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The story begins...

@ On the Hopf algebra structure of perturbative quantum field theories
[Kreimer, ATMP 1998]:
“We show that the process of renormalization encapsules a Hopf
algebra structure in a natural manner.”

@ Then quickly followed by the works of Connes and Kreimer on
Renormalization Hopf algebras and Birkhoff decomposion.

@ From the start, it was clear that the Hopf algebraic structure of
renormalization for gauge theories is quite rich [Broadhurst—Kreimer,
Kreimer—Delbourgo 1999]



@ This gained in momentum with Anatomy of a gauge theory [Kreimer,
2006] containing the following closed expression for the coproduct on
Green's functions in terms of the grafting operator:

A(BY (Xier)) = BE (Xir) ® T+ (id ® BE")A(Xir)

@ This gauge theory theorem is crucially based on Slavnov—Taylor
identities, formed the basis for much research [Kreimer—Yeats 2006, vS,

N



@ Meanwhile, as a postdoc at MPI Bonn (meeting Kurusch there) | started
to work on the Hopf algebra of Feynman graphs in QED [vS 2006].
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@ 'First contact’ with Dirk, and somewhat later, | managed to prove that
Slavnov—Taylor identities generate Hopf ideals, expressing compatibility
of renormalization with gauge symmetries.

@ For me, this was the start of a fruitful period of interaction and
collaboration with Dirk...
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Feynman graphs

Graphs built from a fixed set {vi,..., vk} of types of vertices (possibly
k = oo [Bloch—Kreimer]) and a fixed set {e1,..., ey} of types of edges.
Examples:

@ Scalar ¢3-theory:

vertex: % , edge:

and one constructs graphs such as ﬂ:]: , —O—

@ Electrodynamics:

vertex: -< ) edges: , ~MAAAn

and one constructs graphs such as w< , —%—




@ Yang—Mills theory:

edges: —— , 000000 ,

and one constructs graphs such as

e X2 Y

edges: 00000 ,

o (Gravity):

and one constructs graphs such as




Hopf algebra of Feynman graphs
Define:

@ One-particle irreducible graphs (example not 1PI: ~O-Ow)

@ Residue of a graph: res (wv\<) :-~< and res( )_,::! ) =

@ M the free commutative algebra generated by all Feynman graphs
(given the set R) including trees.

@ H C M the subalgebra generated by all 1PI graphs with residue in R.

Eg. a graph in M but not in H: >V\Ow<

Consider the map p: M — H @ M defined by p(I') = >y, r v @I/ where
the sum is over (disjoint unions of) 1Pl subgraphs with residue v; or e;.
Then

o A :=p|y and €(I') = g makes H a Hopf algebra [Connes—Kreimer]
@ For this coproduct, M is a left H-comodule algebra.



Examples of the coaction with v =— and e = —

Z@CWCFV ®[l/yand A = p|y

({) 45%1@45 oo

) —D—oe1+10—— +2{ ®—D—
+ {{@—O— +2«([ o<

p (—oo—) =19—0-0— + 2-0-®-O- + -O--O-0—

o

not allowed:



Renormalization as a decomposition in G

@ The above Hopf algebra H is the algebraic structure underlying the
recursive procedure of renormalization.

@ In fact, for a character U, : M — C, there exists a character
C, : H — C (‘counterterm’) defined for z # 0 as

C(MN)=—T |UAN) + > C(7)UaAT /)

~CIr

with T (eg.) the projection onto the pole part, so that R, = C, * U, is
finite at z =0 [Connes and Kreimer 2000].

@ Even though G, is defined only on H, the map R, is defined as a map
from M — C: it gives the renormalized Feynman rules on all Feynman
graphs.



Gauge theories
The physical (renormalized) 1Pl Green's functions are given by

or(py s, 1. .) Ra=o(G")(p, s, £, .. .)

with r = v;, ¢j and ¢, the corresponding formfactors (depending on
momenta, Lorentz and spinor indices, chiralities et cetera) and

r r
G =1 ———— € H, G =1- —— € H
2 [hw(n) 2 TAw(n)
res(MN)=v; res(l)=¢;
Gauge symmetries imply certain identities between these formfactors,
such as in pure Yang—Mills theories:

"o = i "y or W = 3+ I+ X

For renormalizability of gauge theories it is essential for these identities
to hold at any loop order: the Slavnov—Taylor identities for the couplings

R,—o (G"‘G‘“) — R,—o ((G‘“"%)2) ,

Thus, we first need an expression for the coproduct on the G"'s.



Structure of H
Gradings

e Grading by loop number /(I') = AY(T):

H= & H, q:H—H
IGZZO

o Multigrading by number of vertices:
di(l') = #vertices v; in T — 4, 1eq(r)

with
H = @ H"l:-w”k’ Py H — H™Mo0k
ni,...,n€EZX
@ These are related via Zf;l(val(v,-) —2)d; =2I.
N.B. Connected Hopf algebra: H® = H%0 = C1.



Structure of H
Hopf subalgebras

Example: scalar ¢3-theory (with one type of vertex v = —< and one
type of edge e = —) :

Proposition
The elements X = G¥(G®)~3/2 and G® generate a Hopf subalgebra in H:

AX)=> XM eq(X), AG)=> 6X’®q(G)
1=0 1=0

@ This is recognized as the Hopf algebra dual to (a subgroup of) the
group C[[\]]* x Diff(C,0). Namely, a character ¢ on this Hopf
subalgebra defines

@ An invertible formal power series by >, ¢(q/(G¢))N
@ A formal diffeomorphism on C by A — > 720 é(qi(X))A+1.



Structure of H

Hopf subalgebras and ideals
@ In general (vertices {vi,..., vk} and edges {e1,...,en}), we define for

each vertex v
G 1/val(v)—2
X, =
<H (Gej)valj(v)/2>

Proposition (vS 2008)

The coproduct on the Green's functions reads

A(Gr) — Z Gr(XVI)nl(val(v,-)f2) . (XVk)nk(val(vk)f2) ® Pnl,...,nk(Gr)a

Nn,...,Nk

@ On the elements X, we then have
AX) = D XXy )02 (X, )02 @ py, L (X0),
ni,...,Ngk

Thus, X, and G¢ (equivalently, G¥ and G*¢) for all vertices v and edges
e generate a Hopf subalgebra, when restricted to each multidegree...



Structure of H
Hopf subalgebras and ideals

Theorem (vS 2008)
@ The elements G and G® generate a Hopf subalgebra H' in H with
dual group
G = Home(H',C)  (C[[Au......, Ad])" » DIff(CX)
Q@ The ideal J := (X, — X,;) in H' is a Hopf ideal, i.e. H'/J is a Hopf
algebra with dual group
Home(H'/J,C) c (C[[A]]*)" » Diff(C)

@ The relations X, = X,, in the quotient Hopf algebra H'/J are called
(generalized) Slavnov—Taylor identities for the couplings.



Hochschild cohomology of Hopf algebras

@ Let H be a bialgebra and M an H-bicomodule, with cocommuting left
and right coactions py : M - H® M and pg - M — M ® H.

@ Denote by C"(H, M) the space of linear maps ¢ : M — H®"
@ The Hochschild coboundary map b: C"(H, M) — C™Y(H, M) is

bo = (id® d)pr + Y (—1)"Aip + (-1)" (¢ @ id)pr.
i=1

where A; denotes the application of the coproduct on the i’th factor.

Definition
The Hochschild cohomology HH®(H, M) of the bialgebra H with values in M
is defined as the cohomology of the complex (C*(H, M), b).




Hochschild cohomology group HH?(H)

@ M = H as a comodule over itself, with p; = A but with pg = (id ® €)A
[Connes—Kreimer 1998]

e For example, ¢ € HH(H) means:
Ap = (id® ¢)A + (¢ @ T).

where (¢ @ I)(h) = ¢p(h)® 1 for he H

@ The (suitably normalized) grafting operator Bl : H — H inserting
graphs into a primitive graph +y satisfies [Kreimer 2006, vS 2011]

A(BY(Xk,r)) = BY (Xe,r) @ 1T+ (id @ BI)A(Xk,r)

where X, , = G"(X,)?* € H/J, independent of the choice of v = resy.



Dirk’s gauge theory theorem
We define a linear map Bfr :H— H by

B = Y - B

ot Sym(y)
)=k, res(y)=r

Theorem (Kreimer 2005)
In the quotient Hopf algebra H/J, the following hold
@ G" =177, BE (Xi)
Q A(BY (Xk,)) = BE (X)) @ I+ (id ® BE")A(X ).
0 A(G)) =Y, Poli(G) ® Gf_;.
where Poli(G) is a polynomial in the Gy, of degree j, determined as the
order j term in the loop expansion of G"(X,)?<~%.




Dirk's unexpected influence on NCG

@ Alain Connes' noncommutative geometry is based on a
(noncommutative) algebra of coordinates A and a (generalization of a)
Dirac operator D, both acting on a Hilbert space H:

(A, H,D)

Key example: (CS°(R?), L2(R*) ® C*, @).
Gauge fields are derived by inner fluctuations:

D D+V; V=> a[D,bj
j

Spectral action functional :

tr (D + V)

My own quest: understand its structure and renormalizability properties



Expansion of the spectral action

Ongoing work with Teun van Nuland
@ It turns out that we can write [vS 2011]
tr f(D+ V) —tr f(D) ! lt
r —tr = ——
n2mi
n>1

T j{f’(z) (V(z — D)_l)n
@ Let us write this in terms of

(Vo Varo Vo) = 5t f @) [ (2 - D))

27
and then Hochschild cochains A"1 — C:

pn(a°,at, ..., a") = (a°|D, a'],[D, &%, ..., [D, a").

Lemma
We have b¢, = ¢nt1 for odd n and we have bp, = 0 for even n.




Hochschild cocycles

@ For the first few terms in the expansion we find
G0t = [ A
91
(a[D, b, a[D, b]>:/ A2+/ AdA
b2 @3
(a[D, b], a[D, b, a[D, b]>:/ A3+/ AdAA+/ AdAdA
@3 o ol
(a[D, b], a[D, b], a[D, b, a[ D, b]>:/ A4+/ (A3dA + AdAA?) + - .

o 5

with A = adb the universal differential 1-form corresponding to a[D, b].

@ This can be recollected as

1/ (dA+A2)+1/ (dA+ A2 + ...
2 J,, 4

4



Hochschild and cyclic cocycles

Also the remaining terms can be put in a nice form:
tr (f(D+ V) —f(D /A+ / (dA + A?) + /(AdA+§A3)
1 @2

(dA + A?)? +6/ (A(dA)? +§A3dA+§A5)+6/ (dA + A%)3
4 s ®6

where V = a[D, b] and A = adb.

The universal curvature 2-form F = dA + A? appear as Yang—Mills
terms F, F2, F3, integrated against even Hochschild cocycles ¢, ¢4, d.
We find Chern—Simons 1, 3 and 5-forms, integrated against odd cyclic
cocycles 1,13, 5.

An early instance of such an expression has been found for the
scale-invariant part of the spectral action [Chamseddine—Connes 2006].



Hochschild and cyclic cocycles

This structure of the spectral action functional persists at all orders!
Definition
The Chern—Simons form of degree 2n — 1 is given by

1
cson_1(A) = / A(F)"tdt;  Fp = tdA + t>A°.
0

Theorem
In terms of the universal curvature 2-form F = dA + A2 of A we have

e}

tr(f(D+v>—f<D>>~Z</w coner(A) + 3 [ Fk+1>

k=0

where (Yox+1) is a cyclic cocycle.




Gauge structure of the spectral action

in progress..
- 1
tr (F(D+ V) —f(D)) ~ / csok+1(A) + / Fhk+l
kz_;) Yok+1 2k +2 Pok+2

@ This simple structure of the spectral action in terms of Chern—-Simons
and Yang—Mills forms, integrated against cyclic and Hochschild
cocycles, respectively, invites for a study of the gauge structure

@ BRST-analysis: gauge invariance of the counterterms

...with many thanks to Dirk for his continuing inspiration!



