
Lett Math Phys
https://doi.org/10.1007/s11005-018-1092-x

Reduction of quantum systems and the local Gauss law
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Abstract We give an operator-algebraic interpretation of the notion of an ideal gen-
erated by the unbounded operators associated with the elements of the Lie algebra of
a Lie group that implements the symmetries of a quantum system. We use this inter-
pretation to establish a link between Rieffel induction and the implementation of a
local Gauss law in lattice gauge theories similar to the method discussed by Kijowski
and Rudolph (J Math Phys 43:1796–1808, 2002; J Math Phys 46:032303, 2004).
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1 Introduction

There are well-developed theories of reduction of both classical and quantummechan-
ical systems that possess symmetries. The study of reduction of classical systems was
initiated by Dirac in [2] with his theory of first and second order constraints, and later
put into the language of symplectic manifolds by Arnold and Smale. The reduction of
a symplectic manifold with respect to an equivariant moment map was described by
Marsden and Weinstein in their paper [9]. For a more detailed account of the history
of symplectic reduction, we refer to [10] and references therein. A procedure known
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as Rieffel induction, developed in [12], appears to be a good candidate for a quantum
version of Marsden–Weinstein reduction [7] (cf. [8, IV.2]).

The primary aim of this paper is to compare two different ways to reduce the quan-
tum mechanical observable algebra. The first one is the method of Rieffel induction
mentioned above. The second one was outlined by Kijowski and Rudolph in [5,6]
in the context of a quantum lattice gauge theory, in which they explicitly implement
a constraint, the local Gauss law, by ensuring that the operators associated with the
generators of the gauge group vanish in the observable algebra of the reduced system.
The corresponding operators on the unreduced Hilbert space are unbounded, however,
which requires them to appeal to the theory of C∗-algebras generated by unbounded
operators as developed by Woronowicz in [15], something that is not necessary for
Rieffel induction. Nevertheless, both procedures yield the same reduced observable
algebra. In this paper, we modify the latter method so that it is formulated entirely in
terms of bounded operators, and show that it agrees with the final step in the process
of Rieffel induction.

The paper is organized as follows. In Sect. 2, we briefly recall the process of Rieffel
induction. In Sect. 3,we formulate and prove themain theorem that establishes the link.
In Sect. 4, we discuss some examples, including the lattice gauge theory mentioned
above.

2 Reduction of quantum systems using Rieffel induction

The kinematical data of a quantum system consist of a Hilbert spaceH and a faithful
representation π of a C∗-algebra A on H . A continuous symmetry of a quantum
system typically (but, in accordance with Wigner’s celebrated theorem, not exclu-
sively,) corresponds to a continuous unitary representation ρ : K → U (H ) of some
Lie group K on H . We are interested in studying the reduction of the kinematical
data with respect to such symmetries in the case in which K is compact. A systematic
way to obtain this reduction, known as Rieffel induction, was proposed by Landsman
in [7] using an induction procedure for representations of C∗-algebras developed by
Rieffel in [12].

Let us first briefly recall the process of Rieffel induction. Starting from the above
representation of the group K , one endows H with the structure of a right Hilbert
C∗(K )-module, where C∗(K ) denotes the group C∗-algebra of K . Subsequently, one
takes the quotient of H with respect to the null space of a bilinear form on H ,
which yields a space naturally isomorphic toH K , the subspace ofH of K -invariant
elements. Thus we obtain the Hilbert space of the reduced system.

At the level of the observable algebra, one first considers the algebra AK of elements
of A that are equivariant with respect to the given unitary representation. The space
H K is invariant under these observables, yielding a representationπ of theC∗-algebra
AK onH K . The image of this representation is isomorphic to AK/ker(π), and hence
one obtains a faithful representation of AK/ker(π) onH K , which forms the remaining
part of the kinematical data of the reduced system.

Motivated by the theory of strict quantization of observable algebras as described
extensively in [8, Part II], we are interested in the case where A = B0(H ), the space
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of compact operators, and its representation on H is the obvious one. It can then be
shown that AK/ker(π) is isomorphic to B0(H K ) and that the representation of this
algebra on the reduced Hilbert space H K is again the obvious one.

3 Associating algebras to infinitesimal generators

Themain purpose of this section is to discuss a possible interpretation of an observation
made by Kijowski and Rudolph in [6, Sect. 3] in the case of a quantum lattice gauge
theory, namely that the kernel of the representation π : AK → B(H K ), where as
before A = B0(H ), is in some sense generated by the elements of the Lie algebra k
of the symmetry group K . The representation of the group K on H can be used to
associate differential operators with the elements of k, which are typically unbounded
ifH is infinite dimensional. If instead the representation space is finite dimensional,
then the representation of the Lie algebra k is bounded. Using this fact and other
standard results from the representation theory of Lie groups, we will show how the
differential operators associated with the elements of the Lie algebra generate ker(π).
In addition, we need the following preparatory lemma, which can be found in [11,
Exercise 4.2(c)]:

Lemma 1 LetH be a Hilbert space, let a be a compact operator onH , and suppose
that (b j ) j∈J is a bounded net of bounded operators that converges strongly to b ∈
B(H ). Then the net (b ja) j∈J converges in norm to ba. If in addition the operator b j

is Hermitian for each j ∈ J , then the net (ab j ) j∈J converges in norm to ab.

The following result shows how ker(π) can be generated by differential operators:

Theorem 2 Suppose K is a compact, connected Lie group. Let S be a collection
of finite-dimensional subrepresentations of the continuous representation ρ : K →
U (H ), and for each σ ∈ S, letHσ ⊆ H be the subspace on which σ is represented.
Suppose that these representation spaces form an orthogonal decomposition of H ,
i.e.,

H =
⊕

σ∈S
Hσ .

Then ker(π) is the closed, two-sided ideal generated by the set

{∫

K
ρ(k)σ (X)nρ(k)−1 dk : σ ∈ S, X ∈ k, n ≥ 1

}
. (1)

Remark 3 In the set of generators above, σ(X) is regarded as the compression of ρ(X)

toHσ . Moreover, we note that the integrals of vector-valued functions can be defined
using Bochner integration.

Proof of Theorem 2 Let I be the ideal in AK generated by the set in Eq. (1). We first
show that I ⊆ ker(π). Indeed, σ(X)n maps H into Hσ for each σ ∈ S, each X ∈ k
and each n ≥ 1, hence so does

∫
K ρ(k)σ (X)nρ(k)−1dk, which implies that it is a finite

rank operator. In particular, it is compact. Moreover, it follows from left invariance of
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the Haar measure that
∫
K ρ(k)σ (X)nρ(k)−1 dk is equivariant with respect to ρ, so it

is an element of AK . Finally, to show that it is an element of ker π , let pσ : H → Hσ

be the orthogonal projection onto the representation space of σ . For each v ∈ H K

we have pσ v ∈ H K and σ(X)v = 0. Hence
∫

K
ρ(k)σ (X)nρ(k)−1(v) dk =

∫

K
ρ(k)σ (X)n(v) dk = 0,

and therefore
∫
K ρ(k)σ (X)nρ(k)−1 dk ∈ ker(π). Thus the generators of I are con-

tained in ker(π). Since ker(π) is a closed, two-sided ideal, it follows that I ⊆ ker(π).
We turn to the proof of the reverse inclusion. Let b ∈ ker(π), let pH K be the

orthogonal projection of H onto H K . It is easy to see that

pH K =
∫

K
ρ(k) dk.

Since b ∈ ker(π), it follows that

b = b
(
IdH − pH K

) = b
∫

K
(IdH − ρ(k)) dk =

∑

σ∈S
b

∫

K
(pσ − σ(k)) dk.

By the preceding lemma, the series on the right-hand side is norm-convergent, hence
to show that b ∈ I , it suffices to show that

b
∫

K
(pσ − σ(k)) dk ∈ I,

for each σ ∈ S. Since I is closed under multiplication with elements of AK , we are
done if we can show that ∫

K
(pσ − σ(k)) dk ∈ I.

From bi-invariance of the Haar measure and Fubini’s theorem, we infer that
∫

K
(pσ − σ(k)) dg =

∫

K

∫

K
ρ(h)(pσ − σ(k))ρ(h)−1 dh dk.

The norm topology and the strong topology coincide on the finite-dimensional algebra
B(Hσ ), so the first integral on the right-hand side is a norm limit of Riemann sums,
i.e., for each ε > 0, there exist k j ∈ K and c j ≥ 0 for j = 1, . . . , n, such that

∥∥∥∥∥∥

∫

K

∫

K
ρ(h)(pσ − σ(k))ρ(h)−1 dh dk −

n∑

j=1

c j

∫

K
ρ(h)(pσ − σ(k j ))ρ(h)−1 dh

∥∥∥∥∥∥
< ε.

Since I is closed by definition, it suffices to show that

n∑

j=1

c j

∫

K
ρ(h)(pσ − σ(k j ))ρ(h)−1 dh ∈ I.
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We prove this by showing that

∫

K
ρ(h)(pσ − σ(k))ρ(h)−1 dh ∈ I, (∗)

for each k ∈ K . Now fix such a k. Because K is both compact and connected,
the exponential map exp : k → K is surjective, so there exists an X ∈ k such that
k = exp(X). But σ is a homomorphism of Lie groups, so

σ(k) = σ ◦ exp(X) = exp ◦ σ(X) = pσ

∞∑

j=0

σ(X) j

j ! .

Thus

pσ − σ(k) = −
∞∑

j=1

σ(X) j

j ! .

The map

B(Hσ ) → B(Hσ ), a 	→
∫

K
ρ(h)aρ(h)−1 dh,

is a linear operator on the finite-dimensional algebra B(Hσ ), and hence it is norm-
continuous, so

∫

K
ρ(h)(pσ − σ(k))ρ(h)−1 dh = −

∞∑

j=1

1

j !
∫

K
ρ(h)σ (X) jρ(h)−1 dh,

and the series on the right-hand side converges with respect to the norm on B(H ).
Each of the partial sums is an element of I , which implies that (∗) holds, as desired. 
�
In general, the set S in the above theorem will not be unique. Suppose that we are in
the situation of the theorem, and that we are given a set S satisfying the assumption.
If the Hilbert space H is infinite dimensional, there are infinitely many different
sets like S that satisfy the assumption. Indeed, S is an infinite set because H is
infinite dimensional, so we can take any finite subset F ⊆ S containing at least
two representations, define the subrepresentation σF := ⊕

σ∈F σ , and the set S′ =
(S\F) ∪ {σF }. Then S′ �= S, and it satisfies the assumption of the theorem.

The last argument can be formulated slightly more generally as follows: Suppose
that S1 and S2 are sets of orthogonal finite-dimensional subrepresentations, and that
S1 satisfies the assumption of the theorem. If each element of S1 is a subrepresentation
of S2, then S2 also satisfies the assumption. If H is infinite dimensional, then from
any set S1 one can always construct a different set S2 with these properties. Thus one
can always make the set S ‘arbitrarily coarse’, which is another reason why we view
Theorem 2 as a possible way to make the idea of ‘the ideal generated by unbounded
operators’ rigorous.

The fact that a set S like the one in Theorem 2 always exists, is a consequence of
the following result. Recall that for any representation ρ of a group K on a space V ,
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a vector v is called K-finite if and only if the smallest subspace containing v that is
invariant under ρ, i.e., the span of {ρ(k)v : k ∈ K }, is finite dimensional. We let V fin

denote the subspace of K -finite vectors of V .

Proposition 4 Let ρ be a continuous representation of a compact Lie group K in a
complete locally convex topological vector space V . Then V fin is dense in V .

This result can be found in [3] as part of Corollary 4.6.3. Using this result and Zorn’s
lemma, one can now readily show that there exists a set S that satisfies the assumption
of our theorem. Needless to say, explicitly exhibiting such a set might be impossible.
However, as we shall see in the next section, there are situations in which there is a
natural choice for S.

Before we end this section, we briefly recall some other notions from representation
theory. Let K̂ be the set of equivalence classes of irreducible representations of K , and
let [δ] ∈ K̂ . The isotypical component of type [δ] is the set V [δ] of elements v ∈ V fin

such that the subrepresentation generated by v is equivalent to the representation
δ ⊕ · · · ⊕ δ (n copies) for some n ∈ N.

4 Examples

4.1 Local Gauss law in quantum lattice gauge theories

We start with the motivating example for this paper, namely the local Gauss law
discussed by Kijowski and Rudolph in [6] in the context of quantum lattice gauge
theories. Let Λ = (Λ0,Λ1) be a finite, connected, oriented graph whose sets of
vertices and edges are given byΛ0 andΛ1, respectively. Moreover, let s, t : Λ1 → Λ0

be the maps that assign to an edge its source and target, respectively. Finally, let G be
a compact Lie group. Let G := GΛ0

, and letA := GΛ1
be the sets of functions from

Λ0 andΛ1 toG, respectively. In lattice gauge theory, G is the gauge group, whileA is
the space of connections. We endow these sets of functions with Lie group structures
simply by viewing them as direct products of G with itself. ThenA carries an action
of G , which is given by

(gx )x∈Λ0 · (ae)e∈Λ1 :=
(
gs(e)aeg

−1
t (e)

)

e∈Λ1
.

This action induces a continuous unitary representation ρ of G on H := L2(A ) by
(ρ(g)(ψ))(a) := ψ(g−1 · a), where g ∈ G , ψ ∈ H and a ∈ GΛ1

.
Baez already noted in [1] that the action of G restricts to the isotypical components

ofH with respect to the left regular representation of GΛ1
on this space—in fact, the

G -invariant subspaces of the isotypical components form the basis for spin networks
as introduced in [13]. Indeed, the representation ρ can be regarded as the composition
of two group homomorphisms; first, we have a homomorphism

ι : G → GΛ1 × GΛ1 � (G × G)Λ
1
, (gx )x∈Λ0 	→ (gs(e), gt (e))e∈Λ1,
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which by connectedness of the graph is an injection if and only ifΛ has more than one
vertex.The secondhomomorphism is the product representation L×R : GΛ1×GΛ1 →
U (H ) of the left and right regular representations L and R, respectively. It follows
that each subspace of H that is invariant under the representation L × R, is also
invariant under ρ. The Peter–Weyl theorem asserts that

H fin =
⊕

[δ]∈̂

GΛ1

H [δ],

and that the isotypical components H [δ] are irreducible subrepresentations of the
representation L × R of dimension dim(δ)2. Here,H fin denotes the set of GΛ1

-finite
vectors with respect to the left regular representation of GΛ1

on L2(A ). Thus we may
take the set S in Theorem 2 to be the collection of subrepresentations obtained by

restricting ρ toH [δ] for each δ ∈ ̂GΛ1 .
Since the elements of the Lie algebra of the gauge group G generate the gauge

group, Theorem 2 provides a link between two different methods of reduction of the
quantum observable algebra, the first being Rieffel induction, and the second being
the implementation of a local Gauss law by taking the quotient with respect to an ideal
generated by unbounded operators associated with Lie algebra elements, as mentioned
by Kijowski and Rudolph in [6].

4.2 Hamiltonian symmetries

The second example that we discuss is really more of a class of examples, namely that
of quantum systems with a given Hamiltonian that possesses a certain symmetry.

LetH be a Hilbert space, let H be a (possibly unbounded) self-adjoint operator on
H , and suppose ρ : K → U (H ) is a continuous unitary representation of a compact
connected Lie group K on H with the property that ρ(k) preserves Dom(H) and
[ρ(k), H ] = 0 for each k ∈ K . Moreover, let σp(H) be the point spectrum of H ,
and for each λ ∈ σp(H), let Hλ be the eigenspace corresponding to λ. Suppose
that Hλ is finite dimensional for each λ ∈ σp(λ), and that H = ⊕

λ∈σp(H) Hλ.
Then ρ restricts to a representation ρλ on Hλ for each λ ∈ σp(H), and we may set
S := {ρλ : λ ∈ σp(H)}.

A notable subclass of examples satisfying the above conditions is the class of
quantum systems in which H = L2(Q), where Q is a compact smooth Riemannian
manifold that admits a Lie group of isometries, and H = � is the Laplacian on Q.
In particular, the lattice gauge theories in Sect. 4.1 can be studied in this way if one
endows GΛ1

with a bi-invariant Riemannian metric. It is a result from representation
theory (cf. [14, Theorem 3.3.5]) that H [δ] is a subspace of an eigenspace of � for

each δ ∈ ̂GΛ1 , so the decomposition obtained in the previous example is finer than
the decomposition into eigenspaces of �.
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