Spectral truncations in noncommutative geometry

Walter van Suijlekom (joint with Alain Connes)

A spectral approach to geometry

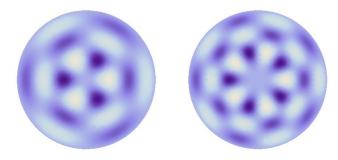
"Can one hear the shape of a drum?" (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

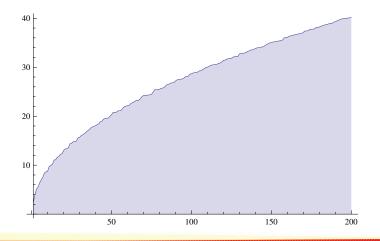
$$\Delta_M u = k^2 u$$

determine the geometry of M?

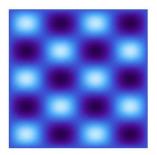
The disc

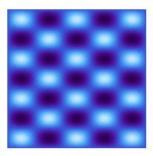


Wave numbers on the disc

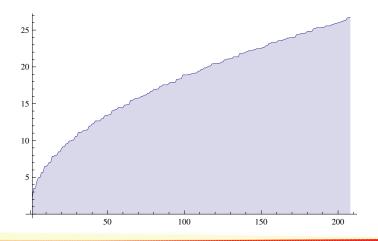


The square

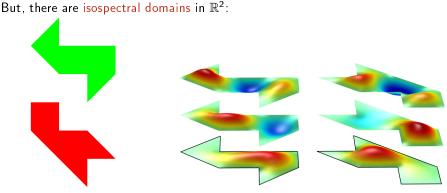




Wave numbers on the square



Isospectral domains



(Gordon, Webb, Wolpert, 1992)

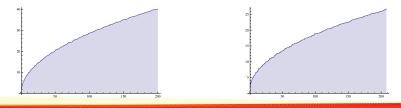
so the answer to Kac's question is no

Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such as dimension d of M:

$$egin{aligned} \mathcal{N}(\Lambda) &= \# ext{wave numbers} &\leq \Lambda \ &\sim rac{\Omega_d ext{Vol}(M)}{d(2\pi)^d} \Lambda^d \end{aligned}$$

For the disc and square this is confirmed by the parabolic shapes $(\sqrt{\Lambda})$:



Noncommutative geometry

If combined with an algebra of coordinates on *M*, then the answer to Kac' question is affirmative.

Connes' reconstruction theorem [2008]:

 $(C(M), \partial_M) \longleftrightarrow (M, g)$

Spectral data

- This mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum.

This is in line with earlier work of [D'Andrea-Lizzi-Martinetti 2014], [Glaser-Stern 2019], [Berendschot 2019] and based on [arXiv:2004.14115]

The "usual" story

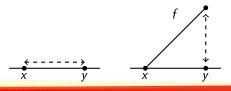
Given Riemannian spin manifold (M, g) with spinor bundle S on M.

- coordinate algebra C(M)
- propagation on M: self-adjoint Dirac operator ∂_M
- both acting on Hilbert space $L^2(M, S)$

 \rightsquigarrow spectral triple: $(C(M), L^2(M, S), \partial_M)$

Reconstruction of distance function [Connes 1994]:

$$d(x,y) = \sup_{f \in C(M)} \left\{ |f(x) - f(y)| : \|[\phi_M, f]\| \le 1 \right\}$$



Spectral triples

More generally, we consider a triple (A, \mathcal{H}, D)

- a (C*)-algebra A
- a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for a ∈ A ⊂ A
- both acting (boundedly, resp. unboundedly) on Hilbert space ${\mathcal H}$

Generalized distance function:

- States are positive linear functionals $\phi : A \to \mathbb{C}$ of norm 1 (e.g. vector states)
- Pure states are extreme points of state space (e.g. evaluation at a point)
- Distance function on state space of A:

$$d(\phi, \psi) = \sup_{a \in A} \{ |\phi(a) - \psi(a)| : \|[D, a]\| \le 1 \}$$

Application in physics

- **GR** (in parallel with reconstruction)
- Gauge theories can be described by a spectral triple, e.g.

 $(C(M) \otimes A_F, L^2(M, S) \otimes \mathcal{H}_F, \partial_M \otimes 1 + 1 \otimes D_F)$

- Gauge group: unitaries $\mathcal{U}(A)$
- Group of isometries of (A, \mathcal{H}, D) : all unitaries on \mathcal{H} that induce automorphisms on A and commute with D.

Reviewed in [Chamseddine-vS 2019]

Spectral truncations

Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:

- $\mathcal{H} \mapsto \mathcal{PH}$, projection onto closed Hilbert subspace
- $D \mapsto PDP$, still a self-adjoint operator
- $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Definition

An operator system is a *-closed vector space of bounded operators.

And, indeed, PAP is an operator system: $(PaP)^* = Pa^*P$.

So, we turn to study (PAP, PH, PDP).

We expect:

- a distance formula on states of PAP.
- a rich symmetry: isometries of (A, H, D) remain isometries of (PAP, PH, PDP)

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators.

For convenience we take E to be finite-dimensional, to contain the identity operator, and act on a fixed Hilbert space \mathcal{H} .

• *E* is ordered: cone $E_+ \subseteq E$ of positive operators, in the sense that $T \in E_+$ iff

$$\langle \psi, T\psi \rangle \ge 0; \qquad (\psi \in \mathcal{H}).$$

• in fact, E is completely ordered: cones $M_n(E)_+ \subseteq M_n(E)$ of positive operators on \mathcal{H}^n for any n.

States spaces of operator systems

- The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- Also, the dual E^d of an operator system is an operator system, with

$$E^d_+ = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the complete order.

- We have $(E^d)^d_+ \cong E_+$ as cones in $(E^d)^d \cong E_-$
- It follows that we have the following useful correspondence: pure states on $E \longleftrightarrow$ extreme rays in $(E^d)_+$ and the other way around

and the other way around.

Operator system spectral triples

Definition

An operator system spectral triple is a triple (E, \mathcal{H}, D) where E is an operator system in $\mathcal{B}(\mathcal{H})$, \mathcal{H} is a Hilbert space and D is a self-adjoint operator in \mathcal{H} with compact resolvent and such that [D, T] is a bounded operator for all $T \in \mathcal{E} \subset E$.

It gives a distance function for states ϕ,ψ on E using the same formula:

$$d(\phi,\psi) = \sup_{T\in\mathcal{E}} \left\{ |\phi(T) - \psi(T)| : \|[D,T]\| \le 1
ight\}$$

We will illustrate this with spectral truncations of the circle.

Spectral truncation of the circle

Consider the circle $(C(S^1), L^2(S^1), D = -id/dx)$

- Eigenvectors of D are Fourier modes $e_k(x) = e^{ikx}$ for $k \in \mathbb{Z}$
- Orthogonal projection $P = P_n$ onto $\text{span}_{\mathbb{C}}\{e_1, e_2, \dots, e_n\}$
- The space $C(S^1)^{(n)} := PC(S^1)P$ is an operator system
- Any T = PfP in $C(S^1)^{(n)}$ can be written as a Toeplitz matrix

$$PfP \sim (t_{k-l})_{kl} = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_1 & t_0 & t_{-1} & & t_{-n+2} \\ \vdots & t_1 & t_0 & \ddots & \vdots \\ t_{n-2} & \vdots & \vdots & \vdots \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{pmatrix}$$

 \rightsquigarrow operator system spectral triple $(C(S^1)^{(n)}, \mathbb{C}^n, D = \text{diag}\{1, 2, \dots, n\})$

Dual operator system: Fejér-Riesz

We introduce the Fejér-Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

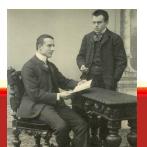
• functions on S¹ with a finite number of non-zero Fourier coefficients:

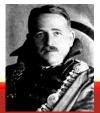
$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

• an element *a* is positive iff $\sum_{k} a_k e^{ikx}$ is a positive function on S^1 .

Proposition

- 1. The extreme rays in $(C^*(\mathbb{Z})_{(n)})_+$ are given by the elements $a = (a_k)$ for which the Laurent series $\sum_k a_k z^k$ has all its zeroes on S^1 .
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k$ $(\lambda \in S^1)$.





Radboud University

Pure states on the Toeplitz matrices

The duality between $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ is given by

$$C(S^1)^{(n)} imes C^*(\mathbb{Z})_{(n)} o \mathbb{C}$$

 $(T = (t_{k-l})_{k,l}, a = (a_k)) \mapsto \sum_k a_k t_{-k}$

Proposition

- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_\lambda\rangle\langle f_\lambda|$ for any $\lambda \in S^1$.
- 2. The pure states of $C(S^1)^{(n+1)}$ are given by functionals $T \mapsto \langle \xi, T\xi \rangle$ where the vector $\xi = (\xi_0, \dots, \xi_n) \in \mathbb{C}^{n+1}$ is such that the polynomial $z \mapsto \sum_k \xi_k z^{n-k}$ has all its zeroes on S^1 .
- 3. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/S_n$ is the quotient of the *n*-torus by the symmetric group on *n* objects.

Let us illustrate this!

Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$\mathcal{T} = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

The pure state space is \mathbb{T}^2/S_2 , given by vector states $|\xi\rangle\langle\xi|$ with

$$\xi = \frac{1}{\sqrt{4 + 2\cos(x - y)}} \begin{pmatrix} 1\\ e^{ix} + e^{iy}\\ e^{i(x+y)} \end{pmatrix}$$

This is a Möbius strip!

An old factorization result of Carathéodory

Theorem

Let T be an $n \times n$ Toeplitz matrix. Then $T \ge 0$ if and only if T is of the following form:

$$T=V\Delta V^*,$$

where Δ is a positive diagonal matrix and V is a Vandermonde matrix,

$$\Delta = \begin{pmatrix} d_1 & & \\ & d_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & d_n \end{pmatrix}; \qquad V = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix},$$

for some $d_1, \ldots, d_n \geq 0$ and $\lambda_1, \ldots, \lambda_n \in S^1$.

Finite Fourier transform and duality

- Fourier transform on the cyclic group maps $C(\mathbb{Z}/m\mathbb{Z})$ to $\mathbb{C}[\mathbb{Z}/m\mathbb{Z}]$ and vice versa, exchanging pointwise and convolution product.
- This can be phrased in terms of a duality:

$$\mathbb{C}[\mathbb{Z}/m\mathbb{Z}] imes C(\mathbb{Z}/m\mathbb{Z}) o \mathbb{C} \ \langle c,g
angle\mapsto \sum_{k,l}c_lg(k)e^{2\pi ikl/ml}$$

compatibly with positivity.

- Thus we may consider the above duality for Toeplitz matrices as some sort of generalization of Fourier theory to operator systems.
- However, note that for finite Fourier theory the symmetries are reduced from S¹ to Z/mZ.

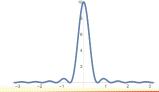
Convergence to the circle

In ongoing work I analyze the Gromov–Hausdorff convergence of the state spaces $S(C(S^1)^{(n)})$ with the distance function d_n to the circle.

- The map $R_n: C(S^1) \to C(S^1)^{(n)}$ given by compression with P_n allows to pull-back states from $C(S^1)^{(n)}$ to the circle
- There is an approximate inverse $S_n : C(S^1)^{(n)} \to C(S^1)$:

$$R_n(S_n(T)) = T_n \odot T; \qquad S_n(R_n(f)) = F_n * f$$

in terms of a Schur product with a matrix T_n and the convolution with the Fejér kernel F_n :

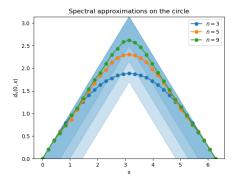


• The fact that S_n is an approximate inverse of R_n allows one to prove

$$d_{S^1}(\phi,\psi) - 2\gamma_n \leq d_n(\phi \circ S_n,\psi \circ S_n) \leq d_{S^1}(\phi,\psi)$$

where $\gamma_n \rightarrow 0$ as $n \rightarrow \infty$.

• Some (basic) Python simulations for point evaluation on S¹:



Gromov–Hausdorff convergence

Recall Gromov-Hausdorff distance between two metric spaces:

 $d_{\mathrm{GH}}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f: X \to Z, g: Y \to Z \text{ isometric}\}$

and

$$d_H(X, Y) = \inf\{\epsilon \ge 0; X \subseteq Y_{\epsilon}, Y \subseteq X_{\epsilon}\}$$

Using the maps R_n, S_n we can equip S(C(S¹)) II S(C(S¹)⁽ⁿ⁾) with a distance function that bridges the given distance functions on S(C(S¹)) and S(C(S¹)⁽ⁿ⁾) within any ε for n large enough.

Proposition

The sequence of state spaces $\{(S(C(S^1)^{(n)}), d_n)\}$ converges to $(S(C(S^1)), d_{S^1})$ in Gromov–Hausdorff distance.

Outlook

- Established formalism for describing spectral truncations using operator systems, exemplified with truncations on a circle.
- Rich mathematical structure: C*-envelopes, propagation number, stable equivalence, non-unital operator systems etc [Connes-vS 2020]
- Operator systems based on tolerance relations, e.g. metric spaces at finite resolution identifying x, y for which d(x, y) < ε.
- General setup for Gromov-Hausdorff convergence [vS 2020]: applies to Fejér-Riesz operator systems converging to S¹, matrix algebras converging to a sphere [Rieffel 2004, Barrett-Glaser 2016]

