking values in the hermitian elements of Γ∞(B).

Similarly, the expression ω + JωJ−1 is locally written as

γµAµ − γµJAµJ−1,

since in 4 dimensions γµ anti-commutes with J . Writing out the second
term gives:

(γµJAµJ
−1)(s⊗ ψ) = sAµ ⊗ γµψ; (s⊗ ψ ∈ Γ∞(B⊗ S)),

so that on this local patch, ω + JωJ−1 can be written as

γµ adAµ.

Consequently, ω+JωJ−1 eliminates the iu(1)-part of ω, so that ω effectively
satisfies the unimodularity condition

Tr ω = 0.

Thus, i adAµ is a one-form on M with values in Γ∞(adP ) where adP =
P ×PU(N) su(N).

The expression for D + ω + JωJ−1 on a local chart U is then given by

Dω = −iγµ(∇B
µ ⊗ 1 + 1⊗∇Sµ + i adAµ ⊗ 1),

where the connection ∇B can be expressed on U as d+ωB for some unique
su(N)-valued one-form ωB on U . Thus, on U the fluctuated Dirac operator
can be rewritten as

Dω = −iγµ(1⊗∇Sµ + (∂µ + ωB
µ + i adAµ)⊗ 1).
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We interpret (ωB
µ + i adAµ) as the full gauge potential on U , acting in the

adjoint representation on the spinors. The natural action of an element g
in the group G(Γ∞(B), L2(B ⊗ S); J) ' Γ∞(AdP ) by conjugation on Dω

then induces the familiar gauge transformation:

ωB
µ + i adAµ 7→ (g−1ωB

µ g + g−1(dg)) + g−1(i adAµ)g,

where the first two terms on the right-hand side are the transformation of ωB

under a change of local trivialization, and the last term is the transformation
of i adAµ. Therefore, since B is an associated bundle of P , it follows that

ωB
µ + i adAµ induces a su(N)-valued connection one-form on the principal
PU(N)-bundle P that acts on Γ∞(B) in the adjoint representation.

Let us summarize what we have obtained so far.

Proposition 10.8. Let (Γ∞(B), L2(B⊗S), DB; J, γ) and let P be as be-
fore, so that P ×PU(N)MN (C) ' B. Then, the inner fluctuations of DB are
parametrized by sections of Γ∞(T ∗M⊗adP ) where adP = P×PU(N)su(N).

Moreover, the action of G(Γ∞(B), L2(B ⊗ S); J) on the inner fluctuations
of DB by conjugation coincides with the adjoint action of Γ∞(AdP ) on
Γ∞(adP ).

Let us now proceed to compute the spectral action for these inner fluc-
tuations. We apply the results of Section 8.3, using the following result.

Lemma 10.9. For the spectral triple (Γ∞(B), L2(B ⊗ S), DB; J, γ), the
square of the fluctuated Dirac operator is a generalized Laplacian of the
form ∆E − F , with E = B⊗ S (notation as in Theorem 8.7), and we have
the following local expressions for the corresponding curvature ΩE

µν and the
bundle endomorphism F :

F = −1

4
s⊗ IN2 +

1

2
iγµγν ⊗ Fµν ;

ΩE
µν = ΩS

µν ⊗ IN2 + iI4 ⊗ Fµν ,

where Fµν is the curvature of the connection ∇B
µ + i adAµ.

As before, this result allows us to compute the bosonic spectral action
for the fluctuated Dirac operator Dω, essentially reducing the computation
in terms of a local trivialization to the trivial case (cf. Example 8.13), with
the following result.

Theorem 10.10. For the spectral triple (Γ∞(B), L2(B ⊗ S), DB; J, γ),
the spectral action yields the Yang–Mills action for ∇B + i adAµ minimally
coupled to gravity:

Tr (f(Dω/Λ)) ∼ f(0)

24π2

∫
M

TrFµνF
µν√gdx+N2

∫
M
LM (gµν)

√
gdx,

asymptotically as Λ→∞ and up to terms ∝ Λ−2. The Lagrangian LM (gµν)
is given by (8.4.8).
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10.2.3. Topological spectral action. A natural invariant in this topo-
logically non-trivial context is the topological spectral action, given in Equa-
tion (7.1.2). With Proposition 7.5 we find that, in general,

Stop[ω] = f(0) indexDω.

Hence, in the setting of Theorem 10.10, using the Atiyah–Singer index the-
orem (cf. Note 16 on Page 82), we find an extra contribution of the form

Stop[ω] =
f(0)

(2πi)n/2

∫
M
Â(M) ch(B),

in terms of the Â-form of M and the Chern character of the algebra bundle
B.

Notes

1. For an exposition of Yang–Mills theory in terms of principal bundle and connections,
we refer to [7, Section 2,3] and [32].

2. This Chapter extends the noncommutative description of Yang–Mills gauge theory of
[49, 50] to the topologically non-trivial case; it is based on [35]. For a more general
treatment of topologically non-trivial almost-commutative geometries we refer to [40, 41,
34].

Section 10.1. Spectral triple obtained from an algebra bundle

3. Our approach to locally trivial ∗-algebra bundles gains in substance with the Serre–
Swan Theorem, establishing a duality between vector bundles over a topological space X
and finite projective modules over C(X) [169, 182]. A smooth version was obtained in
[61] (see also [131, Proposition 4.2.1] or [103, Section 2.3]). The fiberwise inner product
gives rise to the hermitian structure found in Proposition 6.14. A version of the Serre–
Swan Theorem for ∗-algebra bundles has been obtained in [35].

Section 10.2. Yang–Mills theory as a noncommutative manifold

4. A special case of Proposition 10.7 occurs when B is an endomorphism bundle. It
follows from a result by Dixmier and Douady in [77] (cf. [164]) that a bundle B with
continuously varying trace is an endomorphism bundle if and only if the Dixmier–Douady
class δ(Γ(B)) ∈ H3(Z) of the C∗-algebra of continuous sections Γ(B) of this bundle is
equal to zero. Because the Dixmier–Douady class of the bundle B vanishes one can
lift the PU(N)-valued transition functions gij to U(N)-valued functions µij such that
gij = Ad µij , and µijµjk = µik (see for instance [164], Theorem 4.85). One may therefore
construct a principal U(N)-bundle instead of a PU(N)-bundle, to which B is associated
if and only if B is an endomorphism bundle.
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CHAPTER 11

The noncommutative geometry of the Standard
Model

One of the major applications of noncommutative geometry to physics
has been the derivation of the Standard Model of particle physics from
a suitable almost-commutative manifold. In this Chapter we present this
derivation, using the results of Chapter 8.

11.1. The finite space

Our starting point is the classification of irreducible finite geometries of
KO-dimension 6 from Section 3.4, based on the matrix algebra MN (C) ⊕
MN (C) for N ≥ 1. We have already seen in Chapter 9 that N = 1 is
the finite geometry corresponding to electrodynamics. We now proceed
and aim for the full Standard Model of particle physics. Let us make
the following two additional requirements on the irreducible finite geometry
(A,HF , DF ; JF , γF ):

(1) The finite-dimensional Hilbert space HF carries a symplectic struc-
ture I2 = −1;

(2) the grading γF induces a non-trivial grading on A, by mapping

a 7→ γFaγF ,

and selects an even subalgebra Aev ⊂ A consisting of elements that
commute with γF .

We have already seen in Section 3.4 that the first demand sets A = Mk(H)⊕
M2k(C), represented on the Hilbert space C2(2k)2 . The second requirement
sets k ≥ 2; we will take the simplest k = 2 so that HF = C32. Indeed, this
allows for a γF such that

Aev = HR ⊕HL ⊕M4(C),

where HR and HL are two copies (referred to as right and left) of the quater-
nions; they are the diagonal of M2(H) ⊂ A. The Hilbert space can then be
decomposed according to the defining representations of Aev,

HF = (C2
R ⊕ C2

L)⊗ C4◦ ⊕ C4 ⊗ (C2◦
R ⊕ C2◦

L ).(11.1.1)

According to this direct sum decomposition, we write

DF =

(
S T ∗

T S

)
(11.1.2)
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2R 2L 4

2◦R

2◦L

4◦

−

+

+ −

Figure 11.1. The Krajewski diagram for the finite real
spectral triple (Aev = HR ⊕ HL ⊕M4(C), HF , DF ; JF , γF ).
The dashed line corresponds to an ‘off-diagonal’ component
of the Dirac operator, thus failing on the first-order condi-
tion. The labels + and − represent the value of the grading
γF on the corresponding summands of HF .

where

S : (C2
R ⊕ C2

L)⊗ C4◦ → (C2
R ⊕ C2

L)⊗ C4◦,

T : (C2
R ⊕ C2

L)⊗ C4◦ → C4 ⊗ (C2◦
R ⊕ C2◦

L ).

This gives rise to the Krajewski diagram of Figure 11.1. We now make an
additional assumption,

(3) The off-diagonal components T and T ∗ of the Dirac operator in
(11.1.2) are non-zero.

In Figure 11.1 such an off-diagonal component corresponds to the dashed
line. As this line runs neither vertically, horizontally, or between the same
vertex, it follows from Lemma 3.10 that the corresponding component of
DF breaks the first-order condition.

Proposition 11.1. Up to ∗-automorphisms of Aev, there is a unique
∗-subalgebra AF ⊂ Aev of maximal dimension that allows T 6= 0 in (11.1.2).
It is given by

AF =

{(
qλ, q,

(
q 0
0 m

))
: λ ∈ C, q ∈ HL,m ∈M3(C)

}
⊂ HR⊕HL⊕M4(C),

where λ 7→ qλ is the embedding of C ↪→ H, with

qλ =

(
λ 0

0 λ

)
.

Consequently, AF ' C⊕H⊕M3(C).

Proof. We give a diagrammatic proof. From Figure 11.1, we see that
in order to fulfill the first-order condition, we should bring the dashed line to
run horizontally or vertically, or to begin and start at the same node on the
diagonal. We do so by considering the Krajewski diagrams for subalgebras
AF ⊂ Aev which are induced by Figure 11.1. If T is of rank 1, the only
possibility is to bring the dashed line to the diagonal. In other words, the
subalgebra we are looking for should have a component that is embedded
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diagonally in HR and M4(C). Such a component can only be C, and the
resulting subalgebra is embedded as

C⊕M3(C)→ HR ⊕M4(C);

(λ,m) 7→
((

λ 0

0 λ

)
,

(
λ 0
0 m

))
.

This breaks the Krajewski diagram to the diagram of Figure 11.2, where
the dashed line now connects the two vertices labeled by (1,1◦). The other
edges of Figure 11.1 are now torn apart to the resulting edges in Figure 11.2.

If T has rank greater than 1, then a similar argument shows that one
obtains a subalgebra of smaller dimension than AF . �

1 1 2 3

1◦

1
◦

2◦

3◦

Figure 11.2. The Krajewski diagram of the space FSM de-
scribing the Standard Model.

In order to connect to the physics of the Standard Model, let us introduce
an orthonormal basis for HF that can be recognized as the fermionic particle
content of the Standard Model, and subsequently write the representation
of AF in terms of this basis. Starting with the Krajewski diagram of Figure
11.2, we let the first three nodes in the top row be represented by basis
vectors {νR, eR, (νL, eL)} of the so-called lepton space Hl, while the three
nodes in the bottom row represent the basis vectors {uR, dR, (uL, dL)} of the
quark space Hq. Their reflections with respect to the diagonal represent
are the anti-lepton space Hl and the anti-quark space Hq, spanned by

{νR, eR, (νL, eL)} and {uR, dR, (uL, dL)}, respectively. The three colors of
the quarks are given by a tensor factor C3 and when we take into account
three generations of fermions and anti-fermions by tripling the above finite-
dimensional Hilbert space we obtain

HF :=
(
Hl ⊕Hl ⊕Hq ⊕Hq

)⊕3
.

Note that Hl = C4, Hq = C4⊗C3, Hl = C4, and Hq = C4⊗C3. An element
a = (λ, q,m) ∈ AF acts on the space of leptons Hl as qλ ⊕ q, and acts on
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the space of quarks Hq as (qλ ⊕ q)⊗ I3. That is,

a = (λ, q,m)
Hl−→


λ 0 0 0

0 λ 0 0
0 0 α β

0 0 −β α

 ,

a = (λ, q,m)
Hq−−→


λ 0 0 0

0 λ 0 0
0 0 α β

0 0 −β α

⊗ I3.

For the action of a on an anti-lepton l ∈ Hl we have al = λI4l, and on an
anti-quark q ∈ Hq we have aq = (I4 ⊗m)q.

The Z2-grading γF is such that left-handed particles have eigenvalue +1
and right-handed particles have eigenvalue −1. The anti-linear operator JF
interchanges particles with their anti-particles, so JF f = f and JF f = f ,
with f a lepton or quark.

Finally, we write the Dirac operator of (11.1.2) in terms of the decom-
position of HF in particle (H⊕3

l ⊕ H⊕3
q ) and anti-particles (H⊕3

l
⊕ H⊕3

q ).

The operator S will be chosen to be

Sl := S|H⊕3
l

=


0 0 Y ∗ν 0
0 0 0 Y ∗e
Yν 0 0 0
0 Ye 0 0

 ,

Sq ⊗ I3 := S|H⊕3
q

=


0 0 Y ∗u 0
0 0 0 Y ∗d
Yu 0 0 0
0 Yd 0 0

⊗ I3,

where Yν , Ye, Yu and Yd are 3 × 3 Yukawa mass matrices acting on the
three generations, and I3 acting on the three colors of the quarks. The
symmetric operator T only acts on the right-handed (anti)neutrinos, so it
is given by TνR = YRνR, for a certain 3 × 3 symmetric Majorana mass
matrix YR, and Tf = 0 for all other fermions f 6= νR. Note that νR here
stands for a vector with 3 components for the number of generations.

Let us summarize what we have obtained so far.

Proposition 11.2. The data

FSM := (AF , HF , DF ; JF , γF )

as given above define a finite real even spectral triple of KO-dimension 6.

11.2. The gauge theory

11.2.1. The gauge group. We shall now describe the gauge theory
corresponding to the almost-commutative manifold M × FSM . In order to
determine the gauge group G(FSM) of Definition 6.4, let us start by examin-
ing the subalgebra (AF )JF of the algebra AF of Proposition 11.1, as defined
in Section 4.3.1. For an element a = (λ, q,m) ∈ C⊕H⊕M3(C), the relation
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aJF = JFa
∗ now yields λ = λ = α = α and β = 0, as well as m = λI3. So,

a ∈ (AF )JF if and only if a = (x, x, x) for x ∈ R. Hence we find

(AF )JF ' R.

Next, let us consider the Lie algebra h(F ) = u
(
(AF )JF

)
of (8.1.1b). Since

u(AF ) consists of the anti-hermitian elements of AF , we obtain that the
h(F ) = u

(
(AF )JF

)
is given by the trivial subalgebra {0}.

Proposition 11.3. The local gauge group G(FSM) of the finite space
FSM is given by

G(FSM) '
(
U(1)× SU(2)× U(3)

)
/{1,−1},

where {1,−1} is the diagonal normal subgroup in U(1)× SU(2)× U(3).

Proof. The unitary elements of the algebra form the group U(AF ) '
U(1) × U(H) × U(3). Now, a quaternion q = q0I + iq1σ1 + iq2σ2 + iq3σ3 is
unitary if and only if |q|2 = q0

2 + q1
2 + q2

2 + q3
2 = 1. Using the embedding

of H in M2(C), we find |q|2 = det(q) = 1, and this yields the isomorphism
U(H) ' SU(2). Hence, the unitary group U(AF ) is given by U(1)×SU(2)×
U(3). By Proposition 8.2, the gauge group is given by the quotient of the
unitary group with the subgroup H(F ) = U

(
(AF )JF

)
, which is the diagonal

normal subgroup

{±(1, I2, I3)} ⊂ U(1)× SU(2)× U(3). �

The gauge group that we obtain here is not the gauge group of the
Standard Model, because (even ignoring the quotient with the finite group
{1,−1}) we have a factor U(3) instead of SU(3). As mentioned in Propo-
sition 8.3, the unimodularity condition is only satisfied for complex alge-
bras, but in our case, the algebra C ⊕ H ⊕M3(C) is only a real algebra.
Therefore, the unimodularity condition is not automatically satisfied. In-
stead, we shall require that the unimodularity condition is satisfied, so for
u = (λ, q,m) ∈ U(1)× SU(2)× U(3) we impose

det|HF (u) = 1 =⇒
(
λ detm

)12
= 1.

For u ∈ U(1) × SU(2) × U(3), we denote the corresponding element in
G(FSM) by U = uJuJ−1. We shall then consider the subgroup

SG(FSM) =
{
U = uJuJ−1 ∈ G(FSM) | u = (λ, q,m),

(
λ detm

)12
= 1
}
.

The effect of the unimodularity condition is that the determinant of m ∈
U(3) is identified (modulo the multiplicative group µ12 of 12’th roots of
unity) with λ. In other words, imposing the unimodularity condition pro-
vides us, modulo some finite abelian group, with the gauge group U(1) ×
SU(2) × SU(3). This agrees with the Standard Model, as even the group
U(1) × SU(2) × SU(3) is actually not the true gauge group of the Stan-
dard Model. Indeed, it contains a finite abelian subgroup (isomorphic to)
µ6 which acts trivially on all bosonic and fermionic particles in the Stan-
dard Model. The group µ6 is embedded in U(1) × SU(2) × SU(3) by
λ 7→ (λ, λ3, λ2). The true gauge group of the Standard Model is therefore
given by

GSM := U(1)× SU(2)× SU(3)/µ6.
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Proposition 11.4. The unimodular gauge group SG(FSM) is isomor-
phic to

SG(FSM) ' GSM o µ12.

Proof. Proposition 11.3 shows that SG(FSM) ' SU(AF )/µ2, so we
determine SU(AF ). We do so in two steps:

SU(AF ) ' G× SU(2)× SU(3)/µ3,(I)

where G =
{

(λ, µ) ∈ U(1)× U(1) : (λµ3)12 = 1
}

, containing µ3 as the sub-
group {e} × µ3, and

G ' µ12 × U(1).(II)

For (I), consider the map

(λ, µ, q,m) ∈ G× SU(2)× SU(3) 7→ (λ, q, µm) ∈ SU(AF ).

We claim that this map is surjective and has kernel µ3. If (λ, q,m) ∈
SU(AF ), then there exists µ ∈ U(1) such that µ3 = detm ∈ U(1). Since
(λµ3)12 = (λdetm)12 = 1, the element (λ, µ, q,m) lies in the pre-image
of (λ, q,m). The kernel of the above map consists of pairs (λ, µ, q,m) ∈
G×SU(2)×SU(3) such that λ = 1, q = 1 and m = µ−1I3. Since m ∈ SU(3),
this µ satisfies µ3 = 1. So we have established (I).

For (II) we show that the following sequence is split-exact:

1→ U(1)→ G→ µ12 → 1,

where the group homomorphisms are given by λ ∈ U(1) 7→ (λ3, λ−1) ∈ G
and (λ, µ) ∈ G → λµ3 ∈ µa. Exactness can be easily checked, and the
splitting map is given by λ ∈ µ12 → (λ, 1) ∈ G. In this abelian case, the
corresponding action of µ12 on U(1) is trivial so that the resulting semi-direct
product is

G ' U(1) o µ12 ' U(1)× µ12. �

A similar argument shows that the gauge algebra of Definition 6.4 is

g(FSM) ' u(1)⊕ su(2)⊕ u(3),

and the restriction to traceless matrices gives the gauge algebra of the Stan-
dard Model:

sg(FSM) ' u(1)⊕ su(2)⊕ su(3).

11.2.2. The gauge and scalar fields. As we have seen in more gener-
ality in (8.2.7), the gauge field corresponding to FSM takes values in g(FSM).
We here confirm this result and derive the precise form of the gauge field
Aµ of (8.2.1), and also of the scalar field φ of (8.2.2).

Take two elements a = (λ, q,m) and b = (λ′, q′,m′) of the algebra A =
C∞(C ⊕ H ⊕M3(C)). According to the representation of AF on HF , the
inner fluctuations Aµ = −ia∂µb decompose as

Λµ := −iλ∂µλ′

on νR,

Λ′µ := −iλ∂µλ
′
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on eR,

Qµ := −iq∂µq′

on (νl, eL), and

V ′µ := −im∂µm′

acting on Hq; on all other components of HF the gauge field Aµ acts as zero.
Imposing the hermiticity Λµ = Λ∗µ implies Λµ ∈ R, and also automatically
yields Λ′µ = −Λµ. Furthermore, Qµ = Q∗µ implies that Qµ is a real-linear
combination of the Pauli matrices, which span i su(2). Finally, the condition
that V ′µ be hermitian yields V ′µ ∈ i u(3), so V ′µ is a U(3) gauge field. As
mentioned above, we need to impose the unimodularity condition to obtain
an SU(3) gauge field. Hence, we require that the trace of the gauge field Aµ
over HF vanishes, and we obtain

Tr|Hl
(
ΛµI4

)
+ Tr|Hq

(
I4 ⊗ V ′µ

)
= 0 =⇒ Tr(V ′µ) = −Λµ.

Therefore, we can define a traceless SU(3) gauge field Vµ by V µ := −V ′µ −
1
3Λµ. The gauge field Aµ is given by

Aµ|Hl =

Λµ 0
0 −Λµ

Qµ

 , Aµ|Hq =

Λµ 0
0 −Λµ

Qµ

⊗ I3,

Aµ|Hl = ΛµI4, Aµ|Hq = −I4 ⊗ (V µ +
1

3
Λµ),

for some U(1) gauge field Λµ, an SU(2) gauge field Qµ and an SU(3) gauge

field Vµ. The action of the field Bµ = Aµ − JFAµJ−1
F on the fermions is

then given by

Bµ|Hl =

0 0
0 −2Λµ

Qµ − ΛµI2

 ,

Bµ|Hq =

 4
3ΛµI3 + Vµ 0

0 −2
3ΛµI3 + Vµ

(Qµ + 1
3ΛµI2)⊗ I3 + I2 ⊗ Vµ

 .

(11.2.1)

Note that the coefficients in front of Λµ in the above formulas are precisely
the well-known hypercharges of the corresponding particles, as given by the
following table:

Particle νR eR νL eL uR dR uL dL
Hypercharge 0 −2 −1 −1 4

3 −2
3

1
3

1
3

Next, let us turn to the scalar field φ, which is given by

φ|Hl =

(
0 Y ∗

Y 0

)
, φ|Hq =

(
0 X∗

X 0

)
⊗ I3, φ|Hl = 0, φ|Hq = 0,(11.2.2)

where we now have, for complex fields φ1, φ2,

Y =

(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
, X =

(
Yuφ1 −Ydφ2

Yuφ2 Ydφ1

)
.

NCG and Particle Physics, W.D. van Suijlekom



154
CHAPTER 11. THE NONCOMMUTATIVE GEOMETRY OF THE

STANDARD MODEL

The scalar field Φ is then given by

Φ = DF +

(
φ 0
0 0

)
+ JF

(
φ 0
0 0

)
J∗F =

(
S + φ T ∗

T (S + φ)

)
.(11.2.3)

Proposition 11.5. The action of the gauge group SG(M×FSM) on the
fluctuated Dirac operator

Dω = DM ⊗ I + γµ ⊗Bµ + γM ⊗ Φ

is implemented by

Λµ 7→ Λµ − iλ∂µλ, Qµ 7→ qQµq
∗ − iq∂µq∗, V µ 7→ mV µm

∗ − im∂µm∗,(
φ1 + 1
φ2

)
7→ λ q

(
φ1 + 1
φ2

)
,

for λ ∈ C∞
(
M,U(1)

)
, q ∈ C∞

(
M,SU(2)

)
and m ∈ C∞

(
M,SU(3)

)
.

Proof. We simply insert the formulas for the fields obtained in (11.2.1)
into the transformations given by (8.2.9). Let us write

u = (λ, q,m) ∈ C∞
(
M,U(1)× SU(2)× SU(3)

)
.

The term uωu∗ replaces Qµ by qQµq
∗, and V µ by mV µm

∗, respectively.

We also see that the term −iu∂µu∗ is given by −iλ∂µλ on νR, uR and Hl,

by the expression −iλ∂µλ = iλ∂µλ on eR and dR, by −iq∂µq∗ on (νL, eL)
and (uL, dL), and, finally, by −im∂µm∗ on Hq. We thus obtain the desired

transformation rules for Λµ, Qµ, and V µ.
For the transformation of φ, we separately calculate uφu∗ and u[DF , u

∗].
Since φ = 0 on Hl and Hq, we may restrict our calculation of uφu∗ to Hl

and Hq. On Hl we find

uφu∗ =

(
qλ 0
0 q

)(
0 Y ∗

Y 0

)(
q∗λ 0
0 q∗

)
=

(
0 qλY

∗q∗

qY q∗λ 0

)
,

which is still hermitian. We then calculate

qY q∗λ =

(
α β

−β α

)(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)(
λ 0
0 λ

)
=

(
λYν(αφ1 + βφ2) λYe(βφ1 − αφ2)

λYν(−βφ1 + αφ2) λYe(αφ1 + βφ2)

)
.

A similar computation on Hq gives the same transformation for the φ1 and
φ2.

Next, let us calculate the second term u[DF , u
∗]. The operator T in DF

only acts on νR, and therefore commutes with the algebra. Upon restricting
to Hl and Hq, the operator S commutes with the algebra. Hence, once again
we may restrict our calculation to Hl and Hq. The term u[S, u∗] is uSu∗−S
and we compute

uSu∗ =

(
0 qλY

∗
0 q
∗

qY0q
∗
λ 0

)
,

where Y0 =
(
Yν 0
0 Ye

)
on Hl and Y0 =

(
Yu 0
0 Yd

)
on Hq. We find that on Hl,

qY0q
∗
λ =

(
α β

−β α

)(
Yν 0
0 Ye

)(
λ 0
0 λ

)
=

(
λYνα λYeβ

−λYνβ λYeα

)
,
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and a similar expression holds on Hq after replacing Yν and Ye by Yu and
Yd, respectively.

Combining the two contributions to the transformation, we find that the
transformation uφu∗ + u[S, u∗] maps

Y =

(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
7→ Y ′ =

(
Yνφ

′
1 −Yeφ

′
2

Yνφ
′
2 Yeφ

′
1

)
,

where we defined

φ′1 := λ(αφ1 + βφ2 + α)− 1, φ′2 := λ(−βφ1 + αφ2 − β).

Rewriting this in terms of q completes the proof. �

Summarizing, the gauge fields derived from FSM take values in the Lie
algebra u(1)⊕ su(2)⊕ su(3) and transform according to the usual Standard
Model gauge transformations. The scalar field φ transforms as the Standard
Model Higgs field in the defining representation of SU(2), with hypercharge
−1.

11.3. The spectral action

In this section we calculate the spectral action for the almost-commutative
manifold M × FSM and derive the bosonic part of the Lagrangian of the
Standard Model. The general form of this Lagrangian has already been cal-
culated for almost-commutative manifolds in Section 8.12, so we only need
to insert the expressions (11.2.1) and (11.2.3) for the fields Φ and Bµ. We
start with a few lemmas that capture the rather tedious calculations that
are needed to obtain the traces of FµνF

µν , Φ2, Φ4 and (DµΦ)(DµΦ).
We denote the curvatures of the U(1), SU(2) and SU(3) gauge fields by

Λµν := ∂µΛν − ∂νΛµ,

Qµν := ∂µQν − ∂νQµ + i[Qµ, Qν ],(11.3.1)

Vµν := ∂µVν − ∂νVµ + i[Vµ, Vν ].

Lemma 11.6. The trace of the square of the curvature of Bµ is given by

TrHF (FµνF
µν) = 24

(10

3
ΛµνΛµν + Tr(QµνQ

µν) + Tr(VµνV
µν)
)
.

Proof. Let us first consider the trace over the lepton sector. Using
(11.2.1), we find that the curvature Fµν of Bµ can be written as

Fµν

∣∣∣
Hl

=

0 0
0 −2Λµν

Qµν − ΛµνI2

 ,

Fµν

∣∣∣
Hl

=

0 0
0 2Λµν

ΛµνI2 − (Q)µν

 ,
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where (Q)µν is the curvature of Qµ. The square of the curvature therefore
becomes

FµνF
µν
∣∣∣
Hl

=

0 0
0 4ΛµνΛµν

QµνQ
µν + ΛµνΛµνI2 − 2ΛµνQ

µν

 ,

FµνF
µν
∣∣∣
Hl

=

0 0
0 4ΛµνΛµν

(Q)µν(Q)µν + ΛµνΛµνI2 − 2Λµν(Q)µν

 .

Since Qµν is traceless, the cross-term −2ΛµνQ
µν drops out after taking the

trace. Note that since Qµ is hermitian we have Qµ = QTµ , and this also

holds for Qµν . This implies that

Tr
(
(Qµν)(Qµν)

)
= Tr

(
(Qµν)T (Qµν)T

)
= Tr

(
QµνQ

µν
)
.

Thus, with three generations we obtain

TrHl⊕Hl(FµνF
µν) = 36ΛµνΛµν + 6 Tr(QµνQ

µν).

For the quark sector, on Hq, we obtain the curvature

Fµν |Hq =

 4
3ΛµνI3 + Vµν 0

0 −2
3ΛµνI3 + Vµν

(Qµν + 1
3ΛµνI2)⊗ I3 + I2 ⊗ Vµν

 ,

where we have defined the curvature of the SU(3) gauge field by

Vµν := ∂µVν − ∂νVµ + i[Vµ, Vν ].

A similar expression can be derived on Hq.
If we calculate the trace of the square of the curvature Fµν , the cross-

terms again vanish, so we obtain

Tr|Hq (FµνF
µν) =

(
16

3
+

4

3
+

1

3
+

1

3

)
ΛµνΛµν

+ 3 Tr(QµνQ
µν) + 4 Tr(VµνV

µν).

We multiply this by a factor of 2 to include the trace over the anti-quarks,
and by a factor of 3 for the number of generations. Adding the result to the
trace over the lepton sector, we finally obtain

Tr(FµνF
µν) = 80ΛµνΛµν + 24 Tr(QµνQ

µν) + 24 Tr(VµνV
µν). �

Lemma 11.7. The traces of Φ2 and Φ4 are given by

Tr
(
Φ2
)

= 4a|H|2 + 2c,

Tr
(
Φ4
)

= 4b|H|4 + 8e|H|2 + 2d,

where H denotes the complex doublet (φ1 + 1, φ2) and

a = Tr
(
Y ∗ν Yν + Y ∗e Ye + 3Y ∗u Yu + 3Y ∗d Yd

)
,

b = Tr
(
(Y ∗ν Yν)2 + (Y ∗e Ye)

2 + 3(Y ∗u Yu)2 + 3(Y ∗d Yd)
2
)
,

c = Tr
(
Y ∗RYR

)
,(11.3.2)

d = Tr
(
(Y ∗RYR)2

)
,

e = Tr
(
Y ∗RYRY

∗
ν Yν

)
.
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Proof. The field Φ is given by (11.2.3), and its square equals

Φ2 =

(
(S + φ)2 + T ∗T (S + φ)T ∗ + T ∗(S + φ)

T (S + φ) + (S + φ)T (S + φ)
2

+ TT ∗

)
.

The square of the off-diagonal part yields T ∗T = TT ∗ = |YR|2 on νR and
νR, and zero on l 6= νR, νR. On the lepton sector of the Hilbert space, the
component S + φ is given by

S + φ|Hl =

(
0 Y ∗ + Y ∗0

Y + Y0 0

)
.

We then calculate

X := (Y + Y0)∗(Y + Y0) = |H|2
(
|Yν |2 0

0 |Ye|2
)
,

where we defined the complex doublet H := (φ1 + 1, φ2). Similarly, we
define X′ := (Y + Y0)(Y + Y0)∗, and note that Tr(X) = Tr(X′) by the cyclic
property of the trace. Since X = X∗ and Tr(X) = Tr(XT ), we also have
Tr(X) = Tr(X). Thus, on the lepton sector we obtain

TrHl⊕Hl
(
Φ2
)

= Tr(X + X′ + X + X
′
) + 2|YR|2

= 4 Tr(X) + 2|YR|2 = 4(|Yν |2 + |Ye|2)|H|2 + 2|YR|2.

On the quark sector we similarly find

TrHq⊕Hq
(
Φ2
)

= 4 · 3(|Yν |2 + |Ye|2)|H|2,

leading to the stated formula for Tr(Φ2).
In order to find the trace of Φ4, we calculate

(X + T ∗T )2 = |H|4
(
|Yν |4 0

0 |Ye|4
)

+ 2|H|2
(
|YR|2|Yν |2 0

0 0

)
+

(
|YR|4 0

0 0

)
.

We hence obtain

TrHl⊕Hl
(
Φ4
)

= Tr
(
4X2 + 4XT ∗T + 2(T ∗T )2

)
+ 4|H|2|YR|2|Yν |2

= 4|H|4
(
|Yν |4 + |Ye|4

)
+ 8|H|2|YR|2|Yν |2 + 2|YR|4.

On the quark sector, we obtain a similar result with Yν replaced by Yu and
Ye by Yd, leaving out the YR, and including a factor of 3 for the trace in
colour space. �

Lemma 11.8. The trace of (DµΦ)(DµΦ) is given by

Tr
(
(DµΦ)(DµΦ)

)
= 4a|DµH|2,

where H denotes the complex doublet (φ1 + 1, φ2), and the covariant deriv-
ative Dµ on H is defined as

DµH = ∂µH + iQaµσ
aH − iΛµH.

Proof. We need to calculate the commutator [Bµ,Φ]. We note that
Bµ commutes with the off-diagonal part of DF . It is therefore sufficient to
calculate the commutator [Bµ, S + φ] on Hl. We shall write Qµ = Q1

µσ
1 +
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Q2
µσ

2 +Q3
µσ

3 as a linear combination of Pauli matrices with real coefficients
Qaµ. By direct calculation on the lepton sector, we then obtain

[Bµ, S + φ]|Hl =


0 0 −Y νχ1 −Y νχ2

0 0 −Y eχ2 Y eχ1

Yνχ1 Yeχ2 0 0
Yνχ2 −Yeχ1 0 0

 ,

where we defined the new doublet χ = (χ1, χ2) by

χ1 := (φ1 + 1)(Q3
µ − Λµ) + φ2(Q1

µ − iQ2
µ),

χ2 := (φ1 + 1)(Q1
µ + iQ2

µ) + φ2(−Q3
µ − Λµ).

We then obtain

Dµ(S + φ)|Hl = ∂µφ+ i[Bµ, S + φ]

=


0 0 Y ν(∂µφ1 − iχ1) Y ν(∂µφ2 − iχ2)
0 0 −Y e(∂µφ2 + iχ2) Y e(∂µφ1 + iχ1)

Yν(∂µφ1 + iχ1) −Ye(∂µφ2 − iχ2) 0 0

Yν(∂µφ2 + iχ2) Ye(∂µφ1 − iχ1) 0 0

 .

As φ commutes with the gauge field Vµ, the corresponding formula for
Dµ(S + φ) on the quark sector is identical (after having tensored with I3 in
colour space).

Since we want to calculate the trace of the square of DµΦ, it is sufficient
to determine only the terms on the diagonal of (DµΦ)(DµΦ). We find

TrHl⊕Hq

(
(Dµ(S + φ))(Dµ(S + φ))

)
= 2a

(
|∂µφ1 + iχ1|2 + |∂µφ2 + iχ2|2

)
,

where we have used

a = Tr
(
Y ∗ν Yν + Y ∗e Ye + 3Y ∗u Yu + 3Y ∗d Yd

)
as in (11.3.2). The column vector H is given by the complex doublet (φ1 +
1, φ2). We then note that ∂µφ+ iχ is equal to the covariant derivative DµH,
so that

TrHl⊕Hq

(
(Dµ(S + φ))(Dµ(S + φ))

)
= 2a|DµH|2.

The trace over Hl ⊕Hq yields exactly the same contribution, so we need to
multiply this by 2, which gives the desired result. �

Proposition 11.9. The spectral action of the almost-commutative man-
ifold M × FSM is given by

Tr

(
f
(Dω

Λ

))
∼
∫
M
L(gµν ,Λµ, Qµ, Vµ, H)

√
gd4x+O(Λ−1),

for the Lagrangian

L(gµν ,Λµ, Qµ, Vµ, H) := 96LM (gµν) + LA(Λµ, Qµ, Vµ) + LH(gµν ,Λµ, Qµ, H),

where LM (gµν) is defined in Proposition 8.10, LA gives the kinetic terms of
the gauge fields as

LA(Λµ, Qµ, Vµ) :=
f(0)

π2

(10

3
ΛµνΛµν + Tr(QµνQ

µν) + Tr(VµνV
µν)
)
,
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and the Higgs potential LH (ignoring the boundary term) equals

LH(gµν ,Λµ, Qµ, H) :=
bf(0)

2π2
|H|4 +

−2af2Λ2 + ef(0)

π2
|H|2

− cf2Λ2

π2
+
df(0)

4π2
+
af(0)

12π2
s|H|2 +

cf(0)

24π2
s+

af(0)

2π2
|DµH|2.

Proof. We use the general form of the spectral action of an almost-
commutative manifold as calculated in Proposition 8.12, and combine it
with the previous Lemmas. The gravitational Lagrangian LM obtains a
factor 96 from the trace over HF . From Lemma 11.6 we immediately find
the term LA. Combining the formulas of Tr

(
Φ2
)

and Tr
(
Φ4
)

obtained in
Lemma 11.7, we find the Higgs potential

− f2Λ2

2π2
Tr(Φ2) +

f(0)

8π2
Tr(Φ4)

=
bf(0)

2π2
|H|4 +

−2af2Λ2 + ef(0)

π2
|H|2 − cf2Λ2

π2
+
df(0)

4π2
.

The coupling of the Higgs field to the scalar curvature s is given by

f(0)

48π2
sTr(Φ2) =

af(0)

12π2
s|H|2 +

cf(0)

24π2
s,

where the second term yields a contribution to the Einstein-Hilbert term

−f2Λ2

3π2 s of LM . Finally, the kinetic term of the Higgs field including minimal
coupling to the gauge fields is obtained from Lemma 11.8 as

f(0)

8π2
Tr
(
(DµΦ)(DµΦ)

)
=
af(0)

2π2
|DµH|2. �

11.3.1. Coupling constants and unification. In Proposition 11.9
we calculated the bosonic Lagrangian from the spectral action. We now
rescale the Higgs and gauge fields Λµ, Qµ, Vµ in such a way that their kinetic
terms are properly normalized.

We start with the Higgs field, and require that its kinetic term is nor-
malized as usual, i.e., ∫

M

1

2
|DµH|2

√
gd4x.

This normalization is evidently achieved by rescaling the Higgs field as

H 7→

√
π2

af(0)
H.(11.3.3)

Next, write the non-abelian gauge fields as Qµ = Qaµσ
a and Vµ = V i

µλ
i, for

the Gell-Mann matrices λi and real coefficients V i
µ. We introduce coupling

constants g1, g2 and g3 into the model by rescaling the gauge fields as

Λµ =
1

2
g1Yµ, Qaµ =

1

2
g2W

a
µ , V i

µ =
1

2
g3G

i
µ.

Using the relations Tr(σaσb) = 2δab and Tr(λiλj) = 2δij , we now find
that the Lagrangian LA of Proposition 11.9 can be written as

LA(Yµ,Wµ, Gµ) =
f(0)

2π2

(5

3
g1

2YµνY
µν + g2

2WµνW
µν + g3

2GµνG
µν
)
.
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It is natural to require that these kinetic terms are properly normalized, and
this imposes the relations

f(0)

2π2
g3

2 =
f(0)

2π2
g2

2 =
5f(0)

6π2
g1

2 =
1

4
.(11.3.4)

The coupling constants are then related by

g3
2 = g2

2 =
5

3
g1

2,

which is precisely the relation between the coupling constants at unification,
common to grand unified theories (GUT). We shall further discuss this in
Section 12.2.

In terms of the rescaled fields, we obtain the following result:

Theorem 11.10. The spectral action (ignoring topological and boundary
terms) of the almost-commutative manifold M × FSM is given by

SB =

∫
M

(
48f4Λ4

π2
− cf2Λ2

π2
+
df(0)

4π2
+

(
cf(0)

24π2
− 4f2Λ2

π2

)
s− 3f(0)

10π2
(Cµνρσ)2

+
1

4
YµνY

µν +
1

4
W a
µνW

µν,a +
1

4
GiµνG

µν,i +
bπ2

2a2f(0)
|H|4

− 2af2Λ2 − ef(0)

af(0)
|H|2 +

1

12
s|H|2 +

1

2
|DµH|2

)
√
gd4x,

where the covariant derivative DµH is given by

DµH = ∂µH +
1

2
ig2W

a
µσ

aH − 1

2
ig1YµH.(11.3.5)

11.3.2. The Higgs mechanism. Writing down a gauge theory with
massive gauge bosons, one encounters the notorious difficulty that the mass
terms of these gauge bosons are not gauge invariant. The Higgs field plays
a central role in obtaining these mass terms within a gauge theory. The
celebrated Higgs mechanism provides a spontaneous breaking of the gauge
symmetry and thus generates mass terms. In this section we describe how
the Higgs mechanism breaks the U(1) × SU(2) symmetry and introduces
mass terms for some of the gauge bosons of the Standard Model.

In Theorem 11.10 we obtained the Higgs Lagrangian LH . If we drop all
the terms that are independent of the Higgs field H, and also ignore the
coupling of the Higgs to the gravitational field, we obtain the Lagrangian

L(gµν , Yµ,W
a
µ , H) :=

bπ2

2a2f(0)
|H|4 − 2af2Λ2 − ef(0)

af(0)
|H|2 +

1

2
|DµH|2.

(11.3.6)

We wish to find the value of H for which this Lagrangian obtains its mini-
mum value.

Hence, we consider the Higgs potential

Lpot(H) :=
bπ2

2a2f(0)
|H|4 − 2af2Λ2 − ef(0)

af(0)
|H|2.(11.3.7)
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Figure 11.3. The potential Lpot(H) of (11.3.7) with
2af2Λ2 > ef(0)

If 2af2Λ2 < ef(0), the minimum of this potential is obtained at H = 0,
and in this case there will be no symmetry breaking. Indeed, the minimum
H = 0 is symmetric under the full symmetry group U(1)× SU(2).

We now assume that 2af2Λ2 > ef(0), so that the potential has the form
depicted in Figure 11.3. The minimum of the Higgs potential is then reached
if the field H satisfies

|H|2 =
2a2f2Λ2 − aef(0)

bπ2
,(11.3.8)

and none such minimum is invariant any more under U(1) × SU(2). The
fields that satisfy this relation are called the vacuum states of the Higgs field.
We choose a vacuum state (v, 0), where the vacuum expectation value v is a
real parameter such that v2 is given by the right-hand side of (11.3.8). From
the transformation rule of Proposition 11.5, we see that the vacuum state
(v, 0) is still invariant under a subgroup of U(1)× SU(2). This subgroup is
isomorphic to U(1) and is given by{(

λ, qλ =

(
λ 0

0 λ

))
: λ ∈ U(1)

}
⊂ U(1)× SU(2).

Let us simplify the expression for the Higgs potential. First, we note that
the potential only depends on the absolute value |H|. A transformation of
the doublet H by an element (λ, q) ∈ U(1)× SU(2) is written as H 7→ uH
with u = λq a unitary matrix. Since a unitary transformation preserves
absolute values, we see that Lpot(uH) = Lpot(H) for any u ∈ U(1)×SU(2).
We can use this gauge freedom to transform the Higgs field into a simpler
form. Consider elements of SU(2) of the form(

α −β
β α

)
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such that |α|2 + |β|2 = 1. The doublet H can in general be written as
(h1, h2), for some h1, h2 ∈ C. We then see that we may write(

h1

h2

)
=

(
α −β
β α

)(
|H|
0

)
, α =

h1

|H|
, β =

h2

|H|
,

which means that we may always use the gauge freedom to write the doublet
H in terms of one real parameter. Let us define a new real-valued field h by
setting h(x) := |H(x)| − v. We then obtain

H = u(x)

(
v + h(x)

0

)
, u(x) :=

(
α(x) −β(x)

β(x) α(x)

)
.(11.3.9)

Inserting this transformed Higgs field into the Higgs potential, we obtain
the following expression in terms of the real parameter v and the real field
h(x):

Lpot(h) =
bf(0)

2π2
(v + h)4 − 2af2Λ2 − ef(0)

π2
(v + h)2

=
bπ2

2a2f(0)
(h4 + 4vh3 + 6v2h2 + 4v3h+ v4)

− 2af2Λ2 − ef(0)

af(0)
(h2 + 2vh+ v2).

Using (11.3.8), the value of v2 is given by

v2 =
2a2f2Λ2 − aef(0)

bπ2
.

We then see that in Lpot the terms linear in h cancel out. This is of course
no surprise, since the change of variables |H(x)| 7→ v + h(x) means that
at h(x) = 0 we are at the minimum of the potential, where the first order
derivative of the potential with respect to h must vanish. We thus obtain
the simplified expression

Lpot(h) =
bπ2

2a2f(0)

(
h4 + 4vh3 + 4v2h2 − v4

)
.(11.3.10)

We now observe that the field h(x) has acquired a mass term and has two
self-interactions given by h3 and h4. We also have another contribution to
the cosmological constant, given by −v4.

11.3.2.1. Massive gauge bosons. Next, let us consider what this proce-
dure entails for the remainder of the Higgs Lagrangian LH . We first consider
the kinetic term of H, including its minimal coupling to the gauge fields,
given by

Lmin(Yµ,W
a
µ , H) :=

1

2
|DµH|2.

The transformation of (11.3.9) is a gauge transformation, and to make sure
that Lmin is invariant under this transformation, we also need to transform
the gauge fields. The field Yµ is unaffected by the local SU(2)-transformation
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u(x). The transformation of Wµ = W a
µσ

a is obtained from Proposition 11.5
and is given by

Wµ → uWµu
∗ − 2i

g2
u∂µu

∗.

One then easily checks that we obtain the transformation DµH 7→ uDµH, so
that |DµH|2 is invariant under such transformations. So we can just insert
the doublet (v + h, 0) into (11.3.5) and obtain

DµH = ∂µ

(
v + h

0

)
+

1

2
ig2W

a
µσ

a

(
v + h

0

)
− 1

2
ig1Yµ

(
v + h

0

)
= ∂µ

(
h
0

)
+

1

2
ig2W

1
µ

(
0

v + h

)
+

1

2
ig2W

2
µ

(
0

i(v + h)

)
+

1

2
ig2W

3
µ

(
v + h

0

)
− 1

2
ig1Yµ

(
v + h

0

)
.

We can then calculate its square as

|DµH|2 = (DµH)∗(DµH)

= (∂µh)(∂µh) +
1

4
g2

2(v + h)2(Wµ,1W 1
µ +Wµ,2W 2

µ +Wµ,3W 3
µ)

+
1

4
g1

2(v + h)2B
′µYµ −

1

2
g1g2(v + h)2B

′µW 3
µ .

Note that the last term yields a mixing of the gauge fields Yµ and W 3
µ ,

parametrized by the electroweak mixing angle θw defined by

cw := cos θw =
g2√

g1
2 + g2

2
, sw := sin θw =

g1√
g1

2 + g2
2
.

Note that the relation g2
2 = 3g1

2 for the coupling constants implies that we
obtain the values cos2 θw = 1

4 and sin2 θw = 3
4 at the electroweak unification

scale ΛEW . Let us now define new gauge fields by

Wµ :=
1√
2

(W 1
µ + iW 2

µ), W ∗µ :=
1√
2

(W 1
µ − iW 2

µ),

Zµ := cwW
3
µ − swYµ, A′µ := swW

3
µ + cwYµ,(11.3.11)

where we have added a prime to Aµ to distinguish the (photon) field from
the general form of the inner fluctuations in Equation (8.2.1). We now show
that the new fields Zµ and A′µ become mass eigenstates. The fields W 1

µ and

W 2
µ were already mass eigenstates, but the fields Wµ and W ∗µ are chosen so

that they obtain a definite charge. We can write

W 1
µ =

1√
2

(Wµ +W ∗µ), W 2
µ =

−i√
2

(Wµ −W ∗µ),

W 3
µ = swA

′
µ + cwZµ, Yµ = cwA

′
µ − swZµ,

and inserting this into the expression for |DµH|2 yields

1

2
|DµH|2 =

1

2
(∂µh)(∂µh) +

1

4
g2

2(v + h)2Wµ∗Wµ +
1

8

g2
2

cw2
(v + h)2ZµZµ.

(11.3.12)
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Thus, we see that the fields Wµ, W ∗µ and Zµ acquire a mass term (where Zµ
has a larger mass than Wµ,W

∗
µ) and that the fields A′µ are massless. The

(tree-level) masses of the W -boson and Z-boson are evidently given by

MW =
1

2
vg2, MZ =

1

2
v
g2

cw
.(11.3.13)

11.4. The fermionic action

In order to obtain the full Lagrangian for the Standard Model, we also
need to calculate the fermionic action Sf of Definition 7.3. First, let us have
a closer look at the fermionic particle fields and their interactions.

By an abuse of notation, let us write νλ, νλ, eλ, eλ, uλc, uλc, dλc, d
λc

for a
set of independent Dirac spinors. We then write a generic Grassmann vector

ξ̃ ∈ H+
cl as follows:

ξ̃ = νλL ⊗ νλL + νλR ⊗ νλR + νλR ⊗ νλL + νλL ⊗ νλR
+ eλL ⊗ eλL + eλR ⊗ eλR + eλR ⊗ eλL + eλL ⊗ eλR
+ uλcL ⊗ uλcL + uλcR ⊗ uλcR + uλcR ⊗ uλcL + uλcL ⊗ uλcR
+ dλcL ⊗ dλcL + dλcR ⊗ dλcR + d

λc
R ⊗ dλcL + d

λc
L ⊗ dλcR ,

where in each tensor product it should be clear that the first component is
a Weyl spinor, and the second component is a basis element of HF . Here
λ = 1, 2, 3 labels the generation of the fermions, and c = r, g, b labels the
color index of the quarks.

Let us have a closer look at the gauge fields of the electroweak sector.
For the physical gauge fields of (11.3.11) we can write

Q1
µ + iQ2

µ =
1√
2
g2Wµ, Q1

µ − iQ2
µ =

1√
2
g2W

∗
µ ,

Q3
µ − Λµ =

g2

2cw
Zµ, Λµ =

1

2
swg2A

′
µ −

1

2

sw
2g2

cw
Zµ,

−Q3
µ − Λµ = −swg2A

′
µ +

g2

2cw
(1− 2cw

2)Zµ,

Q3
µ +

1

3
Λµ =

2

3
swg2A

′
µ −

g2

6cw
(1− 4cw

2)Zµ,

−Q3
µ +

1

3
Λµ = −1

3
swg2A

′
µ −

g2

6cw
(1 + 2cw

2)Zµ.

(11.4.1)

Here we have rescaled the Higgs field in (11.3.3), so we can write H =√
af(0)

π (φ1 + 1, φ2). We parametrize the Higgs field as

H = (v + h+ iφ0, i
√

2φ−),

where φ0 is real and φ− is complex. We write φ+ for the complex conjugate
of φ−. Thus, we can write

(φ1 + 1, φ2) =
π√
af(0)

(v + h+ iφ0, i
√

2φ−).(11.4.2)

As in Remark 9.8, we will need to impose a further restriction on the
mass matrices in DF , in order to obtain physical mass terms in the fermionic
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action. From here on, we will require that the matrices Yx are anti-hermitian,
for x = ν, e, u, d. We then define the hermitian mass matrices mx by writing

Yx =: −i
√
af(0)

πv
mx.(11.4.3)

Similarly, we also take YR to be anti-hermitian, and we introduce a hermitian
(and symmetric) Majorana mass matrix mR by writing

YR = −imR.(11.4.4)

Theorem 11.11. The fermionic action of the almost-commutative man-
ifold M × FSM is given by

SF =

∫
M

(
Lkin + Lgf + LHf + LR

)√
gd4x,

where, suppressing all generation and color indices, the kinetic terms of the
fermions are given by

Lkin := −i〈JMν, γµ∇Sµν〉 − i〈JMe, γµ∇Sµe〉
− i〈JMu, γµ∇Sµu〉 − i〈JMd, γµ∇Sµd〉,

the minimal coupling of the gauge fields to the fermions is given by

Lgf := swg2A
′
µ

(
− 〈JMe, γµe〉+ 2

3〈JMu, γ
µu〉 − 1

3〈JMd, γ
µd〉
)

+
g2

4cw
Zµ

(
〈JMν, γµ(1 + γM )ν〉+ 〈JMe, γµ(4sw

2 − 1− γM )e〉

+ 〈JMu, γµ(−8
3sw

2 + 1 + γM )u〉

+ 〈JMd, γµ(4
3sw

2 − 1− γM )d〉
)

+
g2

2
√

2
Wµ

(
〈JMe, γµ(1 + γM )ν〉+ 〈JMd, γµ(1 + γM )u〉

)
+

g2

2
√

2
W ∗µ

(
〈JMν, γµ(1 + γM )e〉+ 〈JMu, γµ(1 + γM )d〉

)
+
g3

2
Giµ

(
〈JMu, γµλiu〉+ 〈JMd, γµλid〉

)
,

the Yukawa couplings of the Higgs field to the fermions are given by

LHf := i

(
1 +

h

v

)(
〈JMν,mνν〉+ 〈JMe,mee〉

+ 〈JMu,muu〉+ 〈JMd,mdd〉
)

+
φ0

v

(
〈JMν, γMmνν〉 − 〈JMe, γMmee〉

+ 〈JMu, γMmuu〉 − 〈JMd, γMmdd〉
)

+
φ−√
2v

(
〈JMe,me(1 + γM )ν〉 − 〈JMe,mν(1− γM )ν〉

)
+

φ+

√
2v

(
〈JMν,mν(1 + γM )e〉 − 〈JMν,me(1− γM )e〉

)
+

φ−√
2v

(
〈JMd,md(1 + γM )u〉 − 〈JMd,mu(1− γM )u〉

)
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+
φ+

√
2v

(
〈JMu,mu(1 + γM )d〉 − 〈JMu,md(1− γM )d〉

)
,

and, finally, the Majorana masses of the right-handed neutrinos (and left-
handed anti-neutrinos) are given by

LR := i〈JMνR,mRνR〉+ i〈JMνL,mRνL〉.

Proof. The proof is similar to Proposition 9.7, though the calculations
are now a little more complicated. From Definition 7.3 we know that the

fermionic action is given by SF = 1
2(Jξ̃,Dω ξ̃), where the fluctuated Dirac

operator is given by

Dω = DM ⊗ 1 + γµ ⊗Bµ + γM ⊗ Φ.

We rewrite the inner product on H as (ξ, ψ) =
∫
M 〈ξ, ψ〉

√
gd4x. As in

Proposition 9.7, the expressions for Jξ̃ = (JM ⊗ JF )ξ̃ and (DM ⊗ 1)ξ̃ are

obtained straightforwardly. Using the symmetry of the form (JM χ̃,DM ψ̃),
and then we obtain the kinetic terms as

1

2
〈Jξ̃, (DM ⊗ 1)ξ̃〉 = 〈JMνλ, DMν

λ〉+ 〈JMeλ, DMe
λ〉

+ 〈JMuλc, DMu
λc〉+ 〈JMd

λc
, DMd

λc〉.

The other two terms in the fluctuated Dirac operator yield more complicated

expressions. For the calculation of (γµ⊗Bµ)ξ̃, we use (11.2.1) for the gauge
field Bµ, and insert the expressions of (11.4). As in Proposition 9.7, we

then use the antisymmetry of the form (JM χ̃, γ
µψ̃). For the coupling of the

fermions to the gauge fields, a direct calculation then yields

1

2
〈Jξ̃, (γµ ⊗Bµ)ξ̃〉 =

swg2A
′
µ

(
− 〈JMeλ, γµeλ〉+ 2

3〈JMu
λc, γµuλc〉 − 1

3〈JMd
λc
, γµdλc〉

)
+

g2

4cw
Zµ

(
〈JMνλ, γµ(1 + γM )νλ〉+ 〈JMeλ, γµ(4sw

2 − 1− γM )eλ〉

+ 〈JMuλc, γµ(−8
3sw

2 + 1 + γM )uλc〉

+ 〈JMd
λc
, γµ(4

3sw
2 − 1− γM )dλc〉

)
+

g2

2
√

2
Wµ

(
〈JMeλ, γµ(1 + γM )νλ〉+ 〈JMd

λc
, γµ(1 + γM )uλc〉

)
+

g2

2
√

2
W ∗µ

(
〈JMνλ, γµ(1 + γM )eλ〉+ 〈JMuλc, γµ(1 + γM )dλc〉

)
+
g3

2
Giµλ

dc
i

(
〈JMuλd, γµuλc〉+ 〈JMd

λd
, γµdλc〉

)
,

where in the weak interactions the projection operator 1
2(1 + γM ) is used to

select only the left-handed spinors.

Next, we need to calculate 1
2(Jξ̃, (γM ⊗ Φ)ξ̃). The Higgs field is given

by Φ = DF + φ+ JFφJ
∗
F , where φ is given by (11.2.2). Let us first focus on

the four terms involving only the Yukawa couplings for the neutrinos. Using
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the symmetry of the form (JM χ̃, γM ψ̃), we obtain

1

2
〈JMνκR, γMY κλ

ν (φ1 + 1)νλR〉+
1

2
〈JMνκR, γMY λκ

ν (φ1 + 1)νλR〉

+
1

2
〈JMνκL, γMY

λκ
ν (φ1 + 1)νλL〉+

1

2
〈JMνκL, γMY

κλ
ν (φ1 + 1)νλL〉

= 〈JMνκR, γMY κλ
ν (φ1 + 1)νλR〉+ 〈JMνκL, γMY

λκ
ν (φ1 + 1)νλL〉.

Using (11.4.2) and (11.4.3), and dropping the generation labels, we can now
rewrite

〈JMνR, γMYν(φ1 + 1)νR〉+ 〈JMνL, γMY ν(φ1 + 1)νL〉

= i

(
1 +

h

v

)
〈JMν,mνν〉 −

φ0

v
〈JMν, γMmνν〉.

For e, u, d we obtain similar terms, the only difference being that for e and
d the sign for φ0 is changed. We also find terms that mix neutrino’s and

electrons; by the symmetry of the form (JM χ̃, γM ψ̃), these are given by the
four terms
√

2

v

(
φ−〈JMeL,meνL〉+ φ+〈JMνL,mνeL〉

− φ−〈JMeR,mννR〉 − φ+〈JMνR,meeR〉
)
.

There are four similar terms with ν and e replaced by u and d, respectively.
We can use the projection operators 1

2(1±γM ) to select left- or right-handed
spinors. Lastly, the off-diagonal part T in the finite Dirac operator DF yields
the Majorana mass terms for the right-handed neutrinos (and left-handed
anti-neutrinos). Using (11.4.4), these Majorana mass terms are given by

〈JMνR, γMYRνR〉+ 〈JMνL, γMY RνL〉 = i〈JMνR,mRνR〉+ i〈JMνL,mRνL〉.
Thus, we find that the mass terms of the fermions and their couplings to
the Higgs field are given by

1

2
〈Jξ̃, (γM ⊗ Φ)ξ̃〉 =

i

(
1 +

h

v

)(
〈JMν,mνν〉+ 〈JMe,mee〉+ 〈JMu,muu〉+ 〈JMd,mdd〉

)
+
φ0

v

(
〈JMν, γMmνν〉 − 〈JMe, γMmee〉+ 〈JMu, γMmuu〉 − 〈JMd, γMmdd〉

)
+

φ−√
2v

(
〈JMe,me(1 + γM )ν〉 − 〈JMe,mν(1− γM )ν〉

)
+

φ+

√
2v

(
〈JMν,mν(1 + γM )e〉 − 〈JMν,me(1− γM )e〉

)
+

φ−√
2v

(
〈JMd,md(1 + γM )u〉 − 〈JMd,mu(1− γM )u〉

)
+

φ+

√
2v

(
〈JMu,mu(1 + γM )d〉 − 〈JMu,md(1− γM )d〉

)
+ i〈JMνR,mRνR〉+ i〈JMνL,mRνL〉,
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where we have suppressed all indices. �

In Theorem 11.10 and Theorem 11.11 we have calculated the action
functional of Definitions 7.1 and 7.3 for the almost-commutative manifold
M × FSM defined in this Chapter. To summarize, we have geometrically
derived:

(1) The full particle contents of the Standard Model, to wit,
• the W , Z bosons, photons, and gluons, corresponding to the
U(1)× SU(2)× SU(3) Standard Model gauge group.
• the Higgs boson.
• three generations of left and right-handed leptons and quarks.

(2) The dynamics and all interactions of the Standard Model, including
• self-interactions of the gauge bosons, and coupling to fermions
• masses for the fermions, including masses for the neutrinos,

and coupling to the Higgs field
• Higgs spontaneous symmetry breaking mechanism, giving masses

to the W and Z boson, and also to the Higgs boson itself.
(3) Minimal coupling to gravity.

In addition to the usual Standard Model, there are relations between
the coupling constants in the Lagrangian of Theorem 11.10. In the next
Chapter, we will analyze this in more detail and derive physical predictions
from these relations.

Notes

1. For an exposition of the Standard Model of particle physics, we refer to [72, 120].

Section 11.1. The finite space

2. The first description of the finite space FSM yielding the Standard Model (without
right-handed neutrinos though) was given by Connes in [63], based on [59, 71] (see also
the review [146]). As already mentioned in the Notes to Chapter 7, the spectral action
principle was formulated in [49, 50] where it was also applied to the Standard Model.
Extensive computations on this model can be found in [168].

In [54] the noncommutative geometric formulation of the Standard Model got in good
shape, mainly because of the choice for the finite space to be of KO-dimension 6 [20, 68].
This solved the problem of fermion doubling pointed out in [138] (see also the discussion
in [65, Ch. 1, Sect. 16.3]), and at the same time allowed for the introduction of Majorana
masses for right-handed neutrinos, along with the seesaw mechanism. Here, we follow
[186].

The derivation of the Standard Model algebra AF from the list of finite irreducible
geometries of Section 3.4 was first obtained in [51], This includes Proposition 11.1 of which
we here give an alternative, diagrammatic proof.

The moduli space of Dirac operators DF of the form (11.1.2) was analyzed in [54,
Section 2.7] (cf. [65, Section 1.13.5]) and in [42].

Section 11.2. The gauge theory

3. The condition of unimodularity was imposed in the context of the Standard Model in
[54, Sect. 2.5] (see also [65, Ch. 1, Sect. 13.3]). The derivation of the hypercharges from
the unimodularity condition is closely related to the equivalence between unimodularity in
the almost-commutative Standard Model and anomaly cancellation for the usual Standard
Model [2].

4. Proposition 11.4 agrees with [54, Prop. 2.16] (see also [65, Prop. 1.185]). For the
derivation of the Standard Model gauge group GSM , we refer to [18].
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Section 11.3. The spectral action

5. The coefficients a, b, c, d and e in Lemma 11.7 agree with those appearing in [54] (see
also [65, Ch. 1, Sect. 15.2]).

6. The Higgs mechanism is attributed to Englert, Brout and Higgs [86, 108].

7. The form of the Higgs field in (11.3.9) that is obtained after a suitable change of basis
is called unitary gauge and was introduced by Weinberg in [193, 194] (see also [195,
Chapter 21]).
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CHAPTER 12

Phenomenology of the noncommutative Standard
Model

In Theorem 11.10 and Theorem 11.11, we have derived the full La-
grangian for the Standard Model from the almost-commutative manifold
M × FSM . The coefficients in this Lagrangian are given in terms of:

• the value f(0) and the moments f2 and f4 of the function f in the
spectral action;
• the cut-off scale Λ in the spectral action;
• the vacuum expectation value v of the Higgs field;
• the coefficients a, b, c, d, e of (11.3.2) that are determined by the

mass matrices in the finite Dirac operator DF .

One can find several relations among these coefficients in the Lagrangian,
which we shall derive in the following section. Inspired by the relation
g3

2 = g2
2 = 5

3g1
2 obtained from (11.3.4), we will assume that these rela-

tions hold at the unification scale. Subsequently, we use the renormalization
group equations to obtain predictions for the Standard Model at ‘lower’ (i.e.
particle accelerator) energies.

12.1. Mass relations

12.1.1. Fermion masses. Recall from (11.4.3) that we defined the
mass matrices mx of the fermions by rewriting the matrices Yx in the finite
Dirac operator DF . Inserting the formula (11.4.3) for Yx into the expression
for a given by (11.3.2), we obtain

a =
af(0)

π2v2
Tr
(
m∗νmν +m∗eme + 3m∗umu + 3m∗dmd

)
,

which yields

Tr
(
m∗νmν +m∗eme + 3m∗umu + 3m∗dmd

)
=
π2v2

f(0)
.

From (11.3.13) we know that the mass of the W -boson is given by MW =
1
2vg2. Using the normalization (11.3.4), expressing g2 in terms of f(0), we
can then write

f(0) =
π2v2

8MW
2 .(12.1.1)

Inserting this into the expression above, we obtain a relation between the
fermion mass matrices mx and the W -boson mass MW , viz.

Tr
(
m∗νmν +m∗eme + 3m∗umu + 3m∗dmd

)
= 2g2

2v2 = 8MW
2.(12.1.2)
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If we assume that the mass of the top quark is much larger than all other
fermion masses, we may neglect the other fermion masses. In that case, the
above relation would yield the constraint

mtop .

√
8

3
MW .(12.1.3)

12.1.2. The Higgs mass. We obtain a mass mh for the Higgs boson
h by writing the term proportional to h2 in (11.3.10) in the form

bπ2

2a2f(0)
4v2h2 =

1

2
mh

2h2.

Thus, the Higgs mass is given by

mh =
2π
√
bv

a
√
f(0)

.(12.1.4)

Inserting (12.1.1) into this expression for the Higgs mass, we see that MW

and mh are related by

mh
2 = 32

b

a2
MW

2.

Next, we introduce the quartic Higgs coupling constant λ by writing

bπ2

2a2f(0)
h4 =:

1

24
λh4.

From (11.3.4) we then find

λ = 24
b

a2
g2

2,(12.1.5)

so that the (tree-level) Higgs mass can be expressed in terms of the mass MW

of the W -boson, the coupling constant g2 and the quartic Higgs coupling λ
as

mh
2 =

4λMW
2

3g2
2

.(12.1.6)

12.1.3. The seesaw mechanism. Let us consider the mass terms for
the neutrinos. The matrix DF described in Section 11.1 provides the Dirac
masses as well as the Majorana masses of the fermions. After a rescaling
as in (11.4.3), the mass matrix restricted to the subspace of HF with basis
{νL, νR, νL, νR} is given by

0 m∗ν m
∗
R 0

mν 0 0 0
mR 0 0 m∗ν
0 0 mν 0

 .

Suppose we consider only one generation, so thatmν andmR are just scalars.
The eigenvalues of the above mass matrix are then given by

±1

2
mR ±

1

2

√
mR

2 + 4mν
2.

If we assume that mν � mR, then these eigenvalues are approximated by

±mR and ±mν2

mR
. This means that there is a heavy neutrino, for which the

Dirac mass mν may be neglected, so that its mass is given by the Majorana
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mass mR. However, there is also a light neutrino, for which the Dirac and

Majorana terms conspire to yield a mass mν2

mR
, which is in fact much smaller

than the Dirac mass mν . This is called the seesaw mechanism. Thus, even
though the observed masses for these neutrinos may be very small, they
might still have large Dirac masses (or Yukawa couplings).

From (12.1.2) we obtained a relation between the masses of the top quark
and the W -boson by neglecting all other fermion masses. However, because
of the seesaw mechanism it might be that one of the neutrinos has a Dirac
mass of the same order of magnitude as the top quark. In that case, it would
not be justified to neglect all other fermion masses, but instead we need to
correct for such massive neutrinos.

Let us introduce a new parameter ρ (typically taken to be of order 1)
for the ratio between the Dirac mass mν for the tau-neutrino and the mass
mtop of the top quark at unification scale, so we write mν = ρmtop. Instead
of (12.1.3), we then obtain the restriction

mtop .

√
8

3 + ρ2
MW .(12.1.7)

12.2. Renormalization group flow

In this section we evaluate the renormalization group equations (RGEs)
for the Standard Model from ordinary energies up to the unification scale.
For the validity of these RGEs we need to assume the existence of a ‘big
desert’ up to the grand unification scale. This means that one assumes that:

• there exist no new particles (besides the known Standard Model
particles) with a mass below the unification scale;
• perturbative quantum field theory remains valid throughout the big

desert.

Furthermore, we also ignore any gravitational contributions to the renor-
malization group flow.

12.2.1. Coupling constants. In (11.3.1) we introduced the coupling
constants for the gauge fields, and we obtained the relation g3

2 = g2
2 = 5

3g1
2.

This is precisely the relation between the coupling constants at (grand)
unification, common to grand unified theories (GUT). Thus, it would be
natural to assume that our model is defined at the scale ΛGUT . However, it
turns out that there is no scale at which the relation g3

2 = g2
2 = 5

3g1
2 holds

exactly, as we show below.
The renormalization group β-functions of the (minimal) standard model

read

dgi
dt

= − 1

16π2
big

3
i ; b =

(
−41

6
,
19

6
, 7

)
,

where t = logµ. At first order, these equations are uncoupled from all
other parameters of the Standard Model, and the solutions for the running
coupling constants gi(µ) at the energy scale µ are easily seen to satisfy

gi(µ)−2 = gi(MZ)−2 +
bi

8π2
log

µ

MZ
,(12.2.1)
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where MZ is the experimental mass of the Z-boson:

MZ = 91.1876± 0.0021 GeV.

For later convenience, we also recall that the experimental mass of the W -
boson is

(12.2.2) MW = 80.399± 0.023 GeV.

The experimental values of the coupling constants at the energy scale MZ

are known too, and are given by

g1(MZ) = 0.3575± 0.0001,

g2(MZ) = 0.6519± 0.0002,

g3(MZ) = 1.220± 0.004.

Using these experimental values, we obtain the running of the coupling con-
stants in Figure 12.1. As can be seen in this figure, the running coupling
constants do not meet at any single point, and hence they do not determine a
unique unification scale ΛGUT . In other words, the relation g3

2 = g2
2 = 5

3g1
2

cannot hold exactly at any energy scale, unless we drop the big desert hy-
pothesis. Nevertheless, in the remainder of this section we assume that this
relation holds at least approximately and we will come back to this point in
the next section. We consider the range for ΛGUT determined by the trian-
gle of the running coupling constants in Figure 12.1. The scale Λ12 at the

intersection of
√

5
3g1 and g2 determines the lowest value for ΛGUT , given by

Λ12 = MZ exp

(
8π2(3

5g1(MZ)−2 − g2(MZ)−2)

b2 − 3
5b1

)
= 1.03× 1013 GeV.

(12.2.3)

The highest value Λ23 is given by the solution of g2 = g3, which yields

Λ23 = MZ exp

(
8π2(g3(MZ)−2 − g2(MZ)−2)

b2 − b3

)
= 9.92× 1016 GeV.

(12.2.4)

We assume that the Lagrangian we have derived from the almost-commutative
manifold M ×FSM is valid at some scale ΛGUT , which we take to be between
Λ12 and Λ23. All relations obtained in Figure 12.1 are assumed to hold
approximately at this scale, and all predictions that will follow from these
relations are therefore also only approximate.

12.2.2. Renormalization group equations. The running of the neu-
trino masses has been studied in a general setting for non-degenerate seesaw
scales. In what follows we consider the case where only the tau-neutrino has
a large Dirac mass mν , which cannot be neglected with respect to the mass
of the top-quark. In the remainder of this section we calculate the running
of the Yukawa couplings for the top-quark and the tau-neutrino, as well as
the running of the quartic Higgs coupling. Let us write ytop and yν for the
Yukawa couplings of the top quark and the tau-neutrino, defined by

mtop =
1

2

√
2ytopv, mν =

1

2

√
2yνv,(12.2.5)
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Figure 12.1. The running of the gauge coupling constants.

where v is the vacuum expectation value of the Higgs field.
Let mR be the Majorana mass for the right-handed tau-neutrino. By the

Appelquist–Carazzone decoupling theorem (cf. Note 5 on Page 184) we can
distinguish two energy domains: E > mR and E < mR. We again neglect
all fermion masses except for the top quark and the tau neutrino. For high
energies E > mR, the renormalization group equations are given by

dytop
dt

=
1

16π2

(
9

2
y2
top + y2

ν −
17

12
g2

1 −
9

4
g2

2 − 8g2
3

)
ytop,

dyν
dt

=
1

16π2

(
3y2

top +
5

2
y2
ν −

3

4
g2

1 −
9

4
g2

2

)
yν ,(12.2.6)

dλ

dt
=

1

16π2

(
4λ2 − (3g1

2 + 9g2
2)λ+

9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 4(3y2
top + yν

2)λ− 12(3y4
top + yν

4)

)
.

Below the threshold E = mR, the Yukawa coupling of the tau-neutrino drops
out of the RG equations and is replaced by an effective coupling

κ = 2
yν

2

mR
,

which provides an effective mass ml = 1
4κv

2 for the light tau-neutrino. The
renormalization group equations of ytop and λ for E < mR are then given
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by

dytop
dt

=
1

16π2

(
9

2
y2
top −

17

12
g2

1 −
9

4
g2

2 − 8g2
3

)
ytop,

dλ

dt
=

1

16π2

(
4λ2 − (3g1

2 + 9g2
2)λ+

9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 12y2
topλ− 36y4

top

)
.

(12.2.7)

Finally, the equation for yν is replaced by an equation for the effective cou-
pling κ given by

dκ

dt
=

1

16π2

(
6y2

top − 3g2
2 +

λ

6

)
κ.(12.2.8)

12.2.3. Running masses. The numerical solutions to the coupled dif-
ferential equations of (12.2.6) (12.2.7) and (12.2.8) for ytop, yν and λ depend
on the choice of three input parameters:

• the scale ΛGUT at which our model is defined;
• the ratio ρ between the masses mν and mtop;
• the Majorana mass mR that produces the threshold in the renor-

malization group flow.

The scale ΛGUT is taken to be either Λ12 = 1.03 × 1013 GeV or Λ23 =
9.92 × 1016 GeV, as given by (12.2.3) and (12.2.4), respectively. We now
determine the numerical solution to (12.2.6), (12.2.7) and (12.2.8) for a range
of values for ρ and mR. First, we need to start with the initial conditions
of the running parameters at the scale ΛGUT . Inserting the top-quark mass
mtop = 1

2

√
2ytopv, the tau-neutrino mass mν = ρmtop, and the W -boson

mass MW = 1
2g2v into (12.1.7), we obtain the constraints

ytop(ΛGUT ) .
2√

3 + ρ2
g2(ΛGUT ), yν(ΛGUT ) .

2ρ√
3 + ρ2

g2(ΛGUT ),

where (12.2.1) yields the values g2(Λ12) = 0.5444 and g2(Λ23) = 0.5170.
Furthermore, from (12.1.5) we obtain an expression for the quartic cou-

pling λ at ΛGUT . Approximating the coefficients a and b from (11.3.2) by
a ≈ (3 + ρ2)m2

top and b ≈ (3 + ρ4)m4
top, we obtain the boundary condition

λ(ΛGUT ) ≈ 24
3 + ρ4

(3 + ρ2)2
g2(ΛGUT )2.

Using these boundary conditions, we can now numerically solve the RG
equations of (12.2.6) from ΛGUT down to mR, which provides us with values
for ytop(mR), yν(mR) and λ(mR). At this point, the Yukawa coupling yν is
replaced by the effective coupling κ with boundary condition

κ(mR) = 2
yν(mR)2

mR
.

Next, we numerically solve the RG equations of (12.2.7) and (12.2.8) down
to MZ to obtain the values for ytop, κ and λ at ‘low’ energy scales.

The running mass of the top quark at these energies is given by (12.2.5).
We find the running Higgs mass by inserting λ into (12.1.6). We shall
evaluate these running masses at their own energy scale. For instance, our
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ΛGUT (1013 GeV) 1.03 1.03 1.03 1.03 1.03 1.03 1.03
ρ 0 0.90 0.90 1.00 1.00 1.10 1.10
mR (1013 GeV) − 0.25 1.03 0.30 1.03 0.35 1.03
mtop (GeV) 183.2 173.9 174.1 171.9 172.1 169.9 170.1
ml (eV) 0 2.084 0.5037 2.076 0.6030 2.080 0.7058
mh (GeV) 188.3 175.5 175.7 173.4 173.7 171.5 171.8

ΛGUT (1016 GeV) 9.92 9.92 9.92 9.92 9.92
ρ 0 1.10 1.10 1.20 1.20
mR (1013 GeV) − 0.30 2.0 0.35 9900
mtop (GeV) 186.0 173.9 174.2 171.9 173.5
ml (eV) 0 1.939 0.2917 1.897 6.889× 10−5

mh (GeV) 188.1 171.3 171.6 169.1 171.2

ΛGUT (1016 GeV) 9.92 9.92 9.92 9.92
ρ 1.30 1.30 1.35 1.35
mR (1013 GeV) 0.40 9900 100 9900
mtop (GeV) 169.9 171.6 169.8 170.6
ml (eV) 1.866 7.818× 10−5 8.056× 10−3 8.286× 10−5

mh (GeV) 167.1 169.3 167.4 168.4

Table 12.1. Numerical results for the masses mtop of the
top-quark, ml of the light tau-neutrino, and mh of the Higgs
boson, as a function of ΛGUT , ρ, and mR.

predicted mass for the Higgs boson is the solution for µ of the equation
µ =

√
λ(µ)/3v, in which we ignore the running of the vacuum expectation

value v.
The effective mass of the light neutrino is determined by the effective

coupling κ, and we choose to evaluate this mass at scale MZ . Thus, we
calculate the masses by

mtop(mtop) =
1

2

√
2ytop(mtop)v,

ml(MZ) =
1

4
κ(MZ)v2,

mh(mh) =

√
λ(mh)

3
v,

where, from the W -boson mass (12.2.2) we can insert the value v = 246.66±
0.15. The results of this procedure for mtop, ml and mh are given in Table
12.1. In this table, we have chosen the range of values for ρ and mR such
that the mass of the top-quark and the light tau-neutrino are in agreement
with their experimental values

mtop = 172.0± 0.9± 1.3 GeV, ml ≤ 2 eV.

For comparison, we have also included the simple case where we ignore the
Yukawa coupling of the tau-neutrino (by setting ρ = 0), in which case there
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Figure 12.2. The running of the quartic Higgs coupling λ
for ΛGUT = 9.92×1016 GeV, ρ = 1.2, and mR = 3×1012 GeV.

is no threshold at the Majorana mass scale either. As an example, we have
plotted the running of λ, ytop, yν and κ for the values of ΛGUT = Λ23 =
9.92 × 1016 GeV, ρ = 1.2, and mR = 3 × 1012 GeV in Figures 12.2, 12.3,
12.4 and 12.5.

For the allowed range of values for ρ and mR that yield plausible results
for mtop and ml, we see that the mass mh of the Higgs boson takes its value
within the range

167 GeV ≤ mh ≤ 176 GeV.

The errors in this prediction, which result from the initial conditions (other
than mtop and ml) taken from experiment, as well as from ignoring higher-
loop corrections to the RGEs, are smaller than this range of possible values
for the Higgs mass, and therefore we may ignore these errors.

12.3. Higgs mass: comparison to experimental results

It is time to confront the above predicted range of values with the dis-
covery of a Higgs boson with a mass mh ' 125.5GeV at the ATLAS and
CMS experiments at the Large Hadron Collider at CERN. At first sight,
this experimentally measured value seems to be at odds with the above pre-
diction and seems to falsify the description of the Standard Model as an
almost-commutative manifold. However, let us consider more closely the
(main) hypotheses on which the above prediction is based, discussing them
one-by-one.

The almost-commutative manifold M × FSM : An essential input in the
above derivation is the replacement of the background manifold M
by a noncommutative space M ×FSM . We motivated the structure
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Figure 12.3. The running of the top-quark Yukawa cou-
pling ytop for ΛGUT = 9.92 × 1016 GeV, ρ = 1.2, and
mR = 3× 1012 GeV.
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Figure 12.4. The running of the tau-neutrino Yukawa cou-
pling yν for ΛGUT = 9.92 × 1016 GeV, ρ = 1.2, and mR =
3× 1012 GeV.
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Figure 12.5. The running of the effective coupling κ for
ΛGUT = 9.92× 1016 GeV, ρ = 1.2, and mR = 3× 1012 GeV.

of FSM by deriving it from a list of finite irreducible geometries,
along the way imposing several mathematical constraints (cf. Sec-
tion 11.1). The strength of this approach was that it allowed for
a derivation of all the particles and symmetries of the Standard
Model from purely geometrical data. Moreover, the spectral action
resulted in the Lagrangian of the Standard Model, including Higgs
mechanism.

The incompatibility of the prediction of the Higgs mass with
experiment might be resolved by considering almost-commutative
manifolds that go beyond the Standard Model by dropping some
of the aforementioned mathematical constraints; we will discuss a
recently proposed possibility in the next Section.

Ultimately, one should also consider noncommutative manifolds
that are not the product of M with a finite space F (see Note 7 on
Page 185).

The spectral action: The bosonic Lagrangian was derived from the as-
ymptotic expansion of the spectral action Tr f(D/Λ).

Adopting Wilson’s viewpoint on the renormalization group equa-
tion this Lagrangian was considered the bare Lagrangian at the
cutoff scale Λ. The renormalization group equations then dictate
the running of the renormalized, physical parameters.

Alternatively, one can consider the spectral action for M×FSM
in a perturbative expansion in the fields, as in Section 7.2.2, leading
to unexpected and an intriguing behaviour for the propagation of
particles at energies larger than the cutoff Λ (see Note 9 on Page
185).
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Yet another alternative is to consider Λ as a regularization pa-
rameter, allowing for an interpretation of the asymptotic expansion
of Tr f(D/Λ) as a higher-derivative gauge theory. It turns out that
conditions can be formulated on the Krajewski diagram for F that
guarantee the (super)renormalizability of the asymptotic expansion
of the spectral action for the corresponding almost-commutative
manifold M × F (see Note 9 on Page 185).

Big desert: In our RGE-analysis of the couplings and masses we have as-
sumed the big desert up to the GUT-scale: no more elementary
particles than those present in the Standard Model exist at higher
energies (and up to the GUT-scale). This is a good working hy-
pothesis, but is unlikely to be true. The main reason for this is
the mismatch of the running coupling constants at the GUT-scale
(Figure 12.1). This indicates that new physics is expected to ap-
pear before this scale. As already suggested, it might very well
be that this new physics can be described by considering almost-
commutative manifolds that go beyond the Standard Model. We
will discuss such a possibility in the next Section.

Renormalization group equations: We exploited renormalization group
techniques to run couplings and masses down from the GUT-scale
to ordinary energies. The renormalization group equations were
derived in a perturbative approach to quantum field theory, which
was supposed to be valid at all scales. Moreover, we have adopted
the one-loop beta-functions, something which can definitely be im-
proved. Even though this might lead to more accurate predictions,
it is not expected to resolve the incompatibility between the pre-
dicted range for mh and the experimentally measured value.

Gravitational effects: In our analysis we have discarded all possible grav-
itational effects on the running of the couplings constants. It might
very well be that gravitational correction terms alter the predicted
values to a more realistic value.

12.4. Noncommutative geometry beyond the Standard Model

Let us then drop some of the above hypotheses, and demonstrate how a
small correction of the space M × FSM gives an intriguing possibility to go
beyond the Standard Model, solving at the same time a problem with the
stability of the Higgs vacuum given the measured low mass mh.

Namely, in the definition of the finite Dirac operator DF of Equation
11.1.2, we can replace YR by YRσ, where σ is a real scalar field on M .
Strictly speaking, this brings us out of the class of almost-commutative
manifolds M × F , since part of DF now varies over M . Nevertheless, it
fits perfectly into the more general class of topologically non-trivial almost-
commutative geometries. In fact, it is enough to consider the trivial fiber
bundle M ×HF , for which an endomorphism DF (x) ∈ End(HF ) is allowed
to depend smoothly on x ∈M .

The scalar field σ can also be seen as the relic of a spontaneous symmetry
breaking mechanism, similar to the Higgs field h in the electroweak sector
of the Standard Model. Starting point is the almost-commutative manifold
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M×FPS based on the algebra M2(H)⊕M4(C) with which we started Chapter
11. The gauge group corresponding to FPS is SU(2)×SU(2)×SU(4) and the
corresponding model is called Pati–Salam unification. It turns out that
the spectral action for M × FPS yields a spontaneous symmetry breaking
mechanism that dynamically selects the algebra AF ⊂ M2(H) ⊕M4(C) of
Proposition 11.1.

Let us then replace YR by YRσ and analyze the additional terms in the
spectral action. In Proposition 11.9 we insert a σ for every YR that appears,
to arrive at

L′H(gµν ,Λµ, Qµ, H, σ) :=
bf(0)

2π2
|H|4 − 2af2Λ2

π2
|H|2 +

ef(0)

π2
σ2|H|2

−cf2Λ2

π2
σ2 +

df(0)

4π2
σ4 +

af(0)

2π2
|DµH|2 +

1

4π2
f(0)c(∂µσ)2,

where we ignored the coupling to the scalar curvature.
As before, we exploit the approximation that mtop, mν and mR are the

dominant mass terms. Moreover, as before we write mν = ρmtop. That is,
the expressions for a, b, c, d and e in (11.3.2) now become

a ≈ m2
top(ρ

2 + 3),

b ≈ m4
top(ρ

4 + 3),

c ≈ m2
R,

d ≈ m4
R,

e ≈ ρ2m2
Rm

2
top.

In a unitary gauge, where H =

(
h
0

)
, we arrive at the following potential:

Lpot(h, σ) =
1

24
λhh

4 +
1

2
λhσh

2σ2 +
1

4
λσσ

4 − 4g2
2

π2
f2Λ2(h2 + σ2),

where we have defined coupling constants

λh = 24
ρ4 + 3

(ρ2 + 3)2
g2

2, λhσ =
8ρ2

ρ2 + 3
g2

2, λσ = 8g2
2.(12.4.1)

This potential can be minimized, and if we replace h by v + h and σ by
w + σ, respectively, expanding around a minimum for the terms quadratic
in the fields, we obtain:

Lpot(v + h,w + σ)|quadratic =
1

6
v2λhv

2 + 2vwλhσσh+ w2λσσ
2

=
1

2

(
h σ

)
M2

(
h
σ

)
,

where we have defined the mass matrix M by

M2 = 2

(
1
6λhv

2 λhσvw
λhσvw λσw

2

)
.

This mass matrix can be easily diagonalized, and if we make the natural
assumption that w is of the order of mR, while v is of the order of MW , so
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that v � w, we find that the two eigenvalues are

m2
+ ∼ 2λσw

2 + 2
λ2
hσ

λσ
v2,

m2
− ∼ 2λhv

2

(
1

6
−

λ2
hσ

λhλσ

)
.

We can now determine the value of these two masses by running the scalar
coupling constants λh, λhσ and λσ down to ordinary energy scalar. The
renormalization group equations for these couplings are given by

dλh
dt

=
1

16π2

(
4λ2

h + 12λ2
hσ − (3g1

2 + 9g2
2)λh +

9

4
(g1

4 + 2g1
2g2

2 + 3g2
4)

+ 4(3y2
top + yν

2)λh − 12(3y4
top + yν

4)

)
,

dλhσ
dt

=
1

16π2

(
8λ2

hσ + 6λhσλσ + 2λhσλh

− 3

2

(
g2

1 + 3g2
2

)
λhσ + 2(3y2

top + yν
2)λhσ

)
,

dλσ
dt

=
1

16π2

(
8λ2

hσ + 18λ2
σ

)
.

As before, at lower energy the coupling yν drops out of the RG equations
and is replaced by an effective coupling.

At one-loop, the other couplings obey the renormalization group equa-
tions of the Standard Model, that is, they satisfy (12.2.6) and (12.2.7). As
before, we can solve these differential equations, with boundary conditions
at ΛGUT given for the scalar couplings by (12.4.1). The result varies with
the chosen value for ΛGUT and the parameter ρ. The mass of σ is essentially
given by the largest eigenvalue m+ which is of the order 1012 GeV for all val-
ues of ΛGUT and the parameter ρ. The allowed mass range for the Higgs, i.e.
for m−, is depicted in Figure 12.6. The expected value mh = 125.5 GeV is
therefore compatible with the above noncommutative model. Furthermore,
this calculation implies that there is a relation (given by the red line in the
Figure) between the ratio mν/mtop and the unification scale ΛGUT .

We conclude that with noncommutative geometry we can proceed be-
yond the Standard Model, enlarging the field content of the Standard Model
by a real scalar field with a mass of the order of 1012 GeV. At the time of
writing of this book (Spring 2014), this is completely compatible with ex-
periment and also guarantees stability of the Higgs vacuum at higher energy
scales. Of course, the final word is to experiment in the years to come. What
we can say at this point is that noncommutative geometry provides a fasci-
nating dialogue between abstract mathematics and concrete measurements
in experimental high-energy physics.

Notes

1. In the first part of this Chapter, we mainly follow [54, Section 5] (see also [65, Ch. 1,
Section 17]). In Section 12.2 we have also incorporated the running of the neutrino masses
as in [117] (see also [186]).
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Figure 12.6. A contour plot of the Higgs massmh as a func-
tion of ρ2 and t = log(ΛGUT/MZ). The red line corresponds
to mh = 125.5 GeV.

Section 12.1. Mass relations

2. Further details on the see-saw mechanism can be found in e.g. [152].

Section 12.2. Renormalization group flow

3. The renormalization group β-functions of the (minimal) standard model are taken from
[142, 143, 144] and [93]. We simplify the expressions by ignoring the 2-loop contribu-
tions, and instead consider only the 1-loop approximation. The renormalization group
β-functions are [142, Eq. (B.2)] or [93, Eq. (A.1)]).

4. The experimental masses of the Z and W -boson and the top quark, as well as the
experimental values of the coupling constants at the energy scale MZ are found in [156].

5. In arriving at (12.2.6) we have followed the approach of [117] where two energy domains
are considered: E > mR and E < mR. The Appelquist–Carazzone decoupling theorem
is found in [5]. For the renormalization group equations, we refer to [143, Eq. (B.4)], [4,
Eq. (14) and (15)] and [144, Eq. (B.3)].

Section 12.3. Higgs mass: comparison to experimental results
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6. The discovery of the Higgs boson at the ATLAS and CMS experiments is published in
[1, 57].

7. The spectral action has also been computed for spectral triples that are not the product
of M with a finite space F , and which are further off the ‘commutative shore’. These
include the noncommutative torus [88], the Moyal plane [95, 104], the quantum group
SUq(2) [110] and the Podleś sphere S2

q [85].

8. The generalization of noncommutative geometry to non-associative geometry is ana-
lyzed in [91, 36].

9. The bosonic Lagrangian derived from the spectral action was interpreted in [49] à la
Wilson [199] as the bare Lagrangian at the cutoff scale Λ. A perturbative expansion of
the full spectral action was obtained in [111, 113, 130], leading to unexpected and an
intriguing behaviour for the propagation of particles at energies larger than the cutoff Λ.
Alternatively, the interpretation of Λ as a regularization parameter has been worked out
in [179, 181, 177, 180], including the derivation of renormalizability conditions on the
Krajewski diagrams.

10. Other searches beyond the Standard Model with noncommutative geometry include
[172, 173, 175, 174, 176], adopting a slightly different approach to almost-commutative
manifolds as we do (cf. Note 3 on Page 97). The intersection between supersymmetry
and almost-commutative manifolds is analyzed in [38, 39, 21, 22, 23].

11. A possible approach to incorporate gravitational effects in the running of the coupling
constants is discussed in [89].

Section 12.4. Noncommutative geometry beyond the Standard Model

12. For stability bounds on the Higgs mass, we refer to [170].

13. The small correction to the space M × FSM was realized in [53] (and already tac-
itly present in [52]) and we here confirm their conclusions. The class of topologically
non-trivial almost-commutative geometries has been worked out in [40, 41, 34]. The
spontaneous symmetry breaking of the noncommutative description of the Pati–Salam
model [159] was analyzed in [56, 55], after generalizing inner fluctuations to real spectral
triples that do not necessarily satisfy the first-order condition (4.3.1).

14. In [76] an alternative approach is considered, taking the ‘grand’ algebra M4(H) ⊕
M8(C) from the list of [51], but where now the condition of bounded commutators of D
with the algebra is not satisfied.

15. The renormalization group equations for the couplings λh, λhσ, λσ have been derived
in [102].
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