Spectral truncations in noncommutative geometry
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A spectral approach to geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

Apu = k%u

determine the geometry of M?
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Wave numbers on the disc
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The square
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Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R?:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no

i
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Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such
as dimension d of M:

N(A) = #twave numbers < A
-~ QdVOI(M)Ad
d(2r)d

For the disc and square this is confirmed by the parabolic shapes (v/A):
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Noncommutative geometry

If combined with an algebra of coordinates on M,
then the answer to Kac' question is affirmative.

Connes’ reconstruction theorem [2008]:

(C(M). dm) «— (M. g)
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Spectral data

®  This mathematical reformulation of geometry in terms of spectral
data requires the knowledge of all eigenvalues of the Dirac operator.

® From a physical standpoint this is not very realistic: detectors have
limited energy ranges and resolution.

We develop the mathematical formalism for
(noncommutative) geometry with only part of the spectrum.

This is in line with earlier work of [D’Andrea-Lizzi-Martinetti 2014],
[Glaser—Stern 2019], [Berendschot 2019] and based on [arXiv:2004.14115]
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The “usual” story

Given Riemannian spin manifold (M, g) with spinor bundle S on M.
® coordinate algebra C(M)

® propagation on M: self-adjoint Dirac operator @y,
both acting on Hilbert space L2(M, S)

~~ spectral triple: (C(M),L2(M,S), @n;)

Reconstruction of distance function [Connes 1994]:

d(x,y) = e {IF ) = F W) = [@m, F1II < 1}
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Spectral triples

More generally, we consider a triple (A, H, D)

® 3 (C*)-algebra A

® a3 self-adjoint operator D with compact resolvent and bounded
commutators [D,a] foraec AC A

® both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:

® States are positive linear functionals ¢ : A — C of norm 1
(e.g. vector states)

® Pure states are extreme points of state space
(e.g. evaluation at a point)

® Distance function on state space of A:

d(6.) = sup {[(a) — (a)] : D3]] < 1}
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Application in physics

GR (in parallel with reconstruction)
®  Gauge theories can be described by a spectral triple, e.g.

(C(M) ® A, L2(M,S) @ He, @y @1+ 1 ® Df)
Gauge group: unitaries U(A)

Group of isometries of (A, H, D): all unitaries on H that induce
automorphisms on A and commute with D.

Reviewed in [Chamseddine-vS 2019]
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Spectral truncations

Given (A, H, D) we project onto part of the spectrum of D:

® H +— PH, projection onto closed Hilbert subspace

® D+ PDP, still a self-adjoint operator

® A PAP, this is not an algebra any more (unless P € A)

Definition

An operator system is a x-closed vector space of bounded operators.
And, indeed, PAP is an operator system: (PaP)* = Pa*P.

So, we turn to study (PAP, PH, PDP).

We expect:
® 3 distance formula on states of PAP.

® 4 rich symmetry: isometries of (A, 7, D) remain isometries of
(PAP, PH, PDP)
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Operator systems

Definition (Choi-Effros 1977)
An operator system is a x-closed vector space E of bounded operators.

For convenience we take E to be finite-dimensional, to contain the
identity operator, and act on a fixed Hilbert space H.

® [Eisordered: cone E, C E of positive operators, in the sense that
T € E, iff
(, TY) =2 0; (v eH).

® in fact, E is completely ordered: cones M,(E)+ C M,(E) of positive
operators on H" for any n.

Radboud University




States spaces of operator systems

® The existence of a cone E. C E of positive elements allows to speak
of states on E as positive linear functionals of norm 1.
e Also, the dual E of an operator system is an operator system, with

E{={¢pecE!:¢(T)>0VT € E;}

and similarly for the complete order.

We have (£9)9 = E. as cones in (E9)? = E.

It follows that we have the following useful correspondence:
pure states on E «— extreme rays in (E9),

and the other way around.
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Operator system spectral triples

Definition

An operator system spectral triple is a triple (E,H, D) where E is an
operator system in B(H), H is a Hilbert space and D is a self-adjoint
operator in H with compact resolvent and such that [D, T] is a bounded
operator for all T € £ C E.

It gives a distance function for states ¢, on E using the same formula:

d(¢,¢) = itég{lcﬁ(T) — (M) [IID, Tl < 1}

We will illustrate this with spectral truncations of the circle.
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Spectral truncation of the circle

Consider the circle (C(S?), L2(S), D = —id/dx)

Eigenvectors of D are Fourier modes ex(x) = e for k € Z
Orthogonal projection P = P, onto spanc{ei,éz,...,€,}
The space C(S')(") := PC(S*)P is an operator system

Any T = PfP in C(S%)(" can be written as a Toeplitz matrix

to [ S ST, R S|
t h ta t_py2
PfP ~ (tk_,)k, = : ty to
th—2 B B t_1
tho1 th—2 - 3] to

~~ operator system spectral triple (C(S')(", C", D = diag{1,2,...,n})
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Dual operator system: Fejér—Riesz

We introduce the Fejér-Riesz operator system C*(Z)(n):
e functions on S! with a finite number of non-zero Fourier coefficients:

a= ("'707 a—n+1)a—n+23"'73—1,30731)'"7an—27an—1)07"')

® anelement ais positive iff Y, axe’®™ is a positive function on S*.

Proposition
1. The extreme rays in (C*(Z)(n))+ are given by the elements a = (ay)
for which the Laurent series ), axz® has all its zeroes on S!.
2. The pure states of C*(Z)n) are given by a3, aAk (A € S*).
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Pure states on the Toeplitz matrices

The duality between C(5')(") and C*(Z)(,) is given by
C(SH™ x C*(Z)(m — C
(T = (k=) a = (a)) = Y ant«

k

Proposition

1. The extreme rays in C(Sl)g') are y(\) = |A)(f| for any X € S.

2. The pure states of C(S*)("*1) are given by functionals T — (£, T&)
where the vector ¢ = (&, . ..,&,) € C™1 s such that the
polynomial z — ", &xz"~* has all its zeroes on S*.

3. The pure state space P(C(S*)("*1)) = T"/S, is the quotient of the
n-torus by the symmetric group on n objects.

Let us illustrate this!
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Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

to t—1 t_o
T=1|t to 1
to t1 to

The pure state space is T?/S,, given by vector states [£) (] with

1
1 . .
é‘ — eIX + ely

VA4 +2cos(x —y) \ gitxty)

This is a Mdbius strip!
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An old factorization result of Carathéodory

Theorem
Let T be an n x n Toeplitz matrix. Then T > 0 if and only if T is of the

following form:
T=VAV~,

where A is a positive diagonal matrix and V is a Vandermonde matrix,

ch 1 I
d 1 A
A = y V = ﬁ : 9
dp AT oAT Apt

for some dy,...,d, >0 and M\1,..., A\, € S
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Finite Fourier transform and duality

® Fourier transform on the cyclic group maps C(Z/mZ) to C[Z/mZ]
and vice versa, exchanging pointwise and convolution product.
® This can be phrased in terms of a duality:

C[z/mZ] x C(Z/mZ) — C

(c.g) = > cig(k)e™/m
Kl

compatibly with positivity.
® Thus we may consider the above duality for Toeplitz matrices as
some sort of generalization of Fourier theory to operator systems.
® However, note that for finite Fourier theory the symmetries are
reduced from S* to Z/mZ.

Radboud University




Convergence to the circle

In ongoing work | analyze the Gromov—Hausdorff convergence of the
state spaces S(C(S*)(™) with the distance function d, to the circle.

e The map R, : C(S*) — C(S')") given by compression with P,
allows to pull-back states from C(S*)(" to the circle
® There is an approximate inverse S, : C(S*)(" — C(S?):

R,,(S,,(T)) = Tn ® T; Sn(R"(f)) = F,, * f

in terms of a Schur product with a matrix T, and the convolution
with the Fejér kernel F,:
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® The fact that S, is an approximate inverse of R, allows one to prove

ds1(,¥) — 29n < dn(d 0 Sp, ¥ 0 Sp) < dsa (¢, ¥)

where vy, — 0 as n — co.
® Some (basic) Python simulations for point evaluation on S!:

Spectral approximations on the circle

dn(0, X)
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Gromov—Hausdorff convergence

Recall Gromov—Hausdorff distance between two metric spaces:
den(X,Y) =inf{dy(f(X),g(Y)) | f: X = Z,g: Y — Z isometric}
and
du(X,Y)=inf{e>0; X C Y, Y C X}

® Using the maps R,, S, we can equip S(C(S%)) T S(C(S*)™M) with a
distance function that bridges the given distance functions on
S(C(S')) and S(C(S*)(M) within any ¢ for n large enough.

Proposition

The sequence of state spaces {(S(C(5*)("), d,)} converges to
(S(C(SY)),ds:) in Gromov—-Hausdorff distance.
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QOutlook

® Established formalism for describing spectral truncations using
operator systems, exemplified with truncations on a circle.

® Rich mathematical structure: C*-envelopes, propagation number,
stable equivalence, non-unital operator systems etc [Connes—vS 2020]

® Qperator systems based on tolerance relations, e.g. metric spaces at
finite resolution identifying x, y for which d(x,y) < e.

®  General setup for Gromov—Hausdorff convergence [vS 2020]: applies
to Fejér—Riesz operator systems converging to S*, matrix algebras
converging to a sphere [Rieffel 2004, Barrett—Glaser 2016]
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