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a b s t r a c t

We analyze a U(2)-matrix model derived from a finite spectral triple. By applying the BV
formalism, we find a general solution to the classical master equation. To describe the
BV formalism in the context of noncommutative geometry, we define two finite spectral
triples: the BV spectral triple and the BV auxiliary spectral triple. These are constructed
from the gauge fields, ghost fields and anti-fields that enter the BV construction. We show
that their fermionic actions add up precisely to the BV action. This approach allows for a
geometric description of the ghost fields and their properties in terms of the BV spectral
triple.
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1. Introduction

Since the early days of noncommutative geometry [1] it has been clear that this mathematical theory is strongly related
to gauge theories in physics. Indeed, gauge theories are naturally induced by spectral triples, where the noncommutativity
of the pertinent algebra naturally gives rise to non-abelian gauge groups. This has successfully been applied to Yang–Mills
gauge theories [2] and to the celebrated Standard Model of particle physics [3]. It is also clear that in the finite-dimensional
case, when the algebras are matrix algebras, one obtains hermitian matrix models.

A powerful method to analyze the nature of the gauge symmetries in gauge theories – with the eventual purpose of un-
derstanding their rigorous quantization – is the BRST formalism [4–6] and its far-reaching extension, the BV formalism [7,8]
(cf. [9–11] for review articles). A first key ingredient in both of these formalisms is Faddeev–Popov ghost fields [12], which
are introduced to cancel the physically irrelevant gauge symmetries. The BV formalism then proceeds by introducing also
so-called anti-fields for all previously defined gauge and ghost fields. Moreover, an extended action functional is defined as
a solution to the so-called ‘classical master equation’ (cf. Definition 10).

We start this paper by recalling (cf. [13]) the result obtained by applying the BV formalism to a U(2)-matrix model,
which is derived from a finite spectral triple on the algebra M2(C). We find that the gauge structure of this model is richer
than expected, requiring also the introduction of ghost-for-ghost fields. After having added the necessary anti-fields, we
state the general form of the extended action that solves the classical master equation. Then, the construction is finished
by determining the BV auxiliary pairs, which are essential in order to perform a gauge-fixing procedure. As such, our
construction fits nicely with previous studies of the BV formalism applied to gauge models derived from noncommutative
geometry, such as [14–17].
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As a next step, we here define two spectral triples – the BV spectral triple and the BV auxiliary spectral triple – for which
the fermionic action functionals sum up precisely to the so-called BV action functional, which is defined to be the difference
between the extended action functional and the initial action. Thus we obtain a noncommutative geometric description of
the BV formalism for this particular model, which by itself was derived from a spectral triple.

With this model we give the first description of the BV formalism completely in terms of noncommutative geometric
data, that is to say, spectral triples. It serves as a guiding example for higher-rank, U(n)-matrix models and eventually for
physically realistic gauge theories defined on a manifold. However, an analysis of these models goes beyond the scope of
this paper and is left for future research.

The paper is organized as follows. In Section 2.1 we quickly review the notion of a spectral triple and explain how gauge
theories derive from it. Section 2.2 contains a concise overview of the BV formalism, geared towards our finite-dimensional
case and essentially following [18] (see also [13]).

In Section 3 we recall what we obtained by applying the BV formalism to a U(2)-matrix model, understood as a gauge
theory that is obtained from a spectral triple.

Section 4 is the heart of this paper: we construct a so-called BV spectral triple and BV auxiliary spectral triple and show
that the sum of the corresponding fermionic actions coincides with the BV action functional.

2. Preliminaries

2.1. The noncommutative geometry setting

We recall the notion of a spectral triple and the construction of the canonically induced gauge theory (cf. [19], [20, Sect.
1.10] and [21, Ch. 6]). This method will be later applied to a finite spectral triple that yields a U(2)-gauge theory, which we
want to analyze using the BV formalism.

Definition 1. A spectral triple (A,H,D) consists of an involutive unital algebra A, faithfully represented as operators on a
Hilbert space H, together with a self-adjoint operator D on H, with a compact resolvent, such that the commutators [D, a]
are bounded operators for each a ∈ A.

Remark 2. The spectral triple (A,H,D) is said to be finite ifH is finite dimensional. By a classical result the algebraA in this
case has to be a direct sum of matrix algebras, i.e.

A ≃

k⨁
i=1

Mni (C)

for positive integers n1, . . . , nk. Moreover, the required conditions on the self-adjoint operator D are automatically satisfied
in this finite-dimensional setting.

Definition 3. An even spectral triple (A,H,D) is one in which the Hilbert space H is endowed with a Z/2-grading γ , given
by a linear map γ : H → H, such that

Dγ = −γD and γ a = aγ

for all a ∈ A.

Definition 4. A real structure of KO-dimension n (mod 8) on a spectral triple (A,H,D) is an anti-linear isometry J : H → H
that satisfies

J2 = ϵ and JD = ϵ′DJ

together with the condition

Jγ = ϵ′′γ J

in the even case. The constants ϵ, ϵ′ and ϵ′′ depend on the KO-dimension n (mod 8) as follows:

n 0 1 2 3 4 5 6 7
ϵ 1 1 −1 −1 −1 −1 1 1
ϵ′ 1 −1 1 1 1 −1 1 1
ϵ′′ 1 −1 1 −1

Moreover, we require for all a, b ∈ A that:

- the action of A satisfies the commutation rule:
[
a, Jb∗J−1

]
= 0;

- the operator D fulfills the first-order condition: [[D, a], Jb∗J−1
] = 0.
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When a spectral triple (A,H,D) is endowed with such a real structure J , it is said to be a real spectral triple and is denoted
by (A,H,D, J).

Given a possibly real spectral triple, there are two notions of action functionals related to it: the spectral action and the
fermionic action (cf. [2,3,22]).

Definition 5. For a finite spectral triple (A,H,D) and a suitable real-valued function f , the spectral action S0 is given by

S0[D + M] := Tr
(
f (D + M)

)
with, as domain, the set of self-adjoint operators of the formM =

∑
jaj[D, bj], for aj, bj ∈ A.

Remark 6. In the finite-dimensional setting, a family of suitable functions f is given by the polynomials in PolR(x).

Definition 7. For a finite spectral triple (A,H,D) (finite real spectral triple (A,H,D, J)) the fermionic action onH is given by

Sferm[ϕ] =
1
2
⟨ϕ,Dϕ⟩

(
Sferm[ϕ] =

1
2
⟨Jϕ,Dϕ⟩

)
; (ϕ ∈ H).

2.1.1. Gauge theories from spectral triples
We recall the construction of the gauge theory naturally induced by a spectral triple, restricting to the finite-dimensional

case. In this context, the appropriate notion of a gauge theory is as follows.

Definition 8. For a real vector space X0 and a real-valued functional S0 on X0, let F : G × X0 → X0 be a group action on X0
for a given group G. Then the pair (X0, S0) is called a gauge theory with gauge group G if

S0(F (g,M)) = S0(M)

for allM ∈ X0 and g ∈ G. The space X0 is referred to as the configuration space, an elementM ∈ X0 is called a gauge field and
S0 is the action functional.

Given this definition, the derived gauge theory for a finite spectral triple is obtained by the following standard result.

Proposition 9. For a finite spectral triple (A,H,D), let

X0 =

{
M =

∑
j

aj
[
D, bj

]
: M∗

= M, aj, bj ∈ A
}

be the space of inner fluctuations, the group G be the unitary elements U(A) = {u ∈ A : uu∗
= u∗u = 1} of A acting on X0 via

the map (u,M) ↦→ uMu∗
+ u[D, u∗

], and S0 be the spectral action

S0[M] := Tr
(
f (D + M)

)
,

for any M ∈ X0 and some f ∈ PolR(x). Then the pair (X0, S0) is a gauge theory with gauge group G.

2.2. The BV approach to gauge theories

As already mentioned, starting with a gauge theory (X0, S0), the BV construction is a procedure to determine a corre-
sponding extended theory (̃X, S̃) via the introduction of ghost/anti-ghost fields. Here we outline the main aspects of the BV
formalism, referring to [10,13,18] and references therein for a more exhaustive presentation.

For notational purposes, it is convenient to fix a basis for X0 so that a gauge field M ∈ X0 can be written as a vector
M = (Ma), with a = 1, . . . , n = dim X0 and

X0 ≃ ⟨M1, . . . ,Mn⟩R.

The presence of gauge symmetries in the action demands for the introduction of ghost fields. In order to determine the
number of required ghost fields, one considers the relations Ra

i (i = 1, . . . ,m0) between the partial derivatives ∂aS0 of the
action functional with respect toMa, i.e.

(∂aS0)Ra
i = 0.

These relations Ra
i are considered in OX0 , which is the ring of regular functions on X0. Given each relation Ra

i we introduce a
ghost field Ci for i = 1, . . . ,m0. It is useful to assign, for good book-keeping, a ghost degree deg(ϕ) ∈ Z and parity ϵ(ϕ) ∈ {0, 1}
to the fields ϕ obtained so far, with ϵ(ϕ) := deg(ϕ)(mod 2). The parity indicates whether the field is a real variable (ϵ = 0)
or a Grassmannian, namely anti-commuting, variable (ϵ = 1). Naturally, we assign

deg(Ma) = 0, deg(Ci) = 1.
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However, it might happen that there are additional relations between the Ra
i themselves. If this happens, the gauge theory

is called reducible and one has to add ghost-for-ghost fields, denoted by Ej, for each such relation-between-relations that
appears. The ghost degree of Ej is now 2. This might continue to ghosts-for-ghosts-for-ghosts all the way up to the ‘level
of reducibility’ L, which is the highest appearing ghost degree minus 1. We refer e.g. to [10] for full details. We denote the
resulting configuration space as follows:

E := ⟨M1, . . . ,Mn⟩0 ⊕ ⟨C1, . . . , Cm0⟩1 ⊕ ⟨E1, . . . , Em1⟩2 ⊕ · · · .

The key point to the BV formalism is the introduction of anti-fields for all previously introduced gauge fields, ghost fields,
ghost-for-ghost fields, et cetera. For ϕ ∈ E we denote the corresponding anti-field by ϕ∗ and assign ghost degree:

deg(ϕ∗) = − deg(ϕ) − 1.

This results in the vector space

E∗
[1] := · · · ⊕ ⟨E∗

1 , . . . , E
∗

m1
⟩−3 ⊕ ⟨C∗

1 , . . . , C
∗

m0
⟩−2 ⊕ ⟨M∗

1 , . . . ,M
∗

n ⟩−1

which is modeled on the dual space E∗, where the notation [1] indicates the shift of degree by one, that is to say,

E∗
[1] =

⨁
i∈Z

[
E∗

[1]
]i with

[
E∗

[1]
]i

= [E∗
]
i+1.

The fields and anti-fields are combined into an extended configuration space

X̃ := E ⊕ E∗
[1], (2.1)

which has the structure of a super Z-graded vector space. In view of this construction, the space of functionals on X̃ is
described by the algebraOX̃ of regular functions on X̃ , which is the symmetric algebra generated by the Z-gradedOX0-module
X̃ over the ring OX0 :

OX̃ = SymOX0
(̃X).

Due to the presence of a graded structure on X̃ , OX̃ is naturally given a graded algebra structure. Moreover, the pairing
between E and E∗

[1] gives rise to a Poisson bracket structure {−,−} of degree 1. Explicitly, the Poisson bracket is determined
on generators as

{ϕi, ϕj} = 0, {ϕi, ϕ
∗

j } = δij, {ϕ∗

i , ϕ
∗

j } = 0.

As a final ingredient for the BV formalism, we come to the extension of the action functional S0 to X̃ .

Definition 10. Let (X0, S0) be a gauge theory. Then an extended theory associated to (X0, S0) is a pair (̃X, S̃), where X̃ is a super
Z-graded vector space as in (2.1), for E a Z⩾0-graded locally free OX0-module with homogeneous components of finite rank
such that [E]

0
= X0, and S̃ is a 0-degree element inOX̃ such that S̃|X0 = S0, with S̃ ̸= S0, and that solves the ‘classical master

equation’ {̃S, S̃} = 0.

We refer to the difference SBV = S̃ − S0 as the BV action of the extended theory (̃X, S̃). Note also that, even though
each homogeneous component of the graded vector space X̃ is taken to be finite-dimensional, there is no hypothesis on the
number of non-trivial homogeneous components in X̃ which may be infinite.

Definition 11. Given an extended theory (̃X, S̃), the induced classical BRST cohomology complex is (C• (̃X), d̃S), where

Ci (̃X) = [SymOX0
(̃X)]i (i ∈ Z)

and d̃S := {̃S,−} is the coboundary operator.

The fact that the map d̃S defines a linear and graded-derivative operator of degree 1 over OX̃ is a consequence of the
properties of the Poisson bracket, whereas (d̃S)

2
= 0 follows from the (graded) Jacobi identity and the fact that S̃ solves the

classical master equation.
We now describe the gauge-fixing of our gauge theory in the context of the BV formalism. This essentially comes down

to removing the anti-fields in the action S̃; a key role in this construction is played by the choice of a gauge-fixing fermion.

Definition 12. Let X̃ = E ⊕ E∗
[1] be the above extended configuration space. A gauge-fixing fermion Ψ is defined to be a

Grassmannian function Ψ ∈ [OE ]
−1.

From this, given an extended theory (̃X, S̃) together with a gauge-fixing fermion Ψ , the corresponding gauge-fixed theory
is a pair (̃XΨ , S̃Ψ ) such that X̃Ψ = E , where E is the subspace generated by fields and ghost fields, and

S̃Ψ = S̃(ϕi, ϕ∗

i =
∂Ψ
∂ϕi

)
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so that S̃Ψ ∈ [OE ]
0. Given an extended theory (̃X, S̃), the gauge-fixing procedure a priori is not directly applicable, because

all the fields/ghost fields in X̃ have non-negative ghost degree, which impedes the definition of a gauge-fixing fermion for
the theory. A solution to this problemwas first discovered by Batalin and Vilkovisky [7,8] who suggested the introduction of
auxiliary fields of negative ghost degree. This is done using so-called trivial pairs, consisting of fields B, hwhose ghost degrees
satisfy

deg(h) = deg(B) + 1.

Given a trivial pair (B, h), the ghost degrees of the corresponding anti-fields (B∗, h∗) are then related by

deg(h∗) = deg(B∗) − 1.

Definition 13. For an extended theory (̃X, S̃) and a trivial pair (B, h), the corresponding total theory is a pair (Xtot, Stot), where
the total configuration spaceXtot is theZ-graded vector space generated by X̃ , B, h togetherwith the corresponding anti-fields
B∗, h∗, and the total action is Stot = S̃ + Saux with Saux = hB∗.

In other words, the functional Stot is in the algebra of functionalsOXtot on Xtot that is obtained along the same lines asOX̃ .
Moreover, this algebra carries a graded Poisson structure, determined by the bracket on OX̃ and

{B, B∗
} = {h, h∗

} = 1,

with all other combinations of the B, h, B∗, h∗ among themselves and with other fields being zero. The fact that Stot does not
depend on h∗ or B implies that also Stot satisfies the classical master equation and, furthermore, that

{̃S,−} = {Stot,−}

when we consider OX̃ as a subalgebra of OXtot . In fact, it follows that the classical BRST cohomology complex (C• (̃X), d̃S) is
quasi-isomorphic to the complex (C•(Xtot), dStot ), where

C•(Xtot) = [SymOX0
(Xtot)]i (i ∈ Z)

and dStot :=
{
Stot,−

}
. This is the reason for the terminology trivial pairs. Batalin and Vilkovisky showed in [7,8] that the

number of trivial pairs that need to be introduced is determined by the aforementioned level of reducibility L of the gauge
theory.

Theorem 14. Let (̃X, S̃) be an extended theory for a gauge theory with level of reducibility L. Then X̃ is enlarged to give Xtot by
introducing a collection of trivial pairs {(Bj

i, h
j
i)} for i = 0, . . . , L and j = 1, . . . , i + 1 such that deg(Bj

i) = j − i − 2 if j is odd, or
deg(Bj

i) = i − j + 1 if j is even.

After implementing the gauge-fixing, the pair (Xtot, Stot)|Ψ may still induce a cohomology complex, which is called gauge-
fixed BRST cohomology complex. In fact, while this always happens if the theory is considered on shell, the existence of
this cohomology complex in the off-shell case depends on the explicit form of the action S̃. For completeness, we give its
definition.

Definition 15. For a gauge-fixed theory (Xtot, Stot)|Ψ with Xtot = Y ⊕ Y ∗
[1], the corresponding gauge-fixed BRST cohomology

complex is (C•(Y ), dStot |Ψ ), where

Ck(Y ) = [SymOX0
(Y )]k (k ∈ Z)

and the coboundary operator is given by dStot |Ψ :=
{
Stot,−

}
|ΣΨ for the submanifoldΣΨ of Xtot defined by the gauge-fixing

conditions ϕ∗

i =
∂Ψ
∂ϕi
.

3. The BV construction applied to a U (2)-model

The BV construction, reviewed in the previous section, will now be applied to a gauge theory naturally induced by a finite
spectral triple on the algebraMn(C). Indeed, by the construction of Proposition 9, we have that the finite spectral triple

(Mn(C),Cn,D),

for a hermitian n × n-matrix D, yields a gauge theory (X0, S0) with gauge group G such that

X0 = {M ∈ Mn(C) : M∗
= M}, S0[M] = Tr f (M) and G = U(n),

with f a polynomial in PolR(x) and the adjoint action of G on X0. For simplicity, we will analyze the result of applying the
BV construction on this model for n = 2. To proceed with the construction, first fix a basis for X0 given by Pauli matrices
(together with the identity matrix):

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ4 =

(
1 0
0 1

)
. (3.2)
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Denoting by {Ma}
4
a=1 the dual basis of {σa}

4
a=1, X0 is isomorphic to a 4-dimensional real vector space generated by four

independent initial fields:

X0 ≃ ⟨M1,M2,M3,M4⟩R.

Hence the ring of regular functions on X0 is the ring of polynomials in the variables Ma, OX0 = PolR(Ma). In terms of the
coordinatesMa the spectral action S0, defined by a polynomial f =

∑r
i=0µixi, takes the following explicit form:

S0 = 2

[
⌊r/2⌋∑
a=0

µ2a

(
a∑

s=0

(
2a
2s

)
(M2

1 + M2
2 + M2

3 )
a−sM2s

4

)

+

⌈r/2⌉−1∑
a=0

µ2a+1

(
a∑

s=0

(
2a + 1
2s + 1

)
(M2

1 + M2
2 + M2

3 )
a−sM2s+1

4

)]
.

However, an action S0 of this type only represents a family of U(2)-invariant functionals on X0. In fact, the most general form
for a functional S0 on X0 that is invariant under the adjoint action of the gauge group U(2) is as symmetric polynomial in
the eigenvalues λ1, λ2 of the variable M ∈ X0, or, equivalently, as polynomial in the symmetric elementary polynomials
a1 = λ1 + λ2 and a2 = λ1λ2. In terms of the coordinatesMa we have:

λi = M4 ±

√
M2

1 + M2
2 + M2

3 , a1 = 2M4, a2 = M2
4 − (M2

1 + M2
2 + M2

3 ).

Hence the generic form for a U(2)-invariant action S0 ∈ PolR(Ma) is

S0 =

r∑
k=0

(M2
1 + M2

2 + M2
3 )

kgk(M4), (3.3)

where gk(M4) ∈ PolR(M4). Because the introduction of extra (non-physical) fields ismotivated by the necessity of eliminating
the symmetries in the action functional S0, the BV construction may give rise to different extended configuration spaces X̃ ,
depending on the explicit form of S0. For our U(2)-matrix model we have three different cases:

1. If S0 ∈ PolR(M4), there are no symmetries that need to be removed by adding ghost fields. Hence, the construction of
X̃ stops at the first stage, after including the anti-fields corresponding to the initial fields in X0:

X̃ = X0 ⊕ ⟨M∗

1 ,M
∗

2 ,M
∗

3 ,M
∗

4 ⟩−1.

2. If GCD(∂1S0, ∂2S0, ∂3S0, ∂4S0) = 1, three independent ghost fields C1, C2, C3 are inserted to compensate for the three
independent relations existing over OX0 between pairs of partial derivatives of S0:

M1(∂2S0) = M2(∂1S0),M1(∂3S0) = M3(∂1S0),M2(∂3S0) = M3(∂2S0).

After having eliminated these three symmetries, there is still one relation that involves all three terms ∂1S0, ∂2S0, and
∂3S0. Hence, we have to add a ghost field E of ghost degree 2.

3. If GCD(∂1S0, ∂2S0, ∂3S0, ∂4S0) = D ̸∈ R, the action S0 presents additional symmetries to cancel and so the extended
configuration space X̃ has to be further enlarged, obtaining that

X̃ = ⟨K ∗
⟩−4 ⊕ ⟨E∗

1 , . . . , E
∗

4 ⟩−3 ⊕ ⟨C∗

1 , . . . , C
∗

6 ⟩−2 ⊕ ⟨M∗

1 , . . . ,M
∗

4 ⟩−1
⊕X0 ⊕ ⟨C1, . . . , C6⟩1 ⊕ ⟨E1, . . . , E4⟩2 ⊕ ⟨K ⟩3.

Here we focus on the generic situation (2), for which we have the following result (cf. [13]).

Theorem 16. Let (X0, S0) be a gauge theory with, as configuration space, X0 ≃ ⟨Ma⟩R for a = 1, . . . , 4, and, as action functional,
S0 ∈ OX0 of the form (3.3). If GCD(∂1S0, ∂2S0, ∂3S0, ∂4S0) = 1, then the minimally extended configuration space X̃ is the following
Z-supergraded real vector space:

X̃ = ⟨E∗
⟩−3 ⊕ ⟨C∗

1 , C
∗

2 , C
∗

3 ⟩−2 ⊕ ⟨M∗

1 , . . . ,M
∗

4 ⟩−1 ⊕ X0 ⊕ ⟨C1, C2, C3⟩1 ⊕ ⟨E⟩2.

Moreover, the general solution of the classical master equation on X̃ that is linear in the anti-fields, of at most degree 2 in the ghost
fields and with coefficients in OX0 is given by S̃ = S0 + SBV, for

SBV =

∑
i,j,k

ϵijkαkM∗

i MjCk +

∑
i,j,k

C∗

i

[
αjαk
2αi

(βαiMiE + ϵijkCjCk)

+MiT
(∑
a,b,c

ϵabc
αbαc
2αi

MaCbCc

)]
(3.4)

where αi, β ∈ R \ {0}, T ∈ PolR(Ma), and ϵijk (ϵabc) is the totally anti-symmetric tensor in three indices i, j, k ∈ {1, 2, 3}
(a, b, c ∈ {1, 2, 3}) with ϵ123 = 1.
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Once the extended theory (̃X, S̃) has been constructed, another step is needed to be able to implement the gauge-fixing
procedure, namely, we have to introduce the auxiliary fields. Because X̃ contains ghost fields of at most ghost degree 2,
the pair (̃X, S̃) describes a reducible theory with level of reducibility L = 1. Hence, according to Theorem 14, the extended
configuration space X̃ has to be enlarged by adding three trivial pairs

{(Bi, hi)}i=1,2,3 with deg(Bi) = −1, and deg(hi) = 0,

which correspond to the three ghost fields Ci, together with the two trivial pairs (A1, k1) and (A2, k2), corresponding to the
ghost field E and satisfying

deg(A1) = −2, deg(k1) = −1, deg(A2) = 0, deg(k2) = 1.

The total theory (Xtot, Stot) now also includes the above auxiliary fields and is given by a Z-graded vector space Xtot = Y ⊕

Y ∗
[1], with

Y = ⟨Ma, B∗

i , hi, k∗

1, A2⟩0 ⊕ ⟨Ci, A∗

1, k2⟩1 ⊕ ⟨E⟩2,

for a = 1, . . . , 4, i = 1, 2, 3, together with an Stot = S̃ + Saux, where

Saux :=

3∑
i=1

B∗

i hi +

2∑
j=1

A∗

j kj. (3.5)

4. The BV approach in the framework of NCG

4.1. The BV spectral triple

We now formulate the BV construction for the above U(2)-matrix model in terms of noncommutative geometry. That
is, we describe the extended theory (̃X, S̃) by means of a spectral triple for which the fermionic action yields S̃. In order to
simplify the computation, we consider the pair (̃X, S̃) as described in Theorem 16, but where in formula (3.4) we take the
polynomial T = 0 and set the real coefficients αi = β = 1. Hence, we analyze the case when the action SBV has the following
form:

SBV := M∗

1 (−M3C2 + M2C3) + M∗

2 (M3C1 − M1C3) + M∗

3 (−M2C1 + M1C2)

+ C∗

1 (M1E + C2C3) + C∗

2 (M2E − C1C3) + C∗

3 (M3E + C1C2). (4.6)

The construction of the so-called BV spectral triple

(ABV,HBV,DBV, JBV)

proceeds in steps, where the form of the algebra ABV is determined as the last ingredient.

The Hilbert space HBV

We let HBV be the following Hilbert space:

HBV = HM ⊕ HC := M2(C) ⊕ M2(C),

where the subscripts M and C refer to the gauge fields and ghost fields; this will be justified below. The inner product
structure is given as usual by the Hilbert–Schmidt inner product on each summand M2(C), that is to say, ⟨−,−⟩ : HBV ×

HBV → C, with

⟨(ϕM , ϕC ), (ϕ′

M , ϕ
′

C )⟩ = Tr(ϕM (ϕ′

M )∗) + Tr(ϕC (ϕ′

C )
∗),

for ϕM , ϕ′

M ∈ HM , ϕC , ϕ′

C ∈ HC . Taking the orthonormal basis ofM2(C) given in (3.2) we can of course identify

HBV ∼= ⟨m1,m2,m3, e⟩ ⊕ ⟨c1, c2, c3, c4⟩ ∼= C8,

in terms of which the inner product reads

⟨ϕ,ψ⟩ =

3∑
a=1

ma,ϕma,ψ + ēϕeψ +

4∑
j=1

c̄j,ϕcj,ψ .

Remark 17. The Hilbert space HBV has also another possible decomposition as direct sum of two vector spaces: HBV =

HBV ,f ⊕ i · HBV ,f ,with

HBV ,f = [i · su(2) ⊕ u(1)] ⊕ i · u(2)
≃ ⟨M1,M2,M3, iE⟩R ⊕ ⟨C1, C2, C3, C4⟩R .

(4.7)
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In (4.7) we denote the real part of the complex variables ma and cj by Ma and Cj, respectively, while E is the imaginary part
of the complex variable e. This choice of notation is motivated by the fact that these variables coincide with the gauge fields
and ghost fields that generate the positively graded part of the extended configuration space X̃ , as wewill see in Theorem 22
below. The fourth ghost field C4 will not enter the fermionic action Sferm as it decouples, being consistent with X̃ having only
three ghost fields Ci in our model.

The real structure JBV

Up to this point – with the algebra ABV and self-adjoint operator DBV yet to be determined – a real structure is simply
given by an anti-linear isometry JBV : HBV → HBV, which we take to be

JBV(ϕM , ϕC ) := i · (ϕ∗

M , ϕ
∗

C )

for ϕM ∈ HM , ϕC ∈ HC . In terms of the basis (3.2) we have for ϕ ∈ HBV

JBV(ϕ) := i · [m̄1, m̄2, m̄3, ē, c̄1, c̄2, c̄3, c̄4]T .

The linear operator DBV

The self-adjoint linear operator DBV acting on the Hilbert space HBV is given by the following expression

DBV :=

(
T R
R∗ S

)
in terms of the decomposition HBV = HM ⊕ HC . The linear operators R, S, T are defined by

R : HC → HM;

ϕC ↦→ [β, ϕC ],

S : HC → HC ;

ϕC ↦→ [α, ϕC ],

T : HM → HM;

ϕC ↦→ [α, ϕC ]+,

where α and β are hermitian, traceless 2 × 2-matrices. We stress that thus R and S are derivations of M2(C), but that T is
an odd derivation given in terms of the anti-commutator.

We can write α and β in terms of the Pauli matrices as follows

α =
1
2

[
(−C∗

1 )σ1 + (−C∗

2 )σ2 + (−C∗

3 )σ3
]

β =
1
2

[
(−M∗

1 )σ1 + (−M∗

2 )σ2 + (−M∗

3 )σ3
]
,

where C∗

i and M∗

i are real variables. Then, in terms of the orthonormal basis (3.2) for HM and HC , we find the following
4 × 4-matrices for R, S, T :

R :=

⎛⎜⎝ 0 +iM∗

3 −iM∗

2 0
−iM∗

3 0 +iM∗

1 0
+iM∗

2 −iM∗

1 0 0
0 0 0 0

⎞⎟⎠ , S :=

⎛⎜⎝ 0 +iC∗

3 −iC∗

2 0
−iC∗

3 0 +iC∗

1 0
+iC∗

2 −iC∗

1 0 0
0 0 0 0

⎞⎟⎠

T :=

⎛⎜⎝ 0 0 0 C∗

1
0 0 0 C∗

2
0 0 0 C∗

3
C∗

1 C∗

2 C∗

3 0

⎞⎟⎠ .
Of course, the notation used for the components of α and β has been chosen with purpose: indeed, we will prove that

upon inserting all anti-fields in the linear operator DBV, the corresponding fermionic action yields the BV action SBV.
It is not true that the above DBV commutes or anti-commutes with JBV. Instead, we may decompose DBV as

DBV = D1 + D2 with D1 =

(
0 R
R∗ S

)
, D2 =

(
T 0
0 0

)
for which we find that

JBVD1 = −D1JBV,
JBVD2 = +D2JBV.

In anticipation of what is to come, this suggests that a real spectral triple ofmixed KO-dimensionwill appear.

The algebra ABV

We now come to the final ingredient of the BV spectral triple which is the algebra ABV. We take it to be largest
unital subalgebra of the algebra of all linear operator L(HBV) that satisfies the commutation rule and first-order condition
of Definition 4.
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Lemma 18. Let HBV, JBV and DBV be as defined above. Then the maximal unital subalgebra Ã of L(HBV) that satisfies

[a, JBVb∗J−1
BV ] = 0, [[DBV, a], JBVb∗J−1

BV ] = 0; (a, b ∈ Ã)

is given by Ã = M2(C) acting diagonally on HBV.

Proof. The commutation rule [a, JBVb∗J−1
] = 0 for all a, b ∈ Ã implies thatHBV carries an Ã-bimodule structure. This already

restricts Ã to be a subalgebra of M2(C) ⊕ M2(C), acting diagonally on HM ⊕ HC . Then, by a straightforward computation of
the double commutator

[
[D, (a1, a2)], JBV(b1, b2)J−1

BV

]
, it follows that the first-order condition implies a1 = a2 and b1 = b2.

This selects the subalgebra M2(C) in M2(C) ⊕ M2(C) as the maximal subalgebra for which both of the above conditions are
satisfied. □

We will denote this maximal subalgebra by ABV. We now make the encountered phenomenon of mixed KO-dimension
more precise by the following result.

Proposition 19. With the above notation,

(i) (ABV,HBV,D1, JBV) is a real spectral triple of KO-dimension 1.
(ii) (ABV,HBV,D2, JBV) is a real spectral triple of KO-dimension 7.

Before continuing with our BV spectral triple, we develop some new theory on real spectral triple with mixed KO-
dimension.

Definition 20. For (A,H,D) a finite spectral triple and J an anti-linear isometry onH, we say that (A,H,D, J) defines a real
spectral triple with mixed KO-dimension if J satisfies

J2 = ±Id and [a, Jb∗J−1
] = 0

for a, b ∈ A, the operator D can be seen as a sum D = D1 + D2 of two self-adjoint operators D1, D2, which anti-commutes
and commutes, respectively, with J:

D1 = −D1J and JD2 = D2J,

and, finally, the first-order condition holds:

[[D, a], Jb∗J−1
] = 0, (a, b ∈ A).

The notion of mixed KO-dimension generalizes the usual notion of KO-dimension for real spectral triples allowing the
operator D not to fully commute or anti-commute with the isometry J . We notice that, if we are considering a genuinely
mixed KO-dimension, that is, if both D1,D2 ̸= 0, then the even case is not allowed.

Proposition 21. Let (A,H,D, J) be a real spectral triple of mixed KO-dimension. If J2 = +1 then for all ϕ,ψ ∈ H:

(1) the expression AD1 (ϕ,ψ) := ⟨Jϕ,D1ψ⟩ defines an anti-symmetric bilinear form on H;
(2) the expression AD2 (ϕ,ψ) := ⟨Jϕ,D2ψ⟩ defines a symmetric bilinear form on H.

On the contrary, if J2 = −1, then AD1 is symmetric and AD2 is anti-symmetric.

Proof. (1) Bilinearity of AD1 is a consequence of J being an anti-linear map, D1 being a linear operator and the inner product
being anti-linear in its first component and linear in the second. For the anti-symmetry, under the assumption that J2 = ϵ

we compute

⟨Jϕ,D1ψ⟩ = ϵ⟨Jϕ, J2D1ψ⟩ = ϵ⟨JD1ψ, ϕ⟩ = −ϵ⟨D1Jψ, ϕ⟩ = −ϵ⟨Jψ,D1ϕ⟩

using the anti-commutation of D1 with J and D1 being a self-adjoint operator.
(2) This followsmutatis mutandis from (1), assuming D2 to commute with J . □

We now return to the BV spectral triple (ABV,HBV,DBV, JBV) that we constructed for our U(2)-matrix model.

Theorem 22. The data (ABV,HBV,DBV, JBV) defined above is a real spectral triple with mixed KO-dimension. Moreover, the
fermionic action corresponding to the operator DBV coincides with the BV action in (4.6), i.e.,

SBV =
1
2
⟨JBV(ϕ),DBVϕ⟩, with ϕ ∈ HBV ,f .

Here we interpret the variables that parametrize D and the vector ϕ ∈ HBV as follows:

• Ma, E and C∗

j are real variables;
• M∗

a and Cj are Grassmannian variables.



138 R.A. Iseppi, W.D. van Suijlekom / Journal of Geometry and Physics 120 (2017) 129–141

Proof. The first claim is an immediate consequence of Proposition 19. The last statement follows by a straightforward
computation. □

The mixed KO-dimension in the BV spectral triple arises from the particular behavior of the real structure with the
operator DBV, which partially commutes and partially anti-commutes with JBV. However, this is not due to the fact that
the BV spectral triple is a direct sum of real spectral triples of different KO-dimensions. Indeed, then the structure of the real
spectral triple would be

(A1 ⊕ A2,H1 ⊕ H2,D1 ⊕ D2, J1 ⊕ J2).

The appearance of a direct sum of the two algebras is in contrast with the structure ofABV as a simple algebra. As a matter of
fact, the mixed KO-dimension has a different significance, allowing us to detect the difference in parity of the components
of the BV spectral triple, as we will now explain.

Namely, the fields that parametrize the Dirac operator and/or represent vectors in Hilbert space are seen to be structured
as follows:

• The anti-fields/anti-ghost fields M∗
a and C∗

j appear as entries of the operator DBV while the fields/ghost fields Ma, Cj,
and E are the components of the vectors in the subspace HBV ,f .

• The parities of the fields/ghost fields and anti-fields/anti-ghost fields in the BV spectral triple are a consequence of
the structure of the real spectral triple. Indeed, the parities chosen in Theorem 22 are precisely those for which both
D1 and D2 give a non-trivial contribution to the fermionic action Sferm.

4.2. The BV auxiliary spectral triple

In addition to the BV construction, also the technical procedure of introducing auxiliary fields in our U(2)-matrix model
can be expressed in terms of a spectral triple: in this section, we construct the so-called BV auxiliary spectral triple

(Aaux,Haux,Daux, Jaux),

for which the fermionic action coincides with the auxiliary action Saux. We follow the same strategy as for the BV spectral
triple: the anti-fields {B∗

j }, for j = 1, 2, 3, and {A∗

l }, with l = 1, 2, parametrize the operator Daux while the auxiliary fields
{hj} and {kl} are the components of the vectors in the Hilbert space Haux. Moreover, we keep in mind the possibility of
encountering a real spectral triple with mixed KO-dimension.

Remark 23. Since the action Saux is not bilinear in the fields, it cannot be expected to directly agree with a usual fermionic
action. For this reason, we will slightly adapt the definition of a fermion action associated to a real spectral triple.

The Hilbert space Haux

The Hilbert space describes the field content of the action Saux. So we have

Haux = Hh ⊕ Hk := M2(C) ⊕ C2.

Again, we take the Pauli matrices (3.2) as an orthonormal basis forM2(C), so thatHaux ∼= C6. We also identify the following
subspace:

Haux,f = u(2) ⊕ i[u(1) ⊕ u(1)],

and write elements χ ∈ Haux,f suggestively as

χ = [ih1, ih2, ih3, ih4, k1, k2]T ,

where hj and kl, (j = 1, . . . , 4, l = 1, 2) are real variables.

The real structure Jaux

The anti-linear isometry Jaux is defined similarly as in the BV spectral triple: indeed, Jaux : Hh ⊕ Hk → Hh ⊕ Hk, with

Jaux(V , v) := (i · V ∗, i · v).

The operator Daux

In the basis ofM2(C) given by the Pauli matrices we define the operator Daux as

Daux = Ddiag + Doff with Ddiag =

(
P 0
0 0

)
, Doff =

(
0 Q ∗

Q 0

)
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where, again in evocative notation in terms of the anti-fields A∗

l and B∗

j , we define

P =
1
2

⎛⎜⎝+B∗

1 + B∗

2 + B∗

3 0 0 +B∗

1 − B∗

2 − B∗

3
0 +B∗

1 + B∗

2 + B∗

3 0 −B∗

1 + B∗

2 − B∗

3
0 0 +B∗

1 + B∗

2 + B∗

3 −B∗

1 − B∗

2 + B∗

3
+B∗

1 − B∗

2 − B∗

3 −B∗

1 + B∗

2 − B∗

3 −B∗

1 − B∗

2 + B∗

3 +B∗

1 + B∗

2 + B∗

3

⎞⎟⎠
and

Q = −
i
3

(
A∗

1 A∗

1 A∗

1 0
A∗

2 A∗

2 A∗

2 0

)
.

The algebra Aaux

Also in this case, we take the algebra Aaux to be the largest unital subalgebra of L(Haux) that completes the triple Haux,
Daux, and Jaux to a real spectral triple (with mixed KO-dimension).

Lemma 24. Let Haux, Jaux and Daux be as defined above. Then the maximal unital subalgebra Ã of L(Haux) on which the
commutation rule and first-order condition are fulfilled, that is, which satisfies

[a, Jauxb∗J−1
aux] = 0, [[Daux, a], Jauxb∗J−1

aux] = 0; (a, b ∈ Ã),

is Ã = C.

Proof. The fact that Haux should be a Ã-bimodule already restricts Ã to be a subalgebra of

M2(C) ⊕ C ⊕ C

acting by (block diagonal) matrix multiplication on Haux = M2(C) ⊕ C ⊕ C. A straightforward computation of the double
commutator entering in the first-order condition then selects the diagonal subalgebra Ã = C. □

We will write Aaux = C and notice the intriguing agreement between the triviality of the algebra with the triviality of
the trivial pairs of auxiliary fields.

Proposition 25. For Aaux, Haux, Daux and Jaux as previously defined, it holds that

(i) (Aaux,Haux,Ddiag, Jaux) is a real spectral triple of KO-dimension 7;
(ii) (Aaux,Haux,Doff, Jaux) is a real spectral triple of KO-dimension 1.

Proof. Because Aaux = C, this follows at once from noticing that

JauxDdiag = +DdiagJaux and JauxDoff = −DoffJaux,

which can be readily checked. □

The last ingredient to analyze is the fermionic action. As already noticed in Remark 23, we need to introduce a linear
notion of fermionic action. More precisely, the fermionic action corresponding to the operators Ddiag and Doff will be defined
using two linear forms LDdiag , LDoff instead of a bilinear form A, as was done for the BV action. This is a consequence of
the fact that the auxiliary action Saux is only linear (rather than quadratic) in the fields. We state the following general, but
straightforward result without proof.

Proposition 26. Let (A,H,D, J) be a real spectral triple (possibly with mixed KO-dimension) and fix a vector v ∈ H. Then the
expression

LD(χ ) =
1
2
(⟨Jv,Dχ⟩ + ⟨Jχ,Dv⟩) , (χ ∈ H)

defines a linear form on H.

In our case of interest, we fix the vector v to be

v = 1 =
(
1 1 1 1 1 1

)T
∈ C6

≡ Haux.

Theorem 27. (Aaux,Haux,Daux, Jaux) defines a real spectral triple with mixed KO-dimension. Moreover, the fermionic action
defined by the linear form LDaux coincides with the auxiliary action Saux:

Saux =
1
2

(
⟨Jaux(1),Daux(χ )⟩ + ⟨Jaux(χ ),Daux(1)⟩

)
, with χ ∈ Haux,f .

Here we interpret the variables that parametrize Daux and the vector χ ∈ Haux as follows:
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• B∗

j , hl are real variables;
• A∗

l , kl are Grassmannian variables.

Proof. For a generic vector χ in Haux,f , χ = [ih1, ih2, ih3, ih4, k1, k2]T , one computes that

⟨Jaux(1),Daux(χ )⟩ =

∑
j,l

B∗

j hj + A∗

l kl −
i
3A

∗

l hj

⟨Jaux(χ ),Daux(1)⟩ =

∑
j,l

hjB∗

j − klA∗

l +
i
3hjA∗

l

with j = 1, 2, 3, l = 1, 2. It then follows that

1
2

[
⟨Jaux(1),Daux(χ )⟩ + ⟨Jaux(χ ),Daux(1)⟩

]
=

3∑
j=1

B∗

j hj +

2∑
l=1

A∗

l kl,

whose right-hand side coincides with Saux as defined in (3.5). □

As expected, the BV auxiliary spectral triple has a similar structure to the one already found for the BV spectral triple:

• The anti-fields B∗

j and A∗

l appear as entries of the operator Daux while the fields hj and kl are the components of the
vectors in subspace Haux,f .

• The parities of the fields and anti-fields are a consequence of the structure of the real spectral triple, except perhaps
for the parity of the anti-fields B∗

l .

5. A possible approach to BV spectral triples

The procedure presented in this paper allows to describe the BV construction of a given gauge theory in the setting of
noncommutative geometry. Even though we have restricted ourselves to the case of a U(2)-gauge invariant matrix model,
our results suggest a possible way on how to proceed in a more general setting. Indeed, let (X0, S0) be the gauge theory
derived from a finite spectral triple (A,H,D) along the lines of Section 2.1. Then the BV formalism gives rise to an extended
theory (̃X, S̃) which one tries to capture by a BV spectral triple

(ABV,HBV,DBV, JBV).

The properties that this spectral triple should satisfy are

1. The algebra ABV coincides with A;
2. The Hilbert space HBV is spanned by the gauge fields and all ghost fields;
3. The real structure selects the hermitian variables in HBV.

Of course, themain challenge is now to find the formof the operatorDBV in terms of the anti-fields forwhich the fermionic
action coincides with the BV action functional. One of the problems to overcome here is that the BV actionmight have terms
of order higher than 2 in the ghost fields, requiring the introduction of some sort ofmultilinear fermionic action. A first analysis
of this is in progress for U(n)-matrix models with n > 2.
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