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a b s t r a c t

We study the convergence aspects of the metric on spectral truncations of geometry. We
find general conditions on sequences of operator system spectral triples that allows one
to prove a result on Gromov–Hausdorff convergence of the corresponding state spaces
when equipped with Connes’ distance formula. We exemplify this result for spectral
truncations of the circle, Fourier series on the circle with a finite number of Fourier
modes, and matrix algebras that converge to the sphere.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We continue our study of spectral truncations of (noncommutative) geometry that we started in [10] and here focus on
he metric convergence aspect of so-called operator system spectral triples. This is part of a program that tries to extend
he spectral approach to geometry to cases where (possibly) only part of the spectral data is available, very much in line
ith [11]. And even though the mathematical motivation should be sufficient, there is a clear physical motivation for
his. Indeed, from experiments we will only have access to part of the spectrum since we are limited by the power and
esolution of our detectors: we typically study physical phenomena up to a certain energy scale and with finite resolution.

The usual spectral approach to geometry [9] in terms of a ∗-algebra A of operators on H and a self-adjoint operator D
on H has been adapted in [10,11] to deal with such spectral truncations. The ∗-algebra is replaced by an operator system
E (dating back to [7]), which is by definition a ∗-closed subspace of B(H) containing the identity.

More precisely, we have the following definition.

Definition 1. An operator system spectral triple is a triple (E,H,D) where E is a dense subspace of an operator system E in
B(H), H is a Hilbert space and D is a self-adjoint operator in H with compact resolvent and such that [D, T ] is a bounded
operator for all T ∈ E .

An operator system comes with an ordering, namely, one can speak of positive operators in E ⊆ B(H). As a consequence
states on E can be defined as positive linear functionals of norm 1. The above triple then induces a (generalized) distance
function on the state space S(E) by setting

d(ϕ,ψ) = sup
x∈E

{|ϕ(x) − ψ(x)| : ∥x∥1 ≤ 1} (1)

where ∥ · ∥1 denote the Lipschitz semi-norm:

∥x∥1 = ∥[D, x]∥; (x ∈ E).
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If E = A is a ∗-algebra then this reduces to the usual distance function [8,9] on the state space of the C∗-algebra A = A.
t also agrees with the definition of quantum metric spaces based on order-unit spaces given in [17,18,21–23,27,28]. Note,
owever, that in the present work we restrict our attention to the metric structure on the state spaces, that is to say, as
n ordinary metric space. In contrast, in loc.cit. the authors develop the notion of quantum metric space and quantum
romov–Hausdorff distance which are formulated in the dual category (of C∗-algebras, order-unit spaces, et cetera) and
ith a more general version of the above distance function.
So, we will study the properties of this metric distance function and the notions of Gromov–Hausdorff convergence

t gives rise to. We consider sequences of spectral triples on operator systems and formulate general conditions under
hich we prove the state spaces equipped with the above distance functions to converge to a limiting state space. The

atter is also described by an operator system spectral triple. One of the novelties of our work is that we use the ideas of
orrespondences between compact metric spaces and their relation to Gromov–Hausdorff convergence as described for
nstance in [6, Section 7.3.3].

We exemplify our main result on Gromov–Hausdorff convergence by considering:

• spectral truncations on the circle;
• Fourier series with only a finite number of non-zero Fourier coefficients;
• matrix algebras converging to the sphere.

revious results in the literature on the distance function for spectral truncations have been reported in [11,13,14].
owever, in these works the distance function on states of the truncated system was only computed after pulling back
hese states to the original metric geometry. Extensions of the results contained in the present paper to tori are contained
n the master’s thesis [4].

The convergence of matrix algebras to the sphere was studied by Rieffel in [29] while computer simulations were
erformed in [3]. Using the general approach below we re-establish part of this convergence result, namely, the
romov–Hausdorff convergence of the corresponding (classical) metric spaces.
We note that other convergence results on the distance function on quantum spaces are obtained for quantum tori

n [20], for coherent states on the Moyal plane in [12]. More generally, in [13] certain sets of states have been identified
or which the Connes’ distance formula has good convergence properties with respect to a given metric on a Riemannian
anifold.

. Gromov–Hausdorff convergence for operator systems

Given a sequence of operator system spectral triples (En,Hn,Dn) we want to understand when and how this
pproximates an operator system spectral triple (E,H,D). We will adopt the point of view of [28] and consider the

convergence (in Gromov–Hausdorff distance) of the corresponding state spaces S(En) → S(E) equipped with the distance
formula (1). Since this notion of convergence is most suited to deal with compact metric spaces, we will assume below
(cf. Theorem 5) that the topology defined by the metric d coincides with the weak-∗ topology (with respect to which we
know the state spaces to be compact). For the examples that follow this assumption is indeed satisfied, see also Remark 3.

Definition 2. Let {(En,Hn,Dn)}n be a sequence of operator system spectral triples and let (E,H,D) be an operator system
spectral triple. An approximate order isomorphism for this set of data is given by linear maps Rn : E → En and Sn : En → E
for any n such that the following three conditions hold:

(1) the maps Rn, Sn are positive, unital maps
(2) there exist sequences γn, γ ′

n both converging to zero such that

∥Sn ◦ Rn(a) − a∥ ≤ γn∥a∥1,

∥Rn ◦ Sn(h) − h∥ ≤ γ ′

n∥h∥1.

In other words, we use the Lipschitz semi-norms to quantify how close the positive maps Rn and Sn are to being each
other’s inverse (i.e. form an order isomorphism) as n → ∞.

We will call a map between operator systems C1-contractive if it is contractive with respect to both the operator norms
and the Lipschitz semi-norms (thus assuming that we are given two operator system spectral triples for them). Finally, we
say that the pair of maps (Rn, Sn) is a C1-approximate order isomorphism if (Rn, Sn) is an approximate order isomorphism
in the above sense and for which all maps Rn and Sn are C1-contractive.

Note that the positivity and unitality condition on Rn, Sn in particular implies that we may pull back states as follows:

R∗

n : S(En) → S(E); ϕn ↦→ ϕn ◦ Rn,

S∗

n : S(E) → S(En); ϕ ↦→ ϕ ◦ Sn.

Remark 3. Even though it would be more natural to consider completely positive maps Rn, Sn between the operators
systems En and E, this turns out not to be necessary for the proof of our main result as in fact we restrict our attention
to the states space and the metric thereon. However, in all examples discussed below we find that E is a commutative

∗
C -algebra so that these maps are in fact completely positive (cf. [25, Theorems 3.9 and 3.11]).
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Let us denote the distance functions (1) for (En,Hn,Dn) and (E,H,D) by dEn and dE , respectively.

roposition 4. If (Rn, Sn) is a C1-approximate order isomorphism for (En,Hn,Dn) and (E,H,D), then

(1) For all ϕn, ψn ∈ S(En) we have

dE(ϕn ◦ Rn, ψn ◦ Rn) ≤ dEn (ϕn, ψn) ≤ dE(ϕn ◦ Rn, ψn ◦ Rn) + 2γ ′

n.

(2) For all ϕ,ψ ∈ S(E) we have

dEn (ϕ ◦ Sn, ψ ◦ Sn) ≤ dE(ϕ,ψ) ≤ dEn (ϕ ◦ Sn, ψ ◦ Sn) + 2γn.

Proof. Since Rn is Lipschitz contractive it follows that if ∥a∥1 ≤ 1 then also ∥Rn(a)∥1 ≤ 1. Hence

sup
a∈E

{|ϕ ◦ Rn(a) − ψ ◦ Rn(a)| : ∥a∥1 ≤ 1} ≤ sup
h∈En

{|ϕ(h) − ψ(h)| : ∥h∥1 ≤ 1} .

his establishes the first inequality (also proven in [11, Proposition 3.6]).
For the second, note that for all h ∈ En with ∥h∥1 ≤ 1 we have

|ϕn(h) − ψn(h)| ≤ |ϕn(Rn(Sn(h))) − ψn(Rn(Sn(h)))|
+ |ϕn(h) − ϕn(Rn(Sn(h)))| + |ψn(h) − ψn(Rn(Sn(h)))|

≤ dE(ϕn ◦ Rn, ψn ◦ Rn) + 2γ ′

n.

since ∥ϕn∥ = ∥ψn∥ = 1 and ∥Sn(h)∥1 ≤ ∥h∥1 ≤ 1. The second claim follows similarly. □

The final justification for the above definition of C1-approximate order isomorphism is our following, main result.

Theorem 5. Suppose (En,Hn,Dn) (n = 1, 2, . . .) and (E,H,D) are operator system spectral triples such that the topologies
on S(En) and S(E) defined by the metrics dEn and dE , respectively, agree with the weak-∗ topologies on them.

If (Rn, Sn) is a C1-approximate order isomorphism for (En,Hn,Dn) and (E,H,D), then the state spaces (S(En), dEn ) converge
to (S(E), dE) in Gromov–Hausdorff distance.

Proof. This follows by applying techniques for correspondences between metric spaces and their relation to Gromov–
Hausdorff convergence via the notion of distortion (cf. [6, Theorem 7.3.25]). In the case at hand one has for the
Gromov–Hausdorff distance that

dGH
(
(S(En), dEn ), (S(E), dE)

)
≤

1
2
dis(Rn)

where the correspondence Rn ⊂ S(En) × S(E) is defined by

Rn =
{
(ϕn, R∗

n(ϕn)) : ϕn ∈ S(En)
}

∩ {(Sn(ϕ), ϕ) : ϕ ∈ S(E)}

with distortion (cf. [6, Defn 7.3.21])

dis(Rn) = sup
{⏐⏐dEn (ϕn, ϕ′

n) − dE(ϕ, ϕ′)
⏐⏐ : (ϕn, ϕ), (ϕ′

n, ϕ
′) ∈ Rn

}
But from Proposition 4 it follows that this can be bounded by 2γn + 2γ ′

n, which converges to 0 as n → ∞. □

Remark 6. Given an operator system spectral triple (E,H,D), it is an interesting question to see when the metric topology
on S(E) defined by d coincides with the weak-∗ topology. For the commutative case, this was already established in [8]
while more generally it is also shown in that paper that if the set {h ∈ E : ∥[D, h]∥ ≤ 1}/C1 is bounded in E, then d is
a metric. Rieffel then established [26, Theorem 1.8] the most general result (for the compact case) stating that when the
above set is totally bounded, the d-topology agrees with the weak-∗ topology.

Below we will consider only finite-dimensional operator system spectral triples for which also ker[D, ·] = C, so that
the above set is totally bounded. Indeed, in this case ∥[D, ·]∥ induces a norm on the quotient E/C1 for which the unit
ball is compact. Hence, under these assumptions the d-topology coincides with the weak−∗ topology; a fact that we will
tacitly use throughout the rest of the paper.

Remark 7. Following up on the previous remark, there is a close relation between our notion of C1-approximate order
isomorphism and the (ε, C)-approximations of operator systems E equipped with a Lipschitz semi-norm L that were
considered recently in [16]. Such (ε, C)-approximations are defined by two maps ı, ϕ : E → F into some other operator
system F such that (1) C−1

∥a∥ ≤ ∥ı(a)∥ ≤ C∥a∥, ∥ϕ(a)∥ ≤ C∥a∥ for all a ∈ E; (2) ran(ϕ) ⊆ F is finite dimensional; and
(3) ∥ı(a) − ϕ(a)∥ ≤ εL(a).

Thus, if (Rn, Sn) is a C1-approximate order isomorphism in the sense we just defined, then, with the additional
assumption that ran(Rn) or ran(Sn) is finite-dimensional, the pair (ı = idE, Sn ◦ Rn) gives a (γn, 1)-approximation of the
pair (E, ∥ · ∥1). Note that in all examples discussed below this assumption of finite-dimensionality will be met.
3
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Fig. 1. The Fejér kernel FN =
1
N

sin2(Nx/2)
sin2(x/2)

for N = 10.

. Examples of Gromov–Hausdorff convergence

.1. Spectral truncations of the circle converge

We will analyze a spectral truncation of the distance function on the circle, the latter being described by the spectral
riple (

A = C∞(S1),H = L2(S1),D = −i
d
dx

)
. (2)

We will consider a spectral truncation defined by the orthogonal projection P = Pn of rank n onto spanC{e1, e2, . . . , en}
for some fixed n ≥ 1, where ek(x) = eikx (k ∈ Z) is the orthonormal (Fourier) eigenbasis of D. In the following we
will suppress the representation of C(S1) on L2(S1) by pointwise multiplication and simply write f for the corresponding
bounded operator. An arbitrary element T = PfP in PC(S1)P can be written as an n×n Toeplitz matrix Tkl = ⟨ek, fel⟩ = ak−l
n terms of the Fourier coefficients aj of f . In matrix form we thus have

T =

⎛⎜⎜⎜⎜⎜⎝
a0 a−1 · · · a−n+2 a−n+1
a1 a0 a−1 a−n+2
... a1 a0

. . .
...

an−2
. . .

. . . a−1
an−1 an−2 · · · a1 a0

⎞⎟⎟⎟⎟⎟⎠ . (3)

The corresponding operator system PC(S1)P = PC∞(S1)P is called the Toeplitz operator system and is denoted by C(S1)(n);
t has been analyzed at length in [10].

An operator system spectral triple for the Toeplitz operator system is given by (C(S1)(n), PL2(S1), PDP).

3.1.1. Fejér kernel
Clearly, the compression f ↦→ PfP by P = Pn defines a positive map Rn : C(S1) → C(S1)(n). In order to find an

pproximate inverse to this map we take inspiration from [29, Section 2]. In fact, we define Sn : C(S1)(n) → C(S1) to be
ts (formal) adjoint when we equip C(S1) with the L2-norm and C(S1)(n) with the (normalized) Hilbert–Schmidt norm. Let
x denote the natural action of S1 on C(S1)(n), and define a norm 1 vector |ψ⟩ in PL2(S1) by

|ψ⟩ =
1

√
n
(e1 + · · · + en) .

Proposition 8. The map Sn : C(S1)(n) → C(S1) defined for any T ∈ C(S1)(n) by Sn(T )(x) = Tr (|ψ⟩⟨ψ |αx(T )) satisfies

⟨f , Sn(T )⟩L2(S1) =
1
n
Tr
(
(Rn(f ))∗T

)
.

Moreover, we may write

Sn(Rn(f ))(x) =

n−1∑
k=−n+1

(
1 −

|k|
n

)
akeikx = (Fn ∗ f )(x)

in terms of the Fejér kernel F (see Fig. 1) and the Fourier coefficients a of f .
n k

4
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roof. Let us first check the formula for Sn(T ) by computing that

Tr (|ψ⟩⟨ψ |αx(T )) =
1
n

∑
k,l

Tklei(k−l)x
=

1
n

n−1∑
k=−n+1

(n − |k|)akeikx

Thus, Sn(T ) = Fn ∗ f when T = PfP – again understanding f as an operator acting on L2(S1) – and we may use elementary
Fourier theory (cf. [30, Proposition 3.1(vi)]) to derive

⟨g, Sn(T )⟩ = ⟨g, Fn ∗ f ⟩ =

n−1∑
k=−n+1

bkak

(
1 −

|k|
n

)
,

here bk are the Fourier coefficients of g . On the other hand, we have

1
n
Tr
(
(Rn(g))∗T

)
=

1
n

n−1∑
k,l=−n+1

bk−lak−l =
1
n

n−1∑
k=−n+1

bkak (n − |k|) . □

3.1.2. The circle as a limit of its spectral truncations
Let us now show in a series of Lemma’s that the conditions of Definition 2 are satisfied.

Lemma 9. For any f ∈ C∞(S1) we have ∥Rn(f )∥ ≤ ∥f ∥ and ∥[D, Rn(f )]∥ ≤ ∥[D, f ]∥.

Proof. Since Rn(f ) = PfP and P commutes with D this follows directly since P is a projection. □

Lemma 10. There exists a sequence {γn} converging to 0 such that

∥f − Sn(Rn(f ))∥ ≤ γn∥[D, f ]∥

for all f ∈ C∞(S1).

Proof. Since ∥[D, f ]∥ is equal to the Lipschitz constant for f [8, Proposition 1] we have that |f (x) − f (z)| ≤ |x − z|∥[D, f ]∥.
We use this in the following estimate

|f (x) − Sn(Rn(f ))(x)| ≤
1
2π

∫ π

−π

Fn(y)|f (x) − f (y − x)|dy

≤
1
2π

∫ π

−π

Fn(y)|y|dy · ∥[D, f ]∥ =: γn∥[D, f ]∥.

Because the Fejér kernels form an approximate delta-function at 0 (cf. [30, Theorem 4.1 and Lemma 5.1]) imply that
γn → 0. □

Lemma 11. For any T ∈ C(S1)(n) we have ∥Sn(T )∥ ≤ ∥T∥ and ∥[D, Sn(T )]∥ ≤ ∥[D, T ]∥.

roof. First note that [D, Sn(T )] is a function on S1 (it is i times the derivative of Sn(T )). Moreover, we have

|[D, Sn(T )](x)| = |Tr (|ψ⟩⟨ψ |αx([D, T ])) | ≤ ∥|ψ⟩⟨ψ |∥1∥αx([D, T ])∥ ≤ ∥[D, T ]∥.

ince this holds for any x, we may take the supremum to arrive at the desired inequality. The other inequality is even
asier. □

emma 12. There exists a sequence {γ ′
n} converging to 0 such that

∥T − Rn(Sn(T ))∥ ≤ γ ′

n∥[D, T ]∥

or all T ∈ C(S1)(n).

roof. Write T = PgP for g =
∑

k bke
ikx. Then the matrix coefficients of the Toeplitz matrix T − Rn(Sn(T )) are given by

(Tkl − Rn(Sn(T ))kl) =
(
bk−l

)
−
(
1 −

|k−l|
n bk−l

)
=
(

|k−l|
n bk−l

)
= (Tn − T ∗

n ) ⊙
( k−l

n bk−l
)

=
1
n
(Tn − T ∗

n ) ⊙
(
[D, T ]

)

5
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Fig. 2. The distance function dn(0, x) ≡ dn(0, S∗
n (evx)) on the Toeplitz operator system (Proposition 13) for n = 3, 5, 9. The blue band corresponds to

he lower bounds d(0, x) − 2γn given in Proposition 4 with the constants γn given in Lemma 10.

n terms of the Schur product ⊙ with Tn and T ∗
n where

Tn =

⎛⎜⎜⎝
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎞⎟⎟⎠ .
ow the norm of the map A ↦→ Tn ⊙ A for A ∈ Mn(C) coincides with ∥Tn∥cb (cf. [25, Chapter 8]). In [1, Theorem 1] the
ollowing estimate for this norm was derived:

∥Tn∥cb ≤

(
1 +

1
π
(1 + log(n))

)
.

Hence we have

∥T − Rn(Sn(T ))∥ ≤
2
n
∥Tn∥cb∥[D, T ]∥ ≤ γ ′

n∥[D, T ]∥

here γ ′
n :=

2
n

(
1 +

1
π
(1 + log(n))

)
. It is clear that γ ′

n → 0 as n → ∞. □

Thus we find that the pair of maps (Rn, Sn) for {(C(S1)(n), PnL2(S1), PnDPn)}n and (C∞(S1), L2(S1),D) forms a C1-
pproximate order isomorphism. We may conclude from Theorem 5 that

roposition 13. The sequence of state spaces {(S(C(S1)(n)), dn)}n converges to (S(C(S1)), d) in Gromov–Hausdorff distance.

Using a simple Python script we have computed the distance function for states on C(S1)(n) of the form S∗
n (evx) for

= 3, 5, 9, where evx is the pure state on C(S1) given by evaluation at x. The optimization problem for computing the
istance has been solved numerically using the standard sequential least squares programming (SLSQP) method and we
laim absolutely no originality or proficiency here. We have illustrated the numerical results in Fig. 2.

.2. Fejér–Riesz operator systems converge to the circle

In [10] we found the dual operator system of C(S1)(n) to be equal to the operator system of functions on S1 with only
finite number of non-zero Fourier coefficients. It gives a different type of truncation, this time taking place at the level
f the function algebra, as opposed to a spectral truncation in Hilbert space.
More precisely, we will consider the so-called Fejér–Riesz operator system:

C∗(Z)(n) = {a = (ak)k∈Z : supp(a) ⊂ (−n, n)} . (4)

he elements in C∗(Z)(n) are thus given by sequences with finite support of the form

a = (. . . , 0, a−n+1, a−n+2, . . . , a−1, a0, a1, . . . , an−2, an−1, 0, . . .)

nd this allows to view C∗(Z) as an operator subsystem of C∗(Z) ∼ C(S1).
(n) =

6
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The adjoint a ↦→ a∗ is given by a∗

k = a−k and an element a ∈ C∗(Z)(n) is positive iff
∑

k ake
ikx defines a positive function

on S1.
Since this naturally is an operator subsystem of C(S1) it is natural to consider the following spectral triple:(

C∗(Z)(n),H = L2(S1),D = −i
d
dx

)
. (5)

We will be looking for positive and contractive maps Kn : C(S1) → C∗(Z)(n) and Ln : C∗(Z)(n) → C(S1) satisfying
he conditions of Definition 2 so that we can apply Theorem 5 to conclude Gromov–Hausdorff convergence of the
orresponding state spaces.
We introduce

Kn : C(S1) → C∗(Z)(n)
f ↦→ Fn ∗ f

here we recall that Fn =
∑

|k|≤n−1(1 − |k|/n)eikx is the Fejér kernel so that Kn indeed maps to C∗(Z)(n) considered
s an operator subsystem of C(S1). The map Ln is simply the linear embedding of C∗(Z)(n) as an operator subsystem of
∗(Z) ∼= C(S1):

Ln : C∗(Z)(n) → C(S1)

(ak) ↦→

(
x ↦→

∑
k

akeikx
)
.

ositivity and contractiveness of Kn for the norm and Lipschitz norm is an easy consequence of the good kernel properties
f Fn while for Ln they are trivially satisfied.

emma 14. There exists a sequence γn converging to 0 such that

∥Ln ◦ Kn(f ) − f ∥ ≤ γn∥[D, f ]∥

or all f ∈ C∞(S1).

roof. Since Ln ◦ Kn(f ) = Fn ∗ f the proof is analogous to that of Lemma 10. □

emma 15. There exists a sequence γ ′
n converging to 0 such that

∥Kn ◦ Ln(a) − a∥ ≤ γ ′

n∥[D, a]∥

or all a ∈ C∗(Z)(n).

roof. From the Fourier coefficients of the Fejér kernel we find that

Kn ◦ Ln(a) − a =

(
−

|k|
n

ak

)
k
.

e will estimate the sup-norm of the function f (x) =
1
n

∑
k |k|akeikx by the Lipschitz norm of a. First of all, we may

write f as a convolution product f = g ∗ h where g =
∑n−1

k=−n+1 sgn(k)e
ikx and h =

1
n

∑n−1
k=−n+1 kake

ikx
=

1
n [D, a]. Then

∥f ∥∞ ≤ ∥g∥1∥h∥∞ where

∥g∥1 ≤ ∥g∥2 =
√
2n − 1.

e conclude that ∥g ∗ h∥∞ ≤ γ ′
n∥[D, a]∥∞ with γ ′

n =

√
2n−1
n → 0 as n → ∞. □

We conclude that the pair of maps (Kn, Ln) for {(C∗(Z)(n), L2(S1),D)}n and (C∞(S1), L2(S1),D) forms a C1-approximate
rder isomorphism and we have

roposition 16. The sequence of state spaces {(S(C∗(Z)(n)), dn)}n converges to (S(C(S1)), d) in Gromov–Hausdorff distance.

We again illustrate the numerical results for the first few cases in Fig. 3. As compared to the Toeplitz operator system
(Fig. 2) the optimization is much more cumbersome. This is essentially due to the fact that it involves the computation
of a supremum norm of a trigonometric polynomial.

Remark 17. If we recall the duality between C(S1)(n) and C∗(Z)(n) as operator systems from [10] it is quite surprising that
both operator system spectral triples converge to the circle as n → ∞.
7
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Fig. 3. The distance function dn(0, x) ≡ dn(0, L∗
nevx) on the Fejér–Riesz operator system (Proposition 16) for n = 2, 3. The blue band corresponds to

he lower bounds d(0, x) − 2γn given in Proposition 4 with the constants γN given in Lemma 14. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

.3. Matrix algebras converge to the sphere

In [28,29] Rieffel analyzed quantum Gromov–Hausdorff convergence for so-called quantum metric spaces. Such a space
s given by a pair (A, L) of an order-unit space A and a so-called Lipschitz norm L on A. At first sight, such spaces appear
o be more general than (operator system) spectral triples and the distance function they give rise to. However, as Rieffel
hows in [28, Appendix 2] Dirac operators are universal in the sense that the Lipschitz semi-norms can always be realized
s norms of commutators with a self-adjoint operator D. Note that it remains an open question, however, for what
ipschitz semi-norms one can find an operator D with compact resolvent implementing that semi-norm.
We show below that the corresponding state spaces with Connes’ distance formula converge in Gromov–Hausdorff

istance to the state space on the round two-sphere. This is closely connected – certainly at the technical level – to
he results of [29] which is that the matrix algebras that describe the fuzzy two-sphere converge in quantum Gromov–
ausdorff distance to the round two-sphere. Even though for much of the analysis we may refer to [28,29] we do formulate
he main results in our framework of operator system spectral triples and, as said, restrict our attention to the classical
etric spaces.
We will describe the round two-sphere by the following spectral triple:

(C∞(S2),C2
⊗ L2(S2),DS2 ) (6)

e write S2 = {(x1, x2, x3) ∈ R3
: x21 + x22 + x23 = 1} so that the following vector fields

Xjk = xj∂k − xk∂j; (j < k).

are tangent to S2. Of course, these vector fields are fundamental vector fields and generate the Lie algebra su(2). Note that
the normal vector field is given by x⃗ itself.

In terms of the three Pauli matrices we may then write the Dirac operator as [32]

DS2 = (x⃗ · σ⃗ )
∑
j<k

σ jσ k
⊗ Xjk. (7)

Note that (x⃗ · σ⃗ ) :=
∑3

k=1 xkσk acts as the chirality operator and makes sure that the spinor bundle on S2 is actually
non-trivial (as it should).

The fuzzy sphere [24] is obtained when one considers spherical harmonics on the sphere only up to some maximum
total spin. More precisely, it is described by a matrix algebra L(Vn) where Vn is the n-dimensional irreducible representation
of SU(2). A Dirac operator on the fuzzy sphere was introduced in [15] (see also [2]):

Dn :=

∑
j<k

σ jσ k
⊗ [Ljk, ·] (8)

where Ljk are standard generators of su(2) in the n-dimensional representation, satisfying

[L , L ] = δ L − δ L − δ L + δ L .
jk lm kl jm km jl jl km jm kl

8



W.D. van Suijlekom Journal of Geometry and Physics 162 (2021) 104075

T

T
s
d
j

R
t
r
i

t
T
l
m
o

3

o

w
σ

S

w

P

M

P

s

u

his gives rise to the following spectral triple

(L(Vn),C2
⊗ L(Vn),Dn) (9)

he comparison between (7) and (8) is convincing, except for the absence of the chirality operator in the case of the fuzzy
phere. However, as shown in [2] this can be repaired for by a doubling of the representation space and a corresponding
oubling constructing for the Dirac operator. Note that this does not alter the corresponding Lipschitz norms, so we may
ust as well work with the Dirac operator defined in (8).

emark 18. The paper [2] also contains a detailed discussion on the nature of the spectral truncation that applies to
he case at hand (see [2, Section 6.3]). It depends on the decomposition of the Hilbert space of spinors into irreducible
epresentations of Spin(3). However, since we will not need the specific form of the truncation here, we refrain from
ncluding it here.

Let us now proceed to show that there is a C1-approximate order isomorphism (σ̆ , σ ) for the sequence of spectral
riples defined in (9) and the spectral triple of (6). As a consequence, we thus re-establish part of the conclusion of [29,
heorem 3.2] that the fuzzy sphere converges to the two-sphere in Gromov–Hausdorff distance as n → ∞. Note that
oc.cit. goes further in establishing that this limit is the unique limit of the sequence of fuzzy spheres (and also extends to
ore general coadjoint orbits). The reason we have included this example here is that it is formulated entirely in terms
f spectral triples, and fits the general framework set up in Section 2.

.3.1. Berezin symbol and Berezin quantization
Following [29] we start by defining maps σ : L(Vn) → C(S2) and σ̆ : C(S2) → L(Vn). Given a projection P ∈ L(Vn), say,

n the highest-weight vector of Vn, we define the Berezin symbol σ : L(Vn) → C(S2) by [5]

σ (T )(g) ≡ σT (g) := Tr(Tαg (P)) (10)

here αg is the action of g ∈ SU(2) induced by conjugation on L(V ). Since αu(P) = P for all u ∈ U(1), it follows that
(T ) is U(1)-invariant and thus descends to a function on SU(2)/U(1) = S2. Moreover, we readily see that σ is an
U(2)-equivariant map which will turn out to be useful later.
We let σ̆ : C(S2) → L(Vn) be the adjoint of the map σ when C(S2) comes equipped with the L2-inner product and L(Vn)

ith the Hilbert–Schmidt inner product. There is also the following explicit expression (cf. [29, Sect.2]).

roposition 19. The map σ̆ defined by σ̆ (f ) ≡ σ̆f = n
∫
f (g)αg (P)dg satisfies

⟨f , σT ⟩ =
1
n
Tr(σ̆f T ).

oreover, we may write the so-called Berezin transform as a convolution product

σ (σ̆f )(g) = (f ∗ HP )(g) ≡

∫
f (gh−1)HP (h)dh

where HP is a probability measure defined by

HP (g) = n Tr(Pαg (P)).

roof. As in [29, Sect.2] we check the formula for σ̆ (f ) by computing that

⟨f , σT ⟩ =

∫
f (g) Tr(Tαg (P))dg = Tr

(∫
f (g)Tαg (P)dg

)
o that the result follows.
For the Berezin transform we then indeed have that

σ (σ̆f )(g) = Tr
(
σ̆f αx(P)

)
= Tr

(
n
∫

f (h)αh(P)dhαg (P)
)

= n
∫

f (h) Tr(Pαh−1g (P))dh = n
∫

f (gh−1)HP (h)dh

sing also that HP (h−1) = HP (h). □

Again, one readily observes that σ̆ is an SU(2)-equivariant map.
9
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3

L

.3.2. The sphere as a limit of matrix algebras
We now show in a series of Lemma’s that the conditions of Definition 2 hold for Rn = σ̆ and Sn = σ .

emma 20. For any f ∈ C∞(S2) we have ∥σ̆f ∥ ≤ ∥f ∥ and ∥[Dn, σ̆f ]∥ ≤ ∥[DS2 , f ]∥.

Proof. The contractive property of σ̆ is proved for instance in [19, Theorem 1.3.5] where σ̆ is the Berezin quantization
map. Then, by SU(2)-equivariance of σ̆ we have

[Dn, σ̆f ] =

∑
j<k

σ jσ k
⊗ [Ljk, σ̆f ] =

⎛⎝∑
j<k

σ jσ k
⊗ σ̆ ([Xjk, f ])

⎞⎠ = (1 ⊗ σ̆ )[DS2 , f ].

Since σ̆ is a positive map from a commutative domain to a C∗-algebra, it follows by a Theorem by Stinespring [31] (cf. [25,
Theorem 3.11]) that σ̆ is completely positive. But then, it follows from [25, Proposition 3.6] that σ̆ is completely bounded
with ∥σ̆∥cb = ∥σ̆∥. In particular, ∥1 ⊗ σ̆∥ ≤ ∥σ̆∥ ≤ 1 so that it follows that

∥[Dn, σ̆f ]∥ ≤ ∥(1 ⊗ σ̆ )∥∥[DS2 , f ]∥ ≤ ∥[DS2 , f ]∥. □

Lemma 21. There exists a sequence {γn} converging to 0 such that

∥f − σ (σ̆f )∥ ≤ γn∥[DS2 , f ]∥

for all f ∈ C∞(S2).

Proof. We exploit the expression for σ (σ̆f ) as a convolution product from Proposition 19. Indeed,

|f (g) − σ (σ̆f )(g)| =

⏐⏐⏐⏐∫ (f (g) − f (h))HP (h−1g)dh
⏐⏐⏐⏐

≤ ∥f ∥Lip

∫
d(g, h)HP (h−1g)dh = ∥f ∥Lip

∫
d(e, h)HP (h)dh

where d is the SU(2)-invariant (round) distance on SU(2)/U(1) and ∥f ∥Lip is the corresponding Lipschitz seminorm of f .
Since ∥f ∥Lip = ∥[DS2 , f ]∥ by standard arguments [9, Sect. VI.1] and

∫
d(e, h)HP (h)dh → 0 as n → ∞, the result follows. □

Lemma 22. For any T ∈ L(Vn) we have ∥σT∥ ≤ ∥T∥ and ∥[DS2 , σT ]∥ ≤ ∥[Dn, T ]∥.

Proof. The map σ is a contraction:

∥σT∥ = sup
g

|Tr Tαg (P)| ≤ ∥T∥ sup
g

Tr |αg (P)| = ∥T∥.

Since σ is also SU(2)-equivariant we again find that

[DS2 , σT ] =

∑
j<k

σ jσ k
⊗ [Xjk, σT ] =

⎛⎝∑
j<k

σ jσ k
⊗ σ ([Ljk, T ])

⎞⎠ = (1 ⊗ σ )[Dn, T ].

Since the range of σ is a commutative C∗-algebra it follows from [25, Theorem 3.9] that ∥σ∥cb = ∥σ∥. Hence

∥[DS2 , σT ]∥ ≤ ∥(1 ⊗ σ )∥∥[Dn, T ]∥ ≤ ∥[Dn, T ]∥

since σ is a contraction. □

Lemma 23. There exists a sequence {γ ′
n} converging to 0 such that

∥T − σ̆ (σT )∥ ≤ γ ′

n∥[Dn, T ]∥

for all T ∈ L(Vn).

Proof. This is based on a highly non-trivial result [29, Theorem 6.1] which states that there exists a sequence {γ ′
n}

converging to 0 such that

∥T − σ̆ (σT )∥ ≤ γ ′

nLn(T )

for all T ∈ L(Vn), where Ln is the Lipschitz norm on L(Vn) defined by

Ln(T ) = sup
∥αg (T ) − T∥
g ̸=e l(g)
10
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f
or a length function g on SU(2) that induces the round metric on S2. However, as in the proof of [26, Theorem 3.1] we
may estimate

Ln(T ) ≤ sup
X∈su(2)

{∥[X, T ]∥ : ∥X∥ ≤ 1}

while the right-hand side can be bounded from above by k∥[D, T ]∥ for some constant k independent of n (as in the display
preceding [26, Theorem 4.2]. □

We have thus verified that the maps (σ̆ , σ ) between {L(Vn),C2
⊗ L(Vn),Dn) and (C∞(S2),C2

⊗ L2(S2),DS2 ) form a
C1-approximate order isomorphism and we may conclude from Theorem 5 that

Proposition 24. The sequence of state spaces {(S(L(Vn)), dn)}n converges in Gromov–Hausdorff distance to (S(C(S2)), d).
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