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ABSTRACT. Kucerovsky’s theorem provides a method for recognizing the in-
terior Kasparov product of selfadjoint unbounded cycles. In this paper we
present a partial extension of Kucerovsky’s theorem to the non-selfadjoint set-
ting by replacing unbounded Kasparov modules with Hilsum’s half-closed
chains. On our way we show that any half-closed chain gives rise to a mul-
titude of twisted selfadjoint unbounded cycles via a localization procedure.
These unbounded modular cycles allow us to provide verifiable criteria avoid-
ing any reference to domains of adjoints of symmetric unbounded operators.
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INTRODUCTION

In recent years a lot of attention has been given to the non-unital frame-
work for noncommutative geometry, where the absence of a unit is interpreted as
a non-compactness condition on the underlying noncommutative space [4], [6],
[22], [24]. For a more detailed analysis of the non-compact setting it is important
to distinguish between the complete and the non-complete case [24]. Whereas
the complete case is still modelled by a (non-unital) spectral triple or more gener-
ally an unbounded Kasparov module, the lack of completeness leads to the non-
selfadjointness of symmetric differential operators. A noncommutative geomet-
ric framework that captures the non-complete setting is provided by Hilsum’s no-
tion of a half-closed chain, where the selfadjointness condition on the unbounded
operator is replaced by a more flexible symmetry condition [11]. This framework
is supported by results of Baum, Douglas Taylor and Hilsum showing that any
first-order symmetric elliptic differential operator on any Riemannian manifold
gives rise to a half-closed chain [2], [11].
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Unbounded Kasparov modules give rise to classes in Kasparov’s KK-theory
via the Baaj–Julg bounded transform and this result has been extended by Hilsum
to cover half-closed chains [1], [9], [10], [11]. This transform contains information
about the algebraic topology of the original geometric situation described by a
half-closed chain.

The main structural property of Kasparov’s KK-theory is the interior Kas-
parov product [18]:

⊗̂B : KK(A, B)× KK(B, C)→ KK(A, C).

The interior Kasparov product is however not explicitly constructed and it is
therefore important to develop tools for computing the interior Kasparov product
of two given Kasparov modules. Given three classes in KK-theory, Connes and
Skandalis developed suitable conditions for verifying whether one of these three
classes factorizes as an interior Kasparov product of the remaining two classes [8].

The conditions of Connes and Skandalis were translated to the unbounded
setting by Kucerovsky [19], [20]. Thus, given three unbounded Kasparov mod-
ules, Kucerovsky’s theorem provides criteria for verifying that one of these un-
bounded Kasparov modules factorizes as an unbounded Kasparov product of the
remaining two unbounded Kasparov modules. In many cases, the conditions are
easier to verify directly at the unbounded level, using Kucerovsky’s theorem, in-
stead of first applying the bounded transform and then relying on the results of
Connes and Skandalis. Indeed, in the unbounded setting we are usually work-
ing with first-order differential operators whereas their bounded transforms are
zeroth-order pseudo-differential operators involving a square root of the resol-
vent.

In this paper we present a partial extension of Kucerovsky’s theorem that
covers many non-complete examples, where the unbounded Kasparov modules
are replaced by half-closed chains. The main challenge in carrying out such a task
is that the domain of the adjoint of a symmetric unbounded operator can be diffi-
cult to describe. The original proof of Kucerovsky does therefore not translate to
the non-selfadjoint setting as the correct conditions have to be formulated with-
out any reference to maximal domains of symmetric unbounded operators. Our
extension is still only partial since our conditions together with a few extra mild
conditions imply that one of our half-closed chains must in fact be selfadjoint. A
full generalization of Kucerovsky’s theorem to the setting of half-closed chains is
therefore still a topic for future research.

The main technique that we apply is a localization procedure relating to
the work of the first author in [12], [14]. This procedure allows us to pass from
a symmetric regular unbounded operator D to an essentially selfadjoint regular
unbounded operator of the form xDx∗ for an appropriate bounded adjointable
operator x. In the case where D is a Dirac operator, the localization corresponds
to a combination of two operations: restricting all data to an open subset and
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passing from the non-complete Riemannian metric on this open subset to a con-
formally equivalent but complete Riemannian metric. The size of the open neigh-
borhood and the relevant conformal factor are both determined by the positive
function xx∗.

In particular, our technique allows us to construct a multitude of unbounded
modular cycles out of a given half-closed chain. We interpret this localization pro-
cedure in terms of the unbounded Kasparov product by the module generated by
the localizing element x. In this way, we may work with selfadjoint unbounded
operators and hence eliminate the difficulties relating to the description of maxi-
mal domains. On the other hand, the “conformal factor” (xx∗)−2 produces a twist
of the commutator condition and this twist is described by the modular automor-
phism σ(·) = (xx∗)(·)(xx∗)−1. We refer to Connes and Moscovici for further
discussion of this issue in the case where x is positive and invertible, see [5].

The present paper is motivated by the geometric setting of a proper Rie-
mannian submersion of spinc-manifolds, and the criteria that we develop here
have already been applied in [17] to obtain factorization results involving the
corresponding fundamental classes in KK-theory. See also [16] for applications to
the setting of theta-deformations of toroidal manifolds.

Our results may also be of importance for the further development of the
unbounded Kasparov product as initiated by Connes in [7] and developed further
by Mesland and others in [3], [13], [14], [15], [23], [24].

The structure of this paper is as follows: in Section 1 and Section 2 we re-
view the concept of a half-closed chain and of an unbounded modular cycle. In
Section 3, Section 4 and Section 5 we prove our results on the localization pro-
cedure and investigate how it relates to the Kasparov product. In Section 6 we
prove Kucerovsky’s theorem for half-closed chains.

1. HALF-CLOSED CHAINS

Let us fix two σ-unital C∗-algebras A and B.
Let E be a countably generated Hilbert C∗-module over B. We recall that

a closed (densely defined) unbounded operator D : Dom(D) → E is said to be
regular when it has a densely defined adjoint D∗ : Dom(D∗) → E and when
1 + D∗D : Dom(D∗D) → E has dense range. It follows from this definition
that 1 + D∗D : Dom(D∗D) → E is in fact densely defined and surjective ([21],
Lemma 9.1). In particular we have a bounded adjointable inverse (1 + D∗D)−1 :
E→ E.

For two countably generated Hilbert C∗-modules E and F over B, we let
L(E, F) and K(E, F) denote the bounded adjointable operators from E to F and
the compact operators from E to F, respectively. When E = F we put L(E) :=
L(E, F) and K(E) := K(E, F). We let ‖ · ‖∞ : L(E, F)→ [0, ∞) denote the operator
norm.
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The following definition is due to Hilsum ([11], Section 3).

DEFINITION 1.1. A half-closed chain from A to B is a triple (A , E, D), where
A ⊆ A is a norm-dense ∗-subalgebra, E is a countably generated C∗-correspon-
dence from A to B and D : Dom(D) → E is a closed, symmetric and regular
unbounded operator such that:

(i) a · (1 + D∗D)−1 is a compact operator on E for all a ∈ A;
(ii) a(Dom(D∗)) ⊆ Dom(D) for all a ∈ A ;

(iii) [D, a] : Dom(D) → E extends to a bounded operator d(a) : E → E for all
a ∈ A .

A half-closed chain (A , E, D) from A to B is said to be even when E comes
equipped with a Z/2Z-grading operator γ : E → E (γ = γ∗, γ2 = 1), such that
[a, γ] = 0 for all a ∈ A and Dγ = −γD.

A half-closed chain which is not even is said to be odd.

Let (A , E, D) be a half-closed chain from A to B. A few observations are in
place:

(i) d(a) : E→ E, a ∈ A , is automatically adjointable with d(a)∗ = −d(a∗).
(ii) The difference

Da− aD∗ : Dom(D∗)→ E a ∈ A

extends to the bounded adjointable operator d(a) : E→ E.
(iii) a · (1 + DD∗)−1 ∈ K(E) for all a ∈ A. (Remark that D∗ is automatically

regular by Proposition 9.5 of [21]).

We recall that a Kasparov module from A to B is a pair (E, F) where E is a
countably generated C∗-correspondence from A to B and F : E→ E is a bounded
adjointable operator such that

a · (F− F∗), a · (F2 − 1), [F, a] ∈ K(E),

for all a ∈ A. A Kasparov module (E, F) from A to B is even when it comes
equipped with a Z/2Z-grading operator γ : E → E such that [a, γ] = 0 for all
a ∈ A and Fγ + γF = 0. Otherwise we say that (E, F) is odd.

For an unbounded regular operator D : Dom(D) → E we let FD := D(1 +
D∗D)−1/2 ∈ L(E) denote the bounded transform of D. We have that F∗D = FD∗ =

D∗(1 + DD∗)−1/2.
The next result creates the main link between half-closed chains and Kas-

parov modules. This result is due to Hilsum [11], and it generalizes the corre-
sponding result of Baaj and Julg for unbounded Kasparov modules [1]. Remark
however that the condition [FD, a] ∈ K(E), a ∈ A, is for some reason left un-
proved in Theorem 3.2 of [11]. This remaining inclusion can however be deduced
from the beginning of the proof of Lemma B.1 in [10] together with Hilsum’s re-
sult that (FD− F∗D)a ∈ K(E), a ∈ A, see also Theorem 2.13 of [10] and Theorem 8.9
of [9]. Remark however that the paper [10] and the thesis [9] are written under



ON A THEOREM OF KUCEROVSKY FOR HALF-CLOSED CHAINS 119

an extra condition either on Ker(D∗) or on the existence of certain approximate
identities.

THEOREM 1.2. Suppose that (A , E, D) is a half-closed chain from A to B. Then
(E, FD) is a Kasparov module from A to B of the same parity as (A , E, D) and with the
same Z/2Z-grading operator γ : E→ E in the even case.

2. UNBOUNDED MODULAR CYCLES

Let us fix σ-unital C∗-algebras A and B together with a dense ∗-subalgebra
A ⊆ A.

The following definition is from Section 3 of [14].

DEFINITION 2.1. An unbounded modular cycle from A to B is a triple (E, D, ∆)
where E is a countably generated C∗-correspondence from A to B, D : Dom(D)→
E is an unbounded selfadjoint and regular operator, and ∆ : E → E is a bounded
positive and selfadjoint operator with norm-dense image such that:

(i) a(i + D)−1 : E→ E is a compact operator for all a ∈ A;
(ii) (a + λ)∆ has Dom(D) ⊆ E as an invariant submodule and

D(a + λ)∆−∆(a + λ)D : Dom(D)→ E

extends to a bounded adjointable operator d∆(a, λ) : E→ E for all a ∈ A , λ ∈ C.
(iii) The supremum

sup
ε>0
‖(∆1/2 + ε)−1d∆(a, λ)(∆1/2 + ε)−1‖∞

is finite for all a ∈ A , λ ∈ C.
(iv) The sequence {∆(∆ + 1/n)−1a} converges in operator norm to a for all

a ∈ A.
An unbounded modular cycle is even when E comes equipped with a Z/2Z-
grading operator γ : E → E (γ = γ∗, γ2 = 1), such that [a, γ] = 0 for all a ∈ A
and Dγ = −γD.

An unbounded modular cycle is odd when it is not even.

REMARK 2.2. Note that if ∆ has a bounded inverse then (iii) and (iv) are
automatic. If, in addition, A is unital, ∆, ∆−1 ∈ A and B = C then the modular
cycle (E, D, ∆) defines a twisted spectral triple in the sense of [5], with the twisting
automorphism σ : A → A given by σ(a) = ∆a∆−1 for all a ∈ A .

REMARK 2.3. In [14] it is assumed that A is equipped with a fixed operator
space norm ‖ · ‖1 : Mn(A ) → [0, ∞), n ∈ N, such that the inclusion A → A is
completely bounded. In the above definition it is then required that the supre-
mum in (iii) is completely bounded in the sense that

sup
ε>0
‖(∆1/2 + ε)−1d∆(a, 0)(∆1/2 + ε)−1‖∞ 6 C · ‖a‖1
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for all a ∈ Mn(A ), n ∈ N (thus, the constant C is independent of the size of
the matrices). This structure is relevant for the construction of the unbounded
Kasparov product, but will not play a role in the present text.

As in the case of half-closed chains, each unbounded modular cycle rep-
resents an explicit class in KK-theory. This result can be found as Theorem 9.1
of [14]. We state it here for the convenience of the reader. We recall that FD :=
D(1 + D2)−1/2 denotes the bounded transform of D : Dom(D) → E (but now D
is selfadjoint and regular).

THEOREM 2.4. Suppose that (E, D, ∆) is an unbounded modular cycle from A to
B. Then (E, FD) is a Kasparov module from A to B of the same parity as (E, D, ∆) and
the same Z/2Z-grading operator γ : E→ E in the even case.

3. LOCALIZATION OF REGULAR UNBOUNDED OPERATORS

Suppose E be a countably generated Hilbert C∗-module over a σ-unital C∗-
algebra B and let D : Dom(D) → E be a closed, symmetric and regular un-
bounded operator.

ASSUMPTION 1. It will be assumed that ∆ : E→ E is a bounded selfadjoint
operator such that:

(i) ∆(Dom(D∗)) ⊆ Dom(D);
(ii) D∆−∆D : Dom(D)→ E extends to a bounded operator d(∆) : E→ E.

Remark that it follows by the above assumption and the inclusion D ⊆ D∗

that
D∆−∆D∗ : Dom(D∗)→ E

also has d(∆) : E → E as a bounded extension. Moreover, d(∆) : E → E is
automatically adjointable with d(∆)∗ = −d(∆).

Before proving our first result, we notice that D∆ : Dom(D∆) → E is a
closed unbounded operator on the domain

Dom(D∆) := {ξ ∈ E : ∆(ξ) ∈ Dom(D)}.

A similar remark holds for D∗∆ : Dom(D∗∆)→ E.

PROPOSITION 3.1. Suppose that the conditions in Assumption 1 hold. Then

D∆ = D∗∆

and D∆ : Dom(D∆)→ E is a regular unbounded operator with core Dom(D) and with

(D∆)∗ = D∆− d(∆).

In particular, we have that

Dom((D∆)∗) = Dom(D∆).
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Proof. We first claim that the unbounded operators D∆ : Dom(D∆) → E
and D∗∆ : Dom(D∗∆) → E are regular with cores Dom(D∗) and Dom(D), re-
spectively, and with adjoints

(D∆)∗ = D∆− d(∆) and (D∗∆)∗ = D∗∆− d(∆).

To prove this claim, we recall that D : Dom(D) → E is regular by assump-
tion, and we thus have that(

0 D∗

D 0

)
: Dom(D)⊕Dom(D∗)→ E⊕ E

is selfadjoint and regular. Moreover, we have that(
0 ∆
∆ 0

)
(Dom(D)⊕Dom(D∗)) ⊆ Dom(D)⊕Dom(D∗)

and the identities[(
0 D∗

D 0

)
,
(

0 ∆
∆ 0

)]
=

(
D∆−∆D 0

0 D∆−∆D∗

)
=

(
d(∆) 0

0 d(∆)

)
hold on Dom(D)⊕Dom(D∗). This means that the operators(

0 D∗

D 0

)
and

(
0 ∆
∆ 0

)
satisfy the conditions of Section 6 in [12] and we may conclude that(

0 D∗

D 0

)(
0 ∆
∆ 0

)
=

(
D∗∆ 0

0 D∆

)
: Dom(D∗∆)⊕Dom(D∆)→E⊕E

is a regular unbounded operator with(
D∗∆ 0

0 D∆

)∗
=

(
D∗∆ 0

0 D∆

)
−
(

d(∆) 0
0 d(∆)

)
: Dom(D∗∆)⊕Dom(D∆)→E⊕E.

Moreover, we know that
(

D∗∆ 0
0 D∆

)
: Dom(D∗∆)⊕Dom(D∆)→ E⊕ E has

Dom(D)⊕Dom(D∗) as a core. This proves the claim.
To end the proof of the proposition, it now suffices to prove that D∆ = D∗∆.

To this end, we notice that

(3.1) (D∗∆)(ξ) = (D∆)(ξ) for all ξ ∈ Dom(D∗).

Since Dom(D) ⊆ Dom(D∗) is a core for D∗∆ we obtain from equation (3.1) that
D∗∆ ⊆ D∆. Moreover, since Dom(D∗) is a core for D∆ we also obtain from
equation (3.1) that D∆ ⊆ D∗∆. We conclude that D∆ = D∗∆.

ASSUMPTION 2. It will be assumed that x : E→ E is a bounded adjointable
operator such that:

(i) x(Dom(D∗)) ⊆ Dom(D) and x∗(Dom(D∗)) ⊆ Dom(D);
(ii) Dx − xD and Dx∗ − x∗D : Dom(D) → E extend to bounded operators

denoted d(x) and d(x∗) : E→ E, respectively.
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As above, d(x) and d(x∗) : E → E are automatically adjointable with
d(x)∗ = −d(x∗). Moreover, d(x) and d(x∗) are bounded extensions of Dx −
xD∗ and Dx∗ − x∗D∗ : Dom(D∗)→ E, respectively.

We define the localization of E (with respect to x : E → E) as the Hilbert
C∗-submodule Ex ⊆ E given by the norm-closure of the image of x:

Ex := cl(Im(x)).

We define ∆ := xx∗ : E→ E.

LEMMA 3.2. Suppose that the conditions of Assumption 2 are satisfied. Then the
unbounded operator

D∆− d(x)x∗ : Dom(D∆)→ E

is selfadjoint and regular and it has Dom(D) ⊆ Dom(D∆) as a core. Moreover, we have
that

(D∆− d(x)x∗)(ξ) = (xDx∗)(ξ),

for all ξ ∈ Dom(Dx∗) ⊆ Dom(D∆).

Proof. Clearly, ∆ = xx∗ : E → E satisfied the conditions of Assumption 1
and it therefore follows from Proposition 3.1 that D∆ : Dom(D∆) → E is regular
with core Dom(D) and that

(D∆)∗ = D∆− d(∆) = D∆− d(x)x∗ − xd(x∗).

Since d(x)x∗ : E → E is a bounded adjointable operator, it follows by Section 2,
Example 1 of [25] that D∆− d(x)x∗ : Dom(D∆) → E is regular. It is moreover
clear that Dom(D) is also a core for D∆− d(x)x∗ and that

(D∆−d(x)x∗)∗=(D∆)∗−(d(x)x∗)∗=D∆−d(x)x∗−xd(x∗)+xd(x∗)=D∆−d(x)x∗,

proving that our unbounded operator is selfadjoint as well. The final statement
of the lemma is obvious.

DEFINITION 3.3. Suppose that the conditions of Assumption 2 are satisfied.
We define the localization of D : Dom(D) → E (with respect to x : E → E) as the
closure of the unbounded symmetric operator

xDx∗ : Dom(D) ∩ Ex → Ex.

The localization of D is denoted by

Dx : Dom(Dx)→ Ex.

Remark that x(Dom(D)) ⊆ Dom(D) ∩ Ex, implying that the localization
Dx is densely defined.

LEMMA 3.4. Suppose that the conditions of Assumption 2 are satisfied and let
r ∈ R with |r| > ‖d(x∗)x‖∞ be given. Then ir + Dx∗x : Dom(Dx∗x) → E is a
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bijection and the resolvent is a bounded adjointable operator (ir + Dx∗x)−1 : E → E
satisfying the relation

(3.2) (ir + D∆− d(x)x∗)−1x = x(ir + Dx∗x)−1.

Proof. By replacing x with x∗ in Assumption 2 we see from Lemma 3.2 that
the unbounded operator

Dx∗x− d(x∗)x : Dom(Dx∗x)→ E

is selfadjoint and regular. In particular, we know that the resolvent (ir + Dx∗x−
d(x∗)x)−1 : E→ E is a well-defined bounded adjointable operator. Since

‖d(x∗)x(ir + Dx∗x− d(x∗)x)−1‖∞ 6 ‖d(x∗)x‖∞ · |r|−1 < 1

we may conclude that ir + Dx∗x : Dom(Dx∗x) → E is a bijection and that the
resolvent is a bounded adjointable operator. In fact, we have that

(ir+Dx∗x)−1=(ir+Dx∗x−d(x∗)x)−1 · (1+d(x∗)x(ir+Dx∗x−d(x∗)x)−1)−1.

The relation in equation (3.2) now follows since

(ir + D∆− d(x)x∗)x = (ir + xDx∗)x = x(ir + Dx∗x)

on Dom(Dx∗x).

PROPOSITION 3.5. Suppose that the conditions of Assumption 2 are satisfied.
Then the localization of D : Dom(D) → E with respect to x : E → E is a selfadjoint
and regular unbounded operator

Dx : Dom(Dx)→ Ex,

with core x(Dom(D)) ⊆ Dom(Dx). Moreover, we have the identity

(3.3) (iµ + Dx)
−1(ξ) = (iµ + D∆− d(x)x∗)−1(ξ),

for all ξ ∈ Ex and all µ ∈ R \ {0}. In particular, Ex ⊆ E is an invariant submodule for
(iµ + D∆− d(x)x∗)−1 : E→ E for all µ ∈ R \ {0}.

Proof. To show that Dx : Dom(Dx) → Ex is selfadjoint and regular, it suf-
fices to verify that

ir + xDx∗ : x(Dom(D))→ Ex

has dense image whenever r ∈ R satisfies |r| > ‖d(x∗)x‖∞, see Lemma 9.7 and
Lemma 9.8 of [21]. Let such an r ∈ R be given.

Clearly, x∗x : E → E satisfies the condition of Assumption 1 and it there-
fore follows from Proposition 3.1 that Dx∗x : Dom(Dx∗x) → E is regular with
core Dom(D) ⊆ E. Combining this with Lemma 3.4 we may find a norm-dense
submodule E ⊆ E such that

(ir + Dx∗x)−1(E ) = Dom(D).

Moreover, we have that

(ir + xDx∗)x(ir + Dx∗x)−1(ξ) = x(ξ) for all ξ ∈ E .
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Since x(E ) ⊆ Ex is norm-dense and x(ir + Dx∗x)−1(E ) = x(Dom(D)), this
proves the desired density result and hence that the localization Dx : Dom(Dx)→
Ex is selfadjoint and regular.

Let µ ∈ R \ {0}. The identity in equation (3.3) can now be verified on the
image of iµ + xDx∗ : x(Dom(D)) → Ex, but here it follows immediately since
(xDx∗)(ξ) = (D∆− d(x)x∗)(ξ) for all ξ ∈ x(Dom(D)).

REMARK 3.6. The result of Proposition 3.5 can be generalized by replac-
ing the bounded adjointable operator x : E → E by a sequence of bounded ad-
jointable operators xn : E → E, n ∈ N, each of them satisfying the conditions of
Assumption 2. Suppose moreover that the sums

∞

∑
n=1

xnx∗n and
∞

∑
n=1

d(xn)d(xn)
∗

are norm-convergent in L(E) (this can of course always be obtained by rescaling
the operators xn : E→ E, n ∈ N).

In this context, we define the localization of E with respect to the sequence
x = {xn} as the closed submodule

Ex := cl(spanC{xn(ξ) : n ∈ N, ξ ∈ E}) ⊆ E.

The localization Dx of D : Dom(D)→ E is defined as the closure of the symmetric
unbounded operator

∞

∑
n=1

xnDx∗n : Dom(D) ∩ Ex → Ex.

As in Proposition 3.5, we then obtain that Dx : Dom(Dx) → Ex is a selfadjoint
and regular unbounded operator.

4. LOCALIZATION OF HALF-CLOSED CHAINS

Let A and B be σ-unital C∗-algebras. Throughout this section (A , E, D)
will be a half-closed chain from A to B. We denote by φ : A → L(E) the ∗-
homomorphism that provides the left action of A on E. Moreover, x ∈ A will be
a fixed element.

Notice that φ(x) : E → E satisfies the condition of Assumption 2 with re-
spect to the symmetric and regular unbounded operator D : Dom(D) → E. Re-
call that the localization of E is the norm-closed submodule Ex := cl(Im(φ(x))) ⊆
E and that the localization Dx of D : Dom(D)→ E is the closure of the symmetric
unbounded operator

φ(x)Dφ(x∗) : Dom(D) ∩ Ex → Ex.
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By Proposition 3.5, the localization Dx : Dom(Dx) → Ex is selfadjoint and regu-
lar. We put

∆ := xx∗ ∈ A .

By definition, the localization of A with respect to x ∈ A is the hereditary
C∗-subalgebra of A defined by

Ax := cl(xAx∗) ⊆ A.

The ∗-homomorphism φ : A → L(E) restricts to a ∗-homomorphism φx : Ax →
L(Ex) and in this way Ex becomes a C∗-correspondence from Ax to B. We remark
that ∆ ∈ Ax and that φx(∆) : Ex → Ex is a bounded positive and selfadjoint
operator with norm-dense image.

We define the ∗-subalgebra Ax ⊆ Ax as the intersection

Ax := A ∩ Ax.

Remark that Ax ⊆ Ax is automatically norm-dense.
When the half-closed chain (A , E, D) is even with Z/2Z-grading operator

γ : E→ E, then Ex can be equipped with the Z/2Z-grading operator γ|Ex : Ex →
Ex obtained by restriction of γ : E→ E.

We are going to prove the following theorem.

THEOREM 4.1. Suppose that (A , E, D) is a half-closed chain and that x is an
element in A . Then the triple (Ex, Dx, φx(∆)) is an unbounded modular cycle from Ax
to B of the same parity as (A , E, D) and with grading operator γ|Ex : Ex → Ex in the
even case.

Proof. Clearly the C∗-correspondence Ex is countably generated (since E is
countably generated by assumption). Moreover, we have already established
that the unbounded operator Dx : Dom(Dx) → Ex is selfadjoint and regular
in Proposition 3.5 and that φx(∆) : Ex → Ex is bounded positive and selfad-
joint with norm-dense image. So it only remains to check conditions (i), (ii),
(iii) and (iv) of Definition 2.1. The last condition (iv) follows immediately since
∆(∆+ 1/n)−1a → a in C∗-norm for all a ∈ Ax. The remaining three conditions
are proved in Proposition 4.3, Proposition 4.4 and Proposition 4.5 below.

We will refer to the unbounded modular cycle (Ex, Dx, φx(∆)) as the local-
ization of the half-closed chain (E, φ, D) with respect to x ∈ A .

We start by proving the compactness condition (i) of Definition 2.1. We put

D̃x := Dφ(∆)− d(x)φ(x∗) : Dom(Dφ(∆))→ E

and recall that D̃x is a selfadjoint and regular unbounded operator by Lemma 3.2.
We remark that D̃x agrees with Dx if and only if the image of φ(x) : E → E is
norm-dense. In fact, when the image of φ(x) is not norm-dense then these two
unbounded operators do not even act on the same Hilbert C∗-module.
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LEMMA 4.2. We have the resolvent identity:(
0 φ(∆)

φ(∆) 0

)(
(i + D̃x)−1 0

0 (i + D̃x)−1

)
−
(

i D∗

D i

)−1

=

(
i D∗

D i

)−1( d(x)φ(x∗)− i iφ(∆)
iφ(∆) d(x)φ(x∗)− i

)
(i+D̃x)

−1.

Proof. It suffices to notice that the identities(
i D∗

D i

)(
0 φ(∆)

φ(∆) 0

)
−
(

i + D̃x 0
0 i + D̃x

)
=

(
Dφ(∆)− i− D̃x iφ(∆)

iφ(∆) Dφ(∆)− i− D̃x

)
=

(
d(x)φ(x∗)− i iφ(∆)

iφ(∆) d(x)φ(x∗)− i

)
hold on Dom(Dφ(∆)) ⊕ Dom(Dφ(∆)). Recall in this respect that we have the
equality Dφ(∆) = D∗φ(∆) by Proposition 3.1.

PROPOSITION 4.3. The bounded adjointable operator

φx(a)(i + Dx)
−1 : Ex → Ex

is compact for all a ∈ Ax.

Proof. Notice that ∆ ∈ Ax and that the left ideal Ax ·∆ ⊆ Ax is norm-dense.
It thus suffices to show that φx(∆) · (i + Dx)−1 ∈ K(Ex).

We apply the notation K(E, Ex) ⊆ K(E) for the closed right ideal generated
by all compact operators on E of the form |ξ〉〈η|with ξ ∈ Ex and η ∈ E. Similarly,
we let K(Ex, E) ⊆ K(E) denote the closed left ideal generated by all compact
operators of the form |η〉〈ξ| for ξ ∈ Ex and η ∈ E. We remark that K(Ex, E) =
K(E, Ex)∗.

Since (E, φ, D) is a half-closed chain we know that(
φ(∆) 0

0 φ(∆)

)(
i D∗

D i

)−1

∈ K(E⊕ E)

and it therefore follows from Lemma 4.2 that

φ(∆)2(i + D̃x)
−1 ∈ K(E, Ex).

Since (φ(∆) + 1/n)−1φ(∆)2 → φ(∆) as n → ∞ this implies that also φ(∆)(i +
D̃x)−1 ∈ K(E, Ex) and thus that (−i + D̃x)−1φ(∆) ∈ K(Ex, E). We may thus
conclude that φ(∆)(1 + D̃2

x)
−1φ(∆) ∈ K(E, Ex) ·K(Ex, E) restricts to a compact

operator on the Hilbert C∗-module Ex ⊆ E. But this proves the present proposi-
tion since we have from Proposition 3.5 that

φx(∆)(1 + D2
x)
−1φx(∆) = (φ(∆)(1 + D̃2

x)
−1φ(∆))|Ex .
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We continue by proving the twisted commutator condition (ii) of Defini-
tion 2.1.

PROPOSITION 4.4. Let a ∈ Ax, λ ∈ C. Then (φx(a) + λ)φx(∆) : Ex → Ex has
Dom(Dx) ⊆ Ex as an invariant submodule and

Dx(φx(a) + λ)φx(∆)− φx(∆)(φx(a) + λ)Dx : Dom(Dx)→ Ex

extends to a bounded adjointable operator d∆(a, λ) : Ex → Ex. In fact we have that

d∆(a, λ) = (φ(x)d(x∗(a + λ)x)φ(x∗))|Ex .

Proof. Let ξ ∈ Dom(D) ∩ Ex. We then have that

(φx(a) + λ)φx(∆)(ξ) ∈ Dom(D) ∩ Ex

and that

Dx(φx(a) + λ)φx(∆)(ξ)− φx(∆)(φx(a) + λ)Dx(ξ)

= φ(x)Dφ(x∗)(φ(a) + λ)φ(xx∗)(ξ)− φ(xx∗)(φ(a) + λ)φ(x)Dφ(x∗)(ξ)

= φ(x)d(x∗(a + λ)x)φ(x∗)(ξ).

Since Dom(D)∩ Ex is a core for the localization Dx : Dom(Dx)→ Ex, this proves
the proposition.

We finally prove the supremum condition (iii) of Definition 2.1.

PROPOSITION 4.5. Let a ∈ Ax, λ ∈ C. Then we have that

sup
ε>0
‖(φx(∆)

1/2 + ε)−1d∆(a, λ)(φx(∆)
1/2 + ε)−1‖∞ < ∞.

Proof. This follows immediately from Proposition 4.4. Indeed, the operator
norm of

(φx(∆)
1/2 + ε)−1φ(x) : E→ Ex

is bounded by 1 for all ε > 0.

REMARK 4.6. One may equip Ax with the operator space norm ‖ · ‖1 :
Mn(Ax)→ [0, ∞), n ∈ N, defined by

‖a‖1 := sup{‖a‖, ‖d(a)‖∞} for all a ∈ Mn(Ax),

where the norms inside the supremum are the C∗-norm on Mn(A) and the
operator-norm on L(E⊕n), respectively. Clearly, the inclusion Ax → Ax is then
completely bounded. It is moreover possible to find a constant C > 0 such that

sup
ε>0
‖(φx(∆)

1/2 + ε)−1d∆(a, 0)(φx(∆)
1/2 + ε)−1‖∞ 6 C · ‖a‖1,

for all a ∈ Mn(Ax), cf. Remark 2.3.
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5. LOCALIZATION AS AN UNBOUNDED KASPAROV PRODUCT

In this section we continue under the conditions spelled out in the beginning
of Section 4. We thus have a half-closed chain (A , E, D) and an element x ∈ A .

The element x ∈ A provides us with a closed right ideal Ix ⊆ A defined as
the norm-closure:

Ix := cl(xA).

In particular, we may consider Ix as a countably generated Hilbert C∗-module
over A. The hereditary C∗-subalgebra Ax = cl(xAx∗) ⊆ A can be identified with
the compact operators on Ix via the ∗-homomorphism ψ : Ax → L(Ix) induced
by the multiplication in A. We thus obtain an even Kasparov module (Ix, 0) from
Ax to A with corresponding class [Ix, 0] ∈ KK0(Ax, A) in KK-theory.

Moreover, by Theorem 1.2, our half-closed chain (A , E, D) (of parity p ∈
{0, 1}) yields a Kasparov module (E, FD) from A to B with corresponding class
[E, FD] ∈ KKp(A, B).

Finally, the unbounded modular cycle (A ∩ Ax, Ex, φx(∆)) which we con-
structed in Section 4 yields a Kasparov module (Ex, FDx ) from Ax to B with cor-
responding class [Ex, FDx ] ∈ KKp(Ax, B), see Theorem 2.4.

In this section we will prove the following theorem.

THEOREM 5.1. Suppose that (A , E, D) is a half-closed chain, that x ∈ A and
that Ax is separable. Then we have the identity

[Ex, FDx ] = [Ix, 0]⊗̂A[E, FD]

in KKp(Ax, B), where ⊗̂A : KK0(Ax, A) × KKp(A, B) → KKp(Ax, B) denotes the
Kasparov product.

Proof. The C∗-correspondence Ex from Ax to A is unitarily isomorphic to
the interior tensor product of C∗-correspondences Ix⊗̂φE (via the unitary isomor-
phism xa⊗̂ξ 7→ φ(xa)(ξ)). For each a ∈ A, we define the bounded adjointable
operator Txa : E→ Ex by ξ 7→ φ(xa)(ξ). By Theorem A.3 of [8] it suffices to prove
the connection condition, thus that

FDx Txa − TxaFD, FDx Txa − TxaFD∗ ∈ K(E, Ex),(5.1)

for all a ∈ A. Indeed, the positivity condition of Theorem A.3 in [8] is obviously
satisfied since the bounded adjointable operator in the Kasparov module (Ix, 0)
from Ax to A is trivial. See also Section 6 for more details.

However, since Txa = Txφ(a) : E → Ex and φ(a)(FD − FD∗) ∈ K(E) it
suffices to prove the first of these inclusions. This proof will occupy the remainder
of this section, see Proposition 5.8.

REMARK 5.2. In the case where xA ⊆ A is norm-dense and A is separable,
we have that (Ix, 0) = (A, 0) and it therefore follows from the above theorem
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that the two Kasparov modules (Ex, FDx ) and (E, FD) represents the same class in
KKp(A, B).

5.1. THE MODULAR TRANSFORM. We continue working under the general as-
sumptions stated in the beginning of Section 4. We recall that ∆ := xx∗. We will
in the following suppress the ∗-homomorphism φx : Ax → L(Ex).

For each λ > 0, we introduce the notation

Rx(λ∆2) := (1 + λ∆2 + D2
x)
−1 ∈ L(Ex),

Rx(λ) := (1 + λ + D2
x)
−1 ∈ L(Ex).

In general, we are not able to estimate the norm of Rx(λ∆2) from above by (1 +
λ)−1 since ∆ : Ex → Ex may have zero in the spectrum. Instead, we recall the
following basic estimate from Section 11 of [14]:

(5.2) ‖∆Rx(λ∆2)∆‖∞ 6
2

(1 + λ)
∀λ > 0.

The next definition is from Section 8 of [14].

DEFINITION 5.3. The modular transform of the unbounded modular cycle
(Ex, Dx, ∆) is the unbounded operator

G(Dx ,∆) : ∆(Dom(Dx))→ Ex

defined by

(5.3) G(Dx ,∆) : η 7→ 1
π

∞∫
0

λ−1/2∆(1 + λ∆2 + D2
x)
−1Dx(η)dλ.

We remark that G(Dx ,∆) : ∆(Dom(Dx)) → Ex is well-defined. Indeed, for
η = ∆(ξ) with ξ ∈ Dom(Dx) we have from Proposition 4.4 that

∆Rx(λ∆2)Dx(η) = ∆Rx(λ∆2)∆Dx(ξ) + ∆Rx(λ∆2)xd(x∗x)x∗(ξ).

Using the estimate from equation (5.2), we may thus find a constant C > 0 such
that

‖∆(1 + λ∆2 + D2
x)
−1Dx(η)‖ 6 C · (1 + λ)−3/4 ∀λ > 0,

implying that the integral in equation (5.3) converges absolutely in the norm
on Ex.

The following result is a consequence of Theorem 8.1 in [14].

THEOREM 5.4. The difference

FDx ∆6 − G(Dx ,∆)∆
6 : Dom(Dx)→ Ex

extends to a compact operator on Ex.
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Notice that the above result implies that the unbounded operator

G(Dx ,∆)∆
6 : Dom(Dx)→ Ex

extends to a bounded adjointable operator on Ex.

5.2. THE CONNECTION CONDITION. We will continue working under the as-
sumptions of Section 4.

We recall from Lemma 3.2 that

D̃x := Dφ(∆)− d(x)φ(x∗) : Dom(Dφ(∆))→ E

is a selfadjoint and regular unbounded operator and we put

R̃x(λφ(∆2)) := (1 + λφ(∆2) + (D̃x)
2)−1 ∈ L(E),

R(λ) := (1 + λ + D∗D)−1 ∈ L(E),

for all λ > 0.

LEMMA 5.5. For each λ > 0, we have the identity

R(λ)− R̃x(λφ(∆2))φ(∆2)

= R̃x(λφ(∆2))(1−φ(∆2)+φ(x)d(x∗xx∗)D)R(λ)+(D̃xR̃x(λφ(∆2)))∗φ(x)d(x∗)R(λ)

of bounded adjointable operators on E.

Proof. We have the identities

1− R̃x(λφ(∆2))φ(∆2)(1 + λ + D∗D)

= 1− R̃x(λφ(∆2))(1 + λφ(∆2) + φ(x)Dφ(x∗xx∗)D) + R̃x(λφ(∆2))(1− φ(∆2)

+ φ(x)d(x∗xx∗)D)

= (D̃xR̃x(λφ(∆2)))∗φ(x)d(x∗) + R̃x(λφ(∆2))(1− φ(∆2) + φ(x)d(x∗xx∗)D)

on Dom(D∗D). But this proves the lemma after multiplying with R(λ) = (1 +
λ + D∗D)−1 from the right.

For each y ∈ Ix = cl(xA), we recall that Ty : E → Ex denotes the bounded
adjointable operator Ty : ξ 7→ φ(y)(ξ). Notice then that it follows from Proposi-
tion 3.5 that

T∆R̃x(λφ(∆2))φ(∆) = ∆Rx(λ∆2)T∆ : E→ Ex.

LEMMA 5.6. The difference

T∆R(λ)Dφ(∆)−∆Rx(λ∆2)DxT∆2 : Dom(Dφ(∆))→ Ex

extends to a compact operator Mλ : E → Ex for all λ > 0. Moreover, there exists a
constant C > 0 such that

‖Mλ‖∞ 6 C · (1 + λ)−3/4 ∀λ > 0.
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Proof. Since (A , E, D) is a half-closed chain and (Ex, Dx, ∆) is an unbounded
modular cycle we obtain that the difference

T∆R(λ)Dφ(∆)−∆Rx(λ∆2)DxT∆2 : Dom(Dφ(∆))→ Ex

extends to a compact operator Mλ : E → Ex for all λ > 0. Indeed, this is already
true for each of the terms viewed separately. So we only need to prove the norm-
estimate. To this end, we let ξ ∈ Dom(Dφ(∆)) and compute that

(T∆R(λ)Dφ(∆)−∆Rx(λ∆2)DxT∆2)(ξ)

= T∆R(λ)Dφ(∆)(ξ)− T∆R̃x(λφ(∆2))φ(x)Dφ(x∗∆2)(ξ)

= T∆R(λ)Dφ(∆)(ξ)− T∆R̃x(λφ(∆2))φ(∆2)Dφ(∆)(ξ)

− T∆R̃x(λφ(∆2))φ(x)d(x∗xx∗)φ(∆)(ξ).

Since ‖T∆R̃x(λφ(∆2))φ(x)‖∞ 6 23/4 · (1+λ)−3/4 by the estimate in equation (5.2)
we may focus on the difference

T∆R(λ)Dφ(∆)(ξ)− T∆R̃x(λφ(∆2))φ(∆2)Dφ(∆)(ξ).

However, using Lemma 5.5 we get that

T∆R(λ)Dφ(∆)(ξ)− T∆R̃x(λφ(∆2))φ(∆2)Dφ(∆)(ξ)

= T∆R̃x(λφ(∆2))(1− φ(∆2) + φ(x)d(x∗xx∗)D)R(λ)Dφ(∆)(ξ)

+ T∆(D̃xR̃x(λφ(∆2)))∗φ(x)d(x∗)R(λ)Dφ(∆)(ξ).

The result of the lemma then follows from the estimate ‖DR(λ)‖∞ 6 (1+ λ)−1/2

and the estimate in equation (5.2) a few times.

PROPOSITION 5.7. The difference

T∆2 FD − G(Dx ,∆)T∆2 : Dom(D)→ Ex

extends to a compact operator from E to Ex.

Proof. Since φ(∆)FD − FD∗φ(∆) : E → E is compact, we only need to show
that

T∆FD∗φ(∆)− G(Dx ,∆)T∆2 : Dom(D)→ Ex

extends to a compact operator from E to Ex. Now, recall that

T∆FD∗φ(∆)(ξ) =
1
π

∞∫
0

λ−1/2T∆(1 + λ + D∗D)−1Dφ(∆)(ξ)dλ
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for all ξ ∈ Dom(D). The result of the proposition now follows by Lemma 5.6
since

T∆D∗(1 + DD∗)−1/2φ(∆)(ξ)− G(Dx ,∆)T∆2(ξ)

=
1
π

∞∫
0

λ−1/2(T∆(1 + λ + D∗D)−1Dφ(∆)−∆Rx(λ∆2)DxT∆2)(ξ)dλ

=
1
π

∞∫
0

λ−1/2Mλ(ξ)dλ.

Remark that it follows from the above proposition that the unbounded op-
erator

G(Dx ,∆)T∆2 : Dom(D)→ Ex

extends to a bounded adjointable operator on Ex.

PROPOSITION 5.8. The difference

FDx Txa − TxaFD : E→ Ex

is a compact operator for all a ∈ A.

Proof. Since [φ(b), FD] ∈ K(E) for all b ∈ A and since ∆7(1/n +∆7)−1x → x
in the norm on A, it suffices to show that

FDx T∆7 − T∆7 FD : E→ Ex

is a compact operator. But now Proposition 5.7 and Theorem 5.4 imply that the
following identities hold modulo K(E, Ex):

FDx T∆7 − T∆7 FD ∼ FDx T∆7 − T∆2 FDφ(∆5)

∼ FDx T∆7 − cl(G(Dx ,∆)T∆2)φ(∆5)

= FDx ∆6T∆− cl(G(Dx ,∆)∆
6)T∆ ∼ 0.

6. KUCEROVSKY’S THEOREM

Let us fix three C∗-algebras A, B and C with A separable and B and C both
σ-unital. Throughout this section we will assume that (A , E1, D1), (B, E2, D2)
and (A , E, D) are even half-closed chains from A to B, from B to C and from A to
C, respectively. We denote the associated ∗-homomorphisms by φ1 : A→ L(E1),
φ2 : B→ L(E2) and φ : A→ L(E) and the Z/2Z-grading operators by γ1 : E1 →
E1, γ2 : E2 → E2 and γ : E → E, respectively. We will moreover assume that
E := E1⊗̂φ2 E2 agrees with the interior tensor product of the C∗-correspondences
E1 and E2. In particular, we assume that φ(a) = φ1(a)⊗̂1 for all a ∈ A and that
γ = γ1⊗̂γ2.
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Let us denote the bounded transforms of our half-closed chains by (E1, FD1),
(E2, FD2) and (E, FD) and the corresponding classes in KK-theory by [E1, FD1 ] ∈
KK0(A, B), [E2, FD2 ] ∈ KK0(B, C) and [E, FD] ∈ KK0(A, C). We may then form the
interior Kasparov product

[E1, FD1 ]⊗̂B[E2, FD2 ] ∈ KK0(A, C)

and it becomes a highly relevant question to find an explicit formula for this class
in KK0(A, C).

In this section we shall find conditions on the half-closed chains (A , E1, D1),
(B, E2, D2) and (A , E, D) entailing that the identity

[E, FD] = [E1, FD1 ]⊗̂B[E2, FD2 ]

holds in KK0(A, C). This kind of theorem was proved by Kucerovsky in [19] un-
der the stronger assumption that the half-closed chains (A , E1, D1), (B, E2, D2)
and (A , E, D) were in fact unbounded Kasparov modules. Thus under the strong
assumption that all the involved symmetric and regular unbounded operators
were in fact selfadjoint. As in the case of Kucerovsky’s theorem we rely on the
work of Connes and Skandalis for computing the interior Kasparov product,
see [8].

We recall Theorem A.3 of [8] that an even Kasparov module (E, F) from A
to C is the Kasparov product of the even Kasparov modules (E1, F1) and (E2, F2)
from A to B and from B to C, respectively, when the following holds:

(i) E = E1⊗̂φ2 E2, φ = φ1⊗̂1;
(ii) for every homogeneous ξ ∈ E1 we have that

(6.1) FTξ − (−1)∂ξ Tξ F2, F∗Tξ − (−1)∂ξ Tξ F∗2 ∈ K(E2, E),

where Tξ : E2 → E is defined by Tξ(y) := ξ⊗̂η for all η ∈ E2 and where ∂ξ ∈
{0, 1} denotes the degree of ξ ∈ E1;

(iii) there exists a ν < 2 such that

(6.2) ((F1⊗̂1)∗ · F∗ + F · (F1⊗̂1)) · φ(a∗a) + ν · φ(a∗a)

is positive in the Calkin algebra L(E)/K(E) for all a ∈ A.
The condition in equation (6.1) is often referred to as the connection condition

and the condition in equation (6.2) is referred to as the positivity condition.
Before we state our conditions on half-closed chains we recall that the odd

symmetric and regular unbounded operator D1 : Dom(D1) → E1 can be pro-
moted to an odd symmetric, regular unbounded operator D1⊗̂1 : Dom(D1⊗̂1)→
E1⊗̂φ2 E2 with resolvent (1 + D∗1 D1)

−1⊗̂1 ∈ L(E1⊗̂φ2 E2).
We now introduce the analogues for the above connection and positivity

condition for half-closed chains. They will be shown in Theorem 6.10 below to
indeed correspond to the above two conditions for Kasparov modules.

DEFINITION 6.1. Given three even half-closed chains (A ,E1,D1), (B,E2,D2)
and (A , E1⊗̂φ2 E2, D) as above, the connection condition demands that there exist
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a dense B-submodule E1 ⊆ E1 and cores E2 and E for D2 : Dom(D2) → E2 and
D : Dom(D)→ E, respectively, such that:

(i) for each ξ ∈ E1:

Tξ(E2) ⊆ Dom(D), T∗ξ (E ) ⊆ Dom(D2), γ1(ξ) ∈ E1;

(ii) for each homogeneous ξ ∈ E1, the graded commutator

DTξ − (−1)∂ξ Tξ D2 : E2 → E

extends to a bounded operator Lξ : E2 → E.

DEFINITION 6.2. Given three even half-closed chains (A ,E1,D1), (B,E2,D2)
and (A , E1⊗̂φ2 E2, D) as above, a localizing subset is a countable subset Λ ⊆ A with
Λ = Λ∗ such that:

(i) the subspace

Λ · A := spanC{x · a : x ∈ Λ, a ∈ A} ⊆ A

is norm-dense;
(ii) the commutator

[D1⊗̂1, φ(x)] : Dom(D1⊗̂1)→ E

is trivial for all x ∈ Λ;
(iii) we have the domain inclusion

Dom(D) ∩ Im(φ(x∗x)) ⊆ Dom(D1⊗̂1),

for all x ∈ Λ.

DEFINITION 6.3. Given three even half-closed chains (A ,E1,D1), (B,E2,D2)
and (A , E1⊗̂φ2 E2, D) and a localizing subset Λ ⊆ A , the local positivity condition
requires that for each x ∈ Λ, there exists a constant κx > 0 such that

〈(D1⊗̂1)φ(x∗)ξ, Dφ(x∗)ξ〉+ 〈Dφ(x∗)ξ, (D1⊗̂1)φ(x∗)ξ〉 > −κx · 〈ξ, ξ〉,

for all ξ ∈ Im(φ(x)) ∩Dom(Dφ(x∗)).

Note that the local positivity condition makes sense because of (iv)???????
in Definition 6.2. Indeed, for each ξ ∈ Im(φ(x)) ∩Dom(Dφ(x∗)) we have that

φ(x∗)ξ ∈ Im(φ(x∗x)) ∩Dom(D) ⊆ Dom(D1⊗̂1).

REMARK 6.4. Suppose that A ⊆ A is unital and that φ1(A) · E1 ⊆ E1 is
norm-dense. Then the half-closed chains (A , E, D) and (A , E1, D1) are in fact
unbounded Kasparov modules (thus D = D∗ and D1 = D∗1 ). The choice Λ :=
{1} ⊆ A automatically satisfies the conditions (i) and (ii) for a localizing subset
in Definition 6.2 and the last condition (iii) amounts to the requirement

Dom(D) ⊆ Dom(D1⊗̂1).
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Moreover, in this case, the local positivity condition in Definition 6.3 means that
there exists a constant κ > 0 such that

〈(D1⊗̂1)ξ, Dξ〉+ 〈Dξ, (D1⊗̂1)ξ〉 > −κ · 〈ξ, ξ〉,

for all ξ ∈ Dom(D). Finally, the connection condition in Definition 6.1 can be
seen to be equivalent to the connection condition applied by Kucerovsky in [19].
In this setting, we therefore recover the assumptions applied by Kucerovsky in
Theorem 13 of [19] (except that the domain condition in Theorem 13 of [19] is
marginally more flexible).

REMARK 6.5. The most restrictive of our conditions is the commutator con-
dition (ii) from Definition 6.2; in fact, if we suppose that the left action of A on
the interior tensor product E1 is non-degenerate (meaning that φ1(A) · E1 ⊆ E1 is
norm-dense) and that the left action of B on E2 is faithful, then we obtain that D1 :
D(D1)→ E1 is in fact selfadjoint. To see this, we first remark that our conditions
imply that the commutator D1x− xD∗1 : D(D∗1 ) → E1 is trivial for all x in the lo-
calizing subset Λ. Moreover, we only need to verify that 1+ D2

1 : Dom(D2
1)→ E1

has dense range. But this holds since 1 + D∗1 D1 : Dom(D∗1 D1) → E1 has dense
range (by regularity of D1) and since

(1 + D2
1)φ1(x)ξ = φ1(x)(1 + D∗1 D1)ξ,

for all ξ ∈ Dom(D∗1 D1) and all x ∈ Λ. Indeed, it follows by the non-degeneracy
of the left action of A on E1 and Definition 6.2(i) that the submodule

spanC{φ1(x) · η : η ∈ E1, x ∈ Λ} ⊆ E1

is norm-dense.

REMARK 6.6. In applications it often happens that the ∗-algebra B sits as a
∗-subalgebra of A and the localizing subset can then be chosen as a subset of B.
The commutator condition (ii) from Definition 6.2 is then automatically satisfied
by the B-linearity of D1. For instance, this kind of pattern appears in our recent
study of factorization problems for proper Riemannian submersions and theta-
deformations along the orbits of a torus action, see [16], [17].

We record the following convenient lemma, which can be proved by stan-
dard techniques.

LEMMA 6.7. Suppose that the connection condition of Definition 6.1 holds. Then
the connection condition holds for E2 := Dom(D2) and E := Dom(D). Moreover,
Lξ : E2 → E is adjointable with

(Lξ)
∗(η) = (T∗ξ D− (−1)∂ξ D2T∗ξ )(η) ∀η ∈ Dom(D)

whenever ξ ∈ E1 is homogeneous.

The next lemma provides a convenient sufficient condition for verifying the
inequality in Definition 6.3.
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LEMMA 6.8. Let x ∈ A and suppose that Im(φ(x∗x))∩Dom(D)⊆Dom(D1⊗̂1)
and that there exists a constant κx > 0 such that

〈(D1⊗̂1)η, Dη〉+ 〈Dη, (D1⊗̂1)η〉 > −κx〈η, η〉,

for all η ∈ Im(φ(x∗x)) ∩Dom(D). Then we have that

〈(D1⊗̂1)φ(x∗)ξ, Dφ(x∗)ξ〉+ 〈Dφ(x∗)ξ, (D1⊗̂1)φ(x∗)ξ〉 > −‖φ(x)‖2κx〈ξ, ξ〉,

for all ξ ∈ Im(φ(x)) ∩Dom(Dφ(x∗)).

Proof. This follows immediately since

−κx〈φ(x∗)ξ, φ(x∗)ξ〉 > −‖φ(x)‖2κx〈ξ, ξ〉 ∀ξ ∈ E.

The next lemma is straightforward to prove by rescaling the elements in Λ
by elements in (0, ∞). It will nonetheless play a very important role.

LEMMA 6.9. Suppose that the local positivity condition of Definition 6.3 holds
with localizing subset Λ ⊆ A . Then we may rescale the elements in Λ and obtain a
localizing subset Λ′ ⊆ A such that the local positivity condition of Definition 6.3 holds
with the additional requirement that

κx =
1
4

and ‖d(x∗)φ(x)‖∞ < 1 ∀ x ∈ Λ′.

THEOREM 6.10. Suppose that the even half-closed chains (A ,E1,D1), (B,E2,D2)
and (A , E1⊗̂φ2 E2, D) satisfy the connection condition and the local positivity condition.
Then (E, FD) is the Kasparov product of (E1, FD1) and (E2, FD2). In particular we have
the identity

[E, FD] = [E1, FD1 ]⊗̂B[E2, FD2 ]

in the KK-group KK0(A, C).

Proof. Without loss of generality we may assume that κx = 1/4 and that
‖d(x∗)φ(x)‖∞ < 1 for all x ∈ Λ.

We need to prove the connection condition in equation (6.1) and the positiv-
ity condition in equation (6.2) for the even Kasparov modules (E, FD), (E1, FD1)
and (E2, FD2).

But these two conditions are proved in Proposition 6.11 and Proposition 6.19
below, respectively. The positivity condition will be satisfied with ν=1=4 · κx.

6.1. THE CONNECTION CONDITION. We continue working in the setting that we
explained in the beginning of Section 6.

Before proving our first proposition on the connection condition in equa-
tion (6.1), it will be convenient to introduce some extra notation. For λ ∈ [0, ∞),
define the bounded adjointable operators:

R(λ) := (1 + λ + D∗D)−1, R(λ) := (1 + λ + DD∗)−1 : E→ E;

R2(λ) := (1 + λ + D∗2 D2)
−1, R2(λ) := (1 + λ + D2D∗2 )

−1 : E2 → E2.
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PROPOSITION 6.11. Suppose that the connection condition of Definition 6.1 holds.
Then we have that

FDTξ − (−1)∂ξ Tξ FD2 , F∗DTξ − (−1)∂ξ Tξ F∗D2
∈ K(E2, E),

for all homogeneous ξ ∈ E1.

Proof. Without loss of generality we may assume that ξ = η · b1b2 with η ∈
E1 homogeneous and b1, b2 ∈ B. Using Lemma 6.7 we compute as follows, for
each λ ∈ [0, ∞):

R(λ)Tη·b1 − Tη·b1 R2(λ) = R(λ)Tη·b1 D∗2 D2R2(λ)− D∗DR(λ)Tη·b1 R2(λ)

= −R(λ)Tη · d2(b1) · D2R2(λ)− (−1)∂η R(λ)Lη · φ2(b1) · D2R2(λ)

+ (−1)∂η R(λ)DTη·b1 · D2R2(λ)− D∗DR(λ)Tη·b1 R2(λ)

= −R(λ)(Tη · d2(b1) + (−1)∂η Lη · φ2(b1)) · D2R2(λ)− D∗R(λ)Lη·b1 R2(λ),

where d2(b1) : E2 → E2 is the bounded extension of the commutator D2φ2(b1)−
φ2(b1)D∗2 : Dom(D∗2 )→ E. In particular, we may find a constant C > 0 such that

(6.3) ‖DR(λ)Tη·b1 − DTη·b1 R2(λ)‖∞ 6 C · (1 + λ)−1,

for all λ > 0.
We now use the integral formulae

FD =
1
π

D ·
∞∫

0

λ−1/2R(λ)dλ, FD2 =
1
π

D2 ·
∞∫

0

λ−1/2R2(λ)dλ,

for the bounded transforms. Indeed, using Lemma 6.7 one more time, these for-
mulae allow us to compute that

FDTξ = FDTη·b1 · φ2(b2)

=
1
π

D · Tη·b1 ·
∞∫

0

λ−1/2R2(λ) · φ2(b2)dλ

+
1
π

D ·
∞∫

0

λ−1/2(R(λ)Tη·b1 − Tη·b1 R2(λ)) · φ2(b2)dλ

= (−1)∂ξ Tη·b1 FD2 · φ2(b2) +
1
π

∞∫
0

λ−1/2Lη·b1 · R2(λ) · φ2(b2)dλ

+
1
π

∞∫
0

λ−1/2D · (R(λ)Tη·b1 − Tη·b1 R2(λ)) · φ2(b2)dλ.(6.4)

The fact that D2R2(λ)φ2(b2) and R2(λ)φ2(b2) ∈ K(E2), for all λ ∈ [0, ∞), com-
bined with the estimate in equation (6.3) now imply that both of the integrals on
the right hand side of equation (6.4) converge absolutely to elements in K(E2, E)



138 JENS KAAD AND WALTER D. VAN SUIJLEKOM

(remark that the integrands also depend continuously on λ ∈ (0, ∞) with respect
to the operator norm). We thus conclude that

FDTξ − (−1)∂ξ Tη·b1 FD2 · φ2(b2) ∈ K(E2, E).

Since [FD2 , φ2(b2)] ∈ K(E2) we have proved that FDTξ − (−1)∂ξ Tξ FD2 ∈ K(E2, E).
A similar argument shows that F∗DTξ − (−1)∂ξ Tξ F∗D2

∈ K(E2, E) as well.

6.2. LOCALIZATION. Throughout this subsection the conditions stated in the be-
ginning of Section 6 are in effect.

We are now going to apply the localization results obtained in Sections 3, 4
and 5. Recall from Definition 3.3 and Proposition 3.5 that whenever x ∈ A , then
the localization Dx : Dom(Dx) → Ex is the selfadjoint and regular unbounded
operator defined as the closure of

φ(x)Dφ(x∗) : Dom(D) ∩ Ex → Ex,

where Ex := cl(Im(φ(x))) ⊆ E. The core idea is to replace the bounded transform
of D : Dom(D)→ E by the bounded transforms of sufficiently many localizations
Dx : Dom(Dx) → Ex, when verifying the positivity condition in equation (6.2).
The precise result is given here.

PROPOSITION 6.12. Suppose that conditions (i) and (ii) of Definition 6.2 hold for
some localizing subset Λ ⊆ A and that ν ∈ R is given. Suppose moreover that

T∗x ((F∗D1
⊗̂1)|Ex · FDx + FDx · (FD1⊗̂1)|Ex )Tx + ν · φ(x∗x)

is positive in L(E)/K(E) for all x ∈ Λ. Then we have that

φ(a∗)((F∗D1
⊗̂1)F∗D + FD(FD1⊗̂1))φ(a) + ν · φ(a∗a)

is positive in L(E)/K(E) for all a ∈ A.

Proof. For x ∈ Λ we have that [FD1⊗̂1, φ(x)] = 0 and the closed submodule
Ex ⊆ E is thus invariant under FD1⊗̂1. The restriction (FD1⊗̂1)|Ex : Ex → Ex
is therefore a well-defined bounded adjointable operator. The same observation
holds for the adjoint F∗D1

⊗̂1.
Then, since Λ is countable we may write the elements in Λ as a sequence

{x1, x2, x3, . . .}. For each n ∈ N, we choose a constant

Cn > 2 + ‖xn‖2 + ‖FDT∗xn − T∗xn FDx‖∞ · ‖xn‖

and define the element

Γ :=
∞

∑
n=1

1
n2Cn

x∗nxn ∈ A,

where the series is absolutely convergent. Since Λ · A ⊆ A is norm-dense and
Λ = Λ∗ we have that

Γ · A ⊆ A



ON A THEOREM OF KUCEROVSKY FOR HALF-CLOSED CHAINS 139

is norm-dense as well. It therefore suffices to show that

Γ · ((F∗D1
⊗̂1)F∗D + FD(FD1⊗̂1)) · Γ + ν · φ(Γ2)

is positive in the Calkin algebra L(E)/K(E).
We now compute modulo K(E), using Proposition 5.8, that Γ commutes

with FD1⊗̂1 and that (FD, E) is a Kasparov module:

Γ · ((F∗D1
⊗̂1)F∗D + FD(FD1⊗̂1)) · Γ

∼ Γ1/2((F∗D1
⊗̂1)FD + FD(FD1⊗̂1)) · Γ3/2

= Γ1/2
∞

∑
n=1

1
n2Cn

((F∗D1
⊗̂1)FD + FD(FD1⊗̂1))T∗xn Txn

∼ Γ1/2
∞

∑
n=1

1
n2Cn

T∗xn((F∗D1
⊗̂1)|Ex FDx + FDx (FD1⊗̂1)|Ex )Txn Γ1/2.

But this proves the present proposition since

Γ1/2
∞

∑
n=1

1
n2Cn

T∗xn((F∗D1
⊗̂1)|Ex FDx + FDx (FD1⊗̂1)|Ex )Txn Γ1/2 + νφ(Γ2)

= Γ1/2
∞

∑
n=1

1
n2Cn

(T∗xn((F∗D1
⊗̂1)|Ex FDx + FDx (FD1⊗̂1)|Ex )Txn + νT∗xn Txn) · Γ1/2

is positive in L(E)/K(E) by assumption.

6.3. THE POSITIVITY CONDITION. We remain in the setup described in the begin-
ning of Section 6.

Before continuing our treatment of the positivity condition in equation (6.2)
we introduce some further notation.

DEFINITION 6.13. For each x ∈ A satisfying condition (iii) in Definition 6.2
we put

Dom(Qx) := Dom(Dφ(x∗)) ∩ Im(φ(x))

and define the map Qx : Dom(Qx)→ C by

Qx(ξ) := 2 · Re〈Dφ(x∗)ξ, (D1⊗̂1)φ(x∗)ξ〉,

where Re : C → C takes the real part of an element in the C∗-algebra C.

For each λ > 0 and x ∈ A satisfying condition (ii) of Definition 6.2 we
define the bounded adjointable operators on Ex:

R1(λ)|Ex := (1 + λ + (D∗1 ⊗̂1)(D1⊗̂1))−1|Ex ,

S1(λ)|Ex := (D1⊗̂1)(1 + λ + (D∗1 ⊗̂1)(D1⊗̂1))−1|Ex ,

Rx(λ) := (1 + λ + D2
x)
−1, Sx(λ) := Dx(1 + λ + D2

x)
−1.

The next lemma follows by standard functional calculus arguments.
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LEMMA 6.14. Suppose that x ∈ A satisfies condition (ii) of Definition 6.2. Then
the maps [0, ∞)2 → L(Ex) defined by

M1(λ, µ, x) := Sx(λ)S1(µ)|Ex ,

M2(λ, µ, x) := Sx(λ)R1(µ)|Ex ·
√

1 + µ,

M3(λ, µ, x) := Rx(λ)S1(µ)|Ex ·
√

1 + λ,

M4(λ, µ, x) := Rx(λ)R1(µ)|Ex ·
√
(1 + λ)(1 + µ),

are all continuous in operator norm and satisfy the estimate

‖Mj(λ, µ, x)‖∞ 6 (1 + λ)−1/2 · (1 + µ)−1/2 j ∈ {1, 2, 3, 4},

for all λ, µ ∈ [0, ∞). In particular, it holds that the integral

1
π2

∞∫
0

∞∫
0

(λµ)−1/2 · (M∗j Mj)(λ, µ, x)dλdµ

converges absolutely to a bounded adjointable operator Kj(x) ∈ L(Ex) with 0 6 Kj(x) 6
1 for all j ∈ {1, 2, 3, 4}.

In order to ensure that later computations are well-defined we prove the
following lemma.

LEMMA 6.15. Suppose that x ∈ A satisfies condition (iii) of Definition 6.2 and
that ‖d(x∗)φ(x)‖∞ < 1. Then

(6.5) Im(Rx(λ)Tx) ⊆ Dom(Qx) and Im(Sx(λ)Tx) ⊆ Dom(Qx),

for all λ > 0. In particular, if x ∈ A moreover satisfies condition (ii) of Definition 6.2,
then

Im(Mj(λ, µ, x)Tx) ⊆ Dom(Qx),

for all j ∈ {1, 2, 3, 4} and all λ, µ ∈ [0, ∞).

Proof. Recall from Lemma 3.4 and Proposition 3.5 that

(ir + Dx)
−1Tx = Tx(ir + Dφ(x∗x))−1,

for all r ∈ R with |r| > 1 > ‖d(x∗)φ(x)‖∞. We thus see that

Im((ir + Dx)
−1Tx) ⊆ Im(φ(x)) ∩Dom(Dφ(x∗)) = Dom(Qx).

The inclusions in equation (6.5) now follow since

Rx(λ)Tx = (−i
√

1 + λ + Dx)
−1(i
√

1 + λ + Dx)
−1Tx

and since

Sx(λ)Tx = DxRx(λ)Tx = (i
√

1 + λ + Dx)
−1Tx + i

√
1 + λ · Rx(λ)Tx,

for all λ > 0.



ON A THEOREM OF KUCEROVSKY FOR HALF-CLOSED CHAINS 141

We now start a more detailed computation of the map Qx : Dom(Qx) → C
from Definition 6.13.

LEMMA 6.16. Suppose that x ∈ A satisfies condition (ii) and (iii) of Defini-
tion 6.2 and that ‖d(x∗)φ(x)‖∞ < 1. Then

Qx(Sx(λ)Tx(ξ)) = 2 · Re〈(D1⊗̂1)φ(x)ξ, Sx(λ)Txξ〉 − (1 + λ)Qx(Rx(λ)Tx(ξ)),

for all λ ∈ [0, ∞) and ξ ∈ Dom((D1⊗̂1)φ(x)).

Proof. Let λ ∈ [0, ∞) and let ξ ∈ Dom((D1⊗̂1)φ(x)) be given. We first claim
that

DT∗x Sx(λ)Txξ ∈ Dom((D1⊗̂1)φ(x∗x))

and that

(D1⊗̂1)φ(x∗x)DT∗x Sx(λ)Txξ = (D1⊗̂1)φ(x∗x)ξ − (1 + λ)(D1⊗̂1)T∗x Rx(λ)Txξ.

But this follows since

φ(x∗x)DT∗x Sx(λ)Txξ = T∗x DxSx(λ)Txξ

= φ(x∗x)ξ − (1 + λ)T∗x Rx(λ)Txξ ∈ Dom(D1⊗̂1),

where we note that φ(x∗x)ξ ∈ Dom(D1⊗̂1) since x∗ ∈ A and that T∗x Rx(λ)Txξ ∈
Dom(D) ∩Dom(D1⊗̂1) by condition (iii) and Lemma 6.15.

Notice now that condition (ii) and Proposition 3.1 implies that

(D1⊗̂1)φ(x∗x) : Dom((D1⊗̂1)φ(x∗x))→ E

is selfadjoint and regular. Putting η := T∗x Rx(λ)Tx(ξ) ∈ Dom(D) ∩Dom(D1⊗̂1)
and using the above claim, the lemma is then proved by the following computa-
tion:

1
2
·Qx(Sx(λ)Tx(ξ))=Re〈DT∗x Sx(λ)Tx(ξ), (D1⊗̂1)T∗x Sx(λ)Tx(ξ)〉

=Re〈(D1⊗̂1)φ(x∗x)DT∗x Sx(λ)Txξ, Dη〉
=Re〈(D1⊗̂1)φ(x∗x)ξ, Dη〉 − (1 + λ)Re〈(D1⊗̂1)η, Dη〉
=Re〈(D1⊗̂1)φ(x)ξ, Sx(λ)Txξ〉−(1+λ)Re〈(D1⊗̂1)η, Dη〉.

DEFINITION 6.17. For each x ∈ A satisfying condition (ii) and (iii) of Defi-
nition 6.2 and that ‖d(x∗)φ(x)‖∞ < 1, we define the assignment

Qj(λ, µ, x) : Im(Tx)→ C, Qj(λ, µ, x)(Txξ) := Qx(Mj(λ, µ, x)Txξ),

for all λ, µ ∈ [0, ∞), j ∈ {1, 2, 3, 4}.
The main algebraic result of this section can now be stated and proved.
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LEMMA 6.18. Suppose that x ∈ A satisfies condition (ii) and (iii) of Defini-
tion 6.2 and that ‖d(x∗)φ(x)‖∞ < 1. Then we have the identity

4

∑
j=1

Qj(λ, µ, x)(Txξ) = 2 · Re〈Txξ, Sx(λ)S1(µ)|Ex Txξ〉,

for all λ, µ ∈ [0, ∞) and all ξ ∈ E.

Proof. Let λ, µ ∈ [0, ∞) and ξ ∈ E be given. Remark that

S1(µ)ξ, R1(µ)ξ ∈ Dom((D1⊗̂1)φ(x)).

We may thus use Lemma 6.16 to compute as follows and prove the present lemma:

4

∑
j=1

Qj(λ, µ, x)(Txξ) = Qx(Sx(λ)TxS1(µ)ξ) + Qx(Sx(λ)TxR1(µ)ξ)(1 + µ)

+ Qx(Rx(λ)TxS1(µ)ξ)(1 + λ)

+ Qx(Rx(λ)TxR1(µ)ξ)(1 + λ)(1 + µ)

= 2 · Re〈(D1⊗̂1)φ(x)S1(µ)ξ, Sx(λ)TxS1(µ)ξ〉
+ 2 · Re〈(D1⊗̂1)φ(x)R1(µ)ξ, Sx(λ)TxR1(µ)ξ〉 · (1 + µ)

= 2 · Re〈Tx(D∗1 ⊗̂1)S1(µ)ξ, Sx(λ)TxS1(µ)ξ〉
+ 2 · Re〈TxS1(µ)ξ, Sx(λ)TxR1(µ)ξ〉 · (1 + µ)

= 2 · Re〈Txξ, Sx(λ)S1(µ)|Ex Txξ〉.
We are now ready to treat the positivity condition in equation (6.2).

PROPOSITION 6.19. Suppose that Λ ⊆ A is a localizing subset satisfying the
local positivity condition, that ‖d(x∗)φ(x)‖∞ < 1 for all x ∈ Λ and that there exists a
κ > 0 such that κx 6 κ for all x ∈ Λ. Then the inequality

φ(a)∗((F∗D1
⊗̂1)F∗D + FD(FD1⊗̂1))φ(a) > −4κ · φ(a∗a)

holds in the quotient C∗-algebra L(E)/K(E) for all a ∈ A.

Proof. By Proposition 6.12, it suffices to show that

T∗x ((F∗D1
⊗̂1)|Ex FDx + FDx (FD1⊗̂1)|Ex )Tx + 4κφ(x∗x)

is positive in L(E)/K(E) for all x ∈ Λ. Let thus x ∈ Λ be fixed. We will prove the
inequality

2 · Re〈FDx (FD1⊗̂1)|Ex Txξ, Txξ〉 > −4κ〈Txξ, Txξ〉
in the C∗-algebra C, for all ξ ∈ Dom(D) ∩ Dom(D1⊗̂1). Remark that this is
enough since Dom(D) ∩Dom(D1⊗̂1) ⊆ E is norm-dense.

Let thus ξ ∈ Dom(D) ∩Dom(D1⊗̂1) be given. We have that

2·Re〈FDx (FD1⊗̂1)|Ex )Txξ, Txξ〉= 2
π2

∞∫
0

∞∫
0

(λµ)−1/2 ·Re〈Sx(λ)S1(µ)|Ex Txξ, Txξ〉dλdµ,
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where the integral converges absolutely in the norm on C and the integrand is
norm-continuous from [0, ∞)2 to C. Now, by Lemma 6.18 and the local positivity
condition we have that

2 · Re〈Sx(λ)S1(µ)|Ex Txξ, Txξ〉 =
4

∑
j=1

Qj(λ, µ, x)(Txξ)

> −κ ·
4

∑
j=1
〈Mj(λ, µ, x)Txξ, Mj(λ, µ, x)Txξ〉.

It therefore follows by Lemma 6.14 that

2
π2

∞∫
0

∞∫
0

(λµ)−1/2 · Re〈Sx(λ)S1(µ)|Ex Txξ, Txξ〉

> −κ · 1
π2

∞∫
0

∞∫
0

(λµ)−1/2 ·
4

∑
j=1
〈Mj(λ, µ, x)Txξ, Mj(λ, µ, x)Txξ〉dλdµ

= −κ ·
4

∑
j=1
〈Txξ, Kj(x)Txξ〉 > −4κ〈Txξ, Txξ〉.

But this proves the proposition.
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