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1 Introduction

Noncommutative geometry is a generalization of geometry that is characterized by its
algebraic, or spectral description of geometry. A few weeks ago I attended a talk given
by Ali Chamseddine, one of the pioneers in using noncommutative geometry to explain
the standard model of particle physics. He started his talk by saying that ’algebraic geo-
metry’ would be a more appropriate name for the field, but that this name was already
taken. He concluded this is probably the reason we use the name ’noncommutative
geometry’ instead.

The spectral description of geometry is given by spectral triples (A,H, D), consisting
of a Hilbert space H, a dense subalgebra A of a C∗-algebra A, which is represented
faithfully on H, and an (essentially) self-adjoint operator D, acting on H (Definition
4.1).

To every compact Riemannian spinc-manifold M , there corresponds a canonical spectral
triple

(C∞(M), L2(S), DM ). (1.1)

Here DM denotes the Dirac operator associated to the manifold M . It acts on the
square integrable sections of the spinor bundle S. The algebra C∞(M) acts on L2(S) as
multiplication operators. It was Alain Connes who showed that from the spectral data
(1.1) we can recover the smooth structure, and in particular the topology of M ([18]).

We might also encounter spectral triples (A,H, D), where the algebra A is not commut-
ative. This is why we need to take the word geometry with a grain of salt. Not every
spectral triple arises from a geometric object. Instead we pretend the object (A,H, D)
corresponds to some ’noncommutative’ space. Therefore, spectral triples are really a
generalization of geometry.

In Section 3 we focus on the metrical aspect of the reconstruction of M from the spectral
data (C∞(M), L2(S), DM ). Let us briefly describe how this works. First of all, recall
that to every Riemannian manifold (M, g) there is associated a distance function on
M , making M into a metric space. We will denote this distance function by dg. If the
manifold is in addition compact spinc, then this distance function can be recovered from
the spectral data (1.1) by means of Connes’ distance formula

dg(p, g) = sup
f∈C∞(M)

{|f(p)− f(q)| : ‖[DM , f ]‖ ≤ 1}. (1.2)

The expression (1.2) can be rewritten as

dg(p, g) = sup
f∈C∞(M)

{|δp(f)− δq(f)| : ‖[DM , f ]‖ ≤ 1}, (1.3)

where δp denotes the pure state corresponding to evaluation in the point p ∈ M . This
motivates us to define a distance on the state space S(C∞(M)) given by the formula

d(φ, ψ) = sup
f∈C∞(M)

{|φ(f)− ψ(f)| : ‖[DM , f ]‖ ≤ 1}, φ, ψ ∈ S(C∞(M)). (1.4)

The great feature of formula (1.4) is that it makes sense for any spectral triple (A,H, D):

d(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}, φ, ψ ∈ S(A). (1.5)

1



We are interested in truncations of the spectral triple (1.1), where only part of the
spectrum of DM is available. This can be formulated more precisely by choosing an
increasing sequence {QN}N ⊆ B(L2(S)) of spectral projections of DM and considering
the triple

(QNC∞(M)QN ,QNL2(S),QNDMQN ). (1.6)

The triple described in (1.6) is not a spectral triple anymore, as QNC∞(M)QN is gener-
ally no algebra, but an operator system spectral triple instead (Definition 4.8). For this
generalization of spectral triples the distance formula (1.5) is still well-defined. Hence-
forth it defines a distance on the state space S(QNC∞(M)QN ).

The question we ask ourselves is:

Q : Can we approximate M , as a metric space, using the triple (1.6)?

In order to give an appropriate answer we develop the notion of Gromov–Hausdorff dis-
tance between operator system spectral triples in Section 4. This is a variation of the
notion of quantum Gromov–Hausdorff distance as defined by Rieffel in [7].

In Section 5 we answer the question Q affirmatively for M = Td and a suitable sequence
of spectral projections {QN}N . More precisely, we show that the operator system spec-
tral triple (1.6) converges in Gromov–Hausdorff distance to the canonical spectral triple
corresponding to Td. The proof strongly relies a great deal on the ideas of work in pro-
gress by Walter van Suijlekom and Alain Connes ([22]). We extend their results from
the circle to the d-dimensional torus using a specific sequence of spectral projections.

Our work strongly compares to the results obtained by F. Latrémolière in [20]. He uses
the setting of Rieffel ([7]) to show convergence of the fuzzy torus to the the quantum
torus in quantum Gromov–Hausdorff distance. The work of Rieffel is further developed
for operator systems by D. Kerr in [19].
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2 Operator theory

Operator, number, please
It’s been so many years

Tom Waits, Martha

In this section we will recall some theory about C∗-algebras, and exhibit some basic
examples. Also we will give the definition of a (concrete) operator system. This section
will mainly serve as a résumé. For more details and proofs about C∗-algebras we refer
to [14, Chapter 1,2,3 and 5].

2.1 C∗-algebras and operator systems

Definition 2.1. A unital algebra A together with a norm ‖ · ‖ : A → R is called a
normed algebra if

‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A,
‖1A‖ = 1.

Whenever (A, ‖ · ‖) is a normed algebra such that A is complete with respect to the
norm ‖ · ‖, we say A is a Banach algebra.

One could also allow for non-unital normed algebras, but for the purpose of the text it
suffices to consider unital normed algebras exclusively.

Let us give some basic examples.

Example 2.2. Let X be a compact Hausdorff topological space. Then define

C(X) = {f : X → C | f continuous}.

The algebra structure on C(X) is given by pointwise addition and multiplication. We
define a norm on C(X) by

‖f‖∞ = sup
x∈X
{|f(x)|}.

Then ‖ · ‖∞ makes C(X) into a Banach algebra.

The key example of a noncommutative normed algebra is given by the set of all bounded
linear operators on some normed vector space.

Example 2.3. Let (V, ‖ · ‖) be a normed vector space (complex or real). We define the
norm of a linear operator T : V → T by

‖T‖ = sup
v∈V
{‖Tv‖ : ‖v‖ ≤ 1}. (2.1)

We say that T is a bounded operator if ‖T‖ <∞ and we denote the set of all bounded
operators by B(V ). The norm given in (2.1) turns B(V ) into a Banach algebra.

If V is a finite-dimensional complex vector space, then all linear operators T : V → V
are bounded and B(V ) is isomorphic to Mn(C), for n = dimV . This isomorphism boils
down to choosing a basis for V . Of course, if V is a finite-dimensional real vector space,
then B(V ) ∼= Mn(R).
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Definition 2.4. Let (A, ‖ · ‖) be a (unital) normed algebra. We say an element a ∈ A
is invertible if there exists a b ∈ A such that

ab = ba = 1A.

This b is then uniquely determined and we denote it a−1. The spectrum of an element
a ∈ A is given by the set

σ(a) = {λ ∈ C | a− λ1A is not invertible}.

Theorem 2.5 (Gelfand). Let (A, ‖ · ‖) be a complex Banach algebra. Then for each
a ∈ A, the spectrum σ(a) is a non-empty, compact subset of the complex numbers.

Proof. See [14, Theorem 1.2.5].

Example 2.6. If f ∈ C(X), as in Example 2.2, then σ(f) = f(X), i.e. the closure of
the set f(X).

When V is a finite-dimensional normed vector space, the spectrum of an operator T ∈
B(V ) is just the set of eigenvalues of the matrix corresponding to T .

Definition 2.7. An involution ∗ on an algebra A is an antilinear operator ∗ : A → A,
such that

1. a∗∗ = a

2. (ab)∗ = b∗a∗

for all a, b ∈ A. We say the pair (A, ∗) is a ∗-algebra. We say an element a ∈ A is
self-adjoint if a∗ = a and we denote the set of all self-adjoint elements in A by Asa. If
E ⊆ A is a subspace of A, we say E is ∗-closed if a∗ ∈ E, whenever a ∈ E.

A ∗-homomorphism φ of ∗-algebras (A, ∗) and (B, ∗) is a homomorphism of algebras
φ : A→ B, such that φ(a∗) = φ(a)∗ for all a ∈ A.

Definition 2.8. A C∗-algebra is a complex Banach algebra (A, ‖ · ‖), which is also a
∗-algebra and satisfies the C∗-identity: ‖a∗a‖ = ‖a‖2 for every a ∈ A.

If (A, ∗) admits a norm ‖ · ‖, which makes it into a C∗-algebra, this norm is the unique
norm doing so. Also, any ∗-homomorphism φ : A → B between C∗-algebras A and B
is necessarily norm-decreasing and φ(A) is a C∗-subalgebra of B. It follows that if φ is
injective, then ‖φ(a)‖ = ‖a‖.

Example 2.9. If X is a compact Hausdorff space, then C(X) as in Example 2.2 is in
fact a C∗-algebra. The involution is given by complex conjugation: f∗(x) = f(x).

It turns out that every (unital) commutative C∗-algebra A is isomorphic to C(X) for
some compact Hausdorff space X. This is known as Gelfand duality, and it allows us to
think of C∗-algebras as noncommutative topological spaces ([14, Theorem 2.1.10]).

Example 2.10. If H is a Hilbert space, then each bounded operator T : H → H has an
adjoint T ∗ : H → H. This map is uniquely defined by the property

〈Tµ, ξ〉 = 〈µ, T ∗ξ〉,

for every µ, ξ ∈ H. With this involution, and the norm from Example 2.3, the Banach
algebra B(H) becomes a C∗-algebra.
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Definition 2.11. A representation of a ∗-algebra A is a pair (π,H), where H is a
Hilbert space and

π : A→ B(H)

is a ∗-homomorphism. We say that π is faithful, if π is injective.

If π : A→ B(H) is a faithful representation, then it defines a norm on A, given by

‖a‖ := ‖π(a)‖.

This norm makes A into a C∗-algebra.

Theorem 2.12 (Gelfand–Naimark). If A is a C∗-algebra then there exists a Hilbert
space H and a faithful representation π : A→ B(H).

Proof. See [14, Theorem 3.4.1].

Definition 2.13. An element a ∈ A is called positive if one of the following equivalent
conditions is satisfied

1. a is self-adjoint and σ(a) ⊆ [0,∞).

2. There exists a b ∈ A, such that a = b∗b.

We denote the set of positive elements by A+. It is a closed set in the topology induced
by ‖ · ‖.

For operators on a Hilbert space, there is a particularly nice characterisation of positivity.
Namely, if H is a Hilbert space, then an element T ∈ B(H) is positive if and only if

〈Tξ, ξ〉 ≥ 0, for every ξ ∈ H. (2.2)

We say that a map
φ : A→ B

between C∗-algebras A and B is positive if it maps positive elements to positive elements:
φ(A+) ⊆ B+.

Definition 2.14. Let A be a unital C∗-algebra. A state on A is a positive linear
functional µ : A → C of norm one. We denote S(A) the set of all states on A. The set
S(A) is called the state space of A.

The state space S(A) is a compact subset of the dual space of A, when equipped with
the weak-∗ topology. If µ ∈ S(A), then the positivity of µ implies that µ(A+) ⊆ [0,∞).

Proposition 2.15. Let A be a C∗-algebra and let µ : A → C be a bounded linear
functional. Then the following are equivalent.

• µ is a positive map.

• µ(1) = ‖µ‖.

Proof. See [14, Theorem 3.3.2].

The state space S(A) is thus given by the linear functionals µ : A→ C such that ‖µ‖ =
µ(1) = 1. In the rest of this text we will mostly use this alternative characterization.
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Definition 2.16. Given a unital C∗-algebra A, an operator system E ⊆ A is a ∗-closed
subspace, containing the identity element.

Our definition is that of a concrete operator system. That is, we define an operator
system as a subspace of a given C∗-algebra. In particular E inherits the norm from A
and elements e ∈ E are positive whenever they are positive in A.

The characterization provided by Proposition 2.15 allows us to extend the definition of
a state to operator systems.

Definition 2.17. Let E ⊆ A be an operator system. A state on E is a linear functional
µ : E → C such that

‖µ‖ = µ(1) = 1.

We denote S(E) the set of all the states in E. This set is again called the state space of
E.

2.2 Matrix C∗-algebras

Given a C∗-algebra A we can form the matrix C∗-algebra Mn(A) ∼= A ⊗Mn(C). It
consists of matrices of which the entries are elements of A. Multiplication is induced
by matrix multiplication combined with multiplication in A. The involution is given
by (aij)

∗ = (a∗ji). Finding a norm on this algebra, which turns it into a C∗-algebra, is
not straightforward. That we are able to find such a norm is a very elegant corollary of
Theorem 2.12. Indeed if we represent A faithfully on some Hilbert space H:

π : A→ B(H),

then Mn(A) is represented faithfully on
⊕n

j=1H in the following way

πn : Mn(A)→Mn(B(H)) ∼= B
( n⊕
j=1

H
)

(aij) 7→ (π(aij)).

This induces the (unique) C∗-norm on Mn(A) given by ‖A‖ = ‖πn(A)‖ (one needs to
check Mn(A) is complete in this norm, for details we refer to [14, Page 95]).

Lemma 2.18. Let H be a Hilbert space and let T ∈ B(H). Then T ⊗ 1n ∈ B(H) ⊗
Mn(C) ∼= B(H⊗ Cn) has norm

‖T ⊗ 1n‖ = ‖T‖.

Proof. Suppose that (ξ1, . . . , ξn) ∈ H ⊗ Cn, then

‖(T ⊗ 1n)(ξ1, . . . , ξn)‖2 = ‖(Tξ1, . . . , T ξn)‖2

= ‖Tξ1‖2 + · · ·+ ‖Tξn‖2

≤ ‖T‖2(‖xi1‖2 + . . . ‖ξn‖2)

= ‖T‖2‖(ξ1, . . . , ξn)‖2.

For the converse inequality, choose a unit vector ξ ∈ H such that ‖Tξ‖ > ‖A‖− ε. Then

ξ̃ = 1
n (ξ, ξ, . . . , ξ) ∈ H ⊗ Cn is a unit vector and

‖(T ⊗ 1n)ξ̃‖ =
1√
n

√
n‖Tξ‖ > ‖T‖ − ε.
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Given a map φ : A→ B, between C∗-algebras A and B, we construct the induced map

φn : Mn(A)→Mn(B)

(aij) 7→ (φ(aij)).
(2.3)

In the identification Mn(A) ∼= A⊗Mn(C), φn corresponds to φ⊗ 1n.

We should remark something about the notation φ ⊗ 1n and T ⊗ 1n above, for they
are maps of different types of spaces. The map φ ⊗ 1n is a map between C∗-algebras,
whereas the map T ⊗ 1n is a map of Hilbert spaces. Although it easy to compute the
norm of T ⊗1n, like in Lemma 2.18, it requires rather some theory to compute the norm
of φ⊗ 1n ([6, Chapter 2 and 3]).
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3 Connes’ distance formula

Distance came in our lives
It always happens
When you’re trying to get next to someone
When you want to reach her heart

David Crosby, Distances

3.1 Riemannian manifolds as metric spaces

Every Riemannian structure g on a manifold M gives rise to a distance function dg on
M , which turns it into a metric space. This distance function is directly related to the
metric g on M . The reason to call dg a distance function, instead of a metric, is to
distinguish it from the Riemannian metric g. The distance between two points p, q ∈M
is given by the length of the shortest curve between the points p and q. We make this
more precise in the definitions below.

Definition 3.1. Given a Riemannian manifold (M, g) and a piecewise smooth curve
γ : [0, 1]→M , define the length of γ by

l(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

Definition 3.2. Let (M, g) be a Riemannian manifold. For points p, q ∈M define the
distance function on (M, g) by

dg(p, q) = inf{l(γ) | γ is a piecewise smooth curve from p to q}.

A consequence of this definition is that the distance between two points p, q ∈M might
be infinite if M is not connected. A way to resolve this is to only consider connected
Riemannian manifolds (M, g). However we find this too restrictive and we choose instead
to allow for infinite distances between points. Hence dg becomes a generalized distance
function which is in line with the sort of distance functions we will consider in Section
4.

Proposition 3.3. The distance function defined on (M, g) is a metric on M giving back
the topology of M .

Proof. See [1, Definition-Proposition 2.91].

Definition 3.4. Given a Riemannian manifold (M, g) the musical isomorphism between
TM and T ∗M is given by the relations

X[(Y ) = g(X,Y ), for X,Y ∈ Γ∞(TM),

ω(Y ) = g(ω], Y ), for Y ∈ Γ∞(TM), ω ∈ Γ∞(T ∗M).
(3.1)

For a smooth function f we define the vector field grad f = (df)].

That the musical isomorphism is indeed an isomorphism of vector bundles, we can see
by noting that ] and [ are each others inverses and that they are smooth, because g
is a smooth metric. The musical isomorphism will be useful for us to switch between
the bundles TM and T ∗M . Whether we choose the bundle TM or T ∗M to perform a
certain construction is then only a matter of convention. For example, in Section 3.4
we follow the approach of [4] and use the cotangent bundle to construct the so-called
Clifford bundle Cl(M)→M . On the contrary, in [9] this construction is done using the
tangent bundle.
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3.2 Smoothening Lipschitz functions on Td

In this section, we attempt to approximate Lipschitz functions on the d-dimensional
torus Td using smooth functions. The motivation to find such approximations, is to
be able to approximate the function x 7→ dg(p0, x), for some fixed p0 ∈ M . This is a
Lipschitz function with Lipschitz constant 1 (see Definition 3.5 below). The supremum
in (3.22) is attained with this function, apart from the fact that x 7→ dg(p0, x) may not
be smooth. It is necessary therefore, to perform some approximation argument.

The approximation procedure can be extended to arbitrary compact Riemannian mani-
folds (M, g), as we will explain at the end of the section. However, as we will be mainly
concerned with the torus in Section 5, we will only give a sketch of the (more involved)
general case.

Definition 3.5. On any metric space (X, d), we say a function f : X → C is Lipschitz
whenever

‖f‖Lip := sup
x,y∈X
x 6=y

|f(x)− f(y)|
d(x, y)

<∞.

It turns out, that on a Riemannian manifold (M, g) the real valued Lipschitz functions
are precisely those with bounded gradient.

Proposition 3.6. Let (M, g) be a Riemannian manifold and let f ∈ C∞(M), then
‖ grad f‖∞ = ‖f‖Lip.

Proof. If p and q are points in M , then for any piecewise smooth path γ from p to q we
have

f(q)− f(p) = f(γ(1))− f(γ(0))

=

∫ 1

0

d

dt
f(γ(t))dt

=

∫ 1

0

df(γ̇(t))dt

=

∫ 1

0

gγ(t)(gradγ(t) f, γ̇(t))dt.

So

|f(p)− f(q)| ≤
∫ 1

0

|gγ(t)(gradγ(t) f, γ̇(t))|dt

≤
∫ 1

0

| gradγ(t) f ||γ̇(t))|dt

≤ ‖ grad f‖∞l(γ).

Taking the infimum over all such paths yields |f(p)− f(q)| ≤ ‖ grad f‖∞dg(p, q), so

|f(p)− f(q)|
dg(p, q)

≤ ‖ grad f‖∞

for all p, q ∈M , which implies ‖f‖Lip ≤ ‖ grad f‖∞.

For the converse inequality, let t 7→ φt(x) denote the flow of grad f at time t, starting
at the point x. Let x0 ∈ M such that | gradx0

f | = ‖ grad f‖∞. This point exists as

9



x 7→ | gradx0
f | is a continuous function and M is compact. Choose ε > 0 and let U be

an open neighbourhood of x0 such that x ∈ U =⇒ | gradx f | > ‖ grad f‖∞ − ε. Find
α > 0 such that φt(x0) ∈ U for all 0 ≤ t ≤ α. Now set q = φα(x0) and define the
smooth curve γ form x0 to q by γ(t) = φαt(x0). Then

f(q)− f(x0) =

∫ 1

0

d

dt
f(φαt(x0))dt

= α

∫ 1

0

df(gradφαt(x0) f)dt

= α

∫ 1

0

gφαt(x0)(gradφαt(x0) f, gradφαt(x0) f)dt

= α

∫ 1

0

| gradφαt(x0) f |2dt ≥ α(‖ grad f‖∞ − ε)2.

Also

l(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

=

∫ 1

0

√
gφαt(x0)(α gradφαt(x0) f, α gradφαt(x0) f)dt

= α

∫ 1

0

| gradφαt(x0) f |dt

≤ α‖ grad f‖∞.

So

f(q)− f(x0)

dg(q, x0)
≥ α(‖ grad f‖∞ − ε)2

α‖ grad f‖∞

= ‖ grad f‖∞ − 2ε+
ε2

‖ grad f‖∞
≥ ‖ grad f‖∞ − 2ε.

As ε was arbitrary, we conclude that

sup
p 6=q

|f(p)− f(q)|
dg(p, q)

≥ sup
q 6=x0

|f(q)− f(x0)|
dg(q, x0)

≥ ‖ grad f‖∞.

This shows ‖f‖Lip ≥ ‖ grad f‖∞, so we have proven the proposition.

Proposition 3.6 allows us to switch between a metric, or topological characterisation of
the ’steepness’ of a function, and an analytical one.
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The key to approximating continuous functions, and Lipschitz functions in particular,
is to introduce suitable mollifier functions. We realize Td as Td = Rd/2πZd. Let us
define the family of functions κε that will play the role of a Dirac net in the convolution
algebra L1(Td).

Definition 3.7. Let κ : Td → R be the function defined by

κ(x) =

{
C exp 1

‖x‖2−1 if ‖x‖ < 1

0 if ‖x‖ ≥ 1.

Here we have chosen the constant C such that
∫
Td κ = 1. The function κ is smooth.

Next we define

κε(x) =
1

εd
κ
(x
ε

)
,

for 0 < ε < 1. The scaled function kε is smooth, spherically symmetric, positive,
supported in an ε-ball around the origin and∫

Td
κεdx = 1.

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

Figure 1: The smooth function κ for d = 1 (left) and d = 2 (right).

Proposition 3.8. Let f : Td → C be a Lipschitz function, with Lipschitz constant K.
Then for every ε > 0 there exists a function fε, such that fε is smooth, ‖fε − f‖∞ < ε
and ‖fε‖Lip ≤ K.

Proof. Let ε > 0 be given. We consider the family of functions

f̃r(x) =

∫
Rn
κr(ξ)f(x− ξ)dξ, (3.2)

where 0 < r < 1. The function f̃r is smooth for every r. This follows from a differen-
tiation in the integral argument, see [5, Appendix C]. We claim that fε = f̃ ε

K
satisfies

11



‖fε − f‖∞ < ε and ‖fε‖Lip ≤ K. Indeed choosing r = ε
K yields

|f(x)− f̃r(x)| =
∣∣∣ ∫

Td
κr(y)f(x− y)dy − f(x)

∣∣∣
=
∣∣∣ ∫

Td
κr(y)(f(x− y)− f(x))dy

∣∣∣
≤
∫
Td
κr(y)|f(x− y)− f(x)|dy

≤
∫
Td
κr(y)Kd(x− y, x)dy

≤
∫
Td
κr(y)Kd(−y, 0)dy

=

∫
Td
κr(y)K‖y‖dy

≤
∫
Td
κr(y)εdy = ε,

which shows that ‖fε − f‖∞ < ε. Also we have ‖fε‖Lip ≤ K since

|fε(x1)− fε(x2)| =
∣∣∣ ∫

Td
κr(f(x1 − y)− f(x2 − y))dy

∣∣∣
≤ |
∫
Td
κr|f(x1 − y)− f(x2 − y)|dy

≤
∫
Td
κrKd(x1 − y, x2 − y)dy

=

∫
Td
κrKd(x1, x2)dξ = Kd(x1, x2).

As announced, there is a more general statement of Proposition 3.8. We now need to
perform the convolution process using normal coordinates on M .

Proposition 3.9. Suppose that (M, g) is a compact, Riemannian manifold, and that
f : M → C is a Lipschitz function with Lipschitz constant K. Then, for all ε > 0, we
can find a smooth function fε, such that ‖f − fε‖∞ < ε and ‖ grad fε‖ < K + ε.

Sketch of proof. Just as in the case of the torus, we attempt to approximate our Lipschitz
function by convoluting with some kernel. The appropriate convolution formula is de-
scribed by Greene and Wu in [3]. We will give a sketch of their approach here.

Let κr be a family of smooth, positive functions, such that κr has support in [−r, r] and
such that each κr is constant in a neighbourhood of 0. Furthermore we require that∫
v∈Rn κr(‖v‖)dµ = 1. Here n = dimM and µ is Lebesgue meaure on Rn.
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We now consider functions f̃r, given by

f̃r(p) =

∫
v∈TpM

f(expp(v))κr(‖v‖)dΩp.

Here dΩp is the measure on TpM obtained from the Riemannian metric of M . The use
of the exponential map encodes some of the translation-invariance we made good use of
when proving Proposition 3.8.

The claim is that there exists some r > 0, such that is we set fε = f̃r, we have ‖f−fε‖∞ <
ε and ‖ grad fε‖ < K + ε. For the proof of this claim we refer to [2, Lemma 1 and 2],
and [3, Lemma 8].

Combining Proposition 3.6 and 3.9 we see that for any Lipschitz function f : M → R
and any ε > 0, we can find a smooth function g : M → R such that ‖f − g‖∞ < ε and
‖g‖Lip ≤ ‖f‖Lip + ε.

3.3 The Clifford algebra

For a detailed treatment of Clifford algebras we refer to [9, Chapter 4] and [4, Chapter
9]. We use [9] as a main guideline in this section.

Definition 3.10. Let V be a vector space over C. A quadratic form on V is a map
Q : V → C, such that

Q(λv) = λ2Q(v), for all λ ∈ C, v ∈ V
Q(v + w) +Q(v − w) = 2Q(v) + 2Q(w), for all v, w ∈ V.

Definition 3.11. Let (V,Q) be a vector space over C. Then we define the Clifford
algebra of (V,Q) by

Cl(V,Q) = TV/〈v ⊗ v −Q(v)1〉v∈V .
Here TV denotes the tensor algebra of V (see appendix C), and 〈v ⊗ v − Q(v)1〉v∈V
denotes the ideal in TV generated by the expressions v ⊗ v −Q(v)1, where v ∈ V .

In other words, Cl(V,Q) is the algebra generated by the vector space V , where the
elements are subject to the relation

v2 = Q(v)1, for every v ∈ V. (3.3)

To every quadratic form Q on some vector space V , there is associated a pairing gQ : V ×
V → C, given by

gQ(v, w) =
1

2

(
Q(v + w)−Q(v)−Q(w)

)
.

The relations (3.3) are then equivalent to the defining relations

vw + wv = 2gQ(v, w) for every v, w ∈ V. (3.4)

We can retrieve Q from this pairing by Q(v) = gQ(v, v).

One can easily check that if {ej}nj=1 is a basis for the vector space V , then

{ei1ei2 . . . eik | 1 ≤ i1 < i2 < · · · < ik ≤ n}nk=0

is a basis for Cl(V,Q). So if V is an n-dimensional vector space, then Cl(V,Q) is 2n-
dimensional.
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There is a Z2 grading on the Clifford algebra Cl(V,Q), which is given by

χ(v1v2 . . . vk) = (−1)kv1v2 . . . vk.

So we can decompose Cl(V,Q) as

Cl(V,Q) =
(
Cl(V,Q)

)0 ⊕ (Cl(V,Q)
)1
,

where (
Cl(V,Q)

)0
= {v ∈ Cl(V ) | χv = vχ}(

Cl(V,Q)
)1

= {v ∈ Cl(V ) | χv = −vχ},

which are called the even and the odd part of the Cl(V,Q) respectively.

Example 3.12. The vector space Cn has a standard quadratic form Qn given by

Qn(x1, x2, . . . , xn) =

n∑
j=1

(xj)
2.

We denote

Cln = Cl(Cn, Qn).

If we denote {ej} the standard basis for Cn, then Cln is the complex algebra generated
by the vectors ej , 1 ≤ j ≤ n. The defining relations (3.4) now become

eiej + ejei = ±δij . (3.5)

The Clifford algebras Cln, n ≥ 1, are completely classified and they are subject to so-
called Bott–periodicity :

Cln+2
∼= Cln ⊗C M2(C). (3.6)

Another feature is that we have the following relations(
Cln+1)0 ∼= Cln. (3.7)

Bott-periodicity (3.6) implies that the algebras Cln+2 and Cln are Morita equivalent.
For a more detailed treatment of Bott–periodicity, Morita equivalence and the relations
(3.7) we refer to [9].

We will classify the algebras Cln. By Bott–periodicity it is enough to compute Cl1 and
Cl2.

Lemma 3.13. Cl1 ∼= C⊕ C and Cl2 ∼= M2(C).

Proof. Cl1 is the complex algebra generated by the elements 1, e1, subject to the relation
e2

1 = 1 and Cl2 is the algebra generated by 1, e1, e2, subject to the relations e2
1 = e2

2 = 1.
One can check that the following are maps on these generating vectors inducing algebra
isomorphisms:

Cl1 → C⊕ C Cl2 →M2(C)

1 7→ (1, 1) 1 7→
(

1 0
0 1

)
e1 7→ (1,−1) e1 7→

(
0 1
1 0

)
e2 7→

(
0 −i
i 0

)
.
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Combining Lemma 3.13 and Cln+2
∼= Cln ⊗C M2(C), we see that

Cln ∼= M2m(C), n = 2m.

Cln ∼= M2m(C)⊕M2m(C), n = 2m+ 1.
(3.8)

Using (3.7) and (3.8) we see that(
Cl2m+1

)0 ∼= M2m(C). (3.9)

3.4 Connes’ distance formula

After having done the preliminary work on approximating Lipschitz functions on Rieman-
nian manifolds, we are now ready to prove Connes’ distance formula. An excellent ref-
erence for the material covered in this section is provided by [4, Chapter 9].

Throughout this section (M, g) will always denote a compact Riemannian manifold.

Using the musical isomorphism (3.1) we can equip T ∗M with the metric g−1, that is
defined by

g−1(ω1, ω2) = g(ω]1, ω
]
2). (3.10)

We want to construct the Clifford bundle over a manifold M form the cotangent bundle
T ∗M . As we will always work with complex Clifford algebras and the bundle T ∗M is
real, we must complexify the cotangent bundle. That is, we should consider the bundle
T ∗M ⊗R C. The pairing g−1 on T ∗M extends to T ∗M ⊗R C by

g−1(ω1 + iξ1, ω2 + iξ2) = g−1(ω1, ω2)− g−1(ξ1, ξ2) + ig−1(ω1, ξ2) + ig−1(ξ1, ω2).

Definition 3.14. Let (M, g) be a Riemannian manifold. The Clifford bundle Cl(M)
over M is the complex algebra bundle with fibres (Cl(M))p = Cl(T ∗pM ⊗R C). Here
T ∗M ⊗R C is equipped with the quadratic form corresponding to g−1

p . So

Qg−1
p

(ω) = g−1
p (ω, ω) ω ∈ T ∗M ⊗R C. (3.11)

The transition functions are given by hαβ(v1v2 . . . vk) = hαβ(v1)hαβ(v2) . . . hαβ(vk), where
hαβ denote the transition functions of T ∗M ⊗R C. The transition functions are skew-
symmetric and satisfy the cocycle condition, so indeed we obtain a complex algebra
bundle Cl(M) over M .

If (U, φ) is a local trivializing chart for T ∗M , then we can find a local orthonormal basis
{dxµ}nµ=1 with respect to the metric g−1. Then Cl(U) is the complex algebra generated
by the elements dxµ, subject to the defining relations

dxµdxν + dxνdxµ = 2δµν . (3.12)

Definition 3.15. A Riemannian manifold (M, g) is called spinc if there exists a complex
bundle S →M and an algebra bundle isomorphism

Cl(M) ∼= End(S), when M is even-dimensional,(
Cl(M)

)0 ∼= End(S), when M is odd-dimensional.
(3.13)

We call S the spinor bundle, and the smooth sections Γ∞(S) we call the spinors.
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Note that locally we can always find such a bundle S. Indeed, if (U, φ) is a trivializing
chart, then we saw that

Cl(U) ∼= U ×M2m(C), if n = 2m(
Cl(U)

)0 ∼= U ×M2m(C), if n = 2m+ 1.
(3.14)

So if we choose SU the trivial bundle SU = C2m × U , then we have the desired iso-
morphism (3.13). Consequently, whether a Riemannian manifold is spinc, depends if we
can patch these trivializations together to form a global bundle S. This corresponds to
the vanishing of the Dixmier-Douady class of the vector bundle Cl(M) ([4, Section 9.2]).

Definition 3.16. Let (M, g) be a spinc-manifold, with corresponding spinor bundle
S →M . The isomorphism of bundles (3.13) induces an isomorphism of C∞-modules

c : Γ∞(Cl(M))
∼−→ Γ∞(End(S)), when M is even-dimensional,

c : Γ∞
((

Cl(M)
)0) ∼−→ Γ∞(End(S)), when M is odd-dimensional.

(3.15)

This ismorphism c is called the Clifford action.

Using (3.12) and (3.14) we can compute the Clifford action locally. First we inductively

define the matrices γ
(n)
j ∈ M2m(C). Here again n and m are related by n = 2m if n is

even, or n = 2m+ 1 if n is odd. Set γ
(1)
1 = 1, and for n > 1 odd we define

γ
(n)
j =

(
0 γ

(n−2)
j

γ
(n−2)
j 0

)
, γ

(n)
n−1 =

(
0 −i
i 0

)
, γ(n)

n =

(
1 0
0 −1

)
, 1 ≤ j ≤ n− 2.

(3.16)

For n even, we define γ
(n)
j = γ

(n+1)
j . For n = 3, this just yields the well known Pauli

matrices. One easily checks that the matrices satisfy

γ
(n)
j γ

(n)
k + γ

(n)
k γ

(n)
j = 2δjk,

(
γ

(n)
j

)∗
=
(
γ

(n)
j

)2

= 1, (3.17)

for each j, k, n. Now if {dxµ}nµ=1 is a local orthonormal frame for the metric g−1 on

T ∗M , then setting c(dxµ) = γµ ≡ γ
(n)
µ ∈ M2m(C), defines the desired isomorphism

(3.15), as the matrices γµ satisfy

γµγν + γνγµ = 2δµν . (3.18)

Apart from the Clifford action, we also want a connection on the Clifford bundle. The
Levi-Civita connection ∇g on TM defines a connection on T ∗M , via the musical iso-
morphism (3.1). This connection on T ∗M we will also denote by ∇g. The Clifford
bundle Cl(M) is generated by the bundle T ∗M . The Levi-Civita connection on T ∗M
then extends (after complexifying) to a connection on Cl(M), which we will also call
the Levi-Civita connection and which we will denote by ∇. It is recursively defined by
∇|Ω1(M) = ∇g and

∇(µλ) = ∇(µ)λ+ µ∇(λ) for µ, λ ∈ Γ∞(Cl(M)).
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Proposition 3.17. Let (M, g) be a spinc–manifold, with spinor bundle S →M , Clifford
action c and Levi–Civita connection ∇ on Cl(M). Then there exists a connection ∇S
on S satisfying the Leibniz rule

∇S(c(v)s) = c(∇v)s+ c(v)∇S(s) for all v ∈ Γ∞(Cl(M)), s ∈ Γ∞(S). (3.19)

Proof. See [4, Theorem 9.8].

Definition 3.18. Let (M, g) be a spinc manifold and let c denote the Clifford action
(3.15). We define ĉ : Γ∞(Cl(M))⊗ Γ∞(S)→ Γ∞(S) by

ĉ(v ⊗ s) = c(v)s.

Now if ∇S is a connection on the spinor bundle S, satisfying the Leibniz rule (3.19),
then the Dirac operator associated to the connection ∇S and the Clifford action c is
defined by

D = −i(ĉ ◦ ∇S). (3.20)

Proposition 3.19. Suppose D is the Dirac operator on Γ∞(S) and f ∈ C∞(M) acts
on Γ∞(S) by multiplication. Then we have

[D, f ] = −ic(df).

Proof. For any s ∈ Γ∞(S)

[D, f ]s = D(fs)− f(Ds)

= −iĉ(∇(fs)) + if ĉ(∇(s))

= −iĉ(df ⊗ s+ f∇(s)) + if ĉ(∇(s))

= −ic(df)s.

Suppose M is a manifold and E →M is some complex vector bundle, then there exists
a smooth Hermitian structure

h : Γ∞(E)× Γ∞(E)→ C∞(M),

which is linear in the first entry and conjugate linear in the second entry.

Definition 3.20. Let (M, g) be a Riemannian spinc-manifold and let S → M be its
spinor bundle. Let h : Γ∞(S) × Γ∞(S) → C∞(M) be a smooth Hermitian structure,
then we define an inner product on Γ∞(S) by

〈s1, s2〉 =

∫
M

h(s1, s2)
√
gdx. (3.21)

We define the space of square integrable spinors, denoted L2(S), to be the Hilbert space
completion of Γ∞(S) with respect to the inner product (3.21). The construction of
L2(S) is independent of the chosen metric on the spinor bundle S.

The inner product (3.21) defines a norm on Γ∞(S). Therefore, if an operator A is acting
on Γ∞(S), then we can also define its norm

‖A‖ = sup
s∈Γ∞(S)

{‖As‖ : ‖s‖ ≤ 1}.

For example, a function f ∈ C∞(M) acts on Γ∞(S) by pointwise multiplication (Γ∞(S)
is a C∞(M)-module) and ‖f‖ = ‖f‖∞. More generally, if B ∈ Γ∞(End(S)), then
‖B‖ = supp∈M ‖B(p)‖.
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Theorem 3.21 (Connes’ distance formula). Let (M, g) be a Riemannian spinc-manifold
with spinor bundle S → M and Dirac operator associated to some Clifford connection
∇S. Let dg be the metric associated to (M, g), then we can recover dg with the formula

dg(p, q) = sup
f∈C∞(M)

{|f(p)− f(q)| : ‖[D, f ]‖ ≤ 1}. (3.22)

Proof. By Proposition 3.19 we know ‖[D, f ]‖ = ‖c(df)‖. We claim that we have the
equality ‖c(df)‖ = ‖ grad f‖∞. As ‖c(df)‖ = supp∈M ‖c(df)(p)‖, it is enough to show
‖c(df)(p)‖ = ‖ gradp f‖ for every p ∈ M . Choose p ∈ M and let {dxµ}nµ=1 be an
orthonormal frame on a neighbourhood U around p, with respect to the metric g−1 on

T ∗M
∣∣∣
U

. Then we know that the Clifford action is given (locally) by

c(dxµ) = γµ,

with the gamma matrices γµ as in (3.16). Now we compute

‖c(df)(p)‖2 = ‖c(df)∗(p)c(df)(p)‖

=

∥∥∥∥∥c
(∑

µ

∂µfdx
µ

)∗
(p)c

(∑
µ

∂νfdx
ν

)
(p)

∥∥∥∥∥
=

∥∥∥∥∥∑
µ,ν

∂µf(p)∂νf(p) (γµ)
∗
γν

∥∥∥∥∥
=

∥∥∥∥∥∑
µ

∂µf(p)∂µf(p)⊗ 12m

∥∥∥∥∥
=

∥∥∥∥∥∑
µ

∂µf(p)∂µf(p)

∥∥∥∥∥
= ‖ gradp f‖2,

where we use the relations (3.17) and (3.18) for the fourth equality and Lemma 2.18 for
the fifth equality. Therefore Connes’ distance formula is equivalent to

dg(p, q) = sup
f∈C∞(M)

{|f(p)− f(q)| : ‖ grad f‖∞ ≤ 1}.

We prove the two inequalities. For the first inequality, we know that

|f(p)− f(q)| ≤ ‖ grad f‖∞dg(p, q),

which we saw in the proof of Proposition 3.6. This yields the inequality

sup
f∈C∞(M)

{|f(p)− f(q)| : ‖ grad f‖∞ ≤ 1} ≤ dg(p, q).

For the converse inequality we need the results of Section 3.2. The function fp, defined
by fp(q) = dg(p, q) is Lipschitz with Lipschitz constant 1. Indeed, for x, y ∈M ,

|fp(x)− fp(y)| = |dg(p, x)− dg(p, y)| ≤ dg(x, y),

by the converse triangle inequality. If we let ε > 0 arbitrary, then according to Proposi-
tion 3.9 we can find a smooth function fε such that ‖fp−fε‖∞ < ε and ‖ grad fε‖ < 1+ε,

which implies ‖ grad fε
1+ε‖ ≤ 1. Also we have that

|fε(x)− fε(y)| ≥ |fp(x)− fp(y)| − 2ε,
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for all x, y ∈M . Therefore

sup
f∈C∞(M)

{|f(p)− f(q)| : ‖ grad f‖ ≤ 1} ≥ |fε(p)− fε(q)|
1 + ε

≥ |fp(p)− fp(q)| − 2ε

1 + ε

=
dg(p, q)− 2ε

1 + ε
.

This last expression tends to dg(p, q) as ε tends to 0, so we have proven the other
inequality

sup
f∈C∞(M)

{|f(p)− f(q)| : ‖ grad f‖∞ ≤ 1} ≥ dg(p, q),

completing the proof of the theorem.
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4 Noncommutative geometry

“Sometimes, if you stand on the bottom rail of a
bridge and lean over to watch the river slipping
slowly away beneath you, you will suddenly know
everything there is to be known.”

A.A. Milne

We can extend Connes’ distance formula (3.22) to noncommutative spaces, as we will
explain in this section. The analytical tools that we use in this section may sometimes
be quite technical. For the theory on compact operators and self-adjoint operators we
refer to [21, Chapters 4, 13].

4.1 Spectral triples

Definition 4.1. A spectral triple is given by a triple (A,H, D), where H is a Hilbert
space, A is a dense, ∗-closed subalgebra of a unital C∗-algebra A, that acts faithfully on
H and D is an essentially self-adjoint operator on H, with compact resolvent and such
that [D, a] ∈ B(H) for each a ∈ A.

Example 4.2. To every compact, Riemannian spinc–manifold there corresponds a ca-
nonical spectral triple

(C∞(M), L2(S), DM ),

where L2(S) denotes the space of square integrable spinors, as in Definition 3.20, and
DM denotes the Dirac operator of M (with domain C∞(M)). The algebra C∞(M) acts
on L2(S) by multiplication. For the technical proofs of the fact that DM is essentially
self-adjoint and has compact resolvent we refer to [4, Chapter 10].

In Section 3 we showed that we can recover the distance function on M from the data
(C∞(M), L2(S), DM ), making use of Connes’ distance formula (3.22). This gives us
back the topology of M . It is a deep theorem by Alain Connes that we can also recover
the smooth structure from the same data ([18],[4, Theorem 11.2]). Therefore, spectral
triples (A,H, D) are really a generalization of geometry.

We can rewrite Connes’ distance formula (3.22) as

sup
f∈C∞(M)

{|f(p)− f(q)| : ‖[D, f ]‖ ≤ 1} = sup
f∈C∞(M)

{|δp(f)− δq(f)| : ‖[D, f ]‖ ≤ 1},

where δp ∈ S(C∞(M)) denotes the pure state f 7→ f(p). This motivates us to define a
(generalized) distance function on S(C∞(M)) given by

d(φ, ψ) = sup
f∈C∞(M)

{|φ(f)− ψ(f)| : ‖[D, f ]‖ ≤ 1}, φ, ψ ∈ S(C∞(M)). (4.1)

We use the word ’generalized’, for the supremum in (4.1) could be infinite a priori. The
rest of the axioms of a metric are all satisfied. The great feature about (4.1) is that it
also makes sense for spectral triples.

Proposition 4.3. Let (A,H, D) be a spectral triple, then the formula

dA(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}, φ, ψ ∈ S(A) (4.2)

defines a (generalized) distance function on S(A).

20



Proof. It is clear that dA(φ, φ) = 0. Suppose φ 6= ψ, then φ(a) 6= ψ(a) for some a ∈ A.
Now consider a′ = a

‖[D,a]‖ . We see that φ(a′) 6= ψ(a′) and that ‖[D, a′]‖ ≤ 1, therefore

dA(φ, ψ) > 0. For the triangle inequality consider φ, ψ, ξ ∈ S(A), then

dA(φ, ξ) = sup
a∈A
{|φ(a)− ξ(a)| : ‖[D, a]‖ ≤ 1}

≤ sup
a∈A
{|φ(a)− ψ(a)|+ |ψ(a)− ξ(a)| : ‖[D, a]‖ ≤ 1}

≤ sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}+ sup

a∈A
{|ψ(a)− ξ(a)| : ‖[D, a]‖ ≤ 1}

= dA(φ, ψ) + dA(ψ, ξ).

It will be useful to notice the following ([7]):

Remark 4.4. In the formula (4.2), defining the distance on the state space, it suffices
to take the supremum over all self-adjoint elements. That is

dA(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1} = sup

a∈Asa
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}.

We can see this as follows. Let φ, ψ ∈ S(A) and ε > 0 be given. Then there is an a ∈ A
such that ‖[D, a]‖ ≤ 1 and

|φ(a)− ψ(a)| > dA(φ, ψ)− ε.

So there exists α ∈ C, |α| = 1 such that

φ(αa)− ψ(αa) > dA(φ, ψ)− ε.

If we now set b = αa+(αa)∗

2 , then b is self-adjoint and

φ(b)− ψ(b) =
φ(αa)− ψ(αa)

2
+
φ
(
(αa)∗

)
− ψ

(
(αa)∗

)
2

=
φ(αa)− ψ(αa)

2
+
φ(αa)− ψ(αa)

2

=
φ(αa)− ψ(αa)

2
+
φ(αa)− ψ(αa)

2
> dA(φ, ψ)− ε.

Here we used that φ(a∗) = φ(a) for positive linear functionals φ, and that φ(αa)−ψ(αa)
is real. As [D, a∗] = −[D, a]∗, we have that ‖[D, a∗]‖ = ‖[D, a]‖, and so ‖[D, b]‖ ≤ 1.
This proves the equality.
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4.1.1 Some examples

We compute the distance formula formula (4.2) induces on S(A) for several examples.

Example 4.5. Consider the spectral triple on a two point space(
C⊕ C,C2,

(
0 t
t 0

))
, (4.3)

for some t ∈ R, t 6= 0. The algebra C⊕ C acts on C2 by

(x, y) · v =

(
x 0
0 y

)
v, v ∈ C2.

The state space S(C ⊕ C) is given by {φλ|λ ∈ [0, 1]}. Here φλ denotes the linear
functional

(x, y) 7→ λx+ (1− λ)y. (4.4)

We compute the distance d(φλ1
, φλ2

), λ1 6= λ2 as given by (4.2)∥∥∥∥[D,(x 0
0 y

)]∥∥∥∥ =

∥∥∥∥( 0 t(y − x)
t(x− y) 0

)∥∥∥∥ = |t||x− y|.

So ‖[D, (x, y)]‖ ≤ 1 =⇒ |x− y| ≤ 1
|t| , which implies

d(φλ1
, φλ2

) = sup
(x,y)∈C⊕C

{|φλ1
(x, y)− φλ2

(x, y)|, ‖[D, (x, y)]‖ ≤ 1}

= sup
(x,y)∈C⊕C

{|λ1 − λ2||x− y|, ‖[D, (x, y)]‖ ≤ 1}

≤ |λ1 − λ2|
|t|

.

We may consider the element
(

0, 1
|t|

)
, for which

∥∥∥[D,(0, 1
|t|

)]∥∥∥ ≤ 1, so that∣∣∣∣φλ1

(
0,

1

|t|

)
− φλ2

(
0,

1

|t|

)∣∣∣∣ =
|λ1 − λ2|
|t|

.

We conclude that d(φλ1
, φλ2

) = |λ1−λ2|
|t| . If t = 0, then d(φλ1

, φλ2
) = ∞, whenever

λ1 6= λ2.

Example 4.6. The first noncommutative example is given by the spectral triple(
M2(C),C2,

(
x 0
0 y

))
, (4.5)

for some x, y ∈ R, x 6= y. The action of M2(C) on C2 is just given by matrix multiplic-
ation. Again we compute the distance induced by Connes’ distance formula (4.2). This
time we restrict the distance to the pure state space P(M2(C)), which is isomorphic to
CP1 ([23, Proposition 2.9]). An element [z : w] ∈ CP1 corresponds to the pure state
φ[z:w], given by

M 7→ 1

|z|2 + |w|2

〈(
z
w

)
,M

(
z
w

)〉
, M ∈M2(C). (4.6)

For M =

(
a b
c d

)
∈M2(C) we have

‖[D,M ]‖ =

∥∥∥∥( 0 b(x− y)
c(y − x) 0

)∥∥∥∥ = max{|b|, |c|}|x− y|. (4.7)
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Write φz = φ[z:1]. Then we compute

φz1(M)− φz2(M) =
1

1 + |z1|2
(
a|z1|2 + bz1 + cz1 + d

)
− 1

1 + |z2|2
(
a|z2|2 + bz2 + cz2 + d

)
.

(4.8)

If we choose MN =

(
0 |x− y|−1

|x− y|−1 N

)
, then from (4.7) we see that ‖[D,MN ]‖ ≤ 1

and form (4.8) it is clear that limN→∞ |φz1(MN )−φz2(MN )| =∞, whenever |z1| 6= |z2|.
It follows that d(φz1 , φz2) = ∞, whenever |z1| 6= |z2|. If instead |z1| = |z2|, we can use
(4.8) to calculate

|φz1(M)− φz2(M)| = 1

1 + |z1|2
∣∣(b(z1 − z2) + c(z1 − z2)

)∣∣
≤ 2
|z1 − z2|
1 + |z1|2

max{|b|, |c|}.
(4.9)

This implies

d(φz1 , φz2) ≤ 2
|z1 − z2|
1 + |z1|2

|x− y|−1.

For the converse inequality, we choose an element

M =

(
0 z1−z2

|z1−z2||x−y|
z1−z2

|z1−z2||x−y| 0

)
.

Then indeed ‖[D,M ]‖ ≤ 1 and |φz1(M)− φz2(M)| = 2 |z1−z2|1+|z1|2 |x− y|
−1. We conclude

d(φz1 , φz2) = 2
|z1 − z2|
1 + |z1|2

|x− y|−1.

Let us now compute the distance between the state φ1 and the state ’at infinity’: φ[1:0].
If M ′N ∈M2(C) is the matrix

M ′N =

(
N 0
0 −N

)
,

then according to (4.7), ‖[D,M ′N ]‖ = 0, for every N . Also

|φ[1:0](M
′
N )− φ[0:1](M

′
N )| =

∣∣∣∣〈(1
0

)
,M

(
1
0

)〉
−
〈(

0
1

)
,M

(
0
1

)〉∣∣∣∣ = 2N
N→∞−−−−→∞,

so that d(φ[1:0], φ[0:1]) = ∞. We have now completely determined the distance the
spectral triple (4.5) defines on CP1. The map

CP1 ∼−→ S2 ⊆ C⊕ R

[z : 1] 7→
(

2
z

1 + |z|2
,
|z|2 − 1

|z|2 + 1

)
[1 : 0] 7→ (0, 1)

(4.10)

is a diffeomorphism. We see that the distance the spectral triple (4.5) induces on S2 via
the map (4.10) is infinite between different latitude lines of S2 and on latitude lines it
is, up to the factor |x− y|−1, given by the chord distance between the two points.
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P ′

P

d(P, P ′)

Figure 2: An illustration of the distance function that the formula (4.2) and the spectral
triple (4.5) induce on the sphere. On each lattitude line the distance between points is
given by the chord distance. The distance between lattitude lines is infinite.

In the special case of the canonical spectral triple for some compact Riemannian spinc-
manifold, we can guarantee the distance function (4.2) only takes finite values.

Proposition 4.7. Given a compact Riemannian spinc-manifold (M, g), with corres-
ponding Dirac operator DM , the distance formula

d(φ, ψ) = sup
f∈C∞(M)

{|φ(f)− ψ(f)| : ‖[DM , f ]‖ ≤ 1}

induces the weak-∗ topology on S(C∞(M)).

Proof. Let ωn, ω ∈ S(C∞(M)). We need to prove that

lim
n→∞

d(ωn, ω) = 0 ⇐⇒ lim
n→∞

ωn(f)− ω(f) = 0 for all f ∈ C∞(M).

Suppose we are given that limn→∞ d(ωn, ω) = 0. Take f ∈ C∞(M), which we may
assume to be real-valued according to Remark 4.4. If ‖[DM , f ]‖ = ‖ grad f‖∞ = 0, then
using Proposition 3.6, we conclude that ‖f‖Lip = 0, which implies that f is constant.
So f is a multiple of the identity element in C∞(M): f = λ1C∞(M), λ ∈ R. Now

|ωn(f)− ω(f)| = |ωn(λ1C∞(M))− ω(λ1C∞(M))|
= |λωn(1C∞(M))− λω(1C∞(M))|
= |λ1− λ1| = 0.

If ‖[DM , f ]‖ 6= 0, then ‖[DM ,
f

‖[DM ,f ]‖ ]‖ = 1, so

|ωn(f)− ω(f)| = ‖[DM , f ]‖
∣∣∣ωn( f

‖[DM , f ]‖

)
− ω

( f

‖[DM , f ]‖

)∣∣∣
≤ ‖[DM , f ]‖d(ωn, ω)

n→∞−−−−→ 0.

Conversely, suppose we know that limn→∞ ωn(f)− ω(f) = 0 for all f ∈ C∞(M). Since
C∞(M) is dense in C(M), we can extend ωn and ω to states on C(M). We then still
have that limn→∞ ωn(f) − ω(f) = 0 for every f ∈ C(M). Indeed, if f ∈ C(M), and
gn ∈ C∞(M) is a sequence of functions converging to f and ε > 0 is arbitrary, then
we can find N and M natural numbers such that n ≥ N =⇒ ‖f − gn‖ < ε

3 and
m ≥M =⇒ |ωm(gN )− ω(gN )| < ε

3 . Then we see that for m ≥M we have

|ωm(f)− ω(f)| ≤ |ωm(f)− ωm(gN )|+ |ωm(gN )− ω(gN )|+ |ω(gN )− ω(f)|
≤ 2‖gN − f‖+ |ωm(gN )− ω(gN )| < ε.
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We now argue by contradiction. Suppose that limn→∞ d(ωn, ω) 6= 0. Then again
using Remark 4.4, we can find an ε > 0 and a sequence of real-valued functions
fn ∈ C∞(M), ‖[DM , fn]‖ ≤ 1, such that

|ωn(fn)− ω(fn)| > ε.

Since adding a multiple of the identity function to fn does not change the above ex-
pression, or the value ‖[DM , fn]‖, we may pick a point p0 ∈ M and assume fn(p0) = 0
for all n. As all the fn are real-valued and smooth, we can apply Proposition 3.6 to
conclude ‖fn‖Lip = ‖[DM , fn]‖ ≤ 1. This implies the family {fn}n is an equicontinuous
family. Because M is compact, the conditions fn(p0) = 0 and ‖f‖Lip ≤ 1 imply that
the family {fn}n is uniformly bounded. So we can apply the Arzelá–Ascoli Theorem,
which states that {fn}n has a convergent subsequence (in C(M)). We may therefore
switch to a convergent subsequence {fn}n, converging to some f ∈ C(M). Now choose
N large enough so that n ≥ N =⇒ ‖fn − f‖ < ε

4 . Then for n ≥ N we have

|ωn(f)− ω(f)| = |ωn(f)− ωn(fn) + ωn(fn)− ω(fn) + ω(fn)− ω(f)|

≥
∣∣∣|ωn(fn)− ω(fn)| − |ωn(f)− ωn(fn) + ω(fn)− ω(f)|

∣∣∣
≥ ε

2

contradicting the assumption that |ωn(f)− ω(f)| n→∞−−−−→ 0.

As the dual space of any normed vector space is compact in the weak-* topology by the
Banach-Alaoglu Theorem, d(·, ·), can only take finite values on S(C∞(M)).

4.2 Operator system spectral triples

For the purpose of this text we extend the definition of a spectral triple.

Definition 4.8. An operator system spectral triple is a triple (E ,H, D), where H is a
Hilbert space, E is a ∗-closed dense subspace of an operator system E ⊆ B(H), such
that 1B(H) ∈ E and D is an essentially selfadjoint operator on H with compact resolvent
and such that [D, a] ∈ B(H) for each a ∈ E .

Proposition 4.9. Suppose we are given a spectral triple (A,H, D) and an orthogonal
projection Q ∈ B(H) that commutes with D. Then (QAQ,QH,QDQ) is an operator
system spectral triple.

Proof. Since A is a dense subspace of a C∗-algebra A, the linear space QAQ is a dense
subspace of QAQ, which is an operator system. Furthermore Q is the identity operator
on QH and (QaQ)∗ = Qa∗Q, so QAQ is ∗-closed. To show the operator QDQ has
compact resolvent, we need to show (iQ+QDQ)−1 is bounded as an operator on QH.
To show this, we notice first of all that we have the equality of operators on QH ([9,
Page 113])

(iQ+QDQ)Q(i+D)−1Q = Q(i+D)Q(i+D)−1Q−Q(i+D)(i+D)−1Q+Q
= Q[i+D,Q](i+D)−1Q.

If we now multiply with the term (iQ+QDQ)−1 on the left we obtain the equality

Q(i+D)−1Q = (iQ+QDQ)−1Q[i+D,Q](i+D)−1Q+ (iQ+QDQ)−1,
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again as operators on QH. So we obtain the expression

(iQ+QDQ)−1 = Q(i+D)−1Q− (iQ+QDQ)−1Q[i+D,Q](i+D)−1Q.

The left hand side is compact, as we know that (i + D)−1 is compact, showing that
QDQ has compact resolvent.

Let D(D) denote the domain of D. In order to show that QDQ is essentially self-adjoint,
we need to check it is densily defined, symmetric and that (QDQ)∗∗ is self-adjoint, (with
domain QD(D)). As D(D) is dense in H, it is clear that QD(D) ⊆ QH is dense. That
QDQ is symmetric follows from the fact that D is symmetric and thatQ is an orthogonal
projection. Furthermore we have that

(QDQ)∗∗ = (QD∗Q)
∗

= QD∗∗Q,

which follows from [21, Theorem 13.2]. This shows (QDQ)∗∗ is self-adjoint, as Q is an
orthogonal projection and D∗∗ is self-adjoint by assumption. Lastly, since Q commutes
with D, the commutator [QDQ,QaQ] = Q[D, a]Q is bounded.

In particular, if we choose Q = 1B(H), we see that every spectral triple is an ex-
ample of an operator system spectral triple. We say the operator system spectral triple
(QAQ,QH,QDQ) is a truncation of the spectral triple (A,H, D).

Even now, formula (4.2) makes sense, and in this way we obtain a distance function on
the state space S(E):

dE(φ, ψ) = sup
a∈E
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}, φ, ψ ∈ S(E). (4.11)

If (4.11) induces the weak-∗ topology on S(E), then the operator system spectral triple
(E ,H, D) is a quantum metric space as defined by Rieffel in [7]. The Lip-norm is then
given by L(a) = ‖[D, a]‖. Requiring that (4.11) induces the weak-∗ topology on S(E)
would exclude examples like 4.6. Proposition 4.10 and 4.16 below state examples of
operator system spectral triples that are also quantum metric spaces. The operator
system spectral triples we consider in the final section are of this form.

Proposition 4.10. Suppose (E ,H, D) is an operator system spectral triple with finite
dimensional operator system E . Then the distance formula (4.11) induces the weak-∗
topology on S(E) if and only if

[D, a] = 0 if and only if a ∈ C · 1E . (4.12)

Proof. See [15, Proposition 3.1], and [16, Proposition 4.2].

4.3 Gromov–Hausdorff distance

Now that we have some idea of what the distance induced by Connes’ distance formula
looks like, let us try to compare two operator system spectral triples. The appropriate
notion of the distance between operator system spectral triples relies on the notion of
Gromov–Hausdorff distance between metric spaces.

Let (X, d) be a metric space and let C ⊆ X. For ε > 0 we define the ε-neighbourhood
of C by

Nε(C) = {x ∈ X | there is y ∈ C such that d(x, y) < ε}.
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Definition 4.11. Let (X, d) be a metric space and let C,D ⊆ X be closed subspaces.
The Hausdorff distance between C and D is defined by

distH(C,D) = inf{ε > 0 | C ⊆ Nε(D) and D ⊆ Nε(C)}.

If we moreover require X to be compact, then distH(C,D) is guaranteed to be finite.

Definition 4.12. Given two metric spaces (X, dX) and (Y, dY ), we define the Gromov–
Hausdorff distance between these spaces to be

distGH = inf
{

distH(f(X), g(Y )) | f : X→Z,g : Y→Z
isometric imbeddings for some metric space (Z,dZ)

}
.

We are now ready to define Gromov–Hausdorff distance between operator system spec-
tral triples. The definition is inspired by the notion of quantum Gromov–Hausdorff
distance between quantum metric spaces as defined by Rieffel in [7].

Definition 4.13. Suppose O1 = (E1,H1, D1) and O2 = (E2,H2, D2) are operator sys-
tem spectral triples, then we define the Gromov–Hausdorff distance between them by

distoGH(O1,O2) = distGH
(
(S(E1), dE1), (S(E2), dE2)

)
.

Here dE1 and dE2 are as in (4.11). We use the notation distoGH to distinguish between
Gromov–Hausdorff distance between operator system spectral triples and the usual no-
tion of Gromov–Hausdorff distance between metric spaces.

Example 4.14. If we denote

Ot =

(
C⊕ C,C2,

(
0 t
t 0

))
the spectral triple from Example 4.5, and dt the distance induced by Connes’ distance
formula on S(C⊕ C), then we saw that

(S(C⊕ C), dt) ∼=
[
0,

1

|t|

]
⊆ R

as metric spaces. Suppose that t1 6= t2, then we can embed both Ot1 and Ot2 isomet-

rically into the interval
[
0,max

{
1
|t1| ,

1
|t2|

}]
, using the map t 7→ t. We then see that

distoGH(Ot1 ,Ot2) ≤
∣∣∣ 1
|t1| −

1
|t2|

∣∣∣. In particular, if t1 converges to t2, then Ot1 converges

to Ot2 in Gromov–Hausdorff distance.

There is a more generic way to compute the distance between operator system spectral
triples ([7]).

Definition 4.15. Let O1 = (E1,H1, D1) and O2 = (E2,H2, D2) be operator system
spectral triples. A weak bridge between O1 and O2 is a seminorm B on E1 ⊕ E2 that
satisfies the following properties:

1. For any a1 ∈ E1, there exists an a†1 ∈ E2 such that∥∥∥[D2, a
†
1

]∥∥∥ ,B(a1, a
†
1) ≤ ‖[D1, a1]‖.

2. For any a2 ∈ E2 there exists an a†2 ∈ E1 such that∥∥∥[D1, a
†
2

]∥∥∥ ,B(a†2, a2) ≤ ‖[D2, a2]‖.
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In the above definition we view E1 ⊕ E2 as a subspace of A1 ⊕ A2, if E1 and E2 are
subspaces of A1 and A2 respectively.

Once again, our definition of a weak bridge between operator system spectral triples is
modelled on the definition of a bridge between quantum metric spaces ([7, Section 5]).

We have the natural projections

E1 ⊕ E2

E1 E2

π1 π2 .

These projections induce maps

S(E1 ⊕ E2)

S(E1) S(E2)

S(π1) S(π2)
,

defined by S(π1)(φ)(a1, a2) = φ(a1) and S(π2)(ψ)(a1, a2) = ψ(a2). Clearly S(π1) and
S(π2) are injections.

Proposition 4.16. Let B be a weak bridge between operator system spectral triples
O1 = (E1,H1, D1) and O2 = (E2,H2, D2). Then, if we equip S(E1 ⊕E2) with the metric

dB(φ, ψ) = sup
(a1,a2)∈E1⊕E2

{|φ(a1, a2)− ψ(a1, a2)| : |[D1, a1]‖, ‖[D2, a2]‖,B(a1, a2) ≤ 1},

(4.13)
and S(E1) and S(E2) with the metric given by Connes’ distance formula, then the maps

S(E1 ⊕ E2)

S(E1) S(E2)

S(π1) S(π2)

are isometric embeddings.

Proof. Let φ, ψ ∈ S(E1). We need to show that

dB
(
S(π1)φ,S(π1)ψ

)
= dE1(φ, ψ).

Let us prove the two inequalities. First of all

dE1(φ, ψ) = sup
a1∈E1

{|φ(a1)− ψ(a1)| : ‖[D1, a1]‖ ≤ 1}

≥ sup
(a1,a2)∈E1⊕E2

{|φ(a1)− ψ(a1)| : ‖[D1, a1]‖, ‖[D2, a2]‖,B(a1, a2) ≤ 1}

= sup
(a1,a2)∈E1⊕E2

{|S(π1)φ(a1, a2)− S(π1)ψ(a1, a2)| : ‖[D1, a1]‖, ‖[D2, a2]‖,B(a1, a2) ≤ 1}

= dB
(
S(π1)φ,S(π1)ψ

)
.

For the converse inequality we use property 1 of Definition 4.15. For each a1 ∈ E1 we
can find an a†1 ∈ E2 such that∥∥∥[D2, a

†
1

]∥∥∥ ,B(a1, a
†
1) ≤ ‖[D1, a1]‖.
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Now we see that

dE1(φ, ψ) = sup
a1∈E1

{|φ(a1)− ψ(a1)| : ‖[D1, a1]‖ ≤ 1}

= sup
a1∈E1

{|φ(a1)− ψ(a1)| : ‖[D1, a1]‖, ‖[D2, a
†
1]‖,B(a1, a

†
1) ≤ 1}

≤ sup
(a1,a2)∈E1⊕E2

{|φ(a1)− ψ(a1)| : ‖[D1, a1]‖, ‖[D2, a2]‖,B(a1, a2) ≤ 1}

= sup
(a1,a2)∈E1⊕E2

{|S(π1)φ(a1, a2)− S(π1)ψ(a1, a2)| : ‖[D1, a1]‖, ‖[D2, a2]‖,B(a1, a2) ≤ 1}

= dB
(
S(π1)φ,S(π1)ψ

)
.

That S(π2) is an isometry can be proven in a completely analogous way, this time using
property 2. of Definition 4.15.

Thus every weak bridge B between operator system spectral triples provides us with
isometric embeddings

S(E1 ⊕ E2)

S(E1) S(E2)

S(π1) S(π2)
.

The next thing we need to do, in order to obtain an upper bound for distoGH(O1,O2),
is to compute the distance

distH

(
S(π1)

(
S(E1)

)
,S(π2)

(
S(E2)

))
.

Upon choosing the weak bridge B appropriately, we hope to arise at a good estimate for
this distance, and accordingly for distoGH(O1,O2) as well.
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5 Truncated geometry

Those little quarrels that tore us apart
Oh, gee, I can see they were wrong from the start
But now that you’ve come back
My dream of life is here to stay

Billie Holiday, Dream of life

In the previous section we have seen the definition of an operator system spectral triple.
In particular we saw that if we are given a spectral triple (A,H, D) and an orthogonal
projection Q on H, which commutes with D, then (QAQ,QH,QDQ) is an operator
system spectral triple (Proposition 4.9). Also we developed the notion of Gromov–
Hausdorff distance between operator system spectral triples. We could therefore ask
ourselves what the Gromov–Hausdorff distance is between (A,H, D) and the truncated
spectral triple (QAQ,QH,QDQ). Pushing this further, if {QN}N is some sequence of
spectral projections associated to D, that converges to 1H in the strong operator topo-
logy, the natural question to ask is:

Does (QNAQN ,QNH,QNDQN ) converge to (A,H, D) in Gromov–Hausdorff distance?

In this section we answer this question affirmatively in the case the spectral triple
(A,H, D) is the canonical spectral triple associated to the d-dimensional torus Td and
{QN}N is the sequence of rectangular spectral projections associated to DTd (defined
in Definition 5.1 below).

In Section 5.3 we define maps between the operator system spectral triples
(QNAQN ,QNH,QNDQN ) and (A,H, D). In Section 5.4 we use these maps to build
a weak bridge between the two spaces. Both constructions rely heavily on ideas from
work in progress by Walter van Suijlekom and Alain Connes ([22]).

5.1 The torus

Let us commence by determining the canonical spectral triple associated to Td explicitly.

The algebra: The algebra is given by A = C∞(Td). We have an inclusion

d⊗
j=1

C∞(S1) ⊆ C∞(Td),

given by (f1 ⊗ · · · ⊗ fd)(θ1, . . . , θd) = f1(θ1)f2(θ2) . . . fd(θd). In fact,
⊗d

j=1 C
∞(S1) is a

dense subset of C∞(Td), with respect to the supremum norm on C∞(Td). This can be
seen in the following way. Using Fourier theory we know we can write every function
f ∈ C∞(Td) as a series

f(θ) =
∑
n∈Zd

ane
in·θ, ein·θ = ei(n1θ1+···+ndθd),

such that the coefficients an fall off quicker than any polynomial. In particular, for any
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ε > 0, we can find an N ∈ N such that∥∥∥∥∥∥∥∥f −
∑
n∈Zd

|n1|,...,|nd|≤N

ane
in·θ

∥∥∥∥∥∥∥∥ < ε,

proving the assertion.

The Hilbert space: The manifold Td has global coordinates (θ1, . . . , θd) ∈ [−π, π]d

and has trivializable tangent space TTd with global frame { ∂
∂θµ }

d
µ=1. We equip the

tangent space with the flat metric:

g
( ∂

∂θµ
,
∂

∂θν

)
= δµν . (5.1)

Therefore also the cotangent space T ∗Td is trivializable and has global, orthonormal
frame {dθµ}dµ=1, with respect to the metric g−1:

g−1(dθµ, dθν) = δµν . (5.2)

Using (3.14) we see that Cl(Td) ∼= Td ×M2m(C), where d = 2m or d = 2m + 1. Thus
the spinor bundle S is given by the trivial bundle of dimension 2m:

S ∼= Td × C2m . (5.3)

It follows that the spinor module is given by Γ∞(S) = C∞(Td)⊗C2m and so the Hilbert
space of square integrable spinors is given by

L2(Td) ∼= L2(Td)⊗ C2m . (5.4)

In this section we will frequently identify

L2(Td) ∼=
d⊗

µ=1

L2(T1). (5.5)

This isomorphism of Hilbert spaces follows just because Td = T1 × · · · × T1 (d times).

The Dirac operator: As TTd is trivializable, the Levi-Civita connection ∇g is just
given by the exterior derivative d. A connection ∇S on S that satisfies the Leibniz rule
(3.18) is given by

∇S(f ⊗ s) = df ⊗ s. (5.6)

Now using (3.20) and c(dθµ) = γµ as in (3.16) we can compute the Dirac operator:

DTd(f ⊗ s) = −i
(
ĉ ◦ ∇S

)
(f ⊗ s)

= −i
(
ĉ(df ⊗ s)

)
= −i

(
ĉ

(
d∑

µ=1

∂µfdθ
µ ⊗ s

))

= −i

(
d∑

µ=1

∂µfc(dθ
µ)s

)

=

d∑
µ=1

−i∂µfγµ(s).
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Here ∂µ denotes the operator ∂
∂θµ . The Dirac operator DTd acting on L2(Td)⊗ C2m is

thus given by

DTd =

d∑
µ=1

−i∂µ ⊗ γµ. (5.7)

With respect to the identification (5.5), the Dirac operator becomes

DTd =

d∑
µ=1

(
1⊗ · · · ⊗ −i d

dx
↑
µ

⊗ · · · ⊗ 1
)
⊗ γµ. (5.8)

Here ↑µ means that the term is on position µ.

We have thus established that the canonical spectral triple corresponding to Td is given
by (

C∞(Td), L2(Td)⊗ C2m ,

d∑
µ=1

−i∂µ ⊗ γµ
)
.

5.2 The rectangularly truncated torus

We now introduce an increasing sequence of projections {QN}N on L2(Td) ⊗ C2m . In
Appendix D we compute the spectrum of DTd . It is given by the set{

±
√
n2

1 + n2
2 + · · ·+ n2

d | n ∈ Zd
}
.

Finding an increasing sequence of spectral projections is then equivalent to choosing an
increasing sequence of finite subsets KN ⊆ Zd, such that

⋃
N KN = Zd. Then we can

define QN to be the orthogonal projection onto the eigenspaces corresponding to the
eigenvalues {

±
√
n2

1 + n2
2 + · · ·+ n2

d | n ∈ KN

}
. (5.9)

Given any spectral triple (A,H, D), there is a canonical sequence of orthogonal pro-
jections given by χ[−N,N ](DTd). Here χ[−N,N ] is the characteristic function on the
interval [−N,N ] ⊆ R. In the case of the torus, this corresponds to the sequence
Kl
N = {n ∈ Zd : ‖n‖2 ≤ N}. However, choosing KN in this way makes it very hard

to reduce the higher-dimensional case to the 1-dimensional case. Therefore we consider
the sequence of projections induced by (5.9) for the sets

K�
N = {n ∈ Zd : |n1|, . . . , |nd| ≤ N}.
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Figure 3: An illustration of the sets Kl
N ,K

�
N ⊆ Z2. The points inside the circle corres-

pond to the set Kl
4 and all the points inside the square correspond to the set K�

4 .

It is then clear that ‖DN‖ ≤
√
dN . We can also give a more concrete definition of the

spectral projections we obtain in this way.

Definition 5.1. Define the increasing sequence of projections {QN}N on L2(Td)⊗C2m

by
QN (f ⊗ s) = QN (f)⊗ s, (5.10)

where QN is the orthogonal projection in B(L2(Td)) given by

QN

( ∑
n∈Zd

ane
in·θ

)
=

∑
n∈Zd

|n1|,...,|nd|≤N

ane
in·θ. (5.11)

In other words, QN = QN ⊗ 12m as acting on L2(Td)⊗C2m . We can decompose QN as
well, using the identification (5.5). Indeed, if PN ∈ B(L2(T1)) denotes the orthogonal
projection given by

PN

(∑
n∈Z

ane
inθ
)

=

N∑
n=−N

ane
inθ, (5.12)

then QN = P⊗dN = PN ⊗ . . . PN , as in appendix C.

From now on we will write

Ad = C∞(Td), AdN = QNC∞(Td)QN .

Definition 5.2. Define the map Rd : Ad → AdN by

Rd(f ⊗ 12m) = QN (f ⊗ 12m)QN , (5.13)

the canonical projection onto the truncated algebra.

The map Rd depends on N . However, we omit to stress this, as it would lead to very
heavy notation. When we mention the map Rd it is always understood that we have
fixed some N ∈ N≥1 beforehand.

Definition 5.3. Let DTd be the Dirac operator acting on L2(Td)⊗C2m , as in (5.7). We
write DN

Td = QNDTdQN . By the rectangularly truncated torus we mean the operator
system spectral triple (Proposition 4.9)(

AdN ,QN
(
L2(Td)⊗ C2m

)
, DN

Td
)
. (5.14)
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Notice that, because QN = QN ⊗ 12m , we have the equality QN
(
L2(Td) ⊗ C2m

)
=(

QNL
2(Td)

)
⊗ C2m . Furthermore we have that

B(L2(Td)⊗ C2m) ∼= B(L2(Td))⊗M2m(C),

B(QNL
2(Td)⊗ C2m) ∼= B(QNL

2(Td))⊗M2m(C).

The algebra Ad is represented on L2(Td)⊗ C2m by

π : Ad → B(L2(Td))⊗M2m(C)

f 7→ f ⊗ 12m ,
(5.15)

where f ∈ B(L2(Td)) denotes pointwise multiplication with the function f . Therefore
we can view

Ad ⊆ B(L2(Td))⊗M2m(C),

AdN ⊆ B(QNL
2(Td))⊗M2m(C),

given by

Ad = {f ⊗ 12m | f ∈ C∞(Td)},
AdN = {T ⊗ 12m | T ∈ QNC∞(Td)QN},

(5.16)

where this time C∞(Td) and QNC
∞(Td)QN act on L2(Td) and QNL

2(Td) respectively.
We will identify the elements f ∈ C∞(Td) and f ⊗ 12m ∈ Ad, and the elements T ∈
QNC

∞(Td)QN and T ⊗ 12m ∈ AdN . It follows form Lemma 2.18 that

‖f ⊗ 12m‖ = ‖f‖,
‖T ⊗ 12m‖ = ‖T‖,

for f ∈ C∞(Td) and T ∈ QNC∞(Td)QN .

5.3 Maps of operator systems

We already have a map Rd : Ad → AdN , defined in Definition 5.2. We also want a map

R̆d : AdN → Ad in the converse direction. Before we attempt to construct such a map in
the general case of the d-dimensional torus Td, we first stay a little more down to Earth
and we investigate the case d = 1 in more detail. The exposition of the one-dimensional
case follows the lines of [22]. The general results will rely heavily on the the reduction
to one dimension.

5.3.1 The circle

Recall that PN ∈ B(L2(T1)) denotes the orthogonal projection given by

PN

(∑
n∈Z

ane
inθ
)

=

N∑
n=−N

ane
inθ.

An orthonormal basis for the Hilbert space PNL
2(T1) is given by the set {e−N , e−N+1, . . . , eN}.

With respect to this basis, elements of PNC
∞(T1)PN are just matrices. They have a

very specific form.
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Proposition 5.4. For an element f =
∑
n∈Z anen in C∞(T1) the corresponding element

T = PNfPN ∈ PNC∞(T1)PN can be written as the matrix

a0 a−1 a−2 a−3 . . . a−2N−1

a1 a0 a−1 a−2 . . . a−2N

a2 a1 a0
. . .

. . .
...

...
...

...
. . . a0 a−1

a2N+1 a2N a2N−1 . . . a1 a0

 . (5.17)

Equivalently, Tmn = am−n. Furthermore
[
−iPN d

dxPN , T
]
mn

= (m− n)am−n.

Proof.

PNfPNen = PNfen

= PN
∑
m∈Z

ame
imθen

= PN
∑
m∈Z

ame
i(m+n)θ

= PN
∑
m∈Z

am−ne
inθ

=
∑
|m|≤N

am−ne
inθ.

So indeed Tmn = am−n. Furthermore[
−iPN

d

dx
PN , PNfPN

]
= PN

[
−i d
dx
, f

]
PN = −iPNf ′PN ,

and f ′ corresponds to the Fourier series
∑
inane

inθ. So using the first result Tmn =
am−n we see that

[
−iPN d

dxPN , T
]
mn

= (m− n)am−n.

Similarly as in Definition 5.2 we define the projection map R : C∞(T1)→ PNC
∞(T1)PN

by
R(f) = PNfPN .

The natural action of T1 on C∞(T1) is given by αxf(θ) = f(θ − x). So

αx
(∑

ane
inθ
)

=
∑

ane
in(θ−x) =

∑
ane
−inxeinθ.

Moreover we see that T1 acts on PNC
∞(T1)PN by

αx(T )mn = e−i(m−n)xTmn. (5.18)

From Proposition 5.4 it then follows that R commutes with αx.

Definition 5.5. Define the vector ψ ∈ PNL2(T1) by

ψ =
1√

2N + 1

(
e−N + e−N+1 + · · ·+ eN

)
.

Then we define R̆ : PNC
∞(T1)PN → C∞(T1) by

R̆(T )(x) = Tr(|ψ〉〈ψ|αx(T )).
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Again we omit the dependence R̆ of N in the notation.

Proposition 5.6. We have the following equalities

R̆(R(f))(x) =

2N∑
n=−2N

(
1− |n|

2N + 1

)
ane

inx = (F2N+1 ∗ f)(x), (5.19)

R(R̆(T )) = T − 1

2N + 1
S(B(T )), (5.20)

where F2N+1 denotes the Fejér kernel (see Appendix A), an denote the Fourier coeffi-
cients of f , and where S,B ∈ L(PNC

∞(T1)PN ) are given by B(T ) = [−iPN d
dx , T ] and

S(T ) = (T2N+1 − T ∗2N+1) ◦ T , i.e Schur multiplication with the matrix T2N+1 − T ∗2N+1,
where T2N+1 is given by (B.1):

Tmn =

{
1 if n ≤ m
0 if n > m

,T2N+1 =



1 0 0 . . . 0
1 1 0 . . . 0

1 1 1
. . .

...
...

...
...

. . . 0
1 1 1 . . . 1

 .

Proof. The operator |ψ〉〈ψ| is given by the matrix ψψt, which is the (2N +1)× (2N +1)
matrix with every entry equal to 1

2N+1 . Therefore we have that

R̆(R(f))(x) = Tr(ψψtαx(R(f)))

=

N∑
n=−N

(
ψψtαx(R(f))

)
nn

=

N∑
n=−N

N∑
m=−N

(
ψψt

)
nm
αx(R(f))mn

=
1

2N + 1

N∑
n=−N

N∑
m=−N

αx(R(f))mn

=
1

2N + 1

N∑
n=−N

N∑
m=−N

e−i(m−n)xam−n

=
1

2N + 1

2N∑
n=−2N

(
2N + 1− |n|

)
ane

inx

=

2N∑
n=−2N

(
1− |n|

2N + 1

)
ane

inx.

Using Lemma A.3 we see that this shows that R̆(R(f))(x) =
(
F2N+1 ∗ f

)
(x), proving

(5.19).

For the proof of (5.20), suppose T = PNgPN , for some g ∈ C∞(T1), given by the Fourier
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series
∑
bne

inθ. Then, using (5.19) and Proposition 5.4, we see(
R(R̆(T ))

)
mn

=

(
1− |m− n|

2N + 1

)
bm−n

= bm−n −
|m− n|
2N + 1

bm−n

= Tmn −
((
T2N+1 − T ∗2N+1

)
◦
( m− n

2N + 1
bm−n

)
mn

)
mn

= Tmn −
1

2N + 1

((
T2N+1 − T ∗2N+1

)
◦
[
−iPN

d

dx
, T

])
mn

,

proving that R(R̆(T )) = T − 1
2N+1S(B(T )).

Lemma 5.7. The maps R and R̆ satisfy[
−i d
dx
, R̆(T )

]
= R̆

([
−iPN

d

dx
PN , T

])
, (5.21)[

−iPN
d

dx
PN , R(f)

]
= R

([
−i d
dx
, f

])
. (5.22)

Proof. Suppose that T = PNfPN , where f is given by the Fourier series
∑
ane

inθ.
Then combining Proposition 5.4 and Proposition 5.6 and using that [ ddx , R̆(T )](x) =

i ddx R̆(T )(x), we see[
−i d
dx
, R̆(T )

]
(x) =

2N∑
n=−2N

(
1− |n|

2N + 1

)
nane

inx = R̆

([
−iPN

d

dx
PN , T

])
(x),

which proves (5.21). For (5.22), notice that the operator [−i ddx , f ] equals the multi-
plication operator −if ′. The n’th Fourier coefficient of −if ′ is given by nan. Then,
according to Proposition 5.6[

−iPN
d

dx
PN , R(f)

]
mn

= (m− n)R(f)mn

= (m− n)am−n

= R

([
−i d
dx
, f

])
mn

,

proving that
[
−iPN d

dxPN , R(f)
]

= R
([
−i ddx , f

])
.

5.3.2 The Torus

In this section we relate the map

R : C∞(T1)→ PNC
∞(T1)PN

to the map Rd, as in Definition 5.2. Also we use the map

R̆ : PNC
∞(T1)PN → C∞(T1)

to construct a map
R̆d : AdN → Ad,
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so that eventually we have maps in both directions:

Ad AdN
Rd

R̆d
. (5.23)

Let us commence with relating the maps R and Rd. From the map R : C∞(T1) →
PNC

∞(T1)PN , we construct the map

R⊗d :

d⊗
j=1

C∞(T1)→ QN

d⊗
j=1

(
C∞(T1)

)
QN .

f1 ⊗ · · · ⊗ fd 7→ R(f1)⊗ · · · ⊗R(fd),

(5.24)

where we have identified

d⊗
j=1

(
PNC

∞(T1)PN
) ∼= QN

d⊗
j=1

(
C∞(T1)

)
QN .

More concretely R⊗d(f) = QNfQN , from which we deduce that ‖R⊗d‖ ≤ 1. As⊗d
j=1 C

∞(T1) is a dense subset of C∞(Td) on which R⊗d is bounded, it extends to
the map

R⊗d : C∞(Td)→ QNC
∞(Td)QN

f 7→ QNfQN .
(5.25)

Using (5.11) it is then clear that Rd = R⊗d ⊗ 12m . So

Rd(f ⊗ 12m) = R⊗d(f)⊗ 12m .

From the map R̆ : PNC
∞(T1)PN → C∞(T1), we construct the map

R̆⊗d :

d⊗
j=1

(
PNC

∞(T1)PN
)
→

d⊗
j=1

C∞(T1)

T1 ⊗ · · · ⊗ Td 7→ R̆(T1)⊗ · · · ⊗ R̆(Td),

(5.26)

which we view as a map

R̆⊗d : QNC
∞(Td)QN → C∞(Td). (5.27)

Here we used that

d⊗
j=1

(
PNC

∞(T1)PN
) ∼= QN

 d⊗
j=1

C∞(T1)

QN = QNC
∞(Td)QN .

Definition 5.8. Using the map

R̆⊗d : : QNC
∞(Td)QN → C∞(Td)

and using the identification (5.16), we define the map

R̆d : AdN → Ad (5.28)

by R̆d = R̆⊗d ⊗ 12m , as in (2.3). So

R̆d(T ⊗ 12m) = R̆⊗d(T )⊗ 12m . (5.29)
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Lemma 5.9. The maps Rd and R̆d as defined in Definitions 5.2 and 5.8 are contractions.
That is

‖Rd‖ ≤ 1

‖R̆d‖ ≤ 1.
(5.30)

Proof. The strategy of the proof is to show first that the maps

C∞(Td) QNC
∞(Td)QN ,

R⊗d

R̆⊗d

are contractions. We will then use this to show that also Rd and R̆d contractive.

For now, let us view R⊗d as a map R⊗d : C∞(Td) → B(L2(Td)). As we already re-
marked, R⊗d is just given by

R⊗d(f) = QNfQN .

Since QN is an orthogonal projection, we know ‖QN‖ ≤ 1 and so we have

‖R⊗d(f)‖ = ‖QNfQN‖ ≤ ‖f‖, (5.31)

for any f ∈ C∞(Td). This shows ‖R⊗d‖ ≤ 1. If f ⊗ 12m ∈ Ad, then we apply Lemma
2.18 twice to see that

‖Rd(f ⊗ 12m)‖ = ‖R⊗d(f)⊗ 12m‖
= ‖R⊗d(f)‖
≤ ‖f‖ = ‖f ⊗ 12m‖,

proving that ‖Rd‖ is a contraction as well.

To show that ‖R̆⊗d‖ ≤ 1, we first show that we have the identity

R̆⊗d(T )(θ) = Tr
(
|ψd〉〈ψd|αθ(T )

)
, (5.32)

where ψd = ψ ⊗ · · · ⊗ ψ for ψ as in Definition 5.1. α ≡ α⊗d denotes the action of Td on
AdN . On pure tensors it is given by

αθ(T1 ⊗ · · · ⊗ Td) = αθ1(T1)⊗ · · · ⊗ αθd(Td).

Now for pure tensors we have that

R̆⊗d(T1 ⊗ · · · ⊗ Td)(θ) = (R̆T1)⊗ · · · ⊗ (R̆Td)(θ)

= (R̆T1)(θ1) . . . (R̆Td)(θd)

= Tr
(
|ψ〉〈ψ|αθ1(T1)

)
. . .Tr

(
|ψ〉〈ψ|αθd(Td)

)
= Tr

(
|ψ〉〈ψ|αθ1(T1)⊗ · · · ⊗ |ψ〉〈ψ|αθd(Td)

)
= Tr

(
|ψd〉〈ψd|αθ1(T1)⊗ · · · ⊗ αθd(Td)

)
= Tr

(
|ψd〉〈ψd|αθ(T1 ⊗ · · · ⊗ Td)

)
,

so that by extending this equality linearly, we see that we have R̆⊗d(T )(θ) = Tr
(
|ψd〉〈ψd|αθ(T )

)
for all T ∈ QNC∞(Td)QN . Then∣∣∣R̆⊗d(T )(θ)

∣∣∣ =
∣∣Tr
(
|ψd〉〈ψd|αθ(T )

)∣∣
= ‖|ψd〉〈ψd|αθ(T )‖1
≤ ‖|ψd〉〈ψd|‖1‖|αθ(T )‖ ≤ ‖T‖.
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Here we used the Hölder inequality for Schatten operators: ‖AB‖1 ≤ ‖A‖1‖B‖∞(see
[17, Chapter 3, Section 7]). If now T ⊗ 12m ∈ AdN , then again it follows from applying
Lemma 2.18 that

‖R̆d(T ⊗ 12m)‖ = ‖R̆⊗d(T )⊗ 12m‖
= ‖R̆⊗d(T )‖
≤ ‖T‖ = ‖T ⊗ 12m‖,

which shows that ‖R̆d‖ ≤ 1.

Proposition 5.10. The maps Ad AdN
Rd

R̆d
induce maps S(AdN ) S(Ad)

S(Rd)

S(R̆d)

,

which are given by

S(Rd)(φ)(f) = φ(Rd(f))

S(R̆d)(ψ)(T ) = ψ(R̆d(T )).
(5.33)

Proof. According to the definition of a state we need to check that

‖S(Rd)(φ)‖ = S(Rd)(φ)(1Ad) = 1

‖S(R̆d)(ψ)‖ = S(R̆d)(ψ)(1AdN ) = 1,

for any φ ∈ S(AdN ), ψ ∈ S(Ad). Note that if we can prove

S(Rd)(φ)(1Ad) = 1

S(R̆d)(ψ)(1AdN ) = 1,
(5.34)

we automatically have the inequalities ‖S(Rd)(φ)‖, ‖S(R̆d)(ψ)‖ ≥ 1. Lemma 5.9 provides
us with the reverse inequality. Therefore it remains to prove (5.34). Because φ and ψ
are states, they satisfy φ(1AdN ) = 1 and ψ(1Ad) = 1. Since also Rd = R⊗d ⊗ 12m and

R̆d = R̆⊗d⊗12m , the proof of (5.34) reduces to showing that R(1C∞(T1)) = 1PNC∞(T1)PN

and R̆(1PNC∞(T1)PN ) = 1C∞(T1). Clearly the unit of C∞(Td) equals 1, the function with
value 1 in every point, and 1PNC∞(T1)PN = I2N+1, the 2N + 1× 2N + 1 identity matrix.
We simply calculate

R̆(I2N+1)(x) = Tr(ψψ∗αx(I2N+1))

=

N∑
n=−N

(
ψψ∗αx(I2N+1)

)
nn

=

N∑
n,m=−N

(
ψψ∗

)
nm

(
αx(I2N+1)

)
mn

=

N∑
n,m=−N

1

2N + 1
e−i(m−n)x(I2N+1)mn = 1,

where we use that ψψ∗ is the 2N + 1× 2N + 1 matrix with value 1
2N+1 at each entry.

To show that R(1) = I2N+1, notice that the function 1 is given by the trivial Fourier
series

∑
n ane

inθ, with a0 = 1 and an = 0 if n 6= 0. We use Proposition 5.4 to compute

R(1)mn = am−n = δmn =
(
I2N+1

)
mn
,

which shows R(1) = I2N+1.
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5.4 Building the bridge

We want to construct a weak bridge between
(
AdN ,QN

(
L2(Td) ⊗ C2m

)
, DN

Td

)
and(

Ad, L2(Td)⊗ C2m , DTd
)

. We build this weak bridge using the maps Rd and R̆d, that

we defined in the previous section. The construction is very similar to the one Rieffel
performs in [7, Section 9]. The maps Rd and R̆d should be nice in the sense they ought
to satisfy the four lemmas that we will prove in this section ([22]). The lemmas guaran-
tee that the bridge we construct satisfies the requirements 1 and 2 from Definition 4.15,
so that we can apply Proposition 4.16. Also, we use the lemmas to show that we can
bound

distH

(
S(π1)

(
S(Ad)

)
,S(π2)

(
S(AdN )

))
,

as explained below Proposition 4.16.

5.4.1 Four lemmas

Lemma 5.11. Suppose f ∈ Ad, then[
DN

Td , R
d(f)

]
= Rd ([DTd , f ]) .

Proof. As QN commutes with DTd we see that[
DN

Td , (R
d(f))

]
= [QNDTdQN ,QNfQN ]

= QN [DTd , f ]QN
= Rd ([DTd , f ]) .

Lemma 5.12. Suppose T ∈ AdN , then[
DTd , R̆

d(T )
]

= R̆d
([
DN

Td , T
])
.

Proof. We prove the lemma in two steps. First of all we will show that for any T ∈
QNC

∞(Td)QN we have [
∂µ, R̆

⊗d(T )
]

= R̆⊗d [QN∂µQN , T ] . (5.35)

Then we will show the lemma follows from (5.35). If T = T1 ⊗ · · · ⊗ Td a pure tensor
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(Tµ ∈ QNC∞(T1)QN ), then using QN = P⊗dN and Lemma 5.7 (5.22), we see

[
∂µ, R̆

⊗d(T )
]

=

1⊗ · · · ⊗

µ
↓
d

dx
⊗ · · · ⊗ 1, R̆(T1)⊗ · · · ⊗ R̆(Td)


= R̆(T1)⊗ · · · ⊗

[
d

dx
, R̆(Tµ)

]
⊗ · · · ⊗ R̆(Td)

= R̆(T1)⊗ · · · ⊗ R̆
([
PN

d

dx
PN , Tµ

])
⊗ · · · ⊗ R̆(Td)

= R̆⊗d
(
T1 ⊗ · · · ⊗

[
PN

d

dx
PN , Tµ

]
⊗ · · · ⊗ Td

)

= R̆⊗d


QN

1⊗ · · · ⊗

µ
↓
d

dx
⊗ · · · ⊗ 1

QN , QN (T1 ⊗ · · · ⊗ Td)QN




= R̆⊗d ([QN∂µQN , T1 ⊗ · · · ⊗ Td]) = R̆⊗d ([QN∂µQN , T ]) .

Here we also used that QNTQN = T , as T ∈ QNC
∞(Td)QN already. Taking linear

combinations of pure tensors yields the statement for all T ∈ QNC∞(Td)QN . We now
make use of the equality (5.35). If T ⊗ 12m ∈ AdN , then

[
DTd , R̆

d(T ⊗ 12m)
]

=

[
d∑

µ=1

−i∂µ ⊗ γµ, R̆⊗d
(
T
)
⊗ 12m

]

= −i
d∑

µ=1

[
∂µ, R̆

⊗d(T )]⊗ γµ
= −i

d∑
µ=1

R̆⊗d ([Qn∂µQN , T ])⊗ γµ

= R̆d

(
−i

d∑
µ=1

[Qn∂µQN , T ]⊗ γµ
)

= R̆d

([
−i

d∑
µ=1

Qn∂µQN ⊗ γµ, T ⊗ 12m

])

= R̆d

([
QN

(
d∑

µ=1

−i∂µ ⊗ γµ
)
QN , T ⊗ 12m

])
= R̆d ([QNDTdQN , T ⊗ 12m ])

= R̆d
([
DN

Td , T ⊗ 12m
])
,

proving the lemma.
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Lemma 5.13. For each d ≥ 1 there exists a sequence {γN}N of real numbers, converging
to zero, such that ∥∥∥f − R̆dRd(f)

∥∥∥ ≤ γN ‖[DTd , f ]‖ ,

for every f ∈ Adsa.

Proof. Let F dN be the Féjer kernel as in Appendix A. Then if f = f1 ⊗ · · · ⊗ fd ∈⊗d
j=1 C

∞(S1) ⊆ C∞(Td) we have that R̆⊗dR⊗d(f) = F d2N+1 ∗ f . Indeed it follows from
Proposition 5.6 (5.19) that

R̆⊗dR⊗d(f) = R̆R(f1)⊗ · · · ⊗ R̆R(fd)

= (F2N+1 ∗ f1)⊗ · · · ⊗ (F2N+1 ∗ fd)
= F dN ∗ f.

As
∥∥R⊗d∥∥ ,∥∥R̆⊗d∥∥ ≤ 1 and

∥∥F d2N+1 ∗ (f − g)
∥∥
∞ ≤ ‖f − g‖∞, we have that

R̆⊗dR⊗d(lim
n
fn) = lim

n
R̆⊗dR⊗d(fn) = lim

n
F d2N+1 ∗ (fn) = F d2N+1 ∗ (lim

n
fn),

whenever {fn} is a sequence of pure tensors converging to some f ∈ C∞(Td). So we
see that we have R̆⊗dR⊗d(f) = F d2N+1 ∗ f for all f ∈ C∞(Td). Now if f ⊗ 12m ∈ Adsa,

then f ∈ C∞(Td) is real valued, and therefore Proposition 3.6 applies. Furthermore, if
we denote ‖y‖∞ = max{|y1|, . . . , |yd|} , then∣∣∣f(θ)− R̆⊗dR⊗d(f)(θ)

∣∣∣ =
∣∣f(θ)− (F d2N+1 ∗ f)(θ)

∣∣
≤ 1

(2π)d

∫
Td
F d2N+1(y) |f(θ)− f(θ − y)| dy

≤ 1

(2π)d

∫
Td
F d2N+1(y)‖y‖2‖f‖Lipdy

≤
√
d

(2π)d

(∫
Td
F d2N+1(y)‖y‖∞dy

)
‖grad f‖∞

=

√
d

(2π)d

(∫
Td
F d2N+1(y)‖y‖∞dy

)
‖[DTd , f ⊗ 12m ]‖.

(5.36)

Here we use that ‖[DTd , f ⊗ 12m ]‖ = ‖ grad f‖∞, which we saw in the proof of Theorem
3.21. From the estimate (5.36) we obtain the bound

‖f − R̆⊗dR⊗d(f)‖ ≤
√
d

(2π)d

(∫
Td
F d2N+1(y)‖y‖∞dy

)
‖[DTd , f ⊗ 12m ]‖,

which we use to conclude that

‖f ⊗ 12m − R̆dRd(f ⊗ 12m)‖ =
∥∥∥(f − R̆⊗dR⊗d(f)

)
⊗ 12m

∥∥∥
= ‖f − R̆⊗dR⊗d(f)‖ ≤

√
d

(2π)d

(∫
Td
F d2N+1(y)‖y‖∞dy

)
‖[DTd , f ⊗ 12m ]‖.

We set γN =
√
d

(2π)d

∫
Td F

d
2N+1(y)‖y‖∞dy, so that

‖f ⊗ 12m − R̆dRd(f)‖ ≤ γN‖[DT , f ⊗ 12m ]‖.
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We are left to show that γN converges to 0. Choose ε > 0 and choose M such that
N ≥M implies ∫

ε≤|x|≤π
F2N+1(x)dx < ε.

Then

γN =

√
d

(2π)d

∫
Td
F d2N+1(y)‖y‖∞dy

=

√
d

(2π)d

(∫
Td\[−ε,ε]d

F d2N+1(y)‖y‖∞dy +

∫
[−ε,ε]d

F d2N+1(y)‖y‖∞dy

)

≤
√
d

(2π)d

(
π

∫
Td\[−ε,ε]d

F d2N+1(y)dy + ε

∫
[−ε,ε]d

F d2N+1(y)dy

)

≤
√
d

(2π)d

(
πε+ ε

)
.

As ε > 0 was arbitrary we can conclude that γN → 0.

Lemma 5.14. For each d ≥ 1 there exists a sequence {γ′N}N of real numbers, converging
to zero, such that ∥∥∥T −RdR̆d(T )

∥∥∥ ≤ γ′N ∥∥[DN
Td , T

]∥∥ ,
for every T ∈ AdN .

Proof. Let the maps B,S ∈ L(PNC
∞(T1)PN ) be as in Proposition 5.6. So B(T ) =

[−iPN d
dxPN , T ] and S(T ) = (T2N+1−T ∗2N+1) ◦T , for the matrix T2N+1 given by (B.1):

Tmn =

{
1 if n ≤ m
0 if n > m

,T2N+1 =



1 0 0 . . . 0
1 1 0 . . . 0

1 1 1
. . .

...
...

...
...

. . . 0
1 1 1 . . . 1

 .

Then we claim to have the following identity

1QNC∞(Td)QN −R
⊗dR̆⊗d =

1

2N + 1

d∑
j=1

1⊗ · · · ⊗
j
↓
SB ⊗ · · · ⊗ 1− . . .

. . .

(
1

2N + 1

)2 ∑
i<j≤d

1⊗ · · · ⊗
i
↓
SB ⊗ · · · ⊗

j
↓
SB ⊗ · · · ⊗ 1 + . . .

. . . (−1)d+1

(
1

2N + 1

)d
SB ⊗ SB ⊗ · · · ⊗ SB.

(5.37)

Here we denote 1 = 1PNC∞(T1)PN . The equality (5.37) follows directly from applying
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the result (5.20) from Proposition 5.6 and Proposition C.2. Indeed

1QNC∞(Td)QN −R
⊗dR̆⊗d = 1QNC∞(Td)QN −

(
RR̆
)⊗d

= 1QNC∞(Td)QN −
(

1− 1

2N + 1
SB

)⊗d

= 1QNC∞(Td)QN −

(
1QNC∞(Td)QN −

1

2N + 1

d∑
j=1

1⊗ · · · ⊗
j
↓
SB ⊗ · · · ⊗ 1 + . . .

. . .

(
1

2N + 1

)2 ∑
i<j≤d

1⊗ · · · ⊗
i
↓
SB ⊗ · · · ⊗

j
↓
SB ⊗ · · · ⊗ 1− . . .

. . . (−1)d
(

1

2N + 1

)d
SB ⊗ SB ⊗ · · · ⊗ SB

)

=
1

2N + 1

d∑
j=1

1⊗ · · · ⊗
j
↓
SB ⊗ · · · ⊗ 1− . . .

. . .

(
1

2N + 1

)2 ∑
i<j≤d

1⊗ · · · ⊗
i
↓
SB ⊗ · · · ⊗

j
↓
SB ⊗ · · · ⊗ 1 + . . .

. . . (−1)d+1

(
1

2N + 1

)d
SB ⊗ SB ⊗ · · · ⊗ SB.

Note that if T = T1 ⊗ · · · ⊗ Td ∈ QNC∞(Td)QN is a pure tensor, then

(1⊗ · · · ⊗
ν
↓
B ⊗ . . . 1)(T ) = T1 ⊗ · · · ⊗ [−iPN

d

dx
PN , Tν ]⊗ · · · ⊗ Td = [QN∂νQN , T ].

(5.38)

Taking finite linear combinations of such pure tensors and applying the above equality
yields the statement for all T ∈ QNC∞(Td)QN . In Lemma 5.11 we saw that

[DN
Td , T ⊗ 12m ] = −i

d∑
µ=1

[QN∂µQN , T ]⊗ γµ,

for each T ⊗ 12m ∈ AdN . Hence we have the following equality

i

2
{1⊗ γν , [DN

Td , T ⊗ 12m ]} =
i

2
{1⊗ γν ,−i

d∑
µ=1

[QN∂µQN , T ]⊗ γµ}

=
1

2

d∑
µ=1

[QN∂µQN , T ]⊗ {γν , γµ}

= [QN∂νQN , T ]⊗ 12m

= (1⊗ · · · ⊗
ν
↓
B ⊗ . . . 1)(T )⊗ 12m

=

(1⊗ · · · ⊗
ν
↓
B ⊗ . . . 1)⊗ 12m

 (T ⊗ 12m),

(5.39)
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for all T ⊗ 12m ∈ AdN . For the third equality we used (3.17). The term 1 ⊗ γµ ≡
idL2(Td) ⊗ γµ acts on L2(Td)⊗ C2m and its norm is given by

‖1⊗ γµ‖2 = ‖(1⊗ γµ)∗(1⊗ γµ)‖
= ‖1⊗ (γµ)∗(γµ)‖
= ‖1⊗ 12m‖ = 1.

(5.40)

Combining (5.39) and (5.40) yields∥∥∥∥∥∥
(1⊗ · · · ⊗

ν
↓
B ⊗ . . . 1)⊗ 12m

 (T ⊗ 12m)

∥∥∥∥∥∥ =

∥∥∥∥ i2 {1⊗ γν , [DN
Td , T ⊗ 12m ]

}∥∥∥∥ ≤ ‖[DN
Td , T ⊗ 12m ]‖.

(5.41)

In particular, as ‖DN
Td‖ ≤

√
dN , the inequality (5.41) implies∥∥∥∥∥∥

(1⊗ · · · ⊗
ν
↓
B ⊗ . . . 1)⊗ 12m

 (T ⊗ 12m)

∥∥∥∥∥∥ ≤ 2
√
dN‖T ⊗ 12m‖. (5.42)

Applying the inequality (5.42) k − 1 times and the estimate (5.41) once, we see that if
the tensor 1⊗ · · · ⊗B ⊗ · · · ⊗B ⊗ · · · ⊗ 1 contains B at k entries, then

‖((1⊗ · · · ⊗B ⊗ · · · ⊗B ⊗ · · · ⊗ 1)⊗ 12m) (T ⊗ 12m)‖ ≤
(
2N
√
d
)k−1‖[DN

Td , T ⊗ 12m ]‖.
(5.43)

We now turn our attention to the operator

1⊗ · · · ⊗ S ⊗ · · · ⊗ 1 = 1⊗ · · · ⊗ T2N+1 ⊗ · · · ⊗ 1− 1⊗ · · · ⊗ T ∗2N+1 ⊗ · · · ⊗ 1.

First of all, notice that applying the operator 1 is the same as to take the Schur product
with the matrix consisting only of 1’s. Let us denote this matrix with 1 in each entry
as J . So for T ∈ QNC∞(Td)QN(

1⊗· · ·⊗S⊗· · ·⊗1
)

(T ) =
(
J⊗· · ·⊗T2N+1⊗· · ·⊗J

)
◦T−

(
J⊗· · ·⊗T ∗2N+1⊗· · ·⊗J

)
◦T.

We want to find a matrix squaring to J ⊗ · · · ⊗ T2N+1 ⊗ · · · ⊗ J , so that we can apply
Proposition B.2 to estimate the norm of 1⊗ · · · ⊗ S ⊗ · · · ⊗ 1. In appendix B we found
a matrix A2N+1 squaring to T2N+1 and estimated the norm of its columns. It remains,
therefore, to find a matrix squaring to J . It is easily seen that 1√

2N+1
J is an excellent

choice. Hence(
1

(2N + 1)
d−1
2

(
1⊗ · · · ⊗A2N+1 ⊗ · · · ⊗ 1

))2

= J ⊗ · · · ⊗ T2N+1 ⊗ · · · ⊗ J. (5.44)

Let us briefly argue that the norm of the columns of 1

(2N+1)
d−1
2

(
J⊗· · ·⊗A2N+1⊗· · ·⊗J

)
is the same as the norm of the columns of A2N+1. It suffices to show that the norm
of the columns of 1√

2N+1
J ⊗ A2N+1 and 1√

2N+1
A2N+1 ⊗ J is the same as the norm of

the columns of A2N+1, as we can then apply this equality repeatedly. The Kronecker
product of the matrices J and A2N+1 is given by

(J ⊗A2N+1)(2N+1)(n−1)+k,(2N+1)(m−1)+l = Jnmakl = akl.
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Here akl denotes the (k, l)-entry of the matrix A2N+1. The norm of column (2N +
1)(m− 1) + l of the matrix J ⊗A2N+1 is therefore given by√√√√2N+1∑

n,k=1

∣∣∣(J ⊗A2N+1)(2N+1)(n−1)+k,(2N+1)(m−1)+l

∣∣∣2 =

√√√√2N+1∑
n,k=1

|akl|2

=

√√√√2N+1∑
k=1

2N + 1|akl|2

=
√

2N + 1

√√√√2N+1∑
k=1

|akl|2,

which is just
√

2N + 1 times the norm of column l of the matrix A2N+1. Therefore the
norm of the columns of 1√

2N+1
J ⊗ A2N+1 is the same as the norm of the columns of

A2N+1. Analagously one can show the same is true for the matrix 1√
2N+1

A2N+1 ⊗ J .

For the norm of the columns of A2N+1 we found the upper bound (B.4), and thus we
can use the same upperbound for the norm of the columns of the matrix

1

(2N + 1)
d−1
2

(
J ⊗ · · · ⊗A2N+1 ⊗ · · · ⊗ J

)
.

Using the same reasoning we see that(
1

(2N + 1)
d−1
2

(
J ⊗ · · · ⊗A∗2N+1 ⊗ · · · ⊗ J

))2

= J ⊗ · · · ⊗ T ∗2N+1 ⊗ · · · ⊗ J2N+1 (5.45)

where again we obtain the same estimate for the norm of the columns as in (B.4).
Altogether we see that

‖1⊗ · · · ⊗ S ⊗ · · · ⊗ 1‖ ≤ 2 +
2

π

(
1 + log(2N)

)
. (5.46)

Hence, if the tensor 1⊗ · · · ⊗ S ⊗ · · · ⊗ S ⊗ · · · ⊗ 1 contains S at k entries, we have the
estimate

‖1⊗ · · · ⊗ S ⊗ · · · ⊗ S ⊗ · · · ⊗ 1‖ ≤

(
2
(

1 +
1

π

(
1 + log(2N)

)))k
.

Using Lemma 2.18, we see that we then have∥∥∥∥((1⊗ · · · ⊗ S ⊗ · · · ⊗ S ⊗ · · · ⊗ 1
)
⊗ 12m

)
(T ⊗ 12m)

∥∥∥∥
=
∥∥∥(1⊗ · · · ⊗ S ⊗ · · · ⊗ S ⊗ · · · ⊗ 1

)(
T
)
⊗ 12m

∥∥∥
=
∥∥∥(1⊗ · · · ⊗ S ⊗ · · · ⊗ S ⊗ · · · ⊗ 1

)
T
∥∥∥

≤

(
2
(

1 +
1

π

(
1 + log(2N)

)))k
‖T‖

=

(
2
(

1 +
1

π

(
1 + log(2N)

)))k
‖T ⊗ 12m‖.

(5.47)

47



Combining (5.37), (5.43) and (5.47) yields

∥∥∥T ⊗ 12m −RdR̆d(T ⊗ 12m)
∥∥∥ =

∥∥∥∥( 1

2N + 1

d∑
j=1

(
1⊗ · · · ⊗

j
↓
SB ⊗ · · · ⊗ 1

)
⊗ 12m − . . .

. . .

(
1

2N + 1

)2 ∑
i<j≤d

(
1⊗ · · · ⊗

i
↓
SB ⊗ · · · ⊗

j
↓
SB ⊗ · · · ⊗ 1

)
⊗ 12m + . . .

. . . (−1)d+1

(
1

2N + 1

)d (
SB ⊗ SB ⊗ · · · ⊗ SB

)
⊗ 12m

)
(T ⊗ 12m)

∥∥∥∥
≤

d∑
j=1

2

2N + 1

(
1 +

1

π

(
1 + log(2N)

))
‖[DN

Td , T ⊗ 12m ]‖+ . . .

· · ·
∑
i<j≤d

(
2

2N + 1

(
1 +

1

π

(
1 + log(2N)

)))2

2
√
dN‖[DN

Td , T ⊗ 12m ]‖+ . . .

· · ·+

(
2

2N + 1

(
1 +

1

π

(
1 + log(2N)

)))d(
2
√
dN
)d−1‖[DN

Td , T ⊗ 12m ]‖

=
1

2N + 1

((
d

1

)
2
(

1 +
1

π

(
1 + log(2N)

))
+ . . .

. . .

(
d

2

)(
2
(

1 +
1

π

(
1 + log(2N)

)))2
2
√
dN

2N + 1
+ . . .

· · ·+
(
d

d

)(
2
(

1 +
1

π

(
1 + log(2N)

)))d( 2
√
dN

2N + 1

)d−1
)
‖[DN

Td , T ⊗ 12m ]‖

=
1

2N + 1

 d∑
j=1

(
d

j

)(
2
(

1 +
1

π

(
1 + log(2N)

)))j( 2
√
dN

2N + 1

)j−1

 ‖[DN
Td , T ⊗ 12m ]‖.

The term

γ′N =
1

2N + 1

d∑
j=1

(
d

j

)(
2
(

1 +
1

π

(
1 + log(2N)

)))j( 2
√
dN

2N + 1

)j−1

converges to zero since all the terms converge to zero. Also we have∥∥T ⊗ 12m −RdR̆d(T ⊗ 12m)
∥∥ ≤ γ′N∥∥[DN

Td , T ⊗ 12m
]∥∥.

48



d=2

2000 4000 6000 8000 10000

N

0.1

0.2

0.3

0.4

0.5

Figure 4: The sequence γ′N , for N = 1, . . . 10000, for the torus in dimension 1 (blue), 2
(orange) and 3 (green).

5.4.2 Gromov–Hausdorff convergence

We are now ready to prove the main theorem of this thesis. Let O and ON denote the
operator system spectral triples

O =
(
Ad, L2(Td)⊗ C2m , DTd

)
, ON =

(
AdN ,QN

(
L2(Td)⊗ C2m

)
, DN

Td
)
,

the spectral triple associated to the d-dimensional torus and the rectangularly truncated
torus as defined in Definition 5.3 respectively.

Theorem 5.15. The rectangularly truncated torus ON , converges to the canonical spec-
tral triple O in Gromov–Hausdorff distance.

Proof. Let ε > 0. Then choose N large enough such that γN , γ
′
N ≤ ε, where γN and γ′N

are as in Lemmas 5.13 and 5.14 respectively. We build a weak bridge B, in the sense of
Definition 4.15, between O and ON . We define

B(f, T ) = max

{
1

ε
‖f − R̆d(T )‖, 1

ε
‖T −Rd(f)‖

}
, (5.48)

for f ∈ Ad, T ∈ AdN . We need to check the requirements 1 and 2 from Definition 4.15. If
f ∈ Ad, then set f† = Rd(f) ∈ AdN . By a similar argument as in Remark 4.4, it suffices
to consider f ≡ f ⊗ 12m ∈ Adsa, so that f is real-valued. Then according to Lemma 5.13

B(f, f†) = max

{
1

ε
‖f − R̆d(Rd(f))‖, 1

ε
‖Rd(f)−Rd(f)‖

}
=

1

ε
‖f − R̆d(Rd(f))‖ ≤ ‖[DTd , f ]‖.

Also by Lemma 5.11 and Lemma 5.9∥∥[DN
Td , f

†]∥∥ =
∥∥[DN

Td , R
d(f)

]∥∥
=
∥∥Rd ([DTd , f ])

∥∥
≤ ‖[DTd , f ]‖ .

49



So B satisfies requirement 1 from Definition 4.15. Choosing T † = R̆(T ) ∈ Ad for
T ∈ AdN and using Lemma 5.9, 5.12 and 5.14 shows that B also satisfies requirement 2
from Definition 4.15. Proposition 4.16 tells us that if we equip the space S(Ad ⊕ AdN )
with the metric

dB(φ, ψ) = sup
f∈Ad,T∈AdN

{|φ(f, T )− ψ(f, T )| : ‖[DTd , f ]‖ ,
∥∥[DN

Td , T
]∥∥ ,B(f, T ) ≤ 1},

(5.49)
the maps

S(Ad ⊕AdN )

S(Ad) S(AdN )

S(π1) S(π2)

are isometric embeddings. We now show that

distH
(
S(π1)

(
S(Ad)

)
,S(π2)

(
S(AdN )

))
≤ ε, (5.50)

from which we can then conclude that distqGH(O,ON ) ≤ ε. Take φ ∈ S(Ad). We want

to find ψ ∈ S(AdN ), such that dB(S(π1)φ,S(π2)ψ) ≤ ε. We choose ψ = S(R̆d)φ, which
is a state on AdN according to Proposition 5.10. Then indeed

dB (S(π1)φ,S(π2)ψ) = sup
f∈Ad,T∈AdN

{
|φ(f)− φ(R̆d(T ))| : ‖[DTd ,f]‖,‖[DNTd ,T ]‖≤1

B(f,T )≤1

}
≤ sup
f∈Ad,T∈AdN

{
‖f − R̆d(T )‖ : ‖[DTd ,f]‖,‖[DNTd ,T ]‖≤1

‖f−R̆d(T )‖,‖T−Rd(f)‖≤ε

}
≤ ε,

which shows that S(π1)
(
S(Ad)

)
⊆ Nε

(
S(π2)

(
S(AdN )

))
. A very similar computation

shows that
dB
(
S(π1)S(Rd)(ψ),S(π2)ψ

)
≤ ε,

for ψ ∈ S(AdN ), implying that S(π2)
(
S(AdN )

)
⊆ Nε

(
S(π1)

(
S(Ad)

))
. Thus we have

established (5.50) so we conclude thatON converges toO in Gromov–Hausdorff distance.

According to Proposition 4.7 and 4.10 the operator system spectral triples O and ON
are also quantum metric spaces ([7]). That is, the formula (4.11) induces the weak-∗
topology on the state space. Therefore we can also speak of the quantum Gromov–
Hausdorff distance between O and ON as quantum metric spaces. The weak bridge B,
defined in (5.48) satisfies some additional requirements and is in fact a bridge of quantum
metric spaces between O and ON ([7, Definition 5.1]). This means B induces the weak-∗
topology on S(Ad⊕AdN ) through (5.49). One can then show that ON converges to O in
quantum Gromov–Hausdorff distance for quantum metric spaces, using the exact same
proof strategy as for the proof of Theorem 5.15.
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A The Fejér kernel

The Féjer kernel is an important tool in Fourier theory on the circle. For more detail
on the Fourier theory and the Féjer kernel we refer to [13, Chapter 2]. In this appendix
we will recall some important properties.

Definition A.1. The N ’th Fejér kernel FN : T1 → C is defined by

FN (θ) =

2∑
n=−2N

N
(

1− |n|
N

)
einθ.

The Fejér kernel is a so-called good kernel.

Lemma A.2. Let FN denote the N ’th Fejér kernel. Then we have the identity

FN (θ) =
1

N

sin2
(
Nθ
2

)
sin2

(
θ
2

) . (A.1)

Furthermore FN satisfies

1

2π

∫ π

−π
FN (θ)dθ = 1

For every δ > 0,

∫
δ≤|θ|≤π

FN (θ)dθ → 0 as N →∞.

Proof. Denoting ω = eiθ we see

FN (θ) =

N∑
n=−N

(
1− |n|

N

)
ωn

=
1

N

N−1∑
m=0

m∑
n=−m

ωn

=
1

N

N−1∑
m=0

ω−m − ωm+1

1− ω

=
1

N

N−1∑
m=0

ω−m−
1
2 − ωm+ 1

2

ω−
1
2 − ω 1

2

=
1

N

N−1∑
m=0

sin((m+ 1
2 )θ)

sin( θ2 )

=
1

2N sin2
(
θ
2

) N−1∑
m=0

2 sin
((
m+

1

2

)
θ
)

sin
(θ

2

)
=

1

2N sin2
(
θ
2

) N−1∑
m=0

(
cos(mθ)− cos

(
(m+ 1)θ

))
=

1− cos(Nθ)

2N sin2
(
θ
2

) =
sin2

(
Nθ
2

)
N sin2

(
θ
2

) .
In the above computation we used the trigonometric identities cos(2φ) − cos(2ψ) =

−2 sin(φ+ψ) sin(φ−ψ) and sin2(θ) = 1−cos(2θ)
2 . The closed formula (A.1) for the Fejér
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kernel shows that FN is positive for every N . We easily compute

1

2π

∫ π

−π
FN (θ)dθ =

1

2π

∫ π

−π

2N∑
n=−2N

(
1− |n|

2N + 1

)
einθdθ

=
1

2π

∫ π

−π
1dθ = 1.

Finally, suppose δ > 0 is given, then there exists some constant cδ > 0 such that
sin2( θ2 ) ≥ cδ, whenever δ ≤ |θ| ≤ π. Therefore, if δ ≤ |θ| ≤ π, we have

FN (θ) =
1

N

sin2
(
Nθ
2

)
sin2

(
θ
2

) ≤ 1

Ncδ
.

So indeed we have that ∫
δ≤|θ|≤π

FN (θ)dθ → 0 as N →∞.

Lemma A.3. Let FN denote the N ’th Fejér kernel and let f be given by the absolute
convergent Fourier series f =

∑
ane

inθ, then

(
FN ∗ f

)
(θ) =

N∑
n=−N

(
1− |n|

N

)
ane

inθ

Proof. We simply calculate

(
FN ∗ f

)
(θ) =

1

2π

∫ π

−π
FN (x)f(θ − x)dx

=
1

2π

∫ π

−π

N∑
n=−N

(
1− |n|

N

)
einx

∑
m∈Z

ame
im(θ−x)dx

=
1

2π

∫ π

−π

N∑
n=−N

∑
m∈Z

(
1− |n|

N

)
ei(n−m)xame

imθdx

=
1

2π

∫ π

−π

N∑
n=−N

(
1− |n|

N

)
ane

inθdx =

N∑
n=−N

(
1− |n|

N

)
ane

inθ.

We used that we may interchange summation and integration, as the Fourier series of
f converges absolutely.

Definition A.4. We define the multidimensional Fejér kernel F dN as

F dN = FN ⊗ · · · ⊗ FN ,

where FN denotes the Fejér kernel on the circle. So for θ ∈ Td, we have F dN (θ) =
FN (θ1)FN (θ2) . . . FN (θd).
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Figure 5: The one-dimensional Fejér kernel F6 (left) and the two-dimensional Fejér
kernel F 2

3 (right).

B The Schur product

We define a matrix multiplication different from the usual one. It is called the Schur
product, also known as the Hadamard product.

Definition B.1. Define the Schur product of A,B ∈Mn(C) by

(A ◦B)mn = AmnBmn.

We define sB : Mn(C)→Mn(C) by

sB(A) = B ◦A.

Proposition B.2. Suppose we can write B ∈ Mn(C) as a usual matrix product B =
S∗R for some S,R ∈ Mn(C), then ‖sB‖ ≤ c(S)c(R), where c(A) = maxj

√∑
i |aij |2,

the maximum of the norms of the columns of A ∈Mn(C).

Proof. Write wj , vj for the j’th column of S and R respectively. Then

bij =
∑
k

S∗ikRkj =
∑
k

SkiRkj = 〈wi, vj〉.

Also, clearly ‖wj‖ ≤ c(S) and ‖vj‖ ≤ c(R). Let (·, ·) denote the Hilbert–Schmidt inner
product on Mn(C) given by (A,B) = Tr(A∗B) =

∑
i,j aijbij . Suppose now we are given

two unit vectors λ, µ ∈ Cn. Then define the matrices w̃ and ṽ by

ṽij = λi(vi)j , w̃ij = µi(wi)j .

We now compute

〈sB(A)λ, µ〉 =
∑
i

(
A ◦Bλ

)
i
µi

=
∑
i,j

(
B ◦A

)
ij
λjµi

=
∑
i,j

bijaijλjµi

=
∑
i,j

〈wi, vj〉aijλjµi

=
∑
i,j,k

aijλj(vj)kµi(wi)k.
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And on the other hand we also have

(Aṽ, w̃) =
∑
i,k

Aṽikw̃ik

=
∑
i,j,k

aij ṽjkµi(wi)k

=
∑
i,j,k

aijλj(vj)kµi(wi)k.

So we obtain the equality 〈sB(A)λ, µ〉 = (Aṽ, w̃). Therefore we can estimate

|〈sB(A)λ, µ〉|2 = |(Aṽ, w̃)|2

≤ (Aṽ,Aṽ)(w̃, w̃)

= Tr(ṽ∗A∗Aṽ)(w̃, w̃)

= Tr(A∗Aṽṽ∗)(w̃, w̃)

≤ ‖A∗A‖‖ṽṽ∗‖1(w̃, w̃)

= ‖A‖2 Tr(ṽṽ∗)(w̃, w̃)

= ‖A‖2(ṽ, ṽ)(w̃, w̃).

We now claim that we have the inequalities (ṽ, ṽ) ≤ c(R)2, (w̃, w̃) ≤ c(S)2, which would
complete our proof. Indeed we have

(w̃, w̃) =
∑
i,j

w̃ijw̃ij

=
∑
i,j

µi(wi)jµi(wi)j

=
∑
i,j

|µi|2|(wi)j |2

=
∑
i

|µi|2|
∑
j

|(wi)j |2

≤
∑
i

|µi|2c(S)2 = c(S)2,

as µ is a unit vector. A similar calculation shows (ṽ, ṽ) ≤ c(R)2.

Proposition B.3. Let TN ∈MN (C) be the matrix given by

Tmn =

{
1 if n ≤ m
0 if n > m

,TN =



1 0 0 . . . 0
1 1 0 . . . 0

1 1 1
. . .

...
...

...
...

. . . 0
1 1 1 . . . 1

 . (B.1)

Then ‖sTN ‖ ≤ 1 + 1
π

(
1 + log(N − 1)

)
.

Proof. We claim that the matrix AN = (ajk), given by

ajk =


0 if k > j

1 if k = j
1
2 ·

3
4 . . .

2(j−k)−1
2(j−k) =

∏j−k
m=1

2m−1
2m if j < k

(B.2)
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squares to TN . We can then use Proposition B.2 to estimate the sTN . We prove this
claim by induction. First of all the claim is trivially true for N = 1. Suppose now that
we have proven A2

M = TM for all M ≤ N . We prove the statement for N+1. We simply
calculate

(
AN+1

)2
jk

=

N+1∑
i=1

ajiaik =

{
0 if k > i∑j
i=k ajiaik if k ≤ j.

(B.3)

From expression (B.1) it is clear that
(
AN+1

)2
jj

= 1. We proceed for the case where

j < k. If j ≤ N it follows from the induction hypothesis that

(
AN+1

)2
jk

=

j∑
i=k

ajiaik =
(
AN
)2
jk

= 1.

Note that if k ≥ 2, then ajk = aj−1,k−1. So if k ≥ 2

(
AN+1

)2
jk

=

j∑
i=k

ajiaik

=

j∑
i=k

aj−1,i−1ai−1,k−1

=

j−1∑
i=k−1

aj−1,iai,k−1

=
(
AN
)2
j−1,k−1

=
(
TN
)
j−1,k−1

=
(
TN
)
jk

=
(
TN+1

)
jk
.

Here we used the induction hypothesis in the last line. The only case that remains is
the case where j = N + 1 and k = 1. So we must show that

N+1∑
i=1

aN+1,iai,1 = 1.

To prove this, we consider the power series corresponding to the function 1
1−x and

1√
1−x , both with positive radius of convergence 1. It is well known the power series

corresponding to 1
1−x is given by

1

1− x
=

∞∑
n=0

xn, |x| < 1.

The power series corresponding to 1√
1−x is given by

1√
1− x

=

∞∑
n=0

(
n∏
j=1

2l − 1

2l

)
xn, |x| < 1.

We show this. Again, we argue by induction. The induction hypothesis is that(
d

dx

)n
(1− x)−

1
2 =

(
n∏
l=1

2l − 1

2

)
(1− x)−

2n+1
2
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This is clear for n = 0. For the inductive step we compute(
d

dx

)n+1

(1− x)−
1
2 =

d

dx

(
d

dx

)n
(1− x)−

1
2

=

(
n∏
l=1

2l − 1

2

)
d

dx
(1− x)−

2n+1
2

=

(
n∏
l=1

2l − 1

2

)
2n+ 1

2
(1− x)−

2(n+1)+1
2

=

(
n+1∏
l=1

2l − 1

2

)
(1− x)−

2(n+1)+1
2 ,

Then it follows that 1√
1−x is given by the power series

1√
1− x

=

∞∑
n=0

(
1

n!

(
n∏
l=1

2l − 1

2

)
(1− x)−

2n+1
2

∣∣∣∣∣
x=0

)
xn

=

∞∑
n=0

(
1

n!

n∏
l=1

2l − 1

2

)
xn

=

∞∑
n=0

(
n∏
l=1

2l − 1

2l

)
xn =

∞∑
n=0

an+1,1x
n.

As 1√
1−x squares to 1

1−x , we know that

∞∑
n=0

xn =
( ∞∑
n=0

an+1,1x
n
)2

=

∞∑
n=0

( ∑
m+i=n

am+1,1ai+1,1

)
xn.

So we conclude that
∑
m+i=n am+1,1ai+1,1 = 1, for each n. In particular, choosing

n = N we see that

1 =
∑

m+i=N

am+1,1ai+1,1

=

N∑
i=0

aN+1−i,1ai+1,1

=

N∑
i=0

aN+1,i+1ai+1,1

=

N+1∑
i=1

aN+1,iai,1,

which is exactly what we wanted to show! So we have proven the claim A2
N = TN . Note

that A∗N = AN , so that

c(A∗N )c(AN ) = c(AN )2 = 1 +

N−1∑
m=1

(1

2
· 3

4
. . .

2m− 1

2m

)2

.
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By Wallis’ formula ([11, Page 697]),(1

2
· 3

4
. . .

2m− 1

2m

)2

<
2

π

1

2m
=

1

π

1

m
.

So we conclude that

c(A∗N )c(AN ) ≤ 1 +
1

π

N−1∑
m=1

1

m
≤ 1 +

1

π

(
1 + log(N − 1)

)
. (B.4)

Proposition B.2 now yields the result directly.

C The tensor algebra

Given two vector spaces V,W over the same field k, we can form their tensor product
V ⊗W , generated by the elements

v ⊗ w, v ∈ V,w ∈W,

which we call pure tensors. The elements of the space V ⊗W are subject to the relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w (C.1)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 (C.2)

λv ⊗ w = v ⊗ λw = λ(v ⊗ w), (C.3)

where λ ∈ k, v, v1, v2 ∈ V,w,w1, w2 ∈W . V ⊗W is again a vectorspace over the field k.
One can make this construction more rigorous by defining the tensor product of V ⊗W
to be the quotient space of the vector space over k, generated by the formal symbols
v⊗w, modulo some ideal capturing precisely the relations (C.1), (C.2), (C.3). For more
detail we refer to [12].

One can check that taking the tensor product is associative, in the sense that

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ).

So it makes sense to define V ⊗n = V ⊗ · · · ⊗ V (n times).

Definition C.1. Given a vector space V over some field k, we define the tensor algebra
of V , denoted TV , by

TV =

∞⊕
n=0

V ⊗n.

Here V ⊗0 denotes the field k itself, viewed as a vector space over k.

Given some element x ∈ V , we define x⊗n ∈ V ⊗n by

x⊗n = x⊗ x⊗ · · · ⊗ x (n times).

Proposition C.2. Let V be a vector space and let x be an element in V . Then

(1− x)⊗n = 1⊗ · · · ⊗ 1−
d∑
j=1

1⊗ · · · ⊗
j
↓
x⊗ · · · ⊗ 1 + . . .

· · ·
∑
i<j≤d

1⊗ · · · ⊗
i
↓
x⊗ · · · ⊗

j
↓
x⊗ · · · ⊗ 1− . . .

. . . (−1)nx⊗ x⊗ · · · ⊗ x.
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Proof. We argue by induction. For n = 1, the statement is clear. Suppose now that we
have already obtained the result for some n ≥ 1, then

(1− x)⊗n+1 = (1− x)⊗n ⊗ (1− x)

=

(
1⊗ · · · ⊗ 1−

n∑
j=1

1⊗ · · · ⊗
j
↓
x⊗ · · · ⊗ 1 + . . .

· · ·
∑
i<j≤n

1⊗ · · · ⊗
i
↓
x⊗ · · · ⊗

j
↓
x⊗ · · · ⊗ 1− . . .

. . . (−1)nx⊗ x⊗ · · · ⊗ x

)
⊗
(
1− x

)
= 1⊗ · · · ⊗ 1−

n+1∑
j=1

1⊗ · · · ⊗
j
↓
x⊗ · · · ⊗ 1 + . . .

· · ·
∑

i<j≤n+1

1⊗ · · · ⊗
i
↓
x⊗ · · · ⊗

j
↓
x⊗ · · · ⊗ 1− . . .

. . . (−1)n+1SB ⊗ x⊗ · · · ⊗ x.

D The spectrum of DTd

In Section 5.1 we determined that the canonical spectral triple corresponding to the
d-dimensional torus is given by(

C∞(Td), L2(Td)⊗ C2m ,

d∑
µ=1

−i∂µ ⊗ γµ
)
,

where d = 2m if d is even and d = 2m + 1 if d is odd. In this appendix we show that
the spectrum σ(DTd) of DTd =

∑d
µ=1−i∂µ ⊗ γµ is given by

σ(DTd) =

{
±
√
n2

1 + . . . n2
d | n ∈ Zd

}
.

As DTd has compact resolvent ([4, Section 10]), we know that all the spectrum of DTd
is point spectrum. We are thus looking for values λ ∈ R for which there exists a spinor
ψ ∈ L2(Td)⊗ C2m such that

DTdψ = λψ. (D.1)

We can decompose ψ into pure tensors

ψ =
∑
j

ψj ⊗ vj , ψj ∈ L2(Td), vj ∈ C2m . (D.2)

Then applying the operator DTd once more to Equation (D.1) yields

D2
Tdψ = λ2ψ. (D.3)
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We can compute D2
Td more explicitly. Indeed, using the relations (3.17) and (3.18), we

see that

D2
Td =

(
d∑

µ=1

−i∂µ ⊗ γµ
)2

=

d∑
µ,ν=1

(−i∂µ)(−i∂ν)⊗ γµγν

=

d∑
µ=1

−∂2
µ ⊗ 12m

= ∆⊗ 12m .

Here ∆ denotes the operator
∑d
µ=1−∂2

µ on L2(Td). Then Equation (D.3) is equivalent
to

∇ψj = λ2ψj , for all j. (D.4)

This has solutions ψj = ein·θ = ei(n1θ1+···+ndθd), with n ∈ Zd such that

n2
1 + · · ·+ n2

d = λ2.

It follows that

σ(DTd) ⊆
{
±
√
n2

1 + . . . n2
d | n ∈ Zd

}
.

To show equality, it suffices to show that σ(DTd) is a symmetric set. So we need
to show λ ∈ σ(DTd) =⇒ −λ ∈ σ(DTd). We do this by introducing the operator
τ : L2(Td)→ L2(Td) defined by

(τf)(θ1, . . . , θd) = f(−θ1, . . . ,−θd).

The operator τ ⊗ 1n anti-commutes with DTd . Then, if ψ is an eigenvector with eigen-
value λ, the spinor (τ ⊗ 12m)ψ is an eigenvector with eigenvalue −λ. This shows the
spectrum of DTd is a symmetric set and we conclude that

σ(DTd) =

{
±
√
n2

1 + . . . n2
d | n ∈ Zd

}
.
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