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A spectral approach to geometry

�Can one hear the shape of a drum?� (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



The disc



Wave numbers on the disc
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The square



Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no



Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such
as dimension d of M:

N(Λ) = #wave numbers ≤ Λ

∼ ΩdVol(M)

d(2π)d
Λd

For the disc and square this is con�rmed by the parabolic shapes (
√

Λ):
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Noncommutative geometry

If combined with an algebra of coordinates on M,
then the answer to Kac' question is a�rmative.

Connes' reconstruction theorem [2008]:

(C (M), /∂M)←→ (M, g)



Spectral data

• This mathematical reformulation of geometry in terms of spectral
data requires the knowledge of all eigenvalues of the Dirac operator.

• From a physical standpoint this is not very realistic: detectors have
limited energy ranges and resolution.

We develop the mathematical formalism for
(noncommutative) geometry with only part of the spectrum.

This is in line with earlier work of [D'Andrea�Lizzi�Martinetti 2014],
[Glaser�Stern 2019], [Berendschot 2019] and based on [arXiv:2004.14115]



The �usual� story

Given Riemannian spin manifold (M, g) with spinor bundle S on M.
• coordinate algebra C (M)
• propagation on M: self-adjoint Dirac operator /∂M
• both acting on Hilbert space L2(M, S)

 spectral triple: (C (M), L2(M, S), /∂M)

Reconstruction of distance function [Connes 1994]:

d(x , y) = sup
f∈C(M)

{
|f (x)− f (y)| : ‖[/∂M , f ]‖ ≤ 1

}

x y x y

f



Spectral triples

More generally, we consider a triple (A,H,D)
• a (C∗)-algebra A
• a self-adjoint operator D with compact resolvent and bounded

commutators [D, a] for a ∈ A ⊂ A
• both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:
• States are positive linear functionals φ : A→ C of norm 1

(e.g. vector states)
• Pure states are extreme points of state space

(e.g. evaluation at a point)
• Distance function on state space of A:

d(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}



Application in physics

• GR (in parallel with reconstruction)
• Gauge theories can be described by a spectral triple, e.g.

(C (M)⊗ AF , L
2(M, S)⊗HF , /∂M ⊗ 1 + 1⊗ DF )

• Gauge group: unitaries U(A)
• Group of isometries of (A,H,D): all unitaries on H that induce

automorphisms on A and commute with D.

Reviewed in [Chamseddine�vS 2019]



Spectral truncations

Given (A,H,D) we project onto part of the spectrum of D:
• H 7→ PH, projection onto closed Hilbert subspace
• D 7→ PDP, still a self-adjoint operator
• A 7→ PAP, this is not an algebra any more (unless P ∈ A)

De�nition
An operator system is a ∗-closed vector space of bounded operators.

And, indeed, PAP is an operator system: (PaP)∗ = Pa∗P.

So, we turn to study (PAP,PH,PDP).

We expect:
• a distance formula on states of PAP.
• a rich symmetry: isometries of (A,H,D) remain isometries of

(PAP,PH,PDP)



Operator systems

De�nition (Choi-E�ros 1977)
An operator system is a ∗-closed vector space E of bounded operators.

For convenience we take E to be �nite-dimensional, to contain the
identity operator, and act on a �xed Hilbert space H.
• E is ordered: cone E+ ⊆ E of positive operators, in the sense that

T ∈ E+ i�
〈ψ,Tψ〉 ≥ 0; (ψ ∈ H).

• in fact, E is completely ordered: cones Mn(E )+ ⊆ Mn(E ) of positive
operators on Hn for any n.



States spaces of operator systems

• The existence of a cone E+ ⊆ E of positive elements allows to speak
of states on E as positive linear functionals of norm 1.

• Also, the dual Ed of an operator system is an operator system, with

Ed
+ =

{
φ ∈ Ed : φ(T ) ≥ 0,∀T ∈ E+

}
and similarly for the complete order.

• We have (Ed)d+
∼= E+ as cones in (Ed)d ∼= E .

• It follows that we have the following useful correspondence:
pure states on E ←→ extreme rays in (Ed)+

and the other way around.



Operator system spectral triples

De�nition
An operator system spectral triple is a triple (E ,H,D) where E is an
operator system in B(H), H is a Hilbert space and D is a self-adjoint
operator in H with compact resolvent and such that [D,T ] is a bounded
operator for all T ∈ E ⊂ E.

It gives a distance function for states φ, ψ on E using the same formula:

d(φ, ψ) = sup
T∈E
{|φ(T )− ψ(T )| : ‖[D,T ]‖ ≤ 1}

We will illustrate this with spectral truncations of the circle.



Spectral truncation of the circle

Consider the circle (C (S1), L2(S1),D = −id/dx)

• Eigenvectors of D are Fourier modes ek(x) = e ikx for k ∈ Z
• Orthogonal projection P = Pn onto spanC{e1, e2, . . . , en}
• The space C (S1)(n) := PC (S1)P is an operator system
• Any T = PfP in C (S1)(n) can be written as a Toeplitz matrix

PfP ∼
(
tk−l

)
kl

=


t0 t−1 · · · t−n+2 t−n+1

t1 t0 t−1 t−n+2

... t1 t0
. . .

...

tn−2
. . .

. . . t−1
tn−1 tn−2 · · · t1 t0


 operator system spectral triple

(
C (S1)(n),Cn,D = diag{1, 2, . . . , n}

)



Dual operator system: Fejér�Riesz

We introduce the Fejér�Riesz operator system C∗(Z)(n):
• functions on S1 with a �nite number of non-zero Fourier coe�cients:

a = (. . . , 0, a−n+1, a−n+2, . . . , a−1, a0, a1, . . . , an−2, an−1, 0, . . .)

• an element a is positive i�
∑

k ake
ikx is a positive function on S1.

Proposition

1. The extreme rays in (C∗(Z)(n))+ are given by the elements a = (ak)

for which the Laurent series
∑

k akz
k has all its zeroes on S1.

2. The pure states of C∗(Z)(n) are given by a 7→
∑

k akλ
k (λ ∈ S1).



Pure states on the Toeplitz matrices

The duality between C (S1)(n) and C∗(Z)(n) is given by

C (S1)(n) × C∗(Z)(n) → C

(T = (tk−l)k,l , a = (ak)) 7→
∑
k

akt−k

Proposition

1. The extreme rays in C (S1)
(n)
+ are γ(λ) = |fλ〉〈fλ| for any λ ∈ S1.

2. The pure states of C (S1)(n+1) are given by functionals T 7→ 〈ξ,T ξ〉
where the vector ξ = (ξ0, . . . , ξn) ∈ Cn+1 is such that the
polynomial z 7→

∑
k ξkz

n−k has all its zeroes on S1.

3. The pure state space P(C (S1)(n+1)) ∼= Tn/Sn is the quotient of the
n-torus by the symmetric group on n objects.

Let us illustrate this!



Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

T =

t0 t−1 t−2
t1 t0 t−1
t2 t1 t0


The pure state space is T2/S2, given by vector states |ξ〉〈ξ| with

ξ =
1√

4 + 2 cos(x − y)

 1
e ix + e iy

e i(x+y)



This is a Möbius strip!



An old factorization result of Carathéodory

Theorem
Let T be an n× n Toeplitz matrix. Then T ≥ 0 if and only if T is of the
following form:

T = V∆V ∗,

where ∆ is a positive diagonal matrix and V is a Vandermonde matrix,

∆ =


d1

d2
. . .

dn

 ; V =
1√
n


1 1 · · · 1
λ1 λ2 · · · λn
...

...

λn−1
1

λn−1
2

· · · λn−1n

 ,

for some d1, . . . , dn ≥ 0 and λ1, . . . , λn ∈ S1.



Finite Fourier transform and duality

• Fourier transform on the cyclic group maps C (Z/mZ) to C[Z/mZ]
and vice versa, exchanging pointwise and convolution product.

• This can be phrased in terms of a duality:

C[Z/mZ]× C (Z/mZ)→ C

〈c, g〉 7→
∑
k,l

clg(k)e2πikl/m

compatibly with positivity.
• Thus we may consider the above duality for Toeplitz matrices as

some sort of generalization of Fourier theory to operator systems.
• However, note that for �nite Fourier theory the symmetries are

reduced from S1 to Z/mZ.



Convergence to the circle

In ongoing work I analyze the Gromov�Hausdor� convergence of the
state spaces S(C (S1)(n)) with the distance function dn to the circle.

• The map Rn : C (S1)→ C (S1)(n) given by compression with Pn
allows to pull-back states from C (S1)(n) to the circle

• There is an approximate inverse Sn : C (S1)(n) → C (S1):

Rn(Sn(T )) = Tn � T ; Sn(Rn(f )) = Fn ∗ f

in terms of a Schur product with a matrix Tn and the convolution
with the Fejér kernel Fn:



• The fact that Sn is an approximate inverse of Rn allows one to prove

dS1(φ, ψ)− 2γn ≤ dn(φ ◦ Sn, ψ ◦ Sn) ≤ dS1(φ, ψ)

where γn → 0 as n→∞.
• Some (basic) Python simulations for point evaluation on S1:



Gromov�Hausdor� convergence

Recall Gromov�Hausdor� distance between two metric spaces:

dGH(X ,Y ) = inf{dH(f (X ), g(Y )) | f : X → Z , g : Y → Z isometric}

and

dH(X ,Y ) = inf{ε ≥ 0;X ⊆ Yε,Y ⊆ Xε}

• Using the maps Rn, Sn we can equip S(C (S1))q S(C (S1)(n)) with a
distance function that bridges the given distance functions on
S(C (S1)) and S(C (S1)(n)) within any ε for n large enough.

Proposition

The sequence of state spaces {(S(C (S1)(n)), dn)} converges to
(S(C (S1)), dS1) in Gromov�Hausdor� distance.



Outlook

• Established formalism for describing spectral truncations using
operator systems, exempli�ed with truncations on a circle.

• Rich mathematical structure: C∗-envelopes, propagation number,
stable equivalence, non-unital operator systems etc [Connes�vS 2020]

• Operator systems based on tolerance relations, e.g. metric spaces at
�nite resolution identifying x , y for which d(x , y) < ε.

• General setup for Gromov�Hausdor� convergence [vS 2020]: applies
to Fejér�Riesz operator systems converging to S1, matrix algebras
converging to a sphere [Rie�el 2004, Barrett�Glaser 2016]


