Walter D. van Suijlekom

Noncommutative Geometry and Particle Physics

LIST OF ERRATA

- page 34, last line before Exercise 3.4: left A-linearity should read
 $\langle e_1, a e_2 \rangle = a \langle e_1, e_2 \rangle$

- page 49: second math display should read
 \[Q(v + w) + Q(v - w) = 2Q(v) + 2Q(w); \quad (v, w \in V) \]

- page 51, third line: subscript $r + 1$ should be $n + 1$.

- page 53, Exercise 4.5: $\mathbb{C}l_n$ should be $\mathbb{C}l^0_n$ and $\mathbb{C}l_{2k+1}$ should be $\mathbb{C}l^1_{2n+1}$.

- page 56: Equation (4.2.1) needs a square root on the integrand:
 \[
 d_g(x, y) = \inf_\gamma \left\{ \int_0^1 \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} dt : \gamma(0) = x, \gamma(1) = y \right\}.
 \]

- page 57: fourth math display should read
 \[
 \mathbb{C}l_{2m} \cong M_{2m}(\mathbb{C}), \quad \mathbb{C}l^0_{2m+1} \cong M_{2m}(\mathbb{C})
 \]

- page 61: last math display should read
 \[
 \nabla \theta^\rho = -\tilde{\Gamma}_{\mu a}^\rho dx^\mu \otimes \theta^a
 \]

- page 115, Definition 6.18: the definition of upper semi-continuous C^*-bundle should contain the additional condition that:
 if $\{a_i\}$ is a net in \mathfrak{B} such that $\|a_i\| \to 0$ and $\pi(a_i) \to x$ in X, then $a_i \to 0_x$, where 0_x is the zero element in \mathfrak{B}_x.