Beyond the spectral Standard Model: Pati-Salam unification

Walter van Suijlekom

(joint with Ali Chamseddine and Alain Connes)

22 September 2017

Overview

- Motivation: NCG and HEP
- Noncommutative Riemannian spin manifolds (aka spectral triples)
- Gauge theory from spectral triples: gauge group, gauge fields
- The spectral Standard Model and Beyond

A fermion in a spacetime background

• Spacetime is a (pseudo) Riemannian manifold M: local coordinates x_{μ} generate algebra $C^{\infty}(M)$.

 Propagator is described by Diracoperator D_M, essentially a 'square root' of the Laplacian.

The circle

• The Laplacian on the circle \mathbb{S}^1 is given by

$$\Delta_{\mathbb{S}^1} = -rac{d^2}{dt^2}; \qquad (t \in [0,2\pi))$$

• The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -i\frac{d}{dt}$$

with square $\Delta_{\mathbb{S}^1}$.

The 2-dimensional torus

- Consider the two-dimensional torus \mathbb{T}^2 parametrized by two angles $t_1, t_2 \in [0, 2\pi)$.
- The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}.$$

• At first sight it seems difficult to construct a differential operator that squares to $\Delta_{\mathbb{T}^2}$:

$$\left(a\frac{\partial}{\partial t_1} + b\frac{\partial}{\partial t_2}\right)^2 = a^2 \frac{\partial^2}{\partial t_1^2} + 2ab\frac{\partial^2}{\partial t_1 \partial t_2} + b^2 \frac{\partial^2}{\partial t_2^2}$$

 This puzzle was solved by Dirac who considered the possibility that a and b be complex matrices:

$$a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

then
$$a^2 = b^2 = -1$$
 and $ab + ba = 0$

• The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} \\ -\frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} & 0 \end{pmatrix}$$

which satisfies
$$(D_{\mathbb{T}^2})^2 = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}$$
.

The 4-dimensional torus

• Consider the 4-torus \mathbb{T}^4 parametrized by t_1, t_2, t_3, t_4 and the Laplacian is

$$\Delta_{\mathbb{T}^4} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2} - \frac{\partial^2}{\partial t_3^2} - \frac{\partial^2}{\partial t_4^2}.$$

• The search for a differential operator that squares to $\Delta_{\mathbb{T}^4}$ again involves matrices, but we also need quaternions:

$$i^2 = j^2 = k^2 = ijk = -1.$$

• The Dirac operator on \mathbb{T}^4 is

$$D_{\mathbb{T}^4} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} \\ -\frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} & 0 \end{pmatrix}$$

• The relations ij=-ji, ik=-ki, et cetera imply that its square coincides with $\Delta_{\mathbb{T}^4}$.

Hearing the shape of a drum: motivation from math Kac (1966), Connes (1989)

- The geometry of M is not fully determined by spectrum of D_M.
- This is considerably improved by considering besides D_M also the algebra $C^{\infty}(M)$ of smooth (coordinate) functions on M
- ullet In fact, the Riemannian distance function on M is equal to

$$d(x,y) = \sup_{f \in C^{\infty}(M)} \{ |f(x) - f(y)| : \text{ gradient } f \le 1 \}$$

• The gradient of f is given by the commutator

$$[D_M, f] = D_M f - f D_M \text{ (e.g. } [D_{\mathbb{S}^1}, f] = -i \frac{df}{dt})$$

NCG and HEP

Replace spacetime by spacetime \times finite (nc) space: $M \times F$

- F is considered as internal space (Kaluza–Klein like)
- F is described by a noncommutative algebra, such as $M_3(\mathbb{C})$, just as spacetime is described by coordinate functions $x_{\mu}(p)$.
- 'Propagation' of particles in F is described by a Dirac-type operator D_F which is actually simply a hermitian matrix.

Finite spaces

• Finite space F, discrete topology

$$F = {}_{1} \bullet {}_{2} \bullet {}_{\cdots} {}_{N} \bullet$$

• Smooth functions on F are given by N-tuples in \mathbb{C}^N , and the corresponding algebra $C^{\infty}(F)$ corresponds to diagonal matrices

$$\begin{pmatrix} f(1) & 0 & \cdots & 0 \\ 0 & f(2) & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & f(N) \end{pmatrix}$$

• The finite Dirac operator is an arbitrary hermitian matrix D_F , giving rise to a distance function on F as

$$d(p,q) = \sup_{f \in C^{\infty}(F)} \{ |f(p) - f(q)| : ||[D_F, f]|| \le 1 \}$$

Example: two-point space

$$F = {}_{1} \bullet {}_{2} \bullet$$

Then the algebra of smooth functions

$$C^{\infty}(F) := \left\{ egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix} \middle| \lambda_1, \lambda_2 \in \mathbb{C}
ight\}$$

A finite Dirac operator is given by

$$D_F = egin{pmatrix} 0 & \overline{c} \ c & 0 \end{pmatrix}; \qquad (c \in \mathbb{C})$$

The distance formula then becomes

$$d(1,2)=\frac{1}{|c|}$$

Finite **noncommutative** spaces

The geometry of F gets much more interesting if we allow for a noncommutative structure at each point of F.

 Instead of diagonal matrices, we consider block diagonal matrices

$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_N \end{pmatrix},$$

where the $a_1, a_2, \dots a_N$ are square matrices of size n_1, n_2, \ldots, n_N .

Hence we will consider the matrix algebra

$$\mathcal{A}_F:=M_{n_1}(\mathbb{C})\oplus M_{n_2}(\mathbb{C})\oplus \cdots \oplus M_{n_N}(\mathbb{C})$$

A finite Dirac operator is still given by a hermitian matrix.

Example: **noncommutative** two-point space

The two-point space can be given a noncommutative structure by considering the algebra A_F of 3 \times 3 block diagonal matrices of the following form

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & a_{11} & a_{12} \\ 0 & a_{21} & a_{22} \end{pmatrix}$$

A finite Dirac operator for this example is given by a hermitian 3×3 matrix, for example

$$D_F = \begin{pmatrix} 0 & \overline{c} & 0 \\ c & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Noncommutative Riemannian spin manifolds

$$(A, \mathcal{H}, D)$$

- Extended to real spectral triple:
 - $J: \mathcal{H} \to \mathcal{H}$ real structure (charge conjugation) such that

$$J^2 = \pm 1;$$
 $JD = \pm DJ$

• Right action of \mathcal{A} on \mathcal{H} : $a^{op} = Ja^*J^{-1}$ so that $(ab)^{op} = b^{op}a^{op}$ and

$$[a^{\mathrm{op}},b]=0;$$
 $a,b\in\mathcal{A}$

D is said to satisfy first-order condition if

$$[[D,a],b^{\mathrm{op}}]=0$$

$$\mathsf{Trace}\, f(D/\Lambda) + rac{1}{2} \langle J\widetilde{\psi}, D\widetilde{\psi}
angle$$

• Invariant under unitaries $u \in \mathcal{U}(\mathcal{A})$ acting as

$$D \mapsto UDU^*; \qquad U = u(u^*)^{op}$$

- Gauge group: $\mathcal{G}(\mathcal{A}) := \{u(u^*)^{\mathrm{op}} : u \in \mathcal{U}(\mathcal{A})\}.$
- Compute rhs:

$$D \mapsto D + u[D, u^*] \pm Ju[D, u^*]J^{-1}$$

Semigroup of inner perturbations

Chamseddine-Connes-vS (2013)

Extend this to more general perturbations:

$$\mathsf{Pert}(\mathcal{A}) := \left\{ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^\mathrm{op} \in \mathcal{A} \otimes \mathcal{A}^\mathrm{op} \, \middle| \, egin{array}{c} \sum_j \mathsf{a}_j \mathsf{b}_j = 1 \ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^\mathrm{op} = \sum_j \mathsf{b}_j^* \otimes \mathsf{a}_j^* \end{array}
ight\}$$

with semi-group law inherited from product in $\mathcal{A} \otimes \mathcal{A}^{\mathrm{op}}$.

- $\mathcal{U}(\mathcal{A})$ maps to $\operatorname{Pert}(\mathcal{A})$ by sending $u \mapsto u \otimes u^{*\operatorname{op}}$.
- Pert(\mathcal{A}) acts on D:

$$D \mapsto \sum_{j} a_{j} D b_{j} = D + \sum_{j} a_{j} [D, b_{j}]$$

and this also extends to real spectral triples via the map

$$\mathsf{Pert}(\mathcal{A}) \to \mathsf{Pert}(\mathcal{A} \otimes J\mathcal{A}J^{-1})$$

Perturbation semigroup for matrix algebras

Proposition

Let A_F be the algebra of block diagonal matrices (fixed size). Then the perturbation semigroup of A_F is

$$\mathsf{Pert}(\mathcal{A}_{F}) \simeq \left\{ \sum_{j} A_{j} \otimes B_{j} \in \mathcal{A}_{F} \otimes \mathcal{A}_{F} \left| \begin{array}{c} \sum_{j} A_{j} (B_{j})^{t} = \mathbb{I} \\ \sum_{j} A_{j} \otimes B_{j} = \sum_{j} \overline{B_{j}} \otimes \overline{A_{j}} \end{array} \right\} \right\}$$

The semigroup law in $Pert(A_F)$ is given by the matrix product in $\mathcal{A}_{\mathsf{F}}\otimes\mathcal{A}_{\mathsf{F}}$:

$$(A \otimes B)(A' \otimes B') = (AA') \otimes (BB').$$

Example: perturbation semigroup of two-point space

- Now $A_F = \mathbb{C}^2$, the algebra of diagonal 2 × 2 matrices.
- In terms of the standard basis of such matrices

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

we can write an arbitrary element of $\mathsf{Pert}(\mathbb{C}^2)$ as

$$z_1e_{11} \otimes e_{11} + z_2e_{11} \otimes e_{22} + z_3e_{22} \otimes e_{11} + z_4e_{22} \otimes e_{22}$$

 Matrix multiplying e₁₁ and e₂₂ yields for the normalization condition:

$$z_1=1=z_4.$$

• The self-adjointness condition reads

$$z_2 = \overline{z_3}$$

leaving only one free complex parameter so that $\operatorname{Pert}(\mathbb{C}^2) \simeq \mathbb{C}$.

• More generally, $\operatorname{Pert}(\mathbb{C}^N) \simeq \mathbb{C}^{N(N-1)/2}$ with componentwise product.

Example: perturbation semigroup of $M_2(\mathbb{C})$

- Let us consider a noncommutative example, $A_F = M_2(\mathbb{C})$.
- We can identify $M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$ with $M_4(\mathbb{C})$ so that elements in Pert($M_2(\mathbb{C})$ are 4×4 -matrices satisfying the normalization and self-adjointness condition. In a suitable basis:

$$\mathsf{Pert}(M_2(\mathbb{C})) = \left\{ \begin{pmatrix} 1 & v_1 & v_2 & iv_3 \\ 0 & x_1 & x_2 & ix_3 \\ 0 & x_4 & x_5 & ix_6 \\ 0 & ix_7 & ix_8 & x_9 \end{pmatrix} \middle| \begin{array}{c} v_1, v_2, v_3 \in \mathbb{R} \\ x_1, \dots x_9 \in \mathbb{R} \end{array} \right\}$$

and one can show that

$$\operatorname{Pert}(M_2(\mathbb{C})) \simeq \mathbb{R}^3 \rtimes S.$$

More generally (B.Sc. thesis Niels Neumann),

$$\operatorname{Pert}(M_N(\mathbb{C})) \simeq W \rtimes S'.$$

Example: noncommutative two-point space

- Consider noncommutative two-point space described by $\mathbb{C} \oplus M_2(\mathbb{C})$
- It turns out that

$$\mathsf{Pert}(\mathbb{C} \oplus M_2(\mathbb{C})) \simeq M_2(\mathbb{C}) \times \mathsf{Pert}(M_2(\mathbb{C}))$$

Only M₂(ℂ) ⊂ Pert(ℂ ⊕ M₂(ℂ)) acts non-trivially on D_F:

$$D_F = egin{pmatrix} 0 & \overline{c} & 0 \ c & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \mapsto egin{pmatrix} 0 & \overline{c}\overline{\phi_1} & \overline{c}\overline{\phi_2} \ c\phi_1 & 0 & 0 \ c\phi_2 & 0 & 0 \end{pmatrix}$$

- Physicists call ϕ_1 and ϕ_2 the Higgs field.
- The group of unitary block diagonal matrices is now $U(1) \times U(2)$ and an element (λ, u) therein acts as

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \mapsto \overline{\lambda} u \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}.$$

Example: perturbation semigroup of a manifold

Recall, for any involutive algebra A

$$\mathsf{Pert}(\mathcal{A}) := \left\{ \sum_j \mathsf{a}_j \otimes \mathsf{b}^\mathrm{op}_j \in \mathcal{A} \otimes \mathcal{A}^\mathrm{op} \,\middle|\, egin{array}{l} \sum_j \mathsf{a}_j \mathsf{b}_j = 1 \ \sum_j \mathsf{a}_j \otimes \mathsf{b}^\mathrm{op}_j = \sum_j \mathsf{b}^*_j \otimes \mathsf{a}^*_j \end{array}
ight\}$$

- We can consider functions in $C^{\infty}(M) \otimes C^{\infty}(M)$ as functions of two variables in $C^{\infty}(M \times M)$.
- The normalization and self-adjointness condition in $Pert(C^{\infty}(M))$ translate accordingly and yield

$$\operatorname{Pert}(C^{\infty}(M)) = \left\{ f \in C^{\infty}(M \times M) \left| \begin{array}{l} f(x,x) = 1 \\ f(x,y) = \overline{f(y,x)} \end{array} \right. \right\}$$

• The action of Pert($C^{\infty}(M)$) on the partial derivatives appearing in a Dirac operator D_M is given by

$$\left. \frac{\partial}{\partial x_{\mu}} \mapsto \frac{\partial}{\partial x_{\mu}} + \left. \frac{\partial}{\partial y_{\mu}} f(x, y) \right|_{y=x} =: \partial_{\mu} + \mathbf{A}_{\mu}$$

Applications to particle physics

Combine (4d) Riemannian spin manifold M with finite noncommutative space F:

$$M \times F$$

F is internal space at each point of M

Described by matrix-valued functions on M: algebra $C^{\infty}(M, \mathcal{A}_F)$

Dirac operator on $M \times F$

Recall the form of D_M :

$$D_M = \begin{pmatrix} 0 & D_M^+ \\ D_M^- & 0 \end{pmatrix}.$$

Dirac operator on $M \times F$ is the combination

$$D_{M\times F} = D_M + \gamma_5 D_F = \begin{pmatrix} D_F & D_M^+ \\ D_M^- & -D_F \end{pmatrix}.$$

 The crucial property of this specific form is that it squares to the sum of the two Laplacians on M and F:

$$D_{M\times F}^2 = D_M^2 + D_F^2$$

Using this, we can expand the heat trace:

$$\operatorname{Trace} e^{-D_{M\times F}^2/\Lambda^2} = \frac{\operatorname{Vol}(M)\Lambda^4}{(4\pi)^2} \operatorname{Trace} \left(1 - \frac{D_F^2}{\Lambda^2} + \frac{D_F^4}{2\Lambda^4}\right) + \mathcal{O}(\Lambda^{-1}).$$

The Higgs mechanism

We apply this to the noncommutative two-point space described before

- Algebra $\mathcal{A}_F = \mathbb{C} \oplus M_2(\mathbb{C})$
- Perturbation of Dirac operator D_M parametrized by gauge bosons for $U(1) \times U(2)$.
- Perturbation of finite Dirac operator D_F parametrized by ϕ_1, ϕ_2 .
- Spectral action for the perturbed Dirac operator induces a potential:

$$V(\phi) = -2\Lambda^{2}(|\phi_{1}|^{2} + |\phi_{2}|^{2}) + (|\phi_{1}|^{2} + |\phi_{2}|^{2})^{2}$$

The spectral Standard Model

Describe $M \times F_{SM}$ by [CCM 2007]

- Coordinates: $\hat{x}^{\mu}(p) \in \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$ (with unimodular unitaries $U(1)_Y \times SU(2)_I \times SU(3)$).
- Dirac operator $D_{M \times F} = D_M + \gamma_5 D_F$ where

$$D_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$$

is a 96×96 -dimensional hermitian matrix where 96 is:

The Dirac operator on F_{SM}

$$D_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$$

The operator S is given by

$$S_I := \left(egin{array}{cccc} 0 & 0 & Y_
u & 0 \ 0 & 0 & 0 & Y_e \ Y_
u^* & 0 & 0 & 0 \ 0 & Y_e^* & 0 & 0 \end{array}
ight), \quad S_q \otimes 1_3 = \left(egin{array}{cccc} 0 & 0 & Y_u & 0 \ 0 & 0 & 0 & Y_d \ Y_u^* & 0 & 0 & 0 \ 0 & Y_d^* & 0 & 0 \end{array}
ight) \otimes 1_3,$$

where Y_{ν} , Y_{e} , Y_{μ} and Y_{d} are 3×3 mass matrices acting on the three generations.

 The symmetric operator T only acts on the right-handed (anti)neutrinos, $T\nu_R = Y_R \overline{\nu_R}$ for a 3 × 3 symmetric Majorana mass matrix Y_R , and Tf = 0 for all other fermions $f \neq \nu_R$.

Inner perturbations

Inner perturbations of D_M give a matrix

$$A_{\mu} = egin{pmatrix} B_{\mu} & 0 & 0 & 0 \ 0 & W_{\mu}^3 & W_{\mu}^+ & 0 \ 0 & W_{\mu}^- & -W_{\mu}^3 & 0 \ 0 & 0 & 0 & (G_{\mu}^a) \end{pmatrix}$$

corresponding to hypercharge, weak and strong interaction.

Inner perturbations of D_F give

$$\begin{pmatrix} Y_{\nu} & 0 \\ 0 & Y_{e} \end{pmatrix} \rightsquigarrow \begin{pmatrix} Y_{\nu}\phi_{1} & -Y_{e}\overline{\phi}_{2} \\ Y_{\nu}\phi_{2} & Y_{e}\overline{\phi}_{1} \end{pmatrix}$$

corresponding to SM-Higgs field. Similarly for Y_u , Y_d .

Dynamics and interactions

If we consider the spectral action:

Trace
$$f(D_M/\Lambda) \sim c_0 \int F_{\mu\nu} F^{\mu\nu} - c_2' |\phi|^2 + c_0' |\phi|^4 + \cdots$$

we observe [CCM 2007]:

 The coupling constants of hypercharge, weak and strong interaction are expressed in terms of the single constant c_0 which implies

$$g_3^2 = g_2^2 = \frac{5}{3}g_1^2$$

In other words, there should be grand unification.

• Moreover, the quartic Higgs coupling λ is related via

$$\lambda pprox 24 rac{3+
ho^4}{(3+
ho^2)^2} g_2^2; \qquad
ho = rac{m_
u}{m_{
m top}}$$

Phenomenology of the spectral Standard Model

This can be used to derive predictions as follows:

- Interpret the spectral action as an effective field theory at $\Lambda_{GUT}\approx 10^{13}-10^{16}$ GeV.
- ullet Run the quartic coupling constant λ to SM-energies to predict

$$m_h^2 = \frac{4\lambda M_W^2}{3g_2^2}$$

This gives [CCM 2007]

$$167~{\rm GeV} \le m_h \le 176~{\rm GeV}$$

Three problems

- 1 This prediction is falsified by the now measured value.
- In the Standard Model there is not the presumed grand unification.
- There is a problem with the low value of m_h , making the Higgs vacuum un/metastable [Elias-Miro et al. 2011].

Beyond the SM with noncommutative geometry

A solution to the above three problems?

 The matrix coordinates of the Standard Model arise naturally as a restriction of the following coordinates

$$\hat{x}^{\mu}(p) = \left(q_{R}^{\mu}(p), q_{L}^{\mu}(p), m^{\mu}(p)\right) \in \mathbb{H}_{R} \oplus \mathbb{H}_{L} \oplus M_{4}(\mathbb{C})$$

corresponding to a Pati-Salam unification:

$$U(1)_Y \times SU(2)_L \times SU(3) \rightarrow SU(2)_R \times SU(2)_L \times SU(4)$$

The 96 fermionic degrees of freedom are structured as

$$\begin{pmatrix}
\nu_R & u_{iR} & \nu_L & u_{iL} \\
e_R & d_{iR} & e_L & d_{iL}
\end{pmatrix} \qquad (i = 1, 2, 3)$$

• Again the finite Dirac operator is a 96×96 -dimensional matrix (details in [CCS 2013]).

Inner perturbations

Inner perturbations of D_M now give three gauge bosons:

$$W_R^\mu, \qquad W_I^\mu, \qquad V^\mu$$

corresponding to $SU(2)_R \times SU(2)_L \times SU(4)$.

- For the inner perturbations of D_F we distinguish two cases, depending on the initial form of D_F :
 - I The Standard Model $D_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$
 - II A more general D_F with zero $f_I f_I$ -interactions.

Scalar sector of the spectral Pati-Salam model

Case I For a SM D_F , the resulting scalar fields are composite fields, expressed in scalar fields whose representations are:

	$SU(2)_R$	$SU(2)_L$	SU(4)
ϕ^b_{a}	2	2	1
$\Delta_{\dot{a}I}$	2	1	4
Σ_J^I	1	1	15

Case II For a more general finite Dirac operator, we have fundamental scalar fields:

particle	$SU(2)_R$	$SU(2)_L$	<i>SU</i> (4)
Σ_{aJ}^{bJ}	2	2	1 + 15
u S	3	1	10
$H_{\dot{a}\dot{l}\dot{b}J}ig\{$	1	1	6

Action functional

As for the Standard Model, we can compute the spectral action which describes the usual Pati-Salam model with

unification of the gauge couplings

$$g_R = g_L = g$$
.

• A rather involved, fixed scalar potential, still subject to further study

Phenomenology of the spectral Pati-Salam model

However, independently from the spectral action, we can analyze the running at one loop of the gauge couplings [CCS 2015]:

- 1 We run the Standard Model gauge couplings up to a presumed PS \rightarrow SM symmetry breaking scale m_R
- 2 We take their values as boundary conditions to the Pati-Salam gauge couplings g_R, g_L, g at this scale via

$$\frac{1}{g_1^2} = \frac{2}{3} \frac{1}{g^2} + \frac{1}{g_R^2}, \qquad \frac{1}{g_2^2} = \frac{1}{g_L^2}, \qquad \frac{1}{g_3^2} = \frac{1}{g^2},$$

3 Vary m_R in a search for a unification scale Λ where

$$g_R = g_L = g$$

which is where the spectral action is valid as an effective theory.

Phenomenology of the spectral Pati-Salam model Case I: Standard Model DF

For the Standard Model Dirac operator, we have found that with $m_R \approx 4.25 \times 10^{13} \text{ GeV}$ there is unification at $\Lambda \approx 2.5 \times 10^{15} \text{ GeV}$:

Phenomenology of the spectral Pati-Salam model Case I: Standard Model DF

In this case, we can also say something about the scalar particles that remain after SSB:

	$U(1)_Y$	$SU(2)_L$	<i>SU</i> (3)
$ \begin{pmatrix} \phi_1^0 \\ \phi_1^+ \end{pmatrix} = \begin{pmatrix} \phi_1^1 \\ \phi_1^2 \end{pmatrix} $	1	2	1
$\begin{pmatrix} \phi_2^-\\ \phi_2^0\\ \phi_2^0 \end{pmatrix} = \begin{pmatrix} \phi_2^1\\ \phi_2^2\\ \phi_2^2 \end{pmatrix}$	-1	2	1
σ	0	1	1
η	$-\frac{2}{3}$	1	3

- It turns out that these scalar fields have a little influence on the running of the SM-gauge couplings (at one loop).
- However, this sector contains the real scalar singlet σ that allowed for a realistic Higgs mass and that stabilizes the Higgs vacuum [CC 2012].

Phenomenology of the spectral Pati-Salam model Case II: General Dirac

For the more general case, we have found that with $m_R \approx 1.5 \times 10^{11} \text{ GeV}$ there is unification at $\Lambda \approx 6.3 \times 10^{16} \text{ GeV}$:

Conclusion

We have arrived at a spectral Pati-Salam model that

- goes beyond the Standard Model
- has a fixed scalar sector once the finite Dirac operator has been fixed (only a few scenarios)
- exhibits grand unification for all of these scenarios (confirmed by [Aydemir-Minic-Sun-Takeuchi 2015])
- the scalar sector has the potential to stabilize the Higgs vacuum and allow for a realistic Higgs mass.

Further reading

A. Chamseddine, A. Connes, WvS.

Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. *JHEP* 11 (2013) 132. [arXiv:1304.8050]

Grand Unification in the Spectral Pati-Salam Model. *JHEP* 11 (2015) 011. [arXiv:1507.08161]

WvS.

Noncommutative Geometry and Particle Physics. Mathematical Physics Studies, Springer, 2015.

and also: http://www.noncommutativegeometry.nl