Factorization of Dirac operators in unbounded KK-theory

Walter van Suijlekom

(joint with Jens Kaad)

1 December 2017

Radboud University Nijmegen

Motivation

Consider the following setup:

• A Riemannian submersion

 $\pi: M \to B$

of spin^c manifolds M and B

• It is well-known from wrong-way functoriality [CS, 1984] that

$$[M] = \pi! \widehat{\otimes}_{C_0(B)}[B] \tag{(*)}$$

 Moreover, the Dirac operator on *M* can be written as a tensor sum:

$$D_M = D_V \widehat{\otimes} \gamma + 1 \widehat{\otimes}_{\nabla} D_B$$

representing the internal KK-product (*) [KvS, 2016].

This talk: can we obtain similar factorization for singular fibrations, that is, if the fiber dimension of $\pi: M \to B$ is allowed to vary?

Key application: toric noncommutative manifolds

- Let \mathbb{T}^n act on \overline{M} by isometries with principal stratum $M \subseteq \overline{M}$.
- Deformation quantization both at the topological [Rie, 1993] and geometric level [CL, 2001]:

$$(C^{\infty}(\overline{M}_{\theta}), L^{2}(\mathcal{E}_{\overline{M}}), D_{\overline{M}})$$

 At the C*-algebraic level, using a real structure one can identify [vS, 2015] a continuous C*-bundle B so that

$$C(\overline{M}_{\theta}) = \Gamma(\overline{M}/\mathbb{T}^n,\mathfrak{B})$$

- Gauge theory: Inn(A) acts fiberwise on \mathfrak{B} .
- A tensor sum factorization of the above type means that this bundle picture extends to the geometric level:

$$D_{\overline{M}} = D_V \widehat{\otimes} \gamma + 1 \widehat{\otimes}_{\nabla} D_{M/\mathbb{T}'}$$

where D_V is a suitably defined family of Dirac operators.

Setup: almost-regular fibrations

We consider singular fibrations in the following sense:

Definition

Let \overline{M} be a closed Riemannian manifold, together with a finite union $P = \bigcup_{j=1}^{m} P_j$ of compact embedded submanifolds $P_j \subseteq \overline{M}$ each without boundary and of codimension strictly greater than 1. If there exist a Riemannian manifold without boundary B and a proper Riemannian submersion $\pi : M \to B$ with total space $M = \overline{M} \setminus P$, we call the data $(\overline{M}, P, B, \pi)$ an almost-regular fibration.

- Major class of examples given by tori acting on closed Riemannian manifolds such that orbit space is connected.

For such almost-regular fibrations $(\overline{M}, P, B, \pi)$ of spin^c manifolds, the factorization can be done [KvS, 2017] by introducing

- a C^* -correspondence X between $C_0(M)$ and $C_0(B)$
- A regular selfadjoint operator

 $D_V : \operatorname{Dom}(D_V) \to X$

with compact resolvent (family of vertical Dirac operators), defining an unbounded KK-cycle from $C_0(M)$ to $C_0(B)$.

• A hermitian connection

$$abla : \mathsf{Dom}(
abla) o X \widehat{\otimes}_{C_0(B)} \Omega^1(B)$$

Then

- $D_V \widehat{\otimes} \gamma$ and $\widehat{1} \widehat{\otimes}_{\nabla} D_B$ define symmetric unbounded operators on $X \widehat{\otimes}_{C_0(B)} L^2(\mathscr{E}_B^c)$
- Both *C*^c_M := Γ[∞]_c(M, S_M) and *C*_M := Γ[∞](M, S_M) form a core for the selfadjoint operator D_M on Dom(D_M) ⊂ L²(C_M).

Theorem (KvS, 2017)

Up to unitary isomorphism we have the following identity of selfadjoint operators

$$D_V \widehat{\otimes} \gamma + 1 \widehat{\otimes}_{\nabla} D_B = D_{\overline{M}} + \widetilde{c}(\Omega).$$

where Ω is the curvature of $\pi: M \to B$.

Suppose that

- $\pi: M \to B$ is a proper and surjective submersion
- *M* is equipped with a Riemannian metric in the fiber direction.
- *E* is a smooth hermitian vector bundle on *M* and write $\mathscr{E} = \Gamma^{\infty}(M, E)$ and $\mathscr{E}^{c} = \Gamma^{\infty}_{c}(M, E)$.
- ${\mathscr D}$ is a first-order vertical differential operator on ${\mathscr E}$
- \mathscr{D} is vertically elliptic, in the sense that

the map $[\mathcal{D}, f](x) : E_x \to E_x$ is invertible whenever $(d_V f)(x)$ is non-trivial.

We define a C^* -correspondence X from $C_0(M)$ to $C_0(B)$ using the hermitian structure on \mathscr{E}^c and integration along the fibers:

$$\langle s,t
angle_X(b):=\int_{F_b}\langle s,t
angle_{\mathscr{E}^c}$$

Moreover, \mathscr{D} gives rise to an unbounded operator $D_0 : \mathscr{E}^c \to X$ by setting $D_0(s) = \mathscr{D}(s)$.

Theorem (KvS, 2017)

If the above operator D_0 is symmetric then the closure $D = \overline{D_0}$ is selfadjoint and regular and $m(f)(1 + D^2)^{-1/2}$ is a compact operator for all $f \in C_c^{\infty}(M)$. In other words, (X, D) is an unbounded Kasparov module from $C_0(M)$ to $C_0(B)$. • Let *M* and *B* be Riemannian manifolds and let

 $\pi: M \to B$

be a smooth and surjective map

• This is a Riemannian submersion when $d\pi$ is surjective and

$$d\pi: (\ker d\pi)^{\perp} \to \mathscr{X}(B) \otimes_{C^{\infty}(B)} C^{\infty}(M)$$

is an isometric isomorphism

• This gives rise to vertical and horizontal vector fields

$$\mathscr{X}(M) \cong \mathscr{X}_V(M) \oplus \mathscr{X}_H(M).$$

On $\mathscr{X}(M)$ one can introduce the direct sum connection

$$\nabla^{\oplus} = \nabla^{M}_{V} \oplus \pi^* \nabla^{B},$$

and associate to it the second fundamental form and the curvature Ω of the fibration which yield a tensor $\omega \in \Omega^1(M) \otimes_{C^{\infty}(M)} \Omega^2(M)$

Proposition (Bismut, 1986)

The Levi-Civita connection ∇^M is related to the direct sum connection ∇^\oplus by the following formula

$$\langle \nabla^M_X Y, Z \rangle_M = \langle \nabla^\oplus_X Y, Z \rangle_M + \omega(X)(Y, Z).$$

Spin geometry and Clifford modules

Suppose that M and B are (even-dim) spin^c manifolds, so we have

$$\operatorname{Cl}(M) \cong \operatorname{End}_{C^{\infty}(M)}(\mathscr{E}_M), \qquad \operatorname{Cl}(B) \cong \operatorname{End}_{C^{\infty}(B)}(\mathscr{E}_B)$$

and hermitian Clifford connections $\nabla^{\mathscr{E}_M}$ and $\nabla^{\mathscr{E}_B}$.

• We define the horizontal spinor module:

$$\mathscr{E}_{H} := \mathscr{E}_{B} \otimes_{C^{\infty}(B)} C^{\infty}(M); \qquad \nabla^{\mathscr{E}_{H}} := \pi^{*} \nabla^{\mathscr{E}_{B}}$$

and $\operatorname{Cl}_H(M) \cong \operatorname{End}_{C^{\infty}(M)}(\mathscr{E}_H)$

• We define the vertical spinor module:

$$\begin{split} \mathscr{E}_{V} &:= \mathscr{E}_{H}^{*} \otimes_{\mathsf{Cl}_{H}(M)} \mathscr{E}_{M}; \qquad \nabla_{X}^{\mathscr{E}_{V}} = \nabla_{X}^{\mathscr{E}_{H}^{*}} \otimes 1 + 1 \otimes \nabla_{X}^{\mathscr{E}_{M}} + \frac{1}{4} c(\omega(X) \\ \text{and } \mathsf{Cl}_{V}(M) &\cong \mathsf{End}_{C^{\infty}(M)}(\mathscr{E}_{V}) \\ \text{Finally,} \end{split}$$

$$\mathscr{E}_{H} \otimes_{C^{\infty}(M)} \mathscr{E}_{V} \cong \mathscr{E}_{M},$$

compatibly with $Cl_H(M) \widehat{\otimes}_{C^{\infty}(M)} Cl_V(M) \cong Cl(M)$.

The vertical operator

We thus have a C*-correspondence X from C₀(M) to C₀(B) by completing E^c_V := E_V ⊗_{C∞(M)} C[∞]_c(M) with respect to

$$\langle \phi_1, \phi_2 \rangle_X(b) := \int_{F_b} \langle \phi_1, \phi_2 \rangle_{\mathscr{E}_V^c}$$

The following local expression defines a symmetric operator

$$(D_V)_0(\xi) = i \sum_{j=1}^{\dim(F)} c(e_j) \nabla_{e_j}^{\mathscr{E}_V}(\xi); \qquad (\xi \in \mathscr{E}_V^c)$$

Proposition

If $\pi : M \to B$ is a proper Riemannian submersion of spin^c manifolds, then (X, D_V) is an even unbounded Kasparov module from $C_0(M)$ to $C_0(B)$.

The horizontal operator and the connection

• The Dirac operator D_B : Dom $(D_B) \rightarrow L^2(\mathscr{E}_B^c)$ is locally

$$D_B = i \sum_{\alpha=1}^{\dim(B)} c(f_\alpha) \nabla_{f_\alpha}^{\mathscr{E}_B^c} : \mathscr{E}_B^c \to L^2(\mathscr{E}_B^c)$$

and $(C_c^{\infty}(B), L^2(\mathscr{E}_B^2), D_B)$ is a half-closed chain [Hil, 2010]

The following defines a hermitian connection on X

$$\nabla_Z^X(\xi) = \nabla_{Z_H}^{\mathscr{E}_V}(\xi) + \frac{1}{2}k(Z_H)\cdot\xi$$

with $k \in \Omega^1(M)$ the mean curvature.

Lemma

The following local expression defines an odd symmetric unbounded operator in $X \widehat{\otimes}_{C_0(B)} L^2(\mathscr{E}_B^c)$:

$$(1 \otimes_{\nabla} D_B)(\xi \otimes r) := \xi \otimes D_B r + i \sum_{\alpha} \nabla^X_{f_{\alpha}}(\xi) \otimes c(f_{\alpha})r.$$

The tensor sum

• The tensor sum we are after is given by

 $D_V\widehat{\otimes}\gamma_B + 1\widehat{\otimes}_{\nabla}D_B : \mathsf{Dom}(D_V \times_{\nabla} D_B)_0 \to X\widehat{\otimes}_{C_0(B)}L^2(\mathscr{E}_B^c)$

- The closure of this symmetric operator is denoted $D_V \times_{\nabla} D_B$.
- Since P ⊆ M has codimension > 1, it follows that the closures of the following two operators coincide:
 - **1** the first-order differential operator $D_{\overline{M}}$ on $\mathscr{E}_{\overline{M}} := \Gamma^{\infty}(\overline{M}, \mathscr{E}_{\overline{M}})$
 - 2 the restriction of $D_{\overline{M}}$ to $\mathscr{E}_{M}^{c} := \Gamma_{c}^{\infty}(M, \mathscr{E}_{\overline{M}})$ where $M = \overline{M} \setminus \overline{P}$

Theorem (KvS, 2017)

Under the unitary isomorphism $V : X \widehat{\otimes}_{C_0(B)} L^2(\mathscr{E}_B^c) \to L^2(\mathscr{E}_{\overline{M}})$ we have the identity of selfadjoint operators

$$V(D_V \times_{\nabla} D_B)V^* = D_{\overline{M}} + \widetilde{c}(\Omega).$$

Moreover, the tensor sum is an unbounded representative of

 $\mathsf{KK}(C_0(M), C_0(B)) \otimes_{C_0(B)} \mathsf{KK}(C_0(B), \mathbb{C}) \to \mathsf{KK}(C_0(M), \mathbb{C})$

- Consider the class of examples coming from actions of a torus G on a spin^c manifold \overline{M} with principal stratum M and with B = M/G a spin^c manifold.
- Prototype: the four-sphere S⁴ with a T²-action (the starting point for the Connes-Landi four-sphere)

• Toroidal coordinates: $0 \le \theta_1, \theta_2 < 2\pi$, $0 \le \varphi \le \pi/2$, $-\pi/2 \le \psi \le \pi/2$, and write

$$\begin{aligned} z_1 &= e^{i\theta_1}\cos\varphi\cos\psi; \\ z_2 &= e^{i\theta_2}\sin\varphi\cos\psi; \\ x &= \sin\psi \end{aligned}$$

• Action of \mathbb{T}^2 is by translating the θ_1, θ_2 -coordinates

• The orbit space $\mathbb{S}^4/\mathbb{T}^2\cong Q^2$ is a closed quadrant in the two-sphere, parametrized by

$$\leq arphi \leq \pi/2, \qquad -\pi/2 \leq \psi \leq \pi/2$$

- Principal stratum \mathbb{S}^4_0 is a trivial $\mathbb{T}^2\text{-principal fiber bundle over the interior <math display="inline">Q^2_0$ of Q^2
- Moreover, $\pi: \mathbb{S}_0^4 \to Q_0^2$ is a Riemannian submersion for the metric on Q_0^2 induced by the round metric on \mathbb{S}^2

• The Dirac operator for the round metric is a $\mathbb{T}^2\text{-invariant}$ selfadjoint operator

$$D_{\mathbb{S}^4}: \mathsf{Dom}(D_{\mathbb{S}^4}) \to L^2(\mathbb{S}^4, \mathscr{E}_{\mathbb{S}^4})$$

with local expression:

$$\begin{split} D_{\mathbb{S}^4} &= i \frac{1}{\cos \varphi \cos \psi} \gamma^1 \frac{\partial}{\partial \theta_1} + i \frac{1}{\sin \varphi \cos \psi} \gamma^2 \frac{\partial}{\partial \theta_2} \\ &+ i \frac{1}{\cos \psi} \gamma^3 \left(\frac{\partial}{\partial \varphi} + \frac{1}{2} \cot \varphi - \frac{1}{2} \tan \varphi \right) + i \gamma^4 \left(\frac{\partial}{\partial \psi} - \frac{3}{2} \tan \psi \right) \end{split}$$

Since the 'subprincipal' stratum is of codimension two, it follows that C[∞]_c(S⁴₀) ⊗ C⁴ ⊂ L²(S⁴, E⁴_{S⁴}) is a core for D⁴<sub>S⁴</sup>
</sub>

Vertical operator

 We consider a C^{*}-correspondence X from C₀(S⁴₀) to C₀(Q²₀), defined as the Hilbert C^{*}-completion of C[∞]_c(S⁴₀) ⊗ C² wrt

$$\langle s,t \rangle_{X} = \int_{\mathbb{T}^{2}} \overline{s(\theta_{1},\theta_{2},\varphi,\psi)} \cdot t(\theta_{1},\theta_{2},\varphi,\psi) d\theta_{1} d\theta_{2} \cdot \sin\varphi \cos\varphi \cos^{2}\psi,$$

• There is a unitary isomorphism (induced by pointw. multipl.)

$$u: X \otimes_{C_0(Q_0^2)} L^2(Q_0^2) \otimes \mathbb{C}^2 \to L^2(\mathbb{S}_0^4) \otimes \mathbb{C}^4$$

• We define a symmetric operator $(D_V)_0 : C_c^{\infty}(\mathbb{S}^4_0) \otimes \mathbb{C}^2 \to X$:

$$(D_V)_0 = i \frac{1}{\cos\varphi\cos\psi} \sigma^1 \frac{\partial}{\partial\theta_1} + i \frac{1}{\sin\varphi\cos\psi} \sigma^2 \frac{\partial}{\partial\theta_2}$$

We denote its closure by $D_V : \text{Dom}(D_V) \to X$.

• One can find families of eigenvectors $\Psi_{n_1n_2}^{\pm}$ in $C^{\infty}(\mathbb{T}^2) \otimes \mathbb{C}^2$.

$$D_V\left(f\Psi_{n_1,n_2}^{\pm}\right)=\pm\lambda_{n_1n_2}\cdot f\Psi_{n_1n_2}^{\pm}.$$

for any $f \in \mathit{C}^\infty_{c}(\mathit{Q}^2_0)$ where

$$\lambda_{n_1 n_2} = \sqrt{\frac{n_1^2}{\cos^2 \varphi \cos^2 \psi} + \frac{n_2^2}{\sin^2 \varphi \cos^2 \psi}}$$

• Regularity, selfadjointness and compactness of the resolvent: D_V defines unbdd Kasparov module from $C_0(\mathbb{S}_0^4)$ to $C_0(Q_0^2)$

Walter van Suijlekom

Factorization of Dirac operators in unbounded KK-theory 20 / 25

Horizontal operator

We define an operator $(D_{Q_0^2})_0 : C_c^{\infty}(Q_0^2) \otimes \mathbb{C}^2 \to L^2(Q_0^2) \otimes \mathbb{C}^2$ as the restriction of the Dirac operator on \mathbb{S}^2 to the open quadrant Q_0^2 :

$$(D_{Q_0^2})_0 = i \frac{1}{\cos \psi} \sigma^1 \frac{\partial}{\partial \varphi} + i \sigma^2 \left(\frac{\partial}{\partial \psi} - \frac{1}{2} \tan \psi \right).$$

This is a symmetric operator. Its closure $D_{Q_0^2}$ defines a half-closed chain [Hil, 2010] from $C_0(Q_0^2)$ to \mathbb{C}

Tensor sum of D_V and $D_{Q_0^2}$

We lift the operators D_V and $D_{Q_0^2}$ to $X \otimes_{C_0(Q_0^2)} L^2(Q_0^2) \otimes \mathbb{C}^2$.

• For D_V we take $D_V\widehat{\otimes}\gamma$ and have on $C^\infty_c(\mathbb{S}^4_0)\otimes \mathbb{C}^4$ that

$$u(D_V\widehat{\otimes}\gamma)u^* = i\frac{1}{\cos\varphi\cos\psi}\gamma^1\frac{\partial}{\partial\theta_1} + i\frac{1}{\sin\varphi\cos\psi}\gamma^2\frac{\partial}{\partial\theta_2},$$

• For the operator $D_{Q_0^2}$, we first need a hermitian connection on X

$$\nabla_{\partial/\partial\varphi} = \frac{\partial}{\partial\varphi} + \frac{1}{2}\cot\varphi - \frac{1}{2}\tan\varphi \qquad \nabla_{\partial/\partial\psi} = \frac{\partial}{\partial\psi} - \tan\psi$$

• The operator $1 \widehat{\otimes}_{\nabla} D_{Q_0^2}$ then becomes

$$u(1\widehat{\otimes}_{\nabla}D_{Q_0^2})u^* = i\frac{1}{\cos\psi}\gamma^3\left(\frac{\partial}{\partial\varphi} + \frac{1}{2}\cot\varphi - \frac{1}{2}\tan\varphi\right) \\ + i\gamma^4\left(\frac{\partial}{\partial\psi} - \frac{3}{2}\tan\psi\right)$$

• The tensor sum we are after is given by

$$D_V \widehat{\otimes} \gamma + 1 \widehat{\otimes}_{\nabla} D_{Q_0^2}$$

• This is a symmetric operator and we denote its closure by

 $D_V \times_{\nabla} D_{Q_0^2} : \operatorname{Dom}(D_V \times_{\nabla} D_{Q_0^2}) \to X \otimes_{C_0(Q_0^2)} L^2(Q_0^2) \otimes \mathbb{C}^2.$

Since C[∞]_c(S⁴₀) ⊗ C² ⊗_{C[∞]_c(Q²₀)} C[∞]_c(Q²₀) ⊗ C² is a core for D_V ×_∇ D_{Q²₀} which is mapped by u to the core C[∞]_c(S⁴₀) ⊗ C⁴ of D_{S⁴}, it follows that

$$u(D_V \times_{\nabla} D_{Q_0^2})u^* = D_{\mathbb{S}^4}$$

as an equality on $\mathsf{Dom}(D_{\mathbb{S}^4})$

• A connection and positivity property imply that this is an unbounded representative of the internal product

 $\mathsf{KK}(\mathsf{C}_0(\mathbb{S}^4_0),\mathsf{C}_0(\mathsf{Q}^2_0))\otimes_{\mathsf{C}_0(\mathsf{Q}^2_0)}\mathsf{KK}(\mathsf{C}_0(\mathsf{Q}^2_0),\mathbb{C})\to\mathsf{KK}(\mathsf{C}_0(\mathbb{S}^4_0),\mathbb{C})$

Summary

For almost-regular fibrations $(\overline{M}, P, B, \pi)$ of spin^c manifolds we have obtained with $M = \overline{M} \setminus \overline{P}$:

- an unbounded Kasparov module (X, D_V) from $C_0(M)$ to $C_0(B)$ describing the vertical data
- a connection ∇ on X that allows to lift the Dirac operator D_B to a symmetric operator 1^ô_∇D_B on X^ô_{C₀(B)}L²(^c_B)
- an identity of selfadjoint operators on Dom(D_M)

$$V\left(D_V\widehat{\otimes}\gamma+1\widehat{\otimes}_{\nabla}D_B\right)V^*=D_{\overline{M}}+\widetilde{c}(\Omega).$$

• A local connection and positivity property imply that this is an unbounded representative of the internal product

 $\mathsf{KK}(\mathsf{C}_0(M),\mathsf{C}_0(B))\otimes_{\mathsf{C}_0(B)}\mathsf{KK}(\mathsf{C}_0(M),\mathbb{C})\to\mathsf{KK}(\mathsf{C}_0(M),\mathbb{C})$

 Applications: tori acting on compact Riemannian spin^c manifolds

- J. Kaad and WvS. Riemannian submersions and factorization of Dirac operators. arXiv:1610.02873. To appear in *J. Noncommut. Geom.*.
- J. Kaad and WvS. On a theorem of Kucerovsky for half-closed chains. arXiv:1709.08996
- J. Kaad and WvS. Factorization of Dirac operators on almost-regular fibrations of spin^c manifolds. arXiv:1710.03182
- WvS. Localizing gauge theories from noncommutative geometry. *Adv. Math.* 290 (2016) 682-708. arXiv:1411.6482