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Preface

Before you lies the report of my findings that I accumulated as part of my
PhD project over a period of four and a half years. Although it certainly
has some weight to it in a strictly physical sense, the matter of whether this
is true in the figurative sense is, of course, up to the scientific community
to decide. Irrespective of its verdict, however, since I myself have invested
a significant portion of my time in this work, I find it only appropriate to
acknowledge the contributions of the people who did likewise.

First off, I would like to thank my advisor and promotor Walter van
Suijlekom for providing me with the opportunity to work on this topic
and to learn more about mathematics in general, and for always being
available to answer any questions that I had.

I would also like to express my gratitude towards Klaas Landsman,
who was not merely the chair of the manuscript committee that approved
this thesis, but who introduced me to the topic of quantisation in the first
place during my master’s. Having been a teaching assistant to his courses
on mathematical physics greatly contributed to my understanding of the
subject, which was especially useful during my work on the second part
of this thesis.

Next, I would like to thank my (remaining) coauthors, starting with
Francesca Arici, who, aside from her work on the paper on which chapter
4 is based, was instrumental in communicating our work to the mathem-
atical community and returning with invaluable feedback from prominent
researchers. Furthermore, I want to thank Teun van Nuland, with whom
I collaborated on the work on which chapters 5 and 7 are based, and who
provided some key ideas regarding the resolvent algebra without which
the second part of this thesis would not have been possible at all.

Having thanked all of the people whose scientific contribution to this
thesis is directly observable, I would like to mention those whose input is
not immediately measurable but nonzero nonetheless. At the beginning
of my PhD, Jord Boeijink helped me on my way by sharing with me
some of his own findings on the topic of “quantisation commutes with
reduction”. Although this line of research does not feature prominently in
this thesis, it was certainly useful to be acquainted with it, specifically in
regard to chapters 3 and 8. The next person that I want to mention here
is Alexander Stottmeister, who pointed out an important, very concrete
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discrepancy between the results of chapter 4 and the physics literature,
and whose remark became a guiding principle in part II of this thesis.
Moreover, I wish to thank Abel Stern and Chris Ripken for enlightening
discussions on the topics of regularisation and renormalisation.

Moving on to more senior researchers in this category, I want to thank
prof. dr. Gerd Rudolph and prof. dr. Rainer Verch for their hospitality
and for the discussions that I had with them during my stay at the Institut
für Theoretische Physik at the Universität Leipzig. I would also very much
like to express my appreciation for the time and effort that the members
of the manuscript committee invested in reading and correcting this thesis.

A pleasant work environment is paramount to being able to carry out
one’s duties and I am happy to report that overall, the department of
mathematics of the Radboud University does an excellent job at creating
one of these. This also includes providing welcome distractions every once
in a while, be it work-related in the form of marking sessions, or otherwise.

There are a few colleagues specifically whom I would still like to men-
tion by name because they had a very positive impact on my life as a PhD
student. One of them is Frank Roumen, who frequently hosted board
game days during which he supplied many games from his own collection,
and with whom I have had numerous interesting discussions. Board game
days became a tradition that continues to this day, and many of them
have also been hosted or attended by Julius Witte and Milan Lopuhaä.
On the subject of interesting discussions, the name of our former local
philosophical anarchist Henrique Tavares cannot go unmentioned.

With mathematicians spending much of their time inside their own heads
or in the ivory tower of the university, it is sometimes easy to forget that
there exist people outside of the realm of academia as well. My parents
are two examples of such people. This does not diminish the value that
their continuing support holds to me in the slightest; it is safe to say that
it is at the very least on par with that of any of the individuals mentioned
above.

Eindhoven, October 2019 Ruben Stienstra
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Chapter 1

General introduction

This thesis is concerned with the interplay between quantisation and lat-
tice gauge theory. As we will see, there is considerable tension between
these two subjects, at least in so far as their current formulations in the
literature are concerned, which motivates our choice of the word ‘versus’
in the title. In this thesis, we will bring to light the point of contention,
and indicate how it might be resolved. To put our work into perspective,
we first discuss the two subjects separately, giving a brief historical over-
view of the relevant topics. In particular, in the case of quantisation, we
will present the considerations that led to the groupoid approach, which
will be recalled as well. Afterwards, we will motivate the main problems
encountered in this thesis, and present its outline.

1.1 Quantisation

Much of the information in this section regarding the early history is found
in greater detail in [68], and references therein. Quantisation is essentially
the translation of the formalism of classical mechanics into the formalism
of quantum mechanics. Classical mechanics is the physical theory that
describes the motions of objects that are macroscopic and whose velocity
is small relative to the speed of light, and the way in which these motions
are affected by forces acting on these object. Its original mathematical
formulation is due to Newton, and alternative formulations of the theory
were obtained by Lagrange and Hamilton.

1



2 CHAPTER 1. GENERAL INTRODUCTION

Quantum mechanics is the physical theory that describes the motion of
microscopically small objects such as electrons, atoms and molecules. The
word ‘quantum’ refers to the discrete rather than continuous nature of the
spectrum, or set of energy levels of a physical system, and that to pass from
a given energy level to a higher or lower one, energy packets, or quanta,
are absorbed or emitted by the system, respectively. This idea was used in
1900 by Planck to improve on a model for black body radiation developed
by Wien, by Einstein in 1905 to explain the photoelectric effect, and by
Bohr in 1913 to improve on Rutherford’s model of the atom by accounting
for the observed lines in the spectrum of light emitted by the hydrogen
atom. The theory of nonrelativistic quantum mechanics was subsequently
developed by physicists including but not limited to Schrödinger, Heisen-
berg, Dirac and Born, and mathematicians such as Hilbert, von Neumann
and Weyl, mostly in the 1920’s.

Central to the formulation of quantum mechanics is the canonical com-
mutation relation (CCR)

[p̂, x̂] = −i~,

which is attributed to Born, making its first appearance in Born’s pa-
per with Jordan [21, equation (38)]. Here, ~ denotes the reduced Planck
constant, also known as Dirac’s constant, and we have used physicists’
notation for operators on L2(R). Furthermore, the operators p̂ and x̂ in
the above equation are both unbounded, and the equation should be in-
terpreted accordingly. Any quantum theory should include such a relation
in one way or another. A bounded version known as the Weyl form of the
CCR reads

eisp̂eitx̂ = eist~eitx̂eisp̂, s, t ∈ R.

The families of operators (eisp̂)s∈R and (eitx̂)t∈R are strongly continuous
one-parameter groups of unitary operators, and can be constructed from
(self-adjoint extensions of) the operators p̂ and x̂ using spectral theory.
Alternatively, they may be defined directly as groups of translation and
multiplication operators, respectively. Stone [108] stated that up to unit-
ary equivalence, there is a unique irreducible representation on a Hilbert
space of a pair of strongly continuous one-parameter groups satisfying the
Weyl form of the CCR. Von Neumann [114] carried out the proof of this
theorem and sharpened the result, thereby demonstrating that any two
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formulations of quantum mechanics in terms of such an irreducible rep-
resentation on a Hilbert space, for instance Schrödinger’s wave mechanics
and Heisenberg’s matrix mechanics, are in fact equivalent. Moreover, the
Stone–von Neumann theorem shows that irreducibility can serve as a nat-
ural requirement of quantum mechanical formulations of physical systems.

On a historical note, the formulations of quantum mechanics by
Schrödinger and Heisenberg can be shown to be equivalent without ap-
pealing to the Stone–von Neumann theorem, and such attempts were
made by various people, including Schrödinger himself in 1926 [104],
who showed that operators in his theory could be mapped to matrices
in Heisenberg’s theory using an injective algebra homomorphism. How-
ever, Schrödinger was unable to establish surjectivity, due to the absence
of a proper functional-analytic framework, which was established by von
Neumann in 1932 [115]. For a more extensive discussion of the history of
the equivalence of the two formulations, we refer to Muller [85, 86].

Thus group theory and representation theory play an important role in
the formulation of quantum mechanics. The next significant advance on
this front was made by Mackey, who generalised the Stone–von Neumann
theorem in the form of his imprimitivity theorem [79]. This formalism was
later cast into the language of C∗-dynamical systems by various authors;
for an overview, we refer to the notes at the end of [90, section 7.6]. One of
the assumptions on these systems is that they satisfy a certain covariance
condition that can be regarded as the abstract version of the Weyl form
of the CCR, and this requirement is used to define the multiplication on a
C∗-algebra called the crossed product algebra associated to the dynamical
system. In that way, the image of this algebra under any ∗-representation
on a Hilbert space will have a built-in version of the canonical commutation
relation(s).

Another major aspect to quantisation is that of deformations of the
classical theory. This is motivated by two observations. The first one
stems from the correspondence principle, originally due to Bohr, who ob-
served that the difference between the frequencies associated to the excited
states of an electron orbiting a nucleus are multiples of some fundamental
frequency for large energies compared to the energy of the ground state.
The fundamental frequency is the inverse of the period of the periodic
motion that the electron allegedly carries out, and is the lowest frequency



4 CHAPTER 1. GENERAL INTRODUCTION

in a Fourier expansion that corresponds to the classical description of the
motion. Nowadays, the term ‘correspondence principle’ entails the more
general idea that physical systems of which associated quantities such as
the total number of constituents or the total energy approximate macro-
scopic sizes, will behave like classical systems. This can often be simulated
by considering very small effective values of ~, i.e., ~ ≈ 0, or even taking
the limit ~→ 0, which is known as the classical limit.

The second observation is due to Dirac, who realised that the canonical
commutation relation has a counterpart in classical mechanics, specifically
in its Hamiltonian formulation, namely {p, x} = 1, where {·, ·} denotes the
usual Poisson bracket on R2. Further evidence of a connection between the
Poisson bracket and the commutator bracket is provided by the equations
that govern the time evolution of systems in both formulations (where on
the quantum mechanical side, one should consider the reformulation of
the Schrödinger equation in the Heisenberg picture).

Groenewold [45] and Moyal [83] independently investigated the possib-
ility of formulating quantum mechanics directly in terms of the classical
phase space, which is now referred to as phase space quantisation. Their
work paved the way for the field known as deformation quantisation, of
which the objective is to deform the commutative pointwise product of
smooth functions on phase space (which are the classical observables) into
a noncommutative product, in such a way that the Poisson brackets of
the functions correspond to −i~ times the commutator of the functions
with respect to the deformed product. It was shown by Groenewold [45]
and Van Hove [111] that, in addition to a number of other algebraic re-
quirements, one cannot simultaneously have irreducibility of a quantum
system, as well as an exact correspondence between the Poisson bracket
and the commutator. For this reason, the latter assumption is dropped,
and one instead requires the correspondence between the Poisson bracket
and the commutator to become exact in the classical limit only.

There are two styles of deformation quantisation. The first one is
formal deformation quantisation, which was pioneered by Berezin [16, 17]
and by Flato, Lichnerowicz and Sternheimer [39], and revolves around
the construction of deformations of the usual product on the algebra
C∞(M)[[~]] of formal power series in ~ that take coefficients in the ring
C∞(M) of smooth functions on the phase space M .
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The second approach, known as strict deformation quantisation, was
defined by Rieffel [97], who substituted the ring of formal power series by
a family of C∗-algebras (A~)~∈I called a continuous field of C∗-algebras,
where I ⊆ [0,∞) is a set that contains 0 as an accumulation point, A0 is
a commutative algebra, and A~ is its (noncommutative) quantisation for
~ > 0. In the examples of interest, all A~ are isomorphic to each other
for ~ ∈ I\{0}. Berezin proposed a similar definition in the papers cited
above, discussing families of ∗-algebras, but he did not (explicitly) endow
the elements of his families with norms. By contrast, the norms on the
algebras appearing in Rieffel’s work are an essential ingredient of his notion
of a strict deformation quantisation, as they facilitate a precise definition
of a classical limit. Strict deformation quantisation is much closer to
the usual formulation of quantum mechanics in terms of Hilbert spaces
and operator algebras, and as a result it is able to address questions of
convergence more readily than formal deformation quantisation. However,
it demands from its practitioners a substantially greater effort with regard
to the analysis involved.

The representation-theoretic and deformational aspects of quantisation
are brought together in the groupoid formulation by Landsman, which is
expounded in his monograph [65], which also contains many references to
the literature. This formulation is the point of departure of this thesis, and
forms the basis of part I, in particular chapter 4. We will elaborate on the
groupoid approach in that chapter, so we will only give a brief account
here. First of all, to any groupoid endowed with a Haar system, a C∗-
algebra can be associated, which was done by Renault [93]. With regard
to the representation theory, in many cases of interest, the crossed product
algebra associated to a C∗-dynamical system is canonically isomorphic to
the C∗-algebra of some groupoid.

Furthermore, it is not uncommon for the sets of objects and morphisms
that comprise a groupoid to be endowed with smooth structures with
respect to which all of the groupoid operations are smooth, and the source
and target maps are submersions; such groupoids are called Lie groupoids.
As their name already suggests, they generalise Lie groups, and similar to
how every Lie group has an associated Lie algebra, every Lie groupoid has
an associated Lie algebroid.

The idea behind the groupoid formulation of deformation quantisation
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is that the family of algebras (A~)~∈I arises as a family of C∗-algebras
associated to the fibres of a bundle of geometric objects with base space I.
Specifically, the fibre over ~ ∈ I\{0} of this bundle is a given Lie groupoid,
which is the same for all ~ > 0, while the fibre over 0 is the Lie algebroid
associated to the Lie groupoid. The bundle is endowed with a smooth
structure in such a way that the Lie algebroid is smoothly deformed into
the given Lie groupoid. This fibre bundle is called the normal groupoid,
and was introduced by Hilsum and Skandalis in [54] in the context of KK-
theory. Hilsum and Skandalis generalised a construction known as the
tangent groupoid, which had been constructed earlier by Connes. (In their
paper, Hilsum and Skandalis refer to a preprint of [30], but the tangent
groupoid seems to not have made it into the published version, and can
instead be found in Connes’ monograph [31, section 2.5], where it is used
to prove the Atiyah–Singer index theorem.)

For the purpose of this thesis, it suffices to briefly discuss the tan-
gent groupoid. Given a smooth Riemannian manifold Q, which we view
as the configuration space of a classical system, its tangent bundle TQ
is smoothly deformed into the pair groupoid Q × Q; the manifold TQ,
endowed with some additional structure, is the Lie algebroid associated to
the Lie groupoid Q×Q. Functions on the former space correspond to fibre-
wise Fourier transforms of classical observables, i.e., functions on the clas-
sical phase space T ∗Q, while functions on the latter occur as integral ker-
nels of integral operators on L2(Q), thereby yielding quantum observables.
The associated C∗-algebras are A0 = C0(T ∗Q) and A~ = B0(L2(Q)),
where the latter algebra denotes the space of compact operators on L2(Q).
Elements of A0 can be explicitly deformed into elements of A~ using a
generalisation of Weyl quantisation, see [66]. Thus the tangent groupoid
provides a very appealing geometric picture of deformation quantisation,
in that it makes precise the idea of deforming a Lie algebroid of a Lie
groupoid into that Lie groupoid.

Note that up to this point we have only discussed aspects of quantisa-
tion that concern the observables, i.e., the relationship between classical
observables, which are functions on phase space, and quantum mechanical
observables, which are operators on the Hilbert space. This is the main
subject of study in this thesis; we ignore questions regarding the origin of
the Hilbert space on which the operators are defined, some of which are
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addressed by geometric quantisation.
When discussing quantisation, we will always have in mind the defin-

ition of Landsman of a strict quantisation [65, Definition II.1.1.1], who
takes inspiration from Rieffel’s definition of a strict deformation quant-
isation. This will be discussed in greater detail in section 7.3, but let us
already mention that like Rieffel, Landsman includes a family (A~)~∈I of
C∗-algebras into his definition, where A~ is commutative for ~ = 0 and
noncommutative for ~ > 0. In addition to the above, a strict quantisation
consists of a family of maps

Q~ : A0 → A~, ~ ∈ I,

called quantisation maps, that satisfy certain conditions. Here, I ⊆ [0,∞)
has the properties mentioned earlier, and A0 denotes a dense ∗-subalgebra
of A0 that at the same time is a Poisson subalgebra of C∞(M), where
M denotes the phase space of the classical system. Moreover, in the
groupoid examples we may assume that the algebra A~ does not depend
on the particular value of ~ > 0. For ~ = 0, the map Q~ is simply the
inclusion map.

The most notable requirement on these maps is Rieffel’s axiom

lim
~→0

∥∥[Q~(f),Q~(g)]− (−i~)−1Q~({f, g})
∥∥ = 0,

for each f, g ∈ A0, which makes precise Dirac’s observation, and shows
that Q~ should be thought of as a right-inverse to the operation of taking
the classical limit. Interestingly, Landsman uses the term strict deform-
ation quantisation for a strict quantisation that satisfies some additional
properties [65, Definition 1.1.2], thus deviating from the established no-
tion of deformation quantisation that emphasises the deformation of the
product, and underlining the role of the quantisation maps instead. A ver-
sion of this definition is already mentioned by Rieffel in his review of the
subject [99, section 4], where he explicitly refrains from calling such maps
deformation quantisations for the reason just mentioned. Nevertheless,
the formulation in terms of quantisation maps is closer to the everyday
practice of physicists, and probably also to the ideas of the founding fath-
ers of quantum mechanics, especially Heisenberg. We will return to the
topic of quantisation after the introduction of the other main topic of this
thesis.
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1.2 Gauge theory and regularisation

The second principal topic of this thesis is lattice gauge theory. However,
we will not discuss it in much detail in this introduction, leaving it for
chapter 2 instead. Rather, we will discuss the main ideas behind and
reasons for its development, which come from quantum field theory (QFT).

We will start by discussing gauge theory. As with lattice gauge theory,
we focus on the motivation for its study in physics. Gauge fields made their
first appearance in Maxwell’s theory of electromagnetism. Their import-
ance was not recognised at that time, though, since they only appear in
Maxwell’s equations through the electric and magnetic fields, which make
up the electromagnetic field tensor, and are therefore strictly speaking
not necessary to formulate the theory. That being said, they can be (and
were) used to simplify computations. On the other hand, the situation in
quantum mechanics is quite different; for example, one cannot understand
the Aharonov–Bohm effect without some notion of gauge fields.

Weyl is credited with the discovery of the principle of gauge invariance,
which he first used in an attempt to unify electromagnetism with general
relativity [117]. Although his attempt failed, he later used a similar idea
to perform what is nowadays known as minimal substitution or minimal
coupling, by replacing the operation of differentiation in the Schrödinger
equation with its gauge covariant derivative [119]. His work, among other
discoveries such as the Dirac equation by the eponymous physicist, led to
the development of quantum electrodynamics (QED), which was the first
example of a quantum field theory.

The underlying structure group U(1) (or T, as we will write in the
second part of this thesis,) is an abelian Lie group. Yang and Mills [123]
famously realised that gauge theories with other gauge groups, in partic-
ular nonabelian ones, could be formulated as well, and tried to use such
a theory with structure group SU(2) to explain the strong interaction or
strong force, which is the force that binds nuclei of atoms together. While
it was later realised that this interaction is more accurately described by
SU(3), their work eventually made possible the standard model of particle
physics, whose structure group is given by U(1)×SU(2)×SU(3). The first
and third factor correspond to the forces mentioned above, while the factor
SU(2) corresponds to the weak interaction, which is the force responsible
for nuclear fission and radioactive decay of atoms.
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Quantum field theory is the most notorious - in both the positive and
the negative sense of the word - theory of physics to date. On the one
hand, it is extremely succesful from an experimental point of view. QED
has made theoretical predictions for a multitude of phenomena that have
been measured experimentally and whose outcomes have been compared
to each other through the (effective) values of the inverse α−1 of the fine-
structure constant α that the theoretical predictions require to agree with
the measurements in the corresponding experiment (cf. [91, pp. 197–198]).
In the cases where higher order terms do not introduce any significant
corrections in the theoretical models used to describe the phenomena,
these values agree with each other very well, up to the seventh significant
digit in the most accurate experiments.

On the other hand, from its conception, physicists have struggled
with its mathematical formulation. The earliest calculations of physical
quantities yielded infinite values; these were made finite through a pro-
cess dubbed renormalisation devised by Feynman, Schwinger and Tomon-
aga, for which they received the Nobel prize in physics in 1965, and sub-
sequently streamlined by Dyson. Their approach is now called perturbative
renormalisation.

Renormalisation is needed due to the fact that field theories have an
infinite number of degrees of freedom: they have finitely many for each
point in spacetime. Another consequence of this abundance of freedom is
that Feynman’s path integral, which is essentially a quantisation procedure
based on the Lagrangian framework for classical mechanics, is an integral
over an infinite dimensional space, and these are generally very hard if not
impossible to define rigorously. A notable exception is the Feynman–Kac
formula, which is based on stochastic calculus, and holds in Euclidean
time.

In gauge theory, this problem is exacerbated by the physically redund-
ant degrees of freedom introduced by gauge symmetry [91, section 9.4].
Faddeev and Popov introduced a procedure to remove these degrees of
freedom from the path integral by adding an additional term to the Lag-
rangian [37] that fixes a gauge, introducing new fields called ghost fields
in the nonabelian case. The procedure eventually led to the Batalin–
Vilkovisky (BV) formalism, via the BRST formalism.

Despite significant efforts to put them on firm mathematical grounds
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- such as the constructive quantum field theory program, see e.g. [13, 14]
and references therein for the part of that program focussed on gauge
theory, including lattice gauge theory - quantum field theories based
on Yang–Mills theory have eluded rigour thus far. Defining a rigorous
framework for these theories is one of the six unsolved Clay Millennium
problems.

One of the ingredients of any quantum field theory, be it in its formula-
tion or its application to concrete problems, is a form of regularisation.
Regularisation is a rather loose term by mathematical standards, but it
typically refers to the first step in a three-step procedure:

1. A mathematical entity that is for some reason intractible due to its
infinite or otherwise unbounded nature is converted into a net of
finite or bounded entities through some process of truncation. This
process is referred to as the introduction of a regulator or cutoff into
the problem.

The terms regulator and cutoff can refer to the upward directed set (J,≤)
that parametrises the net, or to a net of other mathematical entities that
are used to obtain the truncations. In the former case, the term cutoff
is sometimes also used to refer to an element of the directed set; another
common term for such an element is a scale. In the physics literature,
the most common examples of directed sets mentioned in this context are
((0,∞),≤) (for momentum and energy scales) and ((0,∞),≥) (for length
scales). Other directed sets are possible, however; see e.g. section 5.1 for
the directed set used in loop quantum gravity, which is much closer to
what we have in mind when considering regulators in this thesis.

The result of the previous step is a net of effective field theories para-
metrised by the directed set, or a net of objects that can be thought of
as being associated to a collection of effective field theories. The word ‘ef-
fective’ signifies that the field theories are approximations to some ‘true’
or ‘fundamental’ field theory.

Let us assume that the net of objects is given by (Xi)i∈J . Given
two elements i, j ∈ J such that i < j, the object Xj should provide
more information about the ‘true’ theory than the object Xi. Within the
context of this thesis, this is understood to mean one of the following two
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things: Depending on the category in which the objects reside, there is
either an embedding

ιi,j : Xi ↪→ Xj ,

or a surjective morphism

πi,j : Xj � Xi.

Examples of the first type include nets of observable algebras (in some
category of C∗-algebras) and nets of Hilbert spaces, while examples of the
second type include nets of configuration spaces (in a category of topolo-
gical spaces carrying regular probability measures) and pair groupoids (in
the category of groupoids). The occurrence of the second type of morph-
ism between configuration spaces is an indication that one is dealing with
a form of coarse graining.

In all of our examples, the family of maps (ιi,j)i,j∈J, i≤j corresponding
to the first scenario satisfies two conditions:

(1) For each i ∈ J , we have ιi,i = IdXi ;

(2) For each i, j, k ∈ J such that i ≤ j ≤ k, we have ιi,k = ιj,k ◦ ιi,j .

The pair of families ((Xi)i∈J , (ιi,j)i,j∈J, i≤j) is called a direct or inject-
ive system in the pertinent category. The dual notion of a family
((Xi)i∈J , (πi,j)i,j∈J, i≤j) corresponding to the second scenario is called an
inverse or projective system.

The next step in the procedure is renormalisation; we will sketch what
it means in the language introduced above.

2. Let ((Ai)i∈J , (ιi,j)i,j∈J, i≤j) be a direct family of C∗-algebras, where
for each i ∈ J , the algebra Ai is the observable algebra corresponding
to the scale i. Furthermore, for each i ∈ J , let ωi ∈ A∗i be a state
on Ai that represents the state of the system under consideration at
the scale i. Finally, fix i0 ∈ J , and suppose that i0 is large enough to
ensure that at present, no measurement apparatus has a resolution
that allows it to measure a discrepancy between the two values of
the physical quantity predicted by the theories associated to i0 and
any i > i0.
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Then we may as well assume that the expectation value of any ob-
servable corresponding to the theory associated to i0 is equal to the
expectation value of its counterpart for i, i.e.,

ωi ◦ ιi0,i = ωi0 ,

for each i ≥ i0, thereby rendering the theories mutually consistent.
This is the basic idea behind renormalisation; we use consistency to
select a net of states (ωi)i∈J , where ωi denotes a state on Ai for each
i ∈ J .

In practice, consistency is obtained only for a finite set of functions of ex-
pectation values of a subset of the observable algebra: one selects functions
f1, . . . , fm : Cn → C, and a1, . . . , an ∈ Ai0 , and demands that

fl(ωi ◦ ιi0,i(a1), . . . , ωi ◦ ιi0,i(an)) = fl(ωi0(a1), . . . , ωi0(an)),

for l = 1, 2, . . . ,m and i ≥ i0. Moreover, one does not consider the full
state space associated to an algebra of observables for some i ≥ i0, but
merely a finite-dimensional submanifold. This submanifold is paramet-
rised by a finite set of so-called coupling constants, which are functions
J → R, and are therefore not really constant. By requiring that the ob-
servables in the finite set do not depend on i ∈ J , and expressing their
expectation values in terms of the coupling constants (a procedure that
usually involves perturbation theory and other types of approximations),
one obtains a system of equations called renormalisation group equations.
One subsequently solves these equations for the coupling constants to ob-
tain the renormalisation group flow.

A consequence of the restrictions and approximations made in these
calculations is that the passage from elements of state spaces to coup-
ling constants is not functorial. Renormalisation nonetheless remains a
very powerful technique, as evidenced by the succesful applications of its
perturbative variant to quantum field theory (see above), and its nonper-
turbative variant (which was developed by Wilson, who was awarded the
Nobel prize in 1982 for his work) in statistical mechanics to account for
power laws that occur near second-order phase transitions (cf. e.g. [44,
section 1.2]).
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3. The final step in the procedure consists of taking the appropriate
limit of the net of truncated entities, which is referred to as removing
the regulator (or cutoff). This limit is then taken to correspond to
the entity that one started out with, provided that it is independent
of the particular form of regularisation.

In the context of this thesis, this means that for direct systems, we consider
their direct (or injective) limit(

lim−→
i∈J

Xi, (ιi,∞)i∈J

)
,

which (if it exists) is uniquely determined up to unique isomorphism by a
universal property. The inverse (or projective) limit(

lim←−
i∈J

Xi, (πi,∞)i∈J

)
,

is the dual notion for inverse systems.

With regard to the former type of limit, we only consider limits of
direct systems of various types of Banach spaces with contractions, such
as systems of Hilbert spaces in which the morphisms are given by partial
isometries, and systems of C∗-algebras in which the morphisms are ∗-
homomorphisms. To see how the direct limit is constructed in the latter
case with (J,≤) = (N,≤), we refer the reader to [87, section 1.1], which
is readily generalised to other categories of interest and upward directed
sets. As for the latter type of limit, we merely deal with limits of inverse
systems of compact Hausdorff spaces. The reader can consult [95, section
1.1] for the construction of these limits, as well as their main properties.

Algebraic quantum field theory (AQFT) provides an excellent illus-
tration of the mathematical concepts mentioned thus far (though it is up
for debate to what extent it provides an example of regularisation), from
which a lot of the mathematical literature on lattice gauge theory and
loop quantum gravity (including this thesis) draws inspiration. In AQFT,
the net J consists of open subsets of Minkowski space with compact clos-
ure, and the relation is given by inclusion of sets. Viewing (J,⊆) as a
category, one postulates the existence of a covariant functor from (J,⊆)
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to the category of unital C∗-algebras that assigns to each open subset in
Minkowski space an algebra that should be regarded as the local observ-
able algebra associated to that open subset, thereby obtaining a direct
system of C∗-algebras. The image of a morphism (U, V ) under this func-
tor is the embedding of the observable algebra associated to the open set
U into the algebras associated to the open set V ⊇ U . One obtains maps
between the corresponding state spaces by taking the transposes of the ∗-
homomorphisms, thus defining a contravariant functor from (J,⊆) to the
category of compact Hausdorff spaces, and obtaining an inverse system in
the latter category. The direct and inverse limits of the aforementioned
systems are the ‘full’ observable algebra and state space, respectively. (The
former is called the algebra of quasilocal observables.) Standard references
on the subject of AQFT are Araki [6] and Haag [49].

It is worth noting that AQFT assumes the existence of quantum
field theories that satisfy certain assumptions (the Wightman axioms)
and establishes properties of such QFTs rather than constructing them
in the first place. Nevertheless, it has inspired an approach known as
perturbative algebraic quantum field theory or pAQFT for short, which
combines ideas from both AQFT and ‘ordinary’ QFT as it is mostly
practiced by physicists, and manages to produce quantum field theories
in a mathematically rigourous way. pAQFT is forced to abandon
the C∗-algebraic framework, however, relying on formal deformation
quantisation to quantise classical field theories instead. For introductions
to the subject of pAQFT, we refer to the books by Dütsch [36] (for
physicists) and Rejzner [92] (for mathematicians), both of which contain
many references to the literature. We refer to [55] for the construction of
quantum gauge theories on curved spacetimes using pAQFT.

The fact that many physical systems have an infinite number of degrees
of freedom is due to one or both of the following features of the system:

• The system occupies an infinite volume in space or spacetime;

• The system has at least one degree of freedom associated to each
point in a continuum.

Regularisation as described above then consists of reformulating the sys-
tem as a net of effective theories, such that each of these theories has a
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finite number of degrees of freedom. This is accomplished as follows:

• If one is dealing with an infinite volume type problem, then the trun-
cation typically consists of restriction to a bounded subset, which
consequently has finite volume/measure. Removing the regulator
is referred to as taking the thermodynamic or infinite volume limit.
This type of situation is common in condensed matter physics in
problems in which one considers infinite lattices of particles.

• If the continuum is a source of an infinite number of degrees of
freedom, as it is in field theories, then one usually divides up the
continuum into an at most countable set of subsets such that the
intersection of any two distinct subsets has measure zero. Let us
assume that the continuum itself has finite volume (or measure), so
that it can be divided into a finite number of such regions; otherwise,
one first restricts to a bounded set as mentioned in the previous
point. One then assigns to each region a value that the original field
can take at a point. The idea is that the resulting map on the set of
these bounded subsets is an integrated version of the original field,
where the value assigned to a particular subset corresponds to the
average of the values that the field takes at the points in that subset.
In this situation, removing the regulator is referred to as taking the
continuum or ultraviolet (UV) limit.

As will be discussed in chapter 2, lattice gauge theory uses both of these
ideas to reduce the infinite dimensional spaces such as the space of con-
nections and the gauge group to finite-dimensional manifolds. This makes
rigorous definitions of the path integral possible, and for small lattices
even computable using numerical simulations. Furthermore, there is also
a Hamiltonian version of the theory, which opens up the way to the ap-
plication of techniques such as the ones mentioned in the previous section
to quantise the system.

1.3 This thesis

1.3.1 The main problem

The principal question that we try to answer in this thesis, is the following:
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How does one quantise a net of classical lattice gauge theories?

This question is addressed in chapters 4 and 8, which for this reason form
the heart of this thesis.

In chapter 4, we attempt to answer this problem from a groupoid per-
spective. Although we are able to construct a direct system of quantum
observable algebras that is natural from this perspective, we find that
in the case relevant to the thermodynamic limit, the ∗-homomorphisms
between the observable algebras are not the ones that are used by physi-
cists in this context. On the other hand, if we try to replace these maps
by the maps that physics dictates, then the observable algebras are not
mapped into each other; in some sense, they are ‘too small’. We also
consider the direct limit of the observable algebras, which does not al-
low for interesting dynamics, thereby providing further evidence that the
groupoid formalism is not compatible with lattice regularisation.

This leads us to part II of the thesis. Here, inspired by the work by
Buchholz and Grundling on the resolvent algebra for R2n equipped with
the standard symplectic form, we propose a definition of the resolvent
algebra of T ∗Tn that extends the observable algebras in Part I (for G =
Tn) in a way such that the maps that are correct from the point of view of
physics, are well-defined. This part of the thesis has its own introduction,
which can be found in section 5.1. We just mention here that the basic
idea is to first define classical versions of the field and observable algebras,
and subsequently quantise them.

With the aid of our new algebra, in chapter 8, we return to the prob-
lem concerning the ∗-homomorphisms that embed the various observable
algebras into each other, which was encountered at the end of chapter 4.
We devise an alternative procedure that yields different embedding maps.
We accomplish this by first constructing various functors from a modified
version of the category of graphs introduced in chapter 4 to a number
of categories associated to classical objects, one of which is a category
containing pairs of classical observable algebras with their corresponding
dense Poisson subalgebra as objects. We subsequently look for a functor
with the same source that maps to a category containing the quantum ob-
servable algebras. The guiding principle here is that the family of quant-
isation maps (Q~)~∈I should form some kind of natural transformation
between the two functors. We show that this idea motivates the afore-
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mentioned map between algebras dictated by physics from the point of
view of quantisation, which is the only type of map that occurs in direct
systems of algebras relevant to the thermodynamic limit. We note that
while the naive version of this construction works in this case, in order to
tackle the case relevant to the continuum limit, reduction by the gauge
group is necessary. We finish with a discussion in which we indicate how
the formalism might be modified so that both cases may be treated on
equal footing.

It is worth noting that in this thesis we are mainly concerned with
kinematics; questions regarding dynamics, in particular renormalisation,
are mostly ignored. See however sections 5.3 and 7.4.

1.3.2 Outline

Let us give a brief overview of the chapters in this thesis. We have included
chapters 4 and 8 in this outline for the sake of completeness.

Chapter 2 provides preliminaries regarding lattice gauge theory, focus-
sing on its Hamiltonian incarnation.

In chapter 3, we examine how the quantum mechanical version of the
Gauss law in lattice gauge theory, which is formulated in terms of un-
bounded operators, can be recast into a formulation in terms of bounded
operators using representation theory. Imposing the Gauss law is part of
the reduction of the gauge theory by the gauge group, both for the clas-
sical and for the quantum mechanical formulation of lattice gauge theory.
While the main result of this chapter is unrelated to the principal ques-
tion of this thesis, reduction by the gauge group comes up in subsequent
chapters, in particular chapters 4 and 8.

As already mentioned in the previous subsection, in chapter 4 we study
the interplay between quantisation from the perspective of groupoids, and
lattice gauge theory, and point out several problems.

Chapter 5 provides an introduction to part II of this thesis, and gives a
motivation and definition for our version of the classical resolvent algebra
of the space T ∗Tn. Furthermore, we give a more elementary character-
isation of the algebra, and study some of its properties, including closure
under time evolution for a large class of Hamiltonians for n = 1. We finish
by commenting on the general case of arbitrary n ∈ N.

Chapter 6 is an intermezzo to the main problem of this thesis. Here,
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we study the Gelfand spectrum of an algebra that is closely related to
the classical resolvent algebra of T ∗Tn, which is effectively equivalent to
the problem of determining the spectrum of the resolvent algebra itself.
This is arguably the most technical chapter of this thesis, but it stands
alone and may be skipped by the reader who is primarily interested in the
principal question of this thesis.

In chapter 7, we quantise the classical resolvent algebra using Weyl
quantisation, realising it as a set of operators on L2(Tn). Except for
continuity at values ~ > 0, we show that the quantisation is strict in the
sense of Rieffel. Similar to chapter 5, we show that the quantised algebra
is closed under time evolution for n = 1 for a large class of Hamiltonians,
and comment on the higher dimensional case.

Finally, in chapter 8, we modify the category of graphs defined in
chapter 4, and define a functor from this category to various categories
associated to classical objects, in particular a category containing the clas-
sical observable algebras. We subsequently use the idea that quantisation
should play the role of a natural transformation to define a functor from
the category of graphs to a category containing the quantum observable
algebras, and finish by suggesting directions for future research.

1.3.3 Prerequisites

On the mathematical side, we expect the reader to be familiar with differ-
ential geometry, including the basics of symplectic geometry, Riemannian
geometry and the mathematical formulation of gauge theory, as well as
the theory of Lie groups, and functional analysis, specifically the theory
of operators on Hilbert spaces. Needless to say, the reader is expected to
know any subject that is required to have a workable understanding of the
aforementioned fields. We assume that the reader is comfortable with the
notions of a category, a functor, and a natural transformation, but we do
not assume any in-depth knowledge of category theory in general.

On the side of physics, we assume familiarity with classical mechan-
ics, quantum mechanics, and the application of gauge theory to concrete
physical theories such as the covariant formulation of Maxwell’s theory of
electromagnetism. Quantum field theory is not required, though know-
ledge of this topic helps to appreciate the material presented here.
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1.4 Some remarks on notation and conventions

• N denotes the set of natural numbers including 0.

• Given a Lie group G and an element g ∈ G, the maps G → G corres-
ponding to left and right multiplication by g are denoted by Lg and Rg,
respectively.

• The tangent map TM → TN of a map f : M → N between smooth
manifolds are denoted by Tf , the tangent map at a point x ∈M by Txf .
However, N will occasionally be a vector space, which means that for each
point y ∈ N , there is a canonical identification of the tangent space TyN
of N at y with N , so that images of Tf correspond to elements of N .
The map TM → N thus obtained is denoted by df , and its restriction
to the fibre of TM over a point x ∈ M by dfx. More generally, if f ∈
Ω•(M,N) ∼= Ω•(M)⊗N , i.e., f is an N -valued differential form, then df
denotes its exterior derivative.

• The structure group G (with Lie algebra g) of a principal fibre bundle
(P,M,G, π) will act on the total space P from the left. We thereby deviate
from the convention in the literature, in which G acts from the right. The
definition of a connection 1-form is changed accordingly, i.e., such forms
are assumed to be invariant under the canonical action of G on Ω1(P, g)
induced by the action of G on P and the adjoint representation of G on
its Lie algebra. The reason for this choice can be found in section 2.3.

• In the setting of the previous point, given a connection 1-form
ω ∈ Ω1(P, g) and a smooth local section σ : M ⊇ U → P of π, then the
corresponding gauge field σ∗(ω) is denoted by A, and the corresponding
field tensor σ∗(Dω) is denoted by F , regardless of the gauge group.

• Given a complex Hilbert space (H, 〈·, ·〉), we follow the convention from
physics with regard to the inner product, assuming it to be linear in its
second argument and conjugate linear in its first argument.
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Part I

Lattice gauge theory and
groupoid C∗-algebras
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Chapter 2

Classical lattice gauge
theory

The purpose of this chapter is to bring the reader up to speed with the
basic formulation of lattice gauge theory, in particular its Hamiltonian
incarnation. After a brief review of the motivation for its introduction,
we indicate how one arrives at the Hamiltonian formulation of Yang–Mills
theory. We then explain how one passes from the continuum formulation
to the discretised one. We will give the Hamiltonian of the discretised sys-
tem, and indicate how it corresponds to the Hamiltonian of the continuous
system.

A few remarks on the choices made in this chapter concerning the
material and its presentation are in order:

• We only consider ‘pure’ gauge theory, i.e., our formulation only in-
cludes gauge fields and no matter fields;

• In our presentation of the justification of the Hamiltonian of the
discrete system in the final two sections, we have made an effort
to use differential-geometric arguments to relate the magnetic and
electric fields to their discrete counterparts wherever possible, rather
than relying on arguments that involve Taylor expansions such as
those found in the original papers [120, 62];

• With regard to the magnetic field (section 2.4): although we disreg-
ard its associated term in the Hamiltonian in the rest of this thesis,

23
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the author is unaware of an exposition of a derivation of this term
that meets the standard set in the previous point, which is why we
have included it here. Furthermore, to our knowledge, Proposition
2.3 does not appear elsewhere as such, but is otherwise easy to derive
from known results.

• With regard to the electric field (section 2.5): unlike the magnetic
field, it will play a role in chapters 4 and 8. In the former chapter,
it will only enter the discussion through its corresponding term in
the Hamiltonian. However, in the latter chapter, more specifically
in Example 8.14, the results in this chapter will provide the physical
justification for the definition of the map between phase spaces.

2.1 Introduction

Lattice gauge theory was introduced by the physicist K.G. Wilson [120]
(who was already mentioned in the introduction to this thesis because
of his work on the renormalisation group) in an attempt to explain the
phenomenon known as confinement of quarks. Quarks are the subatomic
constituents of protons and neutrons, which in turn are the building blocks
of nuclei of atoms. The term confinement refers to the observation that
quarks do not occur in free states, i.e., as single particles, but only in
bound states together with other quarks.

Wilson’s original model was a discretisation of the Yang–Mills action,
and was therefore based on a Lagrangian theory. As mentioned in section
1.2, Lagrangian field theories are quantised by means of a path integ-
ral, but from a mathematical perspective, these are not well defined, and
on top of this, gauge theories come with the additional challenge of con-
trolling the gauge freedom. On the other hand, the lattice fields form a
finite-dimensional space, which makes it easier to define a notion of in-
tegration on this space, and thereby a path integral. Although even in
this setting, path integrals may still be difficult or even impossible to cal-
culate explicitly, it is possible to at least approximate such integrals by
means of numerical simulations, and this has indeed been done for small
lattices. For an overview of the history of QCD that includes a discussion
on numerical simulations, we refer to [41].
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Another upside of working with lattices is the fact that they form a
natural ultraviolet (UV) cutoff. Thirdly, if one assumes the lattice to be
contained within a compact region of spacetime, which for the moment we
will assume to be R4 with the standard Lorentzian metric, then they sim-
ultaneously serve as an infrared (IR) cutoff. This means that computation
of correlation functions yields finite quantities, although such quantities
should still be subjected to the process of renormalisation when taking the
appropriate limits. This is typically done by working with a cubic lattice
with a certain lattice spacing, ` say, writing down all of the quantities
in terms of `, and finally take the limit ` → 0 to remove the UV cutoff,
i.e., take the continuum limit. Similarly, by assuming that the cubic lat-
tice itself forms a large cube of which each side consists of N edges, one
may remove the IR cutoff, i.e., take the thermodynamic or infinite volume
limit, by taking the limit N → ∞. One may take the thermodynamic
limit without taking the continuum limit by keeping ` fixed as in Figure
2.1, or one can take both limit simultaneously by taking the limit ` → 0
and N`→∞, as depicted in Figure 2.2:

. . .

Figure 2.1: Taking the thermodynamic without taking the continuum
limit.

Rather than using path integrals to quantise the field theory, one can also
first consider the (canonical) Hamiltonian version of the Yang–Mills the-
ory, which is a gauge theory of which the base manifold of the underlying
principal bundle is a time slice rather than a spacetime. One can perform
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. . .

Figure 2.2: Simultaneously taking the thermodynamic and continuum lim-
its.

the discretisation on the time slice to arrive at a description that resembles
the Hamiltonian description of systems encountered in classical mechan-
ics, and attempt to quantise this version of the system. This approach
was pioneered by Kogut and Susskind [62]. From a mathematical view-
point, the relationship between the Hamiltonian formulation of a classical
mechanical system and its quantum mechanical counterpart is much bet-
ter understood, and the formulation of Kogut and Susskind allows us to
take advantage of this fact.

2.2 Gauge theory on the continuum

We will now discuss the Hamiltonian formulation of Yang–Mills theory
without matter, starting from the Lagrangian version. Let (P,M,G, π)
be a principal fibre bundle. Let us assume for simplicity that the four-
dimensional base manifold M endowed with a Lorentzian metric α repres-
enting spacetime is contractible. The standard example of such a manifold
is of course Minkowski space (R4, η) We will adopt the particle physicists’
convention, assuming that α has signature − + ++. Since M is con-
tractible, the principal fibre bundle P is trivialisable, so we may assume
without loss of generality that P = M ×G. The space of connections may
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be identified with Ω1(M, g). The Lagrangian density is then given by

L : J1(T ∗M ⊗ (M × g))→
∣∣∣∧4

∣∣∣ (T ∗M),

j1
mA 7→ −

1

2g2
〈F, F 〉∧,g,m ·√| detαm|.

Here,

• J1(T ∗M ⊗ (M × g)) denotes the first jet prolongation of the tensor
product of vector bundles over M of the cotangent bundle T ∗M with
the trivial bundle M × g;

•
∣∣∣∧4

∣∣∣ (T ∗M) denotes the bundle of densities on M ;

• j1
mA denotes an element in the fibre of J1(T ∗M ⊗ (M × g)) over
m ∈M ;

• g denotes a coupling constant;

• As mentioned in section 1.4, F is the field strength tensor associated
to the gauge field A. Note that the value of F at m depends on the
value of A at m, as well as the values of its first order derivatives at
m, all of which are encoded by j1

mA;

• 〈·, ·〉∧,g denotes the nondegenerate symmetric bilinear form on the
exterior algebra of the bundle T ∗M ⊗ (M × g) induced by a nonde-
generate symmetric bilinear form on T ∗M ⊗ (M × g). The latter
bilinear form is in turn canonically induced by two other nondegen-
erate symmetric bilinear forms, the first one being the Lorentzian
metric h, which has an associated bilinear form on T ∗M , and the
second one being an Ad-invariant inner product on g. In the ex-
amples of interest, the Lie group G is defined as a subgroup of a
group of unitaries on an inner product space V , so we have a Lie
group representation ρ : G → U(V ) ⊂ End(V ), which has an asso-
ciated Lie algebra representation dρ1G , and the inner product 〈·, ·〉g
on g is defined by

〈X,Y 〉g := Tr(dρ1G(X)∗ · dρ1G(Y )).

Here, ∗ denotes the adjoint with respect to the inner product on V ;
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•
√
|det km| denotes the density on TmM corresponding to αm.

Given the behaviour of F under gauge transformations, it follows from
Ad-invariance of the inner product on g that the Lagrangian density is
invariant under gauge transformations, and therefore the same is true for
the corresponding action. It follows that the general form of the Euler–
Lagrange equations is independent of the chosen gauge.

In order to pass to the canonical Hamiltonian formulation, one assumes
that M can be written as R×M ′, where R represents time, and is endowed
with minus the standard Riemannian metric, while M ′ is (isomorphic
to) a Cauchy surface in M representing space, and is endowed with a
Riemannian metric β. To simplify the exposition, we will assume that
(M,α) = (R4, η), i.e., (M,α) is standard Minkowski space, and M ′ = R3

endowed with the standard Riemannian metric.

We must now extract the part of the Lagrangian density that con-
tains time derivatives. As is customary in the physics literature, we use
(x0, x1, x2, x3) to denote the canonical chart on R4. Furthermore, we use
the notation

Aµ := A

(
∂

∂xµ

)
, Fµν := F

(
∂

∂xµ
,
∂

∂xν

)
,

where µ, ν ∈ {0, 1, 2, 3}. We then have

〈F, F 〉∧,g = −
3∑

ν=1

〈F0ν , F0ν〉g +
∑

1≤µ<ν≤3

〈Fµν , Fµν〉g.

Here, the first sum contains terms with time derivatives, since

F0ν =
∂Aν
∂x0

− ∂A0

∂xν
+ [A0, Aν ].

In the canonical Hamiltonian formulation, field theories, in this case a
gauge theory, are viewed in a way analogous to systems in classical mech-
anics; First, a configuration space Q is identified, in this case a subspace
of the space of (smooth) sections of the bundle T ∗M ′⊗ (M ′⊗ g) endowed
with a topology that turns it into a Fréchet manifold. A suitable sub-
space is the space Ω1

c(M, g) of compactly supported smooth sections of
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the bundle. We refer to [3, section 5.5] for a more general introduction to
infinite dimensional systems.

A Hamiltonian is then defined on the tangent bundle of this space. In
the case at hand, this means that we have to write down a Hamiltonian
in terms of the spatial components of the gauge field and their time de-
rivatives; in particular, we must get rid of the second and third term in
the above formula for F0ν . This is accomplished by imposing the temporal
gauge, which is the condition

A0 = 0.

It is always possible to impose this condition:

2.1 Proposition. Let A ∈ Ω1(M, g), assume that M = R ×M ′, and let
d
dt ∈ Γ∞(TM) be the vector field on M given by

d

dt

∣∣∣∣
(s,x)

=
d

dr
(s+ r, x)|r=0 ∈ T(s,x)M.

Then there exists a g ∈ C∞(M,G) such that

(
Ad(g(m)) ◦Am + (T1GRg(m))

−1 ◦ Tmg
)( d

dt

∣∣∣∣
m

)
= 0,

for each m ∈ M . Moreover, g1 ∈ C∞(M,G) is a map that satisfies the
above differential equation if and only if there exists a unique element
h ∈ C∞(M ′, G) such that for each (s, x) ∈ R×M ′, we have

g1(s, x) = h(x) · g(s, x).

Proof. The differential equation can be rewritten as

Tmg

(
d

dt

∣∣∣∣
m

)
= −T1GLg(m) ◦Am

(
d

dt

∣∣∣∣
m

)
.

By working in local coordinates on G and invoking the Picard–Lindelöf
theorem, it can be shown that for each x ∈M ′, there exists a smooth map
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gx : R→ G such thatTsgx
(
d

dt

∣∣∣∣
s

)
= −T1GLgx(s) ◦A(s,x)

(
d

dt

∣∣∣∣
(s,x)

)
, s ∈ R

gx(0) = 1G

.

By writing down the corresponding differential equation for the curve s 7→
(gx(s), x) ∈ G ×M ′ and using the smoothness of A, we can argue from
the smooth dependence of the solution of an ODE on the initial condition
that the map

g : R×M ′ → G, (s, x) 7→ gx(s),

is smooth, and it is readily seen that g solves the original differential
equation.

With regard to the final assertion, let h ∈ C∞(M ′, G), and define
g1 ∈ C∞(M,G) as in the statement of the proposition. Since

T(s,x)g1

(
d

dt

∣∣∣∣
(s,x)

)
= Tg(s,x)Lh(x) ◦ Tsgx

(
d

dt

∣∣∣∣
(s,x)

)

= −Tg(s,x)Lh(x) ◦ T1GLgx(s) ◦Am
(
d

dt

∣∣∣∣
m

)
= −T1GLg1(s,x) ◦Am

(
d

dt

∣∣∣∣
m

)
,

the map g1 is a solution too.
Conversely, suppose g1 is a solution, and define the map

h : M ′ → G, x 7→ g1(0, x) · g(0, x)−1.

Then h is smooth, because g and g1 are smooth and G is a Lie group.
Furthermore, we just argued that the map

g2 : M → G, (s, x) 7→ h(x) · g(s, x),

is a solution to the differential equation. Now define g1,x and g2,x in terms
of g1 and g2, respectively, in the same way in which gx depends on g for
each x ∈M ′, and observe that g1,x and g2,x are both solutions to the ODE
that we used to define gx, and that they satisfy the same initial condition.
Uniqueness of the solution implies g1,x = g2,x for each x ∈ M ′, hence
g1 = g2, which concludes the proof of the final assertion. �
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Since the temporal gauge does not uniquely determine a section σ, but
only a family of sections that are equal up to a time independent gauge
transformation, it is referred to as a partial gauge.

By imposing the temporal gauge, the factor in front of the density√
| detα| in the expression for the Lagrangian density becomes

− 1

2g2
〈F, F 〉∧,g =

1

2g2

 3∑
ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

−
∑

1≤µ<ν≤3

〈Fµν , Fµν〉g

 .

Pulling back the right-hand side along an inclusion of M ′ in M , we obtain
an expression of the form

K

(
∂A

∂x0

)
− V (A),

where K : TQ → C∞c (M ′) and V : Q → C∞c (M ′) denote the first and
second term within parentheses multiplied by the factor 1/(2g2), respect-
ively. We now define a Hamiltonian density

H : TQ→ Γ∞
(∣∣∣∧3

∣∣∣ (T ∗M ′)) ,(
A,

∂A

∂x0

)
7→
(
K

(
∂A

∂x0

)
+ V (A)

)
·
√
|detβ|

=
1

2g2

 3∑
ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

+
∑

1≤µ<ν≤3

〈Fµν , Fµν〉g

 dx,

where
√
|detβ| denotes the density corresponding to β, and dx denotes the

canonical density on R3. The Hamiltonian H is obtained by integrating
the Hamiltonian density over M ′, i.e.,

H : TQ→ R, H =

∫
R3

H .

We leave it to the reader to check that this Hamiltonian is invariant under
time independent gauge transformations.
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2.3 Discretisation

We now show how to pass from the continuous version to the lattice ver-
sion of Hamiltonian gauge theory. Let M and M ′ be as in the previous
section, and let P ′ := M ′ × G with the obvious projection map π and
group action be the trivial principal fibre bundle over M ′ with structure
group G. Let ω be a connection on P , and consider a smooth curve
c : [0, 1] → M ′. Let Sc : π−1({c(0)}) → π−1({c(1)}) be the corresponding
parallel transport map, and let a ∈ G be the unique element such that
Pc(c(0),1G) = (c(1), a). By G-equivariance of the parallel transport map,
we have

Sc(c(0), g) = g · Sc(c(0),1G) = g · (c(1), a) = (c(1), g · a),

so with respect to the canonical trivialisation, the parallel transport map
Sc can be thought of as right multiplication with a.

Now suppose that we have two smooth curves c1, c2 : [0, 1] → M ′,
and suppose that c1(1) = c2(0), i.e., the end point of the first curve is
the starting point of the second. Let a1 and a2 be their corresponding
group elements, and let c2 ◦ c1 be a concatenation of these two curves.
(A reparametrisation of a curve does not result in a change of its parallel
transport map.) Then

Sc2◦c1(c(0),1G) = Sc2 ◦ Sc1(c(0),1G) = Sc2(c(0), a1) = (c(0), a1 · a2),

so a1 · a2 is the group element corresponding to c2 ◦ c1, i.e., concatena-
tion of curves corresponds to multiplication of the corresponding group
elements. Note that this is a consequence of the assumption that G acts
from the left on the principal bundle; if G acts from the right, which is
most often the case in the literature, then parallel transport corresponds
to left multiplication with a group element, and concatenation of curves
corresponds to multiplication in the opposite group. Since we prefer to
work with ordinary multiplication, this motivates our deviation from the
convention. An argument similar to the one above shows that if c2 = c−1

1 ,
then a2 = a−1

1 .
Next, we discuss gauge transformations. Before, we worked in the

canonical trivialisation, which corresponds to the section x 7→ (x,1G).
Now let c : [0, 1] → M ′ again be a curve in M ′, let g ∈ C∞(M ′, G), and
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consider the trivialisation Φ associated to the section x 7→ (x, g(x)). Let
a and a′ be the group elements associated to the parallel transport map
with respect to the first and second trivialisation, respectively. Then

(c(1), a′) = Φ ◦ Sc ◦ Φ−1(c(0),1G) = Φ ◦ Sc(c(0), g ◦ c(0))

= (g ◦ c(0)) · Φ ◦ Sc(c(0),1G) = (g ◦ c(0)) · Φ(c(1), a)

= (g ◦ c(0)) · a · Φ(c(1),1G) = (g ◦ c(0)) · a · (c(1), (g ◦ c(1))−1),

hence
a′ = (g ◦ c(0)) · a · (g ◦ c(1))−1.

We are now ready to introduce a lattice. Fix a finite set of points
Λ0 ⊂ M ′, and let Λ1 be a finite set of piecewise smooth paths between
elements of Λ0. The pair Λ := (Λ0,Λ1) is then a finite, oriented graph.
The starting and end points of an edge e ∈ Λ1 will be denoted by s(e) and
t(e), respectively. The idea behind lattice gauge theory is that the set of
maps

GΛ1
:= {f | f : Λ1 → G},

can serve as an approximation to the space of connections on the principal
fibre bundle P ′ over M ′. The gauge group is given by GΛ0

, and gauge
transformations are implemented by means of the group action

GΛ0 ×GΛ1 → GΛ1
, ((gx)x∈Λ0 , (ae)e∈Λ1) 7→ (gs(e)aeg

−1
(t(e)))e∈Λ1 ,

which is motivated by the calculation in the previous paragraph.
Thus far, the formalism in the Lagrangian case is the same as it is

in the Hamiltonian case, the only difference being that in the Lagrangian
case, Λ1 corresponds to edges in M as opposed to M ′. In the Hamiltonian
case, we must define a notion of phase space, which is typically done by
taking the cotangent bundle of the configuration space. The configuration
space is given by GΛ0

, hence phase space is given by T ∗(GΛ0
) endowed

with its canonical symplectic form. We can identify T ∗(GΛ0
) with (T ∗G)Λ0

using the corresponding isomorphism between tangent spaces. The action
of the gauge group on the configuration space induces an action on phase
space, which is given by

GΛ0 × (T ∗G)Λ1 → (T ∗G)Λ1
,

((gx)x∈Λ0 , (ae, ξe)e∈Λ1) 7→
(
gs(e)aeg

−1
t(e), ξe ◦ (Tae(Lgs(e) ◦Rg−1

t(e)
))−1

)
e∈Λ1

.
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2.2 Remark. The above action preserves the canonical symplectic form
and there is a canonical momentum map for this phase space. However,
since the action of the gauge group on the configuration and/or phase space
is not free, the associated Marsden–Weinstein quotient is not a manifold.
The analysis of the reduced phase space in a simple example of a lattice
consisting of one plaquette can be found in [38, 57, 56]. The analysis of
the reduced phase space for the general case can be done along the same
lines using spanning trees in the graph Λ, at least to the extent that one
is able to describe the Marsden–Weinstein quotient as a topological space;
describing the various strata is a more difficult problem. This is beyond
the scope of this thesis, however.

In order to write down a Hamiltonian, we impose the additional condition
on Λ that it is a cubic lattice in M ′ with lattice spacing `, and that each
edge is parallel to one of the coordinate axes of M ′ = R3. The Hamiltonian
of the corresponding lattice gauge theory is given by

H : (T ∗G)Λ1 → R,

(ae, ξe)e∈Λ1 7→
`3

2g2

∑
e∈Λ1

β∗G,ae(ξe, ξe) +
1

g2`

∑
p∈Λ2

Re (Tr(1− ρ(ap))) .

Here,

• βG denotes the bi-invariant Riemannian metric

βG,a(v, w) := Tr(dρa(v)∗ · dρa(w)),

on G, and β∗G is its pushforward under the musical isomorphism
TG→ T ∗G;

• Λ2 denotes the set of plaquettes of Λ, which are the loops in Λ that
are the concatenation of four distinct edges. The group element
associated to such a loop p is labelled ap. Although ap depends on the
orientation, and, in the nonabelian case, on the base point as well,
the expression Re(Tr(ρ(ap))) does not. Indeed, it is independent
of the orientation of the loop, because a reversal of the orientation
changes ap into a−1

p , and since ρ is a unitary representation, we find
that

Tr(ρ(a−1
p )) = Tr(ρ(ap)

∗) = Tr(ρ(ap)),
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hence the real parts of Tr(ρ(a−1
p )) and Tr(ρ(ap)) are equal. It is

independent of the base point of p, since a different choice of base
point results in conjugation of ap with an element b ∈ G, and we
have

Tr(ρ(bapb
−1)) = Tr(ρ(b)ρ(ap)ρ(b)−1) = Tr(ρ(ap)).

This argument can also be used to show that Tr(ρ(ap)) is gauge
invariant.

The first instance of a Hamiltonian for lattice gauge theory can be found in
the original paper by Kogut and Susskind in [62]. The Hamiltonian above
however resembles more closely that of Rudolph and Schmidt in [103,
section 10.7], who give the Hamiltonian for the case in which G = SU(3)
and ρ is the defining representation of SU(3) on C3.

The first and second sum in the formula for the Hamiltonian are called
the electric and magnetic term, respectively. We have just argued that the
magnetic term is gauge invariant. The electric term is gauge invariant,
since βG is a bi-invariant Riemannian metric, thus the Hamiltonian is
gauge invariant. Both terms and their names will be motivated in the
following two sections. Let us already mention that in this expression for
H, in the case of electromagnetism (G = U(1)), ξe should be thought of
as the average of the electric field on the path e.

2.4 The magnetic term

We start by motivating the magnetic term in the Hamiltonian. Its con-
tinuum counterpart is the term

1

2g2

∫
R3

∑
1≤µ<ν≤3

〈Fµν , Fµν〉g dx.

First of all, let us mention that in the case of electromagnetism, Fµν =
εµνjBj , where µ < ν, the number j is such that {µ, ν, j} = {1, 2, 3}, and
εµνj is the Levi-Civita tensor, i.e., the sign of the permutation that maps 1,
2 and 3 to µ, ν and j, respectively. Here, we assume that the magnetic field
Bj in the j-th direction takes values in g = iR; to obtain the corresponding
real number, which is the quantity that physicists work with, one should



36 CHAPTER 2. CLASSICAL LATTICE GAUGE THEORY

multiply by −ig−1 (where g denotes the coupling constant that appears
in the Lagrangian density mentioned at the beginning of section 2.2).

We return to the general setting, dropping the assumption that G =
U(1). To approximate the integral, we fix a compact subset C ⊆ R3, and
a cubic lattice Λ that is embedded in C in such a way that the small closed
cubes of which each edge is (the image of) an element of Λ1 are contained
in C, and the sum of their volumes is approximately equal to the volume
of C. We assume in addition that the field F is approximately constant
over a distance of the order of the lattice spacing `, and that it is negligible
outside of C, so that we have∫

R3

∑
1≤µ<ν≤3

〈Fµν , Fµν〉g dx ≈
∫
C

∑
1≤µ<ν≤3

〈Fµν , Fµν〉g dx

≈
∑
x∈X

`3
∑

1≤µ<ν≤3

〈Fµν(x), Fµν(x)〉g,

where

X := {x ∈ Λ0 : x+ `eµ, x+ `eν , x+ `(eµ + eν) ∈ Λ0 for 1 ≤ µ < ν ≤ 3},

where eµ ∈ R3 denotes the µ-th standard basis vector.
Before we move on to the next step, we prove the following result:

2.3 Proposition. Let (P,M,G, π) be a principal fibre bundle, let ω ∈
Ω1(P, g∗) be a connection 1-form on this bundle, and let Dω ∈ Ω2(P, g∗)
be its covariant derivative, i.e., the curvature 2-form associated to ω. Let
p ∈ P , let v, w ∈ Tπ(p)M , let (U,ϕ) be a chart on M such that π(p) ∈ U
and ϕ ◦ π(p) = 0, and let θ := dϕπ(p) : Tπ(p)M → Rn. Furthermore, fix
δ > 0 such that the convex hull of the points 0, δθ(v), δθ(w) and δθ(v+w)
is a subset of ϕ(U). For each t ∈ (0, δ], let ct : [0, 4t] → ϕ(U) be the
piecewise smooth loop based at ϕ ◦ π(p) given by

ct(s) :=


sθ(v) s ∈ [0, t]
tθ(v) + (s− t)θ(w) s ∈ (t, 2t]
(3t− s)θ(v) + tθ(w) s ∈ (2t, 3t]
(4t− s)θ(w) s ∈ (3t, 4t]

.

Finally, for any curve c : [a, b] → M , let Sc : π−1({c(a)}) → π−1({c(b)})
be the associated parallel transport map (for the connection ω). Then for
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each smooth local section σ of π defined in a neighbourhood of π(p), we
have

Dωp(Tπ(p)σ(v), Tπ(p)σ(w)) = −ωp
(
d

dt
Sϕ−1◦c√t(p)

∣∣∣
t=0

)
.

Proof. First, we note that the vectors v, w ∈ Tπ(p)M can be extended to
vector fields V0 and W0 on M such that they are constant with respect to
the chart (U,ϕ) on the convex hull of the images of the points 0, δθ(v),
δθ(w) and δθ(v+w) under ϕ−1. Now let V and W be the unique horizontal
lifts to P of V0 and W0, respectively, i.e., V is the unique vector field on
P such that

V (p) ∈ kerωp ∩ Tpπ−1({V0 ◦ π(p)}),

for each p ∈ P , and W is defined similarly. Let ΦV and ΦW be their
flows on P . Then for any local section σ of π defined in a neighbourhood
of π(p), the vectors Tπ(p)σ(v) − V (p) and Tπ(p)σ(w) −W (p) are vertical,
hence we obtain

Dωp(Tπ(p)σ(v), Tπ(p)σ(w)) = Dωp(V (p),W (p)) = dωp(V (p),W (p))

= −ω([V,W ])(p),

where in the final step, we used the invariant formula

dω(V,W ) = V (ω(W ))−W (ω(V ))− ω([V,W ]).

Furthermore, we have

Sϕ−1◦ct(p) = ΦW,−t ◦ ΦV,−t ◦ ΦW,t ◦ ΦV,t(p),

for each t ∈ (0, δ], which yields

d

dt
Sϕ−1◦c√t(p)

∣∣∣
t=0

=
d

dt
ΦW,−

√
t ◦ ΦV,−

√
t ◦ ΦW,

√
t ◦ ΦV,

√
t(p)

∣∣∣
t=0

= [V,W ](p);

the second step is a consequence of the discussion in [106, pp. 159–163].
Applying the map ωp to both sides of this equation and comparing it to the
expression for Dωp(Tπ(p)σ(v), Tπ(p)σ(w)), we obtain the desired result. �
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We now resume the derivation of the magnetic term in the Hamiltonian.
Fix x ∈ X and µ, ν ∈ {1, 2, 3}, with µ < ν. There is an associated
plaquette p of which the four corners are given by x, x+`eµ, x+`(eµ+eν),
and x+ `eν . We claim that

(2.1) 〈Fµν(x), Fµν(x)〉g ≈
2

`4
Re (Tr(1− ρ(ap))) .

Let σ be the canonical section of P ′, let ω be the connection on P ′ such
that F = σ∗(Dω). Applying Proposition 2.3, we find that

Fµν(x) = −ωσ(x)

(
d

dt
Pφ−1◦c√t ◦ σ(x)

∣∣∣
t=0

)
,

where the vectors v and w that are used to define the curve c√t in the

proposition are ∂
∂xµ

∣∣
x

and ∂
∂xν

∣∣
x
, respectively. For each t > 0, the parallel

transport map Pφ−1◦c√t can be viewed as right multiplication with a group

element; for each t > 0, let b(t) be this group element, and let a(t) := b(t2).
Note that ap = a(`). Furthermore, we have

Pφ−1◦c√t ◦ σ(x) = (x, b(t))

The right-hand side is a curve in the image of the fibre of P ′ over x, with
tangent vector

d

dt
(x, b(t))|t=0 =

d

dt

(
x, exp(t · b′(0)) · 1G

)
·
∣∣
t=0

at t = 0, hence
Fµν(x) = −b′(0),

and therefore
dρ1G(Fµν(x)) = −dρ1G(b′(0)).

Next, let us approximate b′(0) in terms of ap. Applying the chain rule to
ρ(a(t)), we obtain

d

dt
ρ(a(t))|t=0 = 0,

d2

dt2
ρ(a(t))|t=0 = 2dρ1G(b′(0)),

hence, by L’Hôpital’s rule,

dρ1G(b′(0)) = lim
t→0

ρ(a(t))− ρ(a(0))

t2
.
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Since a(0) = 1G, we thus find

dρ1G(b′(0)) ≈ ρ(a(t))− 1

t2
,

for t ≈ 0. In particular, taking t = `, we obtain

〈Fµν(x), Fµν(x)〉g = Tr(dρ1G(b′(0))∗ · dρ1G(b′(0)))

≈ Tr

(
ρ(ap)

∗ − 1

`2
· ρ(ap)− 1

`2

)
=

2

`4
Re (Tr(1− ρ(ap))) ,

which is equation (2.1).

To arrive at the expression for the magnetic term in the Hamiltonian,
we must make the additional assumption that the number of small cubes
with volume `3 enclosed by the edges of Λ is large; if Λ encloses a large
cube, as sketched in section 2.1, then this translates to the assumption
that N is large. This is necessary to show that

∑
x∈X

`3
∑

1≤µ<ν≤3

〈Fµν(x), Fµν(x)〉g ≈
∑
p∈Λ2

`3 · 2

`4
Re (Tr(1− ρ(ap)))

=
2

`

∑
p∈Λ2

Re (Tr(1− ρ(ap))) ,

since in the present case, X is a proper subset of Λ0, and not every
plaquette formed by Λ occurs as a plaquette p in the previous paragraph.
The assumption guarantees that the error in the magnetic term due to
these facts remains small compared to the magnetic term itself. Putting
all of the approximations together, we obtain

1

2g2

∫
R3

∑
1≤µ<ν≤3

〈Fµν , Fµν〉g dx ≈
1

g2`

∑
p∈Λ2

Re (Tr(1− ρ(ap))) ,

as desired.
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2.5 The electric term

The continuum counterpart of the electric term is

1

2g2

∫
R3

3∑
ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

dx.

Again, in the case of electromagnetism, under the additional assumption
that the temporal gauge has been imposed, we have

∂Aν
∂x0

= −Eν
c
,

where c denotes the speed of light, and Eν the electric field in the ν-th
direction, which explains the use of the term ‘electric’, and our fields take
values in g; one has to multiply by −ig−1 to obtain the quantity physicists
work with.

The first steps to arrive at the lattice approximation of this expression,
namely choosing a compact subset C ⊆ R3 and a lattice Λ, are the same
as those in the magnetic case. The approximation obtained from these
steps is ∫

R3

3∑
ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

dx ≈
∑
x∈X

`3
3∑

ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

.

Our next objective is to show how a change in the group element associated
to an edge in Λ1 corresponding to a curve that goes into the positive ν-
direction is related to ∂Aν

∂x0 . To this end, it is useful to first prove a more
general result.

2.4 Lemma. Let (P,M,G, π) be a principal fibre bundle, let ω be a con-
nection on P and let c : [0, 1] → M be a smooth curve. Furthermore,
let σ be a local section of P whose domain contains the image of c, let
A := σ∗(ω), and let a : [0, 1] → G be the curve on G determined by the
requirement that for each s ∈ [0, 1], the element a(s) is the group element
corresponding to the parallel transport map of ω along the curve c|[0,s] in
the gauge σ; in particular, a(0) = 1G for each t ∈ R. Then for each
s0 ∈ [0, 1], we have

d

ds
(a(s) · a(s0)−1)|s=s0 = −Ad(a(s0)) ◦Ac(s0)

(
c′(s0)

)
.
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or equivalently,

d

ds
(a(s0)−1 · a(s))|s=s0 = −Ac(s0)

(
c′(s0)

)
.

Proof. let Φ be the local trivialisation corresponding to σ, and let
γ : [0, 1]→ P be the unique lift of c to P determined by{

ωγ(s)(γ
′(s)) = 0, s ∈ [0, 1]

γ(0) = σ ◦ c(0)
.

By definition of a, we have

Φ ◦ γ(s) = (c(s), a(s)),

hence, by equivariance of Φ, we have

γ(s) = a(s) · Φ−1(c(s),1G) = a(s) · σ ◦ c(s).

It follows that for each s0 ∈ [0, 1], we have

0 = ωγ(s0)(γ
′(s0))

= ωγ(s0)

(
d

ds
(a(s) · a(s0)−1) · γ(s0)|s=s0

)
+ ωa(s0)·σ◦c(s0)

(
Tσ◦c(s0)La(s0)

d

ds
σ ◦ c(s)|s=s0

)
=

d

ds
(a(s) · a(s0)−1)|s=s0 + Ad(a(s0)) ◦Ac(s0)

(
c′(s0)

)
,

from which the assertion readily follows. �

2.5 Proposition. Let (P,M,G, π) be a principal fibre bundle over M with
structure group G, let ω be a connection on P . Let

c : (−ε, ε)× [0, 1]→M,

be a smooth map, which we view as a family of smooth curves [0, 1]→M .
Furthermore, let σ be a local section of P whose domain contains the image
of c, and let

a : (−ε, ε)× [0, 1]→ G,
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be the associated smooth family of smooth curves [0, 1] → G determined
by the requirement that for each (t, s) ∈ (−ε, ε)× [0, 1], the element a(t, s)
is the group element corresponding to the parallel transport map of ω
along the curve c|{t}×[0,s] with respect to the chosen gauge σ; in partic-
ular, a(t, 0) = 1G for each t ∈ (−ε, ε). Then, we have

∂

∂t
a(t, 1) · a(0, 1)−1

∣∣
t=0

= −
∫ 1

0
Ad(a(0, s))

(
∂

∂t
Ac(t,s)

(
∂

∂s′
c(s′, t)|s′=s

)∣∣∣∣
t=0

)
ds.

Proof. Let s0 ∈ [0, 1], and let (U,ϕ) be a chart on G such that 1G ∈ U .
Then

∂

∂s

∂

∂t
a(t, s) · a(0, s)−1

∣∣s=s0
t=0

=
∂

∂s
dϕ−1

1G
◦ dϕ1G

(
∂

∂t
(a(t, s) · a(0, s)−1)

∣∣
t=0

)∣∣∣∣
s=s0

= dϕ−1
1G

(
∂

∂s

∂

∂t
ϕ(a(t, s) · a(0, s)−1)

∣∣s=s0
t=0

)
= dϕ−1

1G

(
∂

∂t

∂

∂s
ϕ(a(t, s) · a(0, s)−1)

∣∣s=s0
t=0

)
= dϕ−1

1G

(
∂

∂t
dϕ

(
T1GRa(t,s0)·a(0,s0)−1

(
∂

∂s
a(t, s) · a(t, s0)−1

∣∣
s=s0

)
+ T1GLa(t,s0)·a(0,s0)−1

(
∂

∂s

(
a(0, s) · a(0, s0)−1

)−1
∣∣∣
s=s0

))∣∣∣∣
t=0

)
.

We now apply Lemma 2.4 twice; first, note that

T1GRa(t,s0)·a(0,s0)−1

(
∂

∂s
a(t, s) · a(t, s0)−1

∣∣
s=s0

)
= −T1GRa(t,s0)·a(0,s0)−1 ◦Ad(a(t, s0)) ◦Ac(t,s0)

(
∂

∂s
c(t, s)|s=s0

)
= −T1G

(
La(t,s0) ◦Ra(0,s0)−1

)
◦Ac(t,s0)

(
∂

∂s
c(t, s)|s=s0

)
,
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and similarly, one finds that

T1GLa(t,s0)·a(0,s0)−1

(
∂

∂s

(
a(0, s) · a(0, s0)−1

)−1
∣∣∣
s=s0

)
= T1GLa(t,s0)·a(0,s0)−1 ◦Ad(a(0, s0)) ◦Ac(0,s0)

(
∂

∂s
c(0, s)|s=s0

)
= T1G

(
La(t,s0) ◦Ra(0,s0)−1

)
◦Ac(0,s0)

(
∂

∂s
c(0, s)|s=s0

)
,

hence

∂

∂s

∂

∂t
a(t, s) · a(0, s)−1

∣∣s=s0
t=0

= −dϕ−1
1G

(
∂

∂t
dϕ ◦ T1G

(
La(t,s0) ◦Ra(0,s0)−1

)(
Ac(t,s0)

(
∂

∂s
c(t, s)|s=s0

)
−Ac(0,s0)

(
∂

∂s
c(0, s)|s=s0

))∣∣∣∣
t=0

)
= −dϕ−1

1G

(
∂

∂t
dϕ ◦ T1G

(
La(t,s0) ◦Ra(0,s0)−1

)
(0)
∣∣
t=0

)
−Ad(a(0, s0))

(
∂

∂t
Ac(t,s0)

(
∂

∂s
c(t, s)|s=s0

))
= −Ad(a(0, s0))

(
∂

∂t
Ac(t,s0)

(
∂

∂s
c(s, t)|s=s0

)∣∣∣∣
t=0

)
.

Here, in the second step, we used the chain rule. Applying the fundamental
theorem of calculus and using the fact that a(t, 0) = 1G for each t ∈
(−ε, ε), we obtain

∂

∂t
a(t, 1) · a(0, 1)−1

∣∣
t=0

=
∂

∂t
a(t, 0) · a(0, 0)−1

∣∣
t=0

+

∫ 1

0

∂

∂s

∂

∂t
a(t, s) · a(0, s)−1

∣∣
t=0

ds

= −
∫ 1

0
Ad(a(0, s))

(
∂

∂t
Ac(t,s)

(
∂

∂s′
c(s′, t)|s′=s

)∣∣∣∣
t=0

)
ds,

as desired. �
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We now apply this proposition as follows. Let M := R ×M ′, let P :=
M ×G, let ω be a connection on P , let σ ∈ Γ∞(P ) be a section such that
A := σ∗(Dω) is in the temporal gauge, and let x ∈M ′. Consider the map

c : R× [0, 1]→M, (t, s) 7→ (t, x) + s` · eν ,

that represents a smooth family of smooth curves [0, 1]→M . Let

a : R× [0, 1]→ G,

be the map that has the property that for each (t, s) ∈ R× [0, 1], a(t, s) is
the group element corresponding to the parallel transport map of ω along
the curve c|{t}×[0,s] with respect to the gauge σ. Proposition 2.5 then
yields

∂

∂t
a(t, 1) · a(t0, 1)−1

∣∣
t=t0

= −`
∫ 1

0
Ad(a(t0, s)) ◦

∂Aν
∂x0

◦ c(t0, s) ds,

for each t0 ∈ R. This formula can be simplified somewhat by imposing
a constraint in addition to the temporal gauge. By using an argument
similar to the one in Proposition 2.1, we may find a gauge σ′ that is
obtained from σ by applying a gauge transformation that does not vary
in the time direction in such a way that, with respect to this gauge, we
have

A(t0,x)

(
∂

∂xν

∣∣∣∣
(t0,x)

)
= 0,

for each x ∈ M ′. Lemma 2.4 now implies that a(t0, s) = 1G for each
s ∈ [0, 1], therefore

(2.2)
∂

∂t
a(t, 1)|t=t0 = −`

∫ 1

0

∂Aν
∂x0

◦ c(t0, s) ds,

and hence

(2.3)
∂Aν
∂x0

≈ −`−1 · ∂
∂t

a(t, 1)|t=t0 ,

with respect to σ′ in some neighbourhood of the image of the curve
c|{t0}×[0,1], provided that ` is small and one has some control over the
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variation of
∂Aν
∂x0

. Note that the norm of
∂Aν
∂x0

does not change when

passing from σ to σ′.

Thus, in the lattice approximation, if the state of the system is de-
scribed by the element (ae, ve)e∈Λ1 ∈ (TG)Λ1 ∼= T (GΛ1

), then we have

∑
x∈X

`3
3∑

ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

≈
∑
e∈Λ1

`3 · βG,ae(`−1ve, `
−1ve),

where we make the same assumption on the lattice Λ as at the end of
the last section to motivate this approximation. For reasons that will
be discussed in chapter 8, and in particular in Example 8.14, a natural
Riemannian metric on GΛ1

is

TaG
Λ1 × TaGΛ1 → R,

((ve)e∈Λ1 , (we)e∈Λ1) 7→
∑
e∈Λ1

`−1
e βG,ae(ve, we).

Here, a = (ae)e∈Λ1 ∈ GΛ1
, and `e denotes the length of an edge e ∈ Λ1;

in the case of a cubic lattice with lattice spacing `, all lengths are of
course equal to `. We use the musical isomorphism corresponding to
this inner product to establish an isomorphism TGΛ1 → T ∗GΛ1

. If
(ae, ξe)e∈Λ1 ∈ (T ∗G)Λ1 ∼= T ∗GΛ1

denotes the image of (ae, ve)e∈Λ1 under
this isomorphism, then∑

e∈Λ1

`3 · βG,ae(`−1ve, `
−1ve) ≈

∑
e∈Λ1

`3 · β∗G,ae(ξe, ξe),

and in the case of electromagnetism, ξe represents the average electric field
on e. Thus we obtain

1

2g2

∫
R3

3∑
ν=1

〈
∂Aν
∂x0

,
∂Aν
∂x0

〉
g

dx ≈ `3

2g2

∑
e∈Λ1

β∗G,ae(ξe, ξe),

which justifies the electric term in the Hamiltonian for the lattice gauge
theory.
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Chapter 3

Gauss’s law and reduction

In this chapter, we give an operator-algebraic interpretation of the notion
of an ideal generated by the unbounded operators associated to the ele-
ments of the Lie algebra of a Lie group that implements the symmetries of
a quantum system. We use this interpretation to establish a link between
Rieffel induction and the implementation of a local Gauss law in lattice
gauge theories similar to the method discussed by Kijowski and Rudolph
in [60, 61]. This chapter is based on [107].

3.1 Introduction

There are well-developed theories of reduction of both classical and
quantum mechanical systems that possess symmetries. The study of re-
duction of classical systems was initiated by Dirac in [32] with his theory of
first and second order constraints, and later put into the language of sym-
plectic manifolds by Arnold and Smale. The reduction of a symplectic
manifold with respect to an equivariant moment map was described by
Marsden and Weinstein in their paper [81]. For a more detailed account of
the history of symplectic reduction, we refer to [82] and references therein.
A procedure known as Rieffel induction, developed in [96], appears to be
a good candidate for a quantum version of Marsden–Weinstein reduction
[64] (cf. [65, IV.2]).

The primary aim of this chapter is to compare two different ways to
reduce the quantum mechanical observable algebra. The first one is the

47
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method of Rieffel induction mentioned above. The second one was out-
lined by Kijowski and Rudolph in [60, 61] in the context of a quantum
lattice gauge theory, in which they explicitly implement a constraint, the
local Gauss law, by ensuring that the operators associated to the gener-
ators of the gauge group vanish in the observable algebra of the reduced
system. The corresponding operators on the unreduced Hilbert space are
unbounded, however, which requires them to appeal to the theory of C∗-
algebras generated by unbounded operators as developed by Woronowicz
in [121], something that is not necessary for Rieffel induction. Neverthe-
less, both procedures yield the same reduced observable algebra. In this
chapter, we modify the latter method so that it is formulated entirely in
terms of bounded operators, and show that it agrees with the final step in
the process of Rieffel induction.

This chapter is organised as follows. In section 2, we briefly recall the
process of Rieffel induction. In section 3, we formulate and prove the main
theorem that establishes the link. In section 4, we discuss some examples,
including the lattice gauge theory mentioned above.

3.2 Reduction of quantum systems using Rieffel
induction

The kinematical data of a quantum system consists of a Hilbert space H
and a faithful representation π of a C∗-algebra A on H. A continuous sym-
metry of a quantum system typically (but, in accordance with Wigner’s
celebrated theorem, not exclusively,) corresponds to a continuous unitary
representation ρ : K → U(H) of some Lie group K on H. We are inter-
ested in studying the reduction of the kinematical data with respect to
such symmetries in the case in which K is both compact and connected.
A systematic way to obtain this reduction, known as Rieffel induction,
was proposed by Landsman in [64] using an induction procedure for rep-
resentations of C∗-algebras developed by Rieffel in [96].

Let us first briefly recall the process of Rieffel induction; we refer the
reader who wants more detail to [65, Part IV]. The exposition provided by
Wren [122] is a nice introduction to the subject. Starting from the above
representation of the group K, one endows H with the structure of a right
Hilbert C∗(K)-module, where C∗(K) denotes the group C∗-algebra of K.
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One subsequently takes the quotient of H with respect to the null space
of a bilinear form on H, which yields a space naturally isomorphic to HK ,
the subspace of H of K-invariant elements. Thus we obtain the Hilbert
space of the reduced system.

At the level of the observable algebra, one first considers the algebra
AK of elements of A that are invariant with respect to the given unit-
ary representation. The space HK is invariant under these observables,
yielding a representation πK of the C∗-algebra AK on HK . The image of
this representation is isomorphic to AK/ ker(πK), and hence one obtains a
faithful representation of AK/ ker(πK) on HK , which forms the remaining
part of the kinematical data of the reduced system.

Motivated by the theory of strict quantization of observable algebras
as described extensively in [65, Part II], we are interested in the case where
A = B0(H), the space of compact operators, and its representation on H
is the obvious one. It can then be shown that AK/ ker(πK) is isomorphic
to B0(HK), and that the representation of this algebra on the reduced
Hilbert space HK is again the obvious one.

3.3 Associating algebras to infinitesimal gener-
ators

The main purpose of this section is to discuss a possible interpretation
of an observation made by Kijowski and Rudolph in [61, section 3] in
the case of a quantum lattice gauge theory, namely that the kernel of
the representation πK : AK → B(HK), where as before A = B0(H), is in
some sense generated by the elements of the Lie algebra k of the symmetry
group K. Using Stone’s theorem on strongly continuous one-parameter
groups of unitary operators, the representation of the group K on H can
be used to associate anti-self adjoint operators on H to the elements of k.
In the examples that we are interested in, these anti-self adjoint operators
are differential operators and the Hilbert space on which they are defined
is infinite-dimensional, which results in the fact that the operators are
unbounded. If instead the representation space is finite-dimensional then
the representation of the Lie algebra k is bounded. Using this fact and
other standard results from the representation theory of Lie groups, we
will show how the operators associated to the elements of the Lie algebra



50 CHAPTER 3. GAUSS’S LAW AND REDUCTION

generate ker(πK). In addition, we need the following preparatory lemma,
which can be found in [87, Exercise 4.2(c)]:

3.1 Lemma. Let (H, 〈·, ·〉) be a Hilbert space, let a be a compact operator
on H, and suppose that (bj)j∈J is a bounded net of bounded operators that
converges strongly to b ∈ B(H). Then the net (bja)j∈J converges in norm
to ba. If in addition the operator bj is hermitian for each j ∈ J , then the
net (abj)j∈J converges in norm to ab.

The following result shows how ker(πK) can be generated by unbounded
operators. Throughout the rest of this chapter, given a continuous repres-
entation σ of a Lie group with unit element 1, the associated Lie algebra
representation dσ1 will be denoted by σ as well.

3.2 Theorem. Let K, π, A, H and πK be as above. Let S be a collec-
tion of finite-dimensional subrepresentations of a continuous representa-
tion ρ : K → U(H), and for each σ ∈ S, let Hσ ⊆ H be the subspace on
which σ is represented. Suppose that these representation spaces form an
orthogonal decomposition of H, i.e.,

H =
⊕
σ∈S
Hσ.

Then ker(πK) is the closed, two-sided ideal generated by the set

(3.1)

{∫
K
ρ(k)σ(X)nρ(k)−1 dk : σ ∈ S, X ∈ k, n ≥ 1

}
.

3.3 Remark. In the set of generators above, σ(X) is regarded as the
compression of ρ(X) toHσ. Moreover, we note that the integrals of vector-
valued functions can be defined using Bochner integration.

Proof of Theorem 3.2. Let I be the ideal in AK generated by the set in
equation (3.1). We first show that I ⊆ ker(πK). Indeed, σ(X)n maps
H into Hσ for each σ ∈ S, each X ∈ k and each n ≥ 1, hence so does∫
K ρ(k)σ(X)nρ(k)−1 dk, which implies that it is a finite rank operator. In

particular, it is compact. Moreover, it follows from left invariance of the
Haar measure that

∫
K ρ(k)σ(X)nρ(k)−1dk is equivariant with respect to ρ,
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so it is an element of AK . Finally, to show that it is an element of ker(πK),
let pσ : H → Hσ be the orthogonal projection onto the representation space
of σ. For each v ∈ HK we have pσv ∈ HK and σ(X)v = 0. Hence∫

K
ρ(k)σ(X)nρ(k)−1(v) dk =

∫
K
ρ(k)σ(X)n(v) dk = 0,

and therefore
∫
K ρ(k)σ(X)nρ(k)−1 dk ∈ ker(πK). Thus the generators of

I are contained in ker(πK). Since ker(πK) is a closed, two sided ideal, it
follows that I ⊆ ker(πK).

We turn to the proof of the reverse inclusion. Let b ∈ ker(πK), let pHK
be the orthogonal projection of H onto HK . It is easy to see that

pHK =

∫
K
ρ(k) dk.

Since b ∈ ker(πK), it follows that

b = b(IdH − pHK ) = b

∫
K

(IdH − ρ(k)) dk =
∑
σ∈S

b

∫
K

(pσ − σ(k)) dk.

By the preceding lemma, the series on the right-hand side is norm-
convergent, hence to show that b ∈ I, it suffices to show that

b

∫
K

(pσ − σ(k)) dk ∈ I,

for each σ ∈ S. Since I is closed under multiplication with elements of
AK , we are done if we can show that∫

K
(pσ − σ(k)) dk ∈ I.

From bi-invariance of the Haar measure and Fubini’s theorem, we infer
that ∫

K
(pσ − σ(k)) dg =

∫
K

∫
K
ρ(h)(pσ − σ(k))ρ(h)−1 dh dk.

The norm topology and the strong topology coincide on the finite-
dimensional algebra B(Hσ), so the first integral on the right-hand side
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is a norm limit of Riemann sums, i.e. for each ε > 0, there exist kj ∈ K
and cj ≥ 0 for j = 1, . . . , n, such that∥∥∥∥∫

K

∫
K
ρ(h)(pσ − σ(k))ρ(h)−1 dh dk

−
n∑
j=1

cj

∫
K
ρ(h)(pσ − σ(kj))ρ(h)−1 dh

∥∥∥∥∥∥ < ε.

Since I is closed by definition, it suffices to show that

n∑
j=1

cj

∫
K
ρ(h)(pσ − σ(kj))ρ(h)−1 dh ∈ I.

We prove this by showing that

(∗)
∫
K
ρ(h)(pσ − σ(k))ρ(h)−1 dh ∈ I,

for each k ∈ K. Now fix such a k. Because K is both compact and
connected, the exponential map exp: k → K is surjective, so there exists
an X ∈ k such that k = exp(X). But σ is a homomorphism of Lie groups,
so

σ(k) = σ ◦ exp(X) = exp ◦σ(X) = pσ

∞∑
j=0

σ(X)j

j!
.

Thus

pσ − σ(k) = −
∞∑
j=1

σ(X)j

j!
.

The map

B(Hσ)→ B(Hσ), a 7→
∫
K
ρ(h)aρ(h)−1 dh,

is a linear operator on the finite-dimensional algebra B(Hσ), hence it is
norm-continuous, so∫

K
ρ(h)(pσ − σ(k))ρ(h)−1 dh = −

∞∑
j=1

1

j!

∫
K
ρ(h)σ(X)jρ(h)−1 dh,
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and the series on the right-hand side converges with respect to the norm
on B(H). Each of the partial sums is an element of I, which implies that
(∗) holds, as desired. �

In general, the set S in the above theorem will not be unique. Suppose
that we are in the situation of the theorem, and that we are given a set S
satisfying the assumption. If the Hilbert space H is infinite-dimensional,
there are infinitely many different sets like S that satisfy the assumption.
Indeed, S is an infinite set becauseH is infinite-dimensional, so we can take
any finite subset F ⊆ S containing at least two representations, define the
subrepresentation σF :=

⊕
σ∈F σ, and the set S′ = (S\F ) ∪ {σF }. Then

S′ 6= S, and it satisfies the assumption of the theorem.
The last argument can be formulated slightly more generally as fol-

lows: Suppose that S1 and S2 are sets of orthogonal finite-dimensional
subrepresentations, and that S1 satisfies the assumption of the theorem.
If each element of S1 is a subrepresentation of S2, then S2 also satisfies
the assumption. If H is infinite-dimensional, then from any set S1 one
can always construct a different set S2 with these properties. Thus one
can always make the set S ‘arbitrarily coarse’, which is another reason
why we view Theorem 3.2 as a possible way to make the idea of ‘the ideal
generated by unbounded operators’ rigorous.

The fact that a set S like the one in Theorem 3.2 always exists, is a
consequence of the following result. Recall that for any representation ρ
of a group K on a space V , a vector v is called K-finite if and only if the
smallest subspace containing v that is invariant under ρ, i.e., the span of
{ρ(k)v : k ∈ K}, is finite-dimensional. We let V fin denote the subspace of
K-finite vectors of V .

3.4 Proposition. Let ρ be a continuous representation of a compact Lie
group K in a complete locally convex topological vector space V . Then
V fin is dense in V .

This result can be found in [35] as part of Corollary 4.6.3. Using this
result and Zorn’s lemma, one can now readily show that there exists a set
S that satisfies the assumption of our theorem. Needless to say, explicitly
exhibiting such a set might be impossible. However, as we shall see in the
next section, there are situations in which there is a canonical choice for
S.
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To prepare for the examples in the final section, we briefly recall some
other notions from representation theory. Let K̂ be the set of equivalence
classes of irreducible representations of K, and let [δ] ∈ K̂. The isotypical
component of type [δ] is the set V [δ] of elements v ∈ V fin such that the
subrepresentation generated by v is equivalent to the representation δ ⊕
· · · ⊕ δ (n copies) for some n ∈ N.

3.4 Examples

3.5 Example. (Local Gauss law in quantum lattice gauge theories)

We start with the motivating example for this chapter, namely the local
Gauss law discussed by Kijowski and Rudolph in [61] in the context of
quantum lattice gauge theories. Suppose that we have a finite, oriented,
connected graph Λ embedded in the base manifold of a principal fibre
bundle with compact structure group G, and consider the corresponding
lattice gauge theory, as in section 2.3. Let G := GΛ0

, and letA := GΛ1
, and

consider the action of G on A. This action induces a continuous unitary
representation ρ of G on H := L2(A) by (ρ(g)(ψ))(a) := ψ(g−1 · a), where
g ∈ G, ψ ∈ H and a ∈ GΛ1

. The Hilbert space H is considered to be the
quantisation of the classical phase space T ∗A, and the algebra of compact
operators on H is the associated field algebra; this will be elaborated on
in the next chapter.

Baez already noted in [12] that the action of G restricts to the iso-
typical components of H with respect to the left regular representation
of GΛ1

on this space —in fact, the G-invariant subspaces of the isotyp-
ical components form the basis for spin networks as introduced in [101].
Indeed, the representation ρ can be regarded as the composition of two
group homomorphisms; first, we have a homomorphism

ι : G → GΛ1 ×GΛ1 ' (G×G)Λ1
, (gx)x∈Λ0 7→ (gs(e), gt(e))e∈Λ1 ,

which by connectedness of the graph is an injection if and only if Λ has
more than one vertex. The second homomorphism is the product repres-
entation L × R : GΛ1 × GΛ1 → U(H) of the left and right regular repres-
entations L and R, respectively. It follows that each subspace of H that
is invariant under the representation L×R, is also invariant under ρ. The
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Peter–Weyl theorem asserts that

Hfin =
⊕

[δ]∈ĜΛ1

H[δ],

and that the isotypical componentsH[δ] are irreducible subrepresentations
of the representation L×R of dimension dim(δ)2. Here, Hfin denotes the
set of GΛ1

-finite vectors with respect to the left regular representation of
GΛ1

on L2(A). Thus we may take the set S in Theorem 3.2 to be the
collection of subrepresentations obtained by restricting ρ to H[δ] for each

δ ∈ ĜΛ1 .
Since the elements of the Lie algebra of the gauge group G generate the

gauge group, Theorem 3.2 provides a link between two different methods
of reduction of the quantum observable algebra, the first being Rieffel
induction, and the second being the implementation of a local Gauss law
by taking the quotient with respect to an ideal generated by unbounded
operators associated to Lie algebra elements, as mentioned by Kijowski
and Rudolph in [61].

3.6 Example. (Hamiltonian symmetries)
The second example that we discuss is really a class of examples, namely
that of quantum systems with a given Hamiltonian that possesses a certain
symmetry. Let H be a Hilbert space, let H be a (possibly unbounded)
self-adjoint operator on H, and suppose ρ : K → U(H) is a continuous
unitary representation of a compact connected Lie group K on H with the
property that ρ(k) preserves Dom(H) and [ρ(k), H] = 0 for each k ∈ K.
Moreover, let σp(H) be the point spectrum of H, and for each λ ∈ σp(H),
let Hλ be the eigenspace corresponding to λ. Suppose that Hλ is finite
dimensional for each λ ∈ σp(λ), and that H =

⊕
λ∈σp(H)Hλ. Then ρ

restricts to a representation ρλ on Hλ for each λ ∈ σp(H), and we may set
S := {ρλ : λ ∈ σp(H)}.

A notable subclass of examples satisfying the above conditions is the
class of quantum systems in which H = L2(Q), where Q is a compact
smooth Riemannian manifold that admits a Lie group of isometries, and
H = ∆ is the Laplacian on Q. In particular, the lattice gauge theories
in Example 3.5 can be studied in this way if one endows GΛ1

with a bi-
invariant Riemannian metric. It is a result from representation theory (cf.
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[110, Theorem 3.3.5]) that H[δ] is a subspace of an eigenspace of ∆ for

each δ ∈ ĜΛ1 , so the decomposition obtained in the previous example is
finer than the decomposition into eigenspaces of ∆.



Chapter 4

Groupoids and refinements

In this chapter, which is based on [8], we present an operator-algebraic
approach to the quantisation and reduction of lattice field theories. Our
approach uses groupoid C∗-algebras to describe the observables. We intro-
duce direct systems of Hilbert spaces and direct systems of (observable)
C∗-algebras, and, dually, corresponding inverse systems of configuration
spaces and (pair) groupoids. We then take their corresponding limits.
Since all constructions are equivariant with respect to the gauge group,
the reduction procedure as described in the previous chapter applies in
the limit as well.

We have already briefly sketched in section 1.1 how groupoids can be
used to quantise a classical system. For this reason, when investigating
the interplay between quantisation and regularisation as we do in this
chapter in the context of lattice gauge theory, it is natural to ask whether
(and if so, how) they are compatible with regularisation. In this chapter,
we find maps between the relevant (pair) groupoids that at first sight
appear to be good candidates, i.e., they can be used to define a direct
system in a mathematically natural way. However, upon examination of
the ∗-homomorphisms that these maps induce between the corresponding
groupoid C∗-algebras, and the limits of the corresponding direct systems,
we find that there are several problems:

• Their transposes do not induce maps between the corresponding
state spaces;

57
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• The map relevant to the thermodynamic limit is not the one that is
used in the physics literature;

• The C∗-algebra that we find for the continuum limit does not admit
the sort of dynamics that one would expect to be able to define on
such an algebra.

These problems are discussed in the final section of this chapter and the
first section of the next one, and show that the groupoid approach to
quantisation (at least in its current formulation) is incompatible with the
type of regularisation discussed in this thesis. This is the point of conten-
tion mentioned at the very beginning of chapter 1. The second part of this
thesis, specifically chapter 8, attempts to solve the first two problems by
using different maps in the direct system of observable algebras, which in
turn requires that we work with larger observable algebras than the ones
used in this chapter, which is where the classical and quantum resolvent
algebra on T ∗Tn, defined in chapters 5 and 7, respectively, come in.

4.1 Introduction

For reasons already mentioned in section 2.1, from a mathematical per-
spective, the Hamiltonian approach to lattice gauge theory is a good start-
ing point for the quantisation of gauge theories. In this chapter, we give
a novel operator algebraic approach to the quantization of Hamiltonian
lattice gauge theories using groupoid C∗-algebras. We discuss how gauge
theories corresponding to ‘finer’ lattices, or more generally, to graphs, are
related to coarser ones. At the Hilbert space level, this was described
mathematically by Baez in [12], whose results we extend to the field al-
gebras, obervable algebras and Hamiltonians. Baez’s paper is part of a
research program initiated by Ashtekar now referred to as loop quantum
gravity (LQG), and his construction of the limit Hilbert space is based
primarily on work by Ashtekar et al. [10]. It is worth mentioning that
analogous constructions of the observable algebra are still an active area
of research within the LQG community; see for instance [2] and [1] for an
approach using noncommutative geometry.

Aside from constructing the field and observable algebras, we also
study their relation to certain groupoids, and show that this relation is
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preserved in the relevant limits, thus providing a geometric picture of
the kinematical framework for constructing the infinite volume and con-
tinuum limits of such theories. The first, also called the thermodynamic
limit, has recently been studied along similar lines on a lattice in [47, 48],
but without the groupoid description. It should be noted that we restrict
ourselves to ‘pure gauge theories’, i.e., we do not consider the interaction of
gauge fields with matter fields, and that we only consider the electric part
of such fields in our Hamiltonians. The electric term in the Hamiltonian
is essentially the ‘free’ problem, while the inclusion of the magnetic term
would introduce an interaction. The study of the system with interactions
is much more involved since it requires some form of renormalisation, and
will therefore be left as the subject of future research.

This chapter is organized as follows. In section 4.2 we review the
classical Hamiltonian lattice gauge theory, and its quantum mechanical
counterpart. In sections 4.3, 4.4 and 4.5, we recall some old results and
develop some new methods to relate lattices with different lattice spacings,
as well as the corresponding classical and quantum systems. This is ne-
cessary for constructing the thermodynamic and continuum limits, which
may be treated on equal footing in this formalism. We also describe the
behaviour of groupoid C∗-algebras associated to refinements of graphs. In
section 4.6 we describe the behaviour of the system with respect to the
limit and also identify the groupoid that describes this limit. We finish the
chapter by pointing out a number of problems with the limit observable
algebra.

4.2 The quantum system

Since we have already discussed the classical formulation of lattice gauge
theory in chapter 2, we will focus on the mathematical setup for the cor-
responding quantum system, along the lines of strict deformation quant-
ization (cf. [100] and [65]). We also describe the field and observable
algebras as groupoid C∗-algebras and discuss reduction of the quantum
system.

We use the same notation as in chapter 2. The structure group of
the (lattice) gauge theory will be denoted by G, which we assume to be
a compact Lie group. Furthermore, given a finite oriented graph Λ =
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(Λ0,Λ1), let G := GΛ0
with the obvious group operation be the group of

gauge transformations of the lattice gauge theory, and let K := GΛ1
be its

configuration space.

To obtain a quantisation of the canonical system T ∗(K) = T ∗(GΛ1
), we

adopt the C∗-algebraic approach to quantisation of the cotangent bundle
as described in [65, section II.3]. In line with Weyl quantisation of T ∗Rn,
the quantisation of T ∗Q for any compact Riemannian manifold Q is given
there by the observable algebra B0(L2(Q)), the space of compact operators
on L2(Q). Since the compact Lie group K is naturally a compact Rieman-
nian manifold, we find that the quantised observable algebra of T ∗(K) is
given by A := B0(L2(K)) and the Hilbert space is H = L2(K). Note that
this is in line with the finite-lattice approximation of Hamiltonian QCD
in [60, 61].

Geometrically, we can also realize this C∗-algebra as a groupoid C∗-
algebra. The construction is based on the pair groupoid G = K×K so we
first recall its general definition (cf. [27, section 3]).

4.1 Definition. Let X be a set. The pair groupoid associated to X has
object space X and space of morphism X×X, with source and target maps
given by the projections onto the first and the second factor respectively.
Composition of morphism is given by concatenation and the inverse by
(x, y)−1 = (y, x). Note that all free and transitive groupoids are necessarily
pair groupoids.

Now suppose that X is a locally compact Hausdorff space endowed with a
Radon measure µ of full support X. Recall that this is a measure on the
Borel σ-algebra of X that is locally finite and inner regular. The ∗-algebra
Cc(X ×X), with (kernel) product

(φ1 ∗ φ2)(x1, x2) :=

∫
X
φ1(y, x2)φ2(x1, y) dµ(y),

and involution φ∗(x1, x2) := φ(x2, x1), is then represented by compact
operators on L2(X,µ). Indeed, given h ∈ Cc(X × X), the associated
integral operator Th on L2(X) is given by

(4.1) Thψ(x) :=

∫
X
h(y, x)ψ(y) dµ(y).
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By definition the reduced groupoid C∗-algebra C∗r (X × X) is the closure
in B(L2(X)) of the image of the above representation. This is actually
isomorphic to the full groupoid C∗-algebra and one has

(4.2) C∗r (X ×X) ' C∗(X ×X) ' B0(L2(X)).

We refer to [93] for full details on the construction of groupoid C∗-algebras,
see also [65, III.3.4 and III.3.6]. The relation of this construction to strict
quantization can be found in [65, III.3.12].

If we specialise to our case for which K = GΛ1
is our configuration

space, this leads us to consider the pair groupoid G := K×K, whose space
of morphism is G(1) = K×K and whose space of objects is G(0) = K. Thus
the observable algebra A is isomorphic to C∗(G).

It is possible to include matter fields in the formalism. In [61] (cf. [48]),
Kijowski and Rudolph extend the algebra A by considering its algebraic
tensor product with the CAR-algebra associated to the classical space of
the matter fields, and complete it with respect to its unique C∗-norm. As
mentioned in the introduction to this chapter, we will restrict our attention
to the gauge fields, ignoring the matter fields and all objects associated to
it.

4.2.1 Gauge symmetries and reduction of the quantized
system

Let us recall from the previous chapter that the action of the gauge group
G on the configuration space K induces a unitary representation U of the
gauge group G = GΛ0

on H = L2(K):

(4.3) U((gx)x∈Λ0)ψ((ae)e∈Λ1) = ψ
(

(gs(e)aeg
−1
t(e))e∈Λ1

)
,

for all ψ ∈ H. The reduced Hilbert space is the subspaceHG of G-invariant
vectors inH, and the observable algebra of the reduced system is the space
of compact operators B0(HG) on the reduced Hilbert space. In view of
equation (4.2), it is natural to associate the pair groupoid (G\K)× (G\K)
to the reduced system.

4.2 Remark. In the literature, the algebra A of the system without re-
duction of gauge symmetries is called the field algebra, whereas the algebra
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corresponding to the reduced system is typically referred to as the observ-
able algebra. We shall adopt this terminology throughout the rest of the
chapter.

4.2.2 The quantum Hamiltonian

Recall from sections 2.3 and 2.5 that the electric part He of the classical
Hamiltonian for a cubic lattice with lattice spacing ` in three spatial di-
mensions, evaluated at (ae, ξe)e∈Λ1 ∈ (T ∗G)Λ1 ∼= T ∗K is given by

He =
`3

2g2

∑
e∈Λ1

β∗G,ae(ξe, ξe).

We now write this expression as

He = c(`) · 1

2

∑
e∈Λ1

Ieβ
∗
G,ae(ξe, ξe),

where c(`) := `2/g(`)2 should be thought of as a coupling constant de-
pending on `, and for each e ∈ Λ1, we have Ie := `. If Λ is a more general
lattice, then Ie denotes the length of the edge `e. The notation Ie ori-
ginates from [62], in which Kogut and Susskind draw an analogy with a
classical system that consists of a lattice that on each link e has a rigid
rotor (or rotator) whose moment of inertia is given by Ie.

We now forget about the coupling constant c, and consider the quant-
isation of the expression that remains, which is the following differential
operator on C∞(GΛ1

):

(4.4) H0 =
∑
e∈Λ1

−1

2
Ie∆e

where ∆e is the Laplacian on G with respect to the bi-invariant Rieman-
nian metric βG, or, which is the same (up to a positive scalar multiple),
the quadratic Casimir element of G. The operator H0 is essentially self-
adjoint on C∞(GΛ1

) ⊂ L2(GΛ1
); we let H0 denote its closure with domain

Dom(H0) ⊂ L2(GΛ1
). Since H0 is the differential operator associated to

the quadratic Casimir element of G, it is well-behaved with respect to the
action of the gauge group:



4.2. THE QUANTUM SYSTEM 63

4.3 Proposition. Let H := L2(K). The operator H0 is equivariant with
respect to the action of the gauge group defined in equation (4.3). Its
restriction H0,red to Dom(H0) ∩HG is a self-adjoint operator on HG, and
the following diagram

Dom(H0) H

Dom(H0) ∩HG HG

H0

pHG

H0,red

pHG

is commutative.

Proof. Note that H0|C∞(G(0)) is equivariant with respect to the left-regular
representation since it is a left-invariant differential operator. It is also
equivariant with respect to the right regular representation, since the
quadratic Casimir element Ωe lies in the center of the universal envel-
oping algebra A(gΛ1

) for each e ∈ Λ1. Thus H0|C∞(G(0)) is equivariant
with respect to the action of the product of the two aforementioned rep-
resentations, so in particular, it is equivariant with respect to the action
of G.

An immediate consequence of this equivariance is that H0|C∞(G(0))

leavesHG invariant. Because H0 is by definition the closure of H0|C∞(G(0)),

the space HG is also an invariant subspace for H0. In addition, since
the orthogonal projection pHG onto HG is a strong limit of linear com-
binations of unitary operators associated to elements of H, we have
pHG (Dom(H0)) ⊆ Dom(H0) ∩ HG , and the above diagram is indeed com-
mutative.

Finally, we prove that H0,red is self-adjoint. Let J : H2 → H2 be the
operator given by (x, y) 7→ (−y, x). Then we have H2 = Graph(H0) ⊕
J(Graph(H0)) by self-adjointness of H0, cf. [102, Theorem 13.10]. From
the fact that Graph(H0,red) ⊆ Graph(H0), we infer that Graph(H0,red) ⊥
J(Graph(H0,red)). On the other hand, it follows from our discussion in
the previous paragraph that

Graph(H0,red) = {(pHG (x), pHG (y)) : (x, y) ∈ Graph(H0)},
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so Graph(H0,red) + J(Graph(H0,red)) = (HG)2, hence

Graph(H0,red)⊕ J(Graph(H0,red)) = (HG)2,

which shows that Graph(H0,red) is indeed self-adjoint. �

4.3 Refinements of the quantum system

Our approach towards formulating a continuum limit from a gauge theory
on a graph is based on a suitable notion of embeddings of graphs, referred
to as ‘refinements’.

We follow Baez [12] in his description of an inverse system of configur-
ation spaces and a direct system of Hilbert spaces, both indexed over the
set of graphs with partial order given by refinement. After reviewing this
construction, we will extend this description to the level of the pair group-
oids, the corresponding field and observable C∗-algebras and the (free)
Hamiltonians.

4.3.1 Refinements of graphs

We start by recalling the following notion (cf. [78, Theorem II.7.1]):

4.4 Definition. Let Λ = (Λ0,Λ1) be an oriented graph. The free or path
category generated by Λ, denoted by CΛ, is defined as follows:

• Its set of objects is Λ0;

• Let x, y ∈ Λ0. The set of morphisms from x to y is given by the
collection of orientation respecting paths in Λ with starting point x
and end point y;

• Composition of morphisms is given by concatenation of paths;

• The identity element of each object x ∈ Λ0 is the path of length 0
starting and ending at x.

This predicates the following formulation of embedding a graph into an-
other one:



4.3. REFINEMENTS OF THE QUANTUM SYSTEM 65

4.5 Definition. Let Λi and Λj be two oriented graphs with corresponding
free categories CΛi and CΛj . Suppose in addition that there exists a functor
ιi,j : CΛi → CΛj such that:

(1) The map ι
(0)
i,j : Λ0

i → Λ0
j between the sets of objects is an injection;

(2) The map ι
(1)
i,j between the sets of morphisms maps elements of Λ1

i

(identified with their corresponding paths) to paths in Λj such that

• Each edge e ∈ Λ1
i is mapped to a nontrivial path under the

map ι
(1)
i,j ;

• For each e ∈ Λ1
i , the path ι

(1)
i,j (e) does not intersect itself;

• If e and e′ are distinct elements of Λ1
i , then the paths ι

(1)
i,j (e)

and ι
(1)
i,j (e′) have no common vertices except perhaps for their

starting points or end points.

We call the triple (Λi,Λj , ιi,j) a refinement of the graph Λi. Given such a
refinement, we say that Λi is coarser than Λj , and that Λj is finer than
Λi.

When no confusion arises, we will omit the subscript i,j from ι.

4.6 Remark. Given three graphs Λi, Λj and Λk, and refinements
(Λi,Λj , ιi,j) and (Λj ,Λk, ιj,k), then there exists a canonical refinement
(Λi,Λk, ιi,k), where we have ιi,k = ιj,k ◦ ιi,j .

This allows us to define another category:

4.7 Definition. We let Refine denote the category with the following
properties:

• Its objects are oriented graphs;

• Given two oriented graphs Λi and Λj , then the set of morphisms
from Λi to Λj is given by the set of refinements (Λi,Λj , ι).

• Composition is given by composition of refinement functors.

• For each oriented graph Λ, there is a canonical refinement (Λ,Λ, Id),
where Id(0) and Id(1) are the identity maps on the spaces of objects
and morphisms in CΛ.
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Given a refinement ι : Λi → Λj of two graphs Λi,Λj , we introduce a map
Ri,j : Kj → Ki between the corresponding configuration spaces as follows.
Given an edge e ∈ Λi, we let

Ri,j(a)e = ae1 · · · aen ,(4.5)

where ι
(1)
i,j (e) = (e1, . . . , en). The compatibility of these maps under com-

position is readily checked and we arrive at the following result.

4.8 Proposition. There exists a canonical contravariant functor from
Refine to the category of compact Hausdorff spaces that sends a graph Λi
to the space Ki, and a refinement (Λi,Λj , ιi,j) to the map Ri,j.

4.9 Remark. (1) A particular consequence of the above proposition is
that a direct system ((Λi)i∈I , (ιi,j)i,j∈I, i≤j) in Refine induces an inverse
system
((Ki)i∈I , (Ri,j)i,j∈I, i≤j) in the category of compact Hausdorff spaces. In
what follows, we will construct various other co- and contravariant functors
from Refine to certain categories, which induce direct and inverse systems
in these categories, respectively. For the sake of brevity, we will write the
above direct system as (Λi, ιi,j), and do the same with other direct and
inverse systems.

(2) Actually, more information can be encoded into the above functor as
follows. Consider the category of which the objects are compact Hausdorff
spaces endowed with continuous group actions. Let us write (X,H) for
such an object if the space and group are given by X and H, respect-
ively; additional structures such as topologies and the group action will
be implicit. A natural notion of a morphism between two objects (X,H)
and (Y,K) in this category is a pair (f, φ) consisting of a continuous map
f : X → Y and a (continuous) group homomorphism φ : H → K such that
f is equivariant with respect to the action of H on both X and Y , i.e.,
f(h · x) = φ(h) · f(x) for each x ∈ X and each h ∈ H.

In addition to the space of parallel transporters K, the image of a graph
Λ under the modified functor would encode the gauge group G = GΛ0

of
Λ, along with the action of the group on K. Furthermore, the image of a

refinement (Λi,Λj , ι) would contain the restriction map GΛ0
i → GΛ0

j that
arises as the pullback of ι(0); see subsection 4.3.3. As with the previous
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point in this remark, a similar statement holds for the other functors in
this chapter that map Λ to some object that has not yet been reduced
with respect to the action of the gauge group.

4.3.2 Elementary refinements

In what follows we need to carry out a number of computations, some
of which are rather tedious to write out for arbitrary refinements. We
simplify our computations by making use of the fact that any refinement
can be decomposed into the composition of elementary refinements. This
is in line with [12, Lemma 4], although we do not admit the reversal of
the orientation of an edge. More precisely, given an arbitrary refinement
(Λi,Λj , ι), there exists a sequence (Λk,Λk+1, ιk,k+1)n−1

k=0 of refinements such
that Λ0 = Λi, Λn = Λj , ι = ιn−1,n◦· · ·◦ι0,1, and for each i ∈ {0, . . . , n−1},
the refinement (Λk,Λk+1, ιk,k+1) falls into one of the following two classes
of examples:

• The graph Λk+1 is obtained from Λk by adding an extra edge

or by adding an extra vertex and an extra edge:

At the level of configuration spaces, both of these embeddings induce
the map

(4.6) Rk,k+1 : Kk+1 → Kk, ((ae)e∈Λ1
k
, ae0) 7→ (ae)e∈Λ1

k
,

where e0 ∈ Λ
(1)
k+1 denotes the ‘added’ edge.
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• The graph Λk+1 is obtained from Λk by subdividing an edge into
two edges:

This type of embedding induces the following map between config-
uration spaces:
(4.7)
Rk,k+1 : Kk+1 → Kk, ((ae)e∈Λ1

k−{e0}
, ae1 , ae2) 7→ ((ae)e∈Λ1

k−{e0}
, ae1ae2),

where e0 ∈ Λ1
k denotes the edge that is ‘subdivided’ into e1 and e2.

It follows from Proposition 4.10 that

Ri,j = R0,1 ◦ · · · ◦Rn−1,n,

and hence that the composition on the right-hand side is independent of
the choice of the sequence (Λk,Λk+1, ιk,k+1)n−1

k=0 .
Throughout the rest of the text, whenever we discuss a refinement

(Λi,Λj , ι) of graphs, we shall only discuss the cases in which the refine-
ments are elementary refinements, and use the above observation to extend
statements to the general case.

4.3.3 The action of the gauge group

Let us fix two graphs Λi and Λj together with a refinement (Λi,Λj , ι).
The map ι(0) induces a surjective group homomorphism between the

gauge groups given by pull-back:

(4.8) (ι(0))∗ : Gj → Gi, g = (gx)x∈Λ0
j
7→ (gι(0)(x))x∈Λ0

i
,

Clearly, this map can be directly factorized into products of maps cor-
responding to elementary refinements. Moreover, one readily verifies that
Ri,j : Kj → Ki satisfies the equivariance condition

(ι(0))∗(g) ·Ri,j(a) = Ri,j(g · a),

for all g ∈ Gj and a ∈ Kj , hence it descends to a map Rred
i,j : Gj\Kj →

Gi\Ki.
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If we let πi : Ki → Gi\Ki denote the canonical projection, we obtain a
commutative diagram:

Kj Ki

Gj\Kj Gi\Ki

Ri,j

πj
Rred
i,j

πi

Figure 4.1

This fact and Proposition 4.8 yield the following result.

4.10 Proposition. There exists a canonical contravariant functor from
Refine to the category of compact Hausdorff spaces that sends a graph Λi
to the space Gi\Ki, and a refinement (Λi,Λj , ιi,j) to the map Rred

i,j .

4.4 Hilbert spaces

Next, we construct the Hilbert spaces of square integrable functions with
respect to the normalised Haar measure, and define the corresponding
maps between them. We start by recalling some results for the (Haar)
measures on the configuration spaces, originally derived in [10, 11, 76]
(see also [12, 50]).

4.11 Lemma. On the inverse system of Hausdorff spaces (Ki, Ri,j) we
have an exact inverse system of measures for (Ki, Ri,j), i.e., a collection of
Radon measures µi on Ki such that for i ≤ j one has (Ri,j)∗(µj) = µi. In

particular, the image of the Haar measure on GΛ1
j under the map induced

by the map Ri,j is the Haar measure on GΛ1
i .

Proof. The first part of the theorem follows from the Riesz–Markov repres-
entation theorem. We will check the second part of the statement for the
elementary refinements of subsection 4.3.2. Let φ be a continuous function
on GΛ1

i and let µi+1 be the Haar measure on GΛ1
i+1 . By definition∫

GΛ1
i

φ d(Ri,i+1)∗(µi+1) :=

∫
G

Λ1
i+1

(Ri,i+1)∗ (φ) dµi+1.
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We will show that (Ri,i+1)∗(µi+1) is left-invariant, i.e. that∫
GΛ1

i

Lhφ d(Ri,i+1)∗(µi+1) =

∫
GΛ1

i

φ d(Ri,i+1)∗(µi+1),

for any h ∈ GΛ1
i . Since the Haar measure on GΛ1

i is the product of |Λ1
i |

Haar measures on G it follows that∫
GΛ1

i

Lhφ d(Ri,i+1)∗(µi+1) =

∫
G

Λ1
i+1

φ(h−1 ·Ri,i+1(a)) dµi+1(a).

An elementary refinement consisting of the addition of an edge amounts
to forgetting an integration variable so there is nothing to prove. For the
subdivision of an edge e0 into (e1, e2) we have∫
G

Λ1
i+1

φ(h−1 ·Ri,i+1(a)) dµi+1(a)

=

∫
G

Λ1
i+1

φ
(
h−1 ·

(
(ae)e∈Λ1

i \{e0}
, ae1ae2

))
dµi+1(a)

=

∫
G

∫
GΛ1

i

φ ◦Ri,i+1((h−1 · ((ae)e∈Λ1
i \{e0}

, ae1)), ae2) dµi((ae)e∈Λ1
i \{e0}

, ae1)

dµ(ae2)

=

∫
G

∫
GΛ1

i

φ ◦Ri,i+1

(
((ae)e∈Λ1

i \{e0}
, ae1), ae2

)
dµi((ae)e∈Λ1

i \{e0}
, ae1)

dµ(ae2)

=

∫
G

Λ1
i+1

φ(Ri,i+1(a)) dµi+1(a),

where in the second last equality we have used left-invariance of the Haar
measure dµi. �

4.12 Proposition. On the inverse system of Hausdorff spaces
(Gi\Ki, Rred

i,j ) we have an exact inverse system of measures.

Proof. By the Riesz–Markov representation theorem, the projection πi :
Ki → Gi\Ki induces a map from the space of Radon measures on Ki to the
space of Radon measures on Gi\Ki. Figure 4.1 then implies the existence
of a commutative diagram between the corresponding spaces of Radon
measures. �
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We now dualise this construction on the measure spaces Ki and construct
a direct system of Hilbert spaces L2(Ki). We write R : Kj → Ki for
a map between configuration spaces induced by an arbitrary refinement
ι : Γi → Γj . We then set

(4.9) u := (R)∗ : L2(Ki)→ L2(Kj), ψ 7→ ψ ◦R.

Moreover, we define

ured := (Rred)∗ : L2(Gi\Ki)→ L2(Gj\Kj), ψ 7→ ψ ◦Rred.

4.13 Proposition. If pi is the map given by

pi : L
2(Ki) 7→ L2(Gi\Ki), ψ 7→

(
Gia 7→

∫
Gi
ψ(g · a) dµGi(g)

)
,

for all i, where µGi denotes the Haar measure on Gi, then:

(1) The pullback π∗i : L2(Gi\Ki)→ L2(Ki) of πi is the adjoint of pi (for
all i).

(2) The following squares

L2(Ki) L2(Kj)

L2(Gi\Ki) L2(Gj\Kj)

u

π∗i

ured

π∗j

and

L2(Ki) L2(Kj)

L2(Gi\Ki) L2(Gj\Kj)

u

pi

ured

pj

commute.
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(3) The maps u and ured are isometries.

Proof. (1) For ψ ∈ L2(Ki), ϕ ∈ L2(Gi\Ki) we have that

〈ϕ, piψ〉L2(Gi\Ki) =

∫
Gi\Ki

ϕ(Gia)

∫
Gi
ψ(g · a) dµGi(g) dµGi\Ki(a)

=

∫
Ki
ϕ ◦ πi(a)

∫
Gi
ψ(g · a) dµGi(g) dµi(a)

=

∫
Ki

∫
Gi
ϕ ◦ πi(g−1 · a)ψ(a) dµGi(g) dµi(a)

=

∫
Ki
ϕ ◦ πi(a)ψ(a) dµi(a) = 〈π∗i (ϕ), ψ〉L2(Ki),

where we have used bi-invariance of the Haar measure on Ki in the fourth
step.

Commutativity of the first square in (2) follows directly from the fact
that πi ◦R = Rred ◦ πj , which holds by definition of Rred. For the second
square to commute, we let a ∈ Kj , ψ ∈ L2(Ki) and compute that indeed

(pj ◦ u(ψ))(Gja) =

∫
Gj

(u(ψ))(g · a) dµGj (g) =

∫
Gj
ψ ◦R(g · a) dµGj (g)

=

∫
Gj
ψ((ι0)∗(g) ·R(a)) dµGj (g)

=

∫
G

Λ0
j
−ι0(Λ0

i
)

∫
Gi
ψ(g ·R(a)) dµGi(g) dν(g′)

=

∫
Gi
ψ(g ·Rred(a)) dµGi(g) = pi(ψ)(GiR(a))

= (ured ◦ pi(ψ))(Gja),

where ν denotes the Haar measure on GΛ0
j−ι0(Λ0

i ).

For (3) we use that by definition of the measures on the spaces Gi\Ki
and Gj\Kj , the maps π∗i and π∗j are isometries. Thus, by commutativity
of the first square in (2), it suffices to show that u is an isometry. We will
prove the statement for the elementary refinements discussed in subsection
4.3.2. Let ψ ∈ L2(Ki).
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• If Λj is obtained from Λi by adding an edge e′ ∈ Λ1
j , then

‖u(ψ)‖2L2(Kj) =

∫
G

Λ1
j

|u(ψ)((ae)e∈Λ1
j
)|2 dµj((ae)e∈Λ1

j
)

=

∫
G

∫
GΛ1

i

|ψ((ae)e∈Λ1
i
)|2 dµi((ae)e∈Λ1

j
) dµ(ae′)

=

∫
GΛ1

i

|ψ((ae)e∈Λ1
i
)|2 dµi((ae)e∈Λ1

i
)

= ‖ψ‖2L2(Ki),

• If Λj is obtained from Λi by subdividing an edge e0 ∈ Λ1
i into two

edges e1, e2 ∈ Λ1
j , then

‖u(ψ)‖2L2(Kj) =

∫
G

Λ1
j

|u(ψ)((ae)e∈Λ1
j
)|2 dµj((ae)e∈Λ1

j
)

=

∫
G

∫
G

∫
GΛ1

i
\{e0}

|ψ((ae)e∈Λ1
i \{e0}

, ae1ae2)|2 dν((ae)e∈Λ1
i \{e0}

)

dµ(ae1)dµ(ae2)

=

∫
G

∫
GΛ1

i
\{e0}

|ψ((ae)e∈Λ1
i \{e0}

, ae2)|2 dν((ae)e∈Λ1
i \{e0}

) dµ(ae2)

=

∫
GΛ1

i

|ψ((ae)e∈Λ1
i
)|2 dµi((ae)e∈Λ1

i
) = ‖ψ‖2L2(Ki),

since the Haar measure is left-invariant and normalized. Here, µ and
ν denote the Haar measures on G and GΛ1

i \{e0}, respectively. �

4.14 Proposition. There exist two canonical covariant functors from
Refine to the category of Hilbert spaces that send a graph Λi to the spaces
L2(Ki) and L2(Gi\Ki), and a refinement (Λi,Λj , ιi,j) to the linear isomet-
ries ui,j and ured

i,j , respectively.

Proof. Let Λi, Λj and Λk be three graphs, with corresponding spaces of
connections Ki, Kj and Kk and gauge groups Gi, Gj and Gk. Suppose in
addition that we are given refinements (Λi,Λj , ιi,j) and (Λj ,Λk, ιj,k).

We need to prove that the corresponding maps between Hilbert spaces
satisfy

ui,k = uj,k ◦ ui,j ;
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ured
i,k = ured

j,k ◦ ured
i,j ;

The fact that ui,k = uj,k ◦ ui,j follows from Remark 4.6 and the definition
of the map R. To prove ured

i,k = ured
j,k ◦ured

i,j , note that for Λi ≤ Λj , the maps
p∗i and p∗j are isometries by definition of the measure on Gi\Ki and Gj\Kj .
Thus pip

∗
i = IdL2(Gi\Ki) and pjp

∗
j = IdL2(Gj\Kj).

Commutativity of the first square in Proposition 4.13 and the fact
that p∗i and p∗j are sections of pi and pj , respectively, imply that pi ◦
u ◦ p∗i = ured, and that u maps Gi-invariant functions to Gj-invariant
functions. Observing that p∗i pi and p∗jpj are the orthogonal projections
onto the spaces of Gi- and Gj-invariant functions, respectively, we infer
that

ured
i,k = pk ◦ ui,k ◦ p∗i = pk ◦ uj,k ◦ ui,j ◦ p∗i = pk ◦ uj,k ◦ p∗jpj ◦ ui,j ◦ p∗i

= ured
j,k ◦ ured

i,j ,

which proves the claim. �

4.5 Field algebras and observable algebras

The isometries between the Hilbert spaces constructed in the previous
subsection naturally induce maps between the field algebras and between
the observable algebras. In fact, we have the following:

4.15 Proposition. The maps

v : B0(L2(Ki))→ B0(L2(Kj)), b 7→ ubu∗;
vred : B0(L2(Gi\Ki))→ B0(L2(Gj\Kj)), b 7→ uredb(ured)∗,

are injective ∗-homomorphisms.

Proof. It is clear that v and vred respect its linear structures as well as the
involutions. Since u and ured are isometries, we have

u∗u = IdL2(Ki), and (ured)∗ured = IdL2(Gi\Ki),

from which it readily follows that the maps v and vred are injective and
respect the algebra structures. �
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Thus the maps u and v are embeddings of the ‘coarse’ Hilbert space and
field algebra into the corresponding ‘finer’ structures, respectively, and the
maps ured and vred are their ‘reduced’ counterparts. We can now formulate
the analogue of Proposition 4.13 for the field algebras and the observable
algebras:

4.16 Proposition. Define the maps Pi, Pj, Πi and Πj by

Pi : B0(L2(Ki))→ B0(L2(Gi\Ki)), b 7→ pibp
∗
i ;

Pj : B0(L2(Kj))→ B0(L2(Gj\Kj)), b 7→ pjbp
∗
j ;

Πi : B0(L2(Gi\Ki))→ B0(L2(Ki)), b 7→ p∗i bpi;
Πj : B0(L2(Gj\Kj))→ B0(L2(Kj)), b 7→ p∗jbpj .

Then the following squares

B0(L2(Ki)) B0(L2(Kj))

B0(L2(Gi\Ki)) B0(L2(Gj\Kj))

v

Π∗i

vred

Π∗j

and

B0(L2(Ki)) B0(L2(Kj))

B0(L2(Gi\Ki)) B0(L2(Gj\Kj))

v

Pi

vred

Pj

commute.

Proof. We shall only present a proof of commutativity of the first square;
commutativity of the second square can be proved in a similar fashion.
Let b ∈ B0(L2(Gi\Ki)). Then using the commutativity of the first square
in Proposition 4.13, we obtain

v ◦Πi(b) = up∗i bpiu
∗ = (up∗i )b(up

∗
i )
∗

= (p∗ju
red)b(p∗ju

red)∗ = p∗ju
redb(ured)∗pj = Πj ◦ vred(b),

as desired. �
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4.17 Proposition. There exist two canonical covariant functors from
Refine to the category of C∗-algebras that send a graph Λi to the spaces
B0(L2(Ki)) and B0(L2(Gi\Ki)), and a refinement (Λi,Λj , ιi,j) to the
injective ∗-homomorphisms vi,j and vred

i,j , respectively. The collections

(B0(L2(Ki)), vi,j) and (B0(L2(Gi\Ki)), vred
i,j ) form direct systems of C∗-

algebras.

Proof. This follows from the fact that

vi,k = vj,k ◦ vi,j ; vred
i,k = vred

j,k ◦ vred
i,j ,

which is a direct consequence of Proposition 4.14. �

We are also interested in describing the refinements of the field algebras
and the observable algebras in purely geometric terms, that is to say, in
terms of the pair groupoids Gi = Ki × Ki that we associated to a graph
Λi. A map Ri,j : Kj → Ki canonically gives rise to a groupoid morphism

Ri,j =
(

R
(0)
i,j ,R

(1)
i,j

)
: Gj → Gi, where R

(0)
i,j = Ri,j and R

(1)
i,j = Ri,j × Ri,j .

Similarly, we obtain a groupoid morphism Rred
i,j : Gred

j → Gred
i between

the pair groupoids associated to the reduced configuration spaces. The
following proposition is then an immediate consequence of Proposition
4.8:

4.18 Proposition. There exist contravariant functors from Refine to the
category of groupoids that send a graph Λi to the groupoids Gi and Gred

i ,
and a refinement (Λi,Λj , ιi,j) to the groupoid morphisms Ri,j and Rred

i,j .

More interestingly, the maps Ri,j induce a map R∗i,j between the groupoid
C∗-algebras C∗(Gi) and C∗(Gj), given simply by pullback. We will show
that it coincides with vi,j = v from Proposition 4.15, after identifying
C∗(Gi) ' B0(L2(Ki)), using the isomorphism induced by the map defined
in Equation (4.1).

4.19 Proposition. The following diagram

C∗(Gi) C∗(Gj)

B0(L2(Ki)) B0(L2(Kj))

R∗i,j

∼=
vi,j

∼=
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commutes.

Proof. With ui,j : L2(Ki)→ L2(Kj) as defined in Equation (4.9), we have
to establish that

ui,j(Th)u∗i,j = TR∗i,j(h).

By the disintegration theorem, there exists a family of measures (νb)b on
Kj for almost every b ∈ Ki such that νb is supported in R−1

i,j ({a}), and
satisfies ∫

Kj
f(a) dµj(a) =

∫
Ki

∫
R−1
i,j ({b})

f(a) dνb(a) dµj(b).

It follows that for each ψ ∈ L2(Kj) and each ϕ ∈ L2(Ki), we have

〈ϕ, u∗i,jψ〉L2(Ki) = 〈ui,jϕ,ψ〉L2(Kj) =

∫
Kj
ϕ ◦Ri,j(a)ψ(a) dµj(a)

=

∫
Ki

∫
R−1
i,j ({b})

ϕ ◦Ri,j(a)ψ(a) dνb(a) dµi(b)

=

∫
Ki
ϕ(b)

∫
R−1
i,j ({b})

ψ(a) dνb(a) dµi(b),

so

(u∗ψ)(b) =

∫
R−1
i,j ({b})

ψ(a) dνb(a),

for almost every b ∈ Ki. Next, let h ∈ C(G
(1)
i ). Then for each b ∈ Ki, we

have

(Thu
∗ψ)(b) =

∫
Ki
h(b′, b)

∫
R−1
i,j ({b′})

ψ(a) dνb′(a) dµi(b
′),

hence, for each a ∈ Kj , we have

(uThu
∗ψ)(a) =

∫
Ki
h(b′, Ri,j(a))

∫
R−1
i,j ({b′})

ψ(a′) dνb′(a
′) dµi(b

′)

=

∫
Kj
h(Ri,j(a

′), Ri,j(a))ψ(a′) dµj(a
′) = (TR∗i,j(h)ψ)(a).

Since a and ψ were arbitrary, this completes the proof of the proposition.
�
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The statement can readily be modified for the groupoid C∗-algebras of
the reduced groupoids. In fact, it is true for any two compact spaces
carrying Radon probability measures compatible with the map Ri,j , and
their corresponding pair groupoids. We summarise the results obtained in
this subsection in the following:

4.20 Theorem. The collections
(
C∗(Gi),R

∗
i,j

)
and

(
C∗(Gi\Gi),Rred

i,j
∗
)

with connecting maps induced by the maps Ri,j and Rred
i,j , respectively,

form direct systems of C∗-algebras. Moreover, these direct systems of C∗-
algebras are isomorphic to the direct systems described in Proposition 4.17.

4.6 Limits

We will now consider both the thermodynamic and the continuum limit
of our theory by considering the limit objects of the inverse and direct
systems constructed in the previous section. This includes inverse limits
of measure spaces and groupoids, and the direct limits of Hilbert spaces
and (groupoid) C∗-algebras. In particular, we will identify a limit pair
groupoid G∞ for which the groupoid C∗-algebra C∗(G∞) is isomorphic to
the limit of the field algebras lim−→i∈I Ai.

First of all, fix a direct system (Λi, ιi,j) such as the one depicted in
Figure 2.2 in section 2.1. Applying the contravariant functor mentioned
in Proposition 4.10, we obtain an inverse system (Ki, Ri,j) of compact
Hausdorff spaces. This inverse system has a limit in the category of topo-
logical spaces, which is unique up to unique isomorphism, and which can
be realised as follows:

K∞ = lim←−
i∈I
Ki :=

{
a = (ai)i∈I ∈

∏
i∈I
Ki | ai = Ri,j(aj) for all i ≤ j

}

together with maps

Ri,∞ : K∞ → Ki,

which are given by the projection. Note that since the maps Ri,j are not
group homomorphism, the limit space K∞ does not automatically possess
a group structure.
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By [95, Lemma 1.1.10], since K∞ is an inverse limit of compact Haus-
dorff spaces, the maps Ri,∞ are surjective for all i ∈ I. Moreover, since the
spaces involved are compact, the maps Ri,j are automatically proper and
so are the structure maps Ri,∞. In addition, by Lemma 4.11, (Ki, Ri,j)
is an inverse system of probability spaces. The existence of a probability
measure on the limit space is then a consequence of Prokhorov’s theorem
([105, Theorem 21]).

4.21 Proposition. Let K∞ denote the limit of the inverse system of meas-
urable topological spaces ((Ki, µi), Ri,j). Then there exists a Radon meas-
ure µ∞ on K∞ such that Ri,∞(µ∞) = µi.

4.22 Remark. The measure on the inverse limit constructed in this fash-
ion is referred to in the LQG literature as the Ashtekar–Lewandowski
measure, as its construction was described in [9] (cf. [11]). Now suppose
the direct system of graphs has been embedded into some smooth mani-
fold. (In LQG, these manifolds are typically assumed to be analytic, see
section 5.1.) The space of smooth connections of the trivial principal G-
bundle of this manifold has a natural embedding into K∞, provided that
the graphs that constitute the directed system are in some sense dense
in the manifold; we refer to [2, Definition 2.1.7 and Proposition 2.2.4],
and note that in point (2) of this definition, the condition of linear inde-
pendence should be replaced by that of completeness. Moreover, Rendall
[94] has shown that the smooth connections are dense in the direct limit.
Marolf and Mourão, however, have shown in [80] that the space of smooth
connections has Ashtekar–Lewandowski measure 0.

Thus, although K∞ provides a good approximation to the space of
smooth connections, it is impossible to restrict the Ashtekar–Lewandowski
measure on the former space to a nontrivial measure on the latter. This
may be an artifact of the graph, which disregards the topology of the space
in which it is embedded, in this case the smooth manifold. It is at present
unknown how to take into account such topological data in the above con-
struction, although it is interesting to mention that Lüscher [77] appears
to use some version of nonabelian Čech cohomology to implement such
data. A proposal to patch together classical field configurations of abelian
gauge theories and associated observables - both defined on contractible
parts of a possibly noncontractible base manifold - to their corresponding
global versions using homotopy theory is given in [15], which is similarly
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motivated by the possible nontriviality of the principal fibre bundle, as well
as the treatment of such systems in the presence of topological charges.

By Proposition 4.14 we have a direct system of Hilbert spaces (Hi, ui,j),
where Hi := L2(Ki, µi). Its direct limit is nothing but the space of L2

functions on the inverse limit of the spaces of connections with respect to
the inverse limit measure:

H∞ := lim−→
i∈I
Hi ∼= L2(K∞, µ∞).

This was originally proved by Baez in [12]. In fact, the result is not
merely true for L2-spaces, but for Lp-spaces for any p ∈ [1,∞) as well,
. However, the result is generally false for L∞-spaces. The following
proposition relates the inverse limit of Hilbert spaces with the direct limit
of their algebras of observables.

4.23 Proposition. Let ((Hi, 〈·, ·〉i), ui,j) be a direct system of Hilbert
spaces such that each map ui,j is an isometry. Let (H∞, 〈·, ·〉, (ui,∞)i∈I)
be its direct limit. For each i, j ∈ I with i ≤ j, define the map vi,j by

vi,j : B0(Hi)→ B0(Hj), a 7→ ui,jau
∗
i,j .

Then vi,j is an injective ∗-homomorphism, hence it is an isometry. Fur-
thermore, (B0(Hi), vi,j) is a direct system of C∗-algebras, and we have

lim−→
i∈I

B0(Hi) ' B0(H∞).

Proof. Let (vi,∞)i∈I be the collection of ∗-homomorphisms associated to
lim−→i∈I B0(Hi). For each i ∈ I ∪{∞}, let F (Hi) be the space of finite rank
operators on Hi. We first show that the set

A := {vi,∞(ai) : i ∈ I, ai ∈ F (Hi)},

is a subset of F (H∞) that is dense in B0(H∞).
Let i ∈ I, and let ai ∈ F (Hi). Since ui,∞ is an isometry, the operator is

bounded and vi,∞(ai) has the same rank as ai, so in particular, it is a finite
rank operator, hence A ⊆ F (H). To show that A is dense in B0(H∞), it
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suffices to show that for each rank 1 operator a ∈ B0(H∞) and each ε > 0,
there exists an i ∈ I and an ai ∈ A such that ‖a− vi(ai)‖ < ε.

Fix such a and ε. Without loss of generality, we may assume that
‖a‖ ≤ 1. Because a is a rank 1 operator, in physicists’ bra-ket notation
it is of the form a = |ψ〉〈φ| for some nonzero ψ, φ ∈ H∞, and we may
assume that ‖ψ‖, ‖φ‖ ≤ 1. It follows that there exist j, k ∈ I, ψj ∈ Hj
and φk ∈ Hk such that

‖ψ − uj,∞(ψj)‖, ‖φ− uk,∞(φk)‖ ≤ min
(

1,
ε

3

)
.

Let i ∈ I be an element such that i ≥ j, k, let ψi := uj,i(ψj) and φi :=
uk,i(ψk), and let ai := |ψi〉〈φi|. Then

‖a− vi,∞(ai)‖ ≤ ‖|ψ〉〈φ− ui,∞(φi)|‖+ ‖|ψ − ui,∞(ψi)〉〈ui,∞(φi)|‖
≤ ‖ψ‖ · ‖φ− ui,∞(φi)‖

+ ‖ψ − ui,∞(ψi)‖ · (‖φ− ui,∞(φi)‖+ ‖φ‖)

< 3 · ε
3

= ε,

which shows that A is dense in B0(H∞).

For each i ∈ I, vi,∞ is an isometry since vi,j is an isometry for each
j ≥ i. It follows from the universal property of the direct limit that there
exists an isometric ∗-homomorphism

lim−→
i∈I

B0(Hi)→ B0(H∞),

and this ∗-homomorphism has dense range by the discussion above, hence
it is surjective. We conclude that it is a ∗-isomorphism, finishing the
proof. �

In our case of interest, we have:

4.24 Corollary. The direct limit of the field algebras is given by

lim−→
i∈I

Ai ∼= B0(L2(K∞)).
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Next, we determine the inverse limit of the groupoids Gi and show that the
direct limit C∗-algebra A∞ = B0(L2(K∞, µ∞)) agrees with the C∗-algebra
C∗(G∞) of the inverse limit groupoid G∞.

Given the simple structure of the groupoid morphisms Ri,j : Gj → Gi
one easily checks that the limit groupoid G∞ is also a pair groupoid and
is given by

G∞ = K∞ ×K∞.

It is by definition a free and transitive groupoid.

4.25 Remark. More generally, the limit of an inverse family of compact
transitive groupoids such that all groupoid homomorphisms are surjective
is also transitive. Moreover, for inverse families of compact free groupoids,
the limit is also a free groupoid. The proofs rely on the fact that the source
and target maps on the limit groupoid are defined componentwise.

On the groupoid G∞ = K∞ × K∞ we have a natural Haar system given
by

{µ× δx : x ∈ K∞},

where δx denotes the Dirac measure at x and µ is a positive Radon measure
on K∞ of full support.

4.26 Theorem. The groupoid C∗-algebra C∗(K∞×K∞) is isomorphic to
the limit field algebra A∞, which in turn is isomorphic to B0(L2(K∞, µ)),
where µ is the injective limit of the measures on Ki.

Proof. Since the limit measure µ∞ on the space K∞ is a positive Radon
measure of full support, the result follows from the second isomorphism
in Equation (4.2) and Corollary 4.24 above. �

4.27 Remark. The question whether the C∗-algebras associated with two
Haar system on a given groupoid are isomorphic was answered positively
by Muhly, Renault and Williams for the case of transitive groupoids (cf.
[84, Theorem 3.1]), of which pair groupoids are a special case. Hence the
choice of Haar system does not affect, in our setting, the structure of the
groupoid C∗-algebra. For a more in-depth discussion on the dependence of
the groupoid C∗-algebra on the choice of Haar system we refer the reader
to [27, section 5] and [89, section 3.1].
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Thus we have

C∗(G∞) = C∗(lim←−
i∈I

Gi) ∼= B0(L2(K∞, µ)) ∼= lim−→
i∈I

B0(L2(Ki, µi))

∼= lim−→
i∈I

C∗(Gi),

justifying the idea that the quantised field algebra on the inverse limit K∞
is the direct limit of the quantised field algebras on the spaces (Ki)i∈I .

4.6.1 Quantum gauge symmetries and the limit

We finish this section by discussing the reduction of the quantum system
in the limit.

By equivariance of the maps involved in the refinement procedure as
described in Figure (4.1), the results of Proposition 4.21 holds mutatis
mutandis for the inverse family of quotient measure spaces with respect
to the action of the gauge group. There exists a Radon measure µred

∞ such
that Rred

i,∞(µred
∞ ) = µred

i on Kred
∞ , where Kred

∞ denotes the limit of the inverse

system of topological measure spaces ((Gi\Ki, µred
i ), (Rred

i,j )i,j∈I).

Next, we can consider the space of square integrable functions on Kred
∞

with respect to the Radon measure µred
∞ . Then the direct limit of the direct

system of Hilbert spaces (L2(Gj\Kj), ured
j,k ) of Proposition 4.14 is given by

Hred
∞
∼= L2(Kred

∞ , µred
∞ ).

An application of Proposition 4.23 yields

lim−→
i∈I

B0(HGii ) ∼= B0(Hred
∞ ).

As above we may then infer that the underlying groupoid for the observ-
able algebra is a direct limit of pair groupoids so that

C∗(Gred
∞ ) ∼= B0(L2(Kred

∞ , µred
∞ )).

In other words, we have arrived at the reduced analogue of Theorem 4.26.
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4.7 The Hamiltonian

Suppose again that we have fixed two graphs Λi, Λj together with a re-
finement (Λi,Λj , ι). Consider the Hamiltonians

H0,i =
∑
e∈Λ1

i

−1

2
Ii,e∆e, and H0,j =

∑
e∈Λ1

j

−1

2
Ij,e∆e,

let Hi := L2(Ki), let Hj := L2(Kj) and let u : Hi → Hj and ured : HGii →
HGjj be the maps between the corresponding Hilbert spaces.

4.28 Proposition. Suppose that for each e ∈ Λ1
i , we have

(4.10) Ii,e =

n∑
k=1

Ij,ek ,

where ι(1)(e) = (e1, e2, . . . , en).

(1) We have u(Dom(Hi,0)) ⊆ Dom(Hj,0), and the following diagram

Dom(H0,i) Dom(H0,j)

Hi Hj

u

H0,i

u

H0,j

is commutative.

(2) We have u(Dom(H0,i)∩HGii ) ⊆ Dom(H0,j)∩H
Gj
j , and the following

diagram

Dom(H0,i) ∩HGii Dom(H0,j) ∩H
Gj
j

HGii HGjj

ured

H0,i

ured

H0,j
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is commutative, where Hred
0,i denotes the restriction of H0,i to

Dom(H0,i) ∩HGii , and Hred
0,j is defined analogously.

Proof.

(1) As before, we shall provide a proof of the proposition for the ele-
mentary refinements discussed in subsection 4.3.2, and for the sake of
simplicity, we assume that Λi is the graph consisting of one edge e. It is
clear that u(C∞(Ki)) ⊆ C∞(Kj). Now let ψ ∈ C∞(Ki), let X ∈ g, and

let (a1, a2) ∈ G
(0)
j .

• If Λj is obtained from Λi by adding the edge e2 ∈ Λ1
j then

Ij,(s(e1),t(e1)) = Ii,(s(e),t(e)) and we have trivially that

Hj,0(u(ψ))(a1, a2) = −1

2
Ij,(s(e1),t(e1))∆e1ψ(a1) = (u ◦Hi,0(ψ)) (a1, a2).

• If Λj is obtained from Λi by subdividing the edge e ∈ Λ1
i into the two

edges e1 and e2 ∈ Λ1
j then Ij,(s(e1),t(e1)) + Ij,(s(e2),t(e2)) = Ii,(s(e),t(e))

and

H0,j(u(ψ))(a1, a2)

= −1

2

(
Ij,(s(e1),t(e1))∆e1(u(ψ))(a1, a2)

+ Ij,(s(e2),t(e2))∆e2(u(ψ))(a1, a2)
)

= −1

2

(
Ij,(s(e1),t(e1)) + Ij,(s(e2),t(e2))

)
∆e(ψ)(a1a2)

= −1

2
Ii,(s(e),t(e))(u ◦∆e(ψ))(a1, a2)

= (u ◦H0,i(ψ))(a1, a2).

using invariance of the Laplacian on L2(G) with respect to the left
and right action of G in going to the third line.

This proves commutativity of the diagram for the restrictions of the oper-
ators to the spaces of smooth functions. The assertion now follows from
the fact that u is a bounded operator and the fact that H0,i and H0,j are
the closures of their restrictions to C∞(Ki) and C∞(Kj), respectively.
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(2) The inclusion is a consequence of the first part of this proposition,
and the definition of ured. Now let pi := pHGii

, let pj := p
H
Gj
j

, and consider

the following cube:

Dom(H0,j) Hj

Dom(H0,i) Hi

Dom(H0,j) ∩H
Gj
j HGjj

Dom(H0,i) ∩HGii HGii

H0,j

pj
pj

ured

H0,i

u

H0,i

pi
H0,j

ured

u

pi

The top face is commutative by the previous part of the proposition. The
side faces of the cube are commutative by Proposition 4.13. The front
and rear faces of the cube are commutative by Proposition 4.3, and by the
same proposition, the map pi : Dom(H0,i)→ Dom(H0,i)∩HGii is surjective.
It follows that the bottom face of the cube is commutative, which is what
we wanted to show. �

If we take Ie to be the length of the edge e, as already mentioned in
subsection 4.2.2, then the condition in Proposition 4.28 is satisfied, and
we can define a Hamiltonian on the limits of both the unreduced and the
reduced Hilbert spaces, which is what we show next.
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4.7.1 The free Hamiltonian in the limit

Next, we show that if we take Ie to be the length of the edge e as already
mentioned in subsection 4.2.2 then the condition in Proposition 4.28 is sat-
isfied, and the free Hamiltonians on the Hilbert spaces that we have been
investigating thus far give rise to a Hamiltonian on the direct limit. We
accomplish this by studying more general systems of (possibly unbounded)
self-adjoint operators on direct systems of Hilbert spaces and their spec-
tral resolutions. The resolutions discussed in our proofs are obtained using
the method descibed in [102, chapter 13], which involves taking the Cayley
transform of the self-adjoint operator. In preparation for the manipula-
tion of spectral resolutions of self-adjoint operators, we state and prove
the following result from measure theory, which is essentially a version of
the Borel–Cantelli lemma for integrable functions.

4.29 Lemma. Let (X,A, µ) a measure space, and let (fn)∞n=0 be a se-
quence of A-measurable representatives of elements of L1(X,µ) such that∑∞

n=0 ‖fn‖1 < ∞. Then
∑∞

n=0 |fn(x)| < ∞ for almost every x ∈ X. In
particular, the sequence (fn)∞n=0 converges pointwise almost everywhere to
the zero function.

Proof. For each N ∈ N, let gN :=
∑N

n=0 |fn|. We claim that the set

Y := {x ∈ X : ∀M > 0 ∃N ≥ 0: gN (x) ≥M},

which is the set of all x ∈ X on which
∑∞

n=0 |fn(x)| =∞, is A-measurable
and has measure zero. Indeed, measurability follows from measurability
of fn for each n ∈ N, and the fact that

Y =
∞⋂

M=1

⋃
N∈N

g−1
N ([M,∞)).

Moreover, note that for each M ∈ N\{0}, we have

µ(Y ) ≤ µ

( ⋃
N∈N

g−1
N ([M,∞))

)
= sup

N∈N
µ(g−1

N ([M,∞)))

≤ sup
N∈N

1

M

∫
X

N∑
n=0

|fn| dµ ≤
1

M

∞∑
n=0

‖fn‖1.
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Now taking M → ∞, we conclude that µ(Y ) = 0, thereby proving the
first assertion. For the second assertion, we note that the set

Z := {x ∈ X : ∃ε > 0 ∀N ∈ N ∃n ≥ N : |fn(x)| ≥ ε},

of all points in X where the sequence (fn)∞n=0 does not converge to zero,
is a subset of Y . Futhermore, Z is measurable, since

Z =

∞⋃
m=1

⋂
N∈N

⋃
n≥N
|fn|−1([1/m,∞)),

and fn is measurable for each n ∈ N, hence µ(Z) = 0, which concludes
our proof of the lemma. �

4.30 Lemma. For j ∈ {1, 2}, let (Hj , 〈·, ·〉j) be a Hilbert space, and
let Tj : Dom(Tj) → Hj be a self-adjoint operator on Hj. Suppose that
u : H1 → H2 is a bounded linear map such that u(Dom(T1)) ⊆ Dom(T2)
and that the following diagram

Dom(T1) H1

Dom(T2) H2

u

T1

T2

u

commutes. Then for each bounded Borel-measurable function f : R → C,
the following diagram

H1 H1

H2 H2

u

f(T1)

f(T2)

u

commutes.
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Proof. For j ∈ {1, 2}, let Uj be the Cayley transform of Tj . The Cayley
transform of a self-adjoint operator is a unitary map by [102, Theorem
13.19(c)], hence its spectrum is a subset of the circle S1 ⊂ C. Using Gel-
fand duality, the C∗-algebra C(σ(Uj)) is isomorphic to the C∗-subalgebra
C∗(Uj) of B(Hj) generated by Cj , and this isomorphism is uniquely de-
termined by the images of the elements z 7→ 1 and z 7→ z (which are IdHj
and Uj , respectively). We claim that for each f ∈ C(S1), we have

(4.11) u ◦ f |σ(U1)(U1) = f |σ(U2)(U2) ◦ u.

To see this, let ψ ∈ Dom(T1). Then uψ ∈ Dom(T2), and

u ◦ U1((T1 + iIdH1)(ψ)) = u((T1 − iIdH1)(ψ)) = (T2 − iIdH2) ◦ u(ψ)

= U2 ◦ (T2 + iIdH2) ◦ u(ψ)

= U2 ◦ u((T1 + iIdH1)(ψ)).

Since T1 + iIdH1 is surjective, it follows that u ◦U1 = U2 ◦u. A similar ar-
gument shows that u◦U−1

1 = U−1
2 ◦u. It follows that equation (4.11) holds

when f is a trigoniometric polynomial, i.e., f is of the form
∑N

n=−N cnz
n.

Now let f ∈ C(S1) be arbitrary, and let ε > 0. It is a well-known fact that
the trigoniometric polynomials are dense in C(S1), so we may fix such a
polynomial p such that ‖f − p‖∞ < ε/2, which implies

‖u ◦ f |σ(U1)(U1)− f |σ(U2)(U2) ◦ u‖
≤ |u ◦ p|σ(U1)(U1)− p|σ(U2)(U2) ◦ u‖

+ ‖u ◦ f |σ(U1)(U1)− u ◦ p|σ(U2)(U2)‖
+ ‖f |σ(U2)(U2) ◦ u− p|σ(U2)(U2) ◦ u‖
≤ ‖u‖(‖f |σ(U1)(U1)− p|σ(U1)(U1)‖+ ‖f |σ(U2)(U2)− p|σ(U2)(U2)‖)
< ε.

Since ε > 0 was arbitrary, we infer that equation (4.11) holds for general
f ∈ C(S1).

Next, we extend equation (4.11) to the case where f is a bounded
Borel-measurable function. Let f be such a function. We are going to
approximate f by a sequence of continuous functions on S1 that is bounded
with respect to the sup-norm and that converges rapidly to f in the L1-
space associated to a particular measure space, which we define first.
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For j = 1, 2, let Ẽj be the spectral resolution of the Cayley transform
Uj , and let ψj ∈ Hj . Now let µ1 := Ẽ1,u∗(ψ2),ψ1

and µ2 := Ẽ2,ψ2,u(ψ1) be
the complex measures on S1 ⊂ C associated to the spectral resolutions
and vectors, where

µ1(X) = Ẽ1,u∗(ψ2),ψ1
(X ∩ σ(U1)) = 〈u∗(ψ2), Ẽ1(X ∩ σ(U1))ψ1〉,

for each Borel-measurable subset X ⊆ S1, and µ2 and Ẽ2,ψ2,u(ψ1) are
defined similarly. Let |µ1| and |µ2| be the variations of µ1 and µ2, re-
spectively. The measure space of which we want to consider its corres-
ponding L1-space is S1 endowed with its Borel σ-algebra and the measure
µ := |µ1|+ |µ2|.

Both |µ1| and |µ2| are finite measures. It follows that µ is finite as
well, and since it is a measure on a Borel-subset of C, it is regular (cf.
[29, Proposition 1.5.6]), hence C(S1) is dense in L1(S1, µ). Now choose a
bounded sequence (fn)∞n=0 of elements in C(S1) such that ‖fn−f‖1 < 2−n

for each n ∈ N. By Lemma 4.29, the sequence (fn)∞n=0 converges pointwise
to f µ-almost everywhere. Equivalently, it converges pointwise to f |µj |-
almost everywhere for j = 1, 2.

By definition of the measures µ1 and µ2 as well as the already estab-
lished result that equation (4.11) holds for continuous functions, we find
that for each n ∈ N, we have∫

S1

fn dµ1 = 〈u∗(ψ2), fn|σ(U1)(U1)(ψ1)〉1 = 〈ψ2, u ◦ fn|σ(U1)(U1)(ψ1)〉2

= 〈ψ2, fn|σ(U2)(U2) ◦ u(ψ1)〉2 =

∫
S1

fn dµ2,

hence, noting that the sequence (fn)∞n=0 is bounded from above by a con-
stant function, which is both integrable with respect to both µ1 and µ2,
we may invoke the dominated convergence to obtain

〈ψ2, u ◦ f |σ(U1)(U1)(ψ1)〉2 =

∫
S1

f dµ1 = lim
n→∞

∫
S1

fn dµ1

= lim
n→∞

∫
S1

fn dµ2 =

∫
S1

f dµ2 = 〈ψ2, f |σ(U2)(U2) ◦ u(ψ1)〉2.

Since ψ1 ∈ H1 and ψ2 ∈ H2 were arbitrary, it follows that equation (4.11)
also holds if f is a bounded Borel-measurable function.
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The spectral resolutions Ej of Tj and Ẽj of Uj , j = 1, 2, are related as
follows. First, one notes that Ẽj({1}) = 0 (cf. the proof of [102, Theorem
13.30]), so that the resolution Ẽj can be restricted to a resolution on
σ(Uj)\{1}, and subsequently, one defines the resolution Ej on R by setting
Ej(X) := Ẽj(ϕ

−1(X)), where ϕ is the map

σ(Uj)\{1} → R, z 7→ i
1 + z

1− z
.

Thus for each bounded Borel function f on R, we have

∫
R
f dE2 ◦ u =

(∫
σ(U2)\{0}

f ◦ ϕ dẼ2

)
◦ u = u ◦

∫
σ(U1)\{0}

f ◦ ϕ1 dẼ1

= u ◦
∫
R
f dE1,

as desired. �

4.31 Proposition. Let ((Hi, 〈·, ·〉i)i∈I , (ui,j)i,j∈I,i≤j) be a direct system of
Hilbert spaces with direct limit ((H∞, 〈·, ·〉), (ui,∞)i∈I). For each i ∈ I,
let Ti : Dom(Ti) → Hi be a (possibly unbounded) self-adjoint operator on
Hi. Assume that for each i, j ∈ I with i ≤ j, we have ui,j(Dom(Ti)) ⊆
Dom(Tj), and that the following diagram

Dom(Ti) Hi

Dom(Tj) Hj

ui,j

Ti

Tj

ui,j

commutes. Then

(1) There exists a unique self-adjoint operator T∞ : Dom(T∞) → H on
H such that for each i ∈ I, we have ui,∞(Dom(Ti)) ⊆ Dom(T∞),
and the following diagram
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Dom(Ti) Hi

Dom(T∞) H∞

ui,∞

Ti

T∞

ui,∞

commutes.

(2) For each i ∈ I and for each bounded Borel function f : R → C, the
following diagram

Hi Hi

H∞ H∞

ui,∞

f(Ti)

f(T∞)

ui,∞

commutes.

Proof.

(1) Note that for each i, j ∈ I with i ≤ j, the solid arrows in the
diagram in Figure 4.2 commute, hence there exists a unique linear map
T̃∞ :

⋃
k∈I uk,∞(Dom(Tk)) → H that makes the diagram commutative.

The operator T̃ is densely defined since
⋃
k∈I uk,∞(Dom(Tk)) is dense in

H∞.
Next, we claim that T̃∞ is hermitian, i.e., T̃∞ ⊆ T̃ ∗∞. Note

that we have direct system of Hilbert spaces ((Graph(Ti))i∈i, ((ui,j ⊕
ui,j)|Graph(Ti))i,j∈I,i≤j), where ui,j ⊕ ui,j denotes the map

H2
i → H2

j , (ψ, φ) 7→ (ui,j(ψ), ui,j(φ)),

Identifying limi∈I Hi ⊕Hi with H2
∞ in the canonical way, we can identify

the canonical maps H2
i → limj∈I H2

j with the maps ui ⊕ ui. It is now

readily seen that Graph(T̃∞) =
⋃
i∈I ui ⊕ ui(Graph(Ti)). For each i ∈ I,
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⋃
k∈I

uk,∞(Dom(Tk))

Dom(Tj) H∞

Dom(Ti)

T̃∞

uj ◦ Tj

ui ◦ Ti
ui,j

ui,∞

uj,∞

Figure 4.2: The essentially self-adjoint operator T̃∞ induced by the self-
adjoint operators (Ti)i∈I .

we have a map Ji ∈ B(H2
i ) given by (a, b) 7→ (−b, a), and similarly, we

have a map J∞ ∈ B(H2
∞) defined by the same formula, and

J∞(Graph(T̃∞)) =
⋃
i∈I

(ui,∞ ⊕ ui,∞)(Ji(Graph(Ti))).

Now let i, j ∈ I. Then there exists k ∈ I such that k ≥ i, j. Since Tk is
selfadjoint, we have

H2
k = Graph(Tk)⊕ Jk(Graph(Tk)),

so in particular Graph(Tk) ⊥ Jk(Graph(Tk)). Since (ul,k ⊕
ul,k)(Graph(Tl)) ⊆ Graph(Tk) for l = i, j, we have

(ui,k ⊕ ui,k)(Graph(Ti)) ⊥ (uj,k ⊕ uj,k)(Jj(Graph(Tj))),

and hence

(ui,∞ ⊕ ui,∞)(Graph(Ti)) ⊥ (uj,∞ ⊕ uj,∞)(Jj(Graph(Tj))).
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Since i and j were arbitrary, it follows that

(ui,∞ ⊕ ui,∞)(Graph(Ti)) ⊥
⋃
j∈I

(uj,∞ ⊕ uj,∞)(Jj(Graph(Tj))),

and hence⋃
i∈I

(ui,∞ ⊕ ui,∞)(Graph(Ti)) ⊥
⋃
j∈I

(uj,∞ ⊕ uj,∞)(Jj(Graph(Tj))),

i.e., Graph(T̃∞) ⊥ J∞(Graph(T̃∞)). This shows that T̃∞ is hermitian.
Next, we show that T̃∞ is essentially selfadjoint. Let T∞ be the closure

of T̃∞. Note that the closure exists by virtue of the fact that T̃∞ is
hermitian. Now observe that

H2
∞ = lim−→

i∈I
H2
i = lim−→

i∈I
(Graph(Ti)⊕ Ji(Graph(Ti)))

=
⋃
i∈I

(ui,∞ ⊕ ui,∞)(Graph(Ti)⊕ Ji(Graph(Ti)))

=
⋃
i∈I

((ui,∞ ⊕ ui,∞)(Graph(Ti))⊕ J∞ ◦ (ui,∞ ⊕ ui,∞)(Graph(Ti)))

=
⋃
i∈I

((ui,∞ ⊕ ui,∞)(Graph(Ti)))⊕ J∞

⋃
j∈I

(uj,∞ ⊕ uj,∞)(Graph(Tj))


= Graph(T∞)⊕ J∞(Graph(T∞)).

Thus T∞ is selfadjoint, and consequently, T̃∞ is essentially selfadjoint. We
conclude that T∞ is the unique operator on H∞ that has all of the desired
properties.

(2) This is an immediate consequence of the first part of the proposition
and Lemma 4.30. �

Combining Propositions 4.28 and 4.31, we infer that there exist canon-
ical self-adjoint operators H0,∞ and Hred

0,∞ on the unreduced Hilbert space

L2(K∞) and the reduced Hilbert space L2(Kred
∞ ), respectively, that we may

regard as Hamiltonians. Moreover, the spectral decomposition of H0,∞ is
well-behaved with respect to the spectral decompositions of each of the
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members of the family of Hamiltonians (H0,i)i∈I , and an analogous state-
ment holds for the reduced Hamiltonian in the limit. In particular, this
implies

exp

(
itH0,k

~

)
◦ uj,k = uj,k ◦ exp

(
itH0,j

~

)
,

for each t ∈ R, each j ∈ I, and each k ∈ I∪{∞} with k ≥ j, and where i =√
−1. In other words, the families of isometries (uj,k)j≤k are compatible

with the free time evolutions of the quantum systems, including the one
on the direct limit. In contrast with the spectral properties of H0,i, it is
less clear what the summability properties of H0,∞ are, as for instance
infinite multiplicities will appear. We leave the analysis of this aspect of
the limit Hamiltonian for future work.

4.8 Problems with the groupoid approach

For the quantization of the configuration space we have followed the ap-
proach of [64] and defined the quantized field algebra and observable al-
gebra as groupoid C∗-algebras. The merit of this approach is that it is
fully compatible with the natural maps between configuration spaces in-
duced by graph refinements. Hence it allowed us to concretely describe
the field algebras and the observable algebras in both the continuum and
the themodynamic limit.

However, when we want to extend the above kinematical description
of the limiting quantum gauge system to incorporate the Hamiltonian
dynamics for the interacting system, we run into the following problems.
Namely, since our limit observable algebra is given by the space of compact
operators, it does not really capture the infinite number of degrees of
freedom that one would expect for an interacting quantum field theory
(cf. [124] for a nice overview of this point), or in the description of the
statistical physics of an infinite system at finite temperature [7]. As such,
our limit observable algebra only admits KMS-states that are associated to
inner automorphisms of the algebra, which prompts the question whether
it is the right algebra for the description of a nontrivial quantum field
theory.

The reason for this lack of interesting states might be that even though
our choice of maps between configuration spaces is natural from a classical
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point of view, the induced maps vi,j between the different observable al-
gebras defined in Proposition 4.16 do not induce maps between the state
spaces of the algebras.

It is in this context interesting to mention that there are other ap-
proaches to the construction of the limit observable algebra, one of which
was developed by Kijowski in [58], and later by Oko lów in [88] (cf. [59]),
and recently explored in depth by Lanéry and Thiemann in a series of
papers [72, 73, 74, 75], see [71] for a summary of these papers. The main
point where their approach differs from ours is that they assume the ex-
istence of a canonical unitary map between Hilbert spaces, which they
use to define injective ∗-homomorphism between the corresponding algeb-
ras of bounded operators, and which ensures that the transpose of this
homomorphism maps states to states, i.e. preserves the normalisation of
positive functionals. However, in their approach, the maps at the level of
bounded operators do not reduce to maps between the algebras of com-
pact operators, a problem that was already observed by Stottmeister and
Thiemann [109]. This suggests that the framework C∗-algebraic quantisa-
tion of groupoids described in e.g. [65] should at least be modified (if not
abandoned) to ensure that there is an induced map between state spaces.

In [48], Grundling and Rudolph include matter fields, and go beyond
the kinematic picture by proving that the dynamics on certain algebras
associated to finite lattices converge to a group of automorphisms on a
corresponding limit algebra in the thermodynamic limit; this is the first
known rigorous result on global dynamics for lattice gauge theory. They
subsequently identify a subalgebra of this limit algebra that is closed under
the global time evolution as the field algebra of the system. Interestingly,
they note that in their earlier paper [47], the algebra that they constructed
there, which is different from the one in [48], does not admit interesting
dynamics. Our limit algebra may suffer from the same problem, indicat-
ing that already in the thermodynamic limit, a different algebra may be
required, such as the one in [48]. We address some of these problems in
the second part of this thesis.



Part II

A resolvent algebra for the
cylinder
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Chapter 5

The classical resolvent
algebra

The purpose of this chapter is to introduce a notion of a clas-
sical/commutative resolvent algebra for the cotangent bundle T ∗Tn of the
n-dimensional torus Tn, and serves as the foundation for the second part
of this thesis. We begin by reviewing the resolvent algebra on a symplectic
vector space as conceived by Buchholz and Grundling [26], in which we
focus on the particular properties of this algebra that are of interest to us.
We then discuss the work of van Nuland on the commutative version of
this algebra [112]; his characterisation of the generators is readily gener-
alised to T ∗Tn. We prove that the ∗-algebra generated by these elements
is a Poisson subalgebra of C∞(T ∗Tn), and show that its closure is a C∗-
algebra that is closed under time evolution for n = 1 (although it is worth
noting that the result is true for arbitrary n).

The work presented in chapters 5 and 7 of this thesis was carried out
in collaboration with Teun van Nuland.

5.1 Introduction

The resolvent algebra R(V, ω) on a symplectic vector space (V, ω) is a C∗-
algebra introduced by Buchholz and Grundling in [25], and subsequently
studied in greater detail by the same authors in [26, 22]. The resolvent
algebra is defined as a completion of a ∗-algebra defined through generators
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and relations; the generators of the algebra are denoted by R(λ, v), where
λ ∈ R\{0} and v ∈ V , and should be thought of as representing resolvents
of certain unbounded operators in the following way.

Suppose for simplicity that V = R2n, and that ω is the standard
symplectic form on this vector space. Thus, writing R2n = Rn × Rn, we
have

ω((q1, p1), (q2, p2)) = p1 · q2 − p2 · q1,

where · denotes the standard inner product. Now we consider the usual
quantum-mechanical counterparts of elements (a, 0) and (0, b) for a =
(a1, . . . , an) and b = (b1, . . . , bn) in Rn, which are unbounded operators on
L2(Rn). They are given by

a ·Q : ψ 7→

x = (x1, . . . , xn) 7→
n∑
j=1

ajx
jψ(x)

 ,

and

b · P : ψ 7→

x 7→ −i~ · n∑
j=1

bj
∂ψ

∂xj
(x)

 ,

respectively, both of which (as well as their sum) can be defined on suitable
dense domains, such as C∞c (Rn) or S(Rn), and subsequently extended to
self-adjoint operators, which will also be denoted by a ·Q and b · P . One
can now consider their resolvents (iλ− a ·Q)−1 and (iλ− b · P )−1 (where
λ ∈ R\{0} as above), both of which are bounded operators on L2(Rn). The
idea is that the resolvent algebra should admit a faithful representation
on L2(Rn) that maps the generators R(λ, (a, 0)) and R(λ, (0, b)) to the
above resolvents, respectively, hence the name ‘resolvent algebra’. There
is indeed such a representation; this follows from [26, Corollary 4.4] and
the fact that the usual representation of the Weyl algebra corresponding
to R2n on L2(Rn) is regular. For future reference, let us briefly recall the
definition of the Weyl algebra:

5.1 Definition. Let ~ ∈ R\{0}. The Weyl algebra W~(Rn) (on R2n(!))
is the C∗-subalgebra of B(L2(Rn)) generated by the operators of the form

ei(a·Q+b·P ),
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where a, b ∈ Rn, and a ·Q and b · P are as above.

The C∗-algebra that is obtained by taking ~ = 0 in this definition is the
set of multiplication operators associated to the algebra of almost periodic
functions on Rn, which is the C∗-subalgebra of Cb(Rn) generated by the
functions

Rn → C, x 7→ eia·x, a ∈ Rn.

This algebra of functions will accordingly be denoted by W0(Rn).

5.2 Remark. The term ‘Weyl algebra’ is sometimes also used for the
infinitesimal counterpart of the above algebra, i.e., the complex algebra
generated by the operators a ·Q and b ·P defined earlier, viewed as linear
operators on C∞(Rn).

As mentioned above, a certain set of relations (cf. [26, Definition 3.1]) is
imposed on the generatorsR(λ, v) of the resolvent algebra. These relations
together encode two properties of the generators. First of all, the relations
ensure that each R(λ, v) is a resolvent of some unbounded operator φ(v)
corresponding to v, where φ is some map that assigns to each element of
V an unbounded operator and is linear in the sense that

φ(µv + w) = µφ(v) + φ(w),

for each µ ∈ C and v, w ∈ V , provided that both sides of the above
equation are restricted to the intersection of the domains of the three
unbounded operators in this formula. Secondly, the relations encode the
canonical commutation relation [φ(v), φ(w)] = −i~ω(v, w); here, ~ can be
removed from the equation by redefining ω.

The relations imply that the image of a generator R(λ, v) under a ∗-
representation of the ∗-algebra generated by these elements has the prop-
erty that its norm is bounded by |λ|−1, in addition to the well-definedness
of the GNS representations of this ∗-algebra and the fact that its image
consists of bounded operators [26, Proposition 3.3]. These facts are used
to define a C∗-seminorm on the ∗-algebra, which, by taking the quotient
with respect to its null space and subsequently taking the completion of
the quotient space, yields the resolvent algebra R(V, ω).

As the motivation for their study of the resolvent algebra, Buchholz
and Grundling mention some of the problems that the Weyl algebra has,
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one of which is the lack of interesting dynamics that it admits. The re-
solvent algebra is better behaved in this respect, at least in the case where
the vector space V is two-dimensional; cf. [26, Proposition 6.1]. Buchholz
has shown that the resolvent algebra is also stable under large classes of
dynamics in the context of oscillating lattice systems [23] and nonrelativ-
istic Bose fields [24]. We want our analogue of the resolvent algebra for
T ∗Tn to have a similar property.

Stability under time evolution is very much desirable, although it is
not the primary motivation behind our interest in the resolvent algebra,
which we will discuss next. Suppose U ⊆ V is a symplectic subspace of
V , i.e., the restriction of ω to U is nondegenerate, and let

Uω := {v ∈ V | ∀u ∈ U : ω(u, v) = 0},

be the associated complementary subspace. (Buchholz and Grundling call
this space U⊥.) By abuse of notation, we write ω for the restrictions of the
symplectic form ω on V to U and Uω. Then there is a canonical embedding
map R(U, ω) ↪→ R(V, ω) that maps every generator R(λ,w) of the domain
to the generator of the codomain denoted by the same expression. Since
symplectic bases of U and Uω can always be found in principle, we may
assume without loss of generality that (V, ω) is R2n endowed with the
standard symplectic form, that

U = (Rn1 × {0})2 ⊆ R2n,

and that

Uω = ({0} × Rn2)2 ⊆ R2n,

where n1 + n2 = n. In terms of the canonical representations of R(U, ω),
R(Uω, ω) and R(V, ω) on L2(Rn1), L2(Rn2) and L2(Rn), respectively
(which are faithful by Corollary 4.4 and Theorem 5.1 in [26]), this em-
bedding map reads

a 7→ a⊗ 1Rn2 ∈ B(L2(Rn1) ⊗̂ L2(Rn2)) ∼= B(L2(Rn)),

where 1Rn2 ∈ B(L2(Rn2)) denotes the unit element, the symbol ⊗̂ de-
notes the completion of algebraic tensor product with respect to (the
norm corresponding to) the canonical inner product, and the isomorphism
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between the spaces of bounded operators is the one induced by the canon-
ical isomorphism between the corresponding Hilbert spaces. Buchholz and
Grundling themselves already mention this in [26, Remark 5.5(d)] without
referring to the aforementioned representation of these algebras.

Embeddings of this type appear in the work Stottmeister and
Thiemann in [109], and the transposes of such maps form the basis of
the work of Lanéry and Thiemann mentioned at the end of the previous
chapter. It is standard doctrine that, given two quantum systems with
Hilbert spaces Hj and observable algebras Aj ⊆ B(Hj) for j = 1, 2, the
composite system is given by their Hilbert space tensor product H1⊗H2,
with observable algebra A1,2 ⊆ B(H1 ⊗ H2). (To simplify the discus-
sion, we will not bother with the distinction between field and observable
algebra in this section). Furthermore, the embedding of the observable
algebra of the first quantum system into the composite system is given by

A1 ↪→ A1,2, a 7→ a⊗ 1H2 ,

and the embedding of the observables of the second system is defined
similarly. (The author thanks Alexander Stottmeister for pointing this
out to him.) This will be motivated more thoroughly in chapter 8. Note
that if we take the observable algebra of each of the above three systems
to be space of compact operators on the corresponding Hilbert space, and
if Hj has infinite dimension for j = 1 or j = 2, then the corresponding
embedding of Aj into A1,2 is ill-defined, since each nonzero element of Aj
will be mapped to an operator that is not compact. By contrast, families of
resolvent algebras corresponding to the family of nondegenerate subspaces
of a symplectic vector space are closed under the above map.

This type of embedding appears in situations where one wishes to
take the thermodynamic limit. For example, in the setting of chapter
4, this is the map between the observable algebras of the corresponding
graphs that we expect based on the physics literature when adding an
edge (with Hilbert space H2 = L2(G)) to a graph (with Hilbert space
H1 = L2(GΛ1

)). Thus, if we are able to find an analogue of the resolvent
algebra for T ∗G that has the analogue of the property of the algebra of
Buchholz and Grundling mentioned above, then we will have found a
better candidate for the observable algebra of the system than the space
of compact operators. This the main reason for the present investigation.
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Since a definition of such an algebra for compact connected Lie groups G,
let alone general Lie groups, appears to be far away, we have restricted
ourselves to the case G = Tn, in which we can draw analogies with the
established caseG = Rn to motivate our definition of the resolvent algebra.

While embedding maps for observable algebras are necessary to form a
direct system of C∗-algebras and take its corresponding limit, there is
another way to obtain an algebra that a priori could be considered an
observable algebra of the system in the limit. Indeed, one could start with
a direct system of Hilbert spaces with isometries ((Hi)i∈I , (ui,j)i,j∈I,i≤j),
along with a family of Hilbert spaces (Hi,j)i,j∈I,i≤j and a family of iso-
morphisms Hj ∼= Hi ⊗̂ Hi,j that satisfy certain conditions, as described
in [73, Definition 2.1]. The example in the previous paragraph provides
an illustration of this: take Hi = L2(GΛ1

), take Hi,j = L2(G), and take

Hj = L2(GΛ1∪{e}), which are the Hilbert spaces associated of the smaller
graph, the edge that is being added to the smaller graph, and the resulting
larger graph, respectively.

Returning to the construction, let (Ai)i∈I be a family of C∗-algebras
parametrised by the same set I, and let (πi)i∈I be a family of ∗-
representations, where πi is a representation of Ai on Hi for each i ∈ I.
One then forms the direct limit H∞ := lim−→i∈I Hi. Now for each i ∈ I,

there exists a Hilbert space H′i and an isomorphism H∞ ∼= Hi ⊗̂ H′i, and
πi(Ai) can be embedded into B(H∞) by taking the tensor product with
1H′i ; to avoid cumbersome notation in what follows, let us identify Ai
with the image of its embedding in B(H∞). The C∗-algebra generated
by the union of the family of algebras (Ai)i∈I is taken to be the limit
algebra A ⊆ B(H∞). This is roughly the approach taken by Grundling
and Rudolph in [48], who, after constructing A as described above, close
it with respect to the time evolution. More precisely, they first construct
a strongly continuous one-parameter group of unitary operators on H∞ as
a limit of a family of one-parameter groups of unitaries, each of which is
generated by the Hamiltonian on Hi, thereby obtaining dynamics on the
limit. They subsequently define their limit field algebra as the C∗-algebra
generated by the orbits of the elements of

⋃
i∈I Ai ⊆ B(H∞) under the

adjoint action of the one-parameter group.

This construction has the following drawback. Given i, j ∈ I such that
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i ≤ j, in general, it cannot be expected that Ai is a subset of Aj , and this
is indeed not the case in [48], as the authors themselves note. Thus, if
I ′ ⊂ I is a proper subset that is cofinal in I, then we have the following
inclusion

C∗

(⋃
i∈I′

Ai

)
⊆ C∗

(⋃
i∈I

Ai

)
,

of C∗-algebras generated by the unions of the corresponding subalgebras
of B(H∞), but the inclusion will in general not be an equality. This means
that the limit algebra depends on the index set, which goes against the
philosophy that the limit should be independent of the particular choice
of regulator.

Of course, in certain systems, one could exclude other index sets than a
given set I on physical grounds. For example, in the context of condensed
matter physics, if one is interested in modeling a material of which the
atoms form a lattice, then it makes sense to take I to be as large as possible,
i.e., by taking I to be the set of all finite subgraphs of this lattice. On
the other hand, in the context of gauge theory and particle physics, one
is interested in taking the continuum limit, and a choice such as the one
just mentioned seems arbitrary. It is however worth noting that in loop
quantum gravity, I is taken to be the set of all finite graphs, of which
the edges correspond to piecewise analytic (compact) paths in spacetime.
The implicit assumption here is that spacetime is described by an analytic
manifold. The condition of analyticity is imposed to ensure that the paths
only intersect each other at finitely many points at most, which in turn is
necessary to make sure that I is upward directed, but it is unclear what
it means from a physical point of view.

For us, the great thing about the resolvent algebra is that it already
appears to contain all of the resolvent algebras associated to subsystems
or coarser descriptions of the system of which we are considering the re-
solvent algebra, hence one has more freedom in choosing the index set.
In this context, it is also worth mentioning the work of van Nuland [112],
who considered the classical/commutative counterpart CR(R2n) of the re-
solvent algebra - which is also defined for odd-dimensional vector spaces
- and showed that R(R2n, ω) is a quantisation of this commutative C∗-
algebra. The algebra CR(R2n) is in some sense the smallest commutative
C∗-algebra containing C0(R2n), as well as the embeddings of each algebra
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CR(U) that corresponds to a subspace U of R2n, in particular those sub-
spaces U on which ω is nondegenerate.

To put it more formally (and more generally), let P0 be the set of linear
subspaces of Rn, and regard the poset (P0,⊆) as a category in the usual
way. We can now consider the covariant functor Cb from this category to
the category of commutative C∗-algebras that is defined as follows:

• An object U in (P0,⊆), i.e., a subspace U of Rn, is mapped to its
space of continuous bounded functions Cb(U);

• A morphisms (U, V ), i.e., a pair of subspaces of Rn such that U ⊆ V ,
is mapped to the pullback of the orthogonal projection of V onto U
to the corresponding function spaces.

We can now consider the smallest subfunctor F of Cb with the property
that C0(U) ⊆ F (U) for each U ∈ P0. We then have CR(Rn) = F (Rn).
Note that CR(Rn) is unital since it contains the embedding of C0({0}) ∼= C
into Cb(Rn).

This suggests that the quantum counterpart R(R2n, ω) of CR(R2n),
specifically its image under the canonical representation on L2(Rn), is
the smallest quantised algebra that allows embeddings of resolvent algeb-
ras associated to subsystems that in addition contains the quantisation
B0(L2(Rn)) of C0(R2n). This is a feature that we want our resolvent al-
gebra for the cylinder T ∗Tn to exhibit as well, in addition to being invari-
ant under the time evolutions associated to a large class of Hamiltonians.

We will return to the matter of embedding algebras of subsystems in
chapter 8, both in the classical and in the quantum sense, where we will
see that in the quantum case, this is a rather delicate matter. Before
that, in this chapter, we will define our classical resolvent algebra for the
cylinder, of which we will determine the Gelfand spectrum in chapter 6,
and which we will quantise in chapter 7 using Weyl quantisation.

5.2 Definition and motivation

To motivate the definition of the classical resolvent algebra for T ∗Tn,
it is useful to first discuss the motivation for van Nuland’s definition
[112, Definition 2.1] of CR(Rn). Given q ∈ Rn, the image of generator
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R(λ, (q, 0)) of the resolvent algebra corresponding to (q, 0) ∈ R2n and
λ ∈ R\{0} under the canonical regular representation on L2(Rn) is the
operator

ψ 7→

x 7→
iλ− n∑

j=1

xjqj

−1

ψ(x)

 ,

which is the multiplication operator corresponding to the function

(5.1) Rn → C, x 7→ (iλ− x · q)−1.

For this reason, van Nuland defines CR(Rn) as the C∗-subalgebra of
Cb(Rn) generated by functions of this form. Furthermore, van Nuland
shows that the space of functions

SR(Rn) := spanC{g ◦ rU : g ∈ S(U), U is a subspace of Rn}.

is a dense ∗-subalgebra of CR(Rn), where rU denotes the orthogonal pro-
jection of Rn onto U , and S(U) denotes the space of Schwartz functions
on U . This algebra is also a Poisson algebra, i.e., in addition to being an
algebra, it is closed under the Poisson bracket. It is a natural choice for
the domain of a quantisation map for CR(Rn) in view of the fact that the
domain of the Weyl quantisation map in [65, II.2.6] is S(Rn), which is the
dense subalgebra of the quantised C0(Rn).

In order to define a resolvent algebra for the cylinder T ∗Tn, we will
start by identifying generators similar to those in equation (5.1). Note that
since Tn is a Lie group and Tn = Rn/Zn, we have canonical identifications

T ∗Tn ∼= Tn × Rn ∼= R2n/Zn,

where the action of Zn on R2n = Rn×Rn is given by translation in the first
n components. Inspired by Rieffel’s approach to deformation quantisation
in [98], we consider the action of Rn on itself by translation, and note that
the generator of CR(Rn) in equation (5.1) is continuous and bounded, is
invariant under the restriction of this action to the subgroup {q}⊥ of Rn
(where ⊥ denotes the orthogonal complement with respect to the standard
inner product on Rn), and has the property that the induced map

R · q ∼= Rn/{q}⊥ → C,
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vanishes at infinity. Since the action of R2n on itself by translation induces
an action of this group on R2n/Zn, we can similarly look for functions on
R2n/Zn that have these properties.

5.3 Definition. Let n ∈ N. The classical resolvent algebra of the cylinder
T ∗Tn is the C∗-subalgebra of Cb(T

∗Tn) generated by functions f with the
property that there exists a (x, y) ∈ Rn × Rn such that f is constant on
the orbits of the restriction to {(x, y)}⊥ (where ⊥ denotes the orthogonal
complement with respect to the standard inner product on R2n) of the
action of R2n on T ∗Tn, and such that the induced map

(Tn × Rn)/{(x, y)}⊥ → C,

vanishes at infinity. Here, the domain of the induced map carries the
quotient topology. The classical resolvent algebra will be denoted by
CR(T ∗Tn).

The definition of the classical resolvent algebra CR(T ∗Tn) is clearly motiv-
ated, but very unwieldy. Our first task is therefore to find an alternative,
more elementary characterisation of CR(T ∗Tn).

5.4 Lemma. Let n ≥ 1, let x ∈ Rn\{0}, and let

H := {y + Zn : y ∈ Rn, x · y = 0} ⊆ Tn,

be the image of {x}⊥ under the canonical projection Rn → Rn/Zn = Tn.
Then either H is dense in Tn, or H is a Lie subgroup of Tn of codimension
1. In the latter case, the set

{t ∈ (0,∞) : tx+ Zn ∈ H},

has a minimum T , the map

ϕ : Tn/H → T, tx+ Zn +H 7→ t

T
+ Z,

is a well-defined Lie group isomorphism, and x ∈ T‖x‖2 · Zn.

5.5 Remark. Note that for n = 2, the statement in the proposition
essentially boils down to the well-known result that a line with irrational
slope on the torus T2 is dense in the torus.
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Proof. Throughout this proof, the canonical projection Rn → Tn will
be denoted by π. Note that π is a Lie group homomorphism that is
a local diffeomorphism, and that H is the image of a subgroup of Rn
of codimension 1, hence it is a subgroup of Tn, but not necessarily a Lie
subgroup; the point is thatH is an immersed but not necessarily embedded
submanifold of Tn of codimension 1. The closure H of H however is a
closed subgroup of Tn, hence it is a Lie subgroup of Tn (cf. [35, Corollary
1.10.7]) of codimension ≤ 1.

Suppose H is a codimension 0 submanifold of Tn: in this case, it
follows that H is open in Tn. Thus H is clopen, and it is evident that it
is nonempty, so H = Tn by connectedness of the latter space, i.e., H is
dense in Tn.

Now suppose H is a codimension 1 submanifold of Tn. Using the
inverse function theorem and the fact that H and H have the same codi-
mension, one can show that the inclusion map of H into H is open. Since
H is an embedded submanifold of Tn, the manifold H is an embedded
submanifold of Tn as well, which, together with the fact that it is also
a subgroup of Tn, implies that H is a Lie subgroup; in particular, H is
closed. It follows that Tn/H has a natural Lie group structure of which the
topology coincides with the quotient topology of Tn/H. This Lie group is
compact, connected, and one-dimensional, hence it is isomorphic to T.

We claim that ϕ is an isomorphism that demonstrates this explicitly.
We first show that the number T with the desired property exists, and
that the set

X := {t ∈ R : tx+ Zn ∈ H},

is equal to TZ. Recall that H is the image of {x}⊥ under π. Since x and
{x}⊥ together span Rn, for each k ∈ Zn, there is a t ∈ R and an x′ ∈ {x}⊥
such that k = tx+x′. Moreover, since Zn contains a basis of Rn and {x}⊥
is a proper subspace, k may be chosen so that t 6= 0; by replacing k by −k
if necessary, we may assume without loss of generality that t > 0. This
shows that X ∩ (0,∞) is nonempty.

Now note that π is a local diffeomorphism, and that for each x′ ∈ {x}⊥,
we have Tx′π(x) /∈ Tπ(x′)H, where x is viewed as an element of Tx′Rn. This,
together with the fact that H is an embedded submanifold of Tn, implies
that X is a discrete subset of R. Moreover, it is easy to see that X is a
subgroup of R. Thus X is a nontrivial discrete subgroup. It follows that
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X ∩ (0,∞) has a minimum T , and that X = TZ.
Next, consider the smooth map

R→ Tn/H, s 7→ sTx+ Zn +H.

This is an immersive Lie group homomorphism, and since X = TZ, this
map factors through T to a smooth injection ψ : T → Tn/H. Since both
the domain and codomain of the displayed map are 1-dimensional, we may
invoke the inverse function theorem to conclude that both the displayed
map and the map ψ are local diffeomorphisms. In particular, their image
is a clopen subgroup of Tn/H. Since Tn/H is connected, it follows that
ψ is surjective, hence ψ is a Lie group isomorphism. Its inverse is the Lie
group isomorphism ϕ.

It remains to prove the final assertion. Note that

ϕ(q + Zn +H) =
q · x
T‖x‖2

+ Z,

for each q ∈ Rn. Taking q to be a standard basis vector ej of Rn, we
obtain

ej · x
T‖x‖2

∈ Z,

hence x ∈ T‖x‖2 · Zn, as desired. �

5.6 Definition. Let n ∈ N. We define the algebra W0
R(Rn) as the C∗-

subalgebra of Cb(Rn) generated by the classical resolvent algebra CR(Rn)
and the algebra of almost periodic functions W0(Rn) on Rn.

Next up is the main result of this chapter. Recall that commutative C∗-
algebras are nuclear (cf. [87, Theorem 6.4.15]).

5.7 Theorem. For each n ∈ N, we have

CR(T ∗Tn) = C(Tn) ⊗̂ W0
R(Rn).

Here, ⊗̂ indicates that the right-hand side is the completion of the algebraic
tensor product of the two factors with respect to the unique C∗-norm on
that ∗-algebra. Furthermore, we identify both the left and the right-hand
side of the above equation with their respective canonical embeddings in
Cb(Tn × Rn).
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Proof. The statement is trivial for n = 0, so suppose n ≥ 1. We first
prove the inclusion CR(T ∗Tn) ⊆ C(Tn) ⊗̂ W0

R(Rn) by showing that the
generators of CR(T ∗Tn) are contained in the right-hand side. Let (x, y) ∈
Rn×Rn, and let f be one of the generators of CR(T ∗Tn) that is constant
on each of the orbits of the restriction to {(x, y)}⊥ of the action of R2n

on Tn × Rn. We define H to be the image of {x}⊥ under the canonical
projection map Rn → Tn, and we define H ′ to be the image of {(x, y)}⊥
under the canonical projection Rn×Rn → Tn×Rn. Note that both of these
sets are subgroups of the respective groups in which they are contained.
By Lemma 5.4, exactly one of the following three statements holds true:

(i) x = 0: in this case, we have H ′ = Tn×{y}⊥; in particular, it is a Lie
subgroup of Tn × Rn, and the map

(Tn × Rn)/H ′ → R · y, (q + Zn, p) +H ′ 7→ (p · y)y,

is an isomorphism of Lie groups. It follows that f is the pullback of a
function in C0(R · y) along the above map, from which it is readily seen
that

f ∈ C · IdTn ⊗̂ CR(Rn) ⊆ C(Tn) ⊗̂ W0
R(Rn);

In particular, note that f is constant iff y = 0.

To handle the remaining two cases in which x 6= 0, we first note that the
map

θ0 : Tn × Rn → Tn/H,

(q + Zn, p) 7→ q · x+ p · y
‖x‖2

x+ Zn +H = q +
p · y
‖x‖2

x+ Zn +H,

is a well-defined continuous group homomorphism whose kernel contains
the subgroup H ′. Thus the above map factors through the quotient of the
domain by H ′, yielding a continuous group homomorphism

θ : (Tn × Rn)/H ′ → Tn/H.

In fact, θ is a group isomorphism and a homeomorphism, since the map

Tn/H → (Tn × Rn)/H ′, q + Zn +H 7→ (q + Zn, 0) +H ′,
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is a well-defined countinuous group homomorphism that can be checked to
be the inverse of θ. As we will see below, θ need not be an isomorphism of
topological groups if we require such groups to be T1-spaces. We proceed
with the remaining two cases:

(ii) x 6= 0 and H is dense in Tn: in this case, the quotient topology on
Tn/H is the indiscrete topology, hence (Tn × Rn)/H ′ is also indiscrete
by our discussion above. It follows that the function f is constant, so
f ∈ C(Tn) ⊗̂ W0

R(Rn).

(iii) x 6= 0 and H is a Lie subgroup of Tn of codimension 1: then the
map θ0 defined above is a surjective Lie group homomorphism of which
the codomain is one-dimensional, hence its kernel H ′ is a Lie subgroup
of Tn × Rn of codimension 1, and the map θ is a Lie group isomorphism.
Composing θ with the map ϕ from Lemma 5.4, we obtain the Lie group
isomorphism

ϕ ◦ θ : (Tn × Rn)/H ′ → T, (q + Zn, p) +H ′ 7→ q · x+ p · y
T‖x‖2

+ Z,

where T is defined as in the previous lemma. Now let

π′ : Tn × Rn → Tn × Rn/H ′,

be the quotient map. Then f = g ◦ ϕ ◦ θ ◦ π′ for some g ∈ C(T); let us
first assume that g is of the form

ek : x+ Z 7→ exp(2πikx),

for some k ∈ Z. Then

f(q + Zn, p) = exp

(
2πik

q · x+ p · y
T‖x‖2

)
= exp

(
2πik

q · x
T‖x‖2

)
· exp

(
2πik

p · y
T‖x‖2

)
,

which shows that f ∈ C(Tn) ⊗̂ W0
R(Rn). Since the family of exponential

functions (ek)k∈T generate C(T), and since pullback along the map

ϕ ◦ θ ◦ π′ : Tn × Rn → T,
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is a homomorphism of C∗-algebras, it follows that

f = g ◦ ϕ ◦ θ ◦ π′ ∈ C(Tn) ⊗̂ W0
R(Rn),

for arbitrary g ∈ C(T).

This establishes the inclusion CR(T ∗Tn) ⊆ C(Tn) ⊗̂W0
R(Rn). The reverse

inclusion is a consequence of the following three observations:

• From case (i) in the previous part of this proof, we readily obtain
C · 1Tn ⊗̂ CR(Rn) ⊆ CR(T ∗Tn);

• From case (iii), setting y = 0 and taking x to be a standard basis
vector of Rn, we obtain C(Tn) ⊗̂ C · 1Rn ⊆ CR(T ∗Tn).

• Finally, by considering case (iii) again, but now with x the first
standard basis vector and y ∈ Rn arbitrary, we see that CR(T ∗Tn)
contains functions of the form

(q + Zn, p) 7→ exp(2πikq1) exp(iξ · p),

where k ∈ Z\{0}, and ξ ∈ Rn is arbitrary. The previous point now
implies that functions of the form

(q + Zn, p) 7→ exp(iξ · p),

are elements of the resolvent algebra, so C · 1Tn ⊗̂ W0(Rn) ⊆
CR(T ∗Tn). �

We finish this section by defining the analogue of the space of Schwartz
functions of CR(T ∗Tn). This allows us to introduce the notation hU,ξ,g
for the generators of W0

R(Rn), which will be used extensively in the next
chapter.

5.8 Definition. For each k ∈ Zn, let

ek : Tn → C, q + Zn 7→ e2πik·q.

For each subspace U ⊆ Rn, for each ξ ∈ U⊥, and for each Schwartz
function g ∈ S(U), let

hU,ξ,g : Rn → C, p 7→ eiξ·pg ◦ rU (p),
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where rU : Rn → U denotes the orthogonal projection onto U . We define
the set SR(T ∗Tn) as the linear subspace of Cb(T

∗Tn) spanned by the
elements

(5.2) ek ⊗ hU,ξ,g : Tn × Rn → C, (q + Zn, p) 7→ ek(q + Zn)hU,ξ,g(p),

viewed as functions on T ∗Tn using the canonical identification T ∗Tn ∼=
Tn × Rn.

5.9 Proposition.

(1) Let B be the linear span of the functions of the form
hU,ξ,g ∈ W0

R(Rn). Then B is closed under multiplication and par-
tial differentiation. Moreover, B is a norm-dense ∗-subalgebra of
W0
R(Rn).

(2) The vector space SR(T ∗Tn) is a subspace of CR(T ∗Tn) that is closed
under multiplication and partial differentiation, and is consequently
a Poisson subalgebra of C∞(T ∗Tn). Moreover, SR(T ∗Tn) is a norm-
dense ∗-subalgebra of CR(T ∗Tn).

Proof.

(1) For any hU,ξ,g as in Definition 5.8,

h∗U,ξ,g = hU,ξ,g = hU,−ξ,g ∈ B,

hence B is closed under the ∗-operation.
Assume for the moment that B is closed under multiplication. To see

that B is invariant under partial differentiation, it suffices to show that
partial derivatives of functions of the form hU,ξ,g are elements of B. Any
partial derivative can be written as a sum of two directional derivatives;
one in a direction lying in U , and one in a direction lying in U⊥. It is
readily seen that both of these directional derivatives are elements of B,
hence so is their sum.

To show that B is closed under multiplication, it suffices to show that
the product of two functions hU1,ξ1,g1 and hU2,ξ2,g2 as in Definition 5.8, is
an element of B. Let

U := U1 + U2,
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ξ := ξ1 + ξ2 − rU (ξ1 + ξ2) ∈ U⊥

g̃ := (g1 ◦ rU1)(g2 ◦ rU2).

Note that the restrictions of g̃ to U and U⊥ are Schwartz and constant,
respectively. Setting

g : U → C, p 7→ eirU (ξ1+ξ2)·pg̃|U ◦ rU (p) = ei(ξ1+ξ2)·pg̃|U ◦ rU (p),

we see that hU1,ξ1,g1 · hU2,ξ2,g2 = hU,ξ,g, which establishes that B is closed
under multiplication.

Thus B is a ∗-subalgebra of W0
R(Rn). In addition to this fact, the

elements of the form h{0},ξ,1 generate W0(Rn), while the elements of the
form hU,0,g generate CR(Rn), hence B generates W0

R(Rn) as a C∗-algebra.
We infer that W0

R(Rn) is the closure of B.

(2) For each k ∈ Zn, define ek as in Definition 5.8. It is a trivial matter
to check that the linear span of {ek : k ∈ Zn} is a ∗-subalgebra of C(Tn)
that is closed with respect to partial differentiation, and it is a result from
Fourier analysis that this linear subspace is dense in C(Tn). Using these
facts in conjunction with part (1) of this proposition and Theorem 5.7, it
is readily seen that all of the assertions are true. �

5.3 Invariance under time evolution

We finish this chapter by showing that for n = 1, for a reasonably large
class of Hamiltonians, the algebra CR(T ∗Tn) is closed under the corres-
ponding classical time evolution. The result actually holds for any n ∈ N
for a large class of potentials; the proof of this fact will appear in a forth-
coming paper of van Nuland and the author [113]. The case n = 1 can
be proved using a simpler and consequently shorter argument, and un-
derstanding why it does not extend to arbitrary n allows us to better
appreciate the proof of the general case.

To simplify the exposition, we will set all physical constants such as the
mass of the object moving on the cylinder equal to 1. The proof consists
of two steps: first we discuss the free case H0 := 1

2p
2 for arbitrary n, then

we extend the result to the interacting case H = H0 + V for n = 1, where
V : T→ R, and we comment on the proof for n > 1. As before, we identify
T ∗Tn with Tn × Rn.
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5.10 Lemma. The algebra CR(T ∗Tn) is closed under the classical time
evolution corresponding to the free Hamiltonian H0(q + Zn, p) = 1

2p
2.

Proof. The classical time evolution of the free Hamiltonian is given by the
one-parameter group of automorphisms

τt : Cb(Tn × Rn)→ Cb(Tn × Rn),

f 7→ ((q + Zn, p) 7→ f (q + tp+ Zn, p)) , t ∈ R.

In the notation of Definition 5.8, we have

τt(ek⊗hU,ξ,g)(q+Zn, p) = e2πik·(q+tp)eiξ·pg◦rU (p) = ek⊗hU,ξ1,g1(q+Zn, p),

where

ξ1 := ξ + 2πt(IdRn − rU )(k), g1(p) := e2πitrU (k)g(p).

Thus τt maps generators of CR(T ∗Tn) to scalar multiples of generators,
hence CR(T ∗Tn) is an invariant subspace. �

5.11 Proposition. Let V ∈ C1(T), and suppose that

V ′ : T→ R, q + Z 7→ d

dt
V (t+ q + Z)|t=0,

is Lipschitz continuous. Then the algebra CR(T ∗T) is closed under
the classical time evolution corresponding to the interacting Hamiltonian
H(q + Z, p) = 1

2p
2 + V (q + Z).

5.12 Remark. Note that the condition of Lipschitz continuity requires a
notion of a metric in the analytical sense, i.e., a function d : T×T→ [0,∞)
that satisfies various conditions including the triangle inequality. We will
refer to such a function as a distance function to avoid confusion with
the notion of a Riemannian metric. Every smooth Riemannian manifold
has an associated distance function, and thereby a notion of Lipschitz
continuity. If the manifold is compact, which is the case for T, then this
notion is independent of the specific Riemannian metric. However, in what
follows, as the Riemannian metric on T, we will take the one such that
the canonical projection R → T = R/Z is a local isometry, where the
Riemannian metric on R is the standard one.
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Given any smooth Riemannian manifold Q, there is a canonical
Riemannian metric on T ∗Q. Indeed, the Riemannian metric induces a
smooth pointwise inner product on each of the fibres of T ∗Q, and since
each fibre is a vector space, there is a canonical pointwise inner product on
the distribution of vertical subspaces of T ∗Q. Moreover, the Levi-Civita
connection on TQ has a dual connection on T ∗Q, of which the correspond-
ing Ehresmann connection is a distribution of horizontal subspaces, which
inherits a pointwise inner product from the Riemannian metric Q. The
Riemannian metric now arises as the pointwise inner product associated
to the direct sum of the horizontal and vertical distributions with their
respective pointwise inner products.

In the case Q = T, the associated metric on T ∗T corresponds to the
metric on T×R inherited from the canonical projection R2 → T×R. The
notion of Lipschitz continuity on T ∗T is taken to be the one associated to
this metric.

Proof. First, note that the Hamiltonian vector field

XH : T×R 7→ T (T×R), (q+Z, p) 7→ p
∂

∂q

∣∣∣∣
(q+Z,p)

−V ′(q+Z)
∂

∂p

∣∣∣∣
(q+Z,p)

,

of H is Lipschitz continuous, so we may use the Picard–Lindelöf theorem
to establish the existence of the flow Φ: D → T × R of XH , where D ⊆
R× (T× R) is an open neighbourhood of {0} × (T× R).

Now let (q0 + Z, p0) ∈ T× R, and let

(q(t) + Z, p(t)) := Φt(q0 + Z, p0),

for each t ∈ S, where S := {t ∈ R : (t, q0 + Z, p0) ∈ D}; we will see that
S = R shortly. We regard q as a function S → R in what follows, thereby
implicitly fixing a representative q0. Because {H,H} = 0, the composition
of H with the map t 7→ (q(t) + Z, p(t)) is a constant map, hence

p2
0 + 2V (q0 + Z) = H(q0 + Z, p0) = H(q(t) + Z, p(t))

= p(t)2 + 2V (q(t) + Z).

In particular, we see that

H(q0 + Z, p0)− 2Vmax ≤ p(t)2 ≤ H(q0 + Z, p0)− 2Vmin ,
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where

Vmax := max
q1+Z∈T

V (q1 + Z), Vmin := min
q1+Z∈T

V (q1 + Z).

Using the upper bound for p(t)2 and a standard compactness argument,
one can now show that D = R × (T × R) (and consequently S = R).
Thus we have a well-defined one-parameter group τt of automorphisms of
Cb(T× R), given by τt(f) = f ◦ Φ(t, ·).

To show that τt preserves CR(T ∗T), we first note that Φ(t, ·) is a
homeomorphism for each t ∈ R with inverse Φ(−t, ·); in particular, Φ(t, ·)
is continuous and proper. It follows that τt preserves C0(T× R).

To prepare for the next part of the proof, we need some estimates.
Using the lower bound for p(t)2, we see that if

p2
0 > 2(Vmax − V (q0 + Z)),

then p(t) > 0 for each t ∈ R or p(t) < 0 for each t ∈ R. Suppose now that
the above inequality for p2

0 holds. Then, we have

|p(t) + p0| · |p(t)− p0| = |p(t)2 − p2
0| = 2|V (q0 + Z)− V (q(t) + Z)|

≤ 2(Vmax − Vmin ),

which yields

|p(t)− p0| ≤
2(Vmax − Vmin )

|p(t) + p0|
<

2(Vmax − Vmin )

|p0|
,

for each t ∈ R, hence

|q(t)− (q0 + p0t)| =
∣∣∣∣∫ t

0
p(s)− p0 ds

∣∣∣∣ ≤ ∫ t

0
|p(s)− p0| ds

≤ 2(Vmax − Vmin )t

|p0|
,

for each t ∈ [0,∞). This argument can easily be modified to show that in
fact

|q(t)− (q0 + tp0)| ≤ 2(Vmax − Vmin )|t|
|p0|

,

for each t ∈ R.
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It is readily seen from the generators of CR(T ∗T) that it is generated
by C0(T×R) and C(T) ⊗̂W0(R) as a C∗-algebra (even as a vector space).
It is also easy to check that the family of functions of the form

T× R→ C, (q1 + Z, p1) 7→ g(q1 + cp1 + Z),

where g ∈ C(T) and c ∈ R, is dense in C(T) ⊗̂ W0(Rn). Thus it remains
to show that τt(g) ∈ CR(T ∗T) for each t ∈ R.

Now fix g ∈ C(T), fix c ∈ R, let f ∈ Cb(T × R) be the function given
by (q+Z, p) 7→ g(q+ cp+Z), and let (τ0

t )t∈R be the one-parameter group
corresponding to the free Hamiltonian. In order to show that τt(f) ∈
CR(T ∗T), we show that τt(f) − τ0

t (f) ∈ C0(T × R) ⊂ CR(T ∗T). Since it
was already shown in the previous lemma that τ0

t (f) ∈ CR(T ∗T), this will
imply that τt(f) ∈ CR(T ∗T), which is the desired result.

Note that f can be written as a composition of two maps: the map

T× R→ T, (q1 + Z, p1) 7→ q1 + cp1 + Z,

and the map g. Let d be the distance function associated to the Rieman-
nian metric on T ∗T. The first map is Lipschitz continuous with Lipschitz
constant 1 + |c|, which implies that it is uniformly continuous. The map
g is by assumption a continuous map on a compact metric space, so it is
uniformly continuous as well. It follows that g is uniformly continuous.

Now fix t ∈ R, and fix ε > 0. By uniform continuity of f , there exists
a δ > 0 such that for each (q1 + Z, p1) and (q2 + Z, p2) ∈ T × R with the
property that

d((q1 + Z, p1), (q2 + Z, p2)) < δ,

we have
|f(q1 + Z, p1)− f(q2 + Z, p2)| < ε.

Let

M := max

(√
2(Vmax − Vmin ),

4(|t|+ 1)(Vmax − Vmin )

δ

)
.

Then for each q0 + Z ∈ T and each p0 ∈ R such that |p0| > M , we have
p(s) > 0 for each s ∈ R or p(s) < 0 for each s ∈ R, and

d ((q(t) + Z, p(t)), (q0 + tp0 + Z, p0)) ≤ |q(t)− (q0 + tp0)|+ |p(t)− p0| < δ,
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so that

|τt(f)(q0 + Z, p0)− τ0
t (f)(q0 + Z, p0)|

= |f(q(t) + Z, p(t))− f (q0 + tp0 + Z, p0)| < ε,

which proves that τt(f)− τ0
t (f) ∈ C0(T× R), as desired. �

5.13 Remark.

(1) The proof of the proposition is not readily generalisable to cotangent
bundles of tori of dimension greater than 1. There are two reasons for this:

• The estimate for |p(t)− p0| can be generalised to higher dimensions
to an estimate of |‖p(t)‖ − ‖p0‖|, where p(t), p0 ∈ Rn, but in order
for the proof to work, one requires an estimate of the form ‖p(t) −
p0‖ = O(‖p0‖−1). Such an estimate does not exist, however. The
physical intuition behind this is the following: if a moving object
with nonzero mass accelerates in its direction of motion, then, given
a fixed amount of added kinetic energy, the resulting difference in
momentum is much smaller when the object already has a relatively
high momentum, than if the object has a relatively low momentum.
This is a consequence of the fact that the kinetic energy of the object
is quadratic in its momentum.

If, on the other hand, the moving object accelerates in a direction
perpendicular to its direction of motion, then the difference in mo-
mentum is independent of the momentum of the object prior to ac-
celeration (or, more accurately, it only depends on it through the
composition of the potential with the particular path in configuration
space that the object travels along by virtue of its initial momentum).

• Let Dn be the closed n-dimensional unit ball. The above
proof uses the fact that for n = 1, the set Rn\λDn, with
λ =

√
2(Vmax − V (q0 + Z)), is not path-connected. This is clearly

no longer true when n > 1.

As already mentioned at the beginning of this section, the general case
requires a different approach, which will appear in a forthcoming paper.
The proof of the general case bears an interesting similarity to the proof of
invariance of the quantisation of CR(T ∗Tn) under the quantum time evolu-
tion, which is the content of Proposition 7.13 (for n = 1). Namely, to prove



5.3. INVARIANCE UNDER TIME EVOLUTION 121

the general case, one first proves invariance of Hamiltonians H = H0 + V
for V a finite linear combination of sines and cosines, and subsequently
extends this result by means of a density argument.

(2) Suppose A is a C∗-subalgebra of Cb(Tn×Rn) that contains C(Tn) ⊗̂
C · 1Rn . Then closure of A under the time evolution generated by the free
Hamiltonian H0 already yields C(Tn) ⊗̂ W0(Rn) ⊆ A. This shows that
CR(T ∗Tn) is the smallest C∗-subalgebra A of Cb(Tn × Rn) that contains
both C(Tn) ⊗̂C · 1Rn and C · 1Tn ⊗̂CR(Rn), and is closed under the time
evolution generated by H0.
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Chapter 6

The Gelfand spectrum of
W0
R(R

n)

6.1 Introduction

The classical resolvent algebra CR(T ∗Tn) is a commutative, unital C∗-
algebra, so it is natural to ask what its Gelfand spectrum Ω(CR(T ∗Tn))
is. Also, an alternative description of the Gelfand spectrum might yield a
way to generalise the concept of the (classical) resolvent algebra, namely by
first generalising this alternative description to obtain a class of compact
Hausdorff spaces with some additional structure, of which the space of
continuous functions corresponds to the algebra of observables of some
classical system.

According to Theorem 5.7, we have CR(T ∗Tn) = C(Tn) ⊗̂ W0
R(Rn)

when both algebras are identified with their embedding in Cb(Tn × Rn).
Gelfand duality now implies

Ω(CR(T ∗Tn)) ∼= Tn × Ω(W0
R(Rn)),

where Ω(W0
R(Rn)) denotes the Gelfand spectrum of W0

R(Rn), and the
product on the right-hand side is endowed with the product topology.
Thus the problem of determining the spectrum of CR(T ∗Tn) reduces to
the problem of determining that of W0

R(Rn), which is the subject of this
chapter.

123
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As we will see, this is a rather nontrivial matter. However, some results
in this direction already exist; van Nuland [112, Theorem 5.6] has shown
that, as a set, the Gelfand spectrum of CR(Rn) is equal to

{w + V : V is a linear subspace of Rn, w ∈ V ⊥},

and carries a certain topology. Fleischhack [40] has already described
the Gelfand spectrum of W0

R(Rn) for n = 1. In this chapter, we extend
Fleischhack’s results to arbitrary n ∈ N in such a way that each of the
arguments can also be used to determine the Gelfand spectrum of CR(Rn),
in so far as it is relevant to that problem. Our treatment differs notably
from van Nuland’s approach, allowing us to describe the Gelfand spectrum
as a set before studying its topology, which is treated in significantly more
detail. This however comes at the expense of brevity.

For the reader’s convenience, we list the three main results of this
chapter, and use them to outline its structure:

(1) The first result is Theorem 6.20, which states (among other things)
that

W0
R(Rn) =W0(Rn)⊕ I,

whereW0
R(Rn) andW0(Rn) were already defined in the previous chapter,

and I is the closed ∗-ideal of W0
R(Rn) generated by all of the generators

hU,ξ,g from Definition 5.8 of W0
R(Rn) with U 6= {0}, i.e., the ones that are

not elements of W0(Rn).
In order to obtain this decomposition, we study the Bohr topology on

Rn in 6.2, establishing a useful property of nonempty Bohr open subsets
in part (2) of Lemma 6.10. We subsequently recall the relation between
the Bohr topology on Rn and almost periodic functions on this space,
i.e., the elements of W0(Rn), in section 6.3. We combine the results from
these two sections in section 6.4, where the aforementioned theorem can
be found. As an immediate corollary, we obtain a canonical surjective
∗-homomorphism W0

R(Rn)→W0(Rn).

(2) The second result is Theorem 6.31, which requires Definition 6.24 to
be understood, and shows that there is a canonical bijection from the set

Ω0
R,n := {(V,w, ζ) : V ⊆ P0, w ∈ V ⊥, ζ ∈ bV },
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to the Gelfand spectrum of W0
R(Rn), where P0 denotes the set of linear

subspaces of Rn, and bV denotes the Bohr compactification of V . An ele-
ment (V,w, ζ) can be used to define a character onW0

R(Rn) by composing
the four maps below:

W0
R(Rn)→W0

R(w + V )→W0(w + V )→W0(V )→ C,

where W0
R(w + V ) and W0(w + V ) are the analogues of the algebras

W0
R(Rn) and W0(Rn) for functions on w + V , and the maps from left to

right are: restriction of functions on Rn to w+V , the analogue of the map
mentioned above, the pullback of translation by w to function spaces, and
the element ζ viewed as a character on W0(V ) (which will be dicussed in
section 6.3).

Apart from defining the characters, we show in section 6.5 that the
first of the four maps is well-defined. In section 6.6, we introduce the
notion of the support of a character, which is similar to the support of a
distribution, and prove its most important properties, which will allow us
to subsequently prove Theorem 6.31 with ease.

(3) In the final section of this chapter, we endow the set Ω0
R,n with a

topology and prove Theorem 6.41, which states that with respect to this
topology (and the weak∗-topology on the Gelfand spectrum), the bijection
mentioned in the previous point is a homeomorphism. This is the third
and final main result of this chapter.

To define the topology on Ω0
R,n, we note that there is a natural partial

order ≤ on Ω0
R,n, given by

(V1, w1, ζ1) ≤ (V2, w2, ζ2)⇔
V1 ⊆ V2 and (w2, ζ2) = (rV ⊥2

(w1), ιV1,V2(ζ1) + ιV2,bV2 ◦ rV2(w2)),

where for any subspace V ⊆ Rn, the map rV denotes the orthogonal
projection onto V , the map ιV,bV denotes the map from V into its Bohr
compactification, and for any subspace V ′ such that V ⊆ V ′ ⊆ Rn, the
map ιV,V ′ denotes the map bV ↪→ bV ′ induced by the inclusion of V into
V ′. A base of the topology on Ω0

R,n is then given by sets of the form

↓({V } × U)\
⋃
V ′∈F

↓({V ′} ×KV ′),



126 CHAPTER 6. THE GELFAND SPECTRUM OF W0
R(Rn)

where V ∈ P0 is as above, F is a finite subset of P0 that contains proper
subspaces of V , the set U ⊆ V ⊥ × bV is open, for each V ′ ∈ F , the set
KV ′ ⊆ (V ′)⊥ × b(V ′) is compact, and ↓X denotes the lower set generated
by a subset X ⊆ Ω0

R,n (cf. part (7) of Proposition 6.40). We view this as
a generalisation of the Lawson topology from order theory (after reversing
the partial order).

6.2 The Bohr compactification of Rn

We recall that a topological group is a group carrying a topology with
respect to which the inversion is continuous, and the multiplication is
jointly continuous. We assume our topological groups to be Hausdorff.

6.1 Definition. Let G be a topological group. The Bohr compactification
of G is a pair (bG, ι) consisting of a compact topological group bG and
a continuous group homomorphism ι : G → bG satisfying the following
universal property:
For each compact topological group H and each continuous group homo-
morphism φ : G→ H, there exists a unique continuous group homomorph-
ism ψ : bG→ H such that the following diagram

bG

G H
φ

ι
ψ

is commutative.

6.2 Remark. The Bohr compactification, as well as the Bohr topology
which will be defined below, is named after the Danish mathematician
Harald Bohr (1887–1951), not to be confused with his brother Niels Bohr,
who we already mentioned in chapter 1. H. Bohr defined and studied
the class of almost periodic functions W0(R) on R in [20], but did not
define the notions named after him. The characterisation of the Bohr
compactification in terms of its defining universal property appears in the
work of Weil [116, chapter VII].
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The following result can be found in [4].

6.3 Theorem. The Bohr compactification of a topological group exists
and is unique up to unique isomorphism. Moreover, ι(G) is dense in bG.

6.4 Definition. Given a topological group G with Bohr compactification
(bG, ι), let τb be the initial topology on G with respect to the map ι : G→
bG. Then τb is called the Bohr topology on G. Accordingly, an element of
τb will be referred to as a Bohr open subset of G.

6.5 Proposition. Let G be a topological group.

(1) Each continuous group endomorphism Φ of G is continuous with
respect to τb;

(2) Translations by fixed elements of G are continuous with respect to
τb.

Proof.

(1) Since ι ◦ Φ: G → bG is a continuous group homomorphism from
G to a compact topological group, by the universal property of the Bohr
compactification there exists a unique continuous group endomorphism Φ̃
of bG such that ι ◦ Φ = Φ̃ ◦ ι. From this identity, it is readily seen that Φ̃
restricts to a continuous endomorphism of ι(G) endowed with its subspace
topology, and consequently, that Φ is continuous with respect to the Bohr
topology on G.

(2) The proof of this statement is similar to the proof in part (1) with
the difference that, rather than invoking the universal property, one uses
the fact that translations by a group element in bG are continuous since
bG is a topological group. �

6.6 Proposition. Let G be a topological group with topology τ . Suppose
G satisfies one of the following conditions:

• G is locally compact, but not compact;

• G contains a complete, noncompact subgroup;

Then τb ⊂ τ (the symbol ⊂ denotes proper inclusion).
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Proof. Since ι is continuous by definition of the Bohr compactification, we
have τb ⊆ τ . Suppose for the sake of contradiction that equality holds.
Then τ = {ι−1(U) : U ⊆ bG is open}, and since (G, τ) is Hausdorff, we
infer that ι is injective, hence it must be a homeomorphism onto its image
relative to the subspace topology on ι(G).

• Suppose G is locally compact, but not compact. Since ι is a homeo-
morphism from a locally compact Hausdorff space onto a dense sub-
space of a Hausdorff space, its image ι(G) is open in bG. Since ι(G)
is a subgroup of the topological group bG, it follows that ι(G) is also
closed in bG. Since ι(G) is dense in bG, we obtain ι(G) = bG, hence
G must be compact, which contradicts our original assumption.

• Suppose G contains a complete, noncompact subgroup H. Then,
like ι, the restriction ι|H must be a homeomorphism onto its image.
Since ι is also a group homomorphism, we infer that the map ι|H
is an isomorphism of topological groups. The uniform structure of
a topological group is completely determined by its group structure
and topology, so ι|H also induces an isomorphism of uniform struc-
tures. Thus ι(H) is both complete and noncompact, since H is.
However, completeness implies that ι(H) is closed in bG, which in
turn implies that ι(H) is compact, yielding a contradiction.

�

6.7 Corollary. Let n ∈ N\{0}. The Bohr topologies on Rn, Zn and Qn
are strictly coarser than their usual metric topologies.

Proof. The assertions for Rn and Zn can be proved using either of the
two criteria given in the previous proposition. The second criterion can
be used to prove the assertion for Qn by noting that Zn ⊂ Qn. �

6.8 Remark.

(1) If G is compact, then G is (isomorphic to) its own Bohr compacti-
fication.

(2) It follows from the previous proposition that, even when the map ι
is injective - which it need not be - it is not necessarily a homeomorph-
ism onto its image, thus showing that the Bohr compactification is not a
compactification in the purely topological sense.
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Recall that a character on a group G is a continuous group homomorphism
G→ T. We shall refer to such characters as group characters to distinguish
them from characters on C∗-algebras. If G is locally compact abelian, then
the space of group characters endowed with the compact-open topology,
and pointwise multiplication, is again a locally compact abelian group,
known as the Pontryagin dual of G, and is denoted by Ĝ.

The following result is due to Anzai and Kakutani [5, Theorem 4]:

6.9 Theorem. Let G be a locally compact abelian group. Then its Bohr
compactification bG is isomorphic to the Pontryagin dual of the topological
group that as a group is the Pontryagin dual Ĝ, but whose topology is the
discrete topology. The map ι : G→ bG associated to the Bohr compactific-
ation is injective (hence a continuous group isomorphism onto its image),
and is given by g 7→ (φ 7→ φ(g)).

We finish this section by applying Corollary 6.7 to prove a technical lemma
that will be instrumental in unraveling some of the structure of W0

R(Rn).
For each r > 0 and each x ∈ Rn, let Br(x) be the open ball with radius r
and center x. The metric topology on Rn will be denoted by τd.

6.10 Lemma. Let U ∈ τb be nonempty.

(1) For each r > 0, the set VU,r := {x ∈ Sn−1 | ∃s > r : sx ∈ U} is open
and dense in Sn−1;

(2) The set VU := {x ∈ Sn−1 | ∀r > 0 ∃s > r : sx ∈ U} is dense in Sn−1.

Proof.

(1) We show that the assertion is true in three steps, proving consecut-
ively stronger statements:

(a) If U is a Bohr open neighbourhood of 0, then it is an unbounded
subset of Rn.

Indeed, suppose this is not the case, i.e., there exists a Bohr open neigh-
bourhood U of 0 and an R > 0 such that U ⊆ BR(0). Now fix ε > 0
and x ∈ Rn. Applying part (1) of Proposition 6.5 to the automorphism
y 7→ ε−1Ry on Rn, we see that it is continuous with respect to the Bohr
topology on (both the domain and the codomain) Rn, from which it fol-
lows that R−1εU is a Bohr open neighbourhood of 0 that is a subset of
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Bε(0). Next, applying part (2) of the same proposition to the translation
y 7→ y − x, we see that it is continuous with respect to the Bohr topology
on Rn, which implies that x + R−1εU is a Bohr open neighbourhood of
x that is a subset of Bε(x). Thus τb contains a base of τd on Rn, imply-
ing that τd ⊆ τb. This contradicts Corollary 6.7, hence each Bohr open
neighbourhood U of 0 is unbounded.

(b) If U is a Bohr open neighbourhood of 0, then for each r > 0, the
set VU,r is dense in Sn−1.

Fix such a U and r, and suppose for the sake of contradiction that there
exists a nonempty open subset W ⊆ Sn−1 disjoint from VU,r. Since O(n)
acts transitively on Sn−1, the family of sets (R(W ))R∈O(n) is an open
cover of Sn−1, and since Sn−1 is compact, it has a finite subcover indexed
by elements R1, . . . , Rm ∈ O(n). It follows from this and part (1) of
Proposition 6.5 that the set

⋂m
j=1Rj(U) is a Bohr open neighbourhood

of 0 that is a subset of Br(0) (and hence of Br(0)). This contradicts the
claim proved in (a), hence VU,r is dense in Sn−1.

(c) (The original assertion.)

First, we observe that the map

f : Rn\Br(0)→ Sn−1, x 7→ ‖x‖−1x,

can be written as a composition of two open (and continuous) maps,
namely the homeomorphism

Rn\Br(0)→ Sn−1 × (r,∞), x 7→ (‖x‖−1x, ‖x‖),

and the canonical projection Sn−1 × (r,∞) → Sn−1, so f is open. Since
U ∈ τb ⊂ τd, we have VU,r = f(U), hence VU,r is open.

It remains to be shown that VU,r is dense in Sn−1. Fix x0 ∈ U\{0}
(note that U is an infinite set, so this is possible), let ε > 0, and let
x1 ∈ Sn−1. We claim that Bε(x1) ∩ VU,r is nonempty. To see this, we
define

R := max

(
r,

3

ε
‖x0‖

)
+ ‖x0‖,

and note that −x0 + U is a Bohr open neighbourhood of 0 (by part (2)
of Proposition 6.5), so that by the claim proved in (b), the set Bε/3(x1)∩
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V−x0+U,R is nonempty. This means that there exists an x ∈ Rn such that
x+ x0 ∈ U , ‖x‖ > R, and ‖‖x‖−1x− x1‖ < ε/3. It follows that

‖x+ x0‖ ≥ ‖x‖ − ‖x0‖ > R− ‖x0‖ ≥ max

(
r,

3

ε
‖x0‖

)
,

so ‖x+ x0‖ > r, and

(‖x+ x0‖)−1‖x0‖ <
ε

3
.

The latter inequality can be used to show that

|‖x+ x0‖−1 − ‖x‖−1|
≤ ‖x+ x0‖−1‖x‖−1|‖x+ x0‖ − ‖x‖|

≤ ‖x+ x0‖−1‖x‖−1‖x0‖ <
ε

3
‖x‖−1,

so that

‖‖x+ x0‖−1(x+ x0)− ‖x‖−1x‖
= ‖(‖x+ x0‖−1 − ‖x‖−1)x+ ‖x+ x0‖−1x0‖

≤ |‖x+ x0‖−1 − ‖x‖−1| · ‖x‖+ ‖x+ x0‖−1‖x0‖ <
2ε

3
,

which yields

‖‖x+ x0‖−1(x+ x0)− x1‖
≤ ‖‖x‖−1x− x1‖+ ‖‖x+ x0‖−1(x+ x0)− ‖x‖−1x‖
< ε.

We conclude that ‖x+ x0‖−1(x+ x0) ∈ Bε(x1) ∩ VU,r, proving the claim.

(2) Note that VU =
⋂∞
m=1 VU,m, and apply part (1) of this lemma and

the Baire category theorem. �

6.3 Almost periodic functions

We begin by recalling the notion of an almost periodic function on Rn,
which was already mentioned in section 5.1.
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6.11 Definition. An almost periodic function on Rn is an element in the
closed linear span of the set of functions

ep : Rn → C, x 7→ eip·x, p ∈ Rn.

The closure is taken with respect to the sup-norm.
The space of almost periodic functions is a C∗-algebra, and will be denoted
by W0(Rn).

It is worth noting that this is different from Bohr’s original definition in
[20] (for n = 1), although Bohr shows that they are in fact equivalent.

The following result can be found in [53, Theorem 1.3]:

6.12 Theorem. For each p ∈ Rn, let ep be the function defined above,
and let

ẽp : bRn → C, φ 7→ φ(ep),

where we regard bRn as a Pontryagin dual of a certain topological group as
in Theorem 6.9, and note that ep is an element of that topological group.
The map defined on generators of W0(Rn) by ep 7→ ẽp extends in a unique
way to an isomorphism W0(Rn)→ C(bRn) of C∗-algebras.

6.13 Corollary. For each x ∈ Rn, let δx : W0(Rn) → C be the character
f 7→ f(x), let ∆ := {δx : x ∈ Rn}, and endow ∆ with the weak∗-topology
τw induced by W0(Rn). Then the map

Φ: (Rn, τb)→ (∆, τw), x 7→ δx,

is a homeomorphism.

Proof. Let F : W0(Rn) → C(bRn) be the isomorphism of the previous
theorem, and let Ω(W0(Rn)) and Ω(C(bRn)) be the Gelfand spectra of
the corresponding spaces. Then the map

F ∗ : Ω(C(bRn))→ Ω(W0(Rn)), ω 7→ ω ◦ F,

and the natural inclusion map

Θ: bRn → Ω(C(bRn)), x 7→ δ̃x,
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are both homeomorphisms. Moreover, by Theorem 6.9, the map ι : Rn →
bRn is a homeomorphism onto its image with respect to the Bohr topology
on Rn.

We claim that

Φ(x) = F ∗ ◦Θ ◦ ι(x)

for each x ∈ Rn. Indeed, let x, p ∈ Rn, and let ep and ẽp be as in the
above definition and theorem. Then

(F ∗ ◦Θ ◦ ι(x))(ep) = δ̃ι(x) ◦ F (ep) = F (ep)(ι(x)) = ẽp(ι(x))

= ι(x)(ep) = ep(x) = δx(ep).

Since the functions ep generate W0(Rn) as a C∗-algebra, and both F ∗ ◦
Θ ◦ ι(x) and δx are characters, we obtain F ∗ ◦Θ ◦ ι(x) = δx = Φ(x), which
proves the claim.

Since F ∗ and Θ are homeomorphisms, the map F ∗◦Θ|ι(Rn) is a homeo-
morphism onto its image ∆, and since ι is a homeomorphism onto its
image, we conclude that Φ is a homeomorphism. �

6.14 Definition. Let f : Rn → C be a function, let τb be the Bohr topo-
logy on Rn, and let τd be the usual metric topology on C. We say that f
is Bohr continuous if the map f : (Rn, τb)→ (C, τd) is continuous.

6.15 Corollary. Let f ∈ W0(Rn). Then f is Bohr continuous.

Proof. Let U ⊆ C be open, and let f̂ be the Gelfand transform of f . Since

f̂−1(U) ∩∆ = {δx : x ∈ f−1(U)} = Φ(f−1(U)),

it follows from the above corollary that the set f−1(U) is Bohr open if
(and only if) f̂−1(U) ∩∆ is (weak∗-)open in ∆, and this is the case since
f̂ ∈ C(Ω(W0(Rn))). �

6.16 Remark. Some authors (e.g. Kunen and Rudin [63]) take the op-
posite approach to the Bohr topology on abelian groups, defining it as the
weakest topology on the group with respect to which all of the characters
on the original topological group are continuous. In the case of Rn, con-
tinuity of elements of W0(Rn) is then an elementary consequence of the
definition.
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6.4 Extracting W0(Rn) from W0
R(Rn)

As already noted in the proof of part (1) of Proposition 5.9, the gener-
ators of the C∗-algebra W0

R(Rn) of the form h{0},ξ,1 generate W0(Rn), so
W0(Rn) is a closed ∗-subalgebra of W0

R(Rn). Moreover, it is readily seen
that

I0 = span{hU,ξ,g : U is a subspace of Rn, U 6= {0}, ξ ∈ Rn, g ∈ S(U)}

is a ∗-ideal of W0
R(Rn), and that its closure I is a closed ∗-ideal. From

these considerations, it seems reasonable to conjecture that W0
R(Rn) =

W0(Rn)⊕ I, and we shall see that this is indeed the case.
To accomplish this, we shall define a function that is capable of sift-

ing elements of W0(Rn) from elements in I. Here, we adopt a similar
strategy to the one used in [112, Lemma 2.5], notably the idea that for
any generator f of W0

R(Rn), one can examine for each x ∈ Sn−1 ⊂ Rn the
behaviour of f(sx) as s→∞. The main difference is that, since we have
more knowledge of the topological properties of functions inW0

R(Rn) than
their measure-theoretic properties, it makes more sense to consider open
and dense subsets of Sn−1 than subsets of full measure.

Indeed, if U = {0} so that f = hU,ξ,g is almost periodic and hence Bohr
continuous, there will be a dense subset of Sn−1 for which each element
x has the property that |f(sx)| will come arbitrarily close to ‖f‖∞ as
s→∞. However, if U 6= {0}, then there will be an open and dense subset
of Sn−1 of vectors x such that f(sx) → 0 as s → ∞. This motivates the
following definition, which should be thought of as a topological analogue
of an essential supremum norm.

6.17 Definition. Let D be the set of open and dense subsets of Sn−1.
We define the function ‖ · ‖0 by

‖ · ‖0 : W0
R(Rn)→ [0,∞), f 7→ ‖f‖0 := inf

V ∈D
sup
x∈V

inf
r>0

sup
s>r
|f(sx)|.

6.18 Remark. Since the intersection of two open and dense subsets of
any topological space is again open and dense, the set D is naturally an
upward directed set with respect to the partial order ⊇. Furthermore, for
any bounded function g : Sn−1 → [0,∞), the function

D → [0,∞), V 7→ sup
x∈V

g(x),
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is a monotone decreasing function with respect to this partial order, hence
by a standard result from analysis, we have

‖f‖0 = lim
V ∈D

sup
x∈V

inf
r>0

sup
s>r
|f(sx)|

for each f ∈ W0
R(Rn).

6.19 Lemma. The function ‖ · ‖0 is a seminorm on W0
R(Rn). Moreover,

for each f ∈ W0
R(Rn), we have ‖f‖0 ≤ ‖f‖∞, and equality holds if f ∈

W0(Rn). Finally, for each f ∈ W0
R(Rn) and each g ∈ I, we have ‖f +

g‖0 = ‖f‖0.

Proof. From the definition of ‖·‖0, it is readily seen that it is well-defined,
and that is satisfies

(a) For each f ∈ W0
R(Rn), we have ‖f‖0 ≤ ‖f‖∞.

Moreover, it is elementary to show that

(b) For each f ∈ W0
R(Rn) and each λ ∈ C, we have |λ|‖f‖0 = ‖λf‖0;

(c) For each f, g ∈ W0
R(Rn), we have ‖f + g‖0 ≤ ‖f‖0 + ‖g‖∞.

Indeed, the latter statement is a simple extension of (a) that can be ob-
tained by noting that |f(x) + g(x)| ≤ |f(x)|+ ‖g‖∞ for each x ∈ Rn, and
one by one applying suprema and infinima, similar to what we do in part
(e) below. From (c), we get

(d) The function ‖ · ‖0 is Lipschitz continuous with respect to ‖ · ‖∞,
with Lipschitz constant 1.

Indeed, let f, g ∈ W0
R(Rn). Then substituting f and g in the above

inequality for f+g and −g respectively, we obtain ‖f‖0 ≤ ‖f+g‖0+‖g‖∞.
This inequality and the one in (c) together are equivalent to

|‖f + g‖0 − ‖f‖0| ≤ ‖g‖∞,

which proves (d).

(e) For each f ∈ W0
R(Rn) and each g ∈ I, we have ‖f + g‖0 = ‖f‖0.

We first prove the statement for g ∈ I0. Each element of I0 can be written
as a finite sum of generators of I0, so we may assume without loss of
generality that g = hU,ξ,k for some nonzero subspace U ⊆ Rn, some ξ ∈ U⊥
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and k ∈ S(U). Now let V0 := Sn−1\U⊥. The subspace U⊥ is a proper
subspace of Rn since U 6= {0}, so V0 is an open and dense subset of Sn−1.

Next, fix x ∈ V0, and fix ε > 0. Since x /∈ U⊥, we have rU (x) 6= 0.
Since k ∈ S(U), it vanishes at infinity, so there exists an r > 0 such that
for each s > r, we have |g(sx)| = |k ◦ rU (sx)| < ε, so

|f(sx) + g(sx)| − ε < |f(sx)| < |f(sx) + g(sx)|+ ε.

Thus

sup
s>r
|f(sx) + g(sx)| − ε ≤ sup

s>r
|f(sx)| ≤ sup

s>r
|f(sx) + g(sx)|+ ε,

for each r > 0, which implies

inf
r>0

sup
s>r
|f(sx) + g(sx)| − ε ≤ inf

r>0
sup
s>r
|f(sx)|

≤ inf
r>0

sup
s>r
|f(sx) + g(sx)|+ ε.

Since ε > 0 was arbitrary, we obtain

inf
r>0

sup
s>r
|f(sx)| = inf

r>0
sup
s>r
|f(sx) + g(sx)|

for each x ∈ V0, so for each V ∈ D satisfying V ⊆ V0, we have

sup
x∈V

inf
r>0

sup
s>r
|f(sx)| = sup

x∈V
inf
r>0

sup
s>r
|f(sx) + g(sx)|.

Taking the limit over V ∈ D then yields

‖f‖0 = lim
V ∈D
V0⊇V

sup
x∈V

inf
r>0

sup
s>r
|f(sx)| = lim

V ∈D
V0⊇V

sup
x∈V

inf
r>0

sup
s>r
|f(sx) + g(sx)|

= ‖f + g‖0,

which proves the statement for g ∈ I0.
To extend the statement to g ∈ I, we note that by (d), the map

F : W0
R(Rn)→ R, g 7→ ‖f + g‖0 − ‖f‖0.

is continuous, so F−1({0}) is closed, and we have just shown that I0 ⊆
F−1({0}), so I = I0 ⊆ F−1({0}).
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(f) For each f ∈ W0(Rn), we have ‖f‖0 = ‖f‖∞.

Let f ∈ W0(Rn) and fix ε > 0. Then there exists x0 ∈ Rn such that
‖f‖∞ < |f(x0)| + ε/2. Now let W := {z ∈ C : |f(x0) − z| < ε/2}. Then
W is open, and since f ∈ W0(Rn), the function f is Bohr continuous by
Corollary 6.15, so that U := f−1(W ) is a Bohr open neighbourhood of
x0. By part (2) of Lemma 6.10, the set VU defined there is dense in Sn−1.
Thus for each V ∈ D , the set V ∩VU is nonempty, which means that there
exists x ∈ V such that for each r > 0, there exists an s > r such that
sx ∈ U , i.e., f(sx) ∈W , so

|f(sx)| ≥ |f(x0)| − |f(x0)− f(sx)| > ‖f‖∞ − ε.

Hence sups>r |f(x)| > ‖f‖∞− ε, and it follows that infr>0 sups>r |f(x)| ≥
‖f‖∞ − ε, which in turn implies

sup
x∈V

inf
r>0

sup
s>r
|f(sx)| ≥ ‖f‖∞ − ε.

Since V ∈ D was arbitrary, we obtain ‖f‖0 ≥ ‖f‖∞ − ε, and since ε was
arbitrary, we get ‖f‖0 ≥ ‖f‖∞. Combining this with (a) yields the desired
result.

(g) For each f, g ∈ W0
R(Rn), we have ‖f + g‖0 ≤ ‖f‖0 + ‖g‖0.

We first prove the statement for g = g1+g2, with g1 ∈ W0(Rn) and g2 ∈ I.
Applying (e), (c), (f) and (e) again, we obtain

‖f + g‖0 = ‖f + g1‖0 ≤ ‖f‖0 + ‖g1‖∞ = ‖f‖0 + ‖g1‖0 = ‖f‖0 + ‖g‖0.

We now prove this inequality for general g ∈ W0
R(Rn). Since the union of

the sets of generators ofW0(Rn) and I is the set of generators ofW0
R(Rn),

the subspace W0(Rn) + I is dense in W0
R(Rn). Now fix f ∈ W0

R(Rn), and
consider the function

F : W0
R(Rn)→ R, g 7→ ‖f‖0 + ‖g‖0 − ‖f + g‖0.

It follows from (d) that F is continuous, so F−1([0,∞)) is closed, and
by the inequality we just proved, we have W0(Rn) + I ⊆ F−1([0,∞)), so
W0
R(Rn) =W0(Rn) + I ⊆ F−1([0,∞)), which proves (g).

Note that (b) and (g) together imply that ‖ · ‖0 is a seminorm on
W0
R(Rn), and that the remaining assertions in the lemma were proved

under (a), (e) and (f). �
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We now arrive at the main result of this section:

6.20 Theorem. We have W0
R(Rn) = W0(Rn) ⊕ I. Moreover, the

seminorm ‖ · ‖0 is the composition of the quotient norm on W0
R(Rn)/I

with the canonical projection map W0
R(Rn)→W0

R(Rn)/I.

Proof. It is easy to see that W0(Rn)∩ I = {0}. Indeed, if f is an element
of the intersection, then using the previous lemma, we see that ‖f‖∞ =
‖f‖0 = 0, so f = 0.

Next, we claim that W0(Rn)⊕ I is closed. We will give an elementary
proof of this fact using the norm ‖ ·‖0 that we defined in this section. One
can also invoke a result from the general theory of C∗-algebras to obtain
a proof of this claim; see the remark below.

Let h ∈ W0(Rn)⊕ I. Then there exists a sequence of functions (fn)n∈N
inW0(Rn) and a sequence of functions (gn)n∈N in I such that fn+gn → h
uniformly as n → ∞. Now fix ε > 0. Then there exists an N0 ∈ N such
that for each n ≥ N0, we have ‖fn+gn−h‖∞ < ε/2. For each m,n ≥ N0,
we obtain

‖fn − fm‖∞ = ‖fn − fm‖0 = ‖(fn + gn − h)− (fm + gm − h)‖0
≤ ‖(fn + gn − h)− (fm + gm − h)‖∞
≤ ‖(fn + gn − h)‖∞ + ‖(fm + gm − h)‖∞ < ε,

where the first three steps follow from the preceding lemma, so (fn)n∈N
is a Cauchy sequence in W0(Rn). The space of almost periodic functions
W0(Rn) is closed with respect to the sup-norm, so it is complete, hence
the Cauchy sequence has a limit f ∈ W0(Rn). We may therefore fix an
N ≥ N0 such that for each n ≥ N , we have ‖fn − f‖∞ < ε/2, which
implies

‖gn − (h− f)‖∞ ≤ ‖fn + gn − h‖∞ + ‖fn − f‖∞ < ε,

for each n ≥ N , hence the sequence (gn)n∈N in I converges to h − f .
Because I is by definition closed, we get h−f ∈ I. Thus h = f+(h−f) ∈
W0(Rn) ⊕ I, which proves that W0(Rn) ⊕ I is closed. We have already
noted in the proof of the previous lemma that W0(Rn) ⊕ I is dense in
W0
R(Rn), hence the first assertion is true.
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It follows that each element f + I ∈ W0
R(Rn)/I has a unique repres-

entative in W0(Rn). Now fix such an element f + I, and suppose that
f ∈ W0(Rn). Then for each g ∈ I, we have

‖f‖∞ = ‖f‖0 = ‖f + g‖0 ≤ ‖f + g‖∞,

so
‖f + I‖ = inf

g∈I
‖f + g‖∞ = ‖f‖0,

and both the left and the right-hand side of this equation do not depend
on the chosen representative f . This proves the second assertion. �

6.21 Remark.

(1) There exists a shorter proof of the fact that W0(Rn)⊕ I is closed in
W0
R(Rn). One can note that W0(Rn) ⊕ I is the preimage of the forward

image of W0(Rn) under the quotient map W0
R(Rn) → W0

R(Rn)/I. From
the theory of C∗-algebras, it is known that the image of a C∗-algebra under
a ∗-homomorphism between C∗-algebras is closed (cf. [87, Theorem 3.1.6]),
and it is trivial that the preimage of a C∗-algebra under such a morphism
is a C∗-subalgebra of the domain, therefore W0(Rn)⊕ I is closed.

(2) Note that in the proof of Theorem 6.20, we never used the fact that
‖ · ‖0 satisfies the triangle inequality, and that this inequality could also
be proved using the final assertion of the theorem, and the fact that the
quotient norm on W0

R(Rn)/I satisfies the triangle inequality.

6.22 Corollary. The decomposition W0(Rn) ⊕ I has an associated pro-
jection map

W0
R(Rn) =W0(Rn)⊕ I →W0(Rn), f = g + h 7→ g,

and this map is a surjective ∗-homomorphism.

6.5 Constructing the set of characters

We almost have everything in place to identify the characters of W0
R(Rn).

We require one other minor result, for which we note that it is possible
to define algebras W0

R(w + V ) and W0(w + V ) for any subspace V of Rn
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and any element w ∈ V ⊥. Indeed, since V is a vector space that inherits
an inner product from Rn, we let W0

R(w + V ) be the C∗-subalgebra of
Cb(w + V ) generated by functions of the form

h′U,ξ,g : w + V → C, p 7→ eiξ·p · g ◦ rU (p),

where
• U is a subspace of V ;
• ξ ∈ U⊥ ∩ V ;
• g ∈ S(U).

The algebra W0(w + V ) is the C∗-subalgebra generated by the subset of
generators of W0

R(w + V ) with U = {0}. It is easy to see that we have a
decomposition

W0
R(w + V ) =W0(w + V )⊕ Iw+V ,

similar to the one from Theorem 6.20.

6.23 Proposition. Let V ⊆ Rn be a subspace, and let w ∈ V ⊥. The
inclusion map

W0
R(w + V )→W0

R(Rn), f 7→ (p 7→ f(rV (p) + w)),

is a well-defined isometric ∗-homomorphism. This map is a section for
the restriction map

W0
R(Rn)→W0

R(w + V ), f 7→ f |w+V ,

which is a well-defined, continuous ∗-homomorphism, and hence the re-
striction map is surjective.

Proof. The inclusion and the restriction maps are the pullbacks ρ∗ and σ∗

to the corresponding algebras W0
R(Rn) and W0

R(w + V ) of the projection

ρ : Rn → w + V, p 7→ rV (p) + w,

and the inclusion map σ : w + V ↪→ Rn, respectively. We first note that
ρ and σ can also be pulled back to the spaces Cb(Rn) and Cb(w + V ),
where they induce norm-decreasing ∗-homomorphisms, which will also be
denoted by ρ∗ and σ∗. Moreover, the pullback of ρ is an isometry since ρ
is surjective. Furthermore, we have

ρ∗ ◦ σ∗ = (σ ◦ ρ)∗ = Id∗w+V ,
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which shows that, if the pullbacks define maps between W0
R(Rn) and

W0
R(w + V ), then ρ∗ is a section for σ∗.

It remains to be shown that ρ∗(W0
R(w + V )) ⊆ W0

R(Rn) and
σ∗(W0

R(Rn)) ⊆ W0
R(w + V ). We show that ρ∗ maps the set of functions

generating W0
R(w+V ) into the set generating W0

R(Rn), and that σ∗ does
the same thing with the two algebras reversed; this will imply the desired
statement, since ρ∗ and σ∗ are norm-decreasing ∗-homomorphisms.

We start with ρ∗. Note that for each subspace U ⊆ V , each ξ ∈ U⊥∩V
and each g ∈ S(U), we have

ρ∗(h′U,ξ,g)(p) = h′U,ξ,g(rV (p) + w) = eiξ·rV (p)g ◦ rU ◦ rV (p) = eiξ·pg ◦ rU (p)

= hU,ξ,g(p),

hence ρ∗(h′U,ξ,g) = hU,ξ,g, so ρ∗ indeed maps generators of W0
R(w + V ) to

generators of W0
R(Rn).

We turn to σ∗. Consider a generator hU,ξ,g ofW0
R(Rn) as in Definition

5.8. Now let

U ′ := (ker(rU |V ))⊥ ∩ V = (U⊥ ∩ V )⊥ ∩ V = (U + V ⊥) ∩ V.

Then by the first isomorphism theorem from linear algebra, the map rU |U ′
is an isomorphism onto its image. Moreover, let

ξ′ := rV (ξ − rU ′(ξ)) = rV (ξ)− rU ′(ξ) ∈ (U ′)⊥ ∩ V,

and define the function g′ as follows:

g′ : U ′ → C, p 7→ ei(ξ−rV (ξ))·weiξ·pg ◦ rU (p+ w)

= ei(ξ−rV (ξ))·weirU′ (ξ)·pg ◦ rU (p+ w).

Then g′ is a product of the smooth function p 7→ eiξ·p whose partial de-
rivatives of all orders are bounded, and the function ei(ξ−rV (ξ))·wg ◦ rU |U ′ ,
which is a composition of an isomorphism onto its image which is a sub-
space of U , and a Schwartz function on U , so it is Schwartz. It follows
that g′ ∈ S(U ′).

We claim that the generator h′U ′,ξ′,g′ of W0
R(w + V ) corresponding to

these U ′, ξ′ and g′ is the restriction to w + V of the generator hU,ξ,g of
W0
R(Rn) that we started out with. First note that

V = U ′ ⊕ ((U ′)⊥ ∩ V ).
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Now fix u ∈ U ′ and v ∈ (U ′)⊥ ∩ V . Then

g′ ◦ rU ′(u+ v) = g′(u) = ei(ξ−rV (ξ))·weirU′ (ξ)·ug ◦ rU (u+ w)

= ei(ξ−rV (ξ))·(u+v+w)eirU′ (ξ)·(u+v+w)g ◦ rU (u+ v + w),

where the last step follows from the fact that v ∈ ker(rU |V ). Furthermore,
since ξ′ ∈ (U ′)⊥ ∩ V , we have

ξ′ · (u+ v) = (rV − rU ′)(ξ) · (u+ v) = ξ · (rV − rU ′)(u+ v) = ξ · v
= ξ · (u+ v),

and rU ′(w) = 0. Thus for each p ∈ w + V , we have

h′U ′,ξ′,g′(p)

= eiξ
′·pg′ ◦ rU ′(p) = ei(rV −rU′ )(ξ)·pg′ ◦ rU ′(p− w)

= ei(rV −rU′ )(ξ)·(p−w+w)ei(ξ−rV (ξ))·(p−w+w)eirU′ (ξ)·(p−w+w)g ◦ rU (p− w + w)

= eiξ·pg ◦ rU (p) = hU,ξ,g(p).

This proves our claim, and thereby our statement that σ∗ maps the gen-
erators of W0

R(Rn) to generators of W0
R(w + V ). �

6.24 Definition. Let

Ω0
R,n := {(V,w, ζ) : V is a subspace of Rn, w ∈ V ⊥, ζ ∈ bV }.

For each (V,w, ζ) ∈ Ω0
R,n, define the map χV,w,ζ : W0

R(Rn) → C as the
composition

W0
R(Rn)→W0

R(w + V )→W0(w + V )→W0(V )→ C,

where

• The first map is the restriction map σ∗ from Proposition 6.23;

• The second map is analogous to the one from Corollary 6.22;

• The third map is the pullback of translation by w;
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• The fourth map is the element ζ viewed as a character onW0(V ) ob-
tained by using Gelfand duality in conjunction with the isomorphism
in Theorem 6.12.

6.25 Proposition. For each (V,w, ζ) ∈ Ω0
R,n, the map χV,w,ζ is a char-

acter on W0
R(Rn).

Proof. The map χV,w,ζ defined above is a composition of four maps, each
of which is a surjective ∗-homomorphism. Thus χV,w,ζ is a surjective ∗-
homomorphism as well, so it is a character on W0

R(Rn). �

6.6 The support of a character

Having constructed the character corresponding to an element
(V,w, ζ) ∈ Ω0

R,n, we will show that all such characters are distinct, and

that all characters on W0
R(Rn) are of this form. In other words, we mean

to show that the map

Ω0
R,n → Ω(W0

R(Rn)), (V,w, ζ) 7→ χV,w,ζ ,

is a bijection. We will accomplish this by first showing that there is a
well-defined notion of the support of a character χ ∈ Ω(W0

R(Rn)), which
roughly corresponds to the smallest subset of Rn such that the value of
χ(f), where f ∈ W0

R(Rn), depends only on the restriction of f to that
subset. After proving the existence of the support and some properties
related to it, it then becomes straightforward to prove the main result of
this section, which is Theorem 6.31.

6.26 Definition. Let

P := {w + V : V ⊆ Rn is subspace, w ∈ V ⊥},

and regard it as a poset with its natural partial ordering ⊆. For each
w + V ∈ P , let

ρw+V : W0
R(w + V )→W0

R(Rn), σw+V : W0
R(Rn)→W0

R(w + V ),
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be the inclusion and restriction map from Proposition 6.23, respectively.
(We have omitted the ∗-symbol denoting pullback, and will continue to do
so in what follows.) For each χ ∈ Ω(W0

R(Rn)), let

Pχ := {w + V ∈ P : χ = χ ◦ ρw+V ◦ σw+V }.

If Pχ has a minimum, then we call this minimum the the support of χ; in
this case, the support will be denoted by supp(χ).

6.27 Lemma. Let U, V ⊆ Rn be two subspaces, and suppose that U 6=
{0} 6= V , but U ∩ V = {0}. For each ε > 0, there exists a δ > 0 such that
for each x ∈ Rn\Bε(0), the element x has distance greater than or equal
to δ to at least one of the subspaces U and V .

Proof.

Let d : Rn × Rn → [0,∞), (x, y) 7→ ‖x − y‖ be the Euclidean distance
function, and recall that for any x ∈ Rn and any nonempty subset X ⊆ Rn,
we have d(x,X) := infy∈X d(x, y), and that the function Rn → [0,∞),
x 7→ d(x,X) is continuous. Now consider the map

f : Sn−1 → [0,∞), x 7→ max(d(x, U), d(x, V )).

Then f is a continuous, nonnegative function on a compact set, so it
must attain a minimum at some point x0 ∈ Sn−1. If f(x0) = 0, then
d(x0, U) = 0 = d(x0, V ), hence x0 ∈ U and x0 ∈ V , since U and V are
closed. Since U ∩ V = {0}, this implies 0 = x0 ∈ Sn−1, a contradiction.
It follows that f(x0) > 0.

Now fix ε > 0, and let δ := εf(x0). We claim that δ has the desired
property. Indeed, let x ∈ Rn\Bε(0). Then ‖x‖ ≥ ε, and ‖x‖−1x ∈ Sn−1,
so

max(d(x, U), d(x, V )) = ‖x‖ ·max(d(‖x‖−1x, U), d(‖x‖−1x, V ))

≥ ‖x‖f(x0) ≥ εf(x0) = δ,

so x has distance greater than or equal to δ to at least one of the subspaces
U or V . �

6.28 Lemma. Let V ⊆ Rn be a subspace, and let

XV := {hU,ξ,g : U ⊆ V, ξ ∈ U⊥ ∩ V, g ∈ S(U)},
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YV := {hU,0,g : U * V, g ∈ S(U)},
ZV := {h{0},ξ,1 : ξ ∈ V ⊥},

where the notation of the generators hU,ξ,g of W0
R(Rn) is the same as

before. Then XV ∪ YV ∪ ZV generates W0
R(Rn) as a C∗-algebra.

Proof. Let A be the C∗-algebra generated by XV ∪ YV ∪ ZV . Clearly,
XV ∪ YV ∪ ZV is a subset of W0

R(Rn), so A ⊆ W0
R(Rn).

We now prove the reverse inclusion. If V = Rn, then XV is precisely
the set of generators that we used to define W0

R(Rn), and the statement
is trivial. Suppose that V 6= Rn, let U ⊆ Rn be a subspace, let ξ ∈ U⊥,
and let g ∈ S(U). There are two cases:

• U ⊆ V ; then we have

hU,ξ,g = hU,r
U⊥∩V (ξ),g · h{0},r

U⊥∩V⊥ (ξ),1.

The first and second factor on the right-hand side are contained in
XV and ZV , respectively, hence hU,ξ,g ∈ A.

• U * V ; then we have

hU,ξ,g = h{0},rV (ξ),1 · hU,0,g · h{0},r
V⊥ (ξ),1.

The first, second and third factor on the right-hand side are con-
tained in XV , YV and ZV , respectively, hence hU,ξ,g ∈ A.

It follows that all generators of W0
R(Rn) are contained in A, hence A =

W0
R(Rn), which is what we wanted to show. �

6.29 Proposition. Let χ ∈ Ω(W0
R(Rn)).

(1) The set Pχ is a filter and has a minimum. Thus the support of χ is
well-defined;

(2) IfW0
R(supp(χ)) =W0(supp(χ))⊕Isupp(χ) denotes the decomposition

obtained in Theorem 6.20, then χ ◦ ρsupp(χ) vanishes on Isupp(χ);

(3) If χ = χV,w,ζ for some (V,w, ζ) ∈ Ω0
R,n, then supp(χ) = w + V .
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6.30 Remark. Before giving the proof, we introduce some notation that
will streamline the process. Suppose we have w+V,w′+V ′ ∈ P such that
w + V ⊆ w′ + V ′. We then note that Proposition 6.23 is still true when
we replace Rn with w′ + V ′, so that we obtain two maps

ρw
′+V ′

w+V : W0
R(w + V )→W0

R(w′ + V ′),

σw
′+V ′

w+V : W0
R(w′ + V ′)→W0

R(w + V ).

Moreover, introducing a third element w′′ + V ′′ ∈ P such that w′ + V ′ ⊆
w′′ + V ′′, it is readily seen that

ρw
′′+V ′′

w+V = ρw
′′+V ′′

w′+V ′ ◦ ρ
w′+V ′

w+V , σw
′′+V ′′

w+V = σw
′+V ′

w+V ◦ σw′′+V ′′w′+V ′ ,

by noting that the maps in the above formulas are pullbacks of functions
between the above three elements of P, and that it is easy to verify the
corresponding identities for these functions.

On a similar note, Lemma 6.28 can be generalised to show that certain
sets Xw+V

w+V ′ , Y
w+V
w+V ′ and Zw+V

w+V ′ defined in a way similar to XV , YV and ZV
in the lemma, generate W0

R(w + V ) for some subspaces V, V ′ ⊆ Rn such
V ′ ⊆ V , and w ∈ V ⊥.

Proof.

(1) We first show that Pχ is an upper set (see the next section for the
definition of this term), i.e.:

(a) Let χ ∈ Ω(W0
R(Rn)), let w + V,w′ + V ′ ∈ P, and suppose that

w + V ∈ Pχ and w + V ⊆ w′ + V ′. Then w′ + V ′ ∈ Pχ.

Indeed, we have

χ ◦ ρw′+V ′ ◦ σw′+V ′ = χ ◦ ρw+V ◦ σw+V ◦ ρw′+V ′ ◦ σw′+V ′

= χ ◦ ρw+V ◦ σw
′+V ′

w+V ◦ σw′+V ′ ◦ ρw′+V ′ ◦ σw′+V ′

= χ ◦ ρw+V ◦ σw
′+V ′

w+V ◦ σw′+V ′ = χ ◦ ρw+V ◦ σw+V

= χ,

which proves (a).

(b) For each χ ∈ Ω(W0
R(Rn)) and each w + V,w′ + V ′ ∈ Pχ, the set

(w + V ) ∩ (w′ + V ′) is nonempty.
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Suppose for the sake of contradiction that this is not the case. Then
w + (V + V ′) and w′ + (V + V ′) are disjoint. In particular, this means
that V + V ′ 6= Rn, so U := (V + V ′)⊥ 6= {0}, and u := rU (w′ − w) 6= 0.
Now let f0 : R → [0, 1] be a smooth, compactly supported function such
that f0(0) = 0 and f0(1) = 1, and consider the function

f : Rn → C, p 7→ f0

(
u · (p− w)

‖u‖2

)
.

Then f ∈ W0
R(Rn), and we have σw+(V+V ′)(f) ≡ 0 and σw′+(V+V ′)(f) ≡ 1.

From this, it is readily seen that ρw+V ◦ σw+V (f) ≡ 0, and ρw′+V ′ ◦
σw′+V ′(f) ≡ 1, so

χ(f) = χ ◦ ρw+V ◦ σw+V (f) = 0 6= 1 = χ ◦ ρw′+V ′ ◦ σw′+V ′(f) = χ(f),

which is the desired contradiction.

(c) For each χ ∈ Ω(W0
R(Rn)), and each w+ V,w′+ V ′ ∈ Pχ, we have

(w + V ) ∩ (w′ + V ′) ∈ Pχ.

From (b), we know that (w + V ) ∩ (w′ + V ′) contains some element w′′.
Then w′′ + V = w + V and w′′ + V ′ = w′ + V ′, so

(w + V ) ∩ (w′ + V ′) = w′′ + (V ∩ V ′) ∈ P.

Moreover, we may now assume without loss of generality that w = w′ =
w′′.

We show that w + (V ∩ V ′) ∈ Pχ. Note that this statement is trivial
if either of the subspaces V or V ′ is a subspace of the other, so we may
assume that this is not the case. To simplify the notation somewhat, we
define

τ := ρw+V ◦ σw+V ,

τ ′ := ρw+V ′ ◦ σw+V ′ ,

τ ′′ := ρw+(V ∩V ′) ◦ σw+(V ∩V ′).

Now let f ∈ W0
R(Rn), and fix ε > 0. All elements ofW0

R(Rn) are uniformly
continuous, as is easily seen by looking at the generators, hence there exists
a δ > 0 such that for each x, y ∈ Rn, if ‖x−y‖ < δ, then |f(x)−f(y)| < ε.
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Since neither V nor V ′ is a subspace of the other, we have V 6= V ∩
V ′ 6= V ′, so both spaces

U := V ∩ (V ∩ V ′)⊥, U ′ := V ′ ∩ (V ∩ V ′)⊥,

are nonzero. In addition, since their intersection is trivial, we may invoke
Lemma 6.27 to obtain a γ > 0 such that for each x ∈ Rn\Bδ(0), x has
distance greater than or equal to γ to at least one of the subspaces U and
U ′.

Next, fix a smooth function g0 : w + V ⊥ → [0, 1] such that g0(w) = 1,
and g0(w + x) = 0 for each x ∈ V ⊥ with ‖x‖ ≥ γ, and similarly, fix a
smooth function g′0 satisfying the same conditions with V ⊥ replaced by
(V ′)⊥. Observe that g0 ∈ W0

R(w + V ⊥) and g′0 ∈ W0
R(w + (V ′)⊥). We

now define
g := ρw+V ⊥(g0), g′ := ρw+(V ′)⊥(g′0).

Then g and g′ are constant and equal to 1 on w+V and w+V ′, respectively,
so τ(g) ≡ 1 ≡ τ ′(g′).

Moreover, let x ∈ w + (V ∩ V ′). Then the product gg′ of g and g′

satisfies gg′(x) = 1. Now let y ∈ (V ∩ V ′)⊥ be an element such that
‖y‖ ≥ δ. Then y has distance greater than or equal to γ to U or U ′.
Furthermore, for each u ∈ U ∪ U ′, we have

‖(x+ y)− (w + u)‖2 = ‖(x− w) + (y − u)‖2 = ‖x− w‖2 + ‖y − u‖2,

since x−w ∈ V ∩V ′ and y−u ∈ (V ∩V ′)⊥, so ‖(x+y)−(w+u)‖ ≥ ‖y−u‖.
It follows that x+ y has distance greater than or equal to γ to w + U or
w + U ′. Since x ∈ w + (V ∩ V ′) was arbitrary, and V = U ⊕ (V ∩ V ′)
and V ′ = U ′ ⊕ (V ∩ V ′), we infer that x+ y has distance greater than or
equal to γ to w + V or w + V ′. In the first case, we have g(x + y) = 0,
and in the second case, we have g′(x + y) = 0. Thus in both cases, we
have (gg′)(x + y) = 0. Summarising, we have gg′ ≡ 1 on w + (V ∩ V ′)
and gg′ vanishes on Rn\(w + (V ∩ V ′) +Bδ(0)).

We now obtain the following facts:

• It is readily seen from the definition of τ ′′ that (τ ′′(f) − f)(x) = 0
for each x ∈ w + (V ∩ V ′), hence (gg′(τ ′′(f) − f))(x) = 0 for each
x ∈ w + (V ∩ V ′);
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• For each x ∈ w+ (V ∩ V ′) +Bδ(0), we have ‖w+ rV ∩V ′(x)− x‖ < δ,
hence

|(gg′(τ ′′(f)−f))(x)| ≤ |(τ ′′(f)−f)(x)| = |f(w+rV ∩V ′(x))−f(x)| < ε;

• For each x ∈ Rn\(w + (V ∩ V ′) +Bδ(0)), we have gg′(x) = 0, hence
(gg′(τ ′′(f)− f))(x) = 0.

It follows that ‖gg′(τ ′′(f) − f)‖∞ ≤ ε. Furthermore, since τ(g) ≡ 1 ≡
τ ′(g′), and since w + V,w + V ′ ∈ Pχ, we have

χ(gg′(τ ′′(f)− f)) = χ(g)χ(g′)χ(τ ′′(f)− f)

= χ ◦ τ(g) · χ ◦ τ ′(g′) · χ(τ ′′(f)− f)

= χ(τ ′′(f)− f),

hence

|χ ◦ τ ′′(f)− χ(f)| = |χ(τ ′′(f)− f)| = |χ(gg′(τ ′′(f)− f))|
≤ ‖gg′(τ ′′(f)− f)‖∞ ≤ ε,

and since ε > 0 and f ∈ W0
R(Rn) were arbitrary, we obtain χ = χ ◦ τ ′′. It

now follows from the definition of τ ′′ that w + (V ∩ V ′) ∈ Pχ, as desired.

This concludes our proof of (c), and together with (a), this implies that Pχ
is a filter. In fact, under the assumption that (a) holds, (c) is equivalent
to the statement that Pχ is a filter.

(d) For each χ ∈ Ω(W0
R(Rn)), the filter Pχ has a minimum.

Fix χ, and let w + V ∈ Pχ be an element such that dimV is minimal.
Note that this is possible since Rn ∈ Pχ, so Pχ is nonempty. Now for any
w′+V ′ ∈ Pχ, we have (w+V )∩ (w′+V ′) ∈ Pχ. As in (c), we may assume
without loss of generality that w = w′, so that (w+ V )∩ (w′+ V ′) = w+
(V ∩ V ′). Clearly, dim(V ∩ V ′) ≤ dimV , and since the dimension of V
was assumed to be minimal, it follows that dim(V ∩ V ′) = dimV . Since
V ∩ V ′ ⊆ V and V is finite dimensional, we obtain V ∩ V ′ = V . This is of
course equivalent to V ⊆ V ′, which implies that w+V ⊆ w+V ′ = w′+V ′,
so w + V is the minimum of Pχ.
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(2) Let χ ∈ Ω(W0
R(Rn)), let w + V := supp(χ) (we assume that w ∈

V ⊥), and let W0
R(w + V ) = W0(w + V ) ⊕ Iw+V be the decomposition

obtained in Theorem 6.20. Suppose for the sake of contradiction that χ
does not vanish on Iw+V . Then Iw+V 6= {0}, so V 6= {0}, and there exists
a generator of Iw+V that is not mapped to 0 by χ ◦ ρw+V . Since the
generators of Iw+V are of the form

h = h′U,ξ,g : w + V → C, p 7→ eiξ·pg ◦ rU (p),

for some nonzero subspace U ⊆ V , some ξ ∈ U⊥ ∩ V and some g ∈ S(U),
we may fix such a generator h along with its corresponding U , ξ and g.
Without loss of generality, we may assume that the dimension of U is
maximal with respect to the above property, and that ξ = 0.

Consider the C∗-algebra A generated by the functions f ∈ W0
R(w+V )

with the property that the map

V → C, p 7→ f(w + p),

factors through V/(U⊥∩V ), and that the resulting map f̃ : V/(U⊥∩V )→
C is an element of C0(V/(U⊥ ∩ V )). Then A is isomorphic to C0(U); the
canonical isomorphism is given by

A→ C0(U), f 7→ (p 7→ f̃(p+ (U⊥ ∩ V ))),

and A contains the generator h. Thus the character χ ◦ ρw+V on W0
R(w+

V ) restricts to a character on A, and we can push it forward along the
above isomorphism to obtain a character χ̃ on C0(U). Since U is a locally
compact Hausdorff space, it follows from the Gelfand–Naimark theorem
that χ̃ = δu for some u ∈ U , where δu denotes the evaluation of a function
at u.

Let w′ := w+u, and define sets Xw+V
w′+U , Y w+V

w′+U and Zw+V
w′+U of generators

of W0
R(w + V ) as in Lemma 6.28 and Remark 6.30. We claim that

(6.1) χ ◦ ρw+V (h′) = χ ◦ ρw′+(U⊥∩V ) ◦ σw+V
w′+(U⊥∩V )

(h′),

for each h′ ∈ Xw+V
w′+U ∪ Y

w+V
w′+U ∪ Z

w+V
w′+U . We prove this statement in three

steps:

(a) Equation (6.1) holds for each h′ ∈ Xw+V
w′+U .
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Indeed, let h′ ∈ Xw+V
w′+U . Since h ∈ A, we have

h(w′) = χ ◦ ρw+V (h) 6= 0,

and since hh′ ∈ A, we see that

h(w′)h′(w′) = (hh′)(w′) = χ ◦ ρw+V (hh′) = χ ◦ ρw+V (h) · χ ◦ ρw+V (h′)

= h(w′)χ ◦ ρw+V (h′),

for each generator h′ ∈ Xw+V
w′+U . Since h(w′) 6= 0, it follows that

χ ◦ ρw+V (h′) = h′(w′),

and from the fact that h′ is constant on w′ + (U⊥ ∩ V ), we conclude that
equation (6.1) holds for each h′ ∈ Xw+V

w′+U .

(b) Equation (6.1) holds for each h′ ∈ Y w+V
w′+U .

First, let h′ = h′U ′,ξ′,g′ be any generator of W0
R(w + V ), and suppose that

χ◦ρw+V (h′) 6= 0. Then χ◦ρw+V (hh′) 6= 0. Clearly, dim(U) ≤ dim(U+U ′),
and since hh′ is a generator that is Schwartz on U + U ′, maximality of
the dimension of U implies dim(U) = dim(U + U ′), which in turn implies
U = U + U ′, hence U ′ ⊆ U .

Now let h′ = h′U ′,ξ′,g′ ∈ Y w+V
w′+U . Then by contraposition we obtain

χ ◦ ρw+V (h′) = 0. Moreover, we have

ρw′+(U⊥∩V ) ◦ σw+V
w′+(U⊥∩V )

(h′)(p) = h′U ′,0,g′(rU⊥∩V (p) + w′)

= g′ ◦ rU ′(rU⊥∩V (p) + w′),

for each p ∈ Rn. Now let

U ′′ := ker(rU ′ ◦ rU⊥∩V )⊥ ∩ V,

and let

g′′ : U ′′ → C, p 7→ g′ ◦ rU ′(rU⊥∩V (p) + w′).

Then g′′ ∈ S(U ′′). Suppose for the sake of contradiction that U ′′ ⊆ U .
Then

U⊥ ⊆ ker(rU ′ ◦ rU⊥∩V ) + V ⊥ = ker(rU ′ ◦ rU⊥∩V ),
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and the right-hand side also contains U and is a linear subspace of Rn,
hence it is equal to Rn. This implies

U ′ = U ′ ∩ V ⊆ (U⊥ ∩ V )⊥ ∩ V = (U + V ⊥) ∩ V = U,

which contradicts U ′ * U (which holds true since h′ ∈ Y w+V
w′+U ). Thus

U ′′ * U , and this fact together with our computations above implies

ρw+V
w′+(U⊥∩V )

◦ σw+V
w′+(U⊥∩V )

(h′) = hU ′′,0,g′′ ∈ Y w+V
w′+U ,

so that, by the same argument as for h′, we have

χ ◦ ρw′+(U⊥∩V ) ◦ σw+V
w′+(U⊥∩V )

(h′)

= χ ◦ ρw+V ◦ ρw+V
w′+(U⊥∩V )

◦ σw+V
w′+(U⊥∩V )

(h′) = 0.

Thus equation (6.1) also holds for each h′ ∈ Y w+V
w′+U .

(c) Equation (6.1) holds for each h′ ∈ Zw+V
w′+U .

This statement follows from the fact that each h′ ∈ Zw+V
w′+U is constant on

w′′ + U for each w′′ ∈ w′ + (U⊥ ∩ V ).

Since equation (6.1) holds for each h′ ∈ Xw+V
w′+U ∪ Y

w+V
w′+U ∪ Z

w+V
w′+U , since

this set generates W0
R(w + V ) by Lemma 6.28, and since both sides are

∗-homomorphisms, we obtain

χ ◦ ρw+V = χ ◦ ρw′+(U⊥∩V ) ◦ σw+V
w′+(U⊥∩V )

.

It follows that

χ ◦ ρw′+(U⊥∩V ) ◦ σw′+(U⊥∩V ) = χ ◦ ρw′+(U⊥∩V ) ◦ σw+V
w′+(U⊥∩V )

◦ σw+V

= χ ◦ ρw+V ◦ σw+V = χ,

hence w′ + (U⊥ ∩ V ) ∈ Pχ. But U 6= {0} by assumption, so U⊥ ∩ V is a
proper subspace of V , hence w′ + (U⊥ ∩ V ) ⊂ w + V , which contradicts
the assumption that w + V is the minimum of Pχ. Thus χ vanishes on
Iw+V .
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(3) By construction of χ := χV,w,ζ , we have χ = χw+V ◦ σw+V for some
character χw+V ∈ W0

R(w + V ). It follows that

χ ◦ ρw+V ◦ σw+V = χw+V ◦ σw+V ◦ ρw+V ◦ σw+V = χw+V ◦ σw+V = χ,

hence w + V ∈ Pχ.
It remains to be shown that w + V is the minimum of Pχ. Suppose

for the sake of contradiction that it is not, i.e., there exists w′ + V ′ ∈ Pχ
such that w′ + V ′ ⊂ w + V . Then χ = χ ◦ ρw′+V ′ ◦ σw′+V ′ , from which it
follows that χ◦ρw′+V ′ is nonzero, so it is a character onW0

R(w′+V ′). This
implies χ ◦ ρw′+V ′(1) = 1, where 1 on the left-hand side of this equation
denotes the constant function on w′ + V ′ that is equal to 1 everywhere.

Now let U := V ∩ (V ′)⊥. Then U 6= {0} since V ′ ⊂ V . Fix a function
g0 ∈ S(U) ⊂ W0

R(U) such that g0(0) = 1. Pulling it back along the
translation by −w′, we obtain a function g1 ∈ W0

R(w′ + U) such that
g1(w′) = 1. Next, we set g := ρw′+U (g1). Then g ∈ W0

R(Rn), and g ≡ 1
on w′ + V ′, so on the one hand, we have

(6.2) χ(g) = χ ◦ ρw′+V ′ ◦ σw′+V ′(g) = 1.

On the other hand, note that

g = ρw′+U (g1) = ρw+V ◦ ρw+V
w′+U (g1),

Now recall Theorem 6.20, which says that we have a decomposition
W0
R(w + V ) =W0(w + V )⊕ Iw+V , and its corollary, which says that the

decomposition induces a canonical map P : W0
R(w+V )→W0(w+V ) with

kernel I. By our construction of g1, we have ρw+V
w′+U (g1) ∈ I. Moreover, the

character χw+V : W0
R(w + V )→ C is by definition of the form χ0

w+V ◦ P ,
where χ0

w+V is a character on W0(w + V ). It follows that

χ(g) = χw+V ◦ σw+V ◦ ρw+V ◦ ρw+V
w′+U (g1) = χ0

w+V ◦ P ◦ ρw+V
w′+U (g1) = 0,

which contradicts equation (6.2). We conclude that such a w′ + V ′ does
not exist, so w + V is the minimum of Pχ. �

It is now straightforward to prove the following theorem, which is the main
result of this section.



154 CHAPTER 6. THE GELFAND SPECTRUM OF W0
R(Rn)

6.31 Theorem. The map

Ω0
R,n → Ω(W0

R(Rn)), (V,w, ζ) 7→ χV,w,ζ ,

is a bijection.

Proof. Let us call the map in the statement of the theorem F . We first
prove that F is injective. Let (V,w, ζ), (V ′, w′, ζ ′) ∈ Ω0

R,n, let χ := χV,w,ζ ,
let χ′ := χV ′,w′,ζ′ , and suppose that χ = χ′. By part (3) of Proposition
6.29, we have

w + V = supp(χ) = supp(χ′) = w′ + V ′,

which is equivalent to V = V ′ and w = w′. Now let P : W0
R(w + V ) →

W0(w + V ) be the map from Corollary 6.22, and let τw : W0(w + V ) →
W0(V ) be the pullback of translation by w. Then

ζ ◦ τw ◦ P ◦ σw+V = χ = χ′ = ζ ′ ◦ τw ◦ P ◦ σw+V ,

and since each of the maps τw, P and σw+V is surjective, we obtain ζ = ζ ′,
which proves that F is injective.

Next, we prove that F is surjective. Let χ ∈ Ω(W0
R(Rn)) be arbit-

rary. Let w + V := supp(χ). We may assume without loss of generality
that w is the unique element in this equivalence class such that w ∈ V ⊥.
Moreover, let I, P and τw be as in the previous paragraph. By part
(2) of Proposition 6.29, the character χ ◦ ρw+V vanishes on I, so the
map χ0 := χ ◦ ρw+V |W0(w+V ) is a character on W0(w + V ) that satisfies
χ0 ◦P = χ ◦ ρw+V . It follows that ζ := χ0 ◦ τ−1

w is a character on W0(V ),
which we may regard as an element of bV . We now have (V,w, ζ) ∈ Ω0

R,n,
and

χV,w,ζ = ζ ◦ τw ◦ P ◦ σw+V = χ0 ◦ P ◦ σw+V = χ ◦ ρw+V ◦ σw+V = χ,

so F is indeed surjective. �

6.32 Remark. A curious consequence of Theorem 6.31 is that for each
x ∈ Rn, there exists a different extension of the character

δx : W0(Rn)→ C, f 7→ f(x),
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to W0
R(Rn) for each subspace V ⊆ Rn, namely the character χV,w,ζ with

(V,w, ζ) = (V, rV ⊥(x), ιV ◦ rV (x))

where ιV denotes the canonical map from V to its Bohr compactification
bV .

6.7 The topology on the Gelfand spectrum

Now that we know what the characters on W0
R(Rn) are, we wish to give

an alternative characterisation of the natural topology on Ω0
R,n, i.e.,

the initial topology with respect to the weak∗-topology on Ω(W0
R(Rn))

and the bijection in Theorem 6.31. We will first construct a topology
on Ω0

R,n, and show how it is related to the Lawson topology from order

theory. After proving some of the properties of Ω0
R,n endowed with this to-

pology, we prove that it coincides with the aforementioned initial topology.

We proceed with the construction. First, let P0 be the set of linear sub-
spaces of Rn. Inclusion of sets defines a partial order on P0, and thus turns
P0 into a small category whose objects are the elements of P0, and whose
morphisms are pairs (V, V ′) ∈ P0 × P0 with the property that V ⊆ V ′.

Next, we construct a functor F from P0 to the category of locally
compact abelian groups as follows:

• For each object V ∈ P0, let F(V ) := V ⊥ × bV ;

• For each morphism (V, V ′), let

F(V, V ′) : V ⊥ × bV → (V ′)⊥ × bV ′,
(w, ζ) 7→ (r(V ′)⊥(w), ιV,V ′(ζ) + ιV ′,bV ′ ◦ rV ′(w)),

where maps of the form rW with W ∈ P0 denote both the ortho-
gonal projection of Rn onto W , as well as its canonically induced
map bRn → bW between Bohr compactifications. Moreover, ιV ′,bV ′

denotes the canonical map V ′ → bV ′, and ιV,V ′ denotes the map
bV ↪→ bV ′ that is canonically induced by the inclusion map V ↪→ V ′.
Regarding the spaces F(V ) and F(V ′) as subsets of bRn, we see that
F(V, V ′) is the natural inclusion of the former subset into the latter.
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6.33 Remark. Note that the group multiplication in bV ′ has been de-
noted by +; we are justified in doing so by virtue of the fact that bV ′

is abelian, which follows from the fact that it contains a dense abelian
subgroup. It is worth noting however that when realised as a Pontry-
agin dual, the group multiplication is given by pointwise multiplication of
group characters; we will use this fact in the proof of Theorem 6.41 below.

It is readily checked that F is indeed a functor. As a set, we have

Ω0
R,n =

⊔
V ∈P0

F(V ),

and we use this to identify the images of the elements of P0 under F as
subsets of Ω0

R,n. Moreover, the functor F induces a partial order ≤ on

Ω0
R,n as follows:

(V,w, ζ) ≤ (V ′, w′, ζ ′)⇔ V ⊆ V ′ and F(V, V ′)(w, ζ) = (w′, ζ ′).

It is now convenient to recall some basic notions from order theory:

6.34 Definition. Let (X,≤) be a partially ordered set (poset). Let Y ⊆
X.

• The set Y is said to be a lower set in X iff for each x ∈ X, if there
exists a y ∈ Y such that x ≤ y, then x ∈ Y ;
• The set

↓Y := {x ∈ X | ∃ y ∈ Y : x ≤ y},

is the lower set generated by Y . In particular, if Y = {y} for some
y ∈ X, then one writes ↓y instead of ↓{y}. Lower sets generated by
singletons are called principal ideals;
• We define

⇓Y := {x ∈ ↓Y | ∀y ∈ Y : (x ≤ y ∨ y ≤ x)⇒ x < y}.

Thus ⇓Y consists of the elements of X that are strictly below Y .

The dual notions of upper set and principal filter and the notation associ-
ated with it can be obtained by replacing the symbols ≤, <, ↓ and ⇓ by
≥, >, ↑ and ⇑, respectively.
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We are now ready to define a topology on Ω0
R,n. For each V ∈ P0, endow

{V } × F(V ) with the topology of F(V ) using the obvious identification,
and let KV be the set of compact subsets of {V } × F(V ). Moreover, for
each x ∈ {V } × F(V ) ⊆ Ω0

R,n, let Nx be the set of open neighbourhoods
in {V } × F(V ).

The main idea behind the definition of our topology is that for each
x = (V,w, ζ) ∈ Ω0

R,n, the sets of the form

↓U\
⋃
V ′∈F

↓KV ′ ,

where
• U ∈ Nx;
• F ⊆ ⇓V is finite;
• For each V ′ ∈ F , we have KV ′ ∈ KV ′ ;

form a neighbourhood base of x.
Now let C be the set of subsets C ⊆ Ω0

R,n with the following property:

∀V ∈ P0 ∀x ∈ {V } × F(V ) :(
∀U ∈ Nx ∀finite F ⊆ ⇓V ∀ (KV ′)V ′∈F ∈

∏
V ′∈F

KV ′ :

C ∩ ↓U *
⋃
V ′∈F

↓KV ′

)
⇒ x ∈ C,

i.e., if each element of the neighbourhood base of x has nonempty intersec-
tion with C, then x ∈ C. Note that if F = ∅, then following the convention
in set theory, we define

∏
V ′∈F KV ′ to be the set containing the single map

∅ → ∅.

6.35 Proposition. The set C is the set of closed subsets relative to some
topology on X, i.e.,

(1) ∅, X ∈ C ;

(2) C is closed under arbitrary intersections;

(3) C is closed under finite unions.
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Proof.

(1) For each V ∈ P0 and each x ∈ {V } × F(V ), the statement

∀U ∈ Nx ∀finite F ⊆ ⇓V ∀ (KV ′)V ′∈F ∈
∏
V ′∈F

KV ′ :

∅ ∩ ↓U *
⋃
V ′∈F

↓KV ′ ,

is false (take F = ∅), so ∅ ∈ C , whereas the statement x ∈ X is true, so
X ∈ C .

(2) Let (Ci)i∈I be a family of elements in C , and let C :=
⋂
i∈I Ci. Let

V ∈ P0, let x ∈ {V } × F(V ), and suppose that for each U ∈ Nx, each
finite F ⊆ ⇓V and each (KV ′)V ′∈F ∈

∏
V ′∈F KV ′ , we have C ∩ ↓U *⋃

V ′∈F ↓KV ′ . Now let i ∈ I, and fix such U , F , and (KV ′)V ′∈F . Since
C ⊆ Ci, it follows that Ci∩↓U *

⋃
V ′∈F ↓KV ′ . Since U , F and (KV ′)V ′∈F

were arbitrary, we have x ∈ Ci, and since i was arbitrary, this implies
x ∈ C, so C ∈ C .

(3) Let (Ci)
m
i=1 be a family of elements in C , and let C :=

⋃m
i=1Ci. Let

V ∈ P0, let x ∈ {V } × F(V ), and suppose that x /∈ C. Then for i =
1, . . . ,m, we have x /∈ Ci, and since Ci ∈ C , we infer that for i = 1, . . . ,m,
there exist an open neighbourhood Ui ∈ Nx, a finite set Fi ⊆ ⇓V and a
family of compact sets (KV ′,i)V ′∈Fi ∈

∏
V ′∈Fi KV ′ such that Ci ∩ ↓Ui ⊆⋃

V ′∈Fi ↓KV ′,i.
Now let U :=

⋂m
i=1 Ui, let F :=

⋃m
i=1 Fi and for each V ′ ∈ F , let

KV ′ :=

m⋃
i=1

KV ′,i,

where it should be understood that KV ′,i = ∅ if V ′ /∈ Fi. Then U ∈ Nx,
and the set F is finite and satisfies F ⊆ ⇓V . In addition, each KV ′ is a
compact subset of {V ′} × F(V ′), and we have

C ∩ ↓U =

(
m⋃
i=1

Ci

)
∩

(
m⋂
i=1

↓Ui

)
⊆

m⋃
i=1

Ci ∩ ↓Ui ⊆
m⋃
i=1

⋃
V ′∈Fi

↓KV ′,i

=
⋃
V ′∈F

↓KV ′ .
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We conclude that C ∈ C . �

6.36 Definition. We call the topology {Ω0
R,n\C : C ∈ C } on Ω0

R,n the

generalised inverted Lawson topology, or GIL topology on Ω0
R,n. The GIL

topology will be denoted by τGIL.

6.37 Remark.

(1) Identifying the set P from the previous subsection with the set

(6.3) {(V,w) : V is a subspace of Rn, w ∈ V ⊥},

we can define a functor, a partial order, and consequently, the GIL topo-
logy on P by removing all components in the constructions above related
to the Bohr compactification. In this case, F(V ) = V ⊥, and the map
F(V, V ′) is simply the orthogonal projection r(V ′)⊥ : V ⊥ → (V ′)⊥.

In the remaining part of this subsection, we will prove statements
that are true for both Ω0

R,n and P, endowed with their respective GIL

topologies, but we shall only prove them for Ω0
R,n; the proofs for P can

be readily obtained from these.

(2) To motivate the name of our topology, we first recall the notion of
the Scott topology on a poset (X,≤); this is the topology whose closed
sets are lower sets C ⊆ X with the property that if Y ⊆ C is an upwards
directed subset in C that has a (unique) supremum in X, then supY ∈ C.
The Lawson topology on (X,≤) is the smallest topology with respect to
which the Scott closed subsets of (X,≤) and the principal filters in X are
closed. For more information on these topologies, we refer to [43].

If we reverse the order in the above definitions, then we see that the
upper sets from part (2) of Proposition 6.40 below are Scott closed subsets.
Indeed, since (P0,⊆) is an Artinian poset, sets in (Ω0

R,n,≤) are closed
under infima of downwards directed subsets. This holds in particular for
the upper sets in part (2) of Proposition 6.40. Furthermore, the sets of
the form ↓Y from part (4) are reminiscent of the principal filters that
one has to include to obtain the Lawson topology. The sets mentioned
in part (7) of Proposition 6.40 can be obtained as finite intersections of
complements of these sets. Since the sets from part (7) form a base of τGIL,
the complements of the sets from parts (2) and (4) together constitute a
subbase of the topology.
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6.38 Definition. Let (X,≤) be a poset, and let

D := {(x, y) ∈ X ×X : ↓x ∩ ↓y 6= ∅}.

We say that (X,≤) admits the partial meet operation iff for each (x, y) ∈ D,
the set ↓x ∩ ↓y has a maximum. In that case, we define the partial meet
operation ∧ to be the map that assings to a pair (x, y) ∈ D the maximum
x ∧ y of ↓x ∩ ↓y.

6.39 Lemma. Let (X,≤) be either of the posets (Ω0
R,n,≤) or (P,≤),

and let F be its associated functor. Then (X,≤) admits the partial meet
operation. Furthermore, for each V1, V2 ∈ P0, the map

F(V1 ∩ V2)→ F(V1)×F(V2),

x 7→ (F(V1 ∩ V2, V1)(x),F(V1 ∩ V2, V2)(x)),

is continuous and proper.

Proof. We only prove the statement for (X,≤) = (Ω0
R,n,≤); the proof for

(P,≤) can be obtained by disregarding the third component of the triples
in Ω0

R,n.
Let x1 = (V1, w1, ζ1), x2 = (V2, w2, ζ2) ∈ X, and suppose that ↓x1∩↓x2

contains an element y = (V,w, ζ). We claim that

x := (V1 ∩ V2, r(V1∩V2)⊥(w), ιV,V1∩V2(ζ) + ιV1∩V2,b(V1∩V2) ◦ rV1∩V2(w)),

is the maximum of ↓x1 ∩ ↓x2. It is easy to see that x ∈ ↓x1 ∩ ↓x2. Now
let y′ = (V ′, w′, ζ ′) ∈ ↓x1 ∩ ↓x2.

• Since V ′ ⊆ V1, V2, we have V ′ ⊆ V1 ∩ V2;

• To see that

(6.4) r(V1∩V2)⊥(w) = r(V1∩V2)⊥(w′),

first note that

(w1, w2) = (rV ⊥1
(w), rV ⊥2

(w))

= (rV ⊥1
◦ r(V1∩V2)⊥(w), rV ⊥2

◦ r(V1∩V2)⊥(w)),
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and the same identity holds if we replace y by y′ and w by w′.
Moreover, observe that the linear map

f1 : (V1 ∩ V2)⊥ → V ⊥1 × V ⊥2 ,

w′′ 7→ (rV ⊥1
(w′′), rV ⊥2

(w′′)),
(6.5)

is injective; indeed, if w′′ is an element of the kernel, then

w′′ ∈ (V ⊥1 )⊥ ∩ (V ⊥2 )⊥ = V1 ∩ V2,

and since w′′ ∈ (V1 ∩ V2)⊥, it follows that w′′ = 0. Injectivity of the
above map now implies that equation (6.4) holds.

• Note that

ζ1 = ιV,V1(ζ) + ιV1,bV1 ◦ rV1(w)

= ιV1∩V2,V1 ◦ ιV,V1∩V2(ζ) + ιV1∩V2,V1 ◦ ιV1∩V2,b(V1∩V2) ◦ rV1∩V2(w)

+ ιV1,bV1 ◦ rV1 ◦ r(V1∩V2)⊥(w),

and that the same identity holds if we replace the components of y
by those of y′. Applying the map rV1∩V2 : bV1 → b(V1 ∩ V2) to these
equations, we obtain

ιV,V1∩V2(ζ) + ιV1∩V2,b(V1∩V2) ◦ rV1∩V2(w)

= rV1∩V2(ζ1) = ιV ′,V1∩V2(ζ ′) + ιV1∩V2,b(V1∩V2) ◦ rV1∩V2(w′).

Thus we have y′ ≤ x, so x is indeed the maximum of ↓x1 ∩ ↓x2, which
proves the first assertion.

Let f be the map F(V1 ∩ V2) → F(V1) × F(V2) as defined above. It
is clear that f is continuous. To show that f is proper, it suffices to show
that f has a continuous left inverse, g, say.

We construct g. We have already shown that the map f1 in equation
(6.5) is linear and injective. We can define a linear map g1 : V ⊥1 × V ⊥2 →
(V1 ∩ V2)⊥ by requiring that it is the inverse of f1 on the image of f1, and
that it vanishes on the orthogonal complement of the image of f1. Since g1

is a linear map between finite dimensional vector spaces, it is continuous.
Now define g by

g : F(V1)×F(V2)→ F(V1 ∩ V2)
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((w1, ζ1), (w2, ζ2)) 7→ (g1(w1, w2), rV1∩V2(ζ1)).

Then g is a continuous left inverse of f , as desired. �

6.40 Proposition. Let (X,≤) be either of the posets (Ω0
R,n,≤) or (P,≤),

let F be its associated functor, and endow X with the GIL topology. For
each V ∈ P0, let TV : F(V ) ↪→ X be the canonical inclusion map.

(1) For each V ∈ P0, the map TV is continuous. (Equivalently, the τGIL

on (X,≤) is equal to or coarser than the disjoint union topology.)

Let Y ⊆ X.

(2) If Y is an upper set, and Y has the property that for each V ∈ P0,
the set T−1

V (Y ) is closed, then Y is closed.

Now suppose that Y is a set with the property that there exists a V ∈ P0

and a set Y0 ⊆ F(V ) such that Y = TV (Y0).

(3) The set Y0 is open if and only if ↓Y is open;

(4) The following are equivalent:

(i) Y0 is compact;

(ii) Y is closed in X;

(iii) ↓Y is closed in X;

(5) X is Hausdorff;

(6) X is compact;

(7) The family of sets of the form

↓U\
⋃
V ′∈F

↓KV ′ ,

form a base of τGIL, where V ∈ P0, the set U ⊆ X is of the form
TV (U0) for some open subset U0 ⊆ F(V ), the set F ⊆ ⇓V is finite,
and (KV ′)V ′∈F ∈

∏
V ′∈F KV ′ is a finite family of compact sets.
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(8) Let V ∈ P0, let y ∈ F(V ), and let x := TV (y). Similarly, let
(Vi)i∈I be a net in P0, and for each i ∈ I, let yi ∈ F(Vi), and let
xi := TVi(yi). Then the following are equivalent:

(i) The net (xi)i∈I converges to x with respect to τGIL;

(ii) The nets (Vi)i∈I and (yi)i∈I satisfy the following conditions:

• There exists an i0 ∈ I such that for each i ≥ i0, we have
Vi ⊆ V ;

• The net (F(Vi, V )(yi))i≥i0 converges to y;

Moreover, if x is replaced by an element x′ = TV ′(y
′) < x, and

the net (xi)i∈I by a subnet (xj)j∈J (and ditto for its correspond-
ing nets (Vj)j∈J and (yj)j∈J), then the two above conditions are
not both satisfied.

Proof.

(1) Let Y ⊆ X be a closed subset, and let (w, ζ) ∈ T−1
V (V ). Then each

open neighbourhood of (w, ζ) has nonempty intersection with T−1
V (Y ).

Now let x := (V,w, ζ) = TV (w, ζ). Moreover, let U ∈ Nx, let F ⊆ ⇓V
be finite, and let (KV ′)V ′∈F ∈

∏
V ′∈F KV ′ be any family (note that the

product is always nonempty). Then we have

T−1
V (Y ∩ ↓U) = T−1

V (Y ) ∩ T−1
V (U) 6= ∅,

since T−1
V (U) is an open neighbourhood of (w, ζ), but

T−1
V

( ⋃
V ′∈F

↓KV ′

)
= ∅.

Thus

Y ∩ ↓U *
⋃
V ′∈F

↓KV ′ .

and from the closedness of Y , it follows that x ∈ Y , so (w, ζ) ∈ T−1
V (Y ).

Hence we have shown that T−1
V (Y ) is closed, and we conclude that TV is

continuous.
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(2) Let Y be a set as in the statement of part (2) of the proposition,
let V ∈ P0, and let x = (V,w, ζ) ∈ {V } × F(V ) be an element such
that for each U ∈ Nx, for each finite subset F ⊆ ⇓V , and each family
(KV ′)V ′∈F ∈

∏
V ′∈F KV ′ , we have

Y ∩ ↓U *
⋃
V ′∈F

↓KV ′ .

Taking F = ∅, we see that the left-hand side is nonempty, so we may fix
an element y0 ∈ Y ∩ ↓U , and there exists a unique V0 ∈ P0 such that
y0 = (V0, w0, ζ0), where (w0, ζ0) ∈ F(V0). Since y0 ∈ ↓U , there exists an
element y1 ∈ U such that y0 ≤ y1, namely y1 = (V,F(V0, V )(w0, z0)), and
this element is unique by definition of the partial order. Because Y was
assumed to be an upper set, we also have y1 ∈ Y , so y1 ∈ Y ∩ U . Thus
each open neighbourhood U0 ⊆ F(V ) of (w, ζ) has nonempty intersection
with T−1

V (Y ). Because T−1
V (Y ) was assumed to be closed, it follows that

(w, ζ) ∈ T−1
V (Y ), so x = TV (w, ζ) ∈ Y . We conclude that Y is closed.

(3) The “if” part of the statement is a trivial consequence of part (1)
of this proposition

We turn to the “only if” part. Let V and Y0 be as in the statement
of part (3), and suppose that Y0 is open in F(V ). By part (1) of the
proposition and the fact that the map F(V ′, V ) is continuous, we see that
this implies that for each V ′ ∈ P0, the set

T−1
V ′ (↓Y ) =

{
T−1
V ′ (F(V ′, V )−1(↓Y )) = (F(V ′, V ))−1(Y0) if V ′ ⊆ V
∅ if V ′ * V

,

is open in F(V ′).
Since T−1

V ′ (X\↓Y ) = V ′\T−1
V ′ (↓Y ), and since X\↓Y is an upper set in

X, we can apply part (2) of the proposition to see that X\↓Y is closed,
so ↓Y is open.

(4) (i) ⇒ (iii): Suppose Y0 is compact. The same argument that
showed that T−1

V ′ (↓Y ) is open in part (3) can be used in the present setting
to show that T−1

V ′ (↓Y ) is closed for each V ′ ∈ P0.
Let Vx ∈ P0, let x = (Vx, wx, ζx) ∈ X, and suppose that for each U ∈

Nx, each finite subset F ⊆ ⇓Vx, and each family (KV ′)V ′∈F ∈
∏
V ′∈F KV ′ ,
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we have

(6.6) ↓Y ∩ ↓U *
⋃
V ′∈F

↓KV ′ .

Fix such a U . Since F(Vx) is a locally compact Hausdorff space, we may
assume without loss of generality that U0 := T−1

Vx
(U) has compact closure.

We claim that T−1
V ∩Vx(↓Y ∩ ↓U) has compact closure. To see this, we

note that

T−1
V ∩Vx(↓Y ∩ ↓U)

= F(V ∩ Vx, V )−1(T−1
V (↓Y )) ∩ F(V ∩ Vx, Vx)−1(T−1

Vx
(↓U))

= F(V ∩ Vx, V )−1(Y0) ∩ F(V ∩ Vx, Vx)−1(U0)

= f−1(Y0 × U0),

where

f : F(V ∩ Vx)→ F(V )×F(Vx),

(w′, ζ ′) 7→ (F(V ∩ Vx, V )(w′, ζ ′),F(V ∩ Vx, Vx)(w′, ζ ′)).

Since f is proper by Lemma 6.39, and Y0 × U0 is compact, the
set f−1(Y0 × U0) is a compact set containing f−1(Y0 × U0), so
f−1(Y0 × U0) = T−1

V ∩Vx(↓Y ∩ ↓U) has compact closure, K, say.
Returning to equation (6.6), we see that if V ∩ Vx ⊂ Vx, then we can

take F = {V ∩ Vx} and KV ∩Vx = TV ∩Vx(K) to obtain a contradiction, so
V ∩ Vx = Vx, i.e., Vx ⊆ V .

Similarly, taking F = ∅, we see that there exist y ∈ Y and z ∈ U such
that ↓y ∩ ↓z 6= ∅. By Lemma 6.39, y ∧ z = (V ′, w′, ζ ′) exists and is an
element of ↓Y ∩↓U . This implies V ′ ⊆ Vx, and z = (Vx,F(V ′, Vx)(w′, ζ ′)),
and

y = (V,F(V ′, Vx)(w′, ζ ′)) = (V,F(Vx, V ) ◦ F(V ′, Vx)(w′, ζ ′)),

from which we obtain z ≤ y. This yields y ∧ z = z, hence ↓Y ∩ U 6= ∅,
and we infer that each open neighbourhood U0 of (wx, ζx) has nonempty
intersection with T−1

Vx
(↓Y ). Furthermore, T−1

Vx
(↓Y ) = F(Vx, V )−1(Y0) is

closed, so (wx, ζx) ∈ F(Vx, V )−1(Y0), hence x ∈ ↓Y . We conclude that
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↓Y is closed, as desired.

(iii) ⇒ (ii): Fix Y , Y0 and V . By part (2) of this proposition, the set⋃
V ′∈↑V {V ′} × F(V ′) is closed in X. It follows that the set

Y = ↓Y ∩
⋃

V ′∈↑V
{V ′} × F(V ′),

is closed in X.

(ii) ⇒ (i): We show by induction on m that for m = 0, 1, . . . , n− dimV ,
there exist finite subsets Fm ⊆ {V ′ ∈ ↑V : dimV ′ = n−m} and compact
sets K ′V ∈ KV ′ for each V ′ ∈ Fm such that

Y ⊆
⋃

V ′∈Fm

↓KV ′ .

For m = 0, we take F0 = {Rn} and KRn = {Rn} × {0} × bRn.
Now suppose we have found Fm and (KV ′)V ′∈Fm for some m ∈ N,

0 ≤ m < n− dimV . Then for each V ′ ∈ Fm, we have dimV ′ > dimV , so
the sets KV ′ have empty intersection with Y . Since Y is closed, for each
V ′ ∈ Fm, we can use the axiom of choice to find open neighbourhoods
Ux ∈ Nx, finite sets Fx ⊆ ⇓V ′ ∩ ↑V satisfying dimV ′′ = n − (m + 1) for
each V ′′ ∈ Fx, and families of compact sets (Kx,V ′′)V ′′∈Fx ∈

∏
V ′′∈Fx Kx

such that
Y ∩ ↓Ux ⊆

⋃
V ′′∈Fx

↓Kx,V ′′ ,

for each x ∈ KV ′ . By compactness of KV ′ , the open cover (Ux)x∈KV ′ of
KV ′ has a finite subcover (Uxj )

k
j=1. Now for each V ′ ∈ Fm, let

Fm+1,V ′ :=
k⋃
j=1

Fxj ,

(note: the Fxj depend on V ′ through KV ′) and for each V ′′ ∈ Fm+1,V ′ , let

Fm+1,V ′,V ′′ :=
k⋃
j=1

Kxj ,V ′′ .



6.7. THE TOPOLOGY ON THE GELFAND SPECTRUM 167

As in the proof of part (3) of Proposition 6.35, if V ′′ /∈ Fxj , then it should
be understood that Kxj ,V ′′ = ∅. Finally, let

Fm+1 :=
⋃

V ′∈Fm

Fm+1,V ′ ,

and for each V ′′ ∈ Fm+1, let

KV ′′ :=
⋃

V ′∈Fm

⋃
K′∈Fm+1,V ′,V ′′

K ′.

Then the set Fm+1 is finite, and for each V ′′ ∈ Fm+1, the set KV ′′ is
compact. Furthermore, using the induction hypothesis, one can check
that

Y ⊆
⋃

V ′′∈Fm+1

↓KV ′′ .

This completes the induction step, and thereby our proof by induction.
Since by construction, each element V ′ ∈ FdimV satisfies V ⊆ V ′, and

dimV = dimV ′, we have in fact V = V ′, so FdimV ⊆ {V }. Moreover, we
have

Y0 ⊆
{
T−1
V (K ′) if V ∈ FdimV

∅ if V /∈ FdimV
,

where K ′ denotes the unique element in FdimV,V , so Y0 is contained in a
compact set. It follows from part (1) that Y0 = T−1

V (Y ) is closed in F(V ),
so Y0 is compact, as desired.

(5) Let x, y ∈ X, and suppose that x 6= y. Then x � y or y � x. Assume
x � y; the other case is similar. We know that x ∈ {Vx} × F(Vx), and
that y ∈ {Vy} × F(Vy) for some Vx, Vy ∈ P0. Since x � y, the set ↑x does
not contain y. Moreover, ↑x intersects the sets of the form {V } × F(V )
only if Vx ⊆ V ∈ P0, and the intersections contain a single element. Using
the fact that F(V ) is Hausdorff for each V ∈ P0, we can now fix an open
set U ∈ F(Vy) such that TVy(U) ∩ ↑x = ∅, and since F(V ) is also locally
compact, we may assume that U is compact, and that TVy(U) ∩ ↑x = ∅.
Then by part (3), the set ↓U is an open neighbourhood of y in X, and
by part (4), the set X\↓TVy(U) is an open neighbourhood of x in X. It
is clear from the definition that these two neighbourhoods are disjoint, so
we have shown that X is Hausdorff.
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(6) Let Y0, Y and V be as in part (4) of the proposition. We prove by
induction on m = dimV that ↓Y is compact in X. Suppose that we have
proved this statement. Then we can take Y0 = F(Rn) = {0}× bRn, which
is compact, and we have ↓Y = X, so this implies that X is compact.

It remains to carry out the induction. If m = 0, then we have ↓Y =
Y = T{0}(Y0), and part (1) implies that T{0}(Y0) is compact.

Next, suppose we know the statement holds for some m ∈ {0, 1, . . . , n−
1}, and that dimV = m + 1. Let (Ci)i∈I be a family of closed subsets
of ↓Y (with respect to the subspace topology) such that

⋂
i∈I Ci = ∅. To

prove compactness, we must show that there exists a finite subset J ⊆ I
such that

⋂
i∈J Ci = ∅.

First, by part (4), the set ↓Y is closed in X, so the sets (Ci)i∈I are also
closed with respect to the topology on X. By part (1), the set T−1

V (Ci) ⊆
Y0 is closed in F(V ) for each i ∈ I. Since

⋂
i∈I T

−1
V (Ci) = ∅, and since Y0

is compact, there exists a finite set J0 ⊆ I such that
⋂
i∈J0

T−1
V (Ci) = ∅.

Since
⋂
i∈J0

Ci is closed and has empty intersection with Y , we can
invoke the axiom of choice to find open neighbourhoods Ux ∈ Nx, finite
sets Fx ⊆ ⇓V , and families of compact sets (Kx,V ′)V ′∈Fx ∈

∏
V ′∈Fx Kx

such that ⋂
i∈J0

Ci ∩ ↓Ux ⊆
⋃

V ′∈Fx

↓Kx,V ′ ,

for each x ∈ Y , and we may assume that dimV ′ = m for each V ′ ∈ Fx.
By compactness of Y , the open cover (Ux)x∈Y of Y has a finite subcover
(Uxj )

k
j=1. Let F :=

⋃k
j=1 Fxj , and for each V ′ ∈ F , letKV ′ :=

⋃k
j=1Kxj ,V ′ .

(A remark on the definition of Kxj ,V ′ similar to the ones in the proofs
of part (3) of Proposition 6.35 and of part (4) of the current proposition
applies here as well.) Then F is finite, and KV ′ is compact (or equivalently,
T−1
V ′ (KV ′) is compact) for each V ′ ∈ F . By the induction hypothesis, the

set ↓KV ′ is compact for each V ′ ∈ F , so there exists a family of finite
subsets (JV ′)V ′∈F of I such that

⋂
i∈JV ′

Ci ∩ ↓KV ′ = ∅. Now define

J := J0 ∪
⋃
V ′∈F

JV ′ .

Then J is a finite subset of I, and it can be checked that
⋂
i∈J Ci = ∅, as

desired. This completes the induction step.
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(7) The sets of the form

↓U\
⋃
V ′∈F

↓KV ′ ,

are open in X since they are the difference of the set ↓U which is open in
X by part (3), and the set

⋃
V ′∈F ↓KV ′ , which is closed in X by part (4).

Since sets of this form were used to define neighbourhood bases of points
in X, it is immediate that they constitute a base of τGIL.

(8) (i) ⇒ (ii): Suppose (xi)i∈I converges to x. Let U ∈ Nx. Then the
set ↓U is an open neighbourhood of x by part (3) of this proposition, so
there exists an iU ∈ I such that xi ∈ ↓U for each i ≥ iU . In particular,
taking U = {V }×F(V ), we see that with i0 := i{V }×F(V ), we have Vi ⊆ V
for each i ≥ i0. Furthermore, for any arbitrary U ∈ Nx, we can now fix
iU ∈ I so that iU ≥ i0, which implies that F(Vi, V )(yi) is well defined, and
an element of T−1

V (U) for each i ≥ iU , hence (F(Vi, V )(yi))i≥i0 converges
to y. Thus the two conditions mentioned under (ii) are satisfied.

Now fix x′ ∈ ⇓x, and let V ′ ∈ P0 and y′ ∈ F(V ′) be the unique
elements such that x′ = TV ′(y

′). In addition, find a U ∈ Nx′ with
compact closure with respect to the topology on F(V ′). Then by part
(4) of the proposition, the set X\↓U is an open neighbourhood of x
in X, so there exists an i′ ∈ I such that for each i ≥ i′, we have
xi /∈ ↓U ⊇ ↓U . Thus at least one of the two conditions mentioned un-
der (ii) is not satisfied if we replace x by x′ and the net (xi)i∈I by a subnet.

(ii) ⇒ (i): Suppose (xi)i∈I satisfies both conditions with respect to some
element x ∈ X, but no subnet of (xi)i∈I satisfies this condition with
respect to any element of ⇓x. It suffices to show that for each element Y
of some neighbourhood base of x with respect to τGIL, there exists iY ∈ I
such that for each i ≥ iY , we have xi ∈ Y . By part (7) of this proposition,
a neighbourhood base of x of open neighbourhoods is given by sets of the
form

↓U\
⋃
V ′∈F

↓KV ′ ,

where U ∈ Nx, the set F ⊆ ⇓V is finite, and (KV ′)V ′∈F ∈
∏
V ′∈F KV ′ is a

finite family of compact sets.
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Now fix such U , F , and (KV ′)V ′∈F , let Y be the corresponding neigh-
bourhood of x in X, and fix i0 ∈ I such that Vi ⊆ V for each i ≥ i0. Then
there exists an iU ≥ i0 such that for each i ≥ iU , we have F(Vi, V )(xi) ∈ U ,
so xi ∈ ↓U .

Suppose now for the sake of contradiction that there exists a V ′ ∈ F
such that the set IV ′ := {i ∈ I : xi ∈ ↓KV ′} is cofinal in I. Then (xi)i∈IV ′
is a subnet of (xi)i∈I contained in ↓KV ′ . By part (4) of the proposition, the
set ↓KV ′ is closed in X, and part (6) now implies that ↓KV ′ is compact, so
the subnet (xi)i∈IV ′ has a subnet (xj)j∈J that converges to some x′ ∈ KV ′ .
We distinguish between the following two cases:

• x′ < x: then by the implication (i) ⇒ (ii), the net (xj)j∈J satisfies
both conditions in (ii), which contradicts our original assumption on
(xi)i∈I ;

• x′ ≮ x: then F(V ′, V )(x′) 6= x, and since F(V ) is Hausdorff, we
can find open neighbourhoods W ∈ Nx and W ′ ∈ NTV ◦F(V ′,V )(x′)

such that W ∩ W ′ = ∅, and it follows that ↓W ∩ ↓W ′ = ∅. Just
like we did for ↓U , we can argue that there exists an iW ∈ I such
that for each i ≥ iW , we have xi ∈ ↓W . The subset Y ′ := ↓TV ′((TV ◦
F(V ′, V ))−1(W ′)) ⊆ ↓W ′ is open in X by part (3) of this proposition,
and from our discussion, we infer that it has the property that xi /∈ Y ′
for each i ≥ iW . But this contradicts the statement that (xj)j∈J
converges to x′.

It follows that for each V ′ ∈ F , IV ′ is not cofinal in I, i.e., there exists
an iV ′ ∈ I such that for each i ≥ iV ′ , we have xi /∈ ↓KV ′ . Since I is an
upwards directed set and F is finite, we can find an element iY ∈ I such
that iY ≥ iU and iY ≥ iV ′ for each V ′ ∈ F . Then for each i ≥ iY , we have
xi ∈ Y , so (xi)i∈I does indeed converge to x. �

Note that the final part of the above proposition establishes that the to-
pology on P as we have defined it in this subsection coincides with the
topology in [112, Definition 5.2]. All that remains is to prove the main
result, which is the analogue of [112, Theorem 5.6]. The next theorem can
also be formulated and proved in the same way for P, thus providing an
alternative proof of the cited theorem.

6.41 Theorem. Let τw be the weak topology on the Gelfand spectrum



6.7. THE TOPOLOGY ON THE GELFAND SPECTRUM 171

Ω(W0
R(Rn)) of W0

R(Rn). The map

(Ω0
R,n, τGIL)→ (Ω(W0

R(Rn)), τw), (V,w, ζ) 7→ χV,w,ζ ,

from Theorem 6.31 is a homeomorphism.

Proof. As in the proof of Theorem 6.31, the map will be denoted by F .
The domain of F is compact by part (6) of Proposition 6.40, and the
codomain of F is Hausdorff by definition of the weak∗-topology. The map
F is a bijection by Theorem 6.31, so to prove that F is a homeomorphism,
it suffices to show that F is continuous. Since τw is by definition the
coarsest topology on Ω(W0

R(Rn)) such that the map

f̂ : Ω(W0
R(Rn))→ C, χ 7→ χ(f),

is continuous for each f ∈ W0
R(Rn), it suffices to show that the map f̂ ◦F

is continuous for each f ∈ W0
R(Rn). In fact, since W0

R(Rn) ⊆ Cb(Rn), it

suffices to show that f̂ ◦F is continuous for each f in some set of generators
of W0

R(Rn).
As the set of generators, we take the functions of the form hU,ξ,g, where

hU,ξ,g is defined as in Lemma 6.28. Let (V,w, ζ) ∈ Ω0
R,n, and let

W0
R(w + V ) = W0(w + V ) ⊕ Iw+V be the decomposition obtained in

Theorem 6.20. Then the following are equivalent:
• hU,ξ,g|w+V ∈ W0(w + V );
• V ⊆ ker rU ;
• V ⊆ U⊥;

Similarly, the following are equivalent as well:
• hU,ξ,g|w+V ∈ Iw+V ;
• V * U⊥.

Thus for V ⊆ U⊥, we have

ζ ◦ τw ◦ P (hU,ξ,g|w+V ) = ζ ◦ τw(hU,ξ,g|w+V )

= ζ(p 7→ eiξ·(p+w)g ◦ rU (p+ w))

= g ◦ rU (w) · ζ(eξ|V ) · eiξ·w

= g ◦ rU (w) · ιV,Rn(ζ)(eξ) · ιRn,bRn(w)(eξ)

= g ◦ rU (w) · (ιV,Rn(ζ) + ιRn,bRn(w))(eξ)

= g ◦ rU (w) · ẽξ(ιV,Rn(ζ) + ιRn,bRn(w)),
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where τw and P are as in the proof of Theorem 6.31, eξ denotes the
group character Rn → T, p 7→ eiξ·p, and ẽξ is the associated map bRn →
T ⊂ C. Furthermore, in the last three lines, we regard elements in bRn as
group characters on the Pontryagin dual of Rn, and we note that pointwise
multiplication of such characters is the group operation in bRn, see Remark
6.33. It follows that for arbitrary V ∈ P0, we have

ĥU,ξ,g ◦ F (V,w, ζ)

= χV,w,ζ(hU,ξ,g) = ζ ◦ τw ◦ P (hU,ξ,g|w+V )

=

{
g ◦ rU (w) · ẽξ(ιV,Rn(ζ) + ιRn,bRn(w)) if V ⊆ U⊥
0 if V * U⊥

.

(6.7)

In particular, we can now read off that for each V ∈ P0, the function
ĥU,ξ,g ◦ F ◦ TV is continuous.

Next, we show that for each subset Z ⊆ C\{0}, we have

(6.8) (ĥU,ξ,g ◦ F )−1(Z) = ↓
(
{U⊥} × T−1

U⊥
((ĥU,ξ,g ◦ F )−1(Z))

)
.

Note that from equation (6.7), we immediately get (ĥU,0,g ◦ F )−1(Z) ⊆
↓({U⊥} × F(U⊥)).

To prove the inclusion ⊇, we show that the set (ĥU,0,g ◦ F )−1(Z) is a
lower set. Suppose (V,w, ζ), (V ′, w′, ζ ′) ∈ X are two elements such that
(V,w, ζ) ≤ (V ′, w′, ζ ′) and suppose that ĥU,0,g ◦ F (V ′, w′, ζ ′) ∈ Z. Then
V ⊆ V ′ ⊆ U⊥, and this implies rU (w) = rU ◦ r(V ′)⊥(w) = rU (w′), so
g ◦ rU (w) = g ◦ rU (w′). Moreover, we have ζ ′ = ιV,V ′(ζ) + ιV ′,bV ′ ◦ rV ′(w),
hence

(ιV ′,Rn(ζ ′) + ιRn,bRn(w′))(eξ)

=
(
ιV ′,Rn ◦ ιV,V ′(ζ) + ιV ′,Rn ◦ ιV ′,bV ′ ◦ rV ′(w)

+ ιRn,bRn ◦ r(V ′)⊥(w)
)

(eξ)

= (ιV,Rn(ζ) + ιRn,bRn(rV ′(w) + r(V ′)⊥(w)))(eξ)

= (ιV,Rn(ζ) + ιRn,bRn(w))(eξ).

This yields

ĥU,0,g ◦ F (V,w, ζ) = ĥU,0,g ◦ F (V ′, w′, ζ ′) ∈ (ĥU,0,g ◦ F )−1(Z),
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therefore (ĥU,ξ,g ◦ F )−1(Z) is indeed a lower set.

To prove the inclusion ⊆, let (V,w, ζ) ∈ (ĥU,ξ,g ◦ F )−1(Z). We have
already noted that this implies V ⊆ U⊥. Furthermore, a computation
similar to the one above will show that

ĥU,ξ,g ◦ F (U⊥,F(V,U⊥)(w, ζ)) = ĥU,0,g ◦ F (V,w, ζ) ∈ Z,

from which the inclusion readily follows, and thereby equation 6.8.

Now fix a closed subset C ⊆ C, and let C0 := (ĥU,ξ,g ◦ F )−1(C). We
distinguish between two cases:

• 0 ∈ C: in this case, the set C\C is an open subset of C\{0}, so taking
Z = C\C, we can apply equation (6.8) and part (3) of Proposition
6.40 to see that Ω0

R,n\C0 is open, hence C0 is closed in Ω0
R,n.

• 0 /∈ C: in this case, we first show that T−1
U⊥

(C0) is compact. This set

is closed since ĥU,ξ,g ◦ F ◦ TV is continuous and C is closed, so we
only need to show that T−1

U⊥
(C0) is a subset of a compact set.

Since C is closed and does not contain 0, there exists an r > 0 such
that for each z ∈ C, we have |z| ≥ r. Using this fact and equation
(6.7), we see that for each (w, ζ) ∈ T−1

U⊥
(C0), we have

|g(w)| = |ĥU,ξ,g ◦ F (U⊥, w, ζ)| ≥ r.

Furthermore, since g ∈ S(U), the function g must vanish at infinity,
so there exists a compact set K ⊆ U such that for each w ∈ U\K,
we have |g(w)| < r. It follows that

T−1
U⊥

(C0) ⊆ K × b(U⊥),

and the right-hand side is a product of two compact sets, hence it is
compact. We now apply equation (6.8) with Z = C and part (4) of
Proposition 6.40 to conclude that C0 is closed in Ω0

R,n.

Thus in both cases, C0 is closed, and we conclude that ĥU,ξ,g ◦ F is con-
tinuous. �
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6.42 Corollary. The topological space (Ω0
R,n, τGIL), together with the map

α : Rn 7→ Ω0
R,n, x 7→ ({0}, x, 0),

is a compactification of Rn endowed with the usual metric topology.

Proof. It is readily seen from part (3) of Proposition 6.40 that α is a
homeomorphism onto its image. To see that its image is dense in Ω0

R,n,

note that the composition of α with the map F : Ω0
R,n → Ω(W0

R(Rn)) from
the previous theorem is the map

Rn → Ω(W0
R(Rn)), x 7→ δx,

where δx(f) = f(x) for each f ∈ W0
R(Rn). The image of F ◦ α separates

the elements of W0
R(Rn), so using Urysohn’s lemma and the Gelfand–

Naimark theorem, it can be shown to be dense in Ω(W0
R(Rn)). Since F

is a homeomorphism, it follows that the image of α is dense in Ω0
R,n. We

conclude that (Ω0
R,n, τGIL) together with α is a compactification of Rn. �



Chapter 7

Quantisation of the
resolvent algebra

7.1 Introduction

Having determined the Gelfand spectrum of W0
R(Rn) in the previous

chapter, and thereby the spectrum of our classical resolvent algebra
CR(T ∗Tn), we now return to the matter of chapter 5, and ask whether
there exists a quantum version of this algebra. A complicating factor
in this context is that, contrary to the resolvent algebra R(R2n, ω) of
Buchholz and Grundling, our resolvent algebra is not defined in terms of
generators and relations implementing canonical commutation relations,
and it is also not clear how to do this, or whether it is even possible in the
first place. Thus we must take a different approach.

Van Nuland [112] shows that R(R2n, ω) arises as the quantisation of
CR(R2n) using results by Rieffel [98]. Rieffel uses a version of Weyl quant-
isation to deform the algebra Cu(R2n) of uniformly continuous, bounded
functions on R2n into a family of noncommutative algebras parametrised
by ~ > 0, and shows that this quantisation is in fact a strict deformation
quantisation. Rieffel even discusses how to pass to the cylinder in chapter
2 and Examples 10.5 and 10.6 in [98].

We will take a similar approach in this chapter, with one notable dif-
ference: we will define our quantisation of the algebra CR(T ∗Tn) as an
algebra represented on L2(Tn), similar to what we did in chapter 4, and

175
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to the definition of Landsman [65, section II.3.4] for general Riemannian
manifolds. By contrast, Rieffel’s algebra in [98, Example 10.6], apart from
being a quantisation of C0(T ∗T) which is too small for our purposes, is
in some sense a universal object from which a quantisation of a physical
system is obtained as the image of this object under one of its irredu-
cible representations on a Hilbert space. The corresponding algebra has
many inequivalent irreducible representations due to the fact that T is not
simply connected; see the discussion in [70, section 7.7]. By no means do
we intend to discount such universal objects; on the contrary, we will see
in chapter 8 that such objects are likely better suited to fill the role of
objects in the quantum category in the framework presented there. The
main advantage of quantising CR(T ∗Tn) as an algebra of operators on
L2(Tn) lies in the explicit formula for the quantisations of the generators
of CR(T ∗Tn) that we are able to derive, which will be of use in this chapter
and the next one.

This chapter is structured as follows. In section 7.2, we define the
Weyl quantisation map and prove the aforementioned explicit formula. In
section 7.3, we show that, except for continuity of the map ~ 7→ ‖QW~ (f)‖
at ~ > 0 for fixed f ∈ CR(T ∗Tn), the quantisation is a strict quantisation.
The chapter ends with section 7.4 with a proof that in the case n = 1,
our algebra is stable under the quantum time evolution for a large class
of Hamiltonians, and we comment on the higher dimensional case.

7.2 Definition of the quantisation map

Let us first recall the basics of Weyl quantisation in R2n, the quantisation
procedure in [118] conceived by H. Weyl. Given say, a Schwartz function
f ∈ S(R2n), one associates an operator QW~ (f) ∈ B(L2(Rn)) to it as
follows. First, one views f as a linear combination of functions of the
form

R2n = Rn × Rn → C, (q, p) 7→ ei(a·q+b·p),

where a, b ∈ Rn, by considering the Fourier transform of f . One sub-
sequently substitutes these exponential functions with the operators

ei(a·Q+b·P ),
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from section 5.1, thereby obtaining

(2π)−2n

∫
Rn

∫
Rn

∫
Rn

∫
Rn
f(q, p)eia·(Q−q)+ib·(P−p) dq dp da db

= (2π)−2n

∫
Rn

∫
Rn

∫
Rn

∫
Rn
f(q, p)ei~

a·b
2 eia·(Q−q)eib·(P−p) dq dp da db,

where we take ~ > 0. To define the above integrals rigorously, we can insert
a function ψ ∈ S(Rn) on the right-hand side of the integrand, and check
that the resulting expression is well-defined and that it defines a bounded
operator on S(Rn) viewed as a subspace of L2(Rn). Since S(Rn) is dense
in L2(Rn), the operator has a unique bounded extension to L2(Rn), which
we define to be QW~ (f). Using standard identities for Fourier transforms
of functions and performing a number of substitutions, it can be shown
that

(QW~ (f)ψ)(x) = (2π~)−n
∫
Rn

∫
Rn
f
(
x+

y

2
, p
)
e−i

y·p
~ ψ(x+ y) dp dy,

for each ψ ∈ S(Rn) and each x ∈ Rn. Weyl quantisation of functions
on R2n is noted for its excellent symmetry properties compared to other
quantisation schemes [68, section 4.3], being equivariant with respect to
the actions of the symplectic group on R2n on the classical side, and the
metaplectic group that arises as a central extension of the symplectic group
on the quantum side [33, section 8.7.2].

We now adapt the Weyl quantisation formula to T ∗Tn in such a way
that we can quantise elements of CR(T ∗Tn). We already identified an
analogue of the space of Schwartz functions in section 5.2, namely the
space SR(T ∗Tn) of finite linear combinations of functions of the form
ek ⊗ hU,ξ,g; see Proposition 5.9. These are the functions that we will
quantise. Not all of these functions vanish at infinity, and are therefore
not Schwartz in the conventional sense. To handle such functions, we
take inspiration from Rieffel’s work [98], regarding the integrals in the
above formula as oscillatory integrals, and regularising the expression by
inserting a factor in the integrand in the form of a member of a net of
functions that converges pointwise to the constant function on Rn that is
equal to 1 everywhere, as in part (1) of the next proposition. Part (2) of
this proposition is the analogue of [98, Proposition 1.11].
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7.1 Proposition.

(1) Let f ∈ SR(T ∗Tn), let ~ > 0, and let ψ ∈ C(Tn). Then for each
x+ Zn ∈ Tn, the limit

lim
δ→0

(2π~)−n
∫
Rn

∫
Rn
f
(
x+

y

2
+ Zn, p

)
e−

δ
2
p2
e−i

y·p
~

· ψ(x+ y + Zn) dp dy,

(7.1)

exists.

(2) Now assume f = ek ⊗ hU,ξ,g is a function as described in equation
(5.2) in Proposition 5.9. Then the expression in equation (7.1) is
equal to

(2π~)− dim(U)eπik·~ξe2πik·x

·
∫
U

∫
U
g (p+ π~rU (k)) e−i

y·p
~ ψ(x+ y + ~ξ + Zn) dp dy.

For each l ∈ Zn, let ψl be the function

Tn → C, x+ Zn 7→ e2πil·x,

and regard it as an element of L2(Tn). Let L be the linear span of all such
elements.

(3) In addition to the assumptions in the previous part of the proposi-
tion, suppose that ψ = ψl for some l ∈ Zn. Then the expression in
equation (7.1) is equal to

hU,ξ,g(π~(k + 2l))ψk+l(x),

and the map defined on L sending ψ to the function on Tn that
assigns to a point x+Zn ∈ Tn the limit in (7.1) extends in a unique
way to a bounded linear operator on L2(Tn) with norm ≤ ‖g‖∞.

7.2 Remark. Note that the integrand in equation 7.1 is in general not
integrable as a function on Rn × Rn, and that the integral is only well-
defined as an iterated integral. Indeed, the inner integral is the Fourier
transform of a Schwartz function on Rn, and since S(Rn) is stable under
Fourier transformation, the integrand of the outer integral is again an
integrable function on Rn.
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Proof. We first show that for functions f of the form ek ⊗ hU,ξ,g, i.e. f
as in part (2) of the proposition, the limit in equation (7.1) exists, and is
equal to the formula in part (2) of the proposition. Since SR(T ∗Tn) is by
definition the linear span of such functions, part (1) will follow from this.

Thus, take such an f , and note that for any δ > 0, we have

(2π~)−n
∫
Rn

∫
Rn
f
(
x+

y

2
+ Zn, p

)
e−

δ
2
p2
e−i

y·p
~ ψ(x+ y + Zn) dp dy

= (2π~)−n
∫
Rn

∫
Rn
ei(ξ·p−

y·p
~ )g ◦ rU (p)e−

δ
2
p2
dp

· e2πik·(x+ y
2 )ψ(x+ y + Zn) dy

= (2π~)−n
∫
Rn

∫
Rn
e−i

y·p
~ g ◦ rU (p)e−

δ
2
p2
dp

· e2πik·(x+ y+~ξ
2 )ψ(x+ y + ~ξ + Zn) dy.

The inner integral over p can be written as a product of two integrals; one
over U and one over U⊥:∫

Rn
e−i

y·p
~ g ◦ rU (p)e−

δ
2
p2
dp

=

∫
U
g(p1)e−

δ
2
p2

1e−i
rU (y)·p1

~ dp1 ·
∫
U⊥

e−
δ
2
p2

2e−ip2·
y−rU (y)

~ dp2

=

∫
U
g(p1)e−

δ
2
p2

1e−i
rU (y)·p1

~ dp1 · (2πδ−1)
dim(U⊥)

2 e−
1

2δ~2 (y−rU (y))2

.

Inserting this back into the previous displayed formula, and splitting the
outer integral in that formula into an integral over U and an integral over
U⊥, we obtain

(2π~)−n
∫
Rn

∫
Rn
f
(
x+

y

2
+ Zn, p

)
e−

δ
2
p2
e−i

y·p
~ ψ(x+ y + Zn) dp dy

= (2π~)− dim(U)

∫
U
h1,δ(y1)

∫
U⊥

h2,δ(y1, y2) dy2 dy1,

where

h1,δ : U → C,
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y1 7→ e
2πik·

(
x+

y1+~ξ
2

) ∫
U
g(p1)e−

δ
2
p2

1e−i
y1·p1

~ dp1,

and

h2,δ : U × U⊥ → C,

(y1, y2) 7→ (2πδ~2)
− dim(U⊥)

2 e−
1

2δ~2 y
2
2 · ψ(x+ y1 + y2 + ~ξ + Zn)eπik·y2 .

Now note that the family of functions

U⊥ → R, y2 7→ (2πδ~2)
− dim(U⊥)

2 e−
1

2δ~2 y
2
2 ,

indexed by δ > 0 is an approximation to the identity for functions on U⊥.
By continuity of ψ, it follows that the functions

h3,δ : U → C, y1 7→
∫
U⊥

h2,δ(y1, y2) dy2

converge pointwise to the function

U → C, y1 7→ ψ(x+ y1 + ~ξ + Zn),

as δ → 0. Moreover, they are bounded, with ‖h3,δ‖∞ ≤ ‖ψ‖∞ for each
δ > 0. In addition, by the dominated convergence theorem, the functions
h1,δ converge pointwise to the function

U → C, y1 7→ e
2πik·

(
x+

y1+~ξ
2

) ∫
U
g(p1)e−i

y1·p1
~ dp1,

as δ → 0. Indeed, the integrands defining these functions are all dominated
by the integrable function |g|. Furthermore, note that∫
U
g(p1)e−

δ
2
p2

1e−i
y1·p1

~ dp1

=
(1 + ‖y1‖2)dim(U)

(1 + ‖y1‖2)dim(U)

∫
U
g(p1)e−

δ
2
p2

1e−i
y1·p1

~ dp1

=
1

(1 + ‖y1‖2)dim(U)

∫
U

(1− ~2∆U )dim(U)(g(p′)e−
δ
2

(p′)2
)|p′=p1e

−i y1·p1~ dp1,
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where ∆U denotes the standard Laplacian on U , and that for the family
of the functions

U → C, p1 7→ (1− ~2∆U )dim(U)(g(p′)e−
δ
2

(p′)2
)|p′=p1 ,

indexed by δ ∈ (0, C], where C is an arbitrary positive real number, there
exists a positive function HC ∈ L1(U) dominating the entire family. It
follows that for each δ ∈ (0, C] and each y1 ∈ U , we have

|h1,δ(y1)| ≤ ‖HC‖1
(1 + ‖y1‖2)dim(U)

.

The (absolute values of the) functions

U → C, y1 7→ h1,δ(y1)

∫
U⊥

h2,δ(y1, y2) dy2,

are therefore dominated by the integrable function

y1 7→
‖HC‖1‖ψ‖∞

(1 + ‖y1‖2)dim(U)
,

so we may again invoke the dominated convergence theorem to find that

lim
δ→0

(2π~)− dim(U)

∫
U
h1,δ(y1)

∫
U⊥

h2,δ(y1, y2) dy2 dy1

= (2π~)− dim(U)

∫
U

(
lim
δ→0

h1,δ(y1)

)(
lim
δ→0

∫
U⊥

h2,δ(y1, y2) dy2

)
dy1

= (2π~)− dim(U)

·
∫
U

∫
U
g(p1)e−i

y1·p1
~ dp1 e

2πik·
(
x+

y1+~ξ
2

)
ψ(x+ y1 + ~ξ + Zn) dy1

= (2π~)− dim(U)eπik·~ξe2πik·x

·
∫
U

∫
U
g(p1)e−iy1·( p1~ −πk) dp1 ψ(x+ y1 + ~ξ + Zn) dy1

= (2π~)− dim(U)eπik·~ξe2πik·x

·
∫
U

∫
U
g(p1 + π~rU (k))e−i

y1·p1
~ dp1 ψ(x+ y1 + ~ξ + Zn) dy1,
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which completes our proof of part (2).

For part (3), we simply take ψ = ψl ∈ C(Tn) ⊂ L2(Tn), with l ∈ Zn, and
apply the formula we just found:

(2π~)− dim(U)eπik·~ξe2πik·x

·
∫
U

∫
U
g(p1 + π~rU (k))e−i

y1·p1
~ dp1 e

2πil·(x+y1+~ξ) dy1

= (2π~)− dim(U)eπi(k+2l)·~ξe2πi(k+l)·x

·
∫
U

∫
U
g(p1 + π~rU (k))e−iy1·( p1~ −2πl) dp1 dy1

= (2π)− dim(U)eπi(k+2l)·~ξe2πi(k+l)·x

·
∫
U

∫
U
g(p1 + π~rU (k + 2l))e−iy1·p1 dp1 dy1

= eπi(k+2l)·~ξe2πi(k+l)·xg ◦ rU (π~(k + 2l))

= hU,ξ,g(π~(k + 2l))ψk+l(x),

which proves the formula in part (3).
We thus see that the linear map on L uniquely determined by

ψl 7→ hU,ξ,g(π~(k + 2l))ψk+l,

maps an orthonormal basis to an orthogonal system of vectors in L2(Tn),
and the norm of the image of such a vector ψl is less than or equal to
‖g‖∞ = ‖hU,ξ,g‖∞ = ‖f‖∞. (Note that the suprema defining these sup-
norms are taken over U , Rn and Tn × Rn, respectively.) Because of this
and the fact that L is dense in L2(Tn), the map extends in a unique way
to a bounded operator on L2(Tn) with norm ≤ ‖g‖∞, which proves the
final assertion. �

The proposition justifies the following definitions:

7.3 Definition. For each ~ > 0 and each f ∈ SR(T ∗Tn), we define the
Weyl quantisation QW~ (f) of f to be the unique bounded linear extension
of the operator on L ⊂ L2(Tn) defined by the formula

(QW~ (f)ψ)(x) := lim
δ→0

(2π~)−n ·
∫
Rn

∫
Rn
f
(
x+

y

2
+ Zn, p

)
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· e−
δ
2
p2
e−i

y·p
~ ψ(x+ y + Zn) dp dy.

We thus obtain a map, the Weyl quantisation map

QW~ : SR(T ∗Tn)→ B(L2(Tn)),

for each ~ > 0. We define the quantum resolvent algebra A~ on Tn × Rn
to be the C∗-subalgebra of B(L2(Tn)) generated by the image of QW~ .

7.4 Proposition. Let ~ > 0.

(1) The Weyl quantisation map is linear and respects the involutions on
both spaces;

(2) For each ~′ > 0, we have A~ = A~′;

(3) The image of

spanC{ek ⊗ g : k ∈ Zn, g ∈ S(Rn)} ⊂ SR(T ∗Tn) ∩ C0(T ∗Tn)

under QW~ is a dense subspace of B0(L2(Tn));

(4) Consider the group representation ρ0 of Tn on CR(T ∗Tn) given by

ρ0(x+ Zn)f := ((q + Zn, p) 7→ f(−x+ q + Zn, p)).

The space SR(T ∗Tn) is an invariant subspace of this representation.
Moreover, consider the group representation ρ~ of Tn on B(L2(Tn))
given by

ρ~(x+ Zn)a := L∗(x+ Zn)a(L∗(x+ Zn))∗

= L∗(x+ Zn)aL∗(−x+ Zn),

where L∗ : Tn → U(L2(Tn)) denotes the left regular representation of
Tn. The Weyl quantisation map is equivariant with respect to these
representations.

7.5 Remark. Because of part (2) of this proposition, we will write A~
for the C∗-algebra generated by QW~′ (SR(T ∗Tn)) for any value of ~′ > 0
without specifying ~. Part (3) is the analogue of the first part of [65,
Corollary II.2.5.4] in the present setting, while part (4) is the analogue of
[65, Theorem II.2.5.1].
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Proof.

(1) Linearity of QW~ is obvious from the definition. Now let ek ⊗ hU,ξ,g
be a generator of SR(T ∗Tn), and let

F : L2(Tn)→ `2(Zn), ψ′ 7→ (a 7→ 〈ψa, ψ′〉),

be the Fourier transform. It follows from part (3) of Proposition 7.1 that

QW~ (ek ⊗ hU,ξ,g) = F−1SkMh1F ,

where Sk denotes the shift operator

`2(Zn)→ `2(Zn), ψ 7→ (l 7→ ψ(−k + l)),

and Mh1 denotes the multiplication operator on `2(Zn) associated to the
function

h1 : Zn → C, l 7→ hU,ξ,g(π~(k + 2l)).

Next, for each l ∈ Z, we have

(SkMh1)∗ψl = Mh1
S−kψl = hU,ξ,g(π~(k + 2(l − k)))ψl−k

= hU,ξ,g(π~(−k + 2l))ψl−k = S−kMh2ψl,

where

h2 : Zn → C, l 7→ hU,ξ,g(π~(−k + 2l)).

Now note that

QW~ (ek ⊗ hU,ξ,g) = QW~ (e−k ⊗ hU,ξ,g) = F−1S−kMh2F ,

so by unitarity of the Fourier transform, we have

QW~ (ek ⊗ hU,ξ,g) = F−1(SkMh1)∗F = (F−1SkMh1F)∗ = QW~ (ek⊗hU,ξ,g)∗,

hence QW~ is indeed compatible with the involutions.

(2) For each ~ > 0, each f ∈ SR(T ∗Tn) and each ψ ∈ L, we have

(QW~ (f)ψ)(x) = lim
δ→0

(2π)−n
∫
Rn

∫
Rn
f
(
x+

y

2
+ Zn, ~p′

)
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· e−
δ
2

(p′)2
e−iy·p

′
ψ(x+ y + Zn) dp′ dy,

where we have made the substitution p = ~p′ in the formula defining
QW~ (f)ψ, and absorbed a factor ~2 in δ. Next, we observe that SR(T ∗Tn)
is closed under the map

f 7→ ((q + Zn, p) 7→ f(q + Zn, Cp))

for each C ∈ R, in particular for C = ~′/~ for any ~, ~′ > 0. It follows
that QW~ (SR(T ∗Tn)) = QW~′ (SR(T ∗Tn)), hence A~ = A~′ , as desired.

(3) Let B be the left-hand side of the displayed formula in the statement.
Now let k ∈ Zn, and let g ∈ S(Rn). Using notation from the proof of part
(1) of this proposition, we have

QW~ (ek ⊗ g) = F−1SkMgkF ,

where gk denotes the function

Zn → C, l 7→ g(π~(k + 2l)).

This function vanishes at infinity, so its corresponding multiplication op-
erator Mgk is compact. All of the other operators that we compose to
obtain QW~ (ek ⊗ g) are bounded, hence QW~ (ek ⊗ g) is compact. Since
QW~ is a linear map and B0(L2(Tn)) is a linear subspace of B(L2(Tn)), it
follows that QW~ (B) ⊆ B0(L2(Tn)).

To prove the assertion that QW~ (B) is in fact a dense subspace of
B0(L2(Tn)), we note that, given a and b ∈ Zn, we can fix a g ∈ S(Rn)
such that

g(π~(a− b+ 2l)) = δl,b,

for each l ∈ Zn. It follows that, in bra-ket notation,

QW~ (ea−b ⊗ g) = |ψa〉〈ψb|,

and from the fact that a and b ∈ Zn were arbitrary and that the family of
vectors (ψl)l∈Zn is an orthonormal basis of L2(Tn), we infer that QW~ (B)
is dense in B0(L2(Tn)).
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(4) Suppose f is of the form ek ⊗ hU,ξ,g. Then it is readily seen that

ρ0(x+ Zn)(ek ⊗ hU,ξ,g) = e−2πik·xek ⊗ hU,ξ,g ∈ SR(T ∗Tn),

for each x+Zn ∈ Tn, from which it follows that SR(T ∗Tn) is an invariant
subspace of the representation ρ0. Furthermore, for each l ∈ Zn, we have

(ρ~(x+ Zn)(QW~ (ek ⊗ hU,ξ,g)))ψl
= L∗(x+ Zn)QW~ (ek ⊗ hU,ξ,g)L∗(−x+ Zn)ψl

= e2πil·xL∗(x+ Zn)QW~ (ek ⊗ hU,ξ,g)ψl
= e2πil·xhU,ξ,g(π~(k + 2l))L∗(x+ Zn)ψk+l

= e2πil·xe−2πi(k+l)·xhU,ξ,g(π~(k + 2l))ψk+l

= QW~ (e−2πik·xek ⊗ hU,ξ,g)ψl,

from which we conclude that

ρ~(x+ Zn)(QW~ (ek ⊗ hU,ξ,g)) = QW~ (ρ0(x+ Zn)(ek ⊗ hU,ξ,g)),

for each x + Zn and each generator ek ⊗ hU,ξ,g of SR(T ∗Tn). Since these
generators span SR(T ∗Tn), and the quantisation map and the maps ρ0(x+
Zn) and ρ~(x+Zn) are linear, we may substitute for ek⊗hU,ξ,g any element
of SR(T ∗Tn) in the above equation. �

7.3 Proof of strict quantisation

We now show that Weyl quantisation as defined in the previous section
yields a strict quantisation of the dense Poisson subalgebra SR(T ∗Tn)
of the classical resolvent algebra CR(T ∗Tn) on T ∗Tn ∼= Tn × Rn, see
[65, section II.1.1.1] or Theorem 7.8 below. Of these properties, the most
difficult one to prove is Rieffel’s condition, i.e., convergence of the operator
norms of QW~ (f) to the sup-norm of f ∈ SR(T ∗Tn), which we discuss
separately before showing that the other conditions hold. To prepare for
the proof, we first make the following observation:

7.6 Lemma. Let K1, . . . ,Kn ∈ N\{0}. Then let K := (K1, . . . ,Kn) ∈
Nn, let KZn := K1Z × · · · ×KnZ, and let ZnK := Zn/KZn. Finally, for
each k ∈ ZnK , let Skper : `2(ZnK)→ `2(ZnK) be the operator given by

φ 7→ (l 7→ φ(−k + l)).
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Then for any f ∈ `∞(ZnK), we have∥∥∥∥∥∥
∑
k∈ZnK

f(k)Skper

∥∥∥∥∥∥ = max
l∈ZnK

∣∣∣∣∣∣
∑
k∈ZnK

f(k)e
2πi

∑n
j=1

kjlj
Kj

∣∣∣∣∣∣ .

Proof. This is readily seen by conjugating the operator
∑

k∈ZnK
f(k)Skper

with the discrete Fourier transform

`2(ZnK)→ `2(ZnK),

φ 7→

l 7→
 n∏
j=1

Kj

− 1
2

·
∑
m∈ZnK

φ(m)e
−2πi

∑n
j=1

ljmj
Kj

 ,

yielding the multiplication operator of which the corresponding function
is the one within absolute value strokes. �

7.7 Proposition. (Rieffel’s condition) For each f ∈ SR(T ∗Tn), we have

lim
~→0
‖QW~ (f)‖ = ‖f‖∞.

Before we give a precise proof of this proposition, it is instructive to first
give a sketch of the underlying idea. To relate the norm of QW~ (f) to that
of f , we conjugate the quantised function with the Fourier transform to
obtain an operator on `2(Zn). We visualise Zn as a lattice of points in
Rn, and divide it into identical boxes. In each of these boxes, we identify
a slightly smaller box such that all of the smaller boxes are translates of
each other in the same way that the larger boxes that contain them are
translates of each other. Part of the lattice with two such boxes that are
adjacent, and each of which contains a smaller box, have been depicted
below (for n = 2).
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The difference between the sizes of the small boxes and the sizes of the
larger boxes is determined by the values of the various kj that appear in
the function

f =

m∑
j=1

ekj ⊗ hUj ,ξj ,gj ,

of which we consider the quantisation; specifically, the shift
Skj ∈ B(`2(Zn)) should always map elements on `2(Zn) supported on
points inside the smaller box to functions supported on points inside the
larger box containing the small one. The size of the larger box is determ-
ined by a chosen value of ε > 0 and a crude estimate of ‖QW~ (f)‖.

Given a function φ ∈ `2(Zn), we can now estimate the norm of its image
under the conjugated quantised function as follows. First, we consider the
projection of φ onto the subspace of `2(Zn) of elements supported on the
set of points inside one of the smaller boxes, and use the fact that its
image under the operator consists of elements supported on the set of
points inside the larger box. We can then consider a periodic version of
the operator, and use the preceding lemma to get an estimate on its norm
and relate it to the norm of f . Finally, we sum the contributions of all
projections of φ onto the subspaces corresponding to the smaller boxes
to obtain an estimate on the difference of the norm of f and that of the
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conjugated version of its quantisation. To control the difference between
φ and its projection onto the space corresponding to the union of all of the
smaller boxes, we note that the partition into boxes can always be offset
by some element of Zn in such a way that the part of φ supported on the
complement of this union is small.

Proof. Fix f ∈ SR(T ∗Tn) and ε > 0. We first prove the following state-
ment:

(a) There exists an ~1 ∈ (0,∞) such that for each ~ ∈ (0, ~1], we have

‖QW~ (f)‖ < ‖f‖∞ + ε.

Since f ∈ SR(T ∗Tn), there exist functions f1, . . . , fm, where

fj = ekj ⊗ hUj ,ξj ,gj ,

is a generator of SR(T ∗Tn) for j = 1, . . . ,m, and there exist λ1, . . . , λn ∈
C, such that f =

∑m
j=1 λjfj . By absorbing each of the constants λj

into the function gj corresponding to fj , we may assume without loss
of generality that λj = 1 for j = 1, . . . ,m, so that f =

∑m
j=1 fj . For

j = 1, . . . ,m, fix the corresponding kj ∈ Zn, Uj ⊆ Rn, ξj ∈ U⊥j and
gj ∈ S(Uj), and let

hj := hUj ,ξj ,gj .

Note that by part (3) of Proposition 7.1, we have a uniform bound on the
norms of the operators (QW~ (f))~>0, namely

‖QW~ (f)‖ ≤
m∑
j=1

‖hj‖∞ =

m∑
j=1

‖gj‖∞ =: C.

Since the case C = 0 is trivial, we assume that C > 0 (which also implies

that m > 0). Now for l = 1, . . . , n, let k(l) := max1≤j≤m |k(l)
j |, and fix

K1, . . . ,Kn ∈ N\{0} such that Kl ≥ 2k(l), and

(7.2)

n∏
l=1

(
1− 2k(l)

Kl

)
> 1−

( ε

4C

)2

Moreover, for j = 1, . . . ,m, the function hj is differentiable and its first
order Fréchet derivative is bounded, which implies that it is Lipschitz
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continuous, hence there exists ~1 ∈ (0,∞) such that for each ~ ∈ (0, ~1],
each a ∈ Zn and each b ∈ Zn with |bl| < Kl for l = 1, . . . , n, we have

(7.3) |hj(2π~a)− hj(π~(kj + 2(a+ b)))| < ε

4m
.

Now fix ~ ∈ (0, ~1], fix ψ ∈ L2(Tn) with ‖ψ‖ = 1, and let φ be the image
of ψ under the Fourier transform F : L2(Tn)→ `2(Zn), which we already
defined in part (1) of the proof of Proposition 7.4. Furthermore, we define
the set

X := {a ∈ Zn : k(l) ≤ al < Kl − k(l) for l = 1, . . . , n},

and we define KZn and ZnK as in the previous lemma. Then, we have∑
b+KZn∈ZnK

∑
a∈X+KZn

|φ(a+ b)|2

=
∑

b+KZn∈ZnK

∑
a∈X

∑
a′∈KZn

|φ(a+ a′ + b)|2

=
∑
a∈X

∑
b+KZn∈ZnK

∑
a′∈KZn

|φ(a+ a′ + b)|2

=
∑
a∈X

∑
b∈Zn
|φ(a+ b)|2 = |X| ·

∑
b∈Zn
|φ(b)|2 = |X|,

where

|X| =
n∏
l=1

(Kl − 2k(l)),

is the cardinality of the set X. It follows that there exists a b ∈ Zn with
0 ≤ bl < Kl for l = 1, . . . , n such that

∑
a∈X+KZn

|φ(a+ b)|2 ≥ |ZnK |−1
n∏
l=1

(Kl − 2k(l)) =

n∏
l=1

(
1− 2k(l)

Kl

)

> 1−
( ε

4C

)2
.

Let PX,b be the orthogonal projection of `2(Zn) onto the subspace

{φ′ ∈ `2(Zn) : supp(φ′) ⊆ b+X +KZn},
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so that by the above inequality, we have

(7.4)

‖QW~ (f)F−1(1− PX,b)Fψ‖ ≤ ‖QW~ (f)‖‖F−1(1− PX,b)φ‖
≤ C‖(1− PX,b)φ‖

= C
(
1− ‖PX,bφ‖2

) 1
2 <

ε

4
.

For each a ∈ KZn, let

Pa,b : `2(Zn)→ `2(ZnK), φ′ 7→ (a′ +KZn 7→ φ′(a+ a′ + b)),

where the representative a′ ∈ Zn has been chosen so that 0 ≤ a′l < Kl for
l = 1, . . . , n. Furthermore, for each a ∈ Zn, we have a corresponding shift
operator

Sa : `2(Zn)→ `2(Zn), φ′ 7→ (a′ 7→ φ′(−a+ a′)),

and for each a+KZn ∈ ZnK , we define the shift operator Sa+KZn
per as in the

previous lemma. Finally, for each a ∈ KZn, we define

Aa,b :=
k∑
j=1

hj(2π~(a+ b))S
kj+KZn
per .

Using Lemma 7.6, we obtain

(7.5)

‖Aa,b‖ = max
a′+KZn∈ZnK

∣∣∣∣∣∣
m∑
j=1

e
2πi

∑n
l=1

k
(l)
j
a′

Kj hj(2π~(a+ b))

∣∣∣∣∣∣
≤ sup

q+Zn∈Tn

∣∣∣∣∣∣
m∑
j=1

e2πikj ·qhj(2π~(a+ b))

∣∣∣∣∣∣
≤ sup

(q+Zn,p)∈Tn×Rn

∣∣∣∣∣∣
m∑
j=1

e2πikj ·qhj(p)

∣∣∣∣∣∣
= ‖f‖∞.

Moreover, using part (3) of Proposition 7.1, we find that

Pa,bFQW~ (f)F−1PX,bφ
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= Pa,bFQW~ (f)F−1PX,b
∑
a′∈Zn

φ(a′)δa′

= Pa,b
∑

a′∈b+X+KZn

m∑
j=1

hj(π~(kj + 2a′))φ(a′)δa′+kj

=
∑
a′∈X

m∑
j=1

hj(π~(kj + 2(a+ b+ a′)))φ(a+ b+ a′)δa′+kj+KZn

=
m∑
j=1

S
kj+KZn
per

∑
a′∈X

hj(π~(kj + 2(a+ b+ a′)))φ(a+ b+ a′)δa′+KZn ,

where in the second step, we have used the fact that 0 ≤ a′l + k
(l)
j < Kl

for each a′ ∈ X, for j = 1, . . . ,m and l = 1, . . . , n. On the other hand, we
have

Aa,bPa,bPX,bφ = Aa,bPa,bPX,b
∑
a′∈Zn

φ(a′)δa′

= Aa,b
∑
a′∈X

φ(a+ b+ a′)δa′+KZn

=
m∑
j=1

S
kj+KZn
per

∑
a′∈X

hj(2π~(a+ b))φ(a+ b+ a′)δa′+KZn .

Writing

µa′,j := hj(2π~(a+ b))− hj(π~(kj + 2(a+ b+ a′))),

for j = 1, . . . ,m and a′ ∈ X, we obtain

‖(Aa,bPa,bPX,b − Pa,bFQW~ (f)F−1PX,b)φ‖

=

∥∥∥∥∥∥
m∑
j=1

S
kj+KZn
per

∑
a′∈X

µa′,jφ(a+ b+ a′)δa′+KZn

∥∥∥∥∥∥
≤

m∑
j=1

∥∥∥∥∥∑
a′∈X

µa′,jφ(a+ b+ a′)δa′+KZn

∥∥∥∥∥
=

m∑
j=1

(∑
a′∈X

|µa′,j |2|φ(a+ b+ a′)|2
) 1

2
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≤ m · max
a′′∈X

|µa′′,j |

(∑
a′∈X

|φ(a+ b+ a′)|2
) 1

2

.

Using the inequality from equation (7.3) to estimate the right-hand side,
we obtain

(7.6) ‖(Aa,bPa,bPX,b − Pa,bFQW~ (f)F−1PX,b)φ‖ <
ε

4
‖Pa,bPX,bφ‖.

Equations (7.5) and (7.6) together yield

‖Pa,bFQW~ (f)F−1PX,bφ‖
≤ ‖Aa,bPa,bPX,bφ‖+ ‖(Aa,bPa,bPX,b − Pa,bFQW~ (f)F−1PX,b)φ‖

<
(
‖f‖∞ +

ε

4

)
‖Pa,bPX,bφ‖,

for each a ∈ KZn. It is straightforward to see that for each φ′ ∈ `2(Zn),
we have ∑

a∈KZn
‖Pa,bφ′‖2 = ‖φ′‖2,

so

‖QW~ (f)F−1PX,bφ‖2 = ‖FQW~ (f)F−1PX,bφ‖2

=
∑

a∈KZn
‖Pa,bFQW~ (f)F−1PX,bφ‖2

<
∑

a∈KZn

(
‖f‖∞ +

ε

4

)2
‖Pa,bPX,bφ‖2

=
(
‖f‖∞ +

ε

4

)2
‖PX,bφ‖2 ≤

(
‖f‖∞ +

ε

4

)2
,

which together with equation (7.4) implies

‖QW~ (f)ψ‖ ≤ ‖QW~ (f)F−1PX,bFψ‖+ ‖QW~ (f)F−1(1− PX,b)Fψ‖

< ‖f‖∞ +
ε

4
+
ε

4
= ‖f‖∞ +

ε

2
,

and since ψ ∈ L2(Tn) was an arbitrary vector with norm 1, we obtain

‖QW~ (f)‖ ≤ ‖f‖∞ +
ε

2
< ‖f‖∞ + ε,
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for each ~ ∈ (0, ~1] which proves (a).

We now turn to the reverse inequality:

(b) There exists an ~2 ∈ (0,∞) such that for each ~ ∈ (0, ~2], we have

‖f‖∞ < ‖QW~ (f)‖+ ε.

Let (q0, p0) ∈ [0, 1)n × Rn be a point such that

‖f‖∞ < |f(q0 + Zn, p0)|+ ε

8
.

By Lipschitz continuity of f , there exists a δ > 0 such that for each
(q, p) ∈ (−1, 1)n × Rn with

∑n
l=1 |ql − q0,l|+ |pl − p0,l| < δ, we have

|f(q0 + Zn, p0)− f(q + Zn, p)| < ε

8
.

Now fix k ∈ Nn as in the proof of part (a), and fix K ∈ Nn in such a way
that equation (7.2) holds, and that we have

(7.7) Kl > max

(
2k(l),

2n

δ

)
,

for l = 1, . . . , n. Furthermore, fix ~2 > 0 such that equation (7.3) holds
for each ~ ∈ (0, ~2], and that we have

(7.8) 2π~2Kl <
δ

2n
.

Now fix such an ~ ∈ (0, ~2]. Next, we note that by equation (7.8) there
exists an a ∈ KZn such that

p0,l −
δ

2n
< 2π~al ≤ p0,l,

and that by equation (7.7), there exists a b ∈ Zn such that 0 ≤ bl < Kl,
and ∣∣∣∣q0,l −

bl
Kl

∣∣∣∣ < δ

2n
,

for l = 1, . . . , n. Fix such a and b. It follows that

n∑
l=1

∣∣∣∣ blKl
− q0,l

∣∣∣∣+ |2π~al − p0,l| < δ,
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so that ∣∣∣∣∣∣
m∑
j=1

e
2πi

∑n
l=1

k
(l)
j
bl

Kl hj(2π~a)− f(q0 + Zn, p0)

∣∣∣∣∣∣ < ε

8
,

and therefore, by the triangle inequality and our choice of (q0 + Zn, p0),∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

e
2πi

∑n
l=1

k
(l)
j
bl

Kl hj(2π~a)

∣∣∣∣∣∣− ‖f‖∞
∣∣∣∣∣∣ < ε

4
.

Now define φ ∈ `2(Zn) by

φ(a′) :=


n∏
l=1

K
− 1

2
l e

−2πi
a′lbl
Kl if 0 ≤ a′l − al < Kl for l = 1, . . . , n

0 otherwise

,

and let ψ := F−1φ ∈ L2(Tn). Then ‖ψ‖ = ‖φ‖ = 1, and

Aa,0Pa,0φ =
m∑
j=1

e
2πi

∑n
l=1

k
(l)
j
bl

Kl hj(2π~a)Pa,0φ,

where Aa,0 and Pa,0 are defined in the same way as Aa,b and Pa,b were
defined in part (a), respectively, so

‖Aa,0Pa,0φ‖ =

∣∣∣∣∣∣
m∑
j=1

e
2πi

∑n
l=1

k
(l)
j
bl

Kl hj(2π~a)

∣∣∣∣∣∣ > ‖f‖∞ − ε

4
.

Defining X in the same way as we did in the proof part (a), it follows that

‖Aa,0Pa,0PX,0φ‖ ≥ ‖Aa,0Pa,0φ‖ − ‖Aa,0‖‖(1− PX,0)φ‖

> ‖f‖∞ −
ε

4
− ε

4
= ‖f‖∞ −

ε

2
.

Next, we note that the vector FQW~ (f)F−1PX,0φ, viewed as a function
on Zn, is supported in the set of a′ ∈ Zn satisfying al ≤ a′l < al + Kl for
l = 1, . . . , n. Combining this observation with the estimate just obtained
and equation (7.6) yields

‖FQW~ F−1PX,0φ‖ = ‖Pa,0FQW~ F−1PX,0φ‖
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≥ ‖Aa,0Pa,0PX,0φ‖
− ‖(Aa,0Pa,0PX,0 − Pa,0FQW~ (f)F−1PX,0)φ‖

> ‖f‖∞ −
ε

2
− ε

4
= ‖f‖∞ −

3ε

4
.

We use this together with equation (7.4) to obtain

‖QW~ (f)ψ‖ = ‖FQW~ (f)ψ‖
≥ ‖FQW~ F−1PX,0φ‖ − ‖QW~ (f)F−1(1− PX,0)Fψ‖

> ‖f‖∞ −
3ε

4
− ε

4
= ‖f‖∞ − ε.

Since ‖ψ‖ = 1, this establishes (b).

Finishing up the proof, taking ~0 := min(~1, ~2), we infer that for each ~ ∈
(0, ~0], we have |‖QW~ (f)‖ − ‖f‖∞| < ε, hence lim~→0 ‖QW~ (f)‖ = ‖f‖∞,
as desired. �

We are now ready to prove the main result of this section. Let QW0 :=
IdSR(T ∗Tn), let A0 be the C∗-algebra CR(T ∗Tn). In the following theorem,

it should be understood that ‖QW~ (f)‖ := ‖f‖∞ for ~ = 0.

7.8 Theorem. Let I ⊂ [0,∞) be a subset containing 0 as an accumulation
point. Then, except for continuity at ~ > 0, the triple

(I, (A~)~∈I , (QW~ : SR(T ∗Tn)→ A~)~∈I)

is a strict quantisation of the Poisson algebra SR(T ∗Tn) , i.e., it satisfies

(1) Rieffel’s condition at ~ = 0: for each f ∈ SR(T ∗Tn), the function
~ 7→ ‖QW~ (f)‖ is continuous at 0.

(2) Von Neumann’s condition: for each f, g ∈ SR(T ∗Tn), we have

lim
~→0
~∈I

‖QW~ (f)QW~ (g)−QW~ (fg)‖ = 0.

(3) Dirac’s condition: for each f, g ∈ SR(T ∗Tn), we have

lim
~→0
~∈I

‖(−i~)−1[QW~ (f),QW~ (g)]−QW~ ({f, g})‖ = 0.
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(4) Completeness: for each ~ ∈ I, the set QW~ (SR(T ∗Tn)) is dense in
A~.

Proof.

(1) This was shown in Proposition 7.7.

(2) First suppose that fj is a generator ekj ⊗ hUj ,ξj ,gj of SR(T ∗Tn) for
j = 1, 2. As in Proposition 7.7, we will write hj instead of hUj ,ξj ,gj . Let
k := k1 + k2. Then

f1 · f2 = ek1 ⊗ h1 · ek2 ⊗ h2 = ek ⊗ (h1 · h2)

Applying part (3) of Proposition 7.1 yields

QW~ (f1f2)ψa = (h1 · h2)(π~(k + 2a))ψk+a.

for each a ∈ Zn. On the other hand, we have
(7.9)

QW~ (f1)QW~ (f2)ψa = h2(π~(k2 + 2a))QW~ (f1)ψk2+a

= h1(π~(k1 + 2(k2 + a)))h2(π~(k2 + 2a))ψk+a

= h1(π~(k + k2 + 2a)) · h2(π~(k − k1 + 2a)) · ψk+a,

so

(QW~ (f1)QW~ (f2)−QW~ (f1f2))ψa

= (h1(π~(k + k2 + 2a)) · h2(π~(k − k1 + 2a)))

−(h1 · h2)(π~(k + 2a)))ψk+a,

for each a ∈ Zn. Now let c
(1)
a,~ be the scalar in front of ψk+a on the right-

hand side of the last equation. It is not hard to see from this equation
that

‖QW~ (f1)QW~ (f2)−QW~ (f1f2)‖ ≤ sup
a∈Zn

|c(1)
a,~|,

for each ~ > 0. Now note for j = 1, 2, the Fréchet derivative Dhj of hj is
bounded, i.e.,

‖Dhj‖∞ := sup
p∈Rn

‖Dhj(p)‖ <∞,
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so that
|hj(p)− hj(p′)| ≤ ‖Dhj‖∞ · ‖p− p′‖,

for each p, p′ ∈ Rn. In particular, hj is Lipschitz continuous, a fact that
we already used in the proof of Proposition 7.7. (We have made the
Lipschitz constant explicit, since we will be using similar notation in a
slightly different setting in the proof of part (3) of this theorem.) Using
the triangle inequality, we obtain

|c(1)
a,~| ≤ |h1(π~(k + 2a))(h2(π~(k + 2a))− h2(π~(k − k1 + 2a)))|

+ |(h1(π~(k + k2 + 2a))− h1(π~(k + 2a))) · h2(π~(k − k1 + 2a))|
≤ π~ (‖h1‖∞ · ‖Dh2‖∞ · ‖k1‖+ ‖Dh1‖∞ · ‖h2‖∞ · ‖k2‖) ,

for each ~ > 0 and each a ∈ Zn. The right-hand side of this inequality is
independent of a, and converges to 0 as ~→ 0, hence

lim
~→0
~∈I

‖QW~ (f1)QW~ (f2)−QW~ (f1f2)‖ = 0.

By bilinearity, this result extends to arbitrary f1, f2 ∈ SR(T ∗Tn).

(3) As in the previous part of the proof, we prove the statement for
fj = ekj ⊗ hj , from which the general case readily follows. We have

{f1, f2}

=
n∑
l=1

(
∂f1

∂pl

∂f2

∂ql
− ∂f1

∂ql
∂f2

∂pl

)

=

n∑
l=1

(
ek1 ⊗

∂h1

∂pl

)
·
(
∂ek2

∂ql
⊗ h2

)
−
(
∂ek1

∂ql
⊗ h1

)
·
(
ek2 ⊗

∂h2

∂pl

)
= 2πiek ⊗ (Dh1(·)(k2) · h2 − h1 ·Dh2(·)(k1)) ,

where k = k1 + k2, as in part (2) of this theorem, and Dhj(·)(v) denotes
the map

Rn → C, p 7→ Dhj(p)(v),

for each v ∈ Rn and j = 1, 2. Applying part (3) of Proposition (7.1) yields

QW~ ({f1, f2})ψa
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= 2πi (Dh1(·)(k2) · h2 − h1 ·Dh2(·)(k1)) (π~(k + 2a))ψk+a,

while equation (7.9) yields

[QW~ (f1),QW~ (f2)]ψa

= (h1(π~(k + k2 + 2a)) · h2(π~(k − k1 + 2a))

− h1(π~(k − k2 + 2a)) · h2(π~(k + k1 + 2a)))ψk+a.

It follows that(
(−i~)−1[QW~ (f1),QW~ (f2)]−QW~ ({f1, f2})

)
ψa = c

(2)
a,~ψk+a,

where for each a ∈ Zn and each ~ > 0, we define

c
(2)
a,~ := (−i~)−1 (h1(π~(k + k2 + 2a)) · h2(π~(k − k1 + 2a))

− h1(π~(k − k2 + 2a)) · h2(π~(k + k1 + 2a)))

− 2πi (Dh1(·)(k2) · h2 − h1 ·Dh2(·)(k1)) (π~(k + 2a)).

It is readily seen that∥∥(−i~)−1[QW~ (f1),QW~ (f2)]−QW~ ({f1, f2})
∥∥ ≤ sup

a∈Zn
|c(2)
a,~|.

We claim that the right-hand side of this inequality converges to 0 as ~ ∈ I
goes to 0; evidently, this will show that Dirac’s condition holds.

By Taylor’s theorem, we have

|hj(π~(k + v + 2a))− (hj(π~(k + 2a)) + π~Dhj(π~(k + 2a))(v))|
≤ (π~)2‖v‖2‖D2hj‖∞,

(7.10)

for each v ∈ Rn and j = 1, 2. Here, D2hj ∈ Rn → S2(Rn)∗ denotes
the second order Fréchet derivative of hj , which assigns to each element
x ∈ Rn the linear map

D2hj(x) : (Rn)⊗2 ⊇ S2Rn → C, v ⊗ w 7→ ∂2

∂s∂t
hj(x+ sv + tw)|s,t=0,

and the norm of this map is the operator norm with respect to the unique
cross norm on (Rn)⊗2 corresponding to the euclidean norm on Rn. It can
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be checked that the map x 7→ D2hj(x) is uniformly bounded with respect
to the operator norm, and we define

‖D2hj‖∞ := sup
x∈Rn

‖D2hj(x)‖.

Returning to equation (7.10), dividing the expression on the left-hand side
within absolute value strokes by −i~ and modifying the right-hand side
accordingly yields

|(−i~)−1hj(π~(k + v + 2a))

− ((−i~)−1hj(π~(k + 2a)) + πiDhj(π~(k + 2a))(v))|
≤ π2~‖v‖2‖D2hj‖∞,

and taking the limit ~→ 0, we see that the left-hand side converges to 0.

This can be used to show that |c(2)
a,~| → 0 as ~ → 0 uniformly in a ∈ Zn,

which proves the claim.

(4) According to part (2) of Proposition 5.9, the space SR(T ∗Tn) is
a ∗-subalgebra of CR(T ∗Tn). According to part (1) of Proposition 7.4
the Weyl quantisation map is linear and compatible with the involutions
on the algebras involved. Moreover, it is readily seen from our compu-
tation of QW~ (f1)QW~ (f2) in the proof of part (2) of this theorem that
QW~ (SR(T ∗Tn)) is closed under multiplication. Thus QW~ (SR(T ∗Tn)) is a
∗-algebra. It follows that A~, which is by definition the smallest C∗-algebra
generated by QW~ (SR(T ∗Tn)), is the closure of QW~ (SR(T ∗Tn)). �

7.9 Remark. The statement that for arbitrary f ∈ SR(T ∗Tn), the map

[0,∞)→ [0,∞), ~ 7→ ‖QW~ (f)‖,

is continuous at points other than ~ = 0 is false. As a counterexample,
let ~0 > 0 be arbitrary, and consider the function f = e0 ⊗ h, where the
function h is defined as follows:

h : Rn → R, p = (p1, p2, . . . , pn) 7→ sin

(
p1

~0

)
.

Note that h can be written as the sum of two generators of W0(Rn) ⊆
W0
R(Rn), so f ∈ SR(T ∗Tn). Futhermore, h vanishes at each point in
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2π~0 ·Zn, hence QW~0
(f) = 0 by part (3) of Proposition 7.1, or equivalently,

‖QW~0
(f)‖ = 0. On the other hand, for each N ∈ N\{0}, let

~N := ~0

(
1 +

1

4N

)
.

Then ‖QW~N (f)‖ = 1; indeed, we have ‖QW~N (f)‖ ≤ ‖h‖∞ = 1, and equality
holds since

QW~0
(f)ψ(N,0,0,...,0) = ψ(N,0,0,...,0).

Thus we have limN→∞ ~N = ~0, while

lim
N→∞

‖QW~N (f)‖ = 1 6= 0 = ‖QW~0
(f)‖,

so the function ~→ ‖QW~ (f)‖ fails to be continuous at ~0.

The issue of continuity of the norm of the quantisation of a given
function at points ~ 6= 0 is often sidestepped in the literature for reasons
related to geometric quantisation, which imposes the condition that ~ be of
the form ~0/m, m ∈ N\{0} for some fixed ~0 > 0 (cf. [52] for a discussion
of this point, and also a nice overview of the various notions of quantisation
throughout the literature). It follows that in such cases the set I\{0} in
the above theorem is a discrete subset of (0,∞), so the restriction of
~ → ‖QW~ (f)‖ to I is trivially continuous at all points outside of 0, and
the family of quantisation maps constitutes an actual strict quantisation.

Despite the fact that the norm of the quantisation of a function is not
continuous for ~ > 0, we still have continuity of quantisation in another
way:

7.10 Proposition. Let f ∈ SR(T ∗Tn). Then the map

(0,∞)→ A~ ⊆ B(L2(Tn)), ~ 7→ QW~ (f),

is continuous with respect to the strong operator topology on the codomain.

Proof. By linearity of the quantisation map and the fact that SR(T ∗Tn)
is the linear span of generators of CR(T ∗Tn), we may assume without loss
of generality that there exists a k ∈ Zn and a generator h of W0

R(Rn)
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such that f = ek ⊗ h. Furthermore, it is readily seen from part (3) of
Proposition 7.1 that there exists a generator h̃ of W0

R(Rn) such that

QW~ (f) = MekQ
W
~ (e0 ⊗ h̃),

where Mek ∈ B(L2(Tn)) denotes the multiplication operator associated
to the function ek, and does not depend on ~. Regarding the quantised
functions on both sides of this equations as maps in ~, continuity (with
respect to the strong operator topology) of the map on the right implies
continuity of the map on the left. Thus we may assume without loss of
generality that k = 0, i.e., f = e0 ⊗ h for some generator h of W0

R(Rn).
Now fix ~0 > 0, let ψ ∈ L2(Tn) be such that ‖ψ‖ ≤ 1, and let ε > 0.

Then there exists a subset X ⊂ Zn that is bounded with respect to any
norm ‖ · ‖ on Rn such that

‖ψ − PXψ‖ <
ε

4(‖h‖∞ + 1)
,

where PX ∈ B(L2(Tn)) denotes the orthogonal projection

ψ 7→
∑
a∈X
〈ψa, ψ〉ψa,

and the assumption that X is bounded means that there exists R > 0
such that ‖a‖ ≤ R for each a ∈ X. The function h is Lipschitz continuous
with Lipschitz constant M , say, so if we set

δ := min

(
~0,

ε

4πR(M + 1)

)
,

then for each ~ ∈ (~0 − δ, ~0 + δ) and each a ∈ X, we have

‖2π~a− 2π~0a‖ < 2πδ‖a‖ ≤ ε

2(M + 1)
,

hence
|h(2π~a)− h(2π~0a)| < ε

2
,

and consequently∥∥(QW~ (f)−QW~0
(f)
)
ψ
∥∥
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≤
∥∥(QW~ (f)−QW~0

(f)
)
PXψ

∥∥+ (
∥∥QW~ (f)

∥∥+
∥∥QW~0

(f)
∥∥) ‖ψ − PXψ‖

≤

∥∥∥∥∥∑
a∈X
〈ψa, ψ〉(h(2π~a)− h(2π~0a))ψa

∥∥∥∥∥+ 2‖h‖∞ · ‖ψ − PXψ‖

<
ε

2
‖ψ‖+ 2‖h‖∞ ·

ε

4(‖h‖∞ + 1)
< ε,

which shows that the map ~ 7→ QW~ (f) is strongly continuous at ~0. �

7.4 Invariance under time evolution

We now show that the quantisation A~ of CR(T ∗Tn) is invariant under
the quantum time evolution for a large class of Hamiltonians, in a way
analogous to the discussion for the classical case in section 5.3. First we
discuss the free case for general n, then the interacting one for n = 1,
and we end the section with a discussion on the higher dimensional case.
Our proof strategy is basically the method of Buchholz and Grundling [26,
Proposition 6.1 and pp. 40–41] adapted to the cylinder. As in section 5.3,
a proof of the general case of n ∈ N will appear in a forthcoming paper
of van Nuland and the author [113]. In our exposition, we set all physical
constants in the Hamiltonian equal to 1, except for ~.

7.11 Lemma. Let ~ > 0. The algebra A~ is closed under the quantum
time evolution corresponding to the free Hamiltonian H0 that is the unique
self-adjoint extension of the essentially self-adjoint operator −~2

2 ∆ with
domain C∞(Tn).

7.12 Remark. The fact that for any compact Riemannian manifold M ,
the Laplace–Beltrami operator on C∞(M) has a unique self-adjoint ex-
tension, is due to Gaffney [42].

Proof. We show that the quantum time evolution corresponding to H0

maps the set of quantisations of the generators ek ⊗ hU,ξ,g of CR(T ∗Tn)
into itself; since the time evolution consists of a family of automorphisms
of C∗-algebras, the lemma will follow from this.

Let f = ek⊗hU,ξ,g be such a generator. Note that for each a ∈ Zn, we
have

e−
itH0
~ ψa = e−2π2it~‖a‖2ψa.
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Using part (3) of Proposition 7.1, we obtain

e
itH0
~ QW~ (f)e−

itH0
~ ψa

= e2π2it~(‖a+k‖2−‖a‖2)eπ~i(k+2a)·ξg ◦ rU (π~(k + 2a))ψk+a

= eπi~(k+2a)·(ξ+2πtk)g ◦ rU (π~(k + 2a))ψk+a

= QW~ (ek ⊗ hU,ξ̃,g̃)ψa,

for each a ∈ Zn, where

ξ̃ := ξ + 2πt(I − rU )(k) ∈ U⊥,

and
g̃ : U → C, p 7→ e2πitrU (k)·pg(p),

is again a Schwartz function on U , so f̃ := ek ⊗ hU,ξ̃,g̃ is a generator of

CR(T ∗Tn). Since both e
itH0
~ QW~ (f)e−

itH0
~ and QW~ (f̃) are bounded by

definition of QW~ , it follows from the above computation that they must
be equal, so the set of images of generators of the resolvent algebra under
QW~ is indeed invariant under the quantum time evolution. �

7.13 Proposition. Let ~ > 0, let V ∈ C(T), let M(V ) be its correspond-

ing multiplication operator on L2(T), and let H = −~2

2
d2

dx2 +M(V ) be the
operator with domain D(H0). The algebra A~ is closed under the quantum
time evolution corresponding to the Hamiltonian H.

7.14 Remark. The self-adjointness of H is a consequence of the Kato–
Rellich theorem.

Proof. We claim that for each t ∈ R, we have

e
itH0
~ e

−itH
~ ∈ A~.

Suppose for the moment that this claim holds true. Let τ0 and
τ : R → Aut(B(L2(T))) be the quantum time evolutions (in the Heisen-
berg picture) corresponding to the Hamiltonians H0 and H, respectively;
for each t ∈ R, we write τ0

t for τ0(t), and τt for τ(t). Then for each a ∈ A~
and each t ∈ R, we have

τt(a) = e
itH
~ ae

−itH
~ =

(
e
itH
~ e

−itH0
~

)∗
(τt(a))

(
e
itH0
~ e

−itH
~

)
.
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By assumption, the first and the third factors within parentheses are ele-
ments of A~, and the second factor is an element of A~ by the preceding
lemma. It then follows that τt(a) ∈ A~.

Thus it remains to prove the claim. First note that without loss of
generality, we may assume that

∫
T V (x+Z)dx = 0. As in [26], we use the

fact that the product of two of the elements of the different one parameter
groups can be written as a norm-convergent Dyson series, i.e.,

e
itH0
~ e

−itH
~

=

∞∑
k=0

(i~)−k

·
∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
(τ0
t1 ◦M(V )) ◦ · · · ◦ (τ0

tk
◦M(V )) dtk . . . dt2 dt1.

The integrals in the above expression can be defined in the following way.
First, observe that the function

R→ B(L2(T)), t 7→ τ0
t ◦M(V ),

is bounded and strongly continuous. It follows that the function

Rk → B(L2(T)), (t1, . . . , tk) 7→ (τ0
t1 ◦M(V )) ◦ · · · ◦ (τ0

tk
◦M(V )),

is bounded and strongly continuous. For each ψ ∈ L2(T), one can therefore
define the integral∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
(τ0
t1 ◦M(V )) ◦ · · · ◦ (τ0

tk
◦M(V ))(ψ) dtk . . . dt2 dt1,

using Bochner integration, and it is easy to check that the norm of the
corresponding operator is less than or equal to (k!)−1‖V ‖k∞, so that the
Dyson series is indeed norm-convergent. In addition, as in [26], it suffices
to prove the claim for potentials V ∈ S, where S is any dense subset of
the space {

g ∈ C(T) :

∫
T
g(x+ Z) dx = 0

}
.

We prove the claim for S = spanC{ek : k ∈ Z\{0}}.
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The identity operator, which is the first term in the Dyson series, is an
element of A~. We claim that the remaining terms are all Hilbert–Schmidt
operators; in particular, they are compact, which implies that their sum
is compact as well, hence by part (3) of Proposition 7.4, they are elements
of A~. First, we show that for each t ∈ R and each k ∈ Z, we have

(7.11)

∫ t

0
τ0
s ◦M(ek) ds ∈ L2(L2(T)).

From the calculation of τ0
t (QW~ (ek⊗hU,ξ,g)) in the previous lemma, taking

U = {0}, ξ = 0, and g = 1, we get

τ0
t ◦M(ek)ψa = e2π2it~((a+k)2−a2)ψk+a

for each a ∈ Z and each t ≥ 0. It follows that∫ t

0
τ0
s ◦M(ek)ψa ds =

e2π2it~((a+k)2−a2) − 1

2π2i~((a+ k)2 − a2)
ψk+a

= a−1 e
2π2it~((a+k)2−a2) − 1

2π2i~(2k + a−1k2)
ψk+a,

hence

M(e−k)

∫ t

0
τ0
s ◦M(ek)ψa ds = a−1 e

2π2it~((a+k)2−a2) − 1

2π2i~(2k + a−1k2)
ψa,

for each a ∈ Z\{0} and each t ≥ 0. Now, as a → ±∞, the denomin-
ator of the fraction on the right-hand side of this equation converges to
4π2i~k, while the absolute value of the numerator is bounded by 2, so the
fraction, viewed as a function of a, is bounded. This, combined with the
fact that

∑
a∈Z\{0} a

−2 < ∞, implies that M(e−k)
∫ t

0 τ
0
s ◦M(ek) ds is a

Hilbert–Schmidt operator, hence equation (7.11) holds for t ≥ 0. A sim-
ilar argument shows that the operator

∫ t
0 τ

0
s ◦M(ek)ds is Hilbert–Schmidt

if t < 0. Thus
∫ t

0 τ
0
s ◦M(V ) ds is Hilbert–Schmidt for each V ∈ S.

Next, note that the map

R→ B(L2(T)), t 7→
∫ t

0
τ0
s ◦M(V ) ds,
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is norm-continuous. Using this together with the fact that the map
t 7→ τ0

t ◦ M(V ) is strongly continuous, we infer that the pointwise
product of these maps is also strongly continuous, and its image lies in
L2(L2(T)). Moreover, from computations above, it is clear that the L2-
norms of the images of the function in the displayed formula above are
uniformly bounded. Since a strong limit of Hilbert–Schmidt operators
whose Hilbert–Schmidt norms are uniformly bounded, is again Hilbert–
Schmidt, we have∫ t

0

∫ t1

0
(τ0
t1 ◦M(V )) ◦ (τ0

t2 ◦M(V )) dt2 dt1

=

∫ t

0
(τ0
t1 ◦M(V )) ◦

∫ t1

0
τ0
t2 ◦M(V ) dt2 dt1 ∈ L2(L2(T)).

Using induction on the number of integrals, where the induction step is
essentially the same as the one just given, it can be shown that each term
in the Dyson series except for the first one lies in L2(L2(T)), which is what
we wanted to show. �

7.15 Remark. As mentioned at the beginning of this section, a proof of
the statement of Proposition 7.13 for arbitrary n will appear in a forth-
coming paper; here, we only briefly sketch the idea behind this proof. As
in the one-dimensional case, one notes that it suffices to show that the
terms∫ t

0

∫ t1

0
· · ·
∫ tl−1

0
(τ0
t1 ◦M(V )) ◦ · · · ◦ (τ0

tl
◦M(V )) dtl . . . dt2 dt1,

in the Dyson series are elements of A~. One restricts to the case that

V ∈ spanC{ek : k ∈ Zn\{0}},

and notes that the terms in the Dyson series are linear combinations of
operators of the form∫ t

0

∫ t1

0
· · ·
∫ tl−1

0
(τ0
t1 ◦M(ek1)) ◦ · · · ◦ (τ0

tl
◦M(ekl)) dtl . . . dt2 dt1.

One then writes these operators as tensor products of integral operators
on L2(K), where K denotes some Lie subgroup of Tn, and the identity
operator on the Hilbert space associated to the quotient Tn/K. Such
tensor products can be shown to be elements of A~.
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Chapter 8

The embedding maps
revisited

8.1 Introduction

In the final chapter of this thesis, we return to the problems discussed
at the end of chapter 4 and the beginning of chapter 5, specifically the
problem of the embedding maps of the observable algebras associated to
refinements of graphs. We will construct different maps that are not
motivated by the groupoid picture, but rather by the idea that famil-
ies of quantisation maps, in our case the family of Weyl quantisation
maps (QW~ )~∈(0,∞) from chapter 7, should constitute a weak version of
a natural transformation, which we call an approximate natural trans-
formation, between two functors having the same category wtRefine as
their domain. Here, wtRefine is a modified version of Refine of which the
objects carry weights in addition to having an orientation, and of which
the morphisms respect these weights. The first functor will then point
to a category Classical of algebras associated to classical systems, while
the second functor points to a category Quantum of algebras associated to
quantum systems.

Although to the knowledge of the author, regarding quantisation as a
(type of) natural transformation is a novel idea, attempts to cast strict
quantisation into a categorical framework have been made before by
others, notably Landsman [67, 69], and arguably earlier by Rieffel as well

209
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[98], albeit with a more modest scope. It is therefore only appropriate to
give a brief exposition of both of these, and compare them to the point
of view presented in this chapter.

We start by discussing the considerations that lead up to Landsman’s pro-
posed functor. In [67], Landsman notes that the most naive proposal, in
which the classical category consists of Poisson manifolds with (the suit-
able notion of) isomorphisms between them, and the quantum category
consists of C∗-algebras with ∗-isomorphisms, functoriality entails equivari-
ance of the quantisation procedure with respect to actions of some group
on both sides of the functor, and that this group generally depends on
the quantisation map and the space that is being quantised, with Weyl
quantisation, out of all quantisations of R2n, admitting the largest group.
It is therefore necessary to work with categories in which the notion of
isomorphism is weaker. According to Landsman, a good choice for the
classical category is the category Poisson that has Poisson manifolds as
objects, and isomorphism classes of Weinstein dual pairs as morphisms
(with an appropriate notion of composition). Landsman then discusses
the possibility of taking the category in which C∗-algebras are the objects
and Hilbert bi-modules are the morphisms as the quantum category, and
proves that there is a quantisation functor to this category whose domain is
a subcategory of Poisson, namely the one that consists of Poisson manifolds
associated to Lie groupoids, with a more restrictive notion of morphism.
This functor maps an object in the subcategory to the C∗-algebra of its
corresponding Lie groupoid.

To allow for a notion of functoriality that extends to the larger category
of Poisson manifolds, one should weaken the notion of morphism from
Hilbert bi-modules to KK-classes (for fixed ~). To incorporate deformation
quantisation into his framework, so that we may consider quantisations of
classical objects for varying ~, Landsman introduces the category RKK,
which is the analogue of KK for fields of C∗-algebras, and he conjectures
that strict quantisation yields a functor Poisson→ RKK.

In [69], it is argued that the map between the classes of arrows defined
by this functor corresponds to geometric quantisation, and that its func-
toriality, i.e., its compatibility with respect to composition of arrows in
both classes, yields a reformulation of the Guillemin–Sternberg conjecture
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when applied to specific arrows in Poisson. For the reader’s convenience,
we briefly recall the statement of the conjecture here.

Suppose that (M,ω) is a pre-quantisable symplectic manifold that car-
ries a smooth action of a Lie group G that acts on M by symplectomorph-
isms. There are now two possible ways to obtain the reduced version of the
Hilbert space associated to the quantum system corresponding to (M,ω):

(1) We can first apply geometric quantisation to (M,ω) to obtain the
unreduced Hilbert space, after which we consider the elements of the
resulting Hilbert space that are invariant with respect to the action
of G on the full Hilbert space;

(2) We can first take the Marsden–Weinstein quotient of (M,ω) with
respect to the action of G to obtain the reduced classical phase space,
which we subsequently quantise (again using geometric quantisation)
to obtain the reduced Hilbert space.

According to the Guillemin–Sternberg conjecture, the resulting reduced
Hilbert spaces should not depend on the chosen option, i.e., they should
be isomorphic in a canonical way. Thus, it should not matter whether one
first quantises and then reduces the classical phase space, or the other way
around; for this reason, the conjecture is sometimes stated as “quantisation
commutes with reduction.”

Returning to the discussion of functoriality of quantisation, the con-
jectured functoriality of the extension of Landsman’s quantisation functor
provides a way to generalise the Guillemin–Sternberg conjecture. While
this is very impressive in its own right, in this chapter, we are inter-
ested in the naive setting in which the quantum category consists of C∗-
algebras with ∗-homomorphisms between them, since we wish to find the
∗-homomorphism between our quantum resolvent algebras associated to
a morphism between classical objects, which we also construct in this
chapter. We already listed some problems in section 4.8 that call into
question the assumption that the quantisation of the systems under con-
sideration is given by the groupoid C∗-algebra of the pair groupoid asso-
ciated to each of their configuration spaces, or at least the usefulness of
this assumption in the context of this thesis; this assumption is part of
Landsman’s functor, however. Worse still, there is the issue that the func-
tor Poisson→ RKK only records the outcome of quantisation in the guise
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of fields of C∗-algebras, and not the process of quantisation that produces
these fields, i.e., families (Q~)~∈I of quantisation maps, rendering it far
too coarse for our purposes.

Since we wish to return to a slightly more general version of the
naive setting mentioned earlier, we should address how we avoid the
issue that forces Landsman to work with different categories. Since we
regard our family of quantisation maps as a natural transformation rather
than a functor, when it comes to equivariance of the quantisation maps
with respect to group actions, we only need to worry about images of
isomorphisms in wtRefine under the functor to Classical. This already
tremendously reduces the family of isomorphisms for which we have to
check equivariance. Furthermore, our functor will be a composition of
three functors, the first of which is a contravariant functor from wtRefine
to a category of which the class of objects contains the configuration
spaces of interest. This means that there will be no isomorphisms that
‘mix’ position and momentum degrees of freedom, making the require-
ment of equivariance with respect to isomorphisms practically trivial. In
fact, to incorporate gauge transformations into our formulation, we note
that the various categories other than wtRefine can be modified as in part
(2) of Remark 4.9, thereby effectively imposing equivariance conditions
ourselves.

Before discussing how we generalise the naive setting, we first recall Rief-
fel’s functor, which can be found in in [98] and is much closer to what we
are after. Let V be a finite-dimensional real vector space V and let A be a
Fréchet algebra that carries an isometric action of V such that the subal-
gebra A∞ of elements that are smooth with respect to this action (which
are called smooth vectors) is dense in A. Rieffel shows how the (associ-
ative) product on A∞ can be deformed into another associative product
in a functorial way using a linear operator J on V (see section 2 and in
particular proposition 2.10 in [98]). The resulting algebra is called A∞J ; If
J = 0, then the deformed product is the original one. Furthermore, if A∞

carries an involution, then A∞J can be endowed with an involution as well
provided that J is skew-symmetric.

Now let Cu(V,A) be the space of uniformly continuous A-valued func-
tions on V . The actions of V on A and on itself by translation canonically
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induce an action of V on Cu(V,A), whose subspace of smooth vectors is
denoted by BA. Rieffel applies the construction of the deformed product
to the case A∞ = BA and shows that if A is a C∗-algebra and J is skew-
symmetric, then its deformation BAJ can be endowed with an involution
and a norm such that the completion with respect to this norm can be
given the structure of a C∗-algebra in a canonical way. He proceeds to em-
bed A∞ into this new C∗-algebra, and uses the C∗-norm to define a norm
on A∞, which he uses to complete A∞ to obtain a C∗-algebra. Rieffel sub-
sequently shows that the functorial correspondence between algebras A∞

and their deformations extends to a functorial correspondence between
their respective completions [98, Theorem 5.7]. The final result that we
mention is [98, Theorem 9.3], which shows that certain families of deform-
ations form a deformation quantisation of the original C∗-algebra.

The case of interest to us is the one in which V = R2n, the space
A is the observable algebra of a classical system, and J is the standard
symplectic matrix multiplied by ~, which is essentially Weyl quantisation
(cf. [98, Examples 10.1, 10.5 and 10.6]). In this setting, functoriality
of the deformations entails that there is a functor between the following
categories:

• The domain of the functor is the category whose objects are com-
mutative C∗-algebras endowed with an action of R2n whose space of
smooth vectors is dense in the algebra, and whose morphisms are
∗-homomorphisms that are equivariant with respect to the action;

• The codomain of the functor is defined similarly to the domain, but
we drop the requirement that the algebras be commutative.

Given a ∗-homomorphism between classical observable algebras, the func-
tor immediately provides us with a ∗-homomorphism between the deform-
ations, which is what we are after in principle. However, the image of an
object under the functor need not have a canonical representation on the
Hilbert space corresponding to the configuration space of the system; cf.
[98, Example 10.6], where we would like to represent the deformed algebra
on L2(T). Furthermore, the objects in Rieffel’s category all carry actions
of R2n, and the functor is defined for a fixed skew-symmetric matrix J , al-
though [98, Proposition 2.7] suggests that the former point can be relaxed
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somewhat by appropriately modifying the defintion of the category to al-
low objects to carry actions of subspaces of R2n, or spaces that contain an
isomorphic copy of R2n. By contrast, the objects in the category Classical
that we introduce in this chapter do not contain an action as part of their
data, but merely the Poisson structure that is obtained from this action,
making it more flexible in principle.

It is also worth mentioning that we introduce a notion of morphisms
between manifolds endowed with a bilinear form that generalises among
other things the notion of a symplectomorphism, allowing us to not just
consider diffeomorphisms between symplectic manifolds that preserve the
symplectic structure, but also other maps such as immersions and submer-
sion; this is what we were referring to when we mentioned the generalisa-
tion of the naive setting in the discussion of Landsman’s work above. We
are specifically interested in submersions, since these are the maps that ap-
pear in the inverse systems of the configuration spaces and phase spaces
that we consider. Pullbacks of the maps between phase spaces induce
Poisson maps between Poisson algebras and therefore allow us to provide
a more general framework than the generalisations of Rieffel’s categories.

Finally, as already mentioned at the end of section 1.1, Rieffel’s notion
of strict deformation quantisation focusses on deformation of the product
on the classical observable algebra, whereas we wish to use Landsman’s
notion of quantisation in which a central role is reserved for a family
of quantisation maps (Q~)~∈I . We require our approximate natural
transformations to become natural transformations in the classical limit
~→ 0 only (hence the use of the term ‘approximate’) in a sense that will
be made precise in section 8.3. This notion anticipates the use of families
of quantisation maps that are different from Weyl quantisation, while still
giving an indication how we ought to define the arrow part of our functor
from wtRefine to Quantum.

We give a brief outline of this chapter. In section 8.2, we first define some
classes of manifolds with morphisms between them of which certain sub-
classes form categories. We then define the classical category Classical of
algebras, as well as a functor from the previous subclasses to this category,
and discuss how lattice gauge theory fits into this picture.

In section 8.3, we define the quantum category Quantum, and, in the
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context of lattice gauge theory with G = Tn, attempt to define a functor
from a modified version of the category of refinements to the quantum
category by defining the image of refinements in such a way that QW~
is a natural transformation from the classical functor to the quantum
functor. We will see that the most naive attempt fails, and that one is
forced to either use gauge invariance, or to work with Rieffel’s deformed
algebras, which we already discussed above and which were mentioned
earlier in section 7.1. We end this chapter with a discussion on possible
generalisations and future work.

8.2 The classical functor

In this section, we will show in Theorem 8.9 that for any two Riemannian
manifolds (Q1, β1) and (Q2, β2), and a map f : Q1 → Q2 between them
satisfying certain conditions, the map f induces a map F : T ∗Q1 → T ∗Q2

that is in some sense compatible with the canonical symplectic forms on
both spaces. We discuss a version of this theorem for vector spaces before
formulating and proving the result for general manifolds, since some of the
theory in the first subsection will be used to formulate and prove the main
result in the second subsection, and the linear version better illustrates
the key idea behind the theorem.

In the final subsection, we construct the classical category, and show
that the restriction of the pullback of F to the spaces of smooth functions
on both cotangent bundles to a suitable Poisson subalgebra is compatible
with the Poisson structures on these spaces.

8.2.1 The linear case

In order to fix notation, we recall some basic notions for bilinear forms:

8.1 Definition. Let V be a finite dimensional vector space over some
field K, and suppose that b : V × V → K is a bilinear form on V .

• The form b is said to be reflexive iff for each v, w ∈ V , we have
b(v, w) = 0⇔ b(w, v) = 0.

• For each subspace U ⊆ V , let U b := {v ∈ V | ∀u ∈ U : b(u, v) = 0}.
Note that U b is a subspace of V . If b is an inner product, then we
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write U⊥ instead of U b;

• The form b is said to be nondegenerate on U iff U ∩ U b = {0}. The
form b is said to be nondegenerate iff it is nondegenerate on V ;

• If b is nondegenerate, then the canonical linear map [ : V → V ∗,
v 7→ b(·, v) is an isomorphism. This map, as well as its inverse ], are
called musical isomorphisms. Since we consider musical isomorph-
isms associated to bilinear forms on different spaces, we will often
label them with a subscript. To ensure that these subscripts remain
legible, we will write [(v) for the image of a vector v ∈ V under the
musical isomorphism V → V ∗, instead of v[ which is done in the
literature. A similar remark applies to ].

Now suppose V1 and V2 are vector spaces over K that carry nondegenerate
reflexive bilinear forms b1 and b2, respectively. For j = 1, 2, let [j and ]j
be their corresponding musical isomorphisms. Moreover, suppose that
S : V1 → V2 is a linear map, and let ST : V ∗2 → V ∗1 , f 7→ f ◦ S be its
transpose.

• The map Sb := ]1 ◦ ST ◦ [2 is called the adjoint of S; if V1 = V2

and S = Sb, then we say that S is selfadjoint; if S is selfadjoint and
satisfies S2 = S (i.e., S is an idempotent), then we say that S is a
projection.

• We say that the map S is a partial isomorphism iff b1 is nonde-
generate on kerS, and for each v, w ∈ (kerS)b1 , we have
b1(v, w) = b2(S(v), S(w));

In addition, if b1 and b2 are inner products, then we write S∗ for the
adjoint of S, and the notion of a partial isomorphism coincides with that
of a partial isometry. If b1 and b2 are symplectic forms, then we write Sω

for the adjoint of S.

8.2 Example. Symplectic forms and inner products form two classes of
nondegenerate reflexive bilinear forms. In fact, these are the examples
that we will be most concerned with.

The following lemma is meant to streamline the proof of the subsequent
proposition, allowing us to simultaneously prove it for symmetric and an-
tisymmetric bilinear forms, thereby not having to explicitly distinguish
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between the two classes mentioned in the previous example. For a proof,
we refer to [46, Propositions 1.7.6 and 1.7.7].

8.3 Lemma. Let V be a vector space over a field K of characteristic
6= 2, and let b be a nonzero reflexive bilinear form on V . Then b is either
symmetric or antisymmetric.

The following proposition contains some elementary statements from lin-
ear algebra that the reader is probably already familiar with. We have
included it here mostly because of the final part, which is also given the
most attention. Part (8) is somewhat delicate in that the condition of
nondegeneracy that is part of the definition of a partial isomorphism re-
quires a bit more care than the corresponding statement for the smaller
class of partial isometries. Indeed, any subspace of an inner product space
is nondegenerate with respect to that inner product, making partial iso-
metries easier to handle.

8.4 Proposition. Let V be a finite dimensional vector space over a field
K of characteristic 6= 2, let b be a nondegenerate reflexive bilinear form
on V , and let U ⊆ V be a subspace. Then

(1) (U b)b = U ;

(2) The following are equivalent:

(i) b is nondegenerate on U ;

(ii) b is nondegenerate on U b;

(iii) V = U ⊕ U b;

Now let V1 and V2 be vector spaces endowed with nondegenerate reflexive
bilinear forms b1 and b2, respectively, and let S : V1 → V2 be a linear map.

(3) Let ε := 1 if b1 and b2 are both symmetric or both antisymmetric,
and let ε := −1 otherwise. Furthermore, let T : V2 → V1 be a linear
map. Then the following are equivalent:

(i) T = Sb;

(ii) For each v1 ∈ V1 and each v2 ∈ V2, we have b1(v1, T (v2)) =
b2(S(v1), v2);
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(iii) For each v1 ∈ V1 and each v2 ∈ V2, we have b1(T (v2), v1) = ε ·
b2(v2, S(v1));

(4) (Sb)b = S;

(5) We have ker(S) = Im(Sb)b1 and ker(Sb) = Im(S)b2;

(6) If V1 = V2 and S is a projection, then b1 is nondegenerate on both
kerS and Im(S), and V1 = kerS ⊕ Im(S);

(7) If S is a partial isomorphism, then for each v ∈ V1, the following
are equivalent:

(i) v ∈ (kerS)b1;

(ii) For each w ∈ V1, we have b1(w, v) = b2(S(w), S(v));

(8) If b1 and b2 are both symmetric or both antisymmetric, then the
following are equivalent:

(i) S is a partial isomorphism;

(ii) Sb ◦ S is a projection with image (kerS)b1;

(iii) Sb is a partial isomorphism;

(iv) S ◦ Sb is a projection with image Im(S);

Proof. To prove (1), we first note that (U b)b is a subspace of V satisfying
U ⊆ (U b)b since b is reflexive, and then observe that the map

U → (V/U b)∗, v 7→ (w + U b 7→ b(w, v)),

is an isomorphism. This yields dim(U) = dim((V/U b)∗) =
dim(V/U b) = dim(V ) − dim(U b), and a similar argument shows that
dim(U b) = dim(V )− dim((U b)b), so dim(U) = dim((U b)b), and it follows
that U = (U b)b.

This argument can also be used in (2) to show that (i) ⇒ (iii). The
implication (iii) ⇒ (i) is immediate from the definition of nondegeneracy
of b on U . Similar arguments can be employed in conjunction with (1) to
prove the equivalence of (ii) and (iii).
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For (3), the implication (i) ⇒ (ii) is simply a matter of expanding
the definition of the adjoint, while the reverse implication follows from
nondegeneracy of b1. The equivalence of (ii) and (iii) follows from Lemma
8.3.

(4) and (5) are readily obtained from (3).
To prove (6), we first note that if v ∈ kerS∩Im(S), then v = S(v) = 0,

hence kerS ∩ Im(S) = {0}. Furthermore, (5) implies kerS = Im(S)b1 ,
so b1 is nondegenerate on both kerS and Im(S), and (2) now implies
V1 = kerS ⊕ Im(S).

(7) (i) ⇒ (ii): Let v ∈ (kerS)b1 , and let w ∈ V1. Since b1 is nonde-
generate on (kerS)b1 , we may apply (2) to find unique w1 ∈ kerS and
w2 ∈ (kerS)b1 such that w = w1 + w2. Then we obtain

b2(S(w), S(v)) = b2(S(w1), S(v)) = b1(w1, v) = b1(w, v),

which shows that (ii) holds.

(ii) ⇒ (i): Let v and w as above. Then

b1(w, v) = b2(S(w), S(v)) = b1(w, Sb ◦ S(v)),

and since w ∈ V1 was arbitrary, parts (1) and (5) of this proposition and
nondegeneracy of b1 together imply v = Sb ◦ S(v) ∈ Im(Sb) = (kerS)b1 ,
as desired.

(8) The equivalence of (iii) and (iv) can be obtained from the equival-
ence of (i) and (ii) by substituting S for Sb, and applying parts (1), (4)
and (5) of this proposition. Similarly, to prove the equivalence of (ii) and
(iv), it suffices to prove the implication (ii) ⇒ (iv). Thus we only need to
prove the following three implications:

(i) ⇒ (ii): Suppose S is a partial isomorphism. Part (7) and nondegen-
eracy of b imply that Sb ◦ S(v) = v for each v ∈ (kerS)b1 , and it is trivial
that Sb ◦ S(v) = 0 for each v ∈ kerS. Let v ∈ V1, and let w ∈ (kerS)b1 .
By part (2) of this proposition and nondegeneracy of (kerS)b1 , we have
V1 = kerS ⊕ (kerS)b1 . From this decomposition and our computations
above, it is readily seen that Sb ◦S is an idempotent with image (kerS)b1 .
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It follows from (3) that Sb ◦ S is selfadjoint, hence Sb ◦ S is a projection.

(ii) ⇒ (i): Suppose Sb ◦ S is a projection on V1 with image (kerS)b1 .
By part (6), b1 is nondegenerate on (kerS)b1 , and by part (7), we have
b1(v, w) = b2(S(v), S(w)) for each v, w ∈ (kerS)b1 , so S is a partial
isomorphism.

(ii) ⇒ (iv): Suppose Sb◦S is a projection with image ker(S)b1 . Again, by
part (6), b1 is nondegenerate on (kerS)b1 . It follows from (3) that S ◦ Sb
is selfadjoint. Note that by (1) and (5), we have Im(Sb ◦ S) = (kerS)b1 =
Im(Sb), and since Sb ◦ S is a projection, we have Sb ◦ S|Im(Sb) = IdIm(Sb),
hence

(S ◦ Sb)2 = S ◦ (Sb ◦ S) ◦ Sb = S ◦ Sb,
which shows that S ◦Sb is also an idempotent, and therefore a projection.
It is clear that Im(S ◦ Sb) ⊆ Im(S). Because b1 is nondegenerate on
(kerS)b1 , we have kerS ⊕ (kerS)b1 by (2), hence Im(S) = Im(S|(kerS)b1 ).

Now let v ∈ (kerS)b1 . Then

(S ◦ Sb) ◦ S(v) = S ◦ (Sb ◦ S)(v) = S(v),

which shows that Im(S|(kerS)b1 ) ⊆ Im(S ◦ Sb). We conclude that Im(S ◦
Sb) = Im(S). �

A natural question is whether the composition of two partial isomorphisms
is again a partial isomorphism. The answer is, in general, no; we do
however have the following sufficient conditions:

8.5 Proposition. Let V1, V2, and V3 be three vector spaces endowed with
nondegenerate bilinear forms b1, b2, and b3, respectively, and suppose that
the three bilinear forms are either all symmetric or all antisymmetric. Fur-
thermore, suppose S12 : V1 → V2 and S23 : V2 → V3 are partial isomorph-
isms. If S12 and S23 are both injective or both surjective, then S23 ◦S12 is
a partial isomorphism.

Proof. Let S13 := S23 ◦ S12. First suppose S12 and S23 are both injective.
Then S13 is also injective, so b1 is trivially nondegenerate on (kerS13)b1 =
V1, and for each v, w ∈ V1, we have

b3(S13(v), S13(w)) = b2(S12(v), S12(w)) = b1(v, w),



8.2. THE CLASSICAL FUNCTOR 221

so S13 is a partial isomorphism.
Now suppose S12 and S23 are both surjective. Then Sb12 and Sb23 are

both injective by part (5) of Proposition 8.4, and we have Sb13 = Sb12 ◦Sb23.
Applying the first part of the current proposition, we find that Sb13 is a
partial isomorphism, so by part (8) of Proposition 8.4, the map S13 is a
partial isomorphism, as desired. �

We now recall the basic construction of a symplectic vector space from a
given vector space. Let V be a finite dimensional real vector space, and
let V ∗ be its dual space. Then there is the canonical symplectic form ω
on the vector space V × V ∗ given by

ω : (V × V ∗)× (V × V ∗)→ R, ((v, ζ), (w, η)) 7→ ζ(w)− η(v),

and the spaces V × {0} and {0} × V ∗ are Lagrangian subspaces of (V ×
V ∗, ω).

A partial isomorphism between vector spaces canonically induces a
partial isomorphism between the corresponding symplectic spaces, as is
shown in the proposition below.

8.6 Proposition. Let V1 and V2 be two finite dimensional real vector
spaces endowed with nondegenerate reflexive bilinear forms b1 and b2, re-
spectively, and suppose S12 is a partial isomorphism. For j = 1, 2, let ωj
be the canonical symplectic forms on Vj × V ∗j . Then the map

T12 : V1 × V ∗1 → V2 × V ∗2 , (v, ζ) 7→ (S12(v), ζ ◦ Sb12),

is a partial isomorphism between the corresponding symplectic spaces.
Moreover, this construction is functorial in the following sense: sup-

pose V3 is another finite dimensional real vector spaces with a nonde-
generate reflexive bilinear form b3, and suppose that S23 : V2 → V3 and
S13 := S23 ◦ S12 are partial isomorphisms. Let T23 and T13 be the re-
spective induced maps between symplectic spaces. Then T13 = T23 ◦ T12.

Proof. Let U := kerS12, let U0 := {ζ ∈ V ∗1 | ∀v ∈ U : ζ(v) = 0} be
the annihilator of U , and let U0

b1
be the annihilator of U b1 . Let [1 be

the musical isomorphism V1 → V ∗1 corresponding to b1, and let ]1 be its
inverse. Note that U0 and U0

b1
are the images of U b1 and U under [1,
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respectively. Furthermore, by parts (1) and (5) of Proposition 8.4, we
have Im(Sb12) = (kerS12)b1 = U b1 , so for each ζ ∈ V ∗1 , we have ζ ◦ Sb12 = 0
if and only if ζ ∈ U0

b1
. It follows that kerT12 = U × U0

b1
.

We now claim that U b1 × U0 = (kerT12)ω1 . For each (v, ζ) ∈ V × V ∗
and each (w, η) ∈ U × U0

b1
, we have

ω1((v, ζ), (w, η)) = ζ(w)− η(v).

If (v, ζ) ∈ U b1 × U0, then the right-hand side is equal to 0, which shows
that U b1 × U0 ⊆ (kerT12)ω1 . On the other hand, if (v, ζ) ∈ (kerT12)ω1 ,
then we can take w = 0 and η ∈ U0 arbitrary, and apply part (1) of
Proposition 8.4 to see that v ∈ U , and if we take w ∈ U arbitrary and
η = 0, then we see that ζ ∈ U0, which establishes the reverse inclusion.
This proves the claim.

Next, we show that ω1 is nondegenerate on (kerT12)ω1 . Let (v, ζ) ∈
U b1 × U0, and suppose that for each (w, η) ∈ U b1 × U0, we have

0 = ω1((v, ζ), (w, η)) = ζ(w)− η(v).

In particular, taking w = 0, we see that b1(v, ]1(η)) = 0 for each η ∈ U0,
and since ]1(U0) = U b1 and b1 is nondegenerate on U b1 , we infer that
v = 0. Taking η = 0 instead, we obtain b1(w, ]1(ζ)) = 0 for each w ∈ U b1 ,
so by the same argument, we have ]1(ζ) = 0, which is equivalent to ζ = 0.
Thus (v, ζ) = 0, and we conclude that ω1 is nondegenerate on (kerT12)ω1 .

We are now ready to show that T12 is a partial isomorphism. Let
(v, ζ), (w, η) ∈ U b1 × U0. Then

ω2(T12(v, ζ), T12(w, η)) = ζ ◦ Sb12 ◦ S12(w)− η ◦ Sb12 ◦ S12(v) = ζ(w)− η(v)

= ω1((v, ζ), (w, η)),

where we used part (8) of Proposition 8.4 in the second step. Together
with the nondegeneracy of ω1 on (kerT12)ω1 that was established in the
previous paragraph, this shows that T12 is a partial isomorphism.

To prove the final assertion, let (v, ζ) ∈ V × V ∗. Then by definition,
we have S13(v) = S23 ◦ S12(v). In addition,

ζ ◦ Sb13 = ζ ◦ (S23 ◦ S12)b = ζ ◦ Sb12 ◦ Sb23,

and from this, it is readily seen that T13 = T23 ◦ T12. �
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8.2.2 The general case

In this subsection, we adapt the definitions and results obtained in the
previous subsection to smooth manifolds.

8.7 Definition. Let M1 and M2 be two smooth manifolds. For j = 1, 2,
let T 0,2Mj be the second tensor power of the cotangent bundle T ∗Mj , and
let bj ∈ Γ(T 0,2Mj) be a smoothly varying bilinear form on Mj that is
nondegenerate and reflexive at each point of Mj . Let F : M1 → M2 be a
smooth map. Suppose now that

(1) F has constant rank;

(2) For each m ∈M1, the map TmF is a partial isomorphism;

Then we say that F is a bilinear morphism. In particular,

• If b1 and b2 are symplectic forms, then we say that F is a symplectic
morphism. If F is a submersion, then we say that F is a symplectic
submersion. Similarly, if F is an immersion, then we say that F is
a symplectic immersion.

• If b1 and b2 are Riemannian metrics, then we say that F is a Rieman-
nian morphism. We define the notions of Riemannian submersion
and Riemannian immersion analogously to their symplectic coun-
terparts.

8.8 Remark. The notions of Riemannian immersion and submersion as
defined above coincide with those found in the literature. The notion of
a symplectic submersion was found by Lanéry and Thiemann: see [72,
Definition 2.1], where it is simply called a “compatible map”. Our notion
of a symplectic morphism thus generalises theirs. It should not be confused
with the established notion of a symplectomorphism, which is a symplectic
morphism that is also a diffeomorphism.

8.9 Theorem. Let (Q1, b1) and (Q2, b2) be two manifolds equipped with
smoothly varying nondegenerate reflexive bilinear forms, and let f : Q1 →
Q2 be a bilinear morphism. Define the map

F : T ∗Q1 → T ∗Q2, (x, ξ) 7→ (f(x), ξ ◦ Txf b).



224 CHAPTER 8. THE EMBEDDING MAPS REVISITED

Then F is a symplectic morphism. Furthermore, F is a symplectic im-
mersion if f is an immersion, and F is a symplectic submersion if f is a
submersion.

Finally, the assignment f 7→ F is functorial in the following sense:
Let f12 := f , let F12 := F , let (Q3, b3) be a third manifold equipped
with a smoothly varying nondegenerate reflexive bilinear form, and let
f23 : Q2 → Q3 be a bilinear morphism with induced symplectic morphism
F23. If f13 := f23 ◦f12 is a bilinear morphism, then the induced symplectic
morphism F13 satisfies F13 = F23 ◦ F12.

Proof. First note that F is smooth, since it is the unique map that makes
the following diagram

T ∗Q1 T ∗Q2

TQ1 TQ2

F

Tf

commutative, where the vertical arrows denote the musical isomorphisms
associated to b1 and b2.

Let x ∈ Q1, and let ξ ∈ TxQ∗1. Since f is a bilinear morphism, it has
constant rank, so by the constant rank theorem, we may fix coordinate
neighbourhoods (U1, ϕ1) of x on Q1 and (U2, ϕ2) of f(x) on Q2 such that
f(U1) ⊆ U2, ϕ1(x) = 0, and ϕ2 ◦ f ◦ ϕ−1

1 is of the form

Rn1 ⊇ ϕ1(U1)→ ϕ2(U2) ⊆ Rn2 ,

(x1, . . . , xn1) 7→ (x1, . . . , xrk(f), 0, . . . , 0),

where rk(f) denotes the rank of f .

Now let α1 : Rn1 → Rn1 be the linear isomorphism uniquely determined
by the requirement that

α1|{0}×Rn1−rk(f) = Id{0}×Rn1−rk(f) ,

α1|Rrk(f)×{0} = dϕ1,x ◦ Txf b ◦ Txf ◦ (dϕ1,x)−1|Rrk(f)×{0},
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and let α2 : Rn2 → Rn2 be the linear isomorphism uniquely determined by
the requirement that

α2|Rrk(f)×{0} = IdRrk(f)×{0},

α2|{0}×Rn2−rk(f)

=
(

Id− dϕ2,f(x) ◦ Txf ◦ Txf b ◦ (dϕ2,f(x))
−1
)∣∣∣
{0}×Rn2−rk(f)

.

By replacing ϕ1 with α−1
1 ◦ϕ1, we can arrange that the local frame

(
∂
∂xi

)n1

i=1
induced by (U1, ϕ1) has the property that

∂

∂x1

∣∣∣∣
x

, . . . ,
∂

∂xrk(f)

∣∣∣∣
x

∈ (kerTxf)b1 ,

and similarly, by replacing ϕ2 with α−1
2 ◦ ϕ2 if necessary, we can arrange

that the local frame
(

∂
∂yi

)n2

i=1
induced by (U2, ϕ2) has the property that

∂

∂yrk(f)+1

∣∣∣∣
f(x)

, . . . ,
∂

∂yn2

∣∣∣∣
f(x)

∈ (Im Txf)b2 .

For j = 1, 2, the chart (Uj , ϕj) induces a chart (π−1
j (Uj),Φj) of the co-

tangent bundle T ∗Qj of Qj , where πj : T ∗Qj → Qj denotes the canonical
map, and we can use these maps to obtain isomorphisms

T(x,ξ)(T
∗Q1)→ Rn1 × Rn1 → Rn1 × (Rn1)∗ → TxQ1 × TxQ∗1.

Here,

• The first isomorphism is given by dΦ1,(x,ξ);

• The second isomorphism is the identity between the first factors,
and the identification of Rn1 with its dual space using the standard
basis in the second factors;

• The third isomorphism is given by (dφ1,x)−1 × (dφ1,x)T ;

Let θ1 be the composition of these three isomorphisms. With respect to the
coordinates (x1, . . . , xn1 , ζ1, . . . , ζn1) induced by Φ1, the symplectic form
ω1,(x,ξ) takes the usual form

∑n1
j=1 dx

j ∧ dζj and is therefore the pullback
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of the canonical symplectic form on TxQ1 × TxQ∗1 under θ1. Similarly, we
find an isomorphism

θ2 : TF (x,ξ)(T
∗Q2)→ Tf(x)Q2 × Tf(x)Q

∗
2,

and ω2,F (x,ξ) is the pullback of the canonical symplectic form on Tf(x)Q2×
Tf(x)Q

∗
2 under θ2.

We claim that the unique map T12 that makes the following diagram

T(x,ξ)(T
∗Q1) TF (x,ξ)(T

∗Q2)

TxQ1 × TxQ∗1 Tf(x)Q2 × Tf(x)Q
∗
2

T(x,ξ)F

θ1 θ2

T12

commutative, is the one from Proposition 8.6, with V1 := TxQ1, V2 :=
Tf(x)Q2, and S12 = Txf .

To see this, we first note that by our assumptions on the local frames,
we have

Txf
b

(
∂

∂yi

∣∣∣∣
f(x)

)
=


∂

∂xi

∣∣∣∣
f(x)

if i ≤ rk(f)

0 if i > rk(f)

,

for i = 1, . . . , n2, hence

(Txf
b)T (dxix) =

{
dyif(x) if i ≤ rk(f)

0 if i > rk(f)
,

for i = 1, . . . , n1. It is clear that

Φ2 ◦ F ◦ Φ−1
1 ((x1, . . . , xn1), (0, . . . , 0))

= (φ2 ◦ f ◦ φ−1
1 (x1, . . . , xn1), (0, . . . , 0))

= ((x1, . . . , xrk(f), 0, . . . , 0), (0, . . . , 0)),

for each (x1, . . . , xn1) ∈ U1, and from our computation of (Txf
b)T , we

obtain

Φ2 ◦ F ◦ Φ−1
1 (φ1(x), (ξ1, . . . , ξn1)) = (φ2 ◦ f(x), (ξ1, . . . , ξrk(f), 0, . . . , 0)),
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for each (ξ1, . . . , ξn1) ∈ Rn1 . Thus, if

∂

∂x1
, . . . ,

∂

∂xn1
,
∂

∂ζ1
, . . . ,

∂

∂ζn1

,

denotes the local frame induced by (π−1
1 (U1),Φ1), and

∂

∂y1
, . . . ,

∂

∂yn2
,
∂

∂η1
, . . . ,

∂

∂ηn2

,

the local frame induced by (π−1
2 (U2),Φ2), then

T(x,ξ)F

(
∂

∂xi

∣∣∣∣
(x,ξ)

)
=


∂

∂yi

∣∣∣∣
F (x,ξ)

if i ≤ rk(f)

0 if i > rk(f)

,

T(x,ξ)F

(
∂

∂ζi

∣∣∣∣
(x,ξ)

)
=


∂

∂ηi

∣∣∣∣
F (x,ξ)

if i ≤ rk(f)

0 if i > rk(f)

.

Now assume that T12 = Txf × (Txf
b)T , i.e., T12 is as in Proposition 8.6.

We find that for i = 1, . . . , rk(f), we have

θ2 ◦ T(x,ξ)F

(
∂

∂xi

∣∣∣∣
(x,ξ)

)
= θ2

(
∂

∂yi

∣∣∣∣
F (x,ξ)

)
=

(
∂

∂yi

∣∣∣∣
f(x)

, 0

)
,

On the other, hand, we have

T12 ◦ θ1

(
∂

∂xi

∣∣∣∣
(x,ξ)

)
= T12

(
∂

∂xi

∣∣∣∣
x

, 0

)
=

(
∂

∂yi

∣∣∣∣
f(x)

, 0

)
,

so ∂
∂xi

∣∣
(x,ξ)

is mapped to the same element in both cases. If i = rk(f) +

1, . . . , n1, then this element is mapped to (0, 0) ∈ Tf(x)Q2 × Tf(x)Q
∗
2 in

both cases.
Similarly, for i = 1, . . . , rk(f), we have

θ2 ◦ T(x,ξ)F

(
∂

∂ζi

∣∣∣∣
(x,ξ)

)
= θ2

(
∂

∂ηi

∣∣∣∣
F (x,ξ)

)
=
(

0, dyif(x)

)
,
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and

T12 ◦ θ1

(
∂

∂ζi

∣∣∣∣
(x,ξ)

)
= T12

(
0, dxix

)
=
(

0, dyif(x)

)
,

so ∂
∂ζi

∣∣∣
(x,ξ)

is mapped to the same element in both cases. Again,

if i = rk(f) + 1, . . . , n1, then this element is mapped to

(0, 0) ∈ Tf(x)Q2 × Tf(x)Q
∗
2 in both cases. Since

(
∂
∂xi

∣∣
(x,ξ)

)n1

i=1
and(

∂
∂ζi

∣∣∣
(x,ξ)

)n1

i=1

together form a basis of T(x,ξ)(T
∗Q1) and all of the maps in

the above diagram are linear, we infer that the diagram is indeed commut-
ative. Furthermore, θ1 and θ2 are symplectic isomorphisms, and T12 is a
partial isomorphism between symplectic vector spaces, therefore T(x,ξ)F is
a partial isomorphism between symplectic vector spaces. From our compu-
tations, it is also evident that F has constant rank equal to 2 ·rk(f), hence
it is a symplectic morphism, and that F is an immersion or a submersion
if f is an immersion or a submersion, respectively.

It remains to prove functoriality. Consider the following diagram:

T ∗Q1 T ∗Q3

T ∗Q2

TQ2

TQ1 TQ3

F13

F12 F23

Tf12

Tf13

Tf23

Here, the vertical arrows denote the musical isomorphisms. The bottom
triangle commutes since it is obtained by applying the tangent functor to
the commuting triangle
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Q2

Q1 Q3

f12

f13

f23

and the three quadrilaterals that each have two musical isomorphisms as
their sides commute by definition of the maps F12, F23 and F13. It follows
that the top triangle commutes, which is what we wanted to show. �

As in the linear case, the composition of two bilinear morphisms is not ne-
cessarily a bilinear morphism, so the class of smooth manifolds endowed
with smoothly varying bilinear forms and bilinear morphisms between
them does not form a category. It contains subclasses that do form cat-
egories, however.

8.10 Definition.

• We define the category RiemannIm of Riemannian immersions as
follows:

– Its class of objects consists of all smooth Riemannian manifolds;

– The set of morphisms from an object (Q1, β1) to an object
(Q2, β2) consists of all Riemannian immersions between these
manifolds.

• We define the category RiemannSub of Riemannian submersions to
be the category with the same class of objects as RiemannIm, but
whose set of morphisms from an object (Q1, β1) to an object (Q2, β2)
consists of all Riemannian submersions between these manifolds.

For symplectic manifolds, we define the category SympIm of symplectic
immersions and the category of SympSub of symplectic submersions ana-
logously.

8.11 Corollary. The classes RiemannIm, RiemannSub, SympIm, and
SympSub are categories. Furthermore, we have covariant functors

RiemannIm→ SympIm, RiemannSub→ SympSub.

that are defined as follows:
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• A Riemannian manifold (Q, β) is mapped to its cotangent bundle
T ∗Q, endowed with its canonical symplectic form;

• A Riemannian morphism f : (Q1, β1) → (Q2, β2) is mapped to the
map F as defined in Theorem 8.9.

Proof. This follows from Proposition 8.5 and Theorem 8.9. �

8.12 Example. We now discuss a couple of examples of Riemannian
immersions and submersions, and compute the symplectic morphism that
each of them induces.

(1) Let (Q, β0) be a Riemannian manifold. Imagine a massive spherical
object, e.g., a cannonball, of mass m > 0 moving on Q, and divide the ball
into two smaller objects, the first being a smaller ball with the same centre
as the original with mass m1 > 0, and the second being the remaining
spherical shell with mass m2 > 0, so that m = m1+m2. The configuration
space of the entire object is Q, and we endow it with the Riemannian
metric β := m ·β0. The configuration space of the system composed of the
two smaller objects is given by Q×Q that carries the Riemannian metric
β1,2 given by

β1,2,(q1,q2) : (T(q1,q2)(Q×Q))2 ∼= (Tq1Q× Tq2Q)2 → R,
((v1, v2), (w1, w2)) 7→ m1 · β0,q1(v1, w1) +m2 · β0,q2(v2, w2).

This definition of the Riemannian metric is motivated by the kinetic energy
that the objects have; it is given by

TQ→ R, (q, v) 7→ 1

2
βq(v, v),

in the first case, and

T (Q×Q)→ R, ((q1, q2), (v1, v2)) 7→ 1

2
β1,2,(q1,q2)((v1, v2), (v1, v2)),

in the second. Since the two objects that make up the composite system
both have the same centre of mass, namely the centre of the ball, and
since this is also the centre of mass of the undivided object, it is natural
to consider the map

f : Q→ Q×Q, q 7→ (q, q).
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It is easy to see that this is a Riemannian immersion; indeed, it is obvious
that it is an immersion, and for each q ∈ Q and each v, w ∈ TqQ, we have

β1,2,f(q)(Tqf(v), Tqf(w)) = β1,2,(q,q)((v, v), (w,w))

= m1 · β0,q(v, w) +m2 · β0,q(v, w)

= m · β0,q(v, w) = βq(v, w),

hence Tqf is a partial isometry. We compute the associated map F
from Theorem 8.9. Fix q ∈ Q, let [0 : TqQ → TqQ

∗ be the musical
isomorphism associated to β0,q, with inverse ]0, let [ : TqQ → TqQ

∗ be
the musical isomorphism associated to βq with inverse ], and let [1,2 and
]1,2 be the musical isomorphisms associated to β1,2,(q,q). Then for each
(v, w) ∈ (TqQ)2 ∼= T(q,q)(Q×Q), we have

Tqf
∗(v, w) = ] ◦ (Tqf)T ◦ [1,2(v, w) = ] ◦ (Tqf)T (m1 · [0(v),m2 · [0(w))

=
1

m
]0(m1 · [0(v) +m2 · [0(w)) =

m1

m
v +

m2

m
w,

which yields

(Tqf
∗)T : TqQ

∗ → TqQ
∗ × TqQ∗ ∼= T(q,q)(Q×Q)∗, p 7→

(m1

m
p,
m2

m
p
)
,

hence

F (q, p) =
(

(q, q),
(m1

m
p,
m2

m
p
))

,

which is consistent with the Newtonian theory of classical mechanics. Note
that the map F is independent of our choice of the initial metric β0.

(2) Suppose we are in the same setting as in the previous example, with
Q = Rn, the Riemannian metric β0 is the standard one, but the map f is
given by

f : Rn × Rn → Rn, (q1, q2) 7→ m1q1 +m2q2

m
.

This corresponds to the reduction of a system consisting of two objects
moving on some background Rn, one with mass m1 and centre of mass q1,
and the other with mass m2 and centre of mass q2, to a system consisting
of a single object with mass m = m1 + m2, and centre of mass f(q1, q2).
We claim that it is a Riemannian submersion. It is easy to see that f is a



232 CHAPTER 8. THE EMBEDDING MAPS REVISITED

submersion. Now fix (q1, q2) ∈ Rn ×Rn. Identifying tangent spaces of Rn
with Rn itself in the canonical way, we obtain

T(q1,q2)f(v1, v2) =
m1

m
v1 +

m2

m
v2,

for each (v1, v2) ∈ T(q1,q2)(Rn×Rn) ∼= Tq1Rn×Tq2Rn ∼= Rn×Rn. It follows
that

kerT(q1,q2)f = {(m2 · v,−m1 · v) ∈ T(q1,q2)(Rn × Rn) : v ∈ Tf(q1,q2)Rn},

and from this, it is readily seen that

(kerT(q1,q2)f)⊥ = {(v, v) ∈ T(q1,q2)(Rn × Rn) : v ∈ Tf(q1,q2)Rn},

where the orthogonal complement is taken with respect to β1,2,(q1,q2). For

each (v, v), (w,w) ∈ (kerT(q1,q2)f)⊥, we have

βf(q1,q2)(T(q1,q2)f(v, v), T(q1,q2)f(w,w))

= m · β0,f(q1,q2)

(m1

m
v +

m2

m
v,
m1

m
w +

m2

m
w
)

= m · β0,f(q1,q2)(v, w)

= m1 · β0,q1(v, w) +m2 · β0,q2(v, w)

= β1,2,(q1,q2)((v, v), (w,w)),

which shows that T(q1,q2)f is a partial isomorphism, so f is indeed a
Riemannian submersion.

Furthermore, we find that

T(q1,q2)f
∗(v) = ]1,2 ◦ (T(q1,q2)f)T ◦ [(v) = ]1,2 ◦ (T(q1,q2)f)T (m · [0(v))

= ]1,2(m1 · [0(v),m2 · [0(v)) = (v, v),

for each v ∈ Tf(q1,q2)Rn, from which it is readily seen that

(T(q1,q2)f
∗)T (p1, p2) = p1 + p2,

for each (p1, p2) ∈ T(q1,q2)(Rn × Rn)∗ ∼= (Tq1Rn)∗ × (Tq2Rn)∗ ∼= (Rn)∗ ×
(Rn)∗. Thus the induced symplectic morphism F from Theorem 8.9 is
given by

F ((q1, q2), (p1, p2)) =

(
m1q1 +m2q2

m
, p1 + p2

)
,
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i.e. the total momentum is the same in the original and the reduced
system. Also note that the map f defined in this example is a left-inverse
for the map f as it is defined in the previous example.

(3) (Lifting and extending symmetries of the configuration space) Let
(Q, β) be an arbitrary Riemannian manifold, and suppose f : Q→ Q is a
diffeomorphism that is also an isometry. Then f is evidently a Riemannian
morphism, we have Tqf

∗ = (Tqf)−1 for each q ∈ Q, and the induced
symplectic morphism F is given by (q, p) 7→ (f(q), p ◦ (Tqf)−1).

It is in this context interesting to mention that the induction of a sym-
plectic morphism by a Riemannian morphism is equivariant with respect
to group actions. Indeed, suppose we are in the situation of Theorem 8.9,
that for j = 1, 2, there is a group Gj acting by isometries on (Qj , βj), and
we have a group homomorphism φ : G1 → G2. If f is equivariant with
respect to these actions, i.e., f(g · q) = φ(g) · f(q) for each q ∈ Q1 and
each g ∈ G1, then functoriality implies F (g · (q, p)) = φ(g) · F (q, p) for
each (q, p) ∈ T ∗Q1 and each g ∈ G1, i.e., F is equivariant with respect to
the induced actions.

(4) (Restriction to a subsystem) Suppose (Q1, β1) and (Q2, β2) are two
Riemannian manifolds, endow Q1×Q2 with the product metric, and con-
sider the map

f : Q1 ×Q2 → Q1, (q1, q2) 7→ q1.

We can view this as a system consisting of two subsystems, one with
configuration space Q1 and the other with configuration space Q2, and we
disregard the second system. It is straightforward to show that this is a
Riemannian submersion, and that induced symplectic morphism is given
by

F : T ∗(Q1 ×Q2)→ T ∗Q2, ((q1, q2), (p1, p2)) 7→ (q1, p1),

where we have made the identification T(q1,q2)(Q1×Q2)∗ ∼= Tq1Q
∗
1×Tq2Q∗2.

8.13 Remark. We note that it is also possible to do the first, second and
fourth examples in greater generality. For instance, in the first example, we
could have divided the system into n subsystems with masses m1, . . . ,mn.
In that case, the map F becomes

T ∗Q→ T ∗(Qn), (q, p) 7→
(

(q, . . . , q),
(m1

m
p, . . . ,

mn

m
p
))

.
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This result can be obtained either by direct computation, or by repeated
application of the case n = 2 and use of the functoriality as described
in Theorem 8.9. In the latter case, one first divides the system into two
subsystems, one of mass m1, the other of mass m−m1, and subsequently
one divides the second subsystem into two other subsystems with mass
m2 and m−m1 −m2, and so on. One can use an analogous approach in
the second and fourth examples.

In the examples that we are most interested in, namely the ones per-
taining to lattice gauge theory, the approach of repeated application of the
case n = 2 allows us to restrict to the two types of elementary refinements
discussed in subsection 4.3.2. The elementary refinement of addition of
a single edge is a special case of the third example above. Thus we only
need to discuss the elementary refinement corresponding to subdivision of
an edge into two edges.

8.14 Example. Let G be a compact Lie group with Lie algebra g. Fix an
Ad-invariant inner product on g, and extend it to a bi-invariant Rieman-
nian metric β0 on G by left translation. The map corresponding to sub-
division of a directed edge into two directed edges pointing in the same
direction, is

f : G×G→ G, (a1, a2) 7→ a1a2.

It is easy to see that this map is a smooth submersion; we endow both
the domain and the codomain of this map with Riemannian metrics in
a natural way such that this map becomes a Riemannian submersion.
Suppose that the length of the undivided edge is ` > 0, and that the
lengths of the first and second edge into which it is divided are `1 > 0 and
`2 > 0, respectively, so that ` = `1 + `2. We now endow the codomain of
f with the Riemannian metric β := `−1 · β0, and we endow the domain
of f with the metric β1,2 that is the product of the metric `−1

1 · β0 on the
first factor, and the metric `−1

2 · β0 on the second factor. More explicitly,
it is given by

β1,2,(a1,a2) : T(a1,a2)(G×G)× T(a1,a2)(G×G)→ R,
((v1, v2), (w1, w2)) 7→ `−1

1 · β0,a1(v1, w1) + `−1
2 · β0,a2(v2, w2),

where we have made use of the identification T(a1,a2)(G × G) ∼= Ta1G ×
Ta2G. We show that with respect to these metrics, the map f is indeed a
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Riemannian submersion. Fix (a1, a2) ∈ G×G. Then the tangent map of
f at (a1, a2) is given by

T(a1,a2)f : T(a1,a2)(G×G)→ Ta1a2G,

(v1, v2) 7→ Ta1Ra2(v1) + Ta2La1(v2),

hence

kerT(a1,a2)f = {((Ta1Ra2)−1(v),−(Ta2La1)−1(v)) : v ∈ Ta1a2G},

and with our choice of Riemannian metric, it follows that

(kerT(a1,a2)f)⊥ = {(`1(Ta1Ra2)−1(v), `2(Ta2La1)−1(v)) : v ∈ Ta1a2G}.

Note that for each v ∈ Ta1a2G, we have

T(a1,a2)f(`1(Ta1Ra2)−1(v), `2(Ta2La1)−1(v)) = `1v + `2v = `v,

therefore, for each v, w ∈ Ta1a2G, we have

β1,2,(a1,a2)

(
(`1(Ta1Ra2)−1(v), `2(Ta2La1)−1(v)),

(`1(Ta1Ra2)−1(w), `2(Ta2La1)−1(w))
)

= `−1
1 · `

2
1 · β0,a1((Ta1Ra2)−1(v), (Ta1Ra2)−1(w))

+ `−1
2 · `

2
2 · β0,a2((Ta2La1)−1(v), (Ta2La1)−1(w))

= `1 · β0,a1a2(v, w) + `2 · β0,a1a2(v, w)

= ` · β0,a1a2(v, w)

= `−1 · β0,a1a2(`v, `w)

= βa1a2

(
T(a1,a2)f(`1(Ta1Ra2)−1(v), `2(Ta2La1)−1(v)),

T(a1,a2)f(`1(Ta1Ra2)−1(w), `2(Ta2La1)−1(w))
)
,

which shows that T(a1,a2)f is a partial isometry. We conclude that f is a
Riemannian submersion.

From the above computations and part (8) of Proposition 8.4, it is
readily seen that

T(a1,a2)f
∗(v) =

(
`1
`

(Ta1Ra2)−1(v),
`2
`

(Ta2La1)−1(v)

)
,
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hence the induced symplectic submersion F : T ∗(G × G) → T ∗G is given
by

((a1, a2), (ξ1, ξ2)) 7→
(
a1a2,

`1
`
ξ1 ◦ (Ta1Ra2)−1 +

`2
`
ξ2 ◦ (Ta2La1)−1

)
,

where we have made the identification T ∗(a1,a2)(G×G) ∼= T ∗a1
G× T ∗a2

G.

Note that this formula also makes sense from a physical point of view.
Indeed, it was argued in section 2.5 that ξ1 and ξ2 can be thought of
as (proportional to) the average electric field on the path corresponding
to the first and second edge, respectively. Thus, in order to obtain the
average electric field on the concatenation of these paths, one should take
the weighted average of the averages of the electric fields on the individual
paths, with the weights given by the lengths of the two paths.

Furthermore, if one takes the Laplacians corresponding to the above
Riemannian metrics, then one obtains the free Hamiltonians in part (1)
of Proposition 4.28.

The objects of the category Refine that we constructed earlier are oriented
graphs. The above example motivates us to introduce weights on the
graphs, so that there is a well-defined notion of the length of an edge, and
by extension, the length of a path.

8.15 Definition. We define the category wtRefine as follows:

• Its objects are pairs (Λ, `), where Λ = (Λ0,Λ1) is an object in Refine,
i.e., an oriented graph whose set of vertices is given by Λ0, and
whose set of oriented edges is given by Λ1. Moreover, ` is a function
Λ1 → (0,∞);

• A morphism from an object (Λ1, `1) to an object (Λ2, `2) is a morph-
ism (Λ1,Λ2, ι) in Refine, i.e., a refinement of graphs, that in addition
has the property that for each e ∈ Λ1

1, we have

`1(e) =
m∑
i=1

`2(ei),

where ι(1)(e) = (e1, . . . , em) is the corresponding path in Λ2.
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We can now summarise Remark 8.13 and Example 8.14 in this language:

8.16 Proposition. Let G be a compact Lie group, and let β0 be a bi-
invariant Riemannian metric on G. Then the following assignments define
a contravariant functor wtRefine→ RiemannSub:

• An object (Λ, `) in wtRefine is mapped to the smooth manifold GΛ1

endowed with the Riemannian metric β defined by

β(ae)e∈Λ1
((ve)e∈Λ1 , (we)e∈Λ1) :=

∑
e∈Λ1

`(e)−1β0,ae(ve, we),

for each (ae)e∈Λ1 ∈ GΛ1
and each

(ve)e∈Λ1 , (we)e∈Λ1 ∈ T(ae)e∈Λ1
GΛ1 ∼=

∏
e∈Λ1

TaeG;

• A morphism (Λ1,Λ2, ι) from an object (Λ1, `1) to an object (Λ2, `2)
is mapped to the Riemannian submersion

GΛ1
2 → GΛ1

1 , (ae′)e′∈Λ1
2
7→ (ae1 . . . aem)e∈Λ1

1
, (ι(1)(e) = (e1, . . . , em)).

Composing this functor with the functor RiemannSub → SympSub yields
the following contravariant functor wtRefine→ SympSub:

• An object (Λ, `) in wtRefine is mapped to the smooth manifold T ∗GΛ1

endowed with the canonical symplectic form;

• A morphism (Λ1,Λ2, ι) from an object (Λ1, `1) to an object (Λ2, `2)
is mapped to the symplectic submersion

T ∗GΛ1
2 → T ∗GΛ1

1 ,

((ae′)e′∈Λ1
2
, (ξe)e′∈Λ1

2
) 7→

(ae1 . . . aem)e∈Λ1
1
,

(
m∑
i=1

`2(ei)

`1(e)
ξ̃ei

)
e∈Λ1

1

 ,

where e1, . . . , em are related to e as above, and

ξ̃ei := ξei ◦
(
Taei

(
Lae1 ...aei−1

◦Raei+1 ...aem

))−1
.



238 CHAPTER 8. THE EMBEDDING MAPS REVISITED

This functor is independent of the particular choice of β0.

8.17 Remark. The four categories containing manifolds mentioned in
the proposition above can be modified to include group actions of the
gauge groups on the manifolds as part of the data encoding an object,
and morphisms can be required to be equivariant with respect to these
actions, as in part (2) of Remark 4.9. It follows from our discussion in
part (3) of Example 8.12 that the above proposition also has an equivariant
version.

8.2.3 The classical category

Having defined suitable notions of morphisms between configuration
spaces and phase spaces of systems, and having established that certain
subclasses of these spaces, together with these notions of morphisms form
categories, we now want to do something similar for the observable algeb-
ras associated to such systems. With the notion of a quantisation in mind,
it makes sense to define a category as follows:

8.18 Definition. We define the classical category Classical as follows:

• Its objects consist of pairs (A,A), where A is a commutative unital
C∗-algebra, and A is a dense ∗-subalgebra of A that is endowed with
a Poisson bracket;

• The set of morphisms from an object (A,A) to an object (B,B) is
the set of ∗-homomorphisms φ : A → B with the property that φ
restricts to a Poisson map A → B.

Composition of morphisms is simply given by composition of maps, and
the identity element is the identity map on the C∗-algebra.

We leave it to the reader to define the equivariant version of this category.
In typical examples, the objects (A,A) in the classical category arise as

function spaces on symplectic manifolds. It should therefore not come as a
surprise that a typical morphism is a pullback of a map between symplectic
manifolds to function spaces. In the same way in which Definition 8.7 is a
generalisation of that by Lanéry and Thiemann, the following proposition
is an extension of [72, Proposition 2.2], and motivates the notions of partial
isomorphism and symplectic morphism.
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8.19 Proposition. Let (M1, ω1) and (M2, ω2) be two symplectic mani-
folds, let F : M1 →M2 be a symplectic morphism, and let

AF := {f ∈ C∞(M2) | ∀m ∈M1 : Xf ◦ F (m) ∈ Im(TmF )},

where Xf = {f, ·}M2 denotes the Hamiltonian vector field of f . Then AF
is a Poisson subalgebra of C∞(M2), and the map F ∗ : AF → C∞(M1) is
a Poisson map, i.e.,

{F ∗(f), F ∗(g)}M1 = F ∗({f, g}M2),

for each f, g ∈ AF .

8.20 Remark. In the particular case of Lanery and Thiemann’s version of
this proposition where F is a symplectic submersion, which is of primary
interest to us as well, we have AF = C∞(M2), which makes this the easiest
case to work with.

Proof. It is clear that AF is a subspace of C∞(M2); closure with respect to
multiplication follows from the fact that the Poisson bracket is a derivation
in both of its arguments. To see that AF is closed under the Poisson
bracket, first note that X{f,g}M2

= [Xf , Xg] for each f, g ∈ C∞(M2) since
the Poisson bracket is a Lie bracket. Since F has constant rank, for any
m ∈ M1, one can fix charts (U1, φ1) on M1 and (U2, φ2) on M2 such that
m ∈ U1, F (U1) ⊆ U2, and the map φ2 ◦ F ◦ φ−1

1 is of the form

Rn1 ⊇ φ1(U1)→ φ2(U2) ⊆ Rn2 ,

(x1, . . . , xn1) 7→ (x1, . . . , xrk(F ), 0, . . . , 0)

where nj is the dimension of Mj for j = 1, 2. A computation in local
coordinates will now show that [Xf , Xg]◦F (m) ∈ Im(TmF ) for each f, g ∈
AF and eachm ∈M1, hence {f, g}M2 ∈ AF . ThusAF is a Poisson algebra.

It remains to show that F ∗ is a Poisson map. Let m ∈ M1, let
[1 : TmM1 → T ∗mM1 and [2 : TF (m)M2 → T ∗F (m)M2 be the musical iso-
morphisms associated to ω1 and ω2, with inverses ]1 and ]2, respectively.
Since F is a morphism of symplectic manifolds, we can apply part (7) of
Proposition 8.4 to find that

TmF ◦ ]1 ◦ TmF T ◦ [2|Im(TmF ) = IdIm(TmF ).
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Moreover, for each f ∈ AF , we have ]2(dfF (m)) = Xf ◦ F (m) ∈ Im(TmF ),
hence

TmF (XF ∗(f)(m)) = TmF ◦ ]1(d(F ∗(f))m) = TmF ◦ ]1(F ∗(df)m)

= TmF ◦ ]1 ◦ TmF T ◦ [2 ◦ ]2(dfF (m)) = Xf ◦ F (m).

It follows that for each f, g ∈ AF , we have

{F ∗(f), F ∗(g)}M1(m)

= ω1,m(XF ∗(f)(m), XF ∗(g)(m)) = d(F ∗(g))m(XF ∗(f)(m))

= F ∗(dg)m(XF ∗(f)(m)) = dgF (m)(TmF (XF ∗(f)(m)))

= ωF (m)(Xf ◦ F (m), Xg ◦ F (m)) = {f, g}M2 ◦ F (m),

so {F ∗(f), F ∗(g)}M1 = F ∗({f, g}M2), since m ∈ M1 was arbitrary. We
conclude that F ∗ is a Poisson map. �

The remaining part of this section is devoted to the construction of a
functor wtRefine→ Classical relevant to lattice gauge theory builing on the
work in Example 8.14 and the subsequent text in the previous subsection.
We restrict to the case in which the structure group G is the torus Tn, and
show that for both types of elementary refinements, we obtain a natural
algebra morphism between the corresponding resolvent algebras.

8.21 Proposition. Let n ∈ N, let `1 and `2 be positive real numbers, let
` := `1 +`2, and let β0 be a bi-invariant Riemannian metric on Tn. Define
β, β1 and β1,2 as in Example 8.14. Furthermore, let A0,c := CR(T ∗Tn)
be the resolvent algebra associated to T ∗Tn ∼= Tn×Rn with dense Poisson
subalgebra A0,c := SR(T ∗Tn), and let A0,f := CR(T ∗(Tn × Tn)) be the
resolvent algebra associated to T ∗(Tn×Tn) ∼= T2n×R2n with dense Poisson
subalgebra A0,f := SR(T ∗(Tn × Tn)).

(1) Let F be the symplectic morphism induced by the Riemannian
morphism

f : (G×G, β1,2)→ (G, β1), (a1, a2) 7→ a1.

Then the pullback F ∗ : C∞(T ∗Tn) → C∞(T ∗(Tn × Tn)) induces a
Poisson map A0,c → A0,f that maps the generator ek ⊗ hU,ξ,g to the
generator e(k,0) ⊗ hU×{0},(ξ,0),g⊗1{0} for each k ∈ Zn, each subspace

U ⊆ Rn, each ξ ∈ U⊥ and each g ∈ S(U).
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(2) Let F be the symplectic morphism induced by the Riemannian
morphism

f : (G×G, β1,2)→ (G, β), (a1, a2) 7→ a1a2.

Then the pullback F ∗ : C∞(T ∗Tn) → C∞(T ∗(Tn × Tn)) induces a
Poisson map A0,c → A0,f that maps the generator ek ⊗ hU,ξ,g to the
generator e(k,k) ⊗ hŨ ,ξ̃,g̃, where

Ũ := {(`1v, `2v) ∈ Rn × Rn : v ∈ U},

ξ̃ :=

(
`1
`
ξ,
`2
`
ξ

)
,

g̃ : Ũ → C, (v, w) 7→ g

(
`21 + `22
`2

(v + w)

)
,

for each k ∈ Zn, each subspace U ⊆ Rn, each ξ ∈ U⊥ and each
g ∈ S(U).

In both cases, the Poisson map has a unique extension to an injective
∗-homomorphism A0,c → A0,f .

Proof.

(1) The assertion that the pullbacks induce Poisson maps between
the spaces of smooth functions was already proved in Proposition 8.19.
Also, the assertion that the map A0,c → A0,f extends uniquely to a ∗-
homomorphism follows from the fact that the pullback is obviously a ∗-
homomorphism that is continuous with respect to the sup-norms, and part
(2) of Proposition 5.9. Injectivity of the ∗-homomorphism is a consequence
of surjectivity of the symplectic morphism. If we show that F ∗ maps any
generator of A0,c to a generator of A0,f , namely the one described in the
statement of the theorem, then it follows that F ∗ maps A0,c into A0,f .
Thus it suffices to show that

F ∗(ek ⊗ hU,ξ,g) = e(k,0) ⊗ hU×{0},(ξ,0),g⊗1{0} ;

note that (ξ, 0) ∈ U⊥×{0} ⊆ (U ×{0})⊥, and that g⊗1{0} ∈ S(U ×{0}),
so the right-hand side is indeed a generator of A0,f .
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The formula for the induced symplectic morphism can be found in part
(3) of Example 8.12. Let k ∈ Zn, let U ⊆ Rn be a subspace, let ξ ∈ U⊥
and let g ∈ S(U). We then find that

F ∗(ek ⊗ hU,ξ,g)((a1, a2), (p1, p2))

= ek(a1)hU,ξ,g(p1) = e2πik·a1eiξ·p1g ◦ rU (p1)

= e2πi(k,0)·(a1,a2)ei(ξ,0)·(p1,p2)(g ⊗ 1{0}) ◦ rU×{0}(p1, p2)

= (e(k,0) ⊗ hU×{0},(ξ,0),g⊗1{0})((a1, a2), (p1, p2)),

for each ((a1, a2), (p1, p2)) ∈ T2n×R2n, which is what we wanted to show.

(2) For the same reasons as in (1), it suffices to show that

F ∗(ek ⊗ hU,ξ,g) = e(k,k) ⊗ hŨ ,ξ̃,g̃.

The formula for the induced symplectic morphism can be found in Ex-
ample 8.14; with respect to the chosen trivialisations, it reads

((a1, a2), (p1, p2)) 7→
(
a1 + a2,

`1
`
p1 +

`2
`
p2

)
,

where in the first component on the right-hand side, the symbol + denotes
the group multiplication in Tn = Rn/Zn. As in part (1), let k ∈ Zn, let
U ⊆ Rn be a subspace, let ξ ∈ U⊥ and let g ∈ S(U). Define Ũ as above.
It can be checked that the orthogonal projection onto Ũ with respect to
the standard inner product is given by the map

rŨ : Rn × Rn → Ũ ,

(p1, p2) 7→ (`21 + `22)−1 · (`1(`1rU (p1) + `2rU (p2)),

`2(`1rU (p1) + `2rU (p2))) ,

Define the map

S : Ũ → U, (v, w) 7→ `21 + `22
`2

(v + w).

Then a straightforward computation shows that

S ◦ rŨ (p1, p2) = rU

(
`1
`
p1 +

`2
`
p2

)
,



8.2. THE CLASSICAL FUNCTOR 243

for each p1, p2 ∈ Rn, hence

g̃ ◦ rŨ (p1, p2) = g ◦ S ◦ rŨ (p1, p2) = g ◦ rU
(
`1
`
p1 +

`2
`
p2

)
.

We now apply this to find that

F ∗(ek ⊗ hU,ξ,g)((a1, a2), (p1, p2))

= ek(a1 + a2)hU,ξ,g

(
`1
`
p1 +

`2
`
p2

)
= e2πik·(a1+a2)e

iξ·
(
`1
`
p1+

`2
`
p2

)
g ◦ rU

(
`1
`
p1 +

`2
`
p2

)
= e2πi(k,k)·(a1,a2)e

i
(
`1
`
ξ,
`2
`
ξ
)
·(p1,p2)

g̃ ◦ rŨ (p1, p2)

= (e(k,k) ⊗ hŨ ,ξ̃,g̃)((a1, a2), (p1, p2)),

for each ((a1, a2), (p1, p2)) ∈ T2n × R2n, as desired. Note that(
`1
`
ξ,
`2
`
ξ

)
∈ Ũ⊥, g̃ ∈ S(Ũ).

�

Similarly to how we obtained Proposition 8.16 from Example 8.14, we now
get the following proposition from Proposition 8.21.

8.22 Proposition. The following assignment defines a covariant functor
wtRefine→ Classical:

• An object (Λ, `) is mapped to the pair

(A0,Λ,A0,Λ) =
(
CR(T ∗(Tn)Λ1

),SR(T ∗(Tn)Λ1
)
)

;

• A morphism (Λ1,Λ2, ι) from an object (Λ1, `1) to an object (Λ2, `2) is
mapped to the pullback of the map F to the spaces of bounded func-
tions, restricted to A0,Λ2, where F denotes the image of (Λ1,Λ2, ι)
under the functor wtRefine→ SympSub from Proposition 8.16.
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8.23 Remark. As with Proposition 8.16, there is an equivariant version
of this functor that maps an object in wtRefine to Classical endowed with
an action of the gauge group (Tn)Λ0

. Indeed, it essentially follows from
the first assertion in part (4) of Proposition 7.4 that gauge transformations
preserve both A0,Λ and A0,Λ.

Now consider the subalgebras Ared
0,Λ ⊆ A0,Λ and Ared

0,Λ ⊆ A0,Λ that con-
sist of gauge invariant elements of the field algebras. It follows from Pro-
position 8.16 that the image of a refinement (Λ1,Λ2, ι) under the functor
wtRefine→ SympSub restricts to maps

Ared
0,Λ1

↪→ Ared
0,Λ2

, Ared
0,Λ1

↪→ Ared
0,Λ2

,

between the gauge invariant subalgebras.

From the above considerations, we obtain the following result:

8.24 Proposition. The following assignment defines a covariant functor
wtRefine→ Classical:

• An object (Λ, `) is mapped to the pair

(Ared
0,Λ,Ared

0,Λ) =

(
CR(T ∗(Tn)Λ1

)(Tn)Λ0

,SR(T ∗(Tn)Λ1
)(Tn)Λ0

)
,

where the superscript (Tn)Λ0
indicates that we consider the gauge

invariant elements of the algebras.

• A morphism (Λ1,Λ2, ι) from an object (Λ1, `1) to an object (Λ2, `2) is
mapped to the pullback of the map F to the spaces of bounded func-
tions, restricted to Ared

0,Λ2
, where F denotes the image of (Λ1,Λ2, ι)

under the functor wtRefine→ SympSub from Proposition 8.16.

8.25 Definition. We call the functor wtRefine→ Classical from Proposi-
tion 8.22 the classical functor, and it will be denoted by FC . We call the
functor from Proposition 8.22 between the above categories the reduced
classical functor, and, in keeping with the notation in chapter 4, it will be
denoted by Fred

C .
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8.26 Remark. At this point, the attentive reader may object to the use of
the word ‘reduced’ in this context, specifically to its use with regard to the
algebra Ared

0,Λ2
, since it does not yet correspond to the Marsden–Weinstein

quotient of the phase space T ∗(Tn)Λ1
by the action of the gauge group

GΛ0
. For the moment, we will ignore this issue and continue to work with

the reduced algebra as defined above in the next section, leaving it for the
discussion in section 8.4 instead.

8.3 The quantum functor

Having found a functor from wtRefine to a suitable category of classical
observables, we now investigate whether there exists a similar functor to
a category of quantum mechanical observables.

8.27 Definition. We define the quantum category Quantum as follows:

• Its objects are unital C∗-algebras;

• The set of morphisms from an object A1 to an object A2 is the set
of unital ∗-homomorphisms A1 → A2.

Our desired covariant functor FQ : wtRefine→ Quantum should send an ob-

ject (Λ, `) to the quantum mechanical resolvent algebra A~,Λ of T ∗(Tn)Λ1
.

Furthermore, suppose that there exists a subset I ⊆ R\{0} that has 0
as an accumulation point and such that for each object (Λ, `) in wtsRefine,
we are given a family of quantisation maps (Q~,(Λ,`))~∈I from A0,Λ into
A~,Λ = FQ(Λ, `), where (A0,Λ,A0,Λ) = FC(Λ, `). Then we require the
family

(8.1) ((Q~,(Λ,`))~∈I)(Λ,`)∈Obj(wtRefine),

to be an approximate natural transformation from the functor
FC : wtRefine → Classical to the functor FQ : wtRefine → Quantum, by
which we mean the following:

(1) For each object (Λ, `) in wtRefine, the family (Q~,(Λ,`))~∈I is a strict
quantisation of A0,Λ, except for the requirement that the map ~ →
‖Q~,(Λ,`)(f)‖ is continuous at ~ > 0;
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(2) For each morphism (Λ1,Λ2, `) from an object (Λ1, `1) to an object
(Λ2, `2) in wtRefine, the following diagram

A0,Λ2 A~,Λ2

A0,Λ1 A~,Λ1

Q~,(Λ2,`2)

FC(Λ1,Λ2, ι)
Q~,(Λ1,`1)

FQ(Λ1,Λ2, ι)

becomes commutative in the limit ~ → 0, by which we mean that
for each f ∈ A0,Λ1 , we have

lim
~→0

∥∥FQ(Λ1,Λ2, ι) ◦ Q~,(Λ1,`1)(f)−Q~,FC(Λ2,`2) ◦ FC(Λ1,Λ2, ι)(f)
∥∥

= 0.

Of course, we will take Q~ = QW~ , the Weyl quantisation map, which has
already been shown to satisfy the first requirement in Theorem 7.8. We
use the second requirement to look for a suitable definition of the functor
FQ on morphisms in Quantum. We restrict our attention to elementary
refinements in the same way as in Proposition 8.21.

(1) We first consider the case of addition of an edge to a graph, i.e., part
(1) of the aforementioned proposition. Using this proposition and part (3)
of Proposition 7.1, we obtain

QW~,(Λ2,`2) ◦ FC(Λ1,Λ2, ι)(ek ⊗ hU,ξ,g)ψ(a1,a2)

= QW~,(Λ2,`2)(e(k,0) ⊗ hU×{0},(ξ,0),g⊗1{0})ψ(a1,a2)

= hU×{0},(ξ,0),g⊗1{0}(π~((k, 0) + 2(a1, a2)))ψ(k,0)+(a1,a2)

= hU,ξ,g(π~(k + 2a1))ψ(k+a1,a2),

for each (a1, a2) ∈ Zn×Zn, where ek⊗hU,ξ,g is a generator of the commut-
ative resolvent algebra. Comparing this to part (3) of Proposition 7.1, and
noting that under the isomorphism L2(Tn × Tn) ∼= L2(Tn) ⊗ L2(Tn), we
have ψk+a1,a2 = ψk+a1⊗ψa2 , we find that a natural choice for FQ(Λ1,Λ2, ι)
is the map

A~,Λ1 → A~,Λ2 , a 7→ a⊗ IdL2(Tn).
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Note that A~,Λ2 ⊆ B(L2(Tn × Tn)), and that B(L2(Tn × Tn)) ∼=
B(L2(Tn)) ⊗̂ B(L2(Tn)), where the tensor product denotes the tensor
product of von Neumann algebras. The above map is a ∗-homomorphism,
and we see that the above diagram is commutative for each ~ 6= 0. More
generally, suppose that (Λ1, `1) and (Λ2, `2) are objects in wtRefine for
which there exists a refinement (Λ1,Λ2, ι) that can be written as a com-
position of elementary refinements, each of which corresponds to addition
of an edge. Then the map

FQ(Λ1,Λ2, ι) : A~,Λ1 → A~,Λ2 , a 7→ a⊗ Id
L2

(
(Tn)Λ1

2\ι
(1)(Λ1

1)
),

defines an injective ∗-homomorphism such that the diagram in part (2) of
our definition of an approximate natural transformation is commutative.
As already mentioned in section 5.1, this is consistent with the literature,
which says that in the situation of part (4) of Example 8.12, the induced
map at the level of observable algebras is of the form

a 7→ a⊗ IdH2 ,

where for j = 1, 2, Hj is the Hilbert space associated to the phase space
T ∗Qj , and a is some operator on H1. We refer to [48, section 2.3] for
the version of this statement in lattice gauge theory, and the first three
paragraphs of [34, section 2] for its formulation in a more general setting.

(2) Next, we turn to the case of subdivision of an edge to a graph, i.e.,
part (2) of Proposition 8.21. In the same way as in the previous case, we
find that

QW~,(Λ2,`2) ◦ FC(Λ1,Λ2, ι)(ek ⊗ hU,ξ,g)ψ(a1,a2)

= QW~,(Λ2,`2)(e(k,k) ⊗ hŨ ,ξ̃,g̃)ψ(a1,a2)

= hŨ ,ξ̃,g̃(π~((k, k) + 2(a1, a2)))ψ(k,k)+(a1,a2)

= hU,ξ,g

(
π~
(
k + 2

(
`1
`
a1 +

`2
`
a2

)))
ψ(k+a1,k+a2).

We now run into the following problem. In order to define a ∗-
homomorphism FQ(Λ1,Λ2, ι) : A~,Λ1 → A~,Λ2 , we want to use the above
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expression to define the image of the operator QW~,(Λ1,`1)(ek ⊗ hU,ξ,g) under
the ∗-homomorphism. Thus we need to somehow extract the scalar

hU,ξ,g

(
π~
(
k + 2

(
`1
`
a1 +

`2
`
a2

)))
,

from this operator without explicit reference to k, U , ξ or g, since a priori,
we can only determine the matrix elements

〈ψk+a,QW~,(Λ1,`1)(ek ⊗ hU,ξ,g)ψa〉 = hU,ξ,g(π~(k + 2a)),

i.e., we only have access to the values of the function hU,ξ,g for p ∈ π~(k+
2Zn). However, in order to obtain the scalar, we need to know the values
of this function on the set{

π~
(
k + 2

(
`1
`
a1 +

`2
`
a2

))
: a1, a2 ∈ Zn

}
,

of which π~(k + 2Zn) is in general a proper subset.

Let us discuss some possible naive ways in which we may define linear
maps

A~,Λ1 → A~,Λ2 ,

in the situation of subdivision of an edge, and argue why they are unsat-
isfactory.

• We could drop the requirement ` = `1 + `2 and try to do the above
computations with `1 = `2 = ` = 1 instead: in this case, we have
sufficient information to define a map A~,Λ1 → A~,Λ2 . However, if
we modify the corresponding maps on the classical side as well, then
we note that FC(Λ1,Λ2, ι) is no longer compatible with the Poisson
structures on the classical Poisson algebras;

• We could try to use linear interpolation of known matrix elements
to obtain unknown ones. Let α be the corresponding tentative map
between the quantum resolvent algebras, which we define using mat-
rix elements by requiring that

〈ψ(k+a1,k+a2), α(b)ψ(a1,a2)〉 =
`1
`
〈ψk+a1 , bψa1〉+

`2
`
〈ψk+a2 , bψa2〉,
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for each k, a1, a2 ∈ Zn and each b ∈ A~,Λ1 , and that all other matrix
elements vanish. We now ask whether α is a ∗-homomorphism. The
answer is no, since α is not compatible with multiplication. Indeed,
take b1 = |ψ0〉〈ψ0| and b2 = |ψk〉〈ψ0|, where k ∈ Zn\{0}. Then on
the one hand, we have b1b2 = 0, hence α(b1b2) = 0, while on the
other hand, we have

α(b1) =
`1
`
|ψ0〉〈ψ0| ⊗ IdL2(Tn) +

`2
`

IdL2(Tn) ⊗ |ψ0〉〈ψ0|

α(b2) =
`1
`
|ψk〉〈ψ0| ⊗ Sk +

`2
`
Sk ⊗ |ψk〉〈ψ0|,

where the notation is as in the proof of Proposition 7.4, and we have
made the identification L2(Tn × Tn) ∼= L2(Tn) ⊗̂ L2(Tn), so that
after some algebra, we find

α(b1)α(b2)

=
`1`2
`2

(|ψk〉〈ψ0| ⊗ |ψ0〉〈ψ−k|+ |ψ0〉〈ψ−k| ⊗ |ψk〉〈ψ0|) 6= 0.

These are strong indications that the problem in part (2) above is not
something that can be readily solved by a good choice of parameters
or maps, but is inherent to the Hilbert spaces on which we defined our
quantum resolvent algebras. This may not come as a complete surprise,
since in the context of QFT, physicists work with Fock spaces of one-
particle spaces rather than with the one-particle Hilbert spaces themselves
like we do here, for reasons that can be traced back to the nature of the
solutions of the Dirac equation. It is nonetheless remarkable that an indic-
ation that those one-particle Hilbert spaces do not allow for a satisfactory
formulation can already be found in the present nonrelativistic context
in which there is not yet any mention of an infinite number of degrees of
freedom.

It appears that the idea that QW~ is an approximate natural trans-
formation works in the case of addition of an edge, but fails in the case of
subdivision of an edge, which prevents us from treating both cases on equal
footing at this level. We can make the following observations, however,
which show that the idea does work on a different level.
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(1) If a1 = a2 = a, then `1
` a1 + `2

` a2 = a, hence

〈ψ(k+a,k+a),QW~,(Λ2,`2) ◦ FC(Λ1,Λ2, ι)(ek ⊗ hU,ξ,g)ψ(a,a)〉

= 〈ψk+a,QW~,(Λ1,`1)(ek ⊗ hU,ξ,g)ψa〉,

for each a ∈ Zn, which shows that the pullback of the compression of
QW~,(Λ2,`2)◦FC(Λ1,Λ2, ι)(ek⊗hU,ξ,g) to the closed linear subspace generated
by

(8.2) {ψ(a,a) ∈ L2(Tn × Tn) : a ∈ Zn}

under the isometry

(8.3) L2(Tn)→ L2(Tn × Tn), ψa 7→ ψ(a,a),

is equal to QW~,FC(Λ1,`1)(ek ⊗ hU,ξ,g). This isometry between Hilbert spaces

is precisely the pullback of the map Tn × Tn → Tn that implements the
refinement at the level of configuration spaces. Thus, informally speaking,
if there had been a good map FQ(Λ1,Λ2, ι) : A0,Λ1 → A0,Λ2 , conjugation
with the adjoint of the above isometry would have been a natural left
inverse for it.

(2) In the setting of lattice gauge theory, the objects

Fc(Λ, `) = (A0,Λ,A0,Λ) = (CR(T ∗(Tn)Λ1
),SR(T ∗(Tn)Λ1

)),

really correspond to the field algebras; we have not yet taken into account
the gauge freedom. We will therefore now consider the pair

Fred
c (Λ, `) =

(
Ared

0,Λ,Ared
0,Λ

)
=
(
CR(T ∗(Tn)Λ1

)G ,SR(T ∗(Tn)Λ1
)G
)
,

where we have used the same notation for the gauge group G := (Tn)Λ0
as

in chapter 4. In Proposition 8.24, we obtained a map Fred
C (Λ1,Λ2, ι) that

maps the above algebras for Λ = Λ1 into those for Λ = Λ2. Furthermore,
it is a consequence of part (4) of Proposition 7.4 that for each object (Λ, `)
in wtRefine, the quantisation map QW~,(Λ,`) is equivariant with respect to
the action of the gauge groups on the algebras that make up its domain
and codomain. By density of the image of QW~,(Λ,`) in A~,Λ, if FQ(Λ, `) can
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be defined, then it maps the image of (Λ1,Λ2, ι) to a map that restricts
to a map

AG1
~,Λ1
→ AG2

~,Λ2
,

between the gauge invariant subalgebras of the quantum resolvent algeb-

ras. (Here, Gj := (Tn)Λ0
j for j = 1, 2.) Finally, as discussed in chapter 3,

the subspaces

L2((Tn)Λ1
j )Gj ⊆ L2((Tn)Λ1

j ), j = 1, 2,

of gauge invariant elements of the Hilbert spaces associated to the quantum
systems, are invariant subspaces for the gauge invariant elements of the
field algebras A~,Λj , j = 1, 2.

We can connect these two observations with the help of the following
lemma.

8.28 Lemma. Consider the unitary group representation

Tn → U(L2(Tn × Tn)), g 7→ (ψ 7→ ((a1, a2) 7→ ψ(a1g, g
−1a2))),

of Tn on L2(Tn×Tn). Let V := L2(Tn×Tn)T
n

be the subspace of invariant
elements, and let V ′ be the closed linear span of the set in equation (8.2).
Then V = V ′.

Proof. It is readily seen that V ′ ⊆ V . For the reverse inclusion, we show
that for each k1 and k2 ∈ Zn such that k1 6= k2, we have ψ(k1,k2) ∈ V ⊥.
Indeed, let ψ ∈ V , and fix k1 and k2 as above. Then

〈ψ(k1,k2), ψ〉 =

∫
Tn×Tn

e−2πi(k1·a1+k2·a2)ψ(a1, a2) d(a1, a2)

=

∫
Tn×Tn

e−2πi(k1·a1+k2·(−a1+a2))ψ(a1,−a1 + a2) d(a1, a2)

=

∫
Tn

∫
Tn
e−2πi((k1−k2)·a1+k2·a2)ψ(0 + Zn, a2) da1 da2

=

∫
Tn

0 da2 = 0,

as desired. �
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Now suppose that (Λ1,Λ2, ι) is an elementary refinement that subdivides
a single edge e ∈ Λ1

1 into two edges e1 and e2 in Λ1
2, i.e., ι(1)(e) = (e1, e2).

Furthermore, let

Hj := L2
(

(Tn)Λ1
j

)
.

Then we have canonical isomorphisms

H1
∼= L2(Tn) ⊗̂

⊗̂
e′∈Λ1

1\{e}

L2(Tn),

and

H2
∼= L2(Tn × Tn) ⊗̂

⊗̂
e′∈ι(1)(Λ1

1\{e})

L2(Tn).

In these two expressions, the Hilbert spaces L2(T) and L2(Tn × Tn) are
thought of as the factors of the Hilbert spaces H1 and H2 that are associ-
ated to e and (e1, e2), respectively, with the action of the gauge groups Gj
defined accordingly. In both cases, we use these isomorphisms to transfer
the actions of the gauge group Gj on Hj to an action of the same group
on the right-hand side. Now let y0 ∈ Λ0

2 be the vertex connecting e1 and
e2. Then the map

G1 × Tn → G2,

((gx)x∈Λ0
1
, g′) 7→(

y 7→
{
g′ if y = y0

gx if there exists x ∈ Λ0
1 such that y = ι(0)(x)

)
,

is a group isomorphism, and the inclusion of G1
∼= G1 × {1} ↪→ G2 is a

group homomorphism with respect to which the inclusion H1 ↪→ H2 is
equivariant in the sense of part (2) of Remark 4.9. Using these isomorph-
isms of Hilbert spaces, as well as the lemma above and the equivariance of
the group action of G1, we find that the following spaces are all canonically
isomorphic:

HG1
1
∼=

L2(Tn) ⊗̂
⊗̂

e′∈Λ1
1\{e}

L2(Tn)

G1
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∼=

V ′ ⊗̂ ⊗̂
e′∈ι(1)(Λ1

1\{e})

L2(Tn)

G1

=

V ⊗̂ ⊗̂
e′∈ι(1)(Λ1

1\{e})

L2(Tn)

G1

∼= HG2
2 .

Here, V and V ′ are the spaces from Lemma 8.28, and the isomorphism
between L2(T) and V is the one found in equation (8.3).

For j = 1, 2, let pj : Hj → H
Gj
j be the orthogonal projection onto HGjj .

Moreover, let

Ared
~,Λj :=

{
pjap

∗
j : a ∈ AGj~,Λj ⊆ B(Hj)

}
,

be the subalgebra of the compressions of gauge invariant elements of A~,Λj
to the gauge invariant subspace of Hj ; this is motivated by the second
observation. Then according to the first observation, we have a well-
defined embedding map

Ared
~,Λ1

↪→ Ared
~,Λ2

;

it is even a ∗-isomorphism.

8.29 Remark. The reader should take note of the fact that in the above
isomorphism, any reference to the weights on the graphs Λ1 and Λ2, i.e.,
the lengths of the corresponding paths in space, is lost, despite their im-
portance in the construction of the classical functor FC !

It is easy to see that in the case in which the refinement (Λ1,Λ2, ι) corres-
ponds to addition of a single new edge instead of subdivision of an edge
in Λ1, then the map

FQ(Λ1,Λ2, ι) : A~,Λ1 ↪→ A~,Λ2 ,

induces a map between the gauge invariant parts of these algebras.
We thus arrive at the following theorem:

8.30 Theorem. The following assignment defines a covariant functor
Fred
Q : wtRefine→ Quantum:
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• An object (Λ, `) is mapped to the algebra Ared
~,Λ;

• A morphism (Λ1,Λ2, ι) from an object (Λ1, `1) to an object (Λ2, `2)
is mapped to the injective ∗-homomorphism

Ared
~,Λ1

↪→ Ared
~,Λ2

,

that is obtained by writing (Λ1,Λ2, ι) as a composition of elementary
refinements as in chapter 4, and composing their associated injective
∗-homomorphisms described above.

Furthermore, consider the map that assigns to each (Λ, `) the map

QW,red
~ : Ared

0,Λ → Ared
~,Λ2

, f 7→ pΛQW~ (f)p∗Λ,

where pΛ denotes the orthogonal projection of HΛ onto the subspace of
gauge invariant vectors HGΛ

Λ . This map is a natural transformation from
Fred
C to Fred

Q .

8.31 Remark. It should be understood that if Λ1 = Λ2, and ι is the
identity functor on the free category of Λ1, then Fred

C (Λ1,Λ2, ι) is defined
to be the identity map on Ared

~,Λ. Thus Fred
C maps identity morphisms to

identity morphisms.

Proof. From our discussion in this section, it is clear that if (Λ1,Λ2, ι)
is an elementary refinement, or the trivial refinement from the previous
remark, then the following diagram

Ared
0,Λ2

Ared
~,Λ2

Ared
0,Λ1

Ared
~,Λ1

QW,red
~,(Λ2,`2)

Fred
C (Λ1,Λ2, ι)

QW,red
~,(Λ1,`1)

Fred
Q (Λ1,Λ2, ι)

is commutative. Let us sketch how to extend this result to general re-
finements (Λ1,Λ2, ι), and to show that Fred

Q (Λ1,Λ2, ι) is well-defined. It is
convenient to replace the indices 1 and 2 by other ones, such as i and j,
respectively. The problem here is that there may be more than one way in
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which (Λi,Λj , ιi,j) can be written as a composition of elementary refine-
ments. Suppose that there exist two sequences of elementary refinements

(Λk−1,Λk, ιk−1,k)
m
k=1, (Λ′k−1,Λ

′
k, ι
′
k−1,k)

m′
k=1,

such that Λ0 = Λi = Λ′0, and Λm = Λj = Λ′m′ , and we have

ιm−1,m ◦ · · · ◦ ι0,1 = ιi,j = ι′m′−1,m′ ◦ · · · ◦ ι′0,1.

Then we immediately see that

m = |Λ1
j | − |Λ1

i | = m′.

Furthermore, it can be shown that there exists a finite sequence(
(Λ

(l)
k−1,Λ

(l)
k , ι

(l)
k−1,k)

m
k=1

)L
l=0

,

of sequences of elementary refinements of which the composition is the
refinement (Λi,Λj , ιi,j), such that the sequences corresponding to l = 0
and l = L are (Λk−1,Λk, ιk−1,k)

m
k=1 and (Λ′k−1,Λ

′
k, ι
′
k−1,k)

m
k=1, respectively,

and such that two consecutive sequences are equal, except for the entries
corresponding to k − 1 and k for some k ∈ {1, . . . ,m}. This fact can be
used to reduce the problem to the case m = 2, for which there exists an
exhaustive (and short) list of possible ways to write a given refinement
(Λi,Λj , ιi,j) as a product of two elementary refinements, and by studying
these cases and comparing the corresponding maps Fred

C (Λi,Λj , ι), one sees
that this map is well-defined, and that the above diagram commutes. �

8.32 Definition. We call the functor Fred
Q the reduced quantum functor.

Note that QW,red
~ is not just an approximate natural transformation as we

defined it implicitly at the beginning of this section, but an actual natural
transformation. However, we view this as a happy coincidence, and do
not expect this to be a general feature of quantisation maps.

8.4 Discussion and outlook

We have defined a classical and a quantum category, as well as functors
from wtRefine to both of these categories. On the classical side, before
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reduction to the gauge group, the classical functor FC , as well as the func-
tors from wtRefine to RiemannSub and SympSub are well-motivated, both
from a mathematical and a physical point of view, and the particular form
of images of refinements under FC demonstrate the necessity of working
with (classical analogues of) field algebras that are strictly larger than
C0(T ∗Tn), which was our reason for defining a resolvent algebra on T ∗Tn
in the first place. In addition, the picture presented in this chapter is con-
sistent with the idea that, when forming composite quantum systems, the
embeddings of the observable algebras of a constituent in the observable
algebra of the composite system is given by the map that sends an oper-
ator to its tensor product with the identity operator on the tensor product
of the Hilbert spaces corresponding to all of the other constituents, as dis-
cussed in section 5.1. However, the framework is not free of shortcomings,
which manifest themselves upon consideration of the reduced versions of
the systems.

First of all, the notation Ared
0,(Λ,`) (or Ared

0,(Λ,`)) and Ared
~,(Λ,`) suggests that

the latter algebra is the quantum mechanical counterpart of the former,
but this is not really the case; the classical analogue of Ared

~,(Λ,`) should

be a space of functions on a Marsden–Weinstein quotient of T ∗(Tn)Λ1
by

the action of the gauge group TΛ0
[64] (cf. [19] (with more details in [18,

chapters 1–4]) and [51] for a discussion of quantisation and reduction in a
simplified version of the present setting in the context of the Guillemin–
Sternberg conjecture focussing on the Hilbert spaces). Note that we say
“a” rather than “the” Marsden–Weinstein quotient, since its construction
involves the choice of an orbit of the coadjoint action of the symmetry
group - in the case at hand the gauge group - on the dual of its cor-
responding Lie algebra (tn)Λ0

. To construct the quotient, one considers
the preimage of this orbit by the moment map J : T ∗(Tn)Λ1 → ((tn)Λ0

)∗.
(There is a canonical moment map due to the fact that the action of the
gauge group on phase space is induced by an action on the configura-
tion space; see [103, Proposition 10.1.20] and the subsequent discussion.)
Given a direct system in wtRefine, the only (a priori) consistent choice of
a family of coadjoint orbits seems to be the family of orbits consisting of
the singletons {0}, and this corresponds to the absence of charge.

Furthermore, a crucial piece of information in the construction of
our classical functor FC and its reduced counterpart Fred

C is the function
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` : Λ1 → (0,∞) that encodes the lengths of the paths corresponding to
the elements of Λ1; this is necessary to define the map between phase
spaces, i.e., the image of a refinement under FC , and is natural both from
a mathematical and a physical point of view, as already noted in Example
8.14. By contrast, in our discussion in the previous section on the modi-
fication of the idea that QW~ can be viewed as a natural transformation so
as to include the case of subdivision of edges, in passing from operators on
the unreduced Hilbert spaces H to their reduced counterparts HG , every
explicit reference to the lengths ` was lost. For this reason, we expect
Marsden–Weinstein quotients to be similarly incapable of encoding this
type of geometric information.

For these reasons, it is desirable to have a more flexible framework. We
believe that in the case of T ∗Tn, the deformations constructed by Rieffel
[98] which we already mentioned at the beginning of this chapter will
offer this flexibility, however we do not know what the deformation of the
commutative resolvent algebra CR(T ∗Tn) looks like, let alone the direct
limit of a direct system of such deformations. Moreover, Propositions 1.11
and 2.10 and Theorem 5.7 in the aforementioned reference will ensure that
one can form direct systems of deformations, and that quantisation is a
natural transformation between functors.

According to the discussions in [65, section III.3.7] and [70, section 7.7],
the deformations of C0(T ∗Tn) are isomorphic to the groupoid C∗-algebra
C∗(Rn×Zn Rn) of the gauge groupoid Rn×Zn Rn. It would be interesting
to know whether this deformation admits a natural faithful representation
on a Hilbert space with the property that for each equivalence class of its
irreducible subrepresentations (which correspond to the irreducible group
representations of Zn), there is a subrepresentation in that equivalence
class that can be extended to a representation of each of Rieffel’s deform-
ations. Note that we cannot simply apply [65, Theorem III.3.7.1] here to
obtain a representation on L2(Rn), since Zn is not compact. If there is
such a Hilbert space, then we could try to see whether a formula similar to
the one in part (3) of Proposition 7.1 holds. If this turns out to be the case
as well, then, using representation theory of Lie algebras, it could prob-
ably be generalised to arbitrary compact connected reductive Lie groups,
thereby offering a more elementary quantisation procedure than, or more
elementary characterisation of, the Weyl quantisation formula in [65, sec-
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tion II.3.4], in that it does not explicitly refer to the exponential map.
Needless to say, this is mostly speculation, and is left as future work.
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[74] S. Lanéry and T. Thiemann. Projective limits of state spaces III.
Toy-models. J. Geom. Phys., 123:98–126, 2018.
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atoren. Math. Ann., 104(1):570–578, 1931.

[115] J. von Neumann. Mathematische Grundlagen der Quantenmechanik.
Springer-Verlag Berlin, 1932.
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Publiekssamenvatting

Naast het wetenschappelijke geweld dat het leeuwendeel van de tekst
vormt en voornamelijk dan wel uitsluitend door experts gelezen wordt,
dient een proefschrift ook altijd een samenvatting van het werk te be-
vatten. Het is mijns inziens een goede gewoonte van de promovendi van
de afdeling wiskunde van de Radboud Universiteit dat zij hierbij dik-
wijls ervoor kiezen zich te richten tot een algemener publiek. Een droge
opsomming van de inhoud van ieder hoofdstuk leidt immers slechts tot
glazige blikken bij familie en vrienden, waarvan de kandidaat er al meer
dan genoeg ontvangen heeft gedurende het promotietraject en de daaraan
voorafgaande studie. De gevorderde lezer wiens honger naar kennis na
het lezen van deze samenvatting nog niet gestild is, kan zich desgewenst
tot de inleiding van dit proefschrift wenden. Een bijkomend voordeel van
deze aanpak is dat het mij in staat stelt het belang van mijn onderzoek te
schetsen, of - met andere woorden - antwoord te geven op de vraag: “Zijn
mijn zuurverdiende belastingcenten wel goed besteed?”

De vertaling van de titel van mijn proefschrift luidt kwantisatie versus
roosterijktheorie. Voordat ik kan uitleggen wat ik tijdens mijn promotie
onderzocht heb, is het noodzakelijk te weten wat het eerste en het laatste
woord in de vertaling betekenen op een basaler niveau dan de uiteenzetting
in hoofdstuk 1.

Kwantisatie

Kort gezegd is kwantisatie niets anders dan het vertalen van het formalisme
van de klassieke mechanica naar het formalisme van de kwantummecha-
nica. De klassieke mechanica is de natuurkundige theorie die beschrijft
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hoe krachten de beweging bëınvloeden van macroscopische objecten1 die
bewegen met een snelheid waarvan de grootte verwaarloosbaar is ten op-
zichte van de lichtsnelheid.

De bekendste naam die met deze theorie geassocieerd is, is zonder
twijfel die van de Engelse wis- en natuurkundige Isaac Newton (1643-
1727). De tweede wet van Newton beschrijft precies de relatie tussen kracht
en versnelling: de kracht ~F die een object ondervindt is gelijk aan de
versnelling ~a van dat object ten gevolge van de kracht maal de massa
m van het object, oftewel ~F = m~a. Als men op een gegeven tijdstip t0
de krachten op alsmede de plaats q(t0) en de snelheid q̇(t0) of equivalent
de impuls p(t0) = mq̇(t0) van het object kent, kan men met behulp van
deze wet in principe de plaats q(t) en impuls p(t) op elk ander tijdstip t
berekenen. Het paar (q(t0), p(t0)) bepaalt op deze manier de toestand van
het bewegende object. De verzameling van alle mogelijke waarden van q
noemt men de configuratieruimte van het systeem. De verzameling van
alle mogelijke waarden van het paar (q, p) noemt men de faseruimte van
het systeem.

De (niet-relativistische) kwantummechanica is de natuurkundige theo-
rie die beschrijft hoe de beweging van objecten in de aanwezigheid van een
potentiaal V bëınvloed wordt als de objecten bewegen met een snelheid
waarvan de grootte verwaarloosbaar is ten opzichte van de lichtsnelheid,
ook wanneer deze objecten van microscopisch formaat zijn. Het begrip po-
tentiaal is nauw verwant aan het begrip kracht, maar niet equivalent. De
noodzaak om met de potentiaal te werken is slechts één van de verschillen
tussen de formalismen van de klassieke mechanica en de kwantummecha-
nica. Een ander, belangrijker verschil is dat de toestand van het object
op een tijdstip t niet gegeven wordt door een paar (q(t), p(t)), maar door
een functie ψ op de configuratieruimte Q, de zogeheten golffunctie, die
aan bepaalde voorwaarden voldoet.2 Om te benadrukken dat men met
tijdsafhankelijke golffuncties werkt, schrijft men gewoonlijk Ψ, waarbij
het verband met ψ is gegeven door ψ(q) = Ψ(q, t) voor elk element q in

1Objecten worden macroscopisch genoemd wanneer hun grootte voor ons geen be-
lemmering vormt om ze met het blote oog te kunnen zien.

2Een functie op een verzameling (in dit geval Q) is een wiskundig object dat aan elk
element van die verzameling een (in dit geval complex) getal toekent. Overigens, strikt
genomen is ψ geen functie, maar een verzameling van functies die (in wiskundige zin)
bijna overal aan elkaar gelijk zijn.
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de configuratieruimte.
De Schrödingervergelijking

i~
∂

∂t
Ψ = − ~

2

2m
∆Ψ + VΨ,

is voor de kwantummechanica wat de tweede wet van Newton is voor de
klassieke mechanica. Het enige wat in deze vergelijking van belang is voor
de rest van dit stuk, is dat ~ = h/2π de gereduceerde constante van Planck
is.3 De vergelijking is vernoemd naar zijn bedenker Erwin Schrödinger
(1887-1961), die samen met Werner Heisenberg (1901-1976) het tweetal
vormt van natuurkundigen die aan de kwantummechanica gewerkt hebben
dat het bekendst is bij het grote publiek.4

De verzameling van mogelijke golffuncties vormt een verzameling met
extra structuur die het tot een zogenaamde Hilbertruimte maakt. Een van
de vraagstukken binnen het onderwerp kwantisatie luidt: hoe kan men
uit de gegeven faseruimte van het klassieke systeem de bijbehorende Hil-
bertruimte van het kwantummechanische systeem construeren? Het pro-
bleem hier is dat, in tegenstelling tot wat in het bovenstaande gesuggereerd
wordt, de faseruimte van een klassiek systeem niet altijd een bijbehorende
configuratieruimte heeft en men dus niet automatisch de Hilbertruimte
kan definiëren als een verzameling van functies op de configuratieruimte.
Het gebied dat bekend staat als meetkundige kwantisatie (Engels: geo-
metric quantisation) geeft in bepaalde situaties een constructie voor de
Hilbertruimte.

Dit proefschrift gaat echter over een andere vorm van kwantisatie,
namelijk deformatiekwantisatie. Deze vorm van kwantisatie richt zich op
de observabelen van een systeem. Verderop zal ik dieper ingaan op het
begrip observabele, maar voor nu is het voldoende om te weten dat we
zowel in de klassieke wereld als in de kwantumwereld verzamelingen van
observabelen beschouwen die een zogeheten C∗-algebra5 vormen die we

3De constante van Planck is de natuurconstante h = 6.62607015 · 10−34 kg m2 s−1.
De constante ~ (spreek uit: “h streep”) wordt ook wel de constante van Dirac genoemd.

4Naast zijn vergelijking is Schrödinger natuurlijk bekend van zijn beroemde gedach-
tenexperiment dat bekend staat als Schrödingers kat. Heisenberg is in eerste instantie
voornamelijk bekend van de onzekerheidsrelatie van Heisenberg, maar sinds 2008 zijn
er waarschijnlijk meer mensen die zijn naam associëren met het alter ego van de hoofd-
persoon Walter White in de televisieserie Breaking Bad.

5Spreek uit: “C ster algebra.”
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de observabelenalgebra noemen; dat betekent onder andere dat men twee
observabelen - zeg a en b - kan optellen en vermenigvuldigen, waarbij het
resultaat (a+b en a·b respectievelijk) weer een observabele is. Het cruciale
verschil is dat hoewel de klassieke observabelenalgebra altijd commutatief
is, dat wil zeggen a · b = b · a, of anders geschreven:

a · b− b · a = 0,

voor alle a en b in de algebra, dit niet het geval is voor de kwantumobser-
vabelenalgebra. Integendeel, niet-triviale commutatierelaties zoals

(1) q̂ · p̂− p̂ · q̂ = i~1,

vormen het hart van de kwantummechanica; in het bijzonder ligt de boven-
staande relatie ten grondslag aan de onzekerheidsrelatie van Heisenberg,
die tot gevolg heeft dat men niet tegelijkertijd de plaats q̂ en de impuls p̂
kan bepalen. Vergelijking (1) is het standaardvoorbeeld van een canonieke
commutatierelatie.6

Beschouw in vergelijking (1) de constante ~ nu als een parameter, en
stel deze parameter gelijk aan 0. Dan is de rechterzijde van die vergelij-
king gelijk aan 0, waardoor geldt dat q̂ · p̂ = p̂ · q̂. In dit opzicht gedragen
de observabelen q̂ en p̂ zich dan dus als klassieke observabelen. Het ge-
lijkstellen van ~ aan 0 of het doen van de aanname dat ~ zeer dicht bij
0 ligt, wat bekend staat als het nemen van de klassieke limiet, is in al-
gemenere zin een methode om het gedrag te simuleren van een systeem
dat in een bepaald opzicht lijkt op een macroscopisch systeem. Doordat
de klassieke mechanica een goede beschrijving vormt voor het gedrag van
macroscopische systemen, kan men door de klassieke limiet te nemen de
klassieke mechanica verklaren vanuit de kwantummechanica. Dit wordt
ook wel het correspondentieprincipe genoemd en het verklaart de naam
‘klassieke limiet’.

Bij het nemen van de klassieke limiet begint men dus met een kwan-
tummechanische beschrijving van een systeem en verkrijgt men door het
nemen van de limiet ~ → 0 een klassieke beschrijving. Bij deformatie-
kwantisatie bewandelt men de omgekeerde weg: uit een gegeven fysisch

6Hier is de configuratieruimte een lijn, q̂ en p̂ (en dus ook i~1) zijn observabelen, en 1
het unieke element van de observabelenalgebra is met de eigenschap dat a ·1 = a = 1 ·a
voor elke observabele a.
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systeem met een klassieke beschrijving wil men een kwantummechanische
beschrijving van het systeem verkrijgen door op een bepaalde manier een
niet-triviale commutatierelatie te introduceren zoals in vergelijking (1).
Er zijn twee manieren om dit te bereiken:

• Door middel van deformatie van het product: gegeven een commuta-
tieve C∗-algebra A0 met operatie van vermenigvuldiging · tracht men
een familie van soortgelijke operaties (?~)~>0 te definiëren. Door A0

voorzien van de operatie ?~ weer tot een C∗-algebra te maken, krijgt
men een nieuwe algebra A~ die niet commutatief is op een manier die
het tot een kandidaat voor een kwantumobservabelenalgebra maakt.

• Door middel van kwantisatieafbeeldingen: naast een commutatieve
C∗-algebra A0 nemen we aan dat we beschikken over een familie van
niet-commutatieve C∗-algebra’s (A~)~>0, en gaan we op zoek naar
een familie van afbeeldingen (Q~)~>0, waar

Q~ : A0 → A~,

aan elke klassieke observabele in A0 een kwantumobservabele in A~
toekent.7

In het eerste geval wordt het product, oftewel de operatie van vermenig-
vuldiging, van de algebra A0 gedeformeerd, terwijl in het tweede geval
de observabelen zelf, oftewel de elementen van A0, gedeformeerd worden.
In beide gevallen moeten de gedeformeerde objecten na het kwantiseren
bij het nemen van de klassieke limiet op een gecontroleerde manier met
de oorspronkelijke klassieke objecten corresponderen. In dit proefschrift
voeren kwantisatieafbeeldingen de boventoon, waarbij bovendien alle ele-
menten van de familie (A~)~>0 van C∗-algebra’s één en dezelfde algebra
zijn.

IJktheorie

Om het andere hoofdonderwerp van mijn proefschrift, roosterijktheorie,
te motiveren, zal ik eerst een korte inleiding tot ijktheorie geven. IJkthe-

7Eigenlijk kwantiseert men niet alle elementen van A0, maar alleen die elementen
die in een bepaalde ‘voldoende grote’ deelverzameling A0 van A0 liggen.
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orieën8 vormen de basis van het standaardmodel van de deeltjesfysica, dat
de bouwstenen van materie en hun interactie beschrijft. In het bijzonder
worden deze theorieën in het standaardmodel gebruikt om drie van de vier
fundamentele natuurkrachten te beschrijven:

• Zoals de naam al doet vermoeden, is het elektromagnetisme de kracht
die verantwoordelijk is voor elektriciteit en magnetisme;

• De zwakke kernkracht is de kracht die verantwoordelijk is voor ra-
dioactief verval van deeltjes en kernsplijting mogelijk maakt;

• De sterke kernkracht is de kracht die atoomkernen bijeenhoudt.
Doordat atoomkernen uit elektrisch positief geladen protonen en
elektrisch neutrale neutronen bestaan, zouden deze zonder de sterke
kernkracht uiteenvallen. Protonen en neutronen bestaan op hun
beurt elk weer uit drie zogeheten quarks, die ook door de sterke
kernkracht bijeengehouden worden. Verder is de sterke kernkracht
verantwoordelijk voor kernfusie.

De vierde kracht is de zwaartekracht en wordt beschreven door de alge-
mene relativiteitstheorie. Op dit moment is er echter nog geen bevredi-
gende manier om deze theorie te verenigen met het standaardmodel.

Het centrale object in elk van de ijktheorieën die de bovenstaande
krachten beschrijven, is het ijkveld, dat in de literatuur aangeduid wordt
met A (niet te verwarren met de notatie voor de observabelenalgebra’s!).
Een veld is een wiskundig object dat aan ieder punt van een bepaalde
ruimte - in ons geval de vierdimensionale ruimtetijd of de driedimensio-
nale ruimte - een element uit een verzameling toekent waarop men een
notie van optelling en schaling heeft.9 Het veld A is echter niet uniek
bepaald, in de zin dat er een ander veld A′ bestaat10 zodanig dat wanneer
men in alle natuurwetten die het systeem beschrijven het veld A vervangt
door A′ (en bepaalde andere velden op een overeenkomstige manier wij-
zigt), het voorspelde gedrag van het systeem niet verandert. Het proces

8Het woord ijktheorie (Engels: gauge theory) wordt gebruikt om zowel een specifiek
voorbeeld van een bepaalde wiskundige constructie aan te duiden, als de tak van de
theoretische en mathematische fysica die de deze voorbeelden en de algemene constructie
bestudeert.

9Wiskundigen zullen begrijpen dat hier een vectorruimte bedoeld wordt.
10Er bestaan er zelfs oneindig veel.
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van het vervangen van A door A′ wordt een ijktransformatie genoemd;
de mogelijkheid om een ijktransformatie uit te voeren wordt ijkvrijheid
genoemd. Het kiezen van één veld uit een veelheid van mogelijke velden
wordt het kiezen van een ijk genoemd, naar analogie met het ijken van
een meetinstrument.

Denk bijvoorbeeld aan het kiezen van een schaalverdeling op een ther-
mometer: het maakt niet uit of we de temperatuur weergeven in graden
Celsius, graden Fahrenheit of Kelvin, omdat we de temperatuur uitge-
drukt in elk van deze schalen kunnen omrekenen naar elke andere schaal.
Bij het kiezen van een schaal kunnen bepaalde schalen daarentegen wel
handiger zijn om mee te rekenen dan andere. Zo zal een natuurkundige
geneigd zijn haar temperaturen in Kelvin uit te drukken, omdat deze van
de drie genoemde schalen de enige is waarbij het nulpunt op de schaal
correspondeert met het absolute nulpunt. In de context van ijktheorie kan
een keuze voor een bepaalde ijk sommige vergelijkingen vereenvoudigen,
waardoor ze makkelijker op te lossen zijn.11

Roosterijktheorie

Niet alleen objecten die krachten ondervinden, hebben klassieke beschrij-
vingen die men kan (proberen te) kwantiseren, maar ook de ijkvelden die
deze krachten uitoefenen: men kan op zoek gaan naar een kwantumtheo-
rie van velden, oftewel een kwantumveldentheorie. Dit blijkt een enorme
uitdaging, zeker wanneer men eist dat dit op een wiskundig rigoureuze
manier gebeurt. Het voornaamste obstakel is het feit dat velden onein-
dig veel vrijheidsgraden hebben: men kan de waarde van een veld in elk
punt in de ruimte waarop dat veld gedefinieerd is, uitdrukken in eindig
veel getallen/parameters, en aangezien de meeste ruimten waarin men
gëınteresseerd is oneindig veel punten hebben, heeft men oneindig veel pa-
rameters nodig om het veld in zijn geheel te beschrijven. Wanneer men
ijkvelden wil kwantiseren, zorgt de ijkvrijheid bovendien voor extra com-
plicaties.

Roosterijktheorie probeert het eerste probleem op te lossen door het
aantal vrijheidsgraden terug te brengen van een oneindig aantal naar een

11Het is overigens van belang op te merken dat het kiezen van een ijk wel iets wezenlijk
anders is dan het kiezen van de eenheid waarin we de waarde van het ijkveld uitdrukken.
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eindig aantal door een eindig rooster12 te introduceren, waarbij elk punt
in het rooster correspondeert men een punt in de ruimte waarop het veld
gedefinieerd is, en elk lijnstuk tussen twee roosterpunten met een pad
tussen de bijbehorende punten in de ruimte. Men kan nu het ijkveld A
associëren met een bepaalde afbeelding op de verzameling van lijnstukken
van het rooster, die daarmee in zekere zin een benadering is van A. Deze
benadering heeft nog slechts eindig veel vrijheidsgraden, waardoor het
probleem van kwantisatie een stuk eenvoudiger wordt.

Om nu A te reconstrueren dan wel volledig te karakteriseren heeft
men niet voldoende aan slechts één benadering; men dient een hele familie
van roosters te beschouwen die op een bepaalde manier in elkaar worden
ingebed zoals weergegeven in sectie 2.1. Een dergelijke inbedding geeft
een notie van een ‘grof’ en een ‘fijn’ rooster. Uit de benadering van A
voor het fijne rooster kan nu de benadering van A voor het grove rooster
gevonden worden.

Ter illustratie van dit laatste punt kan men denken aan een plaatje dat men
op een beeldscherm wil weergeven. Een beeldscherm bevat heel veel kleine
beeldelementen, die in de volksmond ook wel pixels genoemd worden. Hoe-
wel het deel van het plaatje dat door een bepaalde pixel gerepresenteerd
wordt heel veel punten bevat en daardoor even veel kleuren kan bevat-
ten, kan een pixel op één moment slechts één kleur aannemen, waardoor
het scherm een beperkt oplossend vermogen of resolutie heeft. Wanneer
(een deel van) het plaatje op een beeldscherm wordt weergegeven, is de
kleur die een bepaalde pixel aanneemt slechts een soort gemiddelde van
de kleuren die te vinden zijn in het deel van het plaatje dat door de pixel
vertegenwoordigd wordt.

Laten we gemakshalve aannemen dat we met grijstinten werken, en
laten we aannemen dat elke grijstint correspondeert met een getal tussen
0 en 1, de zogeheten grijswaarde, waarbij een hoger getal correspondeert
met een lichtere grijstint; in het bijzonder correspondeert 0 met zwart en
1 met wit.13 Er zijn in essentie twee manieren waarop een beeldscherm

12Wiskundig gezien is het netter om dit een graaf te noemen.
13In moderne beeldschermen is de door het oog waargenomen kleur een combinatie van

de kleuren van drie subpixels die elk één van de kleuren rood, groen en blauw aannemen.
De lezer wordt aangemoedigd om na te denken over de vraag welke aanpassingen men
in het verhaal moet aanbrengen om deze situatie te beschrijven.
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‘fijner’ kan zijn dan een ander beeldscherm:

• Het ene beeldscherm kan meer pixels hebben dan het andere, waar-
door het een groter deel van het plaatje kan weergeven. Zo past
er op een televisiescherm meer informatie dan op het scherm van
een smartphone. In dit geval kan men de grijswaarden van de extra
pixels van het fijne scherm ‘negeren’ of ‘vergeten’ om de waarden
voor de pixels van het grove scherm te verkrijgen, zoals in Figuur
1a.

• Het ene beeldscherm kan een hogere resolutie hebben dan het andere,
op de volgende specifieke wijze: elk deel van het plaatje dat door één
pixel van het grove scherm gerepresenteerd wordt, wordt precies door
een eindige verzameling van pixels van het fijne scherm gerepresen-
teerd. Bijvoorbeeld: als het grove scherm en het fijne scherm een
resolutie hebben van 640× 360 en 1920× 1080 respectievelijk, en ze
geven hetzelfde deel van het plaatje weer, dan correspondeert elke
pixel van het grove scherm met een 3 × 3-blok van pixels van het
fijne scherm en moet men de grijswaarden van deze pixels middelen
om die van de bijbehorende pixel van het grove scherm te verkrij-
gen. Een ander voorbeeld met een aanzienlijk kleiner aantal pixels
is weergegeven in Figuur 1b.

Uiteraard kan er ook een combinatie van deze twee situaties optreden.
Bovendien is het niet eens nodig om aan te nemen dat alle pixels even
groot zijn of dezelfde vorm hebben. In die algemenere versie moet men
daar dan wel rekening mee houden in de tweede situatie door een gewogen
gemiddelde van de grijswaarden van de kleinere pixels te nemen, waarbij
de weegfactoren gegeven worden door de oppervlakten van de pixels van
het fijne scherm.

We observeren nu het volgende: veronderstel dat we drie schermen S1,
S2 en S3 hebben, en dat de laatste twee schermen fijner zijn dan hun voor-
ganger. Dan is S3 fijner dan S1. Bovendien zijn er nu twee manieren om
de grijswaarden van een pixel van S1 te bepalen: enerzijds kan men direct
de grijswaarden van de bijbehorende pixels in S3 middelen. Anderzijds
kan men opmerken dat de grijswaarde van de pixel gevonden kan worden
door de grijswaarden van de bijbehorende pixels in S2 te middelen, die
op hun beurt weer gemiddelden van grijswaarden van pixels in S3 zijn.



280 PUBLIEKSSAMENVATTING

0.8 0.9

1.0 0.1

0.8 0.9

1.0 0.1

0.3 1.0

0.0 0.3

0.50.9

0.40.2

0.20.9

0.60.7

(a) ‘Vergeten’ van grijswaarden.
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(b) ‘Middelen’ van grijswaarden.

Figuur 1: Transformeren van grijswaarden van een fijn scherm naar grijs-
waarden van een grof scherm.

Het maakt echter niet uit welke van deze twee methoden we gebruiken
om de grijswaarden van de pixels in S1 te vinden: beiden geven namelijk
hetzelfde resultaat.

Veronderstel nu dat we een willekeurige familie van schermen hebben
waarbij er voor bepaalde paren van schermen een notie van ‘fijn’ en ‘grof’
is, en waarbij er voor elk paar schermen S en S′ een derde scherm S′′ is
zodanig dat S′′ fijner is dan zowel S als S′. Deze eis vormt samen met de
observatie in de vorige alinea de twee belangrijkste eigenschappen van de
familie (gëındexeerd door de verzameling van schermen) van verzamelin-
gen van mogelijke grijswaarden (van een gegeven scherm) die het tot een
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zogeheten invers systeem maken.
Uit dit inverse systeem kan men de inverse limiet vormen: dit is een

verzameling die elementen bevat die in zekere zin de maximale hoeveelheid
informatie bevatten over de grijswaarden van de schermen. Daarmee wordt
bedoeld dat een element in deze limiet voor elk scherm voor elk pixel in dat
scherm een bijbehorende grijswaarde geeft op een manier die consistent is
met het middelen van de grijswaarden van pixels van een gegeven scherm
om de grijswaarde van een pixel van een grover scherm te verkrijgen. Als er
voor elk paar van verschillende punten in het plaatje een scherm is waarvan
de twee punten in twee verschillende pixels vallen, en als bovendien de
grijstinten in het plaatje op een geleidelijke manier van punt tot punt
veranderen, dan kan men uit het element van de inverse limiet het plaatje
reconstrueren.

Het idee achter roosterijktheorie is in essentie hetzelfde: men kan de
roosters zodanig kiezen dat de ruimten van benaderingen van het ijkveld
die corresponderen met verschillende roosters op een voor de hand liggende
manier een invers systeem vormen, waarvan de inverse limiet de eigenschap
heeft dat men het oorspronkelijke ijkveld A kan reconstrueren uit een
element van deze limiet.

Inbedding van observabelen

Eerder is het begrip observabelenalgebra al besproken, maar daarbij is de
definitie van het begrip observabele achterwege gelaten. In feite is een ob-
servabele van een (natuurkundig) systeem een vraag over dat systeem die
men in principe door middel van metingen aan het systeem kan beant-
woorden. Voor een systeem dat bestaat uit een bewegend object kan men
vragen stellen als:

• Waar bevindt het object zich?

• Wat is de snelheid van het object?

• Hoeveel energie vertegenwoordigt de beweging die het object uit-
voert, oftewel wat is de kinetische energie van het object?

Merk op dat in de klassieke mechanica al deze vragen beantwoord kunnen
worden in termen van een getal of een verzameling14 van getallen die

14Een geordende verzameling, oftewel een tupel, welteverstaan.
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kunnen worden uitgedrukt in termen van de plaats en impuls van het
systeem. In de klassieke mechanica is een observabele dan ook niets anders
dan een functie op de faseruimte van het systeem.

In de context van de beeldschermmetafoor in de vorige sectie zou een
observabele die correspondeert met een bepaald rechthoekig scherm kun-
nen zijn: “Wat is de grijswaarde van de pixel in de linkerbovenhoek van
het scherm?” Als we nu twee van zulke schermen hebben, waarbij de een
fijner is dan de ander, dan vertaalt de bovenstaande vraag over het grove
scherm zich naar een vraag over het fijne scherm. In het voorbeeld van
de beeldschermen met de resoluties 640 × 360 en 1920 × 1080 wordt de
vraag over het tweede scherm: “Wat is de gemiddelde grijswaarde van het
3× 3-blok van pixels in de linkerbovenhoek van het scherm?”

Dit werkt niet alleen voor de gegeven vraag, maar voor alle observa-
belen. We hebben dus een manier gevonden om de observabelen van het
grove systeem te laten corresponderen met een deel van de observabelen
van het fijne systeem; er is een inbedding van de observabelenalgebra van
het grove systeem in die van het fijne systeem. Merk op dat ten opzichte
van het vinden van de grijswaarden van pixels, dat van fijn naar grof gaat,
dit proces in de omgekeerde richting verloopt. Dit heeft tot gevolg dat
de observabelenalgebra’s een direct systeem in plaats van een invers sys-
teem vormen wanneer men een familie van schermen beschouwt zoals in
de vorige sectie. Het directe systeem heeft een directe limiet, die men kan
beschouwen als een verzameling vragen over de grijswaarden van de pixels
van elk scherm in de familie ongeacht grootte of resolutie.

Overzicht van de inhoud

In dit proefschrift wordt geprobeerd directe systemen van observabe-
lenalgebra’s van roosterijktheorieën te kwantiseren. In de context van
ijktheorie worden bepaalde veldenalgebra’s gëıdentificeerd: dat zijn
C∗-algebra’s waaruit men de observabelenalgebra’s kan halen, maar
waarvan de elementen nog wel afhankelijk zijn van de gekozen ijk. Door
eerst directe systemen van veldenalgebra’s te identificeren, waarbij de
inbeddingen zich op een goede manier gedragen ten opzichte van de
ijktransformaties, en vervolgens op systematische wijze de ijkvrijheid te
verwijderen, proberen we te komen tot de gewenste directe systemen.
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In deel I van dit proefschrift vertrekken we vanuit bestaande theorie van
kwantisatie gestoeld op de theorie van groepöıden: dat zijn meetkundige
objecten waaruit men zowel klassieke als kwantummechanische velden- en
observabelenalgebra’s kan construeren, die men bovendien op een meet-
kundige manier aan elkaar kan relateren.

Na de algemene inleiding in hoofdstuk 1 en de inleiding tot roosterijk-
theorie in hoofdstuk 2, worden in hoofdstuk 3 twee verschillende manieren
beschreven om uit een veldalgebra de bijbehorende observabelenalgebra
te vinden, namelijk door Rieffelinductie toe te passen, of door op een
bepaalde manier de wet van Gauss te implementeren. Vervolgens laten
we zien dat deze twee procedures hetzelfde resultaat geven. Hier spelen
groepöıden nog geen expliciete rol, maar de keuze voor de velden- en ob-
servabelenalgebra’s is wel gemotiveerd vanuit het groepöıdenformalisme.

In hoofdstuk 4 laten we zien dat uit een invers systeem van groepöıden
directe systemen van kwantummechanische velden- en observabelenalge-
bra’s kunnen worden gehaald. Van elk van deze systemen karakteriseren
we bovendien de limiet, en laten we zien dat de correspondentie tussen
groepöıden en algebra’s nog steeds geldig is in de limiet. Hoewel vanuit
wiskundig oogpunt de constructie goed gedefinieerd en zelfs natuurlijk is,
zijn er meerdere aanwijzingen dat het directe systeem van de algebra’s
evenals hun limiet niet op de juiste manier corresponderen met de
ijktheorieën die zij dienen te beschrijven. Het eerste probleem komt
voort uit een bepaalde klasse van inbeddingen, namelijk die inbeddingen
die in de beeldschermmetafoor corresponderen met het ‘vergeten’ van
grijswaarden. De inbeddingen van kwantummechanische velden- en
observabelenalgebra’s die men op basis van het groepöıdenformalisme
vindt, zijn niet de inbeddingen die men op basis van de natuurkunde
verwacht. Als men echter met de natuurkundige inbeddingen werkt,
blijken de velden- en observabelenalgebra’s in zekere zin ‘te klein’.

De problemen met de constructie in hoofdstuk 4 motiveren deel II van
dit proefschrift, waarin geprobeerd wordt een bepaald soort C∗-algebra,
namelijk de resolventenalgebra, aan te passen aan een situatie die van be-
lang is voor bepaalde soorten roosterijktheorieën. In tegenstelling tot de
algebra’s die men uit groepöıden construeert, zijn families van resolven-
tenalgebra’s wel groot genoeg voor de inbeddingen van de kwantumobser-
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vabelen. In hoofdstuk 5 definiëren en bestuderen we de klassieke versie
van onze resolventenalgebra, die we vervolgens in hoofdstuk 7 kwantise-
ren met behulp van een familie kwantisatieafbeeldingen die samen bekend
staan als Weylkwantisatie. In hoofdstuk 6 slaan we een zijweg in door het
Gelfandspectrum van de klassieke resolventenalgebra te bestuderen: dat is
een bepaald meetkundig15 object dat met een commutatieve C∗-algebra
correspondeert.

In hoofdstuk 8 gaan we net als in hoofdstuk 4 op zoek naar inbeddin-
gen van velden- en observabelenalgebra’s, maar laten we ons niet leiden
door het groepöıdenformalisme. In plaats daarvan zorgen we eerst dat we
een goed begrip hebben van de inbeddingen aan de klassieke kant. Het
lastigste punt hierbij is dat roosterijktheorie wel voorschrijft hoe men uit
een configuratie op een fijn rooster een configuratie op een grof rooster
verkrijgt, oftewel wat de afbeelding tussen configuratieruimten is, maar
niet wat de afbeelding tussen faseruimten is. We ontwikkelen wiskundige
theorie om met behulp van meetkundige informatie van het rooster op
systematische wijze de laatstgenoemde afbeelding uit de eerstgenoemde
afbeelding te construeren. Vervolgens maken we gebruik van bestaande
theorie om de bijbehorende inbeddingen van klassieke observabelenalge-
bra’s te verkrijgen.

Om de inbeddingen tussen kwantummechanische velden- en observa-
belenalgebra’s te vinden, nemen we aan dat voor elke klassieke observabele
die correspondeert met het grove systeem, de kwantisatie van zijn klas-
sieke inbedding ongeveer hetzelfde moet zijn als de kwantummechanische
inbedding van zijn kwantisatie. Dit geeft de juiste inbeddingen, dat wil
zeggen de inbeddingen die men op basis van de natuurkunde verwacht,
in het geval dat duidelijk onjuist was in hoofdstuk 4. De in hoofdstuk 8
gevonden inbeddingen in het andere geval, dat in de beeldschermmetafoor
correspondeert met het ‘middelen’ van grijswaarden, werkt tot op zekere
hoogte, maar is nog niet geheel bevredigend. Er lijkt hier namelijk geen
duidelijke kandidaat te zijn voor een inbedding van de kwantummecha-
nische veldenalgebra’s. Die is er echter wel in het geval van de observa-
belenalgebra’s, maar die inbedding bevat niet de meetkundige informatie
van het rooster die men gebruikt om de afbeeldingen tussen de (klassieke)
faseruimten te construeren.

15Voor de wiskundigen: topologisch.
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Het lukt dus nog niet om de twee gevallen, namelijk het ‘vergeten’ en
het ‘middelen’ van pixels, op gelijke voet te behandelen, wat we wel graag
zouden willen. Hiertoe stellen we voor om de C∗-algebra’s die we voor de
kwantummechanische veldenalgebra’s gebruiken, te vervangen door be-
paalde C∗-algebra’s die, in tegenstelling tot de beschikbare literatuur over
roosterijktheorie, niet met een specifieke Hilbertruimte corresponderen.

Wat is het belang van dit onderzoek?

Na de bovenstaande samenvatting zal het duidelijk zijn dat het onderzoek
in dit proefschrift in beginsel fundamenteel van aard is; het levert noch
een geneesmiddel tegen kanker, noch een schone energiebron, noch een
supersnelle computer op.

Dit onderzoek heeft in eerste instantie betrekking op de hoge-
energiefysica16. Roosterijktheorie is bedacht door de Amerikaanse natuur-
kundige Ken Wilson (1936-2013), met als doel het fenomeen dat bekend
staat als quark confinement te beschrijven. Quark confinement is de naam
van het verschijnsel dat quarks nooit alleen voorkomen, maar onder in-
vloed van de sterke kernkracht altijd in een gebonden toestand met één
of meer andere quarks. Naast een theoretisch begrip van dit verschijnsel
maakt roosterijktheorie ook numerieke simulaties mogelijk die dit gedrag
beschrijven.

Dit proefschrift valt daarentegen in een van vele onderzoekslijnen die
als doel hebben om een wiskundig rigoureuze beschrijving van een kwan-
tumveldentheorie (op een vierdimensionale ruimtetijd) te geven. Het pro-
bleem met dit soort theorieën is dat er tot op heden17 nog niet een derge-
lijke beschrijving is, ondanks dat kwantumveldentheorie al sinds 1950 door
natuurkundigen gebruikt worden om berekeningen uit te voeren waarvan
de uitkomsten met zeer hoge nauwkeurigheid experimenteel geverifieerd
zijn. Er is dus sprake van ‘achterstallig onderhoud’.

Een zo mogelijk nog ambitieuzer project is het zoeken naar een theorie
van kwantumzwaartekracht: een theorie die de kwantummechanica vere-
nigt met de algemene relativiteitstheorie. Een van de pogingen om tot
een dergelijke theorie te komen is luskwantumzwaartekracht (Engels: loop

16Bij het grote publiek beter bekend als de deeltjesfysica.
17Ook na het schrijven van dit proefschrift.
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quantum gravity), waarvan het formalisme veel overeenkomsten vertoont
met roosterijktheorie. Een beter begrip van roosterijktheorie kan dus lei-
den tot een beter begrip van luskwantumzwaartekracht, en vice versa.

Ten slotte zullen de meeste mensen die het nieuws volgen wel gehoord
hebben van het Higgsdeeltje. Het bestaan daarvan is in 1964 door Ro-
bert Brout, François Englert en onafhankelijk door Peter Higgs voorspeld
en is in 2012 door (verschillende detectoren in) de Large Hadron Colli-
der (LHC), de grote deeltjesversneller onder Genève, geregistreerd. De
laatste twee onderzoekers mochten een jaar later voor hun ontdekking de
Nobelprijs voor de natuurkunde in ontvangst nemen (Brout was in 2011
al overleden). Er wordt nu nagedacht over een mogelijke opvolger van
de LHC, namelijk de Future Circular Collider (FCC), die nieuwe deeltjes
moet gaan detecteren. Critici van de FCC stellen dat andere ontdekkin-
gen van deeltjes die men voorspeld had en waarvan men had verwacht dat
ze door de LHC zouden worden gedetecteerd, uitgebleven zijn, en dat er
bovendien geen redelijke indicatie is dat de FCC die wel zou kunnen detec-
teren [28]. Op dit moment is geld dat gëınvesteerd wordt in wiskundig on-
derzoek naar hoge-energiefysica daarom waarschijnlijk beter besteed dan
geld dat gestoken gaat worden in de bouw van deze peperdure18 nieuwe
deeltjesversneller.

18Voorstellen voor de FCC bevatten kostenramingen die uiteenlopen van 9 miljard
tot 21 miljard euro, zie de bovengenoemde bron.
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