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Summary

This dissertation explores two aspects of spectral geometry: that of finite approximation
and that of continuous change.

Finite approximation

The main theme of Part I is that the spectral description of geometry, like the point-set
one, should include a natural way to represent partial knowledge. This would both
be very desirable from the side of applications (such as to quantum field theory and
computer science) and be worth seeking as a further enrichment of the dictionary
between noncommutative and differential geometry. The proposed candidate is that of
truncations ofDirac-type spectral triples, selected both for its physical intuitiveness and
for its mathematical simplicity.

The body of this part comprises three chapters, each a freestanding scientific article.
The first, Chapter 2, addresses the relation between purely spectral asymptotic invariants
(that is, geometric invariants determined uniquely by the asymptotics of the spectrum
of any Laplace-type operator) and the asymptotics of functionals of the truncated
spectrum. The requisite technical innovation is a careful balance between the asymp-
totic short-time behaviour of the heat trace and its exponential decay in the operator
spectrum.

Chapter 3 addresses the issue of reconstructing a Riemannian manifold from succes-
sively larger truncations of any associated Dirac-type spectral triple. A new notion of
quantitatitve dispersion (roughly, under the Riesz representation theorem, correspond-
ing to a statistical variance) is introduced to present a further balancing consideration,
that of localization of states. This is then combined with time-spectrum balance of
the previous chapter to show that from these truncations one can reconstruct a metric
space that increasingly approximates themanifold itself. Computability being a guiding
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Summary

principle, a conjectural assumption about the equivalence of certain metrics on the
localized states is applied to propose a computer algorithm to isometrically visualise the
approximating metric spaces.

Finally, given the vast generality of the notion of spectral triples and the difficulty in
recognizing them from any given truncation, Chapter 4 asks whether we can recognize
whether a given operator system spectral triple is the truncation of a Dirac-type spectral
triple, as a truncated variant of Connes’ reconstruction theorem. The higher Heisen-
berg relation in noncommutative geometry is used to present an asymptotic algebraic
constraint on the truncated operator. A numerical investigation of this constraint
in the case of the sphere then results in the analytic discovery of a pseudodifferential
operator on the sphere that, surprisingly, better exhibits the properties of a commutative
spectral triple in its truncations. The results of the previous articles are then applied to
compare these, no longer Dirac-type but still approximately commutative, truncations
of spectral triples.

Continuous change

Part II extends the concept of Schatten-class operators to (countably generated) Hilbert
modules over commutativeC∗-algebras. Two main ingredients guide the construction.

First, we realize that there are two extremal generalizations of the Schatten-class criterion
to operators on the standard module, namely, either that a family be continuous (and
vanishes at infinity) in Schatten normor that its pointwise Schatten normbe continuous
(and vanish at infinity). Each has desirable properties, but a priori neither is obviously
the correct choice. A refined understanding of the Schatten-norm convergence of finite
matrix truncations of Schatten-class operators on the standard Hilbert space is then
developed to show that our considered generalizations do in fact coincide. As a corollary
the main, and very desirable, properties of the Schatten classes on Hilbert spaces are
extended to those on the standard Hilbert module over a commutativeC∗-algebra.

Second, Kasparov’s stabilization theorem allows us to view all countably generated
Hilbert modules over a C∗-algebra as complementable submodules of its standard
module. The pullbacks of the Schatten classes on the standard module under this
identification form two-sided ideals and are therefore invariant under the choice of
isomorphic submodules. Moreover, because the Schatten norms are unitarily invariant,
the two-sided ideal thus obtained canonically inherits a Banach space structure and is
identified with the set of adjointable operators whose characterwise Schatten norms lie
in the base algebra.

vi



Summary

As direct applications, the Fredholm determinant and the operator zeta function ob-
tain their generalization to the setting of countably generated Hilbert modules over
commutativeC∗-algebras, while retaining essential properties such as multiplicativity
(of the former) and holomorphicity.

The relation between traces and geometric invariants, already central to Chapter 2 of
the thesis, should generalize to geometric correspondences, that is, Hilbert bimodules over
commutative C∗-algebras equipped with a suitable selfadjoint regular operator. An
important step in that direction is a definition of the relevant class of finitely summable
cycles, so as to give rise to at least a spectral notion of (fiber) dimension and allow
application of the preliminary theory of operator zeta functions on Hilbert modules
developed earlier in the thesis. This leads to the conjecture that the new notion of
summability be additive under the unbounded Kasparov product, followed by the
presentation of some important supporting examples.

Operators on Hilbert modules over noncommutativeC∗-algebras exhibit deeply con-
trasting properties with respect to the trace. Chapter 8 presents the difficulty in the
form of a highly problematic and basic example. As a possible approach to a solution,
it goes on to discuss the idea that one should not work in the space of all adjointable
operators, but rather with a subalgebra. The natural setting would then become that of
inner-product bimodules.
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Part I

Finite spectral geometry





Chapter 1

Introduction

Nowwe see as through a glass, darkly …
Now what I know is incomplete.

1 Corinthians 13:12

The spectral picture of geometry begets its naturality from deep ties to physics, both
classical – through the language of vibrations andheat flow–andquantum– through its
natural accomodation of noncommutativity. Both aspects call for a coherent approach
to approximate geometry, to accomodate the limited physical information accessible by
ourselves as well as the viewpoints of renormalization and effective field theory. The
present work engages the issue through a study of truncations ofDirac-type spectral
triples.

Sketches and building blocks

Both construction and observation of shapes in the physical world proceed successively, in
stages of increasing refinement. The knowledge of the final shape that each intermediate
stage represents is finite and incomplete. It is, however, nontrivial. The theory of
spectral geometry, in contrast to that of metric spaces, reflects this notion only rather
opaquely. It is this opacity that we aim to alleviate by introducing the spectral analogon
of partial geometric knowledge.
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1. Introduction

Spectral truncations

The basic objects of noncommutative geometry are the spectral triples (𝐴,𝐻,𝐷), which
represent a Riemannian manifold whenever the triple is of Dirac type, that is, when𝐴
is the algebra of its smooth functions and𝐷 is a Dirac-type operator on a Hermitian
bundle, both represented on the Hilbert space𝐻 of its sections. Spectral triples come
with a natural momentum cutoff, the projection 𝑃𝛬 onto the [−𝛬,𝛬]-eigenspaces of
𝐷 that yields the truncation (𝑃𝛬𝐴𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷) [AB84; DLM14b; CS20]. Because 𝑃𝛬
commutes with𝐷, this truncation preserves all symmetries – including the isometries
of an underlying Riemannian manifold.

Chapters 2 and 3 investigate a natural framework for incremental observation in spectral
geometry, by connectingmetric geometry and its invariants to truncations ofDirac-type
spectra. Chapter 4 explores the issue of recognizing those objects that are truncations
of Dirac-type spectral triples and thereby takes a first step towards a spectral account of
cumulative construction.

Nonperturbative regularization in quantum gravity

A common starting point for several candidate theories of quantum gravity is the
path integral over the space of all Lorentzian metrics (on a given smooth background
manifold, say), with respect to some gravitational action. To obtain effective field
theories from this paradigm, one introduces some type of regularization, restricting the
integral to metrics constrained by some cutoff parameter𝛬 – ideally one that preserves
the appropriate symmetries. These remaining metrics are then the building blocks
that constitute the geometries considered at given scale. One salient example is that of
Causal Dynamical Triangulations, where the Regge calculus is used to regularize the
space of Lorentzian metrics in terms of flat simplicial manifolds.

In noncommutative geometry, the spectral action principle guides an approach to Eu-
clidean quantum gravity that is naturally regularized by spectral truncation [CL90;
Con96; Bar07; CCM07]. The construction of observables for such a theory then re-
quires ametric understanding of truncated spectral triples (again, seeChapters 2, 3), and
the parametrization of a suitable domain for the path integral requires a demarcation
of the truncations of Dirac-type (that is, commutative) spectral triples (see Chapter 4)
within the broader set of operator system spectral triples.
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1. Introduction

Digital representation of geometric objects

In computer science, the discrete and finite nature of our machines necessitate ap-
proximation and precision management when dealing with geometric objects. This
often leads to discrete representations thereof through e.g. polygonal meshes, which
exemplifies the metric-spaces approach to partial geometric knowledge. In contrast, the
philosophy of spectral geometry in its most basic form, the Fourier transform, under-
pins many important applications such as the lossy compression methods of the JPEG
andMP3 standards.

Laplacian-based approaches to shape recognition and manipulation have been the
subject of persistent interest in the fields of computer graphics (following e.g. [Lev06])
and manifold learning (such as [BN02]). A true understanding of truncated spectral
geometry would provide a consistent framework for methods in this direction. As
a first step, the method of [BN07] to recapture part of the Laplacian spectrum and
eigenfunctions from a sufficiently dense finitemetric subspace finds its dual counterpart
in the algorithm of Chapter 3 that reconstructs such metric subspaces from finite
spectral data.

Spectral timescale and localization

An important ingredient in the relation between truncated Dirac-type spectral triples
(and, in particular, the truncated spectrum of generalized Laplacians 𝛥) and Rieman-
nian geometry is the short-time asymptotic behaviour of the heat kernel, see Section 1.1.
It is well-known that the heat equation 𝜕𝑡𝑢(𝑥, 𝑡) = −𝛥𝑢 has a fundamental solution
𝐾(𝑡,𝑥,𝑦)which satisfies∫𝑀𝐾(𝑡, ⋅, 𝑦)𝑢(𝑦)𝑑𝑦 = 𝑒−𝑡𝛥𝑢, and the behaviour of𝐾(𝑡,𝑥,𝑦) as
𝑡 → 0 captures much (indeed, all) of the metric geometry of a Riemannian manifold
𝑀. In order to connect to partial spectra, we need to balance the exponential decay, in
the spectrum of 𝛥, of𝐾with its short-time asymptotics. The timescale at which this
balance is preserved, as first seen in Chapter 2, is that of 𝑡𝛬 = 𝑂(𝛬

−1 log𝛬) – where𝛬
is the relevant cut-off of the spectrum of 𝛥. Interestingly, the principle of heat flow
on an appropriate timescale underlies not only our Chapters 2, 3 – as a bridge from
spectral to metric data – but also – in the other direction – many of the applications of
the Laplacian in computer science discussed above.

At the spectral timescale 𝑡𝛬, the heat kernel is not only well approximated by that of
the truncated Laplace-type operator 𝑃𝛬𝛥, but is also optimally localized given that
condition. In Section 3.3 we show that the probability measure on𝑀 associated to
the fiberwise square norm of the vector 𝑃𝛬𝐾(𝑡𝛬, 𝑥, ⋅) has second Wasserstein distance
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1.1. Mathematical preliminaries

𝑂(𝛬−2) to 𝑥 ∈𝑀, providing an asymptotic counterpart to the points of𝑀 in terms
of truncations of its Dirac-type spectral triple.

The continuum nature of Connes’ reconstruction theorem

Somewhat orthogonal to the issue of connecting metric and spectral geometry is that
of demarcating spectral geometry inside the larger realm of noncommutative geometry.
Connes’ reconstruction theorem [Con13] (cf. pp. 20 below) provides algebraic criteria
to determine when a spectral triple is commutative, that is, of Dirac type. These criteria,
however, do not coexist well with truncation. It is very much an open problem to find
conditions that, if only asymptotically, ensure that a given operator system spectral triple
corresponds to the truncations of a Dirac-type spectral triple. Chapter 4 investigates a
first approach, employing the higher Heisenberg relation of [CCM14] as a version of
the crucial orientability axiom.

Both the higherHeisenberg relation - as an index constraint - and the results ofChapter 2
relate truncations of spectral triples to K-theory invariants. The fascinating result of
[LS17] shines a different light on that relation, and combining the two presents an
interesting avenue for further work.

1.1 Mathematical preliminaries

The following chapters are concernedwith the geometric properties of truncated,Dirac-
type spectral triples. The basic philosophy is that the geometric information about𝑀
that is present in such a spectral triple should be recoverable, asymptotically, from its
truncations. Themost important technique that connects aDirac-type spectral triple to
its truncations is the asymptotic expansion of the heat kernel of generalized Laplacians.
The interplay between that expansion and the (metric and topological parts of) Connes’
reconstruction theorem constitutes the central theme of Chapters 2 and 3.

Dirac-type spectral triples

This section introduces the topic of Dirac-type operators on Hermitian bundles over
smooth Riemannianmanifolds. For further reading and context, see [BGV04; GVF01].

Definition 1.1.1. A second-order differential operator 𝛥 on a vector bundle 𝐸 over
a smooth Riemannian manifold𝑀 is a generalized Laplacian if its principal symbol
equals the metric. That is, for all 𝑓 ∈ 𝐶∞(𝑀), the section 𝜎2(𝛥,𝑑𝑓) of End𝐸 is given

6



1.1. Mathematical preliminaries

by

𝜎2(𝛥,𝑑𝑓)
def= −12[[𝛥,𝑓

∗],𝑓] = (𝑑𝑓,𝑑𝑓),

where (𝑑𝑓,𝑑𝑓) is the element of𝐶∞(𝑀) given by 𝑥 ↦ (𝑑𝑓𝑥,𝑑𝑓𝑥)𝑇∗
𝑥𝑀.

The definition sets up a strong expectation that the Riemannian structure of𝑀 is fully
captured by such an (elliptic) operator𝛥 and the action of𝐶∞(𝑀) on𝛤∞(𝐸). This (and
more) is indeed the case. The precise statement will be part of Connes’ reconstruction
theorem, below.

Definition 1.1.2. ADirac-type operator𝐷on a vector bundle𝐸 over a smoothmanifold
𝑀 is a first-order differential operator on 𝐸 such that𝐷2 is a generalized Laplacian.

Proposition 1.1.3. The principal symbol of a Dirac-type operator induces a Clifford
module structure on 𝐸. That is to say, for 𝑓 ∈ 𝐶∞(𝑀), the section

𝑐(𝑑𝑓) def= 𝑖[𝐷,𝑓]

of End𝐸 satisfies
𝑐(𝑑𝑓)𝑐(𝑑𝑔)+ 𝑐(𝑑𝑔)𝑐(𝑑𝑓) = 2(𝑑𝑓,𝑑𝑔).

Proof. Because𝐷 is of order 1, the commutator [𝐷,𝑓] is an endomorphism of 𝐸 and
so commutes with 𝐶∞(𝑀). Therefore, we have 𝐷𝑓[𝐷,𝑔] + [𝐷,𝑔]𝐷𝑓 = 𝐷[𝐷,𝑔]𝑓+
[𝐷,𝑔]𝐷𝑓 = [𝐷2, 𝑔]𝑓 and similarly 𝑓𝐷[𝐷,𝑔] + [𝐷,𝑔]𝑓𝐷 = 𝑓𝐷[𝐷,𝑔] + 𝑓[𝐷,𝑔]𝐷 =
𝑓[𝐷2, 𝑔] so that [𝐷,𝑓][𝐷,𝑔] + [𝐷,𝑔][𝐷,𝑓] = [[𝐷2, 𝑔],𝑓], which equals −2(𝑑𝑓,𝑑𝑔)
by polar decomposition of 𝜎2(𝛥, ⋅).

Corollary 1.1.4. For𝑓 ∈𝐶∞(𝑀), one has sup𝑥∈𝑀 ∥𝑑𝑓𝑥∥𝑇∗
𝑥𝑀

= ∥[𝐷,𝑓]∥
𝛤(End𝐸)

which

is in turn, by smooth extension of extremizing elements of 𝐸, equal to ∥[𝐷,𝑓]∥
𝐵(𝐿2(𝐸))

.

The principal symbol of𝐷 is therefore nothing more or less than a Clifford module
structure. In fact, there exists a canonical connection∇ on𝐸 associated to𝐷2 such that
𝐷 = −𝑖𝑐 ∘∇ up to a bundle endomorphism, as follows.

Proposition 1.1.5. Let 𝛥 be a generalized Laplacian and 𝛥0 be the Laplacian on func-
tions. Then, the map ∇∶ 𝛤(𝐸) × 𝛤(𝑇𝑀) → 𝛤(𝐸) defined by ∇(𝑑𝑓)#𝑠 =

1
2 (𝛥0(𝑓) −

[𝛥,𝑓])𝑠 is an affine connection on 𝐸. Moreover, up to a bundle endomorphism of 𝐸,
the associated connection Laplacian on 𝐸 is equal to 𝛥.
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1.1. Mathematical preliminaries

Corollary 1.1.6. The operator𝐷′ = −𝑖𝑐 ∘∇ is a first-order Dirac-type differential oper-
ator on 𝐸. In particular,𝐷−𝐷′ is a bundle endomorphism of 𝐸.

Remark 1.1.7. Any compact, orientable Riemannian manifold carries a Dirac-type
operator on some Hermitian vector bundle. For spinc manifolds the most natural
choice of Dirac-type operator is given by the Dirac operator𝐷 = −𝑖(1⊗𝑐) ∘∇, where
∇ is a Clifford connection on the chosen spinor bundle – if the manifold is in fact spin,
then the connection can be determined uniquely if one demands that it commute with
the charge conjugation operator.

On spinc manifolds equipped with a spinor bundle 𝑆, each bundle 𝐸 carrying a Dirac-
type operator𝐷𝐸 is of the form 𝑆⊗𝐹, where 𝐹 is a Hermitian vector bundle carrying a
Hermitian connection ∇𝐹, and𝐷𝐸 is of the form𝐷𝑆⊗1− 𝑖𝑐⊗∇𝐹, plus possibly an
endomorphism of 𝐸. That is to say, the rank of 𝑆 is minimal among those carrying
Dirac-type operators, and each Dirac-type operator is just a twist of𝐷𝑆 - see [Ply86].

The interplay between the algebra𝐶∞(𝑀) and a Dirac-type operator𝐷 is realized on
the Hilbert space 𝐿2(𝐸;𝑀) given by the completion of 𝛤(𝐸)with respect to the inner
product induced by the Hermitian structure on 𝐸 and the volume form on𝑀. This
triple is in fact sufficient to recover the geometric data used to define it, such as the
smooth, Riemannian manifold𝑀, the bundle 𝐸→𝑀with its Hermitian structure,
and of course the differential operator𝐷.

Definition 1.1.8 (Dirac-type spectral triples). ADirac-type spectral triple (associated
to the compact, Riemannian manifold𝑀) consists of the algebra 𝐶∞(𝑀) and the
Dirac-type operator𝐷 on a Hermitian vector bundle 𝐸 over𝑀, both viewed in their
representation on the Hilbert space 𝐿2(𝐸;𝑀).

By Proposition 1.1.3, Corollary 1.1.14 (below) and the discussion preceding Propo-
sition 1.1.13 (below), a Dirac-type spectral triple is a special case of the following
definition.

Definition 1.1.9 (Spectral triples). Let 𝐴 be a unital C∗-algebra represented on a
Hilbert space𝐻, and let𝐷 be a selfadjoint, possibly unbounded, operator on𝐻. Let
𝒜 ⊂ 𝐴 be a dense ∗-subalgebra. Then, (𝒜,𝐻,𝐷) is said to be a spectral triple whenever

• The resolvent (𝐷+𝑖)−1 is compact.

• [𝐷,𝑎] is bounded for all 𝑎 ∈ 𝒜.

8



1.1. Mathematical preliminaries

Connes’ reconstruction theorem (Theorem1.1.39, below) shows that each commutative
spectral triple is (unitarily equivalent to) aDirac-type spectral triple. That is to say, given
a spectral triple (𝒜,𝐻,𝐷), there is a known list of algebraic conditions on𝒜,𝐷 that
allow one to determine whether it is unitarily equivalent to a Dirac-type spectral triple.
As such, the Dirac-type spectral triples form a reasonably general and well-understood
spectral picture of Riemannian geometry.

Truncated spectral triples

In quantum field theory, the scaling behaviour of classical field theories and the pos-
tulated infinite granularity of space(time) often conspire to introduce (ultraviolet) di-
vergences. This necessitates a careful balancing act, regularizing the scaling behaviour,
that is then combined with experimental evidence to produce a renormalized theory
with physical predictions. A common way to regularize the theory is to introduce a
momentum cutoff, restricting the considered interactions to those whose momentum is
bounded by a cutoff parameter𝛬, and then investigating the scaling with𝛬.

In the fermionic sector1 of gauge theories, this was expressed in [AB84] as a trunca-
tion𝐷↦ 𝑃𝛬𝐷𝑃𝛬 of the relevant Dirac operator, where 𝑃𝛬 = 1[−𝛬,𝛬](𝐷) is the spectral
projection onto the eigenspaces of eigenvalue |𝜆| ≤ 𝛬 of𝐷.

Such a truncation is very natural: one does not need to make additional choices (unlike
when discretizing spacetime2, for instance), the high-momentum interactions that are
neglected are naturally difficult to observe, and all symmetries of the original Dirac
operator (including, notably, those induced by isometries) are preserved because they
commute with 𝑃𝛬.

Thirty years later, after the birth of noncommutative geometry, [DLM14b] investigated
what the geometric consequences of such a truncation would be, when interpreted
in the context of that discipline. Viewed from the perspective of comparison to the
non-truncated geometry, the relevant objects are of the following form.

Definition 1.1.10. Let (𝒜,𝐻,𝐷)be a spectral triple, let𝛬∈ℝ+ and let𝑃𝛬 = 1[−𝛬,𝛬](𝐷)
∈ 𝐵(𝐻). Then, (𝑃𝛬𝒜𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷𝑃𝛬) is said to be a truncated spectral triple and a spectral
truncation of (𝒜,𝐻,𝐷).

1And in far greater generality: see Section 1.1.
2In the sense that the only parameter here is𝛬, whereas discretizations require a choice of triangulation

or other decomposition into building blocks. It should be noted, however, that such geometric choices
may exhibit a degree of universality, making them less relevant from a physical point of view (cf. e.g. [JL13;
CS12]).
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1.1. Mathematical preliminaries

It is important to realize that 𝑃𝛬𝒜𝑃𝛬 is no longer naturally an algebra, because 𝑃𝛬 is
usually far from commuting with𝒜 (compare Proposition 1.1.3). This puts us firmly
outside the realm of spectral triples per se, and into the realm of operator system spectral
triples as introduced in [CS20]. The general theory developed there is very much in
line with the physics angle discussed here, and aims in particular to bring its increased3

flexibility to bear on quantum gravity.

The central objects of study of the following chapters are the spectral truncations of
Dirac-type spectral triples. Chapters 2 and 3 explore how the geometry of𝑀 relates
to truncations of Dirac-type spectral triples (𝐶∞(𝑀),𝐿2(𝐸;𝑀),𝐷). Chapter 4, in
contrast, probes whether one can recognize spectral truncations of Dirac-type spectral
triples algebraically.

The spectral function of a generalized Laplacian

The interplay between the geometric properties encoded by the principal symbol of a
generalized Laplacian and the spectral properties of its closure 𝛥 in 𝐿2(𝐸;𝑀) is largely
mediated through the heat kernel and its asymptotic expansion. At the heart of Chap-
ter 2 lies a balance between the exponential decay of the (trace of) the associated heat
operator in the spectrum of 𝛥 and its well-known short-time divergence. Additional
control over the exponential off-diagonal decay of the heat kernel, balanced with both,
then allows for technical control over the tension between the local geometry of𝑀
and the global invariants provided by the spectrum of 𝛥, as figures prominently in
Chapter 3.

Definition 1.1.11 (Heat kernel). Let𝑀 be a compact, orientable Riemannian mani-
fold and let 𝛥 be a generalized Laplacian acting on a smooth bundle 𝐸→𝑀. A heat
kernel of 𝛥 is a smooth section 𝑝𝑡(𝑥,𝑦) of the bundle 𝐸⊠𝐸

∗ over𝑀×𝑀×ℝ>0, such
that

• 𝑝𝑡(𝑥,𝑦) satisfies the heat equation

(𝜕𝑡 +𝛥𝑥)𝑝𝑡(𝑥,𝑦) = 0.

• For all smooth sections 𝑠 of 𝐸, one has

lim
𝑡→0

∫
𝑀
𝑝𝑡(𝑥,𝑦)𝑠(𝑦)𝑑vol(𝑦) = 𝑠(𝑥),

3As compared to Riemannian geometry.
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1.1. Mathematical preliminaries

uniformly in 𝑥 ∈𝑀.

The second condition guarantees uniqueness, if a heat kernel exists.

Note that 𝑝𝑡(𝑥,𝑦) is the integral kernel of the operator 𝑒
−𝑡𝛥.

Let 𝜌 be the injectivity radius of 𝑀 and let 𝜒 be a smooth, monotone decreasing
function onℝ+ such that 𝜒(𝑠

2) = 1 for 0 ≤ 𝑠 < 𝜌/2 and 𝜒(𝑠2) = 0 for 𝑠 > 𝜌.

Theorem 1.1.12 (Asymptotics of the heat kernel). Let𝑀 be a compact, orientable
Riemannian manifold and let 𝛥 be a generalized Laplacian acting on a smooth bundle
𝐸→𝑀. Then, there exists a heat kernel 𝑝𝑡(𝑥,𝑦) of 𝛥.

Moreover, there exist unique smooth sections 𝛷𝑘 ∈ 𝛤
∞(𝑀×𝑀,𝐸⊠𝐸∗) such that

asymptotically

𝑝𝑡(𝑥,𝑦) ∼ (4𝜋𝑡)
−𝑚/2𝑒−𝑑(𝑥,𝑦)

2/4𝑡𝜒(𝑑(𝑥,𝑦)2)
∞
∑
𝑘=0

𝑡𝑘𝛷𝑘(𝑥,𝑦),

in the sense that

sup
𝑥,𝑦∈ℐ

∥𝜕𝑙𝑡 (𝑝𝑡(𝑥,𝑦)− (4𝜋𝑡)
−𝑚/2𝑒−𝑑(𝑥,𝑦)

2/4𝑡𝜒(𝑑(𝑥,𝑦))2
𝑁
∑
𝑘=0

𝑡𝑘𝛷𝑘(𝑥,𝑦))∥ = 𝑂(𝑡
𝑁−𝑚/2−𝑙),

for all𝑁 > 𝑚/2 and all 𝑙 ≥ 0. Here,𝛷0 is the parallel transport map associated to the
connection determined by 𝛥.

Proof sketch, as in [BGV04, Theorem 2.30]. Construct a formal solution to the heat

equationby termwise solving (𝜕𝑡+𝛥𝑥)(4𝜋𝑡)
−𝑚/2𝑒−𝑑(𝑥,𝑦)

2/4𝑡𝜒(𝑑(𝑥,𝑦))2∑∞
𝑘=0 𝑡

𝑘𝛷𝑘(𝑥,𝑦)
= 0 in order to obtain the𝛷𝑘. Then show that the partial sum

𝑘𝑁𝑡 (𝑥,𝑦)
def= (4𝜋𝑡)−𝑚/2𝑒−𝑑(𝑥,𝑦)

2/4𝑡𝜒(𝑑(𝑥,𝑦))2
𝑁
∑
𝑘=0

𝑡𝑘𝛷𝑘(𝑥,𝑦)

constitutes a parametrix of theheat equation,meaning that 𝑟𝑁𝑡 (𝑥,𝑦)
def= (𝜕𝑡+𝛥𝑥)𝑘

𝑁
𝑡 (𝑥,𝑦)

lies in 𝛤𝑙(ℝ≥0 ×𝑀×𝑀,𝐸⊠𝐸∗) and is 𝑂(𝑡𝑁−𝑚/2−𝑙/2) in 𝐶𝑙 norm, for𝑁 > 𝑙+𝑚/2,
and that

lim
𝑡→0

∫
𝑀
𝑘𝑁𝑡 (𝑥,𝑦)𝑠(𝑦)𝑑vol(𝑦) = 𝑠(𝑥)

for sections 𝑠 of 𝐸. Fix 𝑁 > 𝑚/2 + 1 and define the iterated convolution products
𝑞𝑙𝑡

def= 𝑘𝑁𝑡 ∗ (𝑟𝑁𝑡 )
∗𝑙−1 in the variable 𝑡. Then, the series∑∞

𝑙=0(−1)
𝑙𝑞𝑙𝑡(𝑥,𝑦)will converge

11
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in 𝐶2 norm, its limit 𝑝𝑡(𝑥,𝑦) will be a heat kernel, and the remainder 𝜕
𝑝
𝑡 (𝑝𝑡(𝑥,𝑦) −

𝑘𝑁𝑡 (𝑥,𝑦)) = 𝜕
𝑝
𝑡 ∑

∞
𝑙=1(−1)

𝑙𝑞𝑙𝑡 will be𝑂(𝑡
𝑁−𝑚/2−𝑝−𝑞/2+1) in𝐶𝑞 norm.

Let𝑃𝑡 be the operator defined by the integral kernel 𝑝𝑡(𝑥,𝑦). One can use the facts that,
due to the heat equation, 𝑃𝑡 commutes with 𝛥 and that lim𝑡→0𝑃𝑡𝑠 → 𝑠 to show that 𝛥
is essentially selfadjoint whenever it is symmetric, with respect to a Hermitian structure
on 𝐸 that defines the Hilbert space 𝐿2(𝐸;𝑀). For brevity, we will denote its closure by
𝛥 as well.

Proposition 1.1.13. Let 𝛥 be the selfadjoint closure of a symmetric generalized Lapla-
cian on 𝐿2(𝐸;𝑀)with heat kernel 𝑝𝑡(𝑥,𝑦). Then, we have 𝑃𝑡 = 𝑒

−𝑡𝛥. In particular, if

𝐸𝜆 is the projection on the 𝜆-eigenspace of 𝛥, we have 𝑃𝑡 =∑𝜆 𝑒
−𝑡𝜆𝐸𝜆 in norm.

Proof. Note that the operators 𝑃𝑡 form a semigroup by uniqueness of the heat kernel.
Thus, there is an increasing sequence of real numbers 𝜆𝑖 such that the eigenvalues of
the positive operators 𝑃𝑡 = 𝑃

2
𝑡/2 are of the form 𝑒−𝜆𝑖𝑡. Now, for eigenspinors 𝜓 of 𝑃𝑡

with eigenvalue 𝑒−𝜆𝑡, we have −𝜆𝜓 = 𝜕𝑡𝑃𝑡𝜓|𝑡=0 = −𝛥𝜓, so that in fact 𝑃𝑡 = 𝑒
−𝑡𝛥.

This exponentially decaying series expression provides an essential link between the
spectral truncations of 𝛥 and the geometric properties of𝑀 encoded in its symbol.

Corollary 1.1.14 (Asymptotic trace of the heat kernel). Let 𝐸 be equipped with a
Hermitian structure such that the generalized Laplacian 𝛥 is symmetric. Then, the
operator 𝑃𝑡 = 𝑒

−𝑡𝛥 is of trace class for all 𝑡 > 0, and its trace,

tr𝑃𝑡 =∫
𝑀
tr𝐸𝑥 𝑝𝑡(𝑥,𝑥)𝑑𝑥,

satisfies

tr𝑃𝑡 ∼ (4𝜋𝑡)
−𝑚/2

∞
∑
𝑘=0

𝑡𝑘∫
𝑀
tr𝐸𝑥𝛷𝑘(𝑥,𝑥)𝑑vol(𝑥).

Proof sketch. That 𝑃𝑡 is of trace class follows from the fact that the kernel of its square
root, 𝑃𝑡/2, is square-integrable. The asymptotic expansion of the trace follows from the
restriction of the expansion of 𝑝𝑡(𝑥,𝑦) to the diagonal.

Corollary 1.1.15. The operator 𝛥 has compact resolvent.

12
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Proof. Because 𝑒−𝑡𝛥 is in the trace class, the spectrum of 𝛥must be discrete, with finite
multiplicity, and accumulate only at∞.

Corollary 1.1.16 (The zeta function). Let𝐸𝜆 be the projections onto the 𝜆 eigenspaces
of𝛥. Then, define the one-parameter semigroups𝛥−𝑠 by𝛥−𝑠 def= ⨁𝜆>0 𝜆

−𝑠𝐸𝜆, which are
clearly bounded (and compact) forℜ𝑠 > 0.

Then, for ℜ𝑠 > 𝑚/2, the operator 𝛥−𝑠 is of trace class. Moreover, the zeta function,
defined forℜ𝑠 > 𝑚/2 as

𝜁(𝛥, 𝑠) def= tr𝛥−𝑠

extends meromorphically toℂ, with simple poles at {𝑚/2,𝑚/2−1,…,1}whenever𝑚
is even, and at {𝑚/2,𝑚/2−1,…}whenever𝑚 is odd, and with residues

res𝑠=𝑚/2−𝑘 𝜁(𝛥, 𝑠) =
∫𝑀𝛷𝑘(𝑥,𝑥)𝑑vol(𝑥)
(4𝜋)𝑚/2𝛤(𝑚/2−𝑘)

whenever𝑚/2−𝑘 is indeed a pole.

Proof. By the Jensen-Cahen theorem [HR64, Theorem 2], the series∑𝜆>0 rk𝐸𝛬𝜆
−𝑠 is

uniformly convergent on angular regions in the half-plane that forms its domain, so
that it is holomorphic there.

Let𝑔(𝑡) def= ∑𝜆>0 𝑒
−𝑡𝜆, so that𝑔(𝑡) = tr𝑃𝑡−rk𝐸0. Consider theMellin transform𝑓(𝑠) def=

∫∞
0 𝑡𝑠−1𝑔(𝑡), which is well-defined forℜ𝑠 > 𝑚/2 due to the small-time asymptotics of
𝑔(𝑡), its positivity and its monotone decay. Then, as in [FGD95, Theorem 3], 𝑓(𝑠)
has the singular expansion 𝑓(𝑠) = ∑𝑘

𝑐𝑘
𝑠−𝑠𝑘 , where 𝑠𝑘 = 𝑚/2−𝑘 and 𝑐𝑘 is the coefficient

of 𝑡𝑘−𝑚/2 in the asymptotic expansion of the heat trace. Moreover, by the Fubini-

Tonelli theoremwemay write 𝑓(𝑠) =∑𝜆>0 rk𝐸𝜆∫
∞
0 𝑒−𝜆𝑡𝑡𝑠−1𝑑𝑡 = 𝛤(𝑠)∑𝜆>0 𝜆

−𝑠 rk𝐸𝜆 =
𝛤(𝑠) tr𝛥−𝑠. Wemust therefore conclude that 𝜁(𝛥, 𝑠) = 𝑓(𝑠)/𝛤(𝑠) continues analytically
to a meromorphic function onℂ. Moreover, by the knowledge of the poles of 𝑓(𝑠) and
𝛤(𝑠), the poles of 𝜁(𝛥, 𝑠)must all be simple and must be located at 𝑠𝑘 = 𝑚/2−𝑘, for
𝑘 ∈ ℤ≥0, unless 𝑠𝑘 is a nonpositive integer.

Proposition 1.1.17 (Identification of the first asymptotic heat coefficients). We have

tr𝐸𝑥𝛷0(𝑥,𝑥) = rk𝐸, tr𝐸𝑥𝛷1(𝑥,𝑥) = rk𝐸 ⋅𝑅(𝑥)/6,

where 𝑅 is the scalar curvature of the Riemannian metric 𝜎(𝛥) on𝑀.
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Proof sketch, cf. [Ros97]. Clearly 𝛷0(𝑥,𝑥) = id𝐸𝑥 . If we locally trivialize the bundle
𝐸 in Riemannian normal coordinates around 𝑥, then we have𝛷0(exp(0),exp(𝑦)) =
√det𝑔exp𝑦 for sufficiently small 𝑦 ∈ ℝ

𝑚, so that𝛷0 is expressible as a Taylor series in

universal polynomials of the components of the Riemann tensor and its covariant
derivatives by a theorem due to Cartan, cf. [Ber03, Proposition 67]. By construction,
then, all𝛷𝑘 are expressible in that fashion, so that tr𝛷1(𝑥,𝑥) is expressible as a universal
polynomial in the Riemann tensor. Now, note that the endomorphisms𝛷𝛼2

𝑘 associated

to the generalizedLaplacian𝛼2𝛥 (with respect to the rescaledmetric)must equal𝛼−2𝑘𝛷𝑘,

whereas the 𝑘th iterated covariant derivatives of the Riemann tensor scale as 𝛼−2−𝑘. This
allows us to conclude that tr𝛷1 cannot contain constant or derivative terms, so that it is
a universal linear polynomial in theRiemann tensor. Itmust, therefore, be proportional
to the scalar curvature. Explicit calculation on e.g. 𝑛-spheres completes the proof.

Chapter 2 discusses how to approximate these coefficients of the heat trace asymptotics
using only a finite part of the spectrum of 𝛥.

Corollary 1.1.18 (Weyl’s law). The counting function𝑁(𝛬) def= #{∑𝜎(𝛥)∋𝜆<𝛬 tr𝐸𝜆}
satisfies

𝑁(𝛬) ∼ 𝛬𝑚/2 vol(𝑀) rk(𝐸)
(4𝜋)𝑚/2𝛤(𝑚/2+1)

as𝛬→∞.

Proof. TheWiener-Ikehara theorem [Wie88, Theorem 19.16] shows that, whenever
the function 𝑔 is positive and the integral 𝑓(𝑠) = ∫ℝ+

𝑥−𝑠𝑑𝑔(𝑥) converges for ℜ𝑠 > 1,

we have 𝑔(𝑥) ∼ 𝑥 ⋅ lim𝑠→1(𝑠−1)𝑓(𝑠). Now write 𝑔(𝑥) = 𝑁(𝑥𝑚/2), so that res𝑠=1𝑓(𝑠) =
res𝑠=1 𝜁(𝛥,

𝑚𝑠
2 ).

States and Gelfand duality

LetTopHCpt be the category of compact Hausdorff spaces and continuous maps, and
let𝐶∗AlgCom be the category of unital, abelianC∗-algebras and ∗-homomorphisms.

Abstractly speaking,Gelfand duality is the statement that a specific pair𝐶,𝛤 of functors
implements an equivalence between these categories. For further details on the topic of
this section, see [GVF01, Chapter 1] and the references therein.
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Definition 1.1.19. The (contravariant) functor 𝐶∶ TopHCpt → 𝐶∗AlgCom sends a
compact topological space𝑋 to the unital, abelianC∗-algebra𝐶(𝑋) ofℂ-valued con-
tinuous functions.

On morphisms, 𝐶 sends a continuous map 𝜙∶ 𝑋 → 𝑌 to the ∗-homomorphism 𝜙∗
from𝐶(𝑌) to𝐶(𝑋) given by 𝑓 ↦ 𝑓∘𝜙.

Now, points 𝑥 ∈ 𝑋 correspond to elements ofHom(∗,𝑋), and so under the functor
𝐶 correspond to evaluation morphisms ev𝑥 ∶ 𝐶(𝑋) → 𝐶(∗) = ℂ. The construction
of the functor 𝛤 proceeds from the realization that such ℂ-valued homomorphisms
(characters), endowed with the weak ∗-topology, correctly capture the notion of point
in the setting of𝐶∗AlgCom.

For the purposes of Chapter 3, we will first work with the larger subspace of the topo-
logical dual𝐴∗ consisting of states (instead of just the characters), so as to gain a more
flexible picture of the dictionary betweenTopHCpt and𝐶

∗AlgCom.

Definition 1.1.20. Let𝐴 be aC∗-algebra. A bounded linear map 𝜙∶ 𝐴→ ℂ is said to
be a state of𝐴 if 𝜙(1) = 1 and 𝜙(𝑎∗𝑎) ≥ 0 for all 𝑎 ∈ 𝐴. The convex set of all such states
is denoted by 𝑆(𝐴).

Indeed, all states of𝐶(𝑋) are convex combinations of evaluationmaps, in the following
sense.

Theorem 1.1.21 (Riesz representation theorem). Let 𝜙 be a state of 𝐶(𝑋), for 𝑋 a
compact Hausdorff space. Then there exists a regular Borel probability measure 𝜇𝜙 on
𝑋 such that

𝜙(𝑓) =∫
𝑋
𝑓𝑑𝜇𝜙

Proof. See [Con90, Appendix C].

Corollary 1.1.22. The extreme points of the convex set 𝑆(𝐶(𝑋)) are evaluation func-
tionals {ev𝑥 ∣ 𝑥 ∈ 𝑋}.

Proof. Let 𝜇 be the measure corresponding to an extreme point of the convex set of
states.

First, assume𝐾↪𝑋 has measure 0 < 𝜇(𝐾) < 1. Then, let 𝜇0(𝑌)
def= 𝜇(𝑌∩𝑋)/𝜇(𝐾)

and 𝜇1(𝑌)
def= 𝜇(𝑌⧵𝐾)/𝜇(𝑋⧵𝐾) and observe that 𝜇 = 𝜇(𝐾) ⋅𝜇0+𝜇(𝑋⧵𝐾) ⋅𝜇1. Thus,

𝜇 takes values in {0,1}whenever it is an extreme point.
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Let now 𝑥,𝑦 be both in the support of 𝜇 and let𝐾𝑥,𝐾𝑦 be disjoint open sets containing
𝑥,𝑦 respectively. Now, by additivity and positivity of 𝜇, either 𝜇(𝐾𝑥) = 0 or 𝜇(𝐾𝑦) = 0,
contradicting the assumption. We conclude that supp(𝜇) is a single point 𝑥 ∈ 𝑋, so
that∫𝑋𝑓𝑑𝜇 = 𝑓(𝑥) = ev𝑥(𝑓).

That is to say, we can recognize the points of𝑋 purely in terms of theC∗-algebra𝐶(𝑋).
What about its topology?

Definition 1.1.23. Let𝐴 be a unital, abelianC∗-algebra. ItsGelfand spectrum𝐴 is the
set of extreme points of 𝑆(𝐴), equipped with the weak ∗-topology.

Theorem 1.1.24. Let𝐴 be a unital, abelianC∗-algebra. Then𝐴 is compact and Haus-
dorff.

Proof. First, note that the weak ∗-topology on 𝐴∗ is completely Hausdorff: after all,
the evaluation functionals {ev𝑣 ∣ 𝑣 ∈ 𝒳} are continuous and separate points. Moreover,
by Banach-Alaoglu (see [Con90, p. V.3.1]) its unit ball is compact.

Now let us show that 𝐴 is a closed subspace (which is contained in that unit ball by

Cauchy-Schwartz). To that end, we will show that 𝐴 consists precisely of the multi-
plicative elements of𝐴∗.

Assume 𝜙 ∈ 𝐴 is multiplicative and that there exist 𝜙1,𝜙2, 𝜆1, 𝜆2 with 𝜙 = 𝜆1𝜙1 +𝜆2𝜙2.
In particular, 𝜆1𝜙1 ≤ 𝜙. By Cauchy-Schwartz for the functional (𝑎,𝑏)→ 𝜙1(𝑎

∗𝑏), then,
we see that ker𝜙 ⊂ ker𝜆1𝜙1, so that we must have 𝜙1 = 𝜙. That is to say, 𝜙must be an
extreme point.

Conversely, suppose 𝜙 ∈ 𝐴∗ is not multiplicative. Then the (GNS) representation 𝜋𝜙 of
𝐴 by multiplication on𝐴/ker𝜙, with the inner product induced by 𝜙, cannot be one-
dimensional: there exist 𝑎,𝑏 in𝐴 such that ⟨𝜋𝜙(𝑎)(1𝐴),𝜙𝜙(𝑏)(1𝐴)⟩ = 𝜙(𝑎

∗𝑏), which
by assumption on 𝑎,𝑏 does not equal 𝜙(𝑎∗)𝜙(𝑏) = ⟨𝜙𝜙(𝑎)(1𝐴),1𝐴⟩ ⟨1𝐴,𝜋𝜙(𝑏)(1𝐴)⟩, so
that 1𝐴 cannot be an orthonormal basis even though it is normalized. Thus, by Schur’s
lemma there exist a projection 𝑃 commuting with 𝜋𝜙. Then, the linear functionals
𝑎 ↦ ⟨1𝐴,𝑃𝜙𝜙(𝑎)1𝐴⟩ and 𝑎 ↦ ⟨1𝐴, (1−𝑃)𝜋𝜙(𝑎)1𝐴⟩ are positive and sum to 𝜙, so that
𝜙 cannot be an extreme point of the state space.

Now, theweak ∗-limit ofmultiplicative states ismultiplicative, so that the set of extremal
states is a closed subset of a compact Hausdorff space.
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Corollary 1.1.25. Let𝐴be a unital, abelianC∗-algebra and let𝐴be its space of extremal

states with the weak ∗-topology. Then the map ev ∶ 𝐴 → 𝐶(𝐴) is an isomorphism of
C∗-algebras.

Proof. As 𝐴 consists of multiplicative ∗-functionals, the map ev is itself a ∗-homo-
morphism. It is injective because the states are the convex hull of the extremal states

by Krein-Milman and separate 𝐴. Thus, ev(𝐴) is a closed subalgebra of 𝐶(𝐴) that
separates points. By Stone-Weierstrass (the proof of which, as in [Con90, p. V.8.1], is
similar to the arguments above: roughly, the unit ball of the set of functionals vanishing
on such a closed subalgebra must be the convex hull of its extreme elements, which

must then correspond to points of𝐴) we conclude that ev is surjective.

Corollary 1.1.26. Let𝑋 be a compactHausdorff space. Then themap ev ∶ 𝑋→𝐶(𝑋)
is a homeomorphism.

Proof. That ev is surjectivewas already shown, and it is injective byUrysohn’s lemma. If
𝑥𝑛 →𝑥, then ev𝑥𝑛 → ev𝑥 by definition of the weak ∗-topology. Thus, ev is a continuous
bijection of compact Hausdorff spaces and is therefore a homeomorphism.

Definition 1.1.27. The Gelfand spectrum is the covariant functor 𝛤∶ 𝐶∗AlgCom →
TopHCpt thatmaps objects𝐴∈𝐶∗AlgCom to their extremal state space𝐴 andmorphisms

𝜓∶ 𝐴→ 𝐵 to the pullback 𝜓∗ ∶ 𝐵 → 𝐴,𝜒 ↦ 𝜒∘𝜓.

Gelfand duality now follows from Corollary 1.1.25 and 1.1.26:

Theorem 1.1.28 (Gelfand duality). The functors 𝐶,𝛤 form an equivalence of cate-
gories.

This is, roughly, the topological statement at the heart of spectral geometry. For the
metric part, we need to introduce the Connes metric on 𝑆(𝐶(𝑋)).

The Connes metric

Definition 1.1.29 (Connes metric). Let (𝐶∞(𝑀),𝐿2(𝐸;𝑀),𝐷) be a Dirac-type spec-
tral triple. Then, the Connes metric on the space 𝑆(𝐶(𝑀)) of states of𝐶(𝑀) is given
by

𝑑(𝜙,𝜓) def= sup{∣𝜙(𝑓)−𝜓(𝑓)∣∣𝑓 ∈ 𝐶∞(𝑀),∥[𝐷,𝑓]∥ ≤ 1} .

17



1.1. Mathematical preliminaries

Definition 1.1.30 (Wasserstein4 distance). Let𝑀 be a compact Riemannian manifold
and let 𝜇,𝜈 be probability measures. Then the 𝑝-thWasserstein distance between 𝜇 and
𝜈 is

𝑊𝑝(𝜇,𝜈)
def= ( inf

𝜌∈𝛱(𝜇,𝜈)
∫
𝑀×𝑀

𝑑(𝑥,𝑦)𝑝𝑑𝜌(𝑥,𝑦))
1/𝑝

,

where𝛱(𝜇,𝜈) is the set of probabilitymeasures𝜌on𝑀×𝑀 such that𝜌[𝐴×𝑀] = 𝜇[𝐴],
𝜌[𝑀×𝐴] = 𝜈[𝐴], for all measurable𝐴 ⊂𝑀.

As, for atomic measures 𝛿𝑥, 𝛿𝑦 supported at 𝑥,𝑦 in𝑀, we have𝛱(𝛿𝑥, 𝛿𝑦) = {𝛿(𝑥,𝑦)}, the
following proposition follows immediately from the definition.

Proposition 1.1.31. With respect to the metric𝑊1, the embedding 𝑥→ 𝛿𝑥 of𝑀 into
its space of probability measures is an isometry.

The relation between the Connes metric and the first Wasserstein distance is cemented
by the following important theorem.

Theorem 1.1.32 (Kantorovich-Rubinstein duality). Let 𝜇,𝜈 be probability measures
on𝑀. Then,

𝑊1(𝜇,𝜈) = sup{∫
𝑀
𝑓𝑑(𝜇−𝜈)∣𝑓 ∈ 𝐶(𝑀),Lip𝑓 ≤ 1} ,

where 0 ≤ Lip𝑓 ≤ ∞ denotes the Lipschitz constant sup𝑥,𝑦∈𝑀
|𝑓(𝑥)−𝑓(𝑦)|

𝑑(𝑥,𝑦) .

Proof. See [Vil09, Theorem 5.10].

In particular, by density of the inclusion𝐶∞(𝑀) ⊂ 𝐶(𝑀), we now see that Dirac-type
operators carry not just the Riemannian metric in their symbol but, rather elegantly,
the geodesic distance as well:

Corollary 1.1.33 (Connes metric, commutative case). For states 𝜙,𝜓 of the algebra
𝐶(𝑀) of continuous functions on a compact Riemannianmanifold𝑀with associated
probability measures 𝜇𝜙,𝜇𝜓, the Connesmetric is equal to the firstWasserstein distance:

𝑑(𝜙,𝜓) =𝑊1(𝜇𝜙, 𝜈𝜓).
4This metric is known under various other names, especially for the case 𝑝 = 1, including ‘1-Wasserstein’,

‘Monge-Kantorovich’ and ‘EarthMover’s’. See e.g.[Vil09, Chapter 6], where it is argued that the ‘Wasserstein’
nomenclature is unfortunate; it is, however, the most common.
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Corollary 1.1.34. Let (𝐶∞(𝑀),𝐿2(𝐸;𝑀),𝐷) be a Dirac-type spectral triple. Then
the metric space𝑀 is isometric to the Gelfand dual𝐶(𝑀)when the latter is equipped
with the Connes metric.

TheRiemannianmetric on𝑀 is givenby themap (𝑓,𝑔)↦ (𝑑𝑓,𝑑𝑔)𝑇∗𝑀 = [𝐷,𝑓]∗[𝐷,𝑔].
We now see that it is in fact already fully determined by the seminorm 𝑓 ↦ ∥[𝐷,𝑓]∥
on𝐶∞(𝑀).

Corollary 1.1.35. Let𝐷1,𝐷2 be Dirac-type operators on Hermitian bundles 𝐸1,𝐸2
over Riemannian manifolds𝑀1,𝑀2. Then𝑀1,𝑀2 are isometric if and only if there
exists an isomorphism 𝜙∶ 𝐶(𝑀1) → 𝐶(𝑀2) such that ∥[𝐷1,𝑓]∥ = ∥[𝐷2,𝜙(𝑓)]∥ for
all 𝑓 ∈ 𝐶(𝑀1).

Proof. The ‘if’ part is an immediate corollary, and the ‘only if’ part follows from the
uniqueness of the Levi-Civita connection and the fact that ‖[𝐷,𝑓]‖2 = ‖∇𝑓‖2.

Chapter 3 is occupied with approximating points (as elements of𝐶(𝑀) ⊂ 𝑆(𝐶(𝑀)))
and the Connes distance between them in terms of truncations of Dirac-type spectral
triples, so as to recover the metric space𝑀.

The reconstruction theorem

Dirac-type spectral triples are the prime example of commutative spectral triples. Indeed,
Connes’ reconstruction theorem (Theorem 1.1.39 below) shows that they are the only
examples thereof and are therefore uniquely characterized by the following properties.

Definition 1.1.36. A spectral triple (𝒜,𝐻,𝐷) is said to be commutative whenever the
∗-algebra𝒜 is a commutative and there exists some integer 𝑝 such that

1. Dimension: The 𝑛-th singular value, with multiplicity, of (𝐷+𝑖)−1 is𝑂(𝑛−1/𝑝).

2. First-order: For all 𝑓,𝑔 ∈ 𝒜, [[𝐷,𝑓],𝑔] = 0.

3. Regularity: For 𝑎 ∈ 𝒜, all iterated commutators of 𝑎 and [𝐷,𝑎] with |𝐷| are
bounded.
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4. Orientability: There exists a Hochschild cycle∑𝑖 𝑐𝑖𝑎
0
𝑖 ⊗⋯⊗𝑎𝑝𝑖 in 𝑍𝑝(𝒜,𝒜)

such that
∑
𝑖
𝑐𝑖𝑎

0
𝑖 [𝐷,𝑎

1
𝑖 ]⋯[𝐷,𝑎

𝑝
𝑖 ] = 𝛾,

where 𝛾 = 1 if 𝑝 is odd and 𝛾 is a grading on 𝐻 that anticommutes with 𝐷
otherwise.

5. Finiteness and absolute continuity: The𝒜-module 𝐸 =⋂𝑚 dom𝐷𝑚 is finite and
projective, and there exists an𝒜-linear,𝒜-valued inner product on 𝐸 such that

⟨𝜉,𝑎𝜂⟩
ℂ
= res𝑠=0 tr𝑎⟨𝜉,𝜂⟩𝒜 |𝐷|

−𝑝−𝑠,

for all 𝑎 ∈ 𝒜.

In Dirac-type spectral triples, the first axiom corresponds to Weyl’s asymptotics (Corol-
lary 1.1.18), the second to the fact that𝐷 is a first-order differential operator, the third
to the fact that 𝑎 and [𝐷,𝑎] are smooth sections of the endomorphism bundle for all
𝑎 ∈ 𝒜, the fourth to the existence of a Riemannian volume form, and the fifth to the fact
that𝐻 is the completion of the smooth sections𝛤∞(𝐸;𝑀)with respect to a Hermitian
structure on 𝐸.

Definition 1.1.37. Two spectral triples (𝒜0,𝐻0,𝐷0), (𝒜1,𝐻1,𝐷1) are said to be
unitarily isomorphic if there exists a unitary 𝑈∶ 𝐻0 →𝐻1 such that 𝑈𝒜0𝑈

∗ = 𝒜1,
𝑈dom𝐷0 = dom𝐷1 and𝑈𝐷0𝑈

∗ = 𝐷1.

Remark 1.1.38. When𝐶∞(𝑀) ≃ 𝒜0 ≃ 𝒜1 ≃ 𝐶
∞(𝑁), the isomorphism with𝒜1 given

by 𝑎↦ 𝑢𝑎𝑢∗ is necessarily given by the pullback through a diffeomorphism 𝜙∶ 𝑁→𝑀,
as in [Mrč05]. If (𝒜0,𝐻0,𝐷0) and (𝒜1,𝐻1,𝐷1) areDirac-type spectral triples, the oper-
ator |𝑑𝑎|2 = [[𝐷2

0, 𝑎],𝑎] lies in𝒜0 for all 𝑎 ∈𝒜0, so that𝜙
∗(|𝑑𝑎|2𝑀) = 𝑢[[𝐷2

0, 𝑎],𝑎])𝑢
∗ =

[[𝐷2
1,𝜙

∗(𝑎)],𝜙∗(𝑎)] = |𝑑𝜙∗(𝑎)|2𝑁 so that 𝜙must be a Riemannian isometry. Moreover,
using Gelfand duality and the Serre-Swan theorem, we can prove that 𝑢must in fact
be the pullback by a bundle isomorphism that covers 𝜙 and intertwines the Dirac-type
operators.

Theorem 1.1.39 (Connes’ reconstruction theorem, [Con13]5). If a spectral triple
(𝒜,𝐻,𝐷) is commutative (and only then), there exist a compact, oriented, smooth

5 For reference, [Con13] contains the proof, initiated by Rennie and Varilly in [RV06], that𝒜 is of the
form𝐶∞(𝑀); for proof that under these assumptions𝐷 is then a Dirac-type operator, cf. [GVF01, Chapter
11].
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manifold𝑀 and a Dirac-type spectral triple (𝐶∞(𝑀),𝐿2(𝐸;𝑀),𝐷𝑀) that is unitarily
isomorphic to (𝒜,𝐻,𝐷).

Note that the criteria of Definition 1.1.36 do not translate easily to the truncations of a
commutative spectral triple. This leads to the question whether there is a version of
these axioms that does, so as to detect whether a given operator system spectral triple is
the truncation of a Dirac-type spectral triple. In Chapter 4 we investigate the cycle for
the orientability axiom that is provided by the higher Heisenberg equation [CCM14]
in a first step towards such detection.

The orientability axiom and the higher Heisenberg equation

The orientability axiom for commutative spectral triples, as in Definition 1.1.36 is
essential to the proof of the reconstruction theorem, where it is used to construct a
smooth atlas of𝑀. It is so called because it expresses the grading (or the identity, in the
odd case) as the Clifford action of a differential form of top degree.

In [CCM14], Chamseddine, Connes and Mukhanov prove that, in certain circum-
stances, there exist a very special representative of the orientability axiom. This relates
to a specific choice of generators of the coordinate algebra 𝐶∞(𝑀), which satisfy a
version of the orientability axiom that is analogous to the Heisenberg commutation
relation [𝑥,𝑝] = 𝑖ℏ, as follows.

Theorem 1.1.40 (One-sided higherHeisenberg equation). If (𝒜,𝐻,𝐷) is a Dirac-type
spectral triple of dimension𝑚 ∈ 2ℕ, then there exists an element 𝑌 ∈ 𝒜⊗Cl+𝑚 with
𝑌2 = 1, 𝑌∗ = 𝑌 such that

tr𝐵(𝐻)𝑌[𝐷⊗1Cl+𝑚 ,𝑌]
𝑚 = 𝑚!𝛾,

if and only if𝑀 is diffeomorphic to a disjoint sum of spheres, each of which has unit
volume with respect to the Riemannian metric on𝑀.

Here Cl+𝑚 is the real (Clifford) algebra generated by 1, 𝑒1,… , 𝑒𝑚, with the relation 𝑒𝑖𝑒𝑗 +
𝑒𝑗𝑒𝑖 = 2𝛿𝑖𝑗 (which is, as a vector space, canonically isomorphic to ⋀ℝ𝑚), and the

𝐵(𝐻)-valued trace tr𝐵(𝐻) ∶ 𝐵(𝐻)⊗Cl+𝑚 →𝐵(𝐻) gives𝑚 times the coefficient of 1Cl+𝑚 .

The construction of a smooth atlas using the orientability axiom for commutative
spectal triples is here illustrated by the fact that, by its algebraic properties, 𝑌 must
be a covering of the sphere: its components, viewed as maps into ℝ𝑚+1, therefore
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locally form a coordinate system. The sphere being simply connected, this is also what
determines the topology of𝑀 as a disjoint sum of spheres.

The reason that each disjoint summandmust be of unit volume is that the Riemannian
volume form on𝑀 is now equal to the pullback, under 𝑌, of the volume form on 𝑆𝑚,
so that the integral evaluates to deg𝑌 times the volume of the standard𝑚-sphere. More
abstractly, the top zeta residue, res𝑠=0 tr𝐷

−𝑚−𝑠, which is proportional to the volume
by Proposition 1.1.17, now equals res𝑠=0 tr𝛾 tr𝒜𝑌[𝐷⊗ 1,𝑌]𝑚/𝑚!, and the latter is
proportional to the pairing between the Chern character of𝐷 and the Chern character
of the idempotent 𝑒 = (𝑌+1)/2, so that it is proportional to the integer Index𝑒(𝐷⊗1)𝑒.

The authors of [CCM14] go on to show that, for spectral triples associated to a spin
Dirac operator, the statement can be slightly modified so as to hold in much greater
generality, including for all 4-dimensional compact, oriented, connected spinmanifolds.

The spectral action

The hypothetical (Wick rotated) path integral in pure Euclidean quantum gravity takes
the form

𝒵 =∫𝒟𝑔exp(−𝑆[𝑔]),

where the Euclidean Einstein-Hilbert action 𝑆[𝑔] equals the total scalar curvature asso-
ciated to 𝑔 and the integral is over the space of four-dimensional, compact Riemannian
manifolds without boundary – or perhaps of a fixed background manifold𝑀.

In noncommutative geometry, the natural analogonof a compactRiemannianmanifold
(albeit with extra structure) is a Dirac-type spectral triple. The heat trace asymptotics
of Corollary 1.1.14 allow one to express the Euclidean Einstein-Hilbert action in terms
of the spectrum of the Dirac-type operator𝐷. The spectral action principle of [CC97]
now conjectures that the physical action (of any6 reasonable field theory, including
gravity) should likewise depend only on the spectrum of𝐷 and, in particular, that the
natural (bosonic) physical action functional 𝑆[𝐷] should be of the form

𝑆[𝐷] = tr(𝑓(𝐷/𝛬)),

for some positive, even function 𝑓, whose moments determine the bare couplings. For
an in-depth overview of this program, see [CM08, Chapters 11-19].

6Including the StandardModel. The surprisingly natural treatment of gauge theories in noncommuta-
tive geometry, through the inner automorphisms of almost-commutative finite spectral triples, is beyond the
scope of this thesis: see [CM08, Chapter 11] and [Sui15].
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The suppression of higher eigenvalues through the function 𝑓, parametrized by𝛬, is
a smoothed version of the finite-mode regularization discussed in Section 1.1 – this
smoothed version is however a priori still strongly dependent on the higher eigenvalues
of𝐷. Computer simulations of the regularized path integral (see e.g. [BG16]) rather
imply working with the finite-dimensional truncations 𝑃𝛬𝐷. To bridge the gap, the
results of Chapter 2 can be interpreted as the construction of admissible7 functions 𝑓
with compact support: see Theorem 2.2.3.

A further important question is that of observables of such a theory. To that end, the
results of Chapter 2 can be applied immediately to transfer the spectral observables
res𝑠=𝑚/2−𝑘 tr𝑎𝛥

−𝑠, for 𝑎 ∈ 𝐶(𝑀), to the truncated realm. Moreover, the algorithm of
Chapter 3 allow one to interpret the integrands of the truncated path integral as metric
spaces in their own right, so that we can translate observables from the purely metric
realm (including e.g. the Gromow-Hausdorff distance to a fixed comparison space) to
the setting of the spectral action.

When constructing the (truncated) spectral path integral we are faced with the choice
of a domain of integration. For concreteness, let us say that a background manifold
𝑀 and a energy scale 𝛬 were fixed, so that we want to integrate exp(−𝑆[𝐷𝛬]) over
the space of ‘truncated Dirac operators’ {𝐷𝛬}. Which finite-rank operators𝐷𝛬 should
then be considered? The original integral over Riemannian metrics suggests we should
restrict to truncations𝐷𝛬 = 𝑃𝛬𝐷 of Dirac-type operators𝐷. The question is then how
to implement this restriction in the path integral, keeping in mind the difficulty of the
corresponding recognition problem as discussed in Section 1.1. The approach laid out
in [CM08, Chapter 18.4] is to implement the higherHeisenberg equation of [CCM14]
by adding the corresponding term to the action as a dynamical constraint. To that end,
Chapter 4 investigates the behaviour of such a dynamical constraint when𝑀= 𝑆1 or
𝑀= 𝑆2.

7In the sense of producing the desired asymptotics of tr(𝑓(𝐷/𝛬)) as𝛬→∞.
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Chapter 2

Finite-rank approximation of spectral
zeta residues1

We employ the asymptotic expansion of the heat trace to express all residues of spectral
zeta functions as regularized sums over the spectrum. The method extends to those
spectral zeta functions that are localized by a bounded operator.

2.1 Introduction

The spectral theory of elliptic operators presents a major connection between func-
tional analysis and differential geometry. It provides a number of interesting relations
between the spectrum with multiplicities (which is the complete unitary invariant of
self-adjoint operators) and the symbol (which is directly tied to the local expression of
pseudodifferential operators). Thereby, it shows how the local structure of such an
operator influences its global properties, and vice versa. Of particular interest is the
relation between the symbol of an elliptic operator and its spectral asymptotics that is
conveyed by the spectral zeta residues.

This chapter is concerned with expressing the spectral zeta residues as a limit of partial
sums of particular functions over the spectrum. Together with thewell-known relations
between the zeta residues, the symbol, and the heat expansion, this bridges a gap between
the continuum setup of spectral geometry and the finite objects in combinatorial
geometry and computer science. For instance, this method allows one to approximate

1This work was published as [Ste19b].
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the scalar curvature on a compact Riemannian manifold using only a finite part of its
Laplacian spectrum.

We will first provide some background material in Section 2.1 and then introduce the
main topic and results of this chapter in Section 2.1.

Background: spectral zeta residues and Weyl’s law

In 1949, Minakshisundaram and Pleijel showed [MP49] that the zeta function

𝜁(𝛥, 𝑠) def= tr𝛥−𝑠

of the Laplace operator on a compact Riemannian 𝑑-dimensional manifold can be
meromorphically extended to the complex plane, with simple poles occurring in the
points 𝑑/2−ℤ≥0 ⊂ ℝ. The residues at these poles (which are proportional to the so-
called heat kernel coefficients) relate the spectrum of the Laplace operator, itself an
isometry invariant, to other known isometry invariants of the manifold, such as its
volume and scalar curvature.

More generally, an elliptic pseudodifferential operator defines a spectral zeta function, by
the work of Seeley [See67], and its residues relate geometric information to the operator
spectrum in the following way. If 𝛥 is a positive elliptic classical pseudodifferential
operator of order𝑚 ∈ℝ≥0 and 𝑘 is any nonnegative integer, the residue at 𝑠 = (𝑑−𝑘)/𝑚
of 𝜁(𝛥, 𝑠) equals the Wodzicki residue

1
𝑚∫

𝑆∗𝑀
tr𝑎(𝑘−𝑑)/𝑚−𝑛 (𝑥,𝜉)𝑑𝑛−1𝜉𝑑𝑥,

where 𝑎−𝑛(𝑥,𝜉) is the homogenous term of order −𝑛 in the decomposition of the
symbol of 𝛥 and 𝑆∗𝑀⊂ 𝑇∗𝑀 is the cosphere bundle, cf. [Wod87; Gil95; Con94]. In
the inversely Mellin transformed picture, the residues correspond to integrals of terms
in the asymptotic expansion of the integral kernel of 𝑒−𝑡𝛥 along the diagonal, as 𝑡 → 0+.

One wonders which conclusions about the operator spectrum can be drawn from the
zeta residues, apart from the rather opaque one provided by their definition. The most
well-known result in this direction is provided by theWiener-Ikehara theorem, which
relates the first residue of the zeta function to the asymptotics of the number𝑁(𝛬)
of eigenvalues smaller than 𝛬. If 𝛼 is a monotone increasing function and the zeta
function

𝜁(𝑧) = ∫
∞

1
𝜆−𝑧𝑑𝛼(𝜆)
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converges forℜ𝑧 > 1 and can bemeromorphically extended toℜ𝑧 ≥ 1with a simple pole
at 𝑧 = 1, then theWiener-Ikehara theorem states that 𝛼(𝛬) ∼ 𝛬 res𝑧=1 𝜁(𝑧) as𝛬→∞.
By Seeley’s results on complex powers of elliptic operators, we may apply this theory
to the spectral zeta function of a degree 𝑚 elliptic pseudodifferential operator on a
𝑑-dimensional manifold. As in [MP49], this yields Weyl’s famous law

𝑁(𝛬) = res𝑠=𝑑/𝑚 𝜁(𝛥, 𝑠)𝛬
𝑑/𝑚 +𝑜(𝛬𝑑/𝑚).

Note that this restriction only uses the first residue of the zeta function: the zeta series
tr𝛥−𝑠 is absolutely convergent forℜ𝑠 > 𝑑/𝑚.

The problem of improving on the accuracy in Weyl’s law has attracted much attention
over the last century. That is, one wonders whether we can obtain an asymptotic

expansion of𝑁(𝛬)− res𝑠=𝑑/𝑚 𝜁(𝛥, 𝑠)𝛬
𝑑/𝑚 for specific classes of operators. However,

sharp bounds that depend only on the spectral zeta function of 𝛥 have not yet been
produced, even in the well-studied case of the Laplacian on flat tori. It would seem
natural that the Wiener-Ikehara result could be extended to relate the asymptotic
expansion of𝑁(𝛬) to the location of the poles of the zeta function. However, this
approach is limited by the difficulties of inverse Mellin and Laplace transforms, see e.g.
[Ara96], [Ber03, p. 9.7.2]. The lower poles of the zeta function can therefore not yet
be related to the asymptotics of𝑁(𝛬). However, we will explain in the present chapter
how to relate their residues to the asymptotics of other functionals of the operator
spectrum.

Zeta residues as a resummation of the spectrum

In the converse direction toWeyl’s law, we ask which conclusions one can draw about
the residues, given access to increasingly large finite subsets of the operator spectrum.
For the first residue, Weyl’s law gives rise to the Dixmier trace2 formula: if 𝜆0 ≤ 𝜆1 ≤ ⋯
are the eigenvalues of 𝛥, then

res𝑠=𝑑/𝑚 𝜁(𝛥, 𝑠) = lim
𝑁→∞

∑𝑁
𝑖=1 𝜆

−𝑑/𝑚
𝑖

log𝑁 = lim
𝛬→∞

∑𝜆<𝛬 𝜆
−𝑑/𝑚

𝑑
𝑚 log𝛬

.

2As restricted to the ideal on which this formula converges. For a treatment of the Dixmier trace on the

larger ideal 𝐿(1,∞), see [Car+07].
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2.2. Zeta residues as normal functionals

The Dixmier trace is singular: it vanishes if tr𝛥 < ∞. However, if 𝛥𝑗 is a sequence of

finite rank operators of operator norm ‖𝛥𝑗‖
def= 𝛬𝑗 →∞ such that

tr𝛥−𝑠0
𝑗 − ∑

0<𝜆<𝛬𝑗

𝜆−𝑠0 = 𝑜(log𝛬𝑗),

the Dixmier trace of 𝛥−𝑠0 clearly equals lim𝑗→∞ tr𝛥
−𝑠0
𝑗 / log𝛬𝑗. It would seem plausible

that this result can be extended to further poles, i.e. that there are also functionals 𝑐𝑘 on
the finite rank operators such that

lim
𝑗→∞

𝑐𝑘(𝛥𝑗) = res𝑠=𝑠𝑘 𝜁(𝛥, 𝑠),

if𝜁(𝛥, 𝑠)has poles at 𝑠0 >⋯ > 𝑠𝑘 and the finite-rank𝛥𝑗 converge to𝛥 in some appropriate
sense. The main question, then, is whether we can write these functionals down
explicitly.

The existence of such asymptotic residue functionals is shown by our Theorem 2.2.3,
and explicit expressions follow from the conditions of Propositions 2.2.7 and 2.2.8.
Corollary 2.2.9 uses the theorem to improve on the convergence of the Dixmier trace
formula, and Corollary 2.2.11 exhibits the resulting expression for the second pole.
Finally, Theorem 2.3.1 is a simple extension of our treatment to the localized residue
traces res𝑠=𝑠𝑘 trℎ𝛥

−𝑠, for any bounded operator ℎ.

2.2 Zeta residues as normal functionals

We can ask how spectral zeta residues relate to finite subsets of the operator spectrum
without referring to the original setting of differential geometry. Wewill henceforth con-
sider the question in such generality, but we will need to restrict ourselves to operators
whose zeta functions share an essential property with theMinakshisundaram-Pleijel
zeta function.

Definition 2.2.1. A positive, invertible3, self-adjoint, unbounded operator 𝛥 with
compact resolvent is said to be spectrally elliptic if the ‘heat trace’ tr𝑒−𝑡𝛥 admits an
asymptotic expansion∑∞

𝑖=0 𝑐𝑖𝑡
−𝑠𝑖 as 𝑡 → 0+, where the 𝑠𝑖 are decreasingly ordered reals.

We say that𝛱 = {𝑠𝑖} is the heat spectrum of 𝛥.

3If not, just restrict to the complement of the kernel.
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2.2. Zeta residues as normal functionals

The definition implies that there is some 𝑠0 ∈ ℝ such that 𝛤(𝑠) tr𝛥−𝑠 converges for
ℜ𝑠 > 𝑠0 and can be analytically continued to a meromorphic function 𝛤(𝑠)𝜁(𝛥, 𝑠)
whose poles are all simple and located in𝛱 ⊂ (−∞,𝑠0].

This particular terminology was chosen because the motivating example of such opera-
tors are the positive elliptic differential4 operators, cf. [See67; DG75]. Indeed, for a
positive elliptic differential operator of order𝑚 on a 𝑛-dimensional manifold, the heat
spectrum is contained in 𝑛

𝑚 ,
𝑛−1
𝑚 ,… , 1𝑚 .

Definition 2.2.1 suggests that we will in fact be technically concerned with the asymp-
totic heat trace coefficients 𝑐𝑖, and the reader who ismore familiar with that terminology
may rest assured that they are indeed what we are talking about. However, because zeta
residues are mathematically the more general notion, the text will mainly refer to the
coefficients by that name.

Our main theorem shows how the zeta residues of a spectrally elliptic operator are
related to restrictions of its spectrum. We will provide the proof in Section 2.2, below.

The precise asymptotic formula for the residue res𝑠=𝑠𝑘 𝜁(𝛥, 𝑠) at some pole 𝑠𝑘 ∈ 𝛱 de-
pends only on the location of the ‘previous’ poles, that is, on the set𝛱∩[𝑠𝑘,∞). The
Dixmier trace, for instance, requires knowledge of 𝑠0 and of the fact that no poles
𝑠−1 > 𝑠0 exist. For a given finite set {𝑠𝑖} of such poles, all operators with zeta residues
contained in this set can be considered simultaneously. Hence the following definition.

Definition 2.2.2. For any finite set {𝑠𝑖}
𝑘
𝑖=0 of decreasingly ordered reals, let𝒟({𝑠𝑖}

𝑘
𝑖=0)

be the set of all spectrally elliptic operators 𝛥 whose heat spectrum𝛱 satisfies𝛱∩
[𝑠𝑘,∞) ⊂ {𝑠𝑖}, i.e., whoseheat trace admits an asymptotic expansion∑

𝑘
𝑖=0 𝑐𝑖𝑡

−𝑠𝑖+𝑂(𝑡−𝑠𝑘+1)
as 𝑡 → 0+, for some 𝑠𝑘+1 < 𝑠𝑘.

If 𝜎(𝛥) is the (necessarily point) spectrum of some spectrally elliptic operator 𝛥 and 𝐹
is any Borel measurable function, we will denote the summation of 𝐹 over the strictly
positive eigenvalues smaller than𝛬 by

tr𝛬𝐹(𝛥)
def= ∑
𝛬>𝜆∈𝜎(𝛥)

𝐹(𝜆).

4The classical elliptic pseudodifferential operators may have logarithmic terms in the heat expansion,
leading to double poles of 𝛤(𝑧)𝜁(𝑧) (e.g. at negative integers), and are thus excluded in general. However, see
remark 2.2.6.
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2.2. Zeta residues as normal functionals

Theorem 2.2.3. For any finite set {𝑠𝑖}
𝑘
𝑖=0 of decreasingly ordered reals there exists a

function 𝐹 such that, for all 𝛥 ∈ 𝒟({𝑠𝑖}
𝑘
𝑖=0),

res𝑠=𝑠𝑘 𝜁(𝛥, 𝑠)𝛤(𝑠) = lim
𝛬→∞

𝜖(𝛬)𝑠𝑘 tr𝛬𝐹(𝛥𝜖(𝛬)), (2.1)

where 𝜖(𝛬) def= 𝑚 log𝛬/𝛬 for any𝑚 > 𝑠0 −𝑠𝑘.

The problem posed in the introduction is then trivially resolved by the following corol-
lary, together with an explicit choice of 𝐹.

Corollary 2.2.4. Let {𝛥𝑗} be any sequence of finite rank positive operators of norm
‖𝛥𝑗‖

def= 𝛬𝑗 such that, as 𝑗 → ∞,𝛬𝑗 →∞ and

tr𝛬𝑗
𝐹(𝛥𝜖(𝛬𝑗))− tr𝐹(𝛥𝑗𝜖(𝛬𝑗)) = 𝑜((𝜖(𝛬𝑗)

−𝑠𝑘).

Then,
res𝑠=𝑠𝑘 𝜁(𝛥, 𝑠)𝛤(𝑠) = lim

𝑗→∞
𝜖(𝛬𝑗)

𝑠𝑘 tr𝐹(𝛥𝑗𝜖(𝛬𝑗)).

Remark 2.2.5. A uniform bound over𝒟({𝑠𝑖}
𝑘
𝑖=0) on the rate of convergence is too

much to ask: it depends on the complete spectrum of𝛥. However, the convergence rate
will be shown to always be𝑂(𝛬−1) if the next pole is at 𝑠𝑘−1. For examples of arbitrary
error for given𝛬, see for instance [Col87; Loh96]. For comparison, see remark 2.4.1
on page 37.

Remark 2.2.6. The exclusion of logarithmic terms in the heat expansion fromDefini-
tion 2.2.1 corresponds to an exclusion of higher order poles of 𝛤(𝑠)𝜁(𝛥, 𝑠). However,
Theorem 2.2.3 is unchanged if higher order poles are allowed, as long as they lie below
𝑠𝑘. Moreover, the approach can probably be modified to accomodate such logarithmic
terms, at the expense of brevity and asymptotic rate of convergence.

Asymptotic series for zeta function residues

For any spectrally elliptic operator 𝛥, the function 𝜁(𝛥, 𝑠)𝛤(𝑠) is the Mellin transform
of 𝑒−𝑡𝛥. Therefore, the asymptotic expansion of 𝑒−𝑡𝛥

tr𝑒−𝑡𝛥 ∼
𝑘
∑
𝑖=0

𝑐𝑖𝑡
−𝑠𝑖 +𝑜(𝑡−𝑠𝑘)

has coefficients
𝑐𝑖 = res𝑠=𝑠𝑖 𝜁(𝛥, 𝑠)𝛤(𝑠).
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2.2. Zeta residues as normal functionals

The proof of Theorem 2.2.3 relies on the asymptotic expansion of aMellin convolution
integral with tr𝑒−𝑡𝛥. This strategy was inspired by the spectral action principle of
[CM08, Thm 1.145] and the approach of [Ara96]. However, here we have specifically
constructed the function we convolve with such that its first moments vanish, which
allows us to recover the zeta residue in the leading term.

Proof of Theorem 2.2.3. The proof proceeds in two elementary steps. First, we show
(Proposition 2.2.7, below) that for suitable functions 𝑓 one has

∫
∞

0
tr𝑒−𝜖𝑡𝛥𝑓(𝑡) = 𝑐𝑘𝜖

−𝑠𝑘 +𝑂(𝜖−𝑠𝑘+1)

as 𝜖 → 0. This part requires the asymptotic expansion of tr𝑒−𝑡𝛥, implying in particular
that the poles of 𝛤(𝑠)𝜁(𝛥, 𝑠)must be simple and discrete (i.e. 𝛥 has simple dimension
spectrum disjoint with the negative integers) and lie on the real line.

Then, we use the Laplace transform 𝐹 to rewrite the integral as a trace

∫
∞

0
tr𝑒−𝜖𝑡𝛥𝑓(𝑡)𝑑𝑡 = tr𝐹(𝜖𝛥),

and we prove in Proposition 2.2.8 that there is a choice 𝜖(𝛬) = 𝛬−1 log𝛬𝑚 such that 𝐹
decays as

(tr− tr𝛬)𝐹(𝛥𝜖(𝛬)) = 𝑂(𝜖
−𝑠𝑘+1),

so that we obtain the useful asymptotic behaviour

tr𝛬𝐹(𝛥𝜖(𝛬)) = 𝑐𝑘𝜖(𝛬)
−𝑠𝑘 +𝑂(𝜖−𝑠𝑘+1).

This second part relies on the finite summability of 𝛥, that is, on the fact that tr𝑒−𝑡𝛥 =
𝑂(𝑡−𝑠0) as 𝑡 → 0+.

The following asymptotic estimate is completely straightforward.

Proposition 2.2.7. Let 𝑓 be a piecewise continuous function supported in (1,∞) that
is𝑂(𝑡−𝑚) for all𝑚 ∈ ℝ towards∞. Let 𝛥 ∈ 𝒟({𝑠𝑖}

𝑘
𝑖=0). Then, the Mellin convolution

integral of 𝑓with tr𝑒−𝑡𝛥 has an asymptotic expansion

∫
∞

0
tr𝑒−𝜖𝑡𝛥𝑓(𝑡)𝑑𝑡 =

𝑘
∑
𝑖=0

𝑐𝑖𝜖
−𝑠𝑖∫

∞

0
𝑡−𝑠𝑖𝑓(𝑡)𝑑𝑡+ 𝑜(𝑡−𝑠𝑘).
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2.2. Zeta residues as normal functionals

Thus, if we simply choose 𝑓 so that its moments ∫∞
0 𝑡−𝑠𝑖𝑓(𝑡)𝑑𝑡 vanish for 𝑖 ≠ 𝑘 and

normalize it so that∫∞
0 𝑡−𝑠𝑘𝑓(𝑡)𝑑𝑡 = 1, we gain access to the coefficient 𝑐𝑘.

By asymptotic decay of such a function 𝑓 towards ∞, it has absolutely convergent
Laplace transform 𝐹. As ∣𝑓(𝑡) tr𝑒−𝜖𝑡𝛥∣ is absolutely integrable as well, we can apply the
Fubini-Tonelli theorem to obtain

∫
∞

0
tr𝑒−𝜖𝑡𝛥𝑓(𝑡)𝑑𝑡 = ∑

𝜆∈𝜎(𝛥)
∫

∞

0
𝑒−𝜆𝜖𝑡𝑓(𝑡)𝑑𝑡

= tr𝐹(𝛥𝜖),

where 𝜎(𝛥) is the spectrum (with multiplicities) of 𝛥. Therefore, Proposition 2.2.7
leads us to the conclusion that

tr𝐹(𝜖𝛥) = 𝑐𝑘𝜖
−𝑠𝑘 +𝑂(𝜖−𝑠𝑘+1). (2.2)

The following proposition shows that we retain the same asymptotics if we replace
the trace of 𝐹(𝜖𝛥) by a sum over a finite part of the spectrum, provided we scale 𝜖
accordingly.

Proposition 2.2.8. If 𝑓 and 𝛥 are as in Proposition 2.2.7 and additionally

∫
∞

0
𝑡−𝑠𝑖𝑓(𝑡)𝑑𝑡 = 0 (for all 𝑖 < 𝑘),

then the Laplace transform 𝐹 satisfies

∑
𝛬<𝜆∈𝜎(𝛥)

𝐹(𝜆 log𝛬𝑚/𝛬) = 𝑜((log𝛬𝑚/𝛬)−𝑠𝑘)

for all𝑚 > 𝑠0 −𝑠𝑘

Proof. By the fact that supp𝑓⊂ [1,∞)], its Laplace transformdecays as𝐹(𝑠) =𝑂(𝑠−1𝑒−𝑠)
towards∞. As∑𝜆>𝛬 𝑒

−𝜖(𝜆−𝛬)𝑡 is monotone decreasing in 𝑡, we see that

∑
𝜆>𝛬

𝐹(𝜖𝜆) = 𝑂(∑
𝜆>𝛬

(𝜖𝛬)−1𝑒−𝜖𝜆) = 𝑂((𝜖𝛬)−1𝑒−𝜖𝛬∑
𝜆>𝛬

𝑒−𝜖(𝜆−𝛬)𝑡)

for any 𝑡 ≤ 1, as 𝛬𝜖 → ∞. This, in turn, is 𝑂((𝜖𝛬)−1𝑒−𝜖𝛬(1−𝑡)𝜖−𝑠0). With 𝜖(𝛬) =
𝑚𝛬−1 log𝛬 for any𝑚 > (𝑠0 −𝑠𝑘), the remainder∑𝜆>𝛬𝐹(𝜖𝜆)will be 𝑜(𝜖

−𝑠𝑘).

This completes the proof of Theorem 2.2.3 that started on page 31.
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2.2. Zeta residues as normal functionals

Explicit formulas for the first two poles

One reason to look for series that converge to zeta residues is to obtain geometric
information fromfinite-dimensional approximations of the Laplacian on aRiemannian
manifold. For instance, if 𝛥 is the Laplacian, the first two residues are proportional to
the volume and the total scalar curvature, respectively.

The first pole is a classical object of study. Its residue is expressed by Dixmier’s singular
trace, and is used, for instance, for the zeta regularization of divergent series. It is
connected to counting asymptotics by the Wiener-Ikehara theorem, and for a Laplace
operator on a compact Riemannian manifold it is proportional to the volume.

Our Theorem 2.2.3 provides the following formula for the first residue.

Corollary 2.2.9. If𝛥 is a spectrally elliptic operator with heat spectrum bounded from
above by 𝑠0 ∈ ℝ, then if 𝜖(𝛬) = log𝛬/𝛬,

𝛤(𝑠0) res𝑠=1 𝜁(𝛥
𝑠0 , 𝑠) = lim

𝛬→∞

𝜖(𝛬)𝑠0
𝑒𝛤(1− 𝑠0, 1)

tr𝛬
𝑒−𝛥𝜖(𝛬)

1+𝛥𝜖(𝛬) .

Proof. Use 𝑓 = [𝑡 ≥ 1]𝑒−𝑡, with Laplace transform 𝐹(𝑠) = 𝑒−1−𝑠/(1+ 𝑠), in Proposition
2.2.7. Then, divide by∫∞

0 𝑡−𝑠0𝑓(𝑡)𝑑𝑡 to satisfy the conditions of Proposition 2.2.8.

Remark 2.2.10. The present series converges faster in general than the logarithmic trace
suggestedbyWeyl’s asymptotic formula; the remainder is𝑂(𝜖𝑠0−𝑠1) =𝑂((𝛬/ log𝛬)𝑠1−𝑠0),
whereas for e.g. the Laplacian on the circle the logarithmic trace of 𝛥−1/2 convergences

only as∑𝑁
𝑛=1

1
𝑛 log𝑁 −1 = 𝛾+𝑂(𝑁−1)

log𝑁 .

Now, the second pole is of particular interest because it is the first pole for which no
asymptotic residue formula was previously known and because it provides a way to
calculate the total scalar curvature of a Riemannian manifold from partial spectra of
the Laplacian.

Corollary 2.2.11. If𝛥 is a spectrally elliptic operator with heat spectrum {𝑠0, 𝑠0−1,…},
then if 𝜖(𝛬) = 2 log𝛬/𝛬,

res𝑠=𝑠1 𝜁(𝛥, 𝑠)𝛤(𝑠) = lim
𝛬→∞

𝜖(𝛬)𝑠0−1

𝑒𝛤(2− 𝑠0, 1)
tr𝛬 (

2𝑠0𝑒−2𝛥𝜖(𝛬)

1+2𝛥𝜖(𝛬) −
𝑒−𝛥𝜖(𝛬)

1+𝛥𝜖(𝛬)) .
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2.2. Zeta residues as normal functionals

Proof. Use 𝑓 = [𝑡 ≥ 1]𝑒−𝑡 −2𝑠0−1[𝑡 ≥ 2]𝑒−𝑡/2, which clearly satisfies the conditions of
Proposition 2.2.7 and has vanishing moment ∫∞

0 𝑡−𝑠0𝑓(𝑡)𝑑𝑡. Therefore, if we divide
by the factor ∫∞

0 𝑡1−𝑠0𝑓(𝑡)𝑑𝑡, the result will be as in Proposition 2.2.8. The Laplace
transform of 𝑓 is 𝐹(𝑠) = 𝑒−1−𝑠/(1+ 𝑠)−2𝑠0𝑒−1−2𝑠/(1+2𝑠).

Example 2.2.12 (The total scalar curvature of the sphere 𝑆2). Let 𝐹 be the residue
functional given by

𝐹(𝑠) ∶= (
exp(−𝑠)
1+ 𝑠 −

2exp(−2𝑠)
1+2𝑠 ) ,

let 𝑞𝑛 = 𝑛(𝑛+1) be the 𝑛th eigenvalue of the Laplacian on the sphere and let 𝑝𝑛 = 2𝑛+1
be its multiplicity. As before, write 𝜖𝑚 = 2𝑞−1𝑚 log𝑞𝑚. We will use the Euler-Maclaurin
formula to estimate the series from Corollary 2.2.11,

𝑆(𝑚) ∶=
𝑚
∑
𝑛=0

𝑝𝑛𝐹(𝜖𝑚𝑞𝑛).

Sufficient accuracy will turn out to require only the first nontrapezoidal correction
term. The Euler-Maclaurin estimate reads

𝑆(𝑚) =∫
𝑚

0
𝑝𝑛𝐹(𝜖𝑚𝑞𝑛)𝑑𝑛+ (12 +

𝐵2
2

𝜕
𝜕𝑛)𝑝𝑛𝐹(𝜖𝑚𝑞𝑛)∣

𝑚

0
+𝑅3(𝑚),

where 𝐵2 =
1
6 , and we will employ the usual rough bound

|𝑅3(𝑚)| ≤
𝜁(3)
(2𝜋)3

𝑚 sup
0≤𝑛≤𝑚

∣
𝜕3 (𝑝𝑛𝐹(𝜖𝑚𝑞𝑛))

𝜕𝑛3
∣ .

The integral in the first term can be taken analytically,

∫
𝑚

0
𝑝𝑛𝐹(𝜖𝑚𝑞𝑛)𝑑𝑛 =∫

𝑞𝑚

0
𝐹(𝑞, 𝜖𝑚)𝑑𝑞 = 𝑒𝜖

−1
𝑚 (𝐸1(1+2𝜖𝑚𝑞𝑚)−𝐸1(1+ 𝜖𝑚𝑞𝑚)) ,

and is𝑂(𝑞−2𝑚 log(1+𝑞𝑚/(2 log𝑞𝑚)).

Because 𝐹(𝑠) = 𝑂(𝑠−1𝑒−𝑠) as 𝑠 → ∞, the order zero boundary term 1
2 +

1
2𝑝𝑀(𝐹(𝜖𝑚𝑞𝑚))

is 1
2 +𝑂(𝑝𝑚𝑞

−2
𝑚 / log𝑞𝑚).

The first correction term to the trapezoidal approximation equals

1
12 (−2+2𝐹(𝜖𝑚𝑞𝑚)+ 𝜖𝑚𝑝

2
𝑚𝐹

(1)(𝜖𝑚𝑞𝑚)) = −
1
6 +𝑂(𝑞

−2
𝑚 log𝑞𝑚).
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2.3. Localization

Finally, the third derivative of 𝑝𝑛𝐹(𝜖𝑚𝑞𝑛)with respect to 𝑛, whose supremum appears
in the error estimate, is

12𝜖𝑚𝐹
(1)(𝜖𝑚𝑞𝑛)+12𝜖

2
𝑚𝑝

2
𝑛𝐹

(2)(𝜖𝑚𝑞𝑛)+ 𝜖
3
𝑚𝑝

4
𝑛𝐹

(3)(𝜖𝑚𝑞𝑛).

All derivatives of𝐹 are boundedon [0,∞), so these terms are all𝑂(𝑞−1𝑚 log𝑞𝑚)uniformly
in 𝑛. Thus, 𝑅3(𝑚) = 𝑂(𝑚

−1 log𝑞𝑚).

Combining these facts with Corollary 2.2.11, we see that the nonleading residue for
the zeta function 𝜁𝑆2 is

res𝑠=0 𝜁
−𝑠
𝑆2 = lim𝑚→∞(

1
2 −

1
6 +𝑂(𝑚

−1 log𝑞𝑚)) =
1
3 = 2 ⋅ 4𝜋

6 ⋅ (4𝜋)𝑑/2
.

Of course, one could apply Euler-Maclaurin directly to the sum that defines the heat
trace on 𝑆2; since the corresponding limits𝑚→∞ can termwise be identified as power
series in 𝑡, one can reproduce the asymptotics as 𝑡 → 0 afterwards. In the present
formulation, however, we need only take a single limit in 𝑚 and have expressed the
residue as a single universal series in the eigenvalues, with an asymptotic bound on the
error over all of𝒟(𝑠0, 𝑠0 −1).

2.3 Localization

If 𝛥 is spectrally elliptic, Theorem 2.2.3 allows us to calculate its zeta residues as a series
in its eigenvalues. However, the classical theory of elliptic pseudodifferential operators
assigns to them not just the total zeta residues, but rather a set of zeta densities. To be
precise, the somewhat simpler situation for elliptic differential operators is as follows.

Let𝑀 be a Riemannian manifold of dimension 𝑛 equipped with a smooth Hermitian
vector bundle 𝐸, and let 𝛥 be a positive, self-adjoint, elliptic differential operator of
order𝑚 > 0, acting inside the Hilbert space of square-integrable sections of 𝐸. Then,
the following localized asymptotics are available.

1. The operator 𝑒−𝑡𝛥 is given by a smooth kernel 𝑘(𝑥,𝑦, 𝑡) ∶ 𝐸𝑦 →𝐸𝑥, and as 𝑡 → 0+
its restriction to the diagonal admits an asymptotic expansion in smooth sections
𝑘𝑗 of End𝐸,

𝑘(𝑥,𝑥, 𝑡) ∼
∞
∑
𝑗=0

𝑘𝑗(𝑥)𝑡
(𝑗−𝑛)/𝑚.
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2. For any continuous section ℎ of End𝐸 and any 𝑗 ≥ 0, the following residues exist
and satisfy

res𝑠=(𝑗−𝑛)/𝑚𝛤(𝑠) trℎ𝛥
−𝑠 =∫

𝑀
tr(ℎ(𝑥)𝑘𝑗(𝑥))𝑑vol𝑀(𝑥).

We say that ℎ localizes the residue trace, and we are interested in expressing the localized
residues in a fashion similar to Theorem 2.2.3. We will solve this localization problem
in a slightly more general setting, along the lines of the previous treatment of the zeta
function residues.

Let 𝛥 be a spectrally elliptic operator on a Hilbert space ℋ and let ℎ ∈ ℬ(ℋ) be
bounded. Then, there exist 𝑠0 > ⋯ > 𝑠𝑘+1 such that, as 𝑡 → 0+,

trℎ𝑒−𝑡𝛥 −
𝑘
∑
𝑖=0

𝑡−𝑠𝑘𝑐𝑖(ℎ) = 𝑂(𝑡
−𝑠𝑘+1).

As before, let {𝑠𝑖}
𝑘
𝑖=1 be a set of decreasingly ordered reals and let 𝐹 be the Laplace

transform of a piecewise continuous function 𝑓 supported in [1,∞), which is𝑂(𝑡−𝑚)
for all𝑚 ∈ ℝ towards ∞, satisfies ∫∞

0 𝑡−𝑠𝑖𝑓(𝑡)𝑑𝑡 = 0 for all 𝑖 < 𝑘, and is normalized to
satisfy∫∞

0 𝑡−𝑠𝑘𝑓(𝑡)𝑑𝑡 = 1.

Theorem 2.3.1. Let 𝛥 ∈ 𝒟({𝑠𝑖}
𝑘
𝑖=1) be a spectrally elliptic operator on a Hilbert space

ℋ and let ℎ ∈ ℬ(ℋ) be bounded. Then, for any orthonormal basis {𝜙𝜆}𝜆∈𝜎(𝛥) ofℋ
diagonalizing 𝛥, we have

res𝑠=𝑠𝑘 𝛤(𝑠) trℎ𝛥
−𝑠 = lim

𝛬→∞
𝜖(𝛬)𝑠𝑘 ∑

𝛬>𝜆∈𝜎(𝛥)
⟨ℎ𝜙𝜆,𝜙𝜆⟩𝐹(𝜆𝜖(𝛬)),

where 𝜖(𝛬) def= 𝛬−1 log𝛬𝑚 for any𝑚 > 𝑠𝑘 −𝑠0.

Proof. As before, Proposition 2.2.7 holds for any such function 𝑓. That is,

∫
∞

0
trℎ𝑒−𝜖𝑡𝛥𝑓(𝑡)𝑑𝑡 = 𝑐𝑘(ℎ)𝜖

−𝑠𝑘 +‖ℎ‖op𝑂(𝜖
−𝑠𝑘+1).

Moreover,∑𝜆∈𝜎(𝛥) |𝑓(𝑡)𝑒
−𝑡𝜆⟨ℎ𝜙𝜆,𝜙𝜆⟩| ≤ |𝑓(𝑡)|‖ℎ‖op tr𝑒

−𝑡𝛥 is in 𝐿1(0,∞). Therefore,
by dominated convergence,

∫
∞

0
trℎ𝑒−𝜖𝑡𝛥𝑓(𝑡)𝑑𝑡 = ∑

𝜆∈𝜎(𝛥)
⟨ℎ𝜙𝜆,𝜙𝜆⟩𝐹(𝜖𝜆)
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and by Proposition 2.2.8, the rest term decays like

∑
𝛬<𝜆∈𝜎(𝛥)

𝐹(𝜆𝜖(𝛬))⟨ℎ𝜙𝜆,𝜙𝜆⟩ = ‖ℎ‖op𝑂((𝜖(𝛬))
−𝑠𝑘+1).

We have res𝑠=𝑠𝑘 𝛤(𝑠) trℎ𝛥
−𝑠 = 𝑐𝑘(ℎ) and the conclusion follows.

2.4 Final remarks and suggestions

The original motivation behind this chapter was to confirm the point of view that finite-
rank cutoffs of spectral triples can carry geometric information in noncommutative
geometry. The following remarks all proceed in that direction.

Remark 2.4.1. Our Theorem 2.2.3 provides a partial counterweight to a classical result
by Colin de Verdière [Col87]. On the one hand, he showed that a finite set of Laplace
eigenvalues carries no information on themetric if no pointwise bounds on the sectional
curvature are imposed. On the other hand, we now see that for each metric and each
desired accuracy, there is a bound 𝛬 such that the set of eigenvalues smaller than 𝛬,
with multiplicity, allow computation of all zeta residues (and hence, of the associated
global invariants of the metric) up to that accuracy. The local version, using Theorem
2.3.1, of this statement is that for each metric and each 𝜖 there is a finite-rank projection
𝑃𝛬 = [0,𝛬](𝛥𝑔) such that the cutoffmatrix𝑃𝛬𝛥𝑔𝑃𝛬 together with the cutoff𝑃𝛬𝐶(𝑀)𝑃𝛬
of the function algebra yield the residues of tr𝑎𝛥−𝑠 up to an error of ‖𝑎‖𝜖.

Remark 2.4.2. The method of Theorem 2.3.1 may be applied to obtain a reasonable
definition of scalar curvature in finite-dimensional noncommutative geometry. Let
(𝐴,𝐻,𝐷) be a spectral triple such that 𝐷2 is spectrally elliptic with heat spectrum
{(𝑗−𝑛)/2}𝑗∈ℤ>0 . In [CM08] the scalar curvature functional of such a spectral triple was
defined to be the map

𝑎 ↦ 𝑅(𝑎) def= res𝑠=𝑛−2𝛤(𝑠) tr𝑎𝐷
−𝑠.

If𝐻 is finite-dimensional but a dimension spectrum of𝐷 is specified in advance (e.g.
by modelling considerations), this residue always vanishes and Theorem 2.3.1 suggests
it should perhaps be replaced by

𝑎 ↦ 𝑅𝛬(𝑎)
def= ∑

𝜆∈𝜎(𝐷2)
⟨𝑎𝜙𝜆,𝜙𝜆⟩

𝐹(𝜆 log𝛬𝑚/𝛬)
(log𝛬𝑚/𝛬)𝑛/2−1

,
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where𝛬 def= ‖𝐷2‖𝜌 for any 0 < 𝜌 < 1, {𝜙𝜆 ∣ 𝐷
2𝜙𝜆 = 𝜆𝜙𝜆} is an orthonormal basis of𝐻

and 𝐹 is as in Corollary 2.2.11. Mutatis mutandis, the same applies to the volume and
other spectral invariants.

Remark 2.4.3. The calculation of the residues of localized zeta functions, Theorem
2.3.1, can be combined with the local index formula of Connes andMoscovici [CM95]
for theChern character of the Fredholmmodule associated to a spectral triple (𝐴,𝐻,𝐷),
in order to estimate someKK-theoretic index pairings numerically. If the square of the
operator𝐷 is spectrally elliptic, the index pairings can be expressed as a series in the

spectrumof𝐷2 and the coefficients tr𝜋𝜆𝑎0[𝐷,𝑎1]
(𝑘1)⋯[𝐷,𝑎𝑛]

(𝑘𝑛)𝜋𝜆, where𝜋𝜆 projects
onto the eigenspace associated with the eigenvalue 𝜆, the commutators are defined
recursively as [𝐷,𝑎](𝑘+1) def= [𝐷2, [𝐷,𝑎](𝑘)] and 𝑎0,… ,𝑎𝑛 ∈ 𝐴. A similar statement holds
in the presence of a grading.
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Chapter 3

Reconstructing manifolds from
truncated spectral triples1

We explore the geometric implications of introducing a spectral cut-off on compact Rie-
mannian manifolds. This is naturally phrased in the framework of non-commutative
geometry, where we work with spectral triples that are truncated by spectral projec-
tions of Dirac-type operators. We associate a metric space of ‘localized’ states to each
truncation. The Gromov-Hausdorff limit of these spaces is then shown to equal the un-
derlyingmanifold one started with. This leads us to propose a computational algorithm
that allows us to approximate these metric spaces from the finite-dimensional truncated
spectral data. We subsequently develop a technique for embedding the resulting metric
graphs in Euclidean space to asymptotically recover an isometric embedding of the
limit. We test these algorithms on the truncated sphere and a recently investigated
perturbation thereof.

3.1 Introduction

Anatural notion of scale is a major asset to any geometric theory with ties to the physical
world. After all, our geometric knowledge of objects appearing around us is finite, being
limited by our observational power which fails us at high energy scales. Additionally,
the appearance of divergences in e.g. quantum field theory, especially when combined
with gravity, is closely tied to bridging the gap between finite and infinite, or discrete and

1This work was written jointly with Lisa Glaser and published as [GS21]

39



3.1. Introduction

continuum,models. Moreover, computational representation and analysis of geometric
models strongly relies on our ability to extract from our model what is relevant and
computationally feasible.

The field of noncommutative geometry has had close ties to physics ever since its
inception, and yet lacks a consistent treatment of scale in the sense imagined. The aim of
this chapter is to ameliorate this situation, by constructing a natural metric counterpart
to the finite objects that are here referred to as truncations of (commutative) spectral
triples, and aiming to show that these do indeed carry enough information to describe
their continuum limit in arbitrary detail. For a wide-ranging and systematic approach
to such truncations, see [CS20].

Admittedly, finite-dimensional objects in noncommutative geometry have enjoyed
enduring attention. General finite spectral triples have been classified [GP95; Ćać11;
CC08] and parametrized [Bar15], and the Connes metric on these spaces has been
studied in depth, cf. [IKM01]. However, this framework seems to lack simultaneous
presence of 1) a natural link to the continuum in terms of metric spaces and 2) a natural
link to the continuum in terms of spectral triples.

When representation-theoretic knowledge of the continuum is available, the framework
of fuzzy spaces such as those of [GP95; Bal+02; DO03] seems to provide at least a natural
link to the continuum in terms of spectral triples, and even some metric knowledge
is available there [SS16]. However, it might be said that the construction of a ‘fuzzy’
version of amanifold is somewhat ad hoc from aRiemannian viewpoint, and at least the
framework has not yet seen successful extension to a reasonably large class of manifolds.

Truncations of spectral triples (see Section 3.2 and beyond) provide the advantage of a
natural scale parameter and a natural symmetry-preserving correspondence between
different scales. The natural framework in which to study these truncations themselves
as metric spaces is that of state spaces, as in [CS20], which can then be equipped either
with the Connes metric associated to the truncation of a spectral triple itself or with
the pullback of the Connes metric on the full spectral triple.

An early and interesting study of the topological andmetric properties of such spaces can
be found in [DLM14b]. More recently, [Sui20] investigates the question of Gromov-
Hausdorff convergence of such truncated spaces under the truncatedmetric; see [Ber19]
for the example of the torus. By contrast, here we are interested in localized states, in
order to recover e.g. a manifold𝑀, rather than its metric space of probability measures.
Chapter 4 investigates the relevance of the higher Heisenberg equation of [CCM15] in
the framework of truncated spectral triples (see Section 3.6).

40
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Arguably the main mathematical result of this chapter is Corollary 3.3.10, which shows
that the ‘localized’ states of Section 3.3, when equipped with the pullback metric,
recover the compact Riemannian manifold one started with in the Gromov-Hausdorff
limit.

In order to make the result more concrete and link back to the ‘computational repre-
sentation’ alluded to above, Section 3.4 is devoted to the description of an algorithm to
approximate (finite subsets of) these metric spaces from the raw datum of the trunca-
tion of a spectral triple. This allows us to test some of the results of Section 3.3 on the
example of the sphere in Section 3.5.

Finite non-Euclidean metric spaces, as obtained by our algorithm, do not necessar-
ily lend themselves to easy visualization or comparison by standard computational
techniques. In order to gain traction in this direction, we propose to look for new
(asymptotically, locally isometric) embedding techniques and present a candidate ap-
proach in Section 3.6. This allows us to visualize the metric results of Section 3.5 and –
as originally inspired the technique – compare the truncation of the spectral triple for
𝑆2 and its perturbation as in [GS20].

3.2 Truncated spectral geometries and point reconstruction

In noncommutative geometry one describes a compact Riemannian manifold𝑀 in
terms of an associated spectral triple (𝐶∞(𝑀),𝐿2(𝑀,𝒮),𝐷𝒮), where 𝒮 is a Hermitian
Clifford module bundle over𝑀 and𝐷𝒮 is a Dirac-type operator on 𝒮.

Connes’ reconstruction theorem [Con13] shows that this association is a bijection: one
can fully reconstruct the underlying manifold𝑀 and the chosen Hermitian Clifford
module bundle 𝒮 from a triple (𝐴,𝐻,𝐷) that satisfies the axioms of a commutative
spectral triple.

Of particular interest for the present chapter is the way one can recover the Kantorovich-
Rubinstein2 distance between probability measures on𝑀 from the interplay of the
algebra𝐶∞(𝑀) and the Dirac operator𝐷 =𝐷𝒮, acting on the Hilbert space 𝐿2(𝑀,𝒮).
Probability measures correspond to states on theC∗-algebra𝐶(𝑀) ⊃ 𝐶∞(𝑀), which
carries the topological, as opposed to differentiable, information about𝑀. Moreover, a
function 𝑓 ∈ 𝐶∞(𝑀) has Lipschitz constant 𝑘 if and only if ∥[𝐷,𝑓]∥ ≤ 𝑘 (as operators

2This metric is known under various names including ‘1-Wasserstein’, ‘Monge-Kantorovich’ and ‘Earth
Mover’s’. See e.g.[Vil09, Chapter 6].
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3.2. Truncated spectral geometries and point reconstruction

on𝐻 = 𝐿2(𝑀,𝒮𝑀)). Thus, Kantorovich-Rubinstein duality allows us to write

𝑑(𝜔1,𝜔2) = sup
𝑎∈𝐶∞(𝑀)

{|𝜔1(𝑎)−𝜔2(𝑎)| ∣ ‖[𝐷,𝑎]‖ ≤ 1} . (3.1)

When the states 𝜔 of 𝐶(𝑀) are pure, they correspond to the atomic measures on
single points, and we can thus recover𝑀 with its metric. This chapter answers the
question as to howwe can understand this recovery of𝑀 from the perspective of finite-
dimensional parts of the representation of𝒜 and𝐷 on𝐻. That is, we will construct
natural counterparts to the ingredients above in the setting of truncations of spectral
triples, and show that the metric space𝑀 can be recovered as an asymptotic limit
thereof.

Truncated spectral geometries

From a mathematical perspective, it is desirable to be able to describe the infinite-
dimensional datum of a spectral triple as a limit of finite-dimensional data of increasing
precision, just like one can describe a compact Riemannian manifold as a Gromov-
Hausdorff limit of finite metric spaces (by, for instance, equipping suitably dense finite
subsets with the induced metric). From a physical perspective, the same desire results
from the view that one should be able to gain at least some information about the
geometry by probing it at finite energies.

A natural way to introduce such a ‘finite-energy cutoff’, that is, truncation, of the
geometric data (𝐴,𝐻,𝐷) is to pick a scale 𝛬, and define the corresponding spectral
projection of𝐷,

𝑃𝛬
def= 𝜒[−𝛬,𝛬](𝐷)

to generate the finite-dimensional data

(𝐴𝛬,𝐻𝛬,𝐷𝛬)
def= (𝑃𝛬𝐴𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷) . (3.2)

By compactness of the resolvent of𝐷, onemight aswellwrite𝑃𝑁 for the projection onto
the first𝑁 eigenspaces ordered in absolute value and work with 𝑃𝑁 instead. However,
this would require keeping track of the relation between𝑁 and 𝛬 in the analysis to
follow and thus complicate notation. A further advantage of using 𝑃𝛬 is it is physically
more intuitive to work with the energy scale rather than with the number of modes
considered.
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The study of truncations of spectral triples and their convergence was initiated in
[DLM14b], while the structure of the truncations as operator systems was explored in
depth by Connes and van Suijlekom in [CS20] and [Sui20].

Optimal transport in the framework of noncommutative geometry has seen widespread
inquiry. See e.g. [BLS94; DM99] for the case of lattices, [IKM01] for finite spectral
triples, [Mar06] for the context of gauge theory, [Wal12; ŻS01; DAn16; DLM14a] for
several quantummechanically inspired examples and deformations, [Sui20; DLM14b]
for truncations of the circle, and notably [Rie99; Rie04] for generalization of the
inducing Lipschitz seminorm.

This is the setting inwhichwewonder what counterpart to the duality (𝐴,𝐻,𝐷)↔𝑀,
provided by the reconstruction theorem, can be found at the level of (𝐴𝛬,𝐻𝛬,𝐷𝛬).

Point reconstruction

We aim to refine the reconstruction of𝑀 from its spectral triple (𝐴,𝐻,𝐷) through
an understanding of the metric information contained in the truncations (𝐴𝛬,𝐻𝛬,𝐷𝛬).
The full manifold should then emerge asymptotically, such as through a Gromov-
Hausdorff limit of the objects corresponding to the truncations.

The vector states of𝐶(𝑀) that are induced by elements of𝐻𝛬 appear naturally as vector
states of𝐴𝛬 as well, so that we have access to probability measures on𝑀 directly in the
truncated setting. This, together with the distance formula (3.1), is the main ingredient
of our approach: we will identify states that correspond to points of𝑀 in a suitable
(asymptotic) sense, such that (3.1) asymptotically recovers the corresponding geodesic
distance.

Our ‘proxy’ approach to state localization, as discussed in section 3.3, was inspired
by the notion of quasi-coherent states on fuzzy spaces defined in [SS16]. However,
as we aim just for the induced metric geometry on𝑀 and view (𝐶∞(𝑀)𝛬,𝐻𝛬,𝐷𝛬)
rather as a finite observation of a spectral triple than as a quantization thereof, we
will not construct coherent states in any quantum-mechanical sense but rather aim
for localization only. Moreover, as discussed below, this ‘proxy’ approach is merely
introduced to gain computational feasibility, at the expense of requiring identification
of an embedding 𝜙 ∶ 𝑀→ℝ𝑛. See also the end of Section 3.3.

After we define localized states, we prove existence of the desired objects: a sequence of
metric spaces associated to the truncations (𝐴𝛬,𝐻𝛬,𝐷𝛬) that do indeed converge to𝑀
in the Gromov-Hausdorff sense. Then, Section 3.4 proposes an algorithm to construct
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these metric spaces computationally, in order to make actual examples amenable to
computer simulation.

In Section 3.6 we propose a simple algorithm to obtain approximately locally isometric
embedding of the resulting finite metric spaces into Euclidean space. These should
asymptotically converge to an isometric embedding of𝑀 itself, and allow us to view
the resulting finite metric spaces and investigate themmore easily.

3.3 The metric space of localized states

Given a truncation of a commutative spectral triple (𝐶∞(𝑀)𝛬,𝐻𝛬,𝐷𝛬), we aim to
construct a finitemetric space that describes𝑀 to the level of accuracy that the truncated
spectrum will allow.

We will identify a subset of the (vector) states of 𝐶∞(𝑀)𝛬, consisting of those states
that are localized in a suitable sense and, therefore, correspond approximately to points
of𝑀. The Connes metric on these vector states will then turn this subset into a metric
space.

The guiding demand for this constructionwill be that the resultingmetric spaces should
asymptotically (as 𝛬→ ∞) converge, in the Gromov-Hausdorff sense, to the metric
space𝑀.

Now, the pure states of 𝐶(𝑀) – that is, actual points in the metric space𝑀 we are
approximating – do not necessarily extend to𝐶(𝑀)𝛬. We do, however, have access to
vector states induced by 𝑣 ∈ 𝐻𝛬, which can be applied to either because both𝐶(𝑀) and
𝐶(𝑀)𝛬 are subsets of 𝐵(𝐻).

Definition 3.3.1. ℙ(𝐻𝛬) is the projective space over𝐻𝛬.

Each element v ofℙ(𝐻𝛬) corresponds to a positive linear functional of norm 1 on𝐶(𝑀)
given by 𝑎 ↦ ⟨𝑣,𝑎𝑣⟩/⟨𝑣,𝑣⟩ (for any representative 𝑣 of v). By the Riesz Representation
theorem, such functionals correspond uniquely to probability measures on𝑀.

Definition 3.3.2. For v ∈ ℙ(𝐻𝛬), 𝜇𝑣 is the unique probability measure such that
⟨𝑣,𝑎𝑣⟩ = ∫𝑀 𝑎(𝑥)𝑑𝜇𝑣(𝑥) for all 𝑎 ∈ 𝐶(𝑀) and any unit norm representative 𝑣 of v.

By this identification, the Kantorovich-Rubinstein metric on the probability measures
of𝑀 induces a metric 𝑑𝛬 on ℙ(𝐻𝛬). It is an open conjecture that this metric can be
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(asymptotically) computed using the data (𝐶∞(𝑀)𝛬,𝐻𝛬,𝐷𝛬): see Section 3.3 for a
discussion.

We will say that v is localized when 𝜇𝑣 is sufficiently concentrated near a single point in
𝑀. In order to quantify this notion, we will introduce the dispersion functional 𝜂 on
ℙ(𝐻𝛬), below.

Let 𝑑𝛬 and 𝑑𝑀 denote the metrics on ℙ(𝐻𝛬) and 𝑀, respectively, so that we may
regard both as subsets of the space of probability measures on𝑀 equipped with the
Kantorovich-Rubinstein metric. We now wish to construct a subspace of (ℙ(𝐻𝛬),𝑑𝛬)
that is (Gromov-)Hausdoff close to (𝑀,𝑑𝑀).

Proposition 3.3.6 will show that there is a map 𝑏 ∶ ℙ(𝐻𝛬) →𝑀 such that |𝑑𝛬(v1,v2)−
𝑑𝑀(𝑏(v1),𝑏(v2))| =𝑂(√𝜂(v1)+√𝜂(v2)); that is, our localized states canbe identified al-
most isometricallywith points of𝑀. Proposition 3.3.8will then show that there is a cor-
responding asymptotically inverse map𝛷𝛬 ∶ 𝑀→ ℙ(𝐻𝛬) such that 𝑑𝑀(𝑥,𝑏(𝛷𝛬(𝑥))) =
𝑂(𝛬−1) and 𝜂(𝛷𝛬(𝑥)) = 𝑂(𝛬−2) uniformly in 𝑥. This leads to Corollary 3.3.10, which
shows that there exist a subspace ℙ(𝐻𝛬)𝜖2 of ℙ(𝐻𝛬) that is 𝜖-close to𝑀 in Gromov-
Hausdorff distance, where 𝜖 = 𝑂(𝛬−1).

Finally, Section 3.3 discusses how these notions connect to the setting of truncated
spectral triples (𝐶∞(𝑀)𝛬,𝐻𝛬,𝐷𝛬).

Localization: 𝜙 and the dispersion functional

Since elements of ℙ(𝐻𝛬) correspond uniquely to probability measures on𝑀, a natural
way to measure the localization of such an element would be to take e.g. the variance
of (isometrically embedded) position under this measure; that is, one would naturally
define the dispersion of v ∈ ℙ(𝐻𝛬) to be inf𝑥∈𝑀𝐸𝜇𝑣 [𝑑(𝑥, ⋅)

2], where 𝐸𝜇𝑣 denotes expec-
tation values under 𝜇𝑣. In terms of the algebraic data, this quantity can be estimated
as sup𝑎∈𝐶∞

𝛬(𝑀){⟨𝑣,𝑎
∗𝑎𝑣⟩− |⟨𝑣,𝑎𝑣⟩|2 ∣ ‖[𝐷,𝑎]‖ ≤ 1}. However, the relevant non-convex

double optimization problem – to findminima 𝑣 of this dispersion in high-dimensional
𝐻 – is computationally extremely challenging except in the simplest cases.

Therefore, we will require a proxy, 𝜙∶ 𝑀→ℝ𝑛, for the extremizing element 𝑎 above, in
the sense that the Euclidean distance 𝑑ℝ𝑛 (𝜙(𝑥),𝜙(𝑦)) on𝑀 is bi-Lipschitz equivalent
to the distance 𝑑𝑀(𝑥,𝑦) appearing in the variance. Thus, let 𝜙 ∶ 𝑀→ℝ𝑛 be a (not
necessarily Riemannian) embedding.

In other words, we take𝑀 to be a compact embedded submanifold of ℝ𝑛, with a
Riemannian metric not necessarily the one induced by the embedding. However, we
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will keep the notation 𝜙 to emphasize the arbitrary nature of the embedding, especially
in connection with Section 3.4.

Definition 3.3.3. Let 𝜇 be a probability measure on𝑀. Then, the dispersion 𝜂(𝜇)
equals

𝜂(𝜇) def= ∫
𝑀
𝑑ℝ𝑛 (𝜙(𝑥),𝐸𝜇 [𝜙])

2
𝑑𝜇(𝑥)

In probabilistic terms, 𝜂(𝜇) is just the trace of the covariancematrix of the vector-valued
random variable 𝜙, under the probability measure 𝜇.

The 𝜙-barycenter of a localized state

An element v of ℙ(𝐻𝛬) that is considered to be localized should be localized somewhere,
that is, around some ‘barycenter’ 𝑥𝑣 ∈ 𝑀. In order to control the localization of 𝜇𝑣
around the point 𝑥𝑣 by the dispersion 𝜂(𝜇𝑣), it is important that 𝜙(𝑥𝑣) be close to
𝐸𝜇𝑣 [𝜙] inℝ

𝑛. Hence,

Definition 3.3.4. Let 𝜇 be a probability measure on𝑀. Then a 𝜙-barycenter of 𝜇 is
any point 𝑥 ∈𝑀 that minimizes 𝑑ℝ𝑛 (𝜙(𝑥),𝐸𝜇 [𝜙]).

By compactness of 𝑀 and continuity of 𝑑ℝ𝑛 (𝜙(⋅),𝐸𝜇 [𝜙]), there always exists a 𝜙-
barycenter.

Localized states are indeed concentratednear their𝜙-barycenters, as the following lemma
shows. That is, the dispersion 𝜂(𝜇) is a good proxy for the squared secondWasserstein
distance3 𝑊2(𝜇,𝛿𝑥)

2 between the measure 𝜇 and any given 𝜙-barycenter 𝑥 thereof.

Lemma 3.3.5. Any 𝜙-barycenter 𝑥 of a probability measure 𝜇 satisfies

𝑊2(𝜇,𝛿𝑥)
2 def= ∫

𝑀
𝑑𝑀(𝑧,𝑥)2𝑑𝜇(𝑧) = 𝑂(𝜂(𝜇)),

uniformly4 in 𝜇, where 𝛿𝑥 denotes the Dirac measure centered on 𝑥. Moreover, any two

𝜙-barycenters of 𝜇 are within distance𝑂(√𝜂(𝜇)), uniformly in 𝜇, of each other.

3See e.g. [Vil03] for an introduction to the measure-theoretic notions that are applied (without any
hint of sophistication) in this section.

4That is, the relevant constant depends only on 𝜙 and𝑀, not on 𝜇.
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Proof. ByChebyshev’s inequality,𝜇({𝑥 ∈𝑀 ∣ ∥𝜙(𝑥)−𝐸𝜇 [𝜙]∥ ≥ 𝑡})must be bounded

by 𝑡−2𝐸𝜇 [∥𝜙−𝐸𝜇 [𝜙]∥
2
] = 𝑡−2𝜂(𝜇). Therefore, if𝑑ℝ𝑛 (𝜙(⋅),𝐸𝜇 [𝜙])

2
≥ 𝑡on the support

of 𝜇, we see that 1 ≤ 𝑡−2𝜂(𝜇). Therefore, we conclude that inf𝑥∈supp𝜇𝑑ℝ𝑛 (𝜙(𝑥),𝐸𝜇 [𝜙])
≤ √𝜂(𝜇). Any 𝜙-barycenter of 𝜇must therefore, as a minimizer of 𝑑ℝ𝑛 (𝜙(⋅),𝐸𝜇 [𝜙]) in
𝑀⊃ supp𝜇, also satify this inequality.

Now, as a smooth embedding, 𝜙 is automatically bi-lipschitz. In particular, there exists
𝛽 such that 𝑑𝑀(𝑥,𝑦) ≤ 𝛽𝑑ℝ𝑛 (𝜙(𝑥),𝜙(𝑦)) uniformly in 𝑥,𝑦. We see, therefore, that any

two 𝜙-barycenters of 𝜇 are at a distance at most 2𝛽√𝜂(𝜇).

Moreover, we conclude that ∫𝑀𝑑𝑀(𝑧,𝑥)2𝑑𝜇(𝑧) ≤ 𝛽2∫𝑀𝑑ℝ𝑛 (𝜙(𝑧),𝜙(𝑥))2𝑑𝜇(𝑧) for
all 𝑥 ∈𝑀. As |∫𝑀𝑓2 −𝑔2𝑑𝜇| ≤ ∫𝑀(2|𝑔|+ |𝑓−𝑔|)|𝑓−𝑔|𝑑𝜇 and all 𝜙-barycenters 𝑥
of 𝜇 satisfy ∣𝑑ℝ𝑛 (𝜙(𝑧),𝜙(𝑥))−𝑑ℝ𝑛 (𝜙(𝑧),𝐸𝜇 [𝜙])∣ ≤ √𝜂(𝜇), we can estimate the multi-
variate variance∫𝑑ℝ𝑛 (𝜙(𝑧),𝜙(𝑥))2𝑑𝜇(𝑧) by 𝜂(𝜇), up to an error that is bounded by
∫𝑀(2𝑑ℝ𝑛 (𝜙(𝑧),𝐸𝜇 [𝜙])+√𝜂(𝜇))√𝜂(𝜇)𝑑𝜇(𝑧)which is, by the classical Jensen inequal-
ity and the definition of 𝜂(𝜇), bounded by 3𝜂(𝜇). The Lemma follows.

We now consider the implications of the above for the barycenters of probability mea-
sures 𝜇𝑣, for v ∈ ℙ(𝐻𝛬).

Proposition 3.3.6. There exists a map 𝑏 ∶ ℙ(𝐻𝛬) →𝑀 such that

|𝑑𝛬(v,w)−𝑑𝑀(𝑏(v),𝑏(w))| = 𝑂(√𝜂(𝜇𝑣)+√𝜂(𝜇𝑤))

as 𝜂(𝜇𝑣),𝜂(𝜇𝑤) → 0, uniformly in v,w.

Proof. Let 𝑏 assign a choice of 𝜙-barycenter to each 𝜇𝑣, v ∈ ℙ(𝐻𝛬).

Now let 𝛿𝑣, 𝛿𝑤 be the Dirac measures centered on 𝑏(v), 𝑏(w). Recall that the distance
𝑑𝛬(v,w) is the Kantorovich-Rubinstein distance𝑊1(𝜇𝑣,𝜇𝑤) between 𝜇𝑣 and 𝜇𝑤, and
similarly 𝑑𝑀(𝑏(v),𝑏(w)) =𝑊1(𝛿𝑣, 𝛿𝑤).

Then, by the triangle inequality for the metric𝑊1, we have ∣𝑊1(𝜇𝑣,𝜇𝑤)−𝑊1(𝛿𝑣, 𝛿𝑤)∣ ≤
𝑊1(𝜇𝑣, 𝛿𝑣)+𝑊1(𝜇𝑤, 𝛿𝑤).
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Now, by the classical Jensen inequality ∫𝑀 |𝑓|𝑑𝜇 ≤ √∫𝑀 |𝑓|2𝑑𝜇 we have 𝑊1(⋅, ⋅) ≤
𝑊2(⋅, ⋅) and we conclude that

|𝑑𝛬(v,w)−𝑑𝑀(𝑏(v),𝑏(w))| = ∣𝑊1(𝜇𝑣,𝜇𝑤)−𝑊1(𝛿𝑣, 𝛿𝑤)∣
≤𝑊1(𝜇𝑣, 𝛿𝑣)+𝑊1(𝜇𝑤, 𝛿𝑤)
≤𝑊2(𝜇𝑣, 𝛿𝑣)+𝑊2(𝜇𝑤, 𝛿𝑤)

= 𝑂(√𝜂(𝜇𝑣)+√𝜂(𝜇𝑤)),

where the last line is Lemma 3.3.5.

Existence of localized states near any point

Proposition 3.3.6 tells us that probability measures 𝜇 on𝑀 of sufficiently small disper-
sion correspond well to their 𝜙-barycenters. This holds in particular for the probability
measures 𝜇𝑣 associated to v ∈ ℙ(𝐻𝛬). We would now like to estimate the converse, i.e.
to show that each point 𝑥 corresponds to an element v ∈ ℙ(𝐻𝛬) whose probability
measure is of small dispersion and such that 𝑏(v) is close to 𝑥. When we thus construct
an asymptotically isometric embedding𝑀↪ℙ(𝐻𝛬) that is asymptotically inverted by
𝑏, we would rightly be able to say there is a picture of𝑀 inside ℙ(𝐻𝛬).

To simplify the asymptotic estimates we will introduce the notation𝑂() common in
computer science:

Definition 3.3.7. Let 𝑋 be a set and consider functions 𝑓∶ 𝑋 × ℝ+ → ℂ, 𝑔 ∶ 𝑋 ×
ℝ+ →ℝ+. We say that 𝑓 = 𝑂(𝑔) uniformly when there exist finite𝐶,𝑟0 > 0 such that
|𝑓(𝑥,𝑟)| ≤ 𝐶𝑔(𝑥,𝑟) for all 𝑟 > 𝑟0 and all 𝑥 ∈ 𝑋. We say that 𝑓 = 𝑂(𝑔) uniformly when
𝑓 = 𝑂(𝑔| log𝑔|𝑠) uniformly for some 𝑠 ≥ 0.

Proposition 3.3.8. Let𝑀 be equipped with a Dirac-type operator𝐷 on a Hermitian
vector bundle 𝜋∶ 𝒮 →𝑀, and let �̃� ∶ ℙ(𝒮) →𝑀 be its projectivized bundle. Then,
there exists a family {𝛷𝛬}𝛬 of maps𝛷𝛬 ∶ ℙ(𝒮) → ℙ(𝐻𝛬) such that for all 𝜖 > 0,

• 𝑑𝛬(𝛷𝛬(𝑣),𝛷𝛬(𝑤)) = 𝑑𝑀(�̃�(𝑣), �̃�(𝑤))+𝑂(𝛬−1) uniformly.

• The dispersion 𝜂(𝜇) of the measure 𝜇 associated to𝛷𝛬(𝑣) is𝑂(𝛬−2) uniformly.

• The maps𝛷𝛬 asymptotically invert 𝑏, in the sense that uniformly

𝑑𝑀(�̃�(𝑣),𝑏(𝛷𝛬(𝑣))) = 𝑂(𝛬−1) , 𝑑𝛬(𝛷𝛬(𝑣)),v) = 𝑂(√𝜂(𝜇𝑣)+𝛬
−2)

whenever 𝑏(v) = �̃�(𝑣).
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The proof depends on a balanced rescaling of the truncated heat flow and will be
presented at the end of this section.

To discuss the geometric consequences of Proposition 3.3.8, we will introduce notation
for the small-dispersion subset into which𝛷𝛬 maps.

Definition 3.3.9. Let 𝜖 > 0. Then, ℙ(𝐻𝛬)𝜖 ⊂ ℙ(𝐻𝛬) consists of those v ∈ ℙ(𝐻𝛬) for
which 𝜂(𝜇𝑣) < 𝜖.

As ℙ(𝐻𝛬) is the projectivization of a finite-dimensional complex vector space – in par-
ticular a compact, smooth (real) manifold – and 𝜂 is a smooth real function, presenting
as a quartic polynomial on the standard real charts, each sublevel set ℙ(𝐻𝛬)𝜖 is itself the
interior of a smooth compact manifold with boundary.

Corollary 3.3.10. As𝛬→∞, there exists 𝜖 =𝑂(𝛬−1) such that theGromov-Hausdorff
distance between𝑀 and the space ℙ(𝐻𝛬)𝜖2 , equipped with the metric 𝑑𝛬, is𝑂(𝜖).

Proof. Let 𝜖2 = sup𝑥∈𝑀 𝜂(𝜇𝜙𝛬(𝑥)). By the secondpart of Proposition 3.3.8, 𝜖
2 =𝑂(𝛬−2).

Now, themap v→𝜇𝑣 sendsℙ(𝐻𝛬)𝜖2 isometrically into the space of probabilitymeasures
on𝑀 with the Kantorovich-Rubinstein metric𝑊1, and the map 𝑥 ↦ 𝛿𝑥 sends𝑀
isometrically into the same space.

For v ∈ ℙ(𝐻𝛬)𝜖2 , there is a point 𝑥 = 𝑏(v) in𝑀 such that𝑊1(𝜇𝑣, 𝛿𝑥) = 𝑂(𝜖) by Proposi-
tion 3.3.6.

For𝑥 ∈𝑀, there is an element v =𝛷𝛬(𝑥) ofℙ(𝐻𝛬)𝜖2 that satisfies𝑑𝑀(𝑥,𝑏(v)) =𝑂(𝛬−1)
= 𝑂(𝜖) by the third part of Proposition 3.3.8. Let 𝛿𝑣 be the Dirac measure centered
at 𝑏(v), so that𝑊1(𝛿𝑣, 𝛿𝑥) = 𝑑𝑀(𝑥,𝑏(v)). Now,𝑊1(𝜇𝑣, 𝛿𝑥) ≤ 𝑊1(𝜇𝑣, 𝛿𝑣) +𝑊1(𝛿𝑣, 𝛿𝑥),
and moreover𝑊1(𝜇𝑣, 𝛿𝑣) = 𝑂(√𝜂(𝜇𝑣)) = 𝑂(𝜖) by Proposition 3.3.6, so that indeed
𝑊1(𝜇𝑣, 𝛿𝑥) = 𝑂(𝜖). We conclude that the Hausdorff distance between𝑀 and ℙ(𝐻𝛬)𝜖2 ,
as subsets of the space of probability measures on𝑀, is𝑂(𝜖).

Proof of Proposition 3.3.8

Recall the spectral triple (𝐶∞(𝑀),𝐿2(𝑀,𝒮),𝐷) associated to𝑀, where 𝒮 is a Hermi-
tian Clifford bundle over𝑀 and𝐷 is a Dirac-type operator on 𝒮.

We will define a localization map 𝐹𝛬 ∶ 𝒮 → 𝑃𝛬𝐻 such that

⟨𝐹𝛬(𝑣𝑥),𝑎𝐹𝛬(𝑤𝑥)⟩ = (𝑣𝑥, 𝑎𝑥𝑤𝑥)𝒮 +‖𝑣𝑥‖‖𝑤𝑥‖𝑂(‖𝑎‖𝛬−2 +Lip(𝑘)𝑥 (𝑎)𝛬−𝑘)
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for all 𝜖 > 0, whenever 𝑣𝑥,𝑤𝑥 ∈ 𝒮𝑥 and 𝑎 ∈ 𝛤(End𝒮). If𝛹𝑥𝑦 is the parallel transport map
from 𝒮𝑦 to 𝒮𝑥, define the constant Lip

(𝑘)
𝑥 (𝑎) def= sup𝑦 ∶ 𝑑(𝑥,𝑦)≤𝜌 ∥𝑎𝑥 −𝛹

∗
𝑥𝑦𝑎𝑦∥/𝑑(𝑥,𝑦)

𝑘.

To do so, we will take the element 𝑣𝑥 ∈ 𝒮𝑥 and use the short-time heat flow associated to
the Laplace-type operator𝐷2 to obtain a smooth section 𝑦 ↦ 𝑝𝑡(𝑥,𝑦)(𝑣𝑥) of 𝒮, which
then corresponds to an element of𝐻. The known estimates on heat asymptotics will
allow us to bound the dispersion of 𝑝𝑡(𝑥,𝑦)(𝑣𝑥) for small 𝑡. Then, the fact that 𝑝𝑡 is
the heat kernel associated to𝐷2 whereas 𝑃𝛬 is an associated projection, will allow us to
control the behaviour of (1−𝑃𝛬)𝑝𝑡(𝑥,𝑦)(𝑣𝑥).

Definition 3.3.11. Let 𝑣𝑥 ∈ 𝒮𝑥, for 𝑥 ∈𝑀. Then 𝑝𝑡(𝑣𝑥) is the section 𝑦 ↦ 𝑝𝑡(𝑥,𝑦)(𝑣𝑥)
of 𝒮, where 𝑝𝑡 is the integral kernel associated to the operator 𝑒

−𝑡𝐷2
.

The following Lemma allows us to control the leading term in the short-time be-
haviour of the heat flow 𝑝𝑡(𝑣𝑥). To that end, let ℎ𝑡(𝑥,𝑦) equal the scalar coefficient
𝑒−𝑑𝑀(𝑥,𝑦)2/4𝑡(4𝜋𝑡)−𝑚/2 of the leading term in the asymptotics of the heat kernel. For
𝑥 ∈𝑀 and 𝑠 ∈ ℝ, let 𝐵𝑠(𝑥) ⊂𝑀 be the metric ball of radius 𝑠 around 𝑥.

Lemma 3.3.12. Let 𝑎 ∈ 𝛤(End𝒮). Then, we have for all 𝑠 smaller than the injectivity
radius of𝑀, and all 𝑣,𝑤 ∈ 𝛤(𝒮),

∫
𝐵𝑠(𝑥)

ℎ𝑡(𝑥,𝑦)(𝑣𝑥,𝛹
∗
𝑥𝑦𝑎𝑦𝑤𝑥)𝒮𝑑𝑦 =(𝑣𝑥, 𝑎𝑥𝑤𝑥)𝒮∫

𝐵𝑠(𝑥)
ℎ𝑡(𝑥,𝑦)𝑑𝑦+

+‖𝑣‖‖𝑤‖Lip(𝑘)𝑥 (𝑎)𝑂(𝑡𝑘/2 +𝑠−2𝑡(𝑘+2)/2),

∫
𝐵𝑠(𝑥)

ℎ𝑡(𝑥,𝑦)𝑑𝑦 =1+𝑂(𝑡+ 𝑠
−4𝑡2),

uniformly in 𝑣𝑥, 𝑎,𝑥 ∈𝑀.

Proof. For 𝑘 ≥ 0, consider the integral𝑚𝑡,𝑠,𝑘(𝑥)
def= ∫𝐵𝑠(𝑥)

ℎ𝑡(𝑥,𝑦)𝑑
𝑘(𝑥,𝑦)𝑑𝑦. Let𝑚′

𝑡,𝑠,𝑘
def=

(4𝜋𝑡)−𝑚/2∫∥𝑦∥≤𝑠 𝑒
−∥𝑦∥2/4𝑡 ∥𝑦∥𝑘𝑑𝑦. There exists a global constant 𝐶 such that the pull-

back of the volume form on𝑀 is bounded by 𝐶∥𝑦∥2 times the Euclidean volume
form. Thus, pulling back our integral through the exponential map at 𝑥, we have
|𝑚𝑡,𝑠,𝑘(𝑥)−𝑚

′
𝑡,𝑠,𝑘| ≤ 𝐶𝑚

′
𝑡,𝑠,𝑘+2.

By Chebyshev’s inequality, we have

𝑚′
𝑡,𝑠,2𝑘 = (4𝜋𝑡)

−𝑚/2∫𝑒−∥𝑦∥
2/4𝑡 ∥𝑦∥2𝑘𝑑𝑦+𝑂(𝑡−𝑚/2𝑠−4∫

∁𝐵𝑠(0)
𝑒−∥𝑦∥

2/4𝑡 ∥𝑦∥2𝑘+4𝑑𝑦),
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where ∁ denotes the complement. With Isserlis’ theorem to calculate the full Gaus-

sian integrals, we see that𝑚′
𝑡,𝑠,2𝑘 = 𝑐𝑘𝑡

𝑘 +𝑂(𝑠−4𝑡𝑘+2) for all 𝑘. Thus,𝑚𝑡,𝑠,2𝑘(𝑥) = 𝑐𝑘𝑡
𝑘 +

𝑂(𝑡𝑘+1)+𝑂(𝑠−4𝑡𝑘+2).

Now, estimate ∣(𝑣𝑥,𝛹
∗
𝑥𝑦𝑎𝑦𝑤𝑥)𝒮 −(𝑣𝑥, 𝑎𝑥𝑣𝑥)𝒮∣ ≤ Lip(𝑘)𝑥 (𝑎)𝑑(𝑥,𝑦)𝑘 ‖𝑣𝑥‖‖𝑤𝑥‖.

As𝑚2
𝑡,𝑠,𝑘 ≤𝑚𝑡,𝑠,0𝑚𝑡,𝑠,2𝑘 by the classical Jensen’s inequality, we can use the simple estimate

√𝑚𝑡,𝑠,0(𝑥)𝑚𝑡,𝑠,𝑘(𝑥) = 𝑂(𝑡
𝑘/2 +𝑠−2𝑡𝑘/2) to conclude that the remaining error is itself

𝑂(‖𝑣𝑥‖‖𝑤𝑥‖Lip
(𝑘)
𝑥 (𝑎)(𝑡𝑘/2 +𝑠−2𝑡(𝑘+2)/2))

uniformly.

We are now in a position to show that the rescaled heat flow (2𝜋𝑡)𝑚/4𝑝𝑡 ∶ 𝒮𝑥 →𝐻 is
asymptotically isometric, in the following sense:

Lemma 3.3.13. For 𝑎 ∈ 𝛤(End𝒮) and 𝑣,𝑤 ∈ 𝛤(𝑠), we have uniformly

⟨𝑝𝑡(𝑣𝑥),𝑎𝑝𝑡(𝑤𝑥)⟩ =(2𝜋𝑡)
−𝑚/2 (𝑣𝑥, 𝑎𝑥𝑤𝑥)𝒮+

+‖𝑣𝑥‖‖𝑤𝑥‖𝑂(Lip
(𝑘)
𝑥 (𝑎)𝑡(𝑘−𝑚)/2 +‖𝑎‖𝑡(2−𝑚)/2)

Proof. It is well-known, see e.g. [BGV04, Theorem 2.30], that there exist a nonzero
radius 𝑠 around 𝑥 such that for 𝑑𝑀(𝑥,𝑦) < 𝑠, one has 𝑝𝑡(𝑥,𝑦)(𝑣𝑥) = ℎ𝑡(𝑥,𝑦)(𝛹𝑥𝑦(𝑣𝑥)+
𝑂(𝑡)) as 𝑡 → 0, where𝛹 is the parallel transport along the Clifford connection. There-
fore,

(𝑝𝑡(𝑥,𝑦)(𝑣𝑥),𝑎𝑦𝑝𝑡(𝑥,𝑦)(𝑤𝑥))𝒮 = (ℎ𝑡(𝑥,𝑦))
2 (𝑣𝑥,𝛹

∗
𝑥𝑦𝑎𝑦𝑤𝑥)𝒮

+𝑂(𝑡(ℎ𝑡(𝑥,𝑦))
2 ‖𝑎‖‖𝑣𝑥‖‖𝑤𝑥‖),

uniformly in 𝑥. Moreover, for 𝑑𝑀(𝑥,𝑦) > 𝑠, one has

(𝑝𝑡(𝑥,𝑦)(𝑣𝑥),𝑎𝑦𝑝𝑡(𝑥,𝑦)(𝑤𝑥))𝒮 = 𝑂((ℎ𝑡(𝑥,𝑦))
2 ‖𝑎‖‖𝑣𝑥‖‖𝑤𝑥‖).

Now, outside an 𝑠-ball around 𝑥, we have

∫
∁𝐵𝑠(𝑥)

(𝑝𝑡(𝑥,𝑦)(𝑣𝑥),𝑎𝑦𝑝𝑡(𝑥,𝑦)(𝑤𝑥))𝒮𝑑𝑦 = 𝑂(𝑒
𝑠2/2𝑡𝑡−𝑚 ‖𝑎‖‖𝑣𝑥‖‖𝑤𝑥‖),

as 𝑡→ 0. Now set 𝑠 def= 𝑡1/4 and note that (ℎ𝑡(𝑥,𝑦))
2 = (2𝜋𝑡)−𝑚/2ℎ2𝑡(𝑥,𝑦). The estimate

of Lemma 3.3.12 on the integral over 𝐵𝑠(𝑥) then completes the proof.
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3.3. The metric space of localized states

In order to estimate the scaling of the truncated heat flow 𝑃𝛬𝑝𝑡(𝑣𝑥) with 𝛬, we will
relate 𝑝𝑡(𝑣𝑥) to the spectral resolution of𝐷

2, as follows.

Definition 3.3.14. Let 𝑃𝜆 be the projection onto the 𝜆-eigenspace of the first-order
elliptic differential operator𝐷 and let 𝐸𝜆 be its integral kernel, so that for all sections 𝑣
of 𝒮we have

𝑃𝜆(𝑣)(𝑦) = ∫
𝑀
𝐸𝜆(𝑥,𝑦)(𝑣𝑥)𝑑𝑥.

Then, 𝐸𝜆 ∶ 𝒮 → 𝛤(𝒮) is the associated lifting 𝐸𝜆(𝑣𝑥) ∶ 𝑦 ↦ 𝐸𝜆(𝑥,𝑦)(𝑣𝑥).

In particular, we have 𝑝𝑡 =∑𝜆 𝑒
−𝑡𝜆2𝐸𝜆 weakly. To estimate the 𝐿

2-norm of 𝐸𝜆(𝑣𝑥), we
will need the following classical result by Hörmander[Hör68].

Theorem 3.3.15 ([Hör68, Theorem 4.4]). There exists a constant𝐶 such that

sup
𝑥,𝑦∈𝑀

∥𝐸𝜆(𝑥,𝑦)∥ ≤ 𝐶(1+ |𝜆|)
dim𝑀−1

uniformly in 𝑥,𝑦,𝜆. In particular, there exists a constant 𝑐 such that

‖𝐸𝜆(𝑣𝑥)‖𝐻 ≤ 𝑐(1+ |𝜆|)dim𝑀−1 ‖𝑣𝑥‖𝒮𝑥
,

for all 𝑣𝑥 ∈ 𝒮, all 𝑥 ∈𝑀 and all 𝜆 ∈ 𝜎(𝐷) ⊂ 𝑅.

Due to the polynomial scaling of the fiberwise inner product, we can now show that the
exponential dependence of (1−𝑃𝛬)𝑝𝑡(𝑣𝑥) on𝛬 implies that we retain the asymptotic
properties of the heat flow when we truncate such that 𝛬2𝑡 = 𝑐 log𝛬 for sufficiently
large 𝑐.

Lemma 3.3.16. We have for all 𝑎 ∈ 𝐵(𝐻),

∣⟨𝑝𝑡(𝑣𝑥), (𝑎−𝑃𝛬𝑎𝑃𝛬)𝑝𝑡(𝑤𝑥)⟩𝐻∣ = 𝑂(‖𝑣𝑥‖‖𝑤𝑥‖‖𝑎‖𝑡
1−2𝑚𝑒−𝑡𝑧𝛬

2
),

for all fixed 0 ≤ 𝑧 < 1, uniformly in 𝑣𝑥,𝑤𝑥 ∈ 𝒮𝑥, 𝑥 ∈𝑀, as𝛬→∞.

Proof. Recall that the integral transform associated to the kernel 𝑝𝑡(𝑥,𝑦) equals the
bounded linear operator 𝑤↦ 𝑒−𝑡𝐷

2
𝑤 on𝐻, so that 𝑝𝑡 =∑𝜆 𝑒

−𝑡𝜆2𝐸𝜆 weakly. Thus, for

𝑤 ∈ 𝐻, we have ⟨𝑃𝛬𝑝𝑡(𝑣𝑥),𝑤⟩ = ∑|𝜆|<𝛬∈𝜎(𝐷) 𝑒
−𝑡𝜆2 ⟨𝐸𝜆(𝑣𝑥),𝑤⟩.
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3.3. The metric space of localized states

The difference to be estimated then consists of the sum of the missing terms, which

equals∑𝜆1,𝜆2∉[−𝛬,𝛬]2
𝑒−𝑡(𝜆

2
1+𝜆

2
2) ⟨𝐸𝜆1(𝑣𝑥),𝑎𝐸𝜆2(𝑤𝑥)⟩.

First note that Theorem 3.3.15 provides a global constant 𝑐 such that

| ⟨𝐸𝜆1(𝑣𝑥),𝑎𝐸𝜆2(𝑤𝑥)⟩ | ≤ ‖𝑣𝑥‖‖𝑤𝑥‖‖𝑎‖𝑐
2 ((1+𝜆21)(1+𝜆

2
2))

𝑚−1 .

Now,∑|𝜆|>𝛬 𝑒
−𝑡𝜆2(1+𝜆2)𝑚−1 is, for 0 < 𝜖 ≤ 1, bounded by 𝑒−(1−𝜖)𝑡𝛬

2
times the shifted

sum∑|𝜆|>𝛬 𝑒
−𝑡𝜖𝜆2(1+𝜆2)𝑚−1. Moreover, the entire sum∑𝜆 𝑒

−𝑡𝜆2(1+𝜆2)𝑚−1 is, by the

heat asymptotics for the Laplace-type operator𝐷2, bounded by𝑂(𝑡
1
2−𝑚).

Thus, we obtain a bound of𝑂(𝑐2 ‖𝑣𝑥‖‖𝑤𝑥‖‖𝑎‖𝑡
1−2𝑚𝑒−𝑡(1−𝜖)𝛬

2
).

Our localization map is thus given by a truncated, rescaled heat flow, as follows.

Definition 3.3.17. Let 𝑡𝛬
def= 2𝑚𝛬−2 log𝛬. The map 𝐹𝛬 ∶ 𝒮 → 𝑃𝛬𝐻 is given by

𝑣𝑥 ↦ (2𝜋𝑡𝛬)
𝑚/4 ∑

|𝜆|≤𝛬
𝑒−𝑡𝛬𝜆

2
𝐸𝜆(𝑣𝑥).

There exists finite 𝛬 such that 𝐹𝛬 is injective, by Lemma 3.3.13 and injectivity of the
heat flow 𝑝𝑡(𝑣𝑥).

Nowwe are in a position to connect𝐹𝛬 to the localization question of Proposition 3.3.8.

Proposition 3.3.18. Consider the map𝛷𝛬 ∶ ℙ𝒮→ ℙ(𝐻𝛬) given by

𝛷𝛬([𝑣𝑥])
def= [𝐹𝛬(𝑣𝑥)] ∈ ℙ(𝐻𝛬),

for𝛬 sufficiently large that 𝐹𝛬 is injective. Then,𝛷𝛬([𝑣𝑥]) is localized near 𝑥 in the sense
that

𝜂(𝜇𝛷𝛬([𝑣𝑥])) = 𝑂(𝛬−2) , 𝑊2(𝜇𝛷𝛬([𝑣𝑥]), 𝛿𝑥)
2 = 𝑂(𝛬−2) .

Proof. Note that for any 𝜖 > 0wemay pick 𝑧 such that 𝑡1−2𝑚𝛬 𝑒−𝑡𝛬𝑧𝛬
2
= 𝑂(𝛬−2). Thus,

for 𝑎 ∈ 𝛤(End𝒮)we have

⟨𝐹𝛬(𝑣𝑥),𝑎𝐹𝛬(𝑣𝑥)⟩ = (2𝜋𝑡)
𝑚/2 ⟨𝑝𝑡(𝑣𝑥),𝑎𝑝𝑡(𝑣𝑥)⟩+ ‖𝑣𝑥‖

2 ‖𝑎‖𝑂(𝛬−2)

= (𝑣𝑥, 𝑎𝑥𝑣𝑥)+ ‖𝑣𝑥‖
2𝑂(Lip(𝑘)𝑥 (𝑎)𝛬−𝑘 +‖𝑎‖𝛬−2)
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3.3. The metric space of localized states

so that in particular ‖𝐹𝛬(𝑣𝑥)‖
2 = ‖𝑣𝑥‖

2 (1+𝑂(𝛬−2)).

With 𝑓𝑥(𝑦)
def= 𝑑(𝑥,𝑦)2 and ‖𝑣𝑥‖

2 = 1, we have𝑊2(𝜇𝛷𝛬([𝑣𝑥]), 𝛿𝑥)
2 = 𝛷𝛬([𝑣𝑥])(𝑓𝑥)which

is 𝑂(𝛬−2), and with 𝑔(𝑦)𝑖
def= 𝜙(𝑦)𝑖 −𝜙(𝑥)𝑖 we see that𝛷𝛬([𝑣𝑥])(𝑔𝑖) is 𝑂(𝛬−1). The

dispersion of the associated measure is therefore𝑂(𝛬−2).

Proof of Proposition 3.3.8. Let 𝜇1,𝜇2 be the measures associated to𝛷𝛬(𝑣𝑥) and𝛷𝛬(𝑤𝑦)
respectively. Then, 𝜂(𝜇𝑖) = 𝑂(𝛬−2) by Proposition 3.3.18 and we have

∣𝑑𝑀(𝑥,𝑦)−𝑑(𝜇1,𝜇2)∣ ≤𝑊2(𝛿𝑥,𝜇1)+𝑊2(𝜇2, 𝛿𝑦) = 𝑂(𝛬−1) .

Let 𝑝 def= 𝐸𝜇𝛷𝛬(𝑣𝑥) [𝜙]. Then, 𝑑ℝ𝑛 (𝜙(𝑥),𝑝) ≤𝑊2(𝜙(𝑥),𝜙∗𝜇1)+√𝜂(𝜇) and the first term is,

by bi-Lipschitz equivalence,𝑂(𝑊2(𝑥,𝜇1)) so that 𝑑ℝ𝑛 (𝜙(𝑥),𝑝) = 𝑂(𝛬−1). Therefore,
one has 𝑑(𝑥,𝑏(𝛷𝛬(𝑣𝑥))) = 𝑂(𝛬−1) as well.

Finally, for probability measures 𝜈, 𝑥 = 𝑏(𝜈) and 0 ≠ 𝑣 ∈ 𝒮𝑥, we have 𝑑(𝛷𝛬(𝑣), 𝜈) ≤
𝑊2(𝛿𝑥, 𝜈)+𝑊2(𝛷𝛬(𝑣), 𝛿𝑥), and Lemma 3.3.5 leads to bounds of𝑂(√𝜂(𝜈)) and𝑂(𝛬−1)
(when combined with Proposition 3.3.18), respectively, on the latter.

The space ℙ(𝐻𝛬) in terms of the truncation of a spectral triple

ByCorollary 3.3.10, there exists 𝜖 = 𝑂(𝛬−1) such that the spaceℙ(𝐻𝛬)𝜖2 is 𝜖-close to𝑀,
when equipped with the Kantorovich-Rubinstein metric. By Kantorovich-Rubinstein
duality, that metric can be computed by Connes’ formula (3.1):

𝑑𝛬(v,w) = sup
𝑓∈𝐶∞(𝑀)

{∣∫
𝑀
𝑓𝑑𝜇𝑣 −∫

𝑀
𝑓𝑑𝜇𝑤∣ ∣ ∥[𝐷,𝑓]∥ ≤ 1}

Now, each element v of ℙ(𝐻𝛬) induces a state 𝜔𝑣 of𝐶
∞(𝑀)𝛬, which corresponds to

representatives 𝑣 ∈ 𝐻𝛬 of v as

𝜔𝑣(𝑃𝛬𝑓𝑃𝛬) = ⟨𝑣,𝑃𝛬𝑓𝑃𝛬𝑣⟩/‖𝑣‖
2
𝐻 = ⟨𝑣,𝑓𝑣⟩/‖𝑣‖2𝐻

=∫
𝑀
𝑓(𝑥)𝑑𝜇𝑣(𝑥).

With this identification, we have

𝑑𝛬(v,w) = sup
𝑓∈𝐶∞(𝑀)

{∣𝜔𝑣(𝑃𝛬𝑓𝑃𝛬)−𝜔𝑤(𝑃𝛬𝑓𝑃𝛬)∣ ∣ ∥[𝐷,𝑓]∥ ≤ 1} . (3.3)
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3.4. The PointForge algorithm: associating a finite metric space

It is an open question whether, in the limit𝛬→∞, this metric can be approximated
arbitrarily well in Gromov-Hausdorff distance by the functional on the truncation of
the spectral triple given by

𝑑𝛬(v,w) = sup
𝑓∈𝐶∞

𝛬(𝑀)
{∣𝜔𝑣(𝑓)−𝜔𝑤(𝑓)∣ ∣ ∥[𝐷𝛬,𝑓]∥ ≤ 1} . (3.4)

Although we clearly have ∥[𝐷𝛬,𝑃𝛬𝑓𝑃𝛬]∥ ≤ ∥[𝐷,𝑓]∥ so that 𝑑𝛬 ≤ 𝑑𝛬, it is a highly non-
trivial undertaking to obtain a bound in the opposite direction. See e.g. [DLM14b;
Sui20] for further perspective on the problem.

Importantly, the distance 𝑑𝛬 is directly amenable to algorithmic computation; see
Section 3.4. Therefore, that is the metric we propose to use in the PointForge
algorithm introduced below. The question of correctness of that algorithm, in the sense
of Gromow-Hausdorff convergence of its result to the original compact Riemannian

manifold, then at least partly hinges on the relation between the metrics 𝑑𝛬 and 𝑑𝛬.
Attacking this difficult question is however beyond the scope of the present chapter.

3.4 The PointForge algorithm: associating a finite metric space

Once a set of localized vector states is found, the Connes (Kantorovich-Rubinstein)
distance between them will serve as an estimate for the geodesic distance between the
points in𝑀 near which they are concentrated. Keeping in mind the discussion of
Section 3.3, we will regard the truncated metric of Equation (3.4) as the natural metric
on ℙ(𝐻𝛬).

Localized vector states can be found by minimizing the dispersion functional in𝐻.
Apart from the comparison of the metrics (3.3) and (3.4), nonzero dispersion induces
a distortion of estimated distances (see section 3.3, below). Therefore, the dispersion
supplies a lower bound on the Gromov-Hausdorff distance between any graph of
localized states and the manifold𝑀. Computationally speaking, then, it would be
desirable to minimize the number of states (and, hence, computational resources)
required to approach this bound.

The main other factor, besides localization, that influences the Gromov–Hausdorff
distance is the density (in theHausdorff sense) of our set of points inside𝑀. Optimally,
therefore, the states would be equidistributed on𝑀.

55



3.4. The PointForge algorithm: associating a finite metric space

In order to construct a potential whose minima are both localized and roughly (that
is, under the map 𝜙) equidistributed, we add an electrostatic repulsion term to the
dispersion. Given a set𝑉 of states, the next state is then generated as the minimum of
the energy functional

𝑒(𝑣;𝑉) def= −𝜂(𝑣)−1 +𝑔𝑒∑
𝑤∈𝑉

(∑
𝑖
(⟨𝑣,𝜙𝑖𝑣⟩− ⟨𝑤,𝜙𝑖𝑤⟩)

2)
−1

. (3.5)

The value of the coupling constant 𝑔𝑒 should ideally be sufficiently large to overcome
local variation in minimal dispersion but is otherwise not expected to influence the
generated states much – this is consistent with our observations for𝑀= 𝑆1,𝑆2.

The PointForge algorithm

Using the functional (3.5) we propose the following algorithm to construct states and
thus a finite metric space𝑀𝛬 that models the metric information about𝑀 contained
at cutoff𝛬.

As preparation, we must estimate the number𝑁 of states to generate.

• Estimate vol𝑀𝛬 and dim𝑀𝛬, e.g. using the asymptotic formulas of [Ste19b].

• Estimate the Euclidean dispersion 𝜂0 = 𝐸𝜈 [‖𝑋‖
2] under the multivariate normal

distribution 𝜈 of covariance matrix 2𝛬−2 log𝛬 id onℝdim𝑀𝛬 .

• Set𝑁 = vol𝑀𝛬/(vol(𝐵dim𝑀𝛬
)𝜂dim𝑀𝛬/2

0 ), where 𝐵dim𝑀𝛬
is the Euclidean unit

ball of dimension dim𝑀𝛬.

For cases where 𝜙 is a Riemannian embedding of 𝑀, any 𝑔𝑒 will suffice to lead to
equidistributed states in𝑀, while for 𝑔𝑒 = 0 the states generated numerically would
mostly lie very close together. However in the cases where 𝜙 is far from Riemannian,
we need to chose 𝑔𝑒 to be sufficiently large to overcome local variations in minimal
dispersion, and assume this to mean that −𝛼2𝜂−10 +𝑔𝑒𝛼

2𝜂−10 ≥ −𝛽2𝜂−10 , where 𝛼 and 𝛽
are the optimal local Lipschitz constants of 𝜙 and 𝜙−1, respectively. This ensures that
states in regions of𝑀 where the dispersion is over-reported (due to stretching by 𝜙)
will be generated once the regions where the dispersion is under-reported are saturated
with states, instead of being skipped.

Then, simply generate 𝑁 states by minimizing the iterative energy functional and
calculate the Connes distance between them:
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1: while |𝑉| ≤ 𝑁 do
2: Find a vector 𝑤 (locally) minimizing 𝑒(𝑤;𝑉).
3: Append 𝑤 to𝑉.
4: for 𝑣 ∈ 𝑉, do
5: Set 𝑑(𝑣,𝑤) =max{|⟨𝑣,𝑎𝑣⟩− ⟨𝑤,𝑎𝑤⟩| ∶ ‖[𝐷,𝑎]‖ ≤ 1}.
6: end for
7: end while

The algorithm, including the distance calculation and the examples 𝑆1 and 𝑆2, has been
implemented in Python and is publicly available at [SG19].

Implementation: calculating the metric on ℙ(𝐻𝛬)

When 𝑣,𝑤 ∈ 𝐻𝛬, the distance between the vector states ⟨𝑣| ⋅ |𝑣⟩ and ⟨𝑤| ⋅ |𝑤⟩ of the
algebra𝐴 = 𝐶∞(𝑀) equals

max
𝑎∈𝐴𝛬

{|⟨𝑣,𝑎𝑣⟩− ⟨𝑤,𝑎𝑤⟩| ∶ ‖[𝐷𝛬, 𝑎]‖ ≤ 1},

as in discussed in section 3.3.

The functional 𝑎 ↦ ⟨𝑣|𝑎|𝑣⟩− ⟨𝑤|𝑎|𝑤⟩ is linear and the space {𝑎 ∈ 𝐴𝛬 ∣ ‖[𝐷𝛬, 𝑎]‖ ≤ 1}
is convex, which ensures that computing the minimum is computationally feasible.

Indeed, if 𝑎0,… ,𝑎𝑛 is a basis for (𝐴𝛬)sa, we can reformulate the problem as:

Problem1. Minimize∑𝑖 𝑐𝑖 (⟨𝑣,𝑎𝑖𝑣⟩− ⟨𝑤,𝑎𝑖𝑤⟩)over 𝑐 ∈ℝ
𝑛+1, subject to the constraint

[ 𝐼 ∑𝑖 𝑐𝑖[𝐷𝛬, 𝑎𝑖]
∑𝑖 𝑐𝑖[𝐷𝛬, 𝑎𝑖]

∗ 𝐼 ] > 0

With the constraints formulated as a linearmatrix inequality, we have put the problem in
a form directly amenable to techniques from semi-definite programming. A reasonably
effective algorithm, given the scale of the problem, is then provided by the Splitting
Cone Solver of [ODo+16].

Complexity and the dimension of 𝐶∞(𝑀)𝛬
Step 2 of the PointForge algorithm amounts to finding a local minimum of a
quadratic function under quadratic constraints in a vector space of dimension dim𝐻𝛬,
which can be done in𝑂(dim𝐻𝛬)

2, e.g. with the BFGS algorithm.
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3.5. Example: 𝑆2

The problem in step 5 is convex, of dimension dim𝐶𝛬(𝑀). This factor is what limits
the computational feasibility of high𝛬 in our experiments, so it would be informative
to analyze the scaling of dim𝐶𝛬(𝑀)with𝛬.

As a simple example, one can represent the generator 𝑒𝑖𝜃 of𝐶∞(𝑆1) as the shift operator
on 𝐻 = 𝑙2, with basis indexed by ℤ, where the corresponding Dirac operator acts
diagonally as𝐷𝑒𝑛 = 𝑛𝑒𝑛. It is then easy to see that the dimension of𝐶

∞(𝑆1)𝛬 is equal
to dim𝐻𝛬 = 2⌊𝛬⌋+1.

For𝑀= 𝑆2, if we choose an orthonormal basis 𝑒𝑙𝑚 of eigenvectors of𝐷 and introduce
the spherical harmonics 0𝑌𝑙𝑚 then we can express ⟨(𝑒𝑙1𝑚1

⋅ 𝑒𝑙2,𝑚2
),0𝑌𝑙3𝑚3

⟩𝐿2(𝑀) in terms of
3𝑗-symbols. In particular, these vanish unless ||𝑙1|− |𝑙2|| ≤ 𝑙3 ≤ |𝑙1|+ |𝑙2|, which tells
us that𝐶∞(𝑆2)𝛬 is spanned by (0𝑌𝑙𝑚)𝛬 for 𝑙 ≤ 2𝛬 and is thus of dimension bounded
by (2𝛬+1)2.

The general situation is not entirely clear. However, our Proposition 3.3.8, as noted

there, provides a lower bound of𝛩(𝛬dim𝑀) on the scaling of dim𝐶∞(𝑀)𝛬 with𝛬.

3.5 Example: 𝑆2

The simplest interesting example of a commutative spectral triple that allows for an
isometric embedding in ℝ3 is probably the sphere 𝑆2. This section will cover the
application of the PointForge algorithm to truncations of (𝐶∞(𝑆2),𝐿2(𝑆2,𝒮𝑆2),𝐷𝑆2),
and thereby illustrate (and test the optimality of) the analytic results of Section 3.3.

Implementation

The main ingredients are the vector space𝐶∞
𝛬(𝑆

2), the spectrum of𝐷𝑆2 , the element 𝜙,
and their representation on 𝐿2(𝑆2,𝒮𝑆2)𝛬.

The vector space 𝐶∞
𝛬(𝑆

2) is spanned by the spherical harmonic functions 𝑌𝑙𝑚 up to
𝑙 = 2𝛬, as in section 3.4. An eigenbasis 𝑒𝑙𝑚 of𝐷 can be expressed in terms of the spin-
weighted spherical harmonics 𝑠𝑌𝑙𝑚, with 𝑠 = ±

1
2 , as discussed e.g. in [GVF01], section

9.A. The matrix coefficients of the representation of 𝐶∞
𝛬(𝑆

2) can then be expressed
in terms of triple integrals of spin-weighted spherical harmonics. Note that a brute-
force approach of calculating the inner products ⟨𝑒𝑙𝑚,𝑌𝑙′𝑚′𝑒𝑙″𝑚″⟩ in order to obviate
knowledge of the representation-theoretic machinery attached to 𝑆2 would have been
possible, however it would have introduced the additional complexity of calculating
(dim𝐻𝛬)

2 ⋅dim𝐶∞
𝛬(𝑆

2) ⋅ rk𝒮 integrals numerically.
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3.5. Example: 𝑆2

The element 𝜙 is just the idempotent associated to the Bott projection ( 𝑧 𝑥− 𝑖𝑦
𝑥+ 𝑖𝑦 −𝑧 ),

where 𝑥,𝑦,𝑧 are the standard coordinates on the embedding 𝑆2 ↪ℝ3. Note that this
embedding 𝜙 is isometric, although that is not necessary for the algorithm or the theory
in Section 3.3 to work.

The source code to this implementation is publicly available as part of the full Python
implementation of the algorithm at [SG19].

The localized state densities

Because the measures associated to states in ℙ(𝐻𝛬) are of the form (𝑣,𝑣)vol𝑀, with 𝑣 in
the finite-dimensional vector space𝑃𝛬𝐻, one can easily plot the corresponding function
(𝑣,𝑣) on𝑀. This allows us to test them, by simply plotting the corresponding fiberwise
inner product of the spinor spherical harmonics in the continuum. We can then
compare these with the numerical states generated through the PointForge algorithm
for different𝛬. The expectation is that the numerical states will be comparable to the
states obtained through𝛷𝛬 but will be slightly less localized.

Figure 3.1 shows plots for𝛷𝛬(𝑣𝑥), for fixed 𝑣𝑥 ∈ 𝒮 is fixed, and plots of numerical states
for𝛬 = 4,10. It is evident that the states are indeed peaked neatly near 𝑥, in both cases.
We thus find that the states are well localized and become more localized the larger the
cutoff is.

Other than this qualitative comparison we also have analytic control. Proposition 3.3.6
gives the functional form of the dispersion as a function of the cut-off𝛬 as log𝛬/𝛬2.
We can check this relation explicitly by plotting the size of the dispersion against the
cutoff value, as done in Figure 3.2 for the cutoff up to𝛬 = 16.

Distribution of states over the sphere

Plotting several states simultaneously allows us to show how the repulsion term dis-
tributes them over the sphere. Figure 3.3 shows 17 states for𝛬 = 11. The distribution
of states in Figure 3.3 has some inhomogeneities, some gaps between states are very
large. This is because we only generated 17 states instead of the 110we would expect
to generate in the PointForge algorithm. Restricting the number of states reduced
computation time, and allowed for a clearer visualization of the independent states. In
the right hand Figure we see the states as densities on the sphere, while the left hand
plot shows the densities in the 𝜃,𝜙 plane.

59



3.5. Example: 𝑆2

(a) Analytic state for𝛬 = 4 (b) Analytic state for𝛬 = 10

(c) Numerical state for𝛬 = 4 (d) Numerical state for𝛬 = 10

Figure 3.1: Plot of analytic and truncated localized states.
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3.5. Example: 𝑆2

Figure 3.2: Plot of the dispersion of states versus the value of the cutoff for the states.
The dashed line is a fit of the analytic result that the dispersion should scale like
log𝛬/𝛬2.

To test how the repulsive potential acts we can generate states on the sphere and just
plot the coordinates for their center of mass associated with the embedding maps 𝜙𝑖.
We show this in Figure 3.4 for a maximal eigenvalue of𝛬 = 10, it is clear that without
potential all states generated cluster at one point, while even a weak repulsive potential
leads to points that are evenly distributed.

Error analysis

If a measure 𝜇 on 𝑆2 is reasonably localized, so that 𝑥 def= 𝐸𝜇 [𝜙(𝑋)] ≠ 0, then it possesses
a unique 𝜙-barycenter 𝑝 given by the projection of 𝑥 onto the sphere. The Euclidean
distance between 𝑥 and 𝜙(𝑝) is then given by √1−‖𝑥‖2.

Figure 3.5(a) shows how closely the geodesic distance between barycenters is approxi-

mated by the truncated Connes distance 𝑑𝛬. The monotone scaling of the error reflects
the fact that antipodal, imperfectly localized measures are significantly closer in Wasser-
stein distance than their barycenters are, due to the presence of the cut locus.

Interestingly, the error is strictly positive, so that 𝑑𝛬(𝜇1,𝜇2) turns out to be – for the
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3.5. Example: 𝑆2

(a) States in 𝜃−𝜙 plane (b) States on the sphere

Figure 3.3: Localized states on the sphere, the left hand image shows the states projected
on the two dimensional plane using a sinusoidal projection, while the right hand image
shows the states on the sphere.

states considered – a better approximation to 𝑑𝑀(𝑝1,𝑝2) than𝑊1(𝜇1,𝜇2) = 𝑑𝛬(𝜇1,𝜇2)
itself. In particular, as long as the error is positive, the convergence of 𝑑𝛬(𝜇1,𝜇2) to
𝑑𝑀(𝑝1,𝑝2) as the dispersions fall implies convergence of 𝑑𝛬 to 𝑑𝛬 as well. Whether
this points to special behaviour of the (truncated) Connes distance between localized
elements of ℙ(𝐻𝛬) remains to be seen.

Formeasures𝜇1,𝜇2 on𝑆
2, the analysis of Section 3.3 shows that the error |𝑑𝑀(𝑝1,𝑝2)−

𝑊1(𝜇1,𝜇2)| is boundedby𝑊2(𝑝1,𝜇1)+𝑊2(𝑝2,𝜇2), andmoreover thatwehave𝑊2(𝑝,𝜇)
2

≤𝛽2𝐸𝜇 [∥𝜙(𝑝)−𝜙(𝑋)∥
2], where𝛽=𝜋/2 is theLipschitz constant of𝜙. Thus,wehave a

bound of 𝜋
2

4 (∑𝑖 𝜂(𝜇𝑖)+ (1−‖𝑥𝑖‖
2)) on the squared error |𝑑𝑀(𝑝1,𝑝2)−𝑊1(𝜇1,𝜇2)|

2.
Since the other terms in this inequality can readily be calculated, it provides uswith a the-
oretical lower (upper) bound on𝑊1(𝜇1,𝜇2). Figure 3.5(b) shows this lower bound, and
the upper bound provided by 𝑑𝛬, for𝑊1(𝜇1,𝜇2), with 𝑑𝑀(𝑝1,𝑝2) shown for reference.
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3.5. Example: 𝑆2

(a) No repulsive potential (b) Repulsive potential with coupling 0.001

(c) Repulsive potential with coupling 0.1 (d) Repulsive potential with coupling 100

Figure 3.4: This shows how the states are distributed dependent on the repulsive poten-
tial. We can see that even a weak repulsive potential suffices to lead to well distributed
points. This figure shows the point distribution in the Sinusoidal projection, flattening
the sphere onto the plane.
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3.6. Embedding a distance graph inℝ𝑛

(a) Absolute error (b) Bounds for 𝑑𝛬(𝜇1,𝜇2)

Figure 3.5: Distance errors and bounds for pairs of localized states at𝛬 = 5.

3.6 Embedding a distance graph inℝ𝑛

Let𝑀 be a compact Riemannian manifold, and assume that𝑀 embeds isometrically
intoℝ𝑛. Now take a finite set𝑉 of points in𝑀 and their geodesic distances 𝑑(⋅, ⋅)|𝑉×𝑉,
e.g. by generating states as above and calculating their distances using (3.1). Optimally,
we would ask for a way to embed 𝑉 inℝ𝑛 such that its image under this embedding
equals its image under some Riemannian isometry𝑀→ℝ𝑛.

Of course, without knowledge of𝑀 such a problem is unsolvable for any given 𝑉.
Instead, we hope for our embedding procedure to satisfy such a property asymptotically,
i.e. that for sequences of 𝑉 of increasing density their embeddings converge to an
embedding of𝑀, under some suitable notions of density and convergence. This is an
open problem, and since our primary purpose at this point is one of visualization, we
will only take it as a guiding principle.

Stress and local isometry of embeddings

The field of optimal graph embedding is well-established and providesmany approaches
to questions similar to the above. A particular model of interest ismetric multidimen-
sional scaling5, where one looks for an embedding 𝑋 ∶ 𝑉 → ℝ𝑛 that minimizes the

5See e.g. [BG05]
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3.6. Embedding a distance graph inℝ𝑛

stress function,

𝜎(𝑋) =
∑𝑝≠𝑞∈𝑉𝑤(𝑝,𝑞)(𝑑(𝑝,𝑞)− ||𝑋(𝑝)−𝑋(𝑞)||)

2

∑𝑝≠𝑞∈𝑉𝑤(𝑝,𝑞)
,

where 𝑤 is a positive weight function: this is just a weighted version of the second
Gromov-Wasserstein distance between𝑉 ⊂𝑀 and𝑋(𝑉) ⊂ ℝ𝑛.

Because our𝑀 is not assumed to be Euclidean, the usual choice 𝑤 = 1would be quite
unnatural here. In particular, an isometric embedding of𝑀 in the Riemannian sense
would not necessarily have minimal stress, because the model instead asks for isometry
in the sense of maps ofmetric spaces, not Riemannianmanifolds. Since all tangent space
information is lost when discretizing like this, the Riemannian notion of isometry does
not translate immediately and we must replace it using a measure of locality.

By the smoothness of an isometric embedding 𝜙 of𝑀, the relative defect |𝑑(𝑝,𝑞)−
||𝜙(𝑝) − 𝜙(𝑞)|||/𝑑(𝑝,𝑞) must converge to 0 as 𝑝 → 𝑞. That is to say, as long as we
only worry about pairs of points that are close in𝑀, the stress function above places
the correct restriction on𝑋 - the further they are apart, the less sense the corresponding
contribution to 𝜎makes. This motivates us to pick a positive weight function 𝑤(𝑝,𝑞)
of 𝑑(𝑝,𝑞) that decays monotonically and sufficiently quickly to suppress those lengths
that cannot be approximated well by an Euclidean embedding.

For example, imagine two points connected by a shortest geodesic (a great circle arc) of
length 𝑙 ≤ 𝜋 on the unit sphere and let that sphere be embedded isometrically inℝ3. In
ℝ3, the shortest geodesic connecting the points is a chord of length 𝑐(𝑙) = 2 sin(𝑙/2).
The defect for small geodesic distances 𝑙 is thus quite small, being 𝑂(𝑙3). It reaches
its maximum when the points are antipodal, with a relative error of (𝜋−2)/𝜋. The
weight function should suppress the contribution of the larger distances to the stress 𝜎,
in order to still recognize when an embedding of the distance graph is locally isometric.

Let 𝜙 ∶ 𝑀→ℝ𝑛 be isometric and let 𝑤𝑘 be a sequence of weight functions depending
on the cardinality 𝑘 of𝑉 ⊂𝑀. If𝑤𝑘(𝑙) = 𝑜(1) for fixed 𝑙 and themarginal defect, which
is bounded by

𝑘 sup𝑝,𝑞∈𝑀𝑤𝑘(𝑝,𝑞)(𝑑(𝑝,𝑞)− ‖𝜙(𝑝)−𝜙(𝑞)‖)
2

inf|𝑉|=𝑘∑𝑝,𝑞∈𝑉𝑤𝑘(𝑝,𝑞)
,

is summable in 𝑘, we can at least be sure that the stress function 𝜎 converges to 0 for
embeddings𝑋 = 𝜙|𝑉.
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3.6. Embedding a distance graph inℝ𝑛

The optimal choice of 𝑤 then depends (at least somewhat) on the geometry of𝑀
itself; the curvature inf𝜙∶𝑀→ℝ𝑛 sup{|𝑑(𝑝,𝑞)− ‖𝜙(𝑝)−𝜙(𝑞)‖| ∣ 𝑝,𝑞 ∈ 𝑀,𝑑(𝑝,𝑞) ≤ 𝜖},
as function of 𝜖, together with the Hausdorff distance between𝑉 and𝑀, determines
the optimal behaviour of 𝑤.

Implementation

For dim𝑀= 2, we expect the length of the smallest edges to scale roughly as 𝑘−1/2. For
𝑤𝑘(𝑙) = exp(−√𝑘𝑙) the infimum in the denominator of the marginal defect, above, is
roughly bounded from below by its value for an equidistributed𝑉, which is of order
𝑘2∫𝜋

0 sin(𝑙)𝑤𝑘(𝑙)𝑑𝑙 ∼ 𝑘 as 𝑘 → ∞. The supremum in its numerator is 𝑂(𝑘−3/2), so
this sequence 𝑤𝑘 will do in the narrow sense that it will asymptotically detect when a
sequence {𝜙𝑘 ∶ 𝑉𝑘 →ℝ𝑛} corresponds asymptotically to an isometric embedding of
𝑀, assuming the𝑉𝑘 are roughly equidistributed.

Given the choice of weights, minima of the resulting stress function can be found
efficiently using the weighted SMACOF algorithm for stress majorization. A simple
Python implementation of the weighted SMACOF algorithm is part of [SG19], but for
more intensive use we recommend the more efficient FORTRAN version with Python
bindings [Ste19a].

The𝐷𝑐 operator on the sphere

The results of Section 3.3 apply to any Dirac-type commutative spectral triple. In
particular, they apply to perturbations (𝐶∞(𝑀),𝐿2(𝑀,𝒮),𝐷𝒮+𝐵) of a Dirac spectral
triple, as long as the perturbation 𝐵 does not change the principal symbol of𝐷. We
will apply the PointForge and embedding algorithms both to the sphere and to a
perturbation thereof that will arise in Chapter 4.

All spinmanifolds of dimension ≤ 4 satisfy (the two-sided version of) the higherHeisen-
berg equation introduced in [CCM14]. Chapter 4 explores the constraint that existence
of solutions to the one-sided higher Heisenberg equation,

1
𝑛! ⟨𝑌[𝑌,𝐷]…[𝑌,𝐷]⏟⏟⏟

repeated 𝑛 times

⟩ = 𝛾, (3.6)

places on the truncation of a spectral triple. There we found that (3.6), with 𝑌 and
𝛾 obtained from the Dirac spectral triple of 𝑆2, is solved by a one-parameter class of
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(a)𝐷𝑆2 (b)𝐷𝑆2 +𝑐𝐵

Figure 3.6: Locally almost-isometric embeddings corresponding to𝐷𝑆2 and𝐷𝑆2 +𝑐𝐵,
with shaded 𝑆2 for reference

operators {𝐷𝑐 ∣ 𝑐 ∈ ℝ} ⊂ 𝒟, where

𝐷𝑐 = 𝐷𝑆2 +𝑐𝐵.

Here 𝐵 is a bounded, self-adjoint operator 𝐵 = sign(𝐷)cos(𝜋𝐷𝑆2). This class of solu-
tions does not strictly describe spectral triples, since the pseudo differential operator𝐷𝑐
does not satisfy the first order condition. As discussed there, however, failure of this
condition is not detectable by standard methods at the level of truncations of spectral
triples.

Result

The PointForge algorithm returns a metric graph, given an operator system spectral
triple (𝐴,𝐻,𝐷) and a designated element 𝜙 ∈ 𝐴𝑛. We apply the locally isometric em-
bedding above not only to the example from Section 3.5, but also (tentatively) to the
triple (𝐶∞(𝑆2)𝛬,𝐻𝛬,𝐷𝑐,𝛬) of [GS20], in order to investigate the metric properties of
the latter. Here𝛬 = 5, corresponding dim𝐻𝛬 = 84, which leads to 35 states.

This leads to the results in Figure 3.6. There we can see that the embedded points for
𝐷𝑆2 , the left hand plot, lie outside the shaded 𝑆

2 that is included for reference, while on
the other hand the points for𝐷𝑆2 +𝑐𝐵, in the right hand plot, lie inside the shaded 𝑆

2.
The transparency of the dots increases with distance to the viewer. Both embeddings
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show some deviation from the sphere: for𝐷𝑆2 , the radii of the embedded points lie in
[1.06,1.12], with an average of 1.09; for𝐷𝑆2 +𝑐𝐵, in [0.94,0.98] averaging 0.96.

3.7 Final remarks

The PointForge algorithm we introduced in section 3.4 was designed to reconstruct
metric spaces from truncations of commutative (Dirac) spectral triples. However,
the ingredients of the algorithm need not originate as truncations of a commutative
spectral triple at all; the steps apply verbatim to arbitrary operator system spectral
triples, provided a special ’embedding’ element 𝜙 is given. Obtaining such 𝜙 could
either be related to the higher Heisenberg equation of [CCM14], or, computational
resources allowing, be disposed of entirely as discussed in section 3.3. This would
provide one with the means to construct finite metric spaces associated to an arbitrary
noncommutative spectral triple.

It would be interesting to elaborate on this and relate it to quantization and e.g. fuzzy
spaces, to get a geometric sense of the relation between a commutative spectral triple
and its noncommutative deformations. For the case of the fuzzy sphere, which is not a
truncation of aDirac-type spectral triple but, unlike those, is a family of genuine spectral
triples, it would be interesting to compare the localized states discussed here to the
coherent states of [DLV13]. A proper generalization to the context of fuzzy spaces and
other finite spectral triples could be particularly useful in connection to more physically
inspired explorations thereof, such as [BG16]. The ensemble of finite, random spectral
triples defined there has shown signs of a phase transition [BG16; Gla17] and can be
characterized through spectral dimension measures [BDG19], which can be taken as
an indication of possibly emergent geometric properties. The PointForge algorithm
might then be an interesting tool to further explore some exemplary spectral triples
from this class to gather further insights. It would also be instructive to test how the
PointForge algorithm works for spectral triples of different topologies, e.g. the
non-commutative torus [PS06] or a fuzzy torus [BG19].

Another possible application in this direction would be to exploit the explicit scale
dependence of the present formalism in order to obtain a better understanding of the
gravitational properties of noncommutative approaches (such as [CC96]) to quantum
field theory.
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Chapter 4

Understanding truncated
noncommutative geometries through
computer simulations1

When aiming to apply mathematical results of non-commutative geometry to physical
problems the question arises how they translate to a context in which only a part of
the spectrum is known. In this chapter we aim to detect when a finite-dimensional
triple is the truncation of the Dirac spectral triple of a spin manifold. To that end, we
numerically investigate the restriction that the higher Heisenberg equation [CCM14]
places on a truncated Dirac operator. We find a bounded perturbation of the Dirac
operator on the Riemann sphere that induces the same Chern class.

4.1 Introduction

The spectral viewpoint is central to non-commutative geometry, which makes it a natu-
ral framework to investigate the relation between energy and geometry. To understand
low-energy (that is, physical) observations, we need to be able to distinguish commuta-
tive spectral triples from classically meaningless configurations, using only low-energy
data.

Connes’ spectral reconstruction theorem[Con13] tells uswhen a spectral triple (𝐴,𝐻,𝐷)
is the Dirac triple of a spincmanifold. However, checking the conditions under which

1This work was written jointly with Lisa Glaser and published as [GS20].

69



4.1. Introduction

the theorem holds requires knowledge of all spectral information: they can not be
applied when we only consider a finite part of the frequency (energy) spectrum. That
is, the usual spectral expressions do not reveal much about the nature of the universe to
an observer with access to only finite spectral information.

This is highly relevant when applying non-commutative geometry to physical problems,
since in realistic systems only approximate knowledge is available. It is also highly
relevant when using spectral triples to discretize geometries through finite algebras and
Hilbert spaces, and in most attempts to use numerical methods to explore spectral
triples.

In order to engage the issue, we explore whether it is possible to use the higher Heisen-
berg equation [CCM14] to detect, at a finite frequency level, whether a given truncated
spectral triple corresponds to a spincmanifold. The analysis starts with a computer sim-
ulation of the higher Heisenberg constraint (introduced below) on the sphere, which
leads to a new analytic solution of the corresponding equation. Lastly, the methods
from Chapter 3 are applied to generate and visualise finite metric graphs that represent
(what is argued to be) the metric space corresponding to the finite-scale geometries
involved.

The remainder of this introduction is structured as follows. Section 4.1 briefly intro-
duces the relevant concepts from noncommutative geometry, such as spectral triples,
the spectral action principle, and the relation of the latter to observations based on finite
spectra. Section 4.1 expands on the notion of information contained in finite spectra
and introduces the problem of detecting ‘commutativity’ at finite scale, whereafter
Section 4.1 introduces the higher Heisenberg relation as a possible approach to that
problem and gives a brief overview of the structure of the chapter itself.

Background: noncommutative geometry and the cutoff scale

By Gelfand duality, a (compact Hausdorff) space 𝑋 may be entirely understood in
terms of the algebra 𝐶(𝑋) of continuous functions. Moreover, each commutative
unital𝐶∗-algebra is of this form𝐶(𝑋) for some𝑋.

Noncommutative geometry starts by the observation that we can extend this duality
to spincmanifolds: the spincmanifold𝑀 (and, therefore, its metric) can be described
uniquely in terms of the spectral triple (𝐶∞(𝑀),𝐻,𝐷), where𝐷 is the associated Dirac
operator and𝐻 is a Hilbert space of spinors.

This description of spin geometry in terms of operators on Hilbert spaces then allows
one to extend many spin-geometric notions to the study of more general geometric
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objects, the noncommutative spectral triples2 (𝐴,𝐻,𝐷). In particular, the resulting
flexibility allows one to use the same language to describe both ordinary spin geometry
and the field theories common in particle physics [CCM07]. A very simple choice
of algebra, together with the spectral action principle [CC97] (see below) leads to the
standard model, minimally coupled to general relativity.

One interesting feature of this latter formulation is that while the classical (metric)
geometry is described through an infinite-dimensional algebra and Hilbert space, the
particles of the standardmodel are encoded in a finite-dimensional non-commutative al-
gebra. Fundamentally finite dimensional spectral triples allow for a description of spaces
that are discretized, but still retain their original symmetry group. Examples of these,
often called fuzzy, spaces are the fuzzy sphere [GP95], fuzzy projective spaces [Bal+02]
or the fuzzy torus [DO03]. General finite spectral triples have been classified [Kra98;
Ćać11; CC08] and parametrized [Bar15]. In the present chapter, however, we will be
concerned with truncated, not fundamentally finite, spectral triples.

By the assumption of diffeomorphism invariance, all observables in pure gravity –
including the action – must be expressible in terms of global geometric invariants. The
spectral action principle [CC97] in noncommutative geometry asserts that, moreover,
the action should be formulated in terms of the spectrum of theDirac operator𝐷 alone.
The identification of such global invariants with zeta residues allows them to be written
in terms of asymptotic traces of𝐷, and this induces the prescription

𝑆(𝐷) = tr(𝜒(𝐷/𝛬))

for the bare action, where 𝜒 should be a suitable smooth cutoff function. The scale
parameter𝛬 controls the relative contributions of Dirac eigenvalues. At finite cutoff
scale 𝛬 we are then automatically invited to think of the corresponding system as
described by a finite-rank, truncatedDirac operator.

Recent work has started numerically exploring the path integral,

𝒵 =∫d𝐷𝑒−𝒮(𝐷), (4.1)

with 𝒮 a trace of powers of𝐷, over finite-rank Dirac operators, as a possible nonpertur-
bative description for quantum gravitational phenomena [BG16; Gla17; BDG19].

2Here, 𝐴 is a possibly noncommutative C∗-algebra, corresponding to the ‘topological’ aspect of the
noncommutatige geometry, and𝐷 a possibly unbounded selfadjoint operator, corresponding to the ‘metric’
aspect thereof, both represented on a Hilbert space𝐻. See [GVF01] for an introduction.
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Geometry at finite scale

Spectral descriptions of continuum geometry involve infinite-dimensional algebras and
Hilbert spaces. If these are to be applied to physics involving measurement at finite
energies, to be captured in computer simulations or to be described approximately, we
must understand how (much) information can be contained in partial spectra. This in-
volves extending the tools that have been developed to understand infinite-dimensional
non-commutative geometries to truncated spectral triples, as has been done for the
residue functionals in [Ste19b].

A particular difficulty, which is central to the present chapter, relates to the recognition
of (possibly almost-commutative) manifolds at the truncated level. In carrying out the
path integral (4.1), for instance, one should in principle restrict to Dirac operators that
actually correspond to (possibly almost-commutative) spincstructures for the given
(fixed) manifold𝑀, just like the path integral in Euclidean quantum gravity restricts
the integration to fields that describe Riemannian metrics as opposed to being fully
arbitrary. However, it is a priori unclear what this restriction means for the integration
variable𝐷.

Although Connes’ reconstruction theorem [Con13] allows us to detect when a spectral
triple (𝐴,𝐻,𝐷) corresponds to theDirac triple on a spinmanifold, it is not clear how to
implement those conditions as a constraint on an integral over operators𝐷. Moreover,
it is not clear when a finite-rank Dirac operator 𝐷 corresponds to a cutoff of such
a spin geometry. This complicates the proposed identification of path integrals over
finite-rank Dirac operators with finite-scale path integrals over spin geometries. The
one-sided higher Heisenberg equation recalled below (and more generally, its two-sided
version) offers a possible approach to constraining the domain of integration in (4.1).

The higher Heisenberg equation

In [CCM14] Chamseddine, Connes andMukhanov introduce a non-commutative
analogue to the Heisenberg relation of quantummechanics. This ‘higher Heisenberg
equation’ neatly captures the relation between the scalar fields (smooth functions) and
the Dirac operator that is central to noncommutative geometry in a single algebraic
equation. The one-sided version of this equation, applicable to (disjoint sums of)
even-dimensional 𝑛-spheres, works as follows. For𝑀 a 𝑛-dimensional manifold, there
trivially exists a covering 𝜙 ∶ 𝑀→ 𝑆𝑛; let its components be denoted by 𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑛.
Then, the section 𝑌 = 𝑌𝑖𝛤𝑖 of the trivial Clifford bundle of rank 2

𝑛/2 satisfies 𝑌2 = 1
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and 𝑌∗ = 𝑌, and moreover

1
𝑛! ⟨𝑌[𝑌,𝐷]…[𝑌,𝐷]⏟⏟⏟

repeated 𝑛 times

⟩ = 𝛾, (4.2)

where 𝛾 is the grading on the spinor bundle and ⟨⋅⟩ denotes the𝐶∞(𝑀)-valued fiberwise
trace on the Clifford algebra bundle. If a general Riemannian manifold𝑀 admits such
𝑌, moreover, they must necessarily be of the form considered above, ensuring that𝑀
is a disjoint sum of even-dimensional spheres. The 𝑌𝑖 then generate 𝐶

∞(𝑆𝑛) and the
spectral triple (𝐶∞(𝑀),𝐻,𝐷) is unitarily equivalent to the direct sum of any splitting
of (𝐶∞(𝑆𝑛),𝐻,𝐷) into irreducible components.

For more general (spin)𝑀, the real structure on the spinor bundle induces a two-
sided version of the equation above, corresponding to a map 𝜙×𝜙′ that induces a (not
necessarily isometric) embedding𝑀→𝑆𝑛 ×𝑆𝑛. We are presently concerned only with
the one-sided equation as a first example.

In this chapter we propose to use the higher Heisenberg relation to constrain general
selfadjoint matrices 𝐷, in order to induce them to correspond to truncated Dirac
operators of reasonableRiemannian geometries on the underlyingmanifold. Computer
simulations then allow us to explore numerically the effects of this constraint.

A real spectral triple consists of (𝒜,ℋ,𝐷) together with a real structure 𝐽 and a chirality
𝛾 that satisfy a number of conditions. An introduction can be found e.g. in [GVF01].
One axiom that has special significance, is the first order condition

[[𝐷,𝑎],𝐽𝑏∗𝐽−1] = 0 ∀𝑎,𝑏 ∈ 𝒜,

which ensures that𝐷 acts as first-order differential operator in the commutative case,
and is the second algebraic constraint (besides the one corresponding to the higher
Heisenberg equation) appearing in Connes’ reconstruction theorem.

To recover the metric on a spincmanifold from the corresponding spectral triple, one
can define a metric on the space of states 𝜔1,𝜔2 ∈ 𝑆(𝒜),

𝑑(𝜔1,𝜔2) = sup
𝑎∈𝒜

{𝜔1(𝑎)−𝜔2(𝑎)|||[𝐷,𝑎]|| ≤ 1}. (4.3)

In the commutative case, the pure states correspond to atomic measures, that is, points,
on the underlying manifold. In Chapter 3 we used this definition of distance, together
with a notion of locality, to associate finitemetric spaces to truncated non-commutative
geometries.
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4.2. The Heisenberg relation in simulations

In section4.2we explain the truncation andour simulationsmethods andpresent results
for the circle and the two-sphere. This section in particular discusses the reasoning
behind our choice of truncation, how it is implemented and some possible problems in
this choice. In section 4.3we show that one of theDirac operators found in the previous
section is a better solution to the Heisenberg relation, while not strictly belonging to a
spectral triple in the infinite size limit. In our conclusion, section 4.4, we summarize
the results and collect some questions that are opened by our work.

4.2 The Heisenberg relation in simulations

In noncommutative geometry one describes a spin manifold in terms of the associated
spectral triple (𝐴,𝐻,𝐷). From a mathematical perspective, it is desirable to be able to
describe such a spectral triple as a limit of finite-dimensional data of increasing precision,
just like one can describe a Riemannian manifold as a Gromov-Hausdorff limit of finite
metric spaces. From a physical perspective, the same desire results from the view that
one should be able to gain at least some information about the geometry by probing it
at finite energies.

One natural approach to such a ‘cutoff’ of the geometric data (𝐴,𝐻,𝐷) is to pick a
scale𝛬, then define

𝑃𝛬
def= 𝜒[−𝛬,𝛬](𝐷)

to be the spectral projection onto the eigenspaces of𝐷 of eigenvalue |𝜆| ≤ 𝛬, and then
take the finite-dimensional data

(𝑃𝛬𝐴𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷) (4.4)

as our starting point. As we will notice again later, these truncated triples do not necce-
sarily satisfy the conditions for a spectral triple using the truncated real structure 𝐽𝛬.
We accept this as one of the limitations of the current program, constructing finite
spectral triples with a finite real structure would lead back towards the fuzzy spaces de-
fined by Barrett [Bar15]. In this setting, Chapter 3 reconstructed (asymptotically) spin
manifolds𝑀 from the data (𝑃𝛬𝐶

∞(𝑀)𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷𝑀) associated to the commutative
spectral triple (𝐶∞(𝑀),𝐻,𝐷𝑀). Some properties of the induced metric on the state
spaces of 𝑃𝛬𝐴𝑃𝛬 and𝐴were previously investigated in [DLM14b], and for the sphere
specifically in [DLV13].
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The truncated higher Heisenberg equation

All spin3 manifolds of dimension ≤ 4 satisfy (the two-sided of) the higher Heisenberg
equation (4.2), whereas clearly not all spectral triples do. This suggests to use the
equation to recognize many cases in which a spectral triple does not correspond to
a spin manifold, without needing to check the rather elusive conditions of the spec-
tral reconstruction theorem. We will extend this tool to the finite-dimensional data
(𝑃𝛬𝐴𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷) introduced above, and explore what type of truncated triple solves
the truncated higher Heisenberg relation.

Given a solution 𝑌,𝐷 of equation (4.2) and the spectral projection 𝑃𝛬 = 𝜒[−𝛬,𝛬](𝐷),
the defect

𝛿(𝑌𝛬,𝐷𝛬, 𝛾𝛬)
def= ⟨𝑌𝛬[𝐷𝛬,𝑌𝛬]

𝑛⟩−𝑛!𝑘𝛾𝛬 (4.5)

strongly converges (superpolynomially) to zero as 𝛬→ ∞. Simple examples like the
circle (see below) show, however, that we cannot expect the defect to converge to zero
in any Schatten 𝑝-norm including 𝑝 = ∞. One wonders then which restrictions on the
truncated triple are enforced by minimizing 𝛿(𝑌𝛬,𝐷𝛬, 𝛾𝛬).

The direct approach to this question starts by searching for an operator𝐷′ on 𝑃𝛬𝐻 that
comes at least close to solving (4.2) in the sense of minimizing the constraint

∥𝛿(𝑌𝛬,𝐷
′, 𝛾𝛬)∥

2
2
= ∥⟨𝑌𝛬[𝐷

′
𝛬,𝑌𝛬]

𝑛⟩−𝑛!𝑘𝛾𝛬∥
2
2
, (4.6)

for fixed𝛬. The Hilbert-Schmidt norm is a natural choice here; all Schatten norms are
equivalent in finite dimensions and this is the least computationally expensive among
them. This, then, is the constraint whose solutions we investigate numerically below:

• Fix a cutoff𝛬,

• Take 𝑃𝛬,𝑌𝛬, 𝛾𝛬 from the corresponding commutative spectral triple (that is, here,
from the circle and the (spin) sphere),

• Look for the arguments𝐷′
𝛬 (matrices of dimension rank𝑃𝛬) that minimize (4.6).

The second step means that, for the sphere, the possible matrix size of the truncations
will be restricted to the sums of multiplicities of eigenspaces. To have some more
freedom in the choice of matrix size for𝐷′

𝛬 one could, instead of 𝑃𝛬, use some other
projection in its commutant. It seems, however, that in the cases of the circle and the
sphere doing so would introduce a further defect in 𝛿(𝑌𝛬,𝐷𝑆𝑛,𝛬, 𝛾𝛬).

3Unlike equation (4.2), its more general two-sided version involves the spin structure. In the example

𝑀= 𝑆2 considered here, the spin structure does not play a role.
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Computation

In order to numerically investigate the behaviour of (4.6) in practice, weuse an annealing
type algorithm. Simulated annealing algorithms find optima of a given function by
running a random walk in its domain, with transition probability depending on the
value of the optimized function and a global ‘temperature’ parameter𝑇 that is decreased
in time. The algorithmwe use is called thermal annealing, and controls the temperature
by postulating that the information theoretic and thermodynamic entropy densities
must agree [VLH03]. This is a convenient choice for our problem since it has few
free parameters, and we are only interested in the final result. The free parameters in
question are a constant 𝑐which governs the speed at which the temperature is lowered
and the final temperature 𝑇𝑓. Any choice of 𝑐 that does not lead to freezing out of the
system before equilibrium is reached is valid, while the final temperature governs how
strongly the system is allowed to fluctuate around the final state. We set 𝑇𝑓 = 0.001
and adjust 𝑐 to the simulations in question, testing several 𝑐 to ensure the results are
equivalent.

The annealing algorithm runs until some 𝑇 < 𝑇𝑓 is reached
4, and then simulate the

system at this low temperature for a while. The quantities of interest to us are then
the configuration with the lowest value of the constraint, as well as an average over the
states at the final temperature.

The circle as a simple example

A first example of an algebraic relation, analogous to (4.2), whose solution describes a
spin manifold is as follows [Con00]. Assume that𝑈 ∈ 𝐵(𝐻) is unitary and𝐷 is a self-

adjoint unbounded operator on𝐻 such that 0 ∈ 𝜎(𝐷) and𝐷−1 ∈ 𝐿(1,∞)(𝐻). Assume,
moreover, that the pair𝑈,𝐷 is represented irreducibly. Then, if𝑈 and𝐷 satisfy

𝑈∗[𝐷,𝑈] = 1 , (4.7)

the triple (𝐴,𝐻,𝐷), where 𝐴 is a dense subalgebra of the C∗algebra generated by𝑈,
is unitarily isomorphic to the spectral triple (𝐶∞(𝑆1),𝐿2(𝑆1),𝐷𝑆1) that describes the
circle. Under such an isomorphism𝑈 is mapped to the generator 𝜃 ↦ 𝑒𝑖𝜃 of𝐶(𝑆1) (up
to the obvious phase ambiguity in equation (4.7)).

Given the spectral projection 𝑃𝛬 as in section 4.2, the operator𝑈𝛬 = 𝑃𝛬𝑈𝑃𝛬 is no longer
unitary and is even nilpotent, so (4.7), with𝑈 replaced by𝑈𝛬, cannot be solved in𝐷.

4The nature of the algorithm means that we do not have perfect control of the finite temperature,
however the exact finite temperature is not important in our case.
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The corresponding version of (4.6) is

‖𝛿(𝑈𝛬,𝐷𝛬)‖
2
2 = ||𝑈

∗
𝛬[𝐷𝛬,𝑈𝛬]−1||

2
2 . (4.8)

In order to counter the spurious symmetry𝐷↦𝐷+𝑐𝐼 of (4.7), we demand that𝐷𝛬
additionally satisfies𝐷𝐽 = 𝐽𝐷, where 𝐽 is the real structure corresponding to the point-
wise complex conjugation map on 𝐿2(𝑆1). This anticommutation with 𝐽 ensures that
the spectrum of𝐷𝛬 is symmetric around 0, and our computer simulations parametrize
the space of such𝐷𝛬 as follows: Pick a eigenbasis of 𝑃𝛬𝐷𝑆2 and find unitary𝑉 in 𝑃𝛬 such
that𝑉∗𝐽𝑉 is just complex conjugation of the coefficients in this eigenbasis. Then, we
parametrize𝐷𝛬 as 𝑖𝑉

∗𝐻0𝑉, where𝐻0 ∈𝑀rank𝑃𝛬(ℝ) is an arbitrary real antisymmetric
matrix.

Using the constraint (4.8) as a weight for thermal annealing we collect two types of
observations. On the one hand, wemeasure theDirac operator that leads to the smallest
value of the constraint. This is ideally going to be very close to the Dirac operator for
the circle. To compensate for small numerical fluctuations, we also measure 500 times
after the low final temperature is reached and average these measurements.

In Figure 4.1 we see that the eigenvalues of the simulated Dirac operators turn out very
close to those of the circle Dirac. They can not be distinguished in the upper plot, while
the lower plot shows the difference from the analytic spectrum for the average and the
best eigenvalues. The small difference is an effect of the cutoff, which is also reinforced
by the difference being larger for larger eigenvalues.

Examining thematrix entries 𝛿(𝑈𝛬,𝐷𝛬)𝑖𝑗 of the constraint we find that the violations of
this equation are minimal almost everywhere. The only sizable deviation is on the entry
for 𝑖, 𝑗 = 0where the deviation is ∼ −1. Since the defect𝑈∗

𝛬[𝐷𝑆1,𝛬,𝑈𝛬]−𝑃𝛬 equals the
projection onto that kernel, it is not surprising to find the maximum there.

Hence our simulations find the truncated circle Dirac operator, which we know to be
the correct solution. This is a good test for the formalism, and encourages us to move
on from the simple circle to the more complicated sphere.

𝑆2 simulations

The version of equation (4.2) corresponding to the sphere 𝑆2 is

𝛿(𝑌𝛬,𝐷𝛬, 𝛾𝛬) = ⟨𝑌𝛬[𝐷𝛬,𝑌𝛬][𝐷𝛬,𝑌𝛬]⟩−𝛾𝛬. (4.9)
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Figure 4.1: Comparing the eigenvalues of the Dirac operator with the smallest value of
the constraint to that of the average over operators (with error indicating the statistical
fluctutations) and the exact circle. The results are all so close together that we can not
distinguish them in the upper plot, the lower plot shows only the difference between
the simulation results and the exact numbers.

Here, 𝑌 = ( 𝑧 𝑥− 𝑖𝑦
𝑥+ 𝑖𝑦 −𝑧 ), with 𝑥,𝑦,𝑧 the standard coordinates on ℝ3, viewed as

functions on 𝑆2 through its standard embedding. That is, 𝑌 + 1 is twice the Bott
projector. The angular brackets denote the 𝐵(𝑃𝛬𝐻)-valued trace on𝑀2(𝐵(𝑃𝛬)) and
𝛾𝛬 is the truncation of the usual grading on 𝐿

2(𝑆2,𝑆). See the Appendix 4.A for the
representation used in the numerical simulations.

For the sphere the Dirac operator has a few symmetries that the truncated operator
should satisfy for the truncated operator to still interact correctly with the truncated
chirality and real structure. This leads us to consider different parametrizations for the
operator.
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Parametrizing the Dirac operator

In order to cancel the symmetry𝐷↦𝐷+𝑐𝐼 of (4.9) and to enforce symmetry of the
spectrum of𝐷𝛬, we have tested two different additional constraints. The first, stronger
constraint is that𝐷𝛬 correspond to the (truncation of the) same K-cycle as𝐷𝑆2 – that is,
that𝐷𝛬|𝐷𝛬|

−1 = 𝑃𝛬𝐷𝑆2|𝐷𝑆2|
−1, so that the bounded transform of a hypothetical even

spectral triple (𝐶∞(𝑆2),𝐻,𝐷,𝛾)with𝐷𝛬 = 𝑃𝛬𝐷 equals that of (𝐶∞(𝑆2),𝐻,𝐷𝑆2 , 𝛾). The
second, strictly weaker constraint is that𝐷𝛬 anticommute with 𝛾𝛬, which is necessary for
𝐷𝛬 to possibly correspond to part of an even spectral triple (𝐶

∞(𝑆2),𝐻,𝐷,𝛾). These
constraints lead to the parametrizations

𝐷𝛬 = (
−𝑃 0
0 𝑃) or 𝐷𝛬 = (

𝑅 𝑆
−𝑆 −𝑅),

respectively, where 𝑃 is positive (ensuring that𝐷𝛬 = 𝐷
∗
𝛬 and𝐷𝛬|𝐷𝛬|

−1 = 𝑃𝛬𝐷𝑆2|𝐷𝑆2|
−1)

and 𝑅,𝑖𝑆 selfadjoint (ensuring that𝐷𝛬 = 𝐷
∗
𝛬 and𝐷𝛬𝛾𝛬 = −𝛾𝛬𝐷𝛬).

The former parametrization is faster than the latter since both eigendecompositions
of 𝑃 and the search for optimal 𝐷𝛬 occur in a vector space of half the dimension.
The geometries parametrized through 𝑃 are strictly a subclass of those parametrized
through 𝑅,𝑆, hence we know that solutions arising in the first ensemble also exist in
the second. Our simulations however show that to find the same optimal solutions in
the 𝑅,𝑆 parametrization requires longer runtimes and much lower temperatures. This
is because the larger configuration space takes longer to explore and lowers the relative
fraction of the most optimal solutions. We have tested that the 𝑅,𝑆 simulations do
not allow for additional, more optimal solutions than the 𝑃 parametrization, hence the
results shown will all use the 𝑃 parametrization.

Results

Tovisualize the results of our simulationswewill again lookboth at averages over roughly
150measurements near the minimum as well as at the actual numerical minimum of
equation (4.9) that was encountered. If we look at the operators as heatmaps, with each
pixel in heatmap representing one entry of the matrix, as in see Figure 4.2, we see that
the average Dirac operator in the −𝑃⊕𝑃 parametrization commutes (up to numerical
error) with𝐷𝑆2 .

This simple structure of the simulated Dirac operators implies they are well described,
quantitatively, by their spectrum. In Figure 4.3, we compare the measured eigenvalues
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Figure 4.2: The average Dirac operator is almost entirely real, and completely diagonal.

Figure 4.3: Comparing the average eigenvalues, and the best case eigenvalues of the
simulations with those of the sphere. We can see that the results differ considerably
between odd and even𝛬, but that neither agrees with the sphere.
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with those of the sphere. The Figure shows results for spectral cutoffs of𝛬 = 5,6, which
showcases a clear difference between odd and even cutoffs.

The simulated Dirac operators are (up to numerical error) diagonal in an eigenbasis of
𝐷𝑆2 , but the simulated eigenvalues are shifted up or down by roughly

1
2 . The direction

of the shift appears dependent on the parity of the eigenvalue and of the cutoff𝛬. That
is to say, it seems we are be dealing with a bounded perturbation of𝐷𝑆2 with particularly
simple structure.

Inparticular, the localized zeta function asymptotics (whichmeasure at least volume and
dimension) must agree for this perturbation and the sphere. When we have identified
the numerical solutions analytically, in Section 4.3 below, we will show in Figure 4.7
how this fact is reflected by the finite parts of the spectrum obtained.

Results for the Heisenberg equation

The operators in Figure 4.2 arise fromminimization of the Heisenberg constraint given

by the squared Hilbert-Schmidt norm ∥𝛿(𝑌𝛬, 𝛾𝛬,𝐷)∥
2
2
, so it is interesting to see whether

patterns arise in the correspondingmatrix entries of 𝛿(𝑌𝛬, 𝛾𝛬,𝐷); we show these in Figure
4.4. Clearly, the simulations come close to fully letting 𝛿(𝑌𝛬, 𝛾𝛬,𝐷) vanish.

For the operator𝐷𝑆2,𝛬, however, the defect 𝛿(𝑌𝛬,𝐷𝑆2,𝛬, 𝛾𝛬) does not vanish and equals

𝛿(𝑌𝛬,𝐷𝑆2,𝛬, 𝛾𝛬) = −
(1+𝜆)(1+4𝜆)
2(1+2𝜆)2

(𝐸𝜆 +𝐸−𝜆)𝛾 (4.10)

where𝐸𝜆 projects onto the eigenspace corresponding to 𝜆 =max{𝜆′ ∈ 𝜎(𝐷) ∣ |𝜆′| ≤ 𝛬};
this is of norm ∼ 1

2 and of divergent (𝑂(𝛬
1/𝑝)) 𝑝-Schatten norm for 𝑝 < ∞ as𝛬→∞.

For each 𝛬 considered, we found a𝐷𝛬 with ‖𝛿(𝑌𝛬, 𝛾𝛬,𝐷𝛬)‖2 ≈ 0 and in particular the
constraint satisfied ‖𝛿(𝑌𝛬, 𝛾𝛬,𝐷)‖2 ≪ ‖𝛿(𝑌𝛬, 𝛾𝛬,𝐷𝑆2,𝛬)‖2. Additionally these optimal𝐷𝛬
seem to be quite simple and symmetric, and shows a remarkable consistency across
different sizes, as shown in Figure 4.5. Since the matrix size (the rank of 𝑃𝛬) grows as
𝑂(𝛬2) it is hard to obtain reliable results for larger𝛬, however the results we obtained
suggest that there might be a similar type of solution for all sizes, i.e. a compatible
chain of finite size Dirac operators that might arise as 𝑃𝛬𝐷

′𝑃𝛬 for some𝐷
′ that solves

(4.2) exactly. It is thus useful to supplement the numerical results with some analytic
explorations.
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4.2. The Heisenberg relation in simulations

(a) The exact sphere

(b) Average operator

Figure 4.4: Heatmap plot of the Heisenberg relation for the operator parametrized
through 𝑃 and the sphere for𝛬 = 6. The uppermost plot shows the finite size defects
in the sphere, while the lower plots show the defect generated by an averaged Dirac
operator. 82



4.3. An alternative analytic solution to the Heisenberg relation

Figure 4.5: Average eigenvalues for the 4 smallest truncations of the sphere.

4.3 An alternative analytic solution to the Heisenberg relation

The simulations above suggest that, for finite𝛬, there might be a class of operators𝐷 ∈
𝐵(𝑃𝛬𝐻) that lead to lower values of the constraint ∥𝛿(𝑌𝛬, 𝛾𝛬,𝐷)∥2 than the truncations
of𝐷𝑆2 do. Since the𝐷 that show up commute with𝐷𝑆2 and seem to be compatible
across alternating choices of 𝛬 (see Figure 4.5), we are led to look analytically for a
corresponding general solution of 𝛿(𝑌,𝛾,𝐷) = 0 inside the commutant of𝐷𝑆2 .

Let us denote by 𝒟 the space of selfadjoint operators with discrete spectrum that
commute with𝐷𝑆2 and anticommute with 𝛾, that is, those of the form 𝑓(𝐷) for some
antisymmetric 𝑓 ∈ 𝐶(ℝ,ℝ). Is there an analytic solution𝐷 ∈𝒟 to equation (4.9)?

The Appendix 4.A exhibits the coefficients of the representation of 𝑌,𝛾,𝐷 on𝐻 in
the basis chosen for the simulations. Since the generators 𝑌𝑖 are laddering, i.e. band,
matrices in this basis, the resulting version of equation (4.9) is easy to solve analytically.

It leads to the following recursion for the sequence 𝜇𝑙 of positive eigenvalues of 𝐷,
labeled by the spinor momenta 𝑙 = 1

2 ,
3
2 ,… ,

𝜇2𝑙 −2𝑎𝑙𝜇𝑙𝜇𝑙−1 +2𝑏𝑙𝜇𝑙+1𝜇𝑙 = 𝑎𝑙𝜇
2
𝑙−1 +𝑏𝑙𝜇

2
𝑙+1 +16𝑙

2(1+ 𝑙)2

where 𝑎𝑙 = (1+𝑙)
2(2𝑙−1), 𝑏𝑙 = 𝑙

2(3+2𝑙)The corresponding recursion equation, with
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4.3. An alternative analytic solution to the Heisenberg relation

𝜇−1/2 = 0, has the unique one-parameter solution

𝜇𝑙 = (𝑙+
1
2)+ 𝑐 sin(𝜋𝑙).

That is to say, the unique one-parameter solution {𝐷𝑐 ∣ 𝑐 ∈ ℝ} ⊂ 𝒟 to equation (4.9) is

𝐷𝑐 = 𝐷𝑆2 +𝑐𝐵,

where the bounded and selfadjoint operator 𝐵 equals cos(𝜋𝐷𝑆2)(𝐷𝑆2|𝐷𝑆2|
−1).

Looking at this we see that it agrees with theDirac operator we found in our simulations
using the parametrization with 𝑃. In particular for 𝑐 = ±1/2 this agrees with the
simulations with an even/ odd maximal eigenvalue, as shown in Figures 4.3 and 4.5.

Spectral triple axioms

For nonzero 𝑐, the full operator𝐷𝑆2+𝑐𝐵does not satisfy the first-order axiom (condition
2 in the reconstruction theorem of [Con13]) because [[𝐵,𝑌𝑖],𝑌𝑗] is not zero for all 𝑖, 𝑗;
𝐵, although pseudodifferential of order zero, is not an endomorphism of the spinor

bundle. The defect [[𝐵,𝑌𝑖],𝑌𝑗], however, is compact (it is in fact in 𝐿
(1,∞)(𝐻)). As we

will see in the next subsection the boundary effects caused by the truncation to finite
matrix sizes mask this difference and lead to violations of the first order axiom for𝐷𝑆2
alone that are of the same order of magnitude as the violation for 𝐵.

Boundary defects

As mentioned in the introduction, replacing a solution 𝑌,𝛾,𝐷 of the one-sided higher
Heisenberg equation (4.2) by 𝑌𝛬, 𝛾𝛬,𝐷𝛬 leads to a nontrivial defect.

For operators in𝒟 this introduces an additional term in 𝛿(𝑌𝛬, 𝛾𝛬,𝐷) that is not present
in 𝛿(𝑌,𝛾,𝐷). This term is a multiple of the 𝛾 operator projected onto the highest
eigenspace of |𝐷|, where the coefficient equals

𝑐𝑙𝜇
2
𝑙 +

(1−2𝑙)
16𝑙2

𝜇𝑙−1(𝜇𝑙−1 +2𝜇𝑙)−1,

with 𝑐𝑙 =
1+9𝑙2+6𝑙3
16𝑙2(𝑙+1)2 . In terms of the parameter 𝑐, above, this means that additionally to

solving 𝛿(𝑌,𝛾,𝐷𝑐) = 0wecan solve thefinite-cutoff equation 𝛿(𝑌𝛬, 𝛾𝛬,𝐷𝑐) = 0 (uniquely)
by 𝑐 = 𝑠(𝛬)/2, where the sign 𝑠(𝛬) equals the parity cos(𝜋𝜆max)of the highest eigenvalue
𝜆max of |𝐷𝑆2| below𝛬 (so that the corresponding eigenvalue of 𝑐𝐵 is+ 1

2 ): see Figure 4.6.
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4.3. An alternative analytic solution to the Heisenberg relation

Figure 4.6: Spectra of𝐷𝑆2 and𝐷𝑆2 +𝑐𝐵 for even/odd 𝜆max.

The finite-rank operators 𝐷𝑐,𝛬, for any 𝑐 ∈ ℝ, never satisfy the first-order condition
that [[𝐷𝛬,𝑌𝛬],𝑌𝛬] should vanish. For 𝐷 = 𝐷𝑆2 , for which the defect vanishes in the
strong limit𝛬→∞, there is a boundary defect of asymptotically constant norm and of
unbounded trace normas𝛬→∞– that is, ‖[[𝐷𝑆2,𝛬,𝑌𝛬],𝑌𝛬‖ ∼ 1 and ‖[[𝐷𝑆2,𝛬,𝑌𝛬],𝑌𝛬‖1 =
𝑂(𝛬).

Asmentioned above, the defect [[𝐵𝛬,𝑌𝛬],𝑌𝛬] does not vanish in the strong limit𝛬→∞.
However, precisely when 𝑐 = 𝑠(𝛬)/2 as above, the highest-order terms of [[𝑐𝐵𝛬,𝑌𝛬],𝑌𝛬]
and [[𝐷𝑆2,𝛬,𝑌𝛬],𝑌𝛬] cancel each other. As a result, the defect [[𝐷𝑐,𝛬,𝑌𝛬],𝑌𝛬] is of norm
𝑂(𝛬−1) and trace norm𝑂(1). In this sense it is hard to computationally detect the fact
that𝐷𝑆2,𝛬 comes from a spectral triple while (for nonzero 𝑐)𝐷𝑐,𝛬 does not.

Visualisation: a locally isometric graph embedding

The operator𝐷𝑆2 +𝑐𝐵 seems, at least on 𝑃𝛬𝐻 for finite𝛬, to come closer to satisfying
the higher Heisenberg equation (4.2) than the original solution𝐷𝑆2 does, and neither
its spectral asymptotics nor the first-order equation allow us to discern at the finite
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4.3. An alternative analytic solution to the Heisenberg relation

(a) Dimension estimate (b) Volume estimate

Figure 4.7: Finite-rank estimates of the spectral asymptotics of𝐷𝑆2 and𝐷𝑆2 +𝑐𝐵, where
𝑐 is ± 1

2 for𝛬 even/ odd.

level that it does not form a commutative spectral triple with 𝐶∞(𝑆2) and 𝐿2(𝑆2,𝑆).
This suggests to pretend it does arise from a spin geometry and to compare at least the
resulting metric on 𝑆2 to the standard one.

First of all, since the difference 𝐵 is bounded, theWeyl asymptotics agree in the sense
that the first zeta residues must be equal in both value and argument. This is already
detectable at the truncated level, e.g. using the finite-rank zeta approximations from
[Ste19b]: see Figure 4.7. One interesting feature of these figures is that the dimension
and volume estimators converge faster for the𝐷𝑆2 +𝑐𝐵 operator than for the truncated
sphere.

The asymptotics corresponding to total scalar curvature, however, are completely dif-
ferent for𝐷𝑆2 +𝑐𝐵 (the corresponding residue is not 2⋅4𝜋

6⋅4𝜋 but rather
−4𝜋
6⋅4𝜋 ) because it is

the𝑂(𝑡−𝑛/2+1) term in the asymptotics of tr𝑒−𝑡𝐷
2
and is therefore highly sensitive to

bounded shifts when the dimension equals 2.

Chapter 3 developed a method to associate a finite metric space to ‘operator system
spectral triples’ (𝑃𝛬𝐶

∞(𝑀)𝑃𝛬,𝑃𝛬𝐻,𝑃𝛬𝐷). The method, briefly, is as follows.

• The embedding 𝑌 is used to define the dispersion 𝛿(𝑣) def= ∑𝑖⟨𝑣,𝑌
2
𝑖 𝑣⟩− ⟨𝑣,𝑌𝑖𝑣⟩

2

of a vector 𝑣 ∈ 𝐻, which measures the degree to which the corresponding vector
state is localized. In the commutative case, this corresponds to the statistical
variance of the position variable 𝑌 under the measure induced by 𝑣.
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• One iteratively constructs a reasonably dense (finite) set of localized states by
minimizing the dispersion, combined with an electrostatic repulsion to avoid
repetition. Up to the distortion induced by imperfect localization, this results in
the commutative case in generating a set of roughly equidistributed points on
the underlying manifold.

• The Connes distance formula (4.3) is used to calculate the distance between the
generated states, in order to obtain a metric graph. In the commutative case,
those distances correspond to the Kantorovich-Wasserstein distance between the
measures induced by the localized states, which reduces to the geodesic distance
in the limit of perfect localization.

• The SMACOF algorithm is utilized to embed the obtained metric graph inℝ𝑛

in an asymptotically locally isometric way. This means that, asymptotically as
𝛬→∞, the embedding is pressured to be Riemannian.

For𝐷𝑆2 and𝐷𝑆2 +𝑐𝐵, this procedure yields the images displayed in Figure 4.8. There
we can see that the embedded points for𝐷𝑆2 , the left hand plot, lie outside the shaded
𝑆2 that is included for reference, while on the other hand the points for𝐷𝑆2 +𝑐𝐵, in the
right hand plot, lie inside the shaded 𝑆2. The transparency of the dots increases with
distance to the viewer. Both embeddings show some deviation from the sphere: for
𝐷𝑆2 , the radii of the embedded points lie in [1.06,1.12], with an average of 1.09; for
𝐷𝑆2 +𝑐𝐵, in [0.94,0.98] averaging 0.96.

4.4 Conclusions

In this chapter we explored the behaviour of the truncated one-sided higher Heisenberg
relation in dimensions 1 and 2. In the one-dimensional case the simulations yielded
the expected result, showing that the truncation of the Dirac operator on the circle is
closest to solving the corresponding truncated relation. The two-dimensional version
of the truncated Heisenberg relation, however, lead to a new minimum that differs
from (but commutes with) the truncated Dirac operator on the sphere. We found
analytically that this numerical minimum corresponds to the truncation at 𝑐 = ± 1

2
of a new one-parameter family𝐷𝑐 = 𝐷𝑆2 +𝑐𝐵 of exact solutions to the non-truncated
higherHeisenberg equation. While these bounded perturbations𝐷𝑐 of𝐷𝑆2 satisfymost
conditions of the reconstruction theorem, they fail to satisfy the first-order condition.
Unlike many other geometric properties, however, this defect turns out to not be
detectable at the truncated level.

87



4.4. Conclusions

(a)𝐷𝑆2 (b)𝐷𝑆2 +𝑐𝐵

Figure 4.8: Locally almost-isometric embeddings corresponding to𝐷𝑆2 and𝐷𝑆2 +𝑐𝐵,
with shaded 𝑆2 for reference

An interesting comparison here is the case of the four-dimensional version of the
higher Heisenberg relation. That relation is solved not only by the four-sphere, but
also by an additional, genuinely non-commutative, spectral triple, the Connes-Landi
sphere [CL01]. This similarity invites the question whether the Heisenberg relation
might invite more freedom the larger the dimension becomes.

There are many interesting extensions of this work waiting to be explored. In particular
the Heisenberg relation needs to be understood in more detail. It is unclear how its
one-sided version behaves in higher dimensions and, just as importantly, when more
freedom is allowed for the parameter 𝑌. Our results, seen in context with the Connes-
Landi sphere, suggest that more conditions are required to ensure that we deal with
truncations of genuine Dirac spectral triples. In addition, it would be interesting to
explore the two-sided equation of theHeisenberg relation. In that context, allowing the
embedding maps 𝑌 to vary as well as the Dirac operator enlarges the resulting ensemble
to contain all spinmanifolds of the dimensions considered. With additional conditions,
this would be a solid basis for a spectral version of random geometry, which could be
compared to and begin a dialogue with results in quantum gravity, such as those of
dynamical triangulations [Lol98] and spinfoams [Per13].
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4.A. Representation of 𝑌,𝛾,𝐷𝑆2

4.A Representation of 𝑌,𝛾,𝐷𝑆2

Let 𝑆 be the standard spinor bundle over 𝑆2, with Dirac operator𝐷𝑆2 , and let 𝑥,𝑦,𝑧
be the standard coordinate functions on 𝑆2 ⊂ ℝ3. Then, the Dirac-type spectral triple
given by (𝐶∞(𝑆2),𝐿2(𝑆2;𝑆),𝐷𝑆2) can be represented as follows. Let {|𝑙,𝑚⟩± ∣ 𝑙 ∈ ℤ≥0 +
1
2 ,−𝑙 ≤ 𝑚 ≤ 𝑙} be an orthonormal basis of the Hilbert space𝐻. Then, we represent the
generators 𝑎 = 𝑥− 𝑖𝑦 and 𝑏 = 𝑧 of the algebra𝐶∞(𝑆2), the grading 𝛾 of 𝑆 and the Dirac
operator𝐷𝑆2 as follows:

𝑎|𝑙,𝑚⟩± =−
√(𝑙+𝑚+1)(𝑙−𝑚)

2𝑙(𝑙+1) |𝑙,𝑚+1⟩∓

+
√(𝑙+𝑚+1)(𝑙+𝑚+2)

2(𝑙+1) |𝑙+1,𝑚+1⟩±

−
√(𝑙−𝑚)(𝑙−𝑚−1)

2𝑙 |𝑙−1,𝑚⟩± ,

𝑏 |𝑙,𝑚⟩± =
𝑚

2𝑙(𝑙+1) |𝑙,𝑚⟩∓

+
√(𝑙−𝑚+1)(𝑙+𝑚+1)

2(𝑙+1) |𝑙+1,𝑚⟩±

+
√(𝑙−𝑚)(𝑙+𝑚)

2𝑙 |𝑙−1,𝑚⟩± ,

𝛾 |𝑙,𝑚⟩± =|𝑙,𝑚⟩∓ ,

𝐷𝑆2 |𝑙,𝑚⟩± =±(𝑙+
1
2)|𝑙,𝑚⟩± .

This representation was chosen to align well with that of [Dab+05]. We then write the

matrix 𝑌 as ( 𝑏 𝑎
𝑎∗ −𝑏).
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Part II

Schatten classes for Hilbert modules
over commutative 𝐶∗-algebras





Chapter 5

Introduction

Words can never trace out all the fibers
that knit us to the old.

George Eliot, Letter to Charles Bray,
Christmas Day, 1858

The trace is a fundamental and highly versatile invariant of operators on Hilbert spaces.
In many applications, however, one is rather concerned with continuous families of
such operators. From the perspective of Gelfand duality, the natural framework for
such continuous families is that of Hilbert C∗-modules over an abelian base. The
present study provides a systematic construction of trace and Schatten classes in this
setting.

The finite-rank trace

The ∗-algebra𝑀(𝐴) of finite matrices over aC∗-algebra𝐴 comes naturally equipped
with a positive linear map

tr ∶ 𝑀(𝐴)→ 𝐴, (𝑎𝑖𝑗)𝑖𝑗 →∑
𝑖
𝑎𝑖𝑖,

which clearly commutes with the entrywise lift of linear maps between C∗-algebras,
and is cyclic if and only if the algebra𝐴 is commutative.
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5. Introduction

If 𝐸 is a finitely generated projective Hilbert𝐴-module, any compact adjointable en-
domorphism of 𝐸 can be represented as an element of𝑀(𝐴) by a choice of isomor-
phism between𝐸 and a complemented submodule of𝐴𝑛. Whenever𝐴 is commutative,
cyclicity implies that the trace of the resulting matrix is invariant under the choice of
isomorphism and so constitutes the𝐴-valued (Hattori-Stallings) trace on End𝐴(𝐸).

Chapter 6, below, introduces a robust framework that generalizes the construction to
countably generated Hilbert modules.

Continuous families of Schatten-class operators

Given a finite-rank Hermitian vector bundle𝑉 over a locally compact Hausdorff space
𝑋, Gelfand duality and the Serre-Swan theorm imply that the finite-rank trace is just the
fiberwise trace tr ∶ 𝛤(End𝑉)→ 𝐶0(𝑋) of continuous sections of the endomorphism
bundle.

If𝑉→𝑋 is instead a continuous field of separable Hilbert spaces, then there is still a
trace map on the fiberwise trace classes. The challenge is then to unify these fiberwise
trace classes in such a way as to yield a 𝐶0(𝑋)-valued fiberwise trace that retains the
fundamental properties of the trace class on a fixed Hilbert space𝐻.

As a fundamental example, consider the trivial bundle𝐻×𝑋→𝑋with fiber a fixed
separableHilbert space𝐻. TheC∗-algebra of its adjointable endomorphisms consists of
all ∗-stronglycontinuous, bounded families of bounded operators on𝐻. One wonders
whether this algebra, denoted𝐶str

b (𝑋,𝐵(𝐻)), contains two-sided ideals of “continuous
Schatten-class operators” such that some or most of the usual theory of Schatten classes
on Hilbert spaces is preserved.

In order to ensure continuity of the trace, the least one should demand of such an ideal
is that the pointwise Schatten norms lie in 𝐶0(𝑋). On the other hand, the strongest
reasonable condition at hand is that the families are themselves Schatten-norm con-
tinuous, that is, that they lie in the Banach space 𝐶0(𝑋,ℒ

𝑝 (𝐻)). Through careful
control over the relation between the Schatten classes on the standard Hilbert space
𝑙2(ℂ) and the complex matrix algebras𝑀𝑛(ℂ), we are able in Theorem 6.2.11 to show
that these conditions do in fact coincide on𝐶str

b (𝑋,𝐵(𝐻)) and yield a two-sided ideal
that is contained in the compact operators and is closed under its Banach norm.

Kasparov’s stabilization theorem and unitary invariance of the Schatten norms allow
us to easily generalize the trivial bundle example to all continuous fields of separable
Hilbert spaces in Theorem 6.3.1. A further upshot of this approach is that much of
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the pointwise Schatten-class theory, including the Hölder-von Neumann inequality,
carries over easily to the general case, cf. Theorem 6.3.4.

Frames and the fiberwise trace

The theory of Schatten classes onHilbert spaces is oftenmediated through the language
of orthonormal bases and diagonalization. The approach of Section 6.2 shows that
one may very well work with (standard normalized) frames [FL02; RT03] instead.
This allows for straightforward generalization of the familiar formulas to the theory
of Hilbert modules, and indeed, the result is what one would hope for: the fiberwise
trace turns out to be the norm-convergent sum over the diagonal in a given frame, cf.
Theorem 6.1.5. In the context of frames, it was earlier remarked in [DH94],[FL02,
Proposition 4.8] that the obvious notion of Hilbert-Schmidt inner product is invariant
both under the choice of frame and under the adjoint. That observation is supplied
with the necessary context as a special case of our Schatten-class operators in Section 6.4.

Applications

By the same principles as for the finite-rank trace, [Alm73] introduced, in the context of
K-theory, the Fredholm determinant of endomorphisms of finitely generated modules
over unital commutative algebras. As the Fredholm determinant is interesting in its
own right, Section 7.1 uses the result on the Schatten classes to extend its definition and
basic properties to the setting of countably generated modules over unital commutative
C∗-algebras. A straightforward generalization of [Alm74] remains however elusive, due
to the conceptual problems in generalizing the relevant category.

Spectral geometry is the study of Riemannian manifolds𝑀 via the spectra of differ-
ential operators, such as spinc-Dirac operators𝐷, on𝑀. An important example of

spectral invariant is the localized heat trace 𝑡 ↦ tr𝑓𝑒−𝑡𝐷
2
,𝑓 ∈ 𝐶(𝑀). It determines

the volume and total scalar curvature of𝑀, is strongly related to the Atiyah-Singer
Index Theorem [Gil95], and is able to describe classical field theories on𝑀 through the
spectral action principle [CM08, Chapter 11]. The first step in generalizing the above
to unbounded Kasparov cycles, that is, certain (𝐶0(𝑀),𝐶0(𝑁))-Hilbert bimodules
carrying a selfadjoint, regular,𝐶0(𝑁)-invariant unbounded operator 𝑆, is tomake sense
of the expressions tr𝑓𝑒−𝑡𝑆

2
and tr𝑓|𝑆|−𝑧 as elements of𝐶0(𝑁). Sections 7.2,7.3 embark

on the necessary theory. Open questions for further research remain, particularly in the
direction of zeta residues and compatibility with the interior product in unbounded
KK-theory.
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The noncommutative case

As briefly discussed inChapter 8, the case of noncommutativeC∗-algebras𝐴 is markedly
different. We adapt a basic example from [FL02] to show that one is induced to con-
template not a trace ideal in the adjointable operators, but a trace ideal inside some
smaller ∗-algebra dependent on a choice of Hilbert bimodule structure. In the non-
commutative case, it is more natural not to work with an𝐴-valued “trace” but instead
to consider generalizing the induced map tr∗ ∶ 𝐻∗(𝑀𝑁(𝐴),𝑀𝑁(𝑀)) →𝐻∗(𝐴,𝑀)
in Hochschild (or cyclic) homology, as initiated in [Nis91]. Although this cleanly ad-
dresses the limitation of noncyclicity, it introduces additional complications to the issue
of convergence. This in turn further reinforces the idea that one should investigate trace
classes on bimodules instead. This direction of research, however, remains wide-open.

5.1 Preliminaries

We start by recalling the notion of frames on Hilbert𝐶∗-modules over𝐶∗-algebras. For
basic definitions on Hilbert𝐶∗-modules, adjointable maps, tensor products, et cetera
we refer to e.g. [Weg93]. We also recall the definition of unbounded Kasparov cycles
[BJ83].

Keep in mind that we will, in later sections, specialize to the case of abelian𝐶∗-algebras,
that is, those of the form 𝐶0(𝑋) for 𝑋 a locally compact Hausdorff space. Hilbert
𝐶∗-modules over such 𝐶∗-algebras are given by the sections of continuous fields of
Hilbert spaces; cf. [Tak79; DD63].

Frames on Hilbert C∗-modules

We start this section by recalling two well-known results on HilbertC∗-modules. For
completeness we include their (short) proofs.

Proposition 5.1.1. Let 𝐴 be a C∗-algebra and let 𝐸𝐴 be a Hilbert 𝐴-module. Then
𝐸𝐴𝐴 is dense in 𝐸, and the map 𝑢 ∶ 𝑣⊗𝐴 𝑎 ↦ 𝑣𝑎, 𝐸𝐴⊗𝐴𝐴→ 𝐸𝐴, is unitary.

Proof. Let {𝑒𝜆} be an approximate unit of 𝐴. For 𝑣 ∈ 𝐸𝐴 one has ⟨𝑣− 𝑣𝑒𝜆, 𝑣− 𝑣𝑒𝜆⟩ =
⟨𝑣,𝑣⟩− 𝑒𝜆 ⟨𝑣,𝑣⟩− ⟨𝑣,𝑣⟩𝑒𝜆 +𝑒𝜆 ⟨𝑣,𝑣⟩ 𝑒𝜆, which converges to 0; thus, 𝑣 is the norm limit of
the sequence 𝑣𝑒𝜆 ∈ 𝐸𝐴𝐴.

Clearly 𝑢 is isometric, so that its range is closed. As the range is dense, it must be
surjective and, therefore, unitary.

96



5.1. Preliminaries

Proposition 5.1.2. Let𝐴 and 𝐵 beC∗-algebras and let 𝐸𝐴 be a Hilbert𝐴-module. If
𝜙 ∶ 𝐴→𝐵 is a ∗-homomorphism, then𝐵 is a left𝐴-modulewith the action𝑎⋅𝑏 def= 𝜙(𝑎)𝑏.
Then, there is an adjointable map

𝜙∗ ∶ 𝐸𝐴 →𝐸𝐴⊗𝐴 𝐵,

such that ⟨𝜙∗𝑣,𝜙∗𝑤⟩𝐵 = 𝜙(⟨𝑣,𝑤⟩𝐴).

Moreover, if𝑇 ∈ℒ(𝐸𝐴) then𝜙∗𝑇 ∶= 𝑇⊗1 is an adjointable endomorphismof𝐸𝐴⊗𝐴𝐵,
i.e. there is an induced map 𝜙∗ ∶ ℒ(𝐸𝐴) →ℒ(𝐸𝐴⊗𝐴 𝐵).

Proof. Recall that the map id∗ ∶ 𝑣 ⋅ 𝑎 ↦ 𝑣⊗𝐴 𝑎, 𝐸𝐴 → 𝐸𝐴 ⊗𝐴 𝐴, is an isomorphism.
We set 𝜙∗

def= (id⊗𝐴𝜙) ∘ id∗ and find that for 𝑣 ∈ 𝐸𝐴, 𝑎 ∈ 𝐴 one has ⟨𝜙∗𝑣,𝜙∗𝑣⟩𝐵 =
⟨𝜙(𝑎), ⟨𝑣, 𝑣⟩ ⋅ 𝜙(𝑎)⟩ = 𝜙(𝑎)∗𝜙(⟨𝑣,𝑣⟩)𝜙(𝑎) = 𝜙(⟨𝑣 ⋅ 𝑎,𝑣 ⋅ 𝑎⟩).

A convenient basic fact about separable Hilbert spaces𝐻 is that they possess countable
orthonormal bases {𝑒𝑖}. For one thing, this allows one to explicitly relate the compact
operators 𝐵0(𝐻) to the direct limit𝑀(ℂ) of matrix algebras over the base fieldℂ and
in particular to treat the trace on 𝐿1(𝐻) using the series expression tr𝑇 =∑𝑖 ⟨𝑒𝑖,𝑇𝑒𝑖⟩.

The situation for HilbertC∗-modules is slightly less straightforward: we will introduce
the analogous but strictly weaker concept of a frame. In spite of the increased generality,
we will see that frames provide sufficient flexibility to mimic standard treatments of
trace-class operators on Hilbert spaces in the setting of Hilbert𝐶0(𝑋)-modules.

Definition 5.1.3. Let 𝐸𝐴 be a countably generated Hilbert C∗-module over a C∗-
algebra𝐴. A frame 𝑒 of 𝐸𝐴 is a sequence 𝑒𝑖 of elements of 𝐸𝐴, such that

⟨𝑣,𝑤⟩ =
∞
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ ⟨𝑒𝑖,𝑤⟩ ,

in norm, for all 𝑣,𝑤 ∈ 𝐸𝐴.

Such objects 𝑒 were called ‘standard normalized frames’ in [FL02]. Note that the
subsequent treatment in [RT03], which is very similar to the definition used here, is
different for non-unitalC∗-algebras: we require the 𝑒𝑖 to be in𝐸𝐴, not in the ‘multiplier
module’ℒ(𝐴𝐴,𝐸𝐴). This choice will later imply, for instance, that we do not consider
the identity on the𝐶0(𝑋)-module𝐶0(𝑋), for noncompact spaces𝑋, to be in the trace
class.
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Example 5.1.4. Let𝐻 be a separable Hilbert space. Let 𝑃 ∈ 𝐵(𝐻) be a projection and
𝐾 = 𝑃𝐻 ⊂ 𝐻. Then, if {𝑒𝑖} is an orthonormal basis of𝐻, we have

⟨𝑣,𝑤⟩ =
∞
∑
𝑖=1

⟨𝑃𝑣, 𝑒𝑖⟩ ⟨𝑒𝑖,𝑃𝑤⟩ =
∞
∑
𝑖=1

⟨𝑣,𝑃𝑒𝑖⟩ ⟨𝑃𝑒𝑖,𝑤⟩ ,

for all 𝑣,𝑤 ∈ 𝐾. That is, 𝑒 = {𝑃𝑒𝑖} is a frame of𝐾. Note that 𝑒 is not an orthonormal
basis, because the 𝑒𝑖 might be neither orthogonal nor of norm 1.

Now, in the context of trace-class operators on a separable Hilbert space𝐻, frames ‘are
as good as orthonormal bases’, in the sense of Corollary 5.1.6 below.

Lemma 5.1.5. Let 𝑒,𝑓 be frames of a separable Hilbert space𝐻 and let𝑇 be a bounded
endomorphism of 𝐻. Then, the series ∑∞

𝑖=1 ⟨𝑇
∗𝑓𝑖,𝑇

∗𝑓𝑖⟩ converges if and only if

∑∞
𝑖=1 ⟨𝑇𝑒𝑖,𝑇𝑒𝑖⟩ converges, and the limits agree.

Proof. Assume that∑∞
𝑖=1 ⟨𝑇𝑒𝑖,𝑇𝑒𝑖⟩ < ∞. Then for finite subsets 𝐹 ⊂ ℕ,

∑
𝑖∈𝐹

⟨𝑇∗𝑓𝑖,𝑇
∗𝑓𝑖⟩ =∑

𝑖∈𝐹

∞
∑
𝑗=1

⟨𝑇∗𝑓,𝑒⟩ ⟨𝑒,𝑇∗𝑓⟩ !=∑
𝑖∈𝐹

∞
∑
𝑗=1

⟨𝑒,𝑇∗𝑓⟩⟨𝑇∗𝑓,𝑒⟩

≤
∞
∑
𝑗=1

⟨𝑇𝑒,𝑇𝑒⟩ .

Being bounded and monotone, the series∑∞
𝑖=1 ⟨𝑇

∗𝑓𝑖,𝑇
∗𝑓𝑖⟩must converge. If we now

switch 𝑇 and 𝑇∗, 𝑒 and 𝑓 and repeat the calculation, we see that the limits must in fact
agree.

Corollary 5.1.6. Let 𝑒 be a frame of a separable Hilbert space𝐻. Then, for bounded
endomorphisms𝑇 of𝐻, we have𝑇 ∈ℒ2 (𝐻)whenever∑∞

𝑖=1 ⟨𝑇𝑒𝑖,𝑇𝑒𝑖⟩ < ∞. Moreover,

for 𝑇 ∈ ℒ1 (𝐻), one has tr𝑇 =∑∞
𝑖=1 ⟨𝑒𝑖,𝑇𝑒𝑖⟩.

Proof. For the first part, let 𝑓 be an orthonormal basis and note that∑∞
𝑖=1 ⟨𝑇𝑒𝑖,𝑇𝑒𝑖⟩

converges whenever∑∞
𝑖=1 ⟨𝑇

∗𝑓𝑖,𝑇
∗𝑓𝑖⟩ does by Lemma 5.1.5. That, then, is equivalent

to 𝑇∗ ∈ ℒ2 (𝐻), which in turn is equivalent to 𝑇 ∈ ℒ2 (𝐻).

For the second part, note thatℒ1 (𝐻) = ℒ2 (𝐻)ℒ2 (𝐻). It is thus sufficient to con-
sider an element 𝑇 = |𝑆|2 ∈ ℒ1 (𝐻) with 𝑆 ∈ ℒ2 (𝐻). Then, tr |𝑆|2 = tr |𝑆∗|2 =
∑∞

𝑖=1 ⟨𝑆
∗𝑓𝑖,𝑆

∗𝑓𝑖⟩, which equals∑
∞
𝑖=1 ⟨𝑆𝑒𝑖,𝑆𝑒𝑖⟩ by Lemma 5.1.5.
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Wewill see later that the Example 5.1.4 is a very good prototype for the general situation
for HilbertC∗-modules as well.

Example 5.1.7. Let𝐴 be a unitalC∗-algebra and let 𝑙2(𝐴) = 𝑙2⊗ℂ𝐴𝐴 be its standard

module. Let {𝑒𝑖} be the standard orthonormal basis of 𝑙
2 and define {𝑒𝑖

def= 𝑒𝑖⊗1𝐴} in
𝑙2(𝐴). Then clearly

⟨𝑣,𝑤⟩ =
∞
∑
𝑖=1

⟨𝑣, 𝑒𝑖⟩ ⟨𝑒𝑖,𝑤⟩ ; (𝑣,𝑤 ∈ 𝑙2(𝐴)).

If 𝑃 ∈ ℒ(𝐸𝐴) is a projection (i.e. 𝑃
2 = 𝑃∗ = 𝑃) and 𝐹𝐴 = 𝑃(𝐸𝐴), then

⟨𝑃𝑣,𝑃𝑤⟩ =
∞
∑
𝑖=1

⟨𝑃𝑣, 𝑒𝑖⟩ ⟨𝑒𝑖,𝑃𝑤⟩ =
∞
∑
𝑖=1

⟨𝑣,𝑃𝑒𝑖⟩ ⟨𝑃𝑒𝑖,𝑤⟩ ,

so {𝑃𝑒𝑖} is a frame of 𝐹𝐴.

Each frame of 𝐸𝐴 gives rise to a unitary 𝜃𝑒 ∶ 𝐸𝐴 → (𝜃𝑒𝜃
∗
𝑒)𝑙

2(𝐴), as follows.

Proposition 5.1.8. Let 𝑒 be a frame of 𝐸𝐴. The frame transform 𝜃𝑒 ∶ 𝐸𝐴 → 𝑙2(𝐴),
given by

𝜃𝑒(𝑣) ∶= (⟨𝑒𝑖, 𝑣⟩)𝑖

is adjointable, and its adjoint satisfies 𝜃∗𝑒(𝑒𝑘⊗𝑎) = 𝑒𝑘 ⋅ 𝑎. Moreover, 𝑒 is a frame if and
only if 𝜃∗𝑒𝜃𝑒 = id𝐸.

For the proof we refer to [RT03, Theorem 3.5].

Remark 5.1.9. Note that, unless 𝐴 is unital, the converse does not hold: not every
isometry sending 𝐸𝐴 to a complemented submodule of 𝑙

2(𝐴) is induced by a frame.
The frame elements 𝑒𝑖 would be given by 𝜃

∗
𝑒(𝛿𝑖𝑗1𝐴)𝑗, but the latter is not an element

of 𝑙2(𝐴) unless𝐴 is unital. This is where our treatment differs from that of [RT03],
which works with frames (in the present sense) of the multiplier moduleℒ(𝐸𝐴,𝐴)
instead.

Frames are compatible with ∗-homomorphisms. In particular, this means that char-
acters of a commutativeC∗-algebra map frames of Hilbert 𝐶∗-modules to frames of
Hilbert spaces.
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Proposition 5.1.10. Let𝐴, 𝐵 beC∗-algebras, 𝐸𝐴 a Hilbert𝐴-module and 𝜙 ∶ 𝐴→ 𝐵
a ∗-homomorphism. If 𝑒 is a frame of 𝐸𝐴 and if 𝜙 is surjective, then 𝜙∗(𝑒) is a frame of
𝐸𝐴⊗𝐴 𝐵.

Proof. Consider𝑓 def= 𝜙∗(𝑒) = {𝜙∗(𝑒𝑖)}𝑖 ∈ 𝐸𝐴⊗𝐴𝐵. Note that 𝜃𝑓(𝜙∗𝑣) = 𝜙∗𝜃𝑒(𝑣) inside
𝑙2(𝐵), so that ⟨𝜃𝑓(𝜙∗𝑣),𝜃𝑓(𝜙∗𝑤)⟩ = 𝜙(⟨𝜃𝑒(𝑣),𝜃𝑒(𝑤)⟩) = 𝜙(⟨𝑣,𝑤⟩) = ⟨𝜙∗𝑣,𝜙∗𝑤⟩. Thus,
with Proposition 5.1.8 it follows that 𝑓 is a frame.

Existence of frames

Kasparov’s stabilization Theorem [Kas80] shows that example 5.1.7 describes the gen-
eral unital (and, as we will see, the non-unital) case very well.

Theorem 5.1.11. Let 𝐴 be a unital C∗-algebra and let 𝐸𝐴 be a countably generated
Hilbert𝐴-module. Then there exists a projection 𝑃2 = 𝑃 = 𝑃∗ inℒ(𝑙2(𝐴)) such that
𝐸𝐴 ≃ 𝑃(𝑙2(𝐴)). In particular, 𝐸𝐴 possesses a frame.

For the proof we refer to [Kas80] (see also [Lan95, Theorem 6.2]).

The non-unital case requires more effort, but the end result is the same. We refer to
[Kaa17, Section 2] for a proof.

Proposition 5.1.12 ([Kaa17, Proposition 2.6]). Let 𝐴 be a C∗-algebra. Then, all
countably generated Hilbert𝐴-modules possess a frame.

The standard module over abelian C∗-algebras

For the rest of this subsection, let 𝑋 be a locally compact Hausdorff space. The C∗-
algebra𝐶0(𝑋) is abelian – and, by Gelfand duality, all abelianC

∗-algebras are of this
type.

We will investigate the Hilbert 𝐶0(𝑋)-module 𝐶0(𝑋,𝐻), for 𝐻 a separable Hilbert
space, which will later provide a useful tool in investigating the Schatten classes of
operators onmore generalHilbert𝐶0(𝑋)-modules. We startwith somebasic definitions
and results, whose proof we leave to the reader.

Definition 5.1.13. Let 𝑓 be a map from a locally compact topological space 𝑋 to
a normed space. We say that 𝑓 vanishes at infinity whenever for all 𝜖 > 0, the set
{𝑥 ∈ 𝑋∶ ∥𝑓(𝑥)∥ ≥ 𝜖} is compact.
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Definition 5.1.14. Let 𝑌 be a Banach space, equipped with its norm topology. The
space𝐶0(𝑋,𝑌) consists of the continuous functions from𝑋 to𝑌 that vanish at infinity.

Proposition 5.1.15. Let 𝑌 be a Banach space and 𝑋 be a locally compact topologi-

cal space. Then, 𝐶0(𝑋,𝑌) is a Banach space when equipped with the norm ∥𝑓∥ def=
sup𝑥∈𝑋 ∥𝑓(𝑥)∥. Moreover, for 𝑓 ∈ 𝐶0(𝑋,𝑌), the map 𝑥 ↦ ∥𝑓(𝑥)∥ lies in𝐶0(𝑋).

Proposition 5.1.16. Let 𝐻 be a separable Hilbert space. Then, the Banach space
𝐶0(𝑋,𝐻) has the structure of a HilbertC∗-module when equipped with the𝐶0(𝑋)-
valued inner product ⟨𝑣,𝑤⟩(𝑥) def= ⟨𝑣(𝑥),𝑤(𝑥)⟩𝐻.

Proposition 5.1.17. The Hilbert𝐶∗-module𝐶0(𝑋,𝐻) is unitarily equivalent to the
tensor product𝐻⊗ℂ𝐶0(𝑋) of Hilbert𝐶∗-modules.

Proof. Let {𝑒𝑖}𝑖 be an orthonormal basis of𝐻, and for 𝑣 ∈ 𝐶0(𝑋,𝐻) write 𝑣𝑖 ∶ 𝑥 ↦
⟨𝑣(𝑥), 𝑒𝑖⟩; this defines a sequence of functions in 𝐶0(𝑋). Because ⟨𝑣,𝑣⟩ = ∑

∞
𝑖=1 𝑣

∗
𝑖𝑣𝑖

converges pointwise, is positive and lies in𝐶0(𝑋), it converges in the norm of𝐶0(𝑋)
by Dini’s theorem.

Consider then the 𝐶0(𝑋)-linear map 𝜃 ∶ 𝐶0(𝑋,𝐻) → 𝐻⊗ℂ 𝐶0(𝑋),𝑣 ↦ ∑𝑖 𝑒𝑖 ⊗ 𝑣𝑖.
This series converges in𝐻⊗ℂ𝐶0(𝑋) because

∥∑
𝑖∈𝐹

𝑒𝑖⊗𝑣𝑖∥ = ∥∑
𝑖,𝑗∈𝐹

⟨𝑣𝑖, ⟨𝑒𝑖, 𝑒𝑗⟩𝑣𝑗⟩∥ = ∥∑
𝑖∈𝐹

⟨𝑣𝑖, 𝑣𝑖⟩∥ .

Moreover, taking limits on both sides we see that 𝜃 is isometric.

Now, the map𝑚∶ 𝐻⊗ℂ𝐶0(𝑋) → 𝐶0(𝑋,𝐻),ℎ⊗𝑎 ↦ ℎ𝑎, is isometric because

⟨∑
𝑖
ℎ𝑖⊗𝑎𝑖,∑

𝑖
ℎ𝑖⊗𝑎𝑖⟩ =∑

𝑖𝑗
⟨ℎ𝑖, ℎ𝑗⟩𝑎

∗
𝑖𝑎𝑗 = ⟨∑

𝑖
𝑚(ℎ𝑖⊗𝑎𝑖),∑

𝑖
𝑚(ℎ𝑖⊗𝑎𝑖)⟩ .

As𝑚 inverts 𝜃 by orthonormality of the {𝑒𝑖}𝑖, we conclude that 𝜃 is a surjective𝐶0(𝑋)-
linear isometry, so that it is adjointable (with adjoint𝑚) and moreover unitary. There-
fore,𝐶0(𝑋,𝐻) is unitarily equivalent to𝐻⊗ℂ𝐶0(𝑋).

Proposition 5.1.18. The C∗-algebra ℒ(𝐶0(𝑋,𝐻)) of adjointable endomorphisms
of the Hilbert𝐶0(𝑋)-module𝐶0(𝑋,𝐻) is isomorphic to theC

∗-algebra of bounded,
∗-strongly continuous maps from𝑋 to 𝐵(𝐻), denoted𝐶str

b (𝑋,𝐵(𝐻)).
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Proof. Consider a point 𝑥 in𝑋 as a character 𝜒 ∶ 𝐶0(𝑋) → ℂ given by evaluation in 𝑥.
By Proposition 5.1.2 there is an adjointablemap𝜒∗ ∶ 𝐶0(𝑋,𝐻)→𝐶0(𝑋,𝐻)⊗𝐶0(𝑋,𝐻)ℂ
whose image 𝜒∗(𝐶0(𝑋,𝐻)) can be canonically identified with 𝐻. Accordingly, in
terms of the map 𝜒∗ ∶ ℒ(𝐶0(𝑋,𝐻)) → ℒ(𝐶0(𝑋,𝐻)) given by 𝑇 ↦ 𝑇⊗1, we have
canonically 𝜒∗ℒ(𝐶0(𝑋,𝐻)) ≃ 𝐵(𝐻).

Now take 𝑇 ∈ ℒ(𝐶0(𝑋,𝐻)) and a convergent sequence 𝑥𝑖 → 𝑥 in 𝑋. Let ℎ ∈ 𝐻
and let 𝑣0 ∈ 𝐶0(𝑋,𝐻) be constant in a neighborhood of 𝑥 with 𝑣0(𝑥) = ℎ. Since 𝑇
is an adjointable endomorphism, both 𝑇𝑣0 and 𝑇

∗𝑣0 lie in𝐶0(𝑋,𝐻), so that 𝑇𝑣0(𝑥𝑖)
converges to 𝑇𝑣0(𝑥) in norm. That is to say, ∥(𝜒𝑖∗𝑇)ℎ− (𝜒∗𝑇)ℎ∥→ 0 (and similarly
for 𝑇∗). As 𝑥 and ℎwere arbitrary, we conclude that 𝑇 ∈ 𝐶str(𝑋,𝐵(𝐻)). Moreover, if
‖𝑇(𝑥)‖ > 𝐶 for some 𝑥 ∈ 𝑋 and 𝐶 > 0, there is 𝑣0 as above with ‖𝑣0‖ ≤ 1 and ‖𝑇𝑣0‖ >
𝐶−𝜖 for all 𝜖 > 0, so that we conclude that ‖𝑇‖ ≥ 𝐶. Thus, if 𝑇 preserves𝐶0(𝑋,𝐻) it
must lie in𝐶str

b (𝑋,𝐵(𝐻)).

Conversely, for all𝑇 ∈ 𝐶str
b (𝑋,𝐵(𝐻))we have that 𝑥↦𝑇(𝑥)𝑣(𝑥) and 𝑥↦𝑇∗(𝑥)𝑣(𝑥) lie

in𝐶0(𝑋,𝐻) for all 𝑣 ∈𝐶0(𝑋,𝐻). As ⟨𝑇𝑣,𝑤⟩(𝑥) = ⟨𝑇(𝑥)𝑣(𝑥),𝑤(𝑥)⟩ = ⟨𝑣(𝑥),𝑇
∗(𝑥)𝑤(𝑥)⟩

we conclude that the pointwise adjoint provides an adjoint of 𝑇 as an operator of
𝐶0(𝑋,𝐻). That is, all such 𝑇 are adjointable operators on𝐶0(𝑋,𝐻).

General HilbertC∗-modules over a commutative base

We now apply the above results to the case of general Hilbert 𝐶0(𝑋)-modules. For a
deeper topological understanding of such modules, see [Tak79; DD63].

Proposition 5.1.19. Let 𝐸 be a Hilbert𝐶0(𝑋)-module. Then there exists a ∗-strongly
continuous projection 𝑃 ∈ 𝐶str

b (𝑋,𝐵(𝐻)) such that 𝐸 is isomorphic to the subset
𝛤0(𝑋,𝑃) ⊂ 𝐶0(𝑋,𝐻) of those elements ℎ of𝐶0(𝑋,𝐻) satisfying ℎ(𝑥) ∈ ran𝑃𝑥. More-
over, under this identificationℒ(𝐸) is isomorphic to the set of those elements 𝑇 ∈
𝐶str
b (𝑋,𝐵(𝐻)) that satisfy 𝑃𝑇 = 𝑇𝑃 = 𝑇.

Proof. If𝑋 is compact, this is a direct consequence ofKasparov’s StabilizationTheorem
(cf. Theorem 5.1.11) and Propositions 5.1.17 and 5.1.18. If not, consider 𝐸 as an
𝐶0(𝑋)

+-module and note that the endomorphism 𝑃 from Theorem 5.1.11 lies in
𝐶str
b (𝑋

+,𝐵(𝐻)) in terms of the one-point compactification𝑋+ of𝑋. But since (𝑒, 𝑒) ∈
𝐶0(𝑋) for 𝑒 ∈ 𝐸, the map 𝑃must project into a subspace of𝐶0(𝑋,𝐻).

For the last statement, let𝑇 ∈ 𝐶str
b (𝑋,𝐵(𝐻)) such that𝑃𝑇 = 𝑇𝑃 = 𝑇. Then𝑃𝑇𝑃 = 𝑇 so

that 𝑇 preserves 𝛤0(𝑋,𝑃). Conversely, let 𝑆 ∈ ℒ(𝛤0(𝑋,𝑃)). Then, the map 𝑇 = 𝑆𝑃 is
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a composition of adjointable operators and is therefore an element ofℒ(𝐶0(𝑋,𝐻)) ≃
𝐶str
b (𝑋,𝐵(𝐻)) using Proposition 5.1.18. We clearly have𝑃𝑇 = 𝑇𝑃 = 𝑇 so that the claim

follows.

Note that the fibers 𝑃𝑥𝐻 of 𝐸 may vary quite wildly with 𝑥 ∈ 𝑋, as the following
example shows.

Example 5.1.20. Let𝑈 ⊂ 𝑋 be open and let 𝑃 be the orthogonal projection onto a
closed subspace 𝑉 ⊂ 𝐻. Then, 𝐸 = 𝐶0(𝑈,𝑉) ⊂ 𝐶0(𝑋,𝑉) is (in particular) a Hilbert
𝐶0(𝑋)-module because the action of𝐶0(𝑋) on𝐶0(𝑋,𝑉) by pointwise multiplication
preserves the subspace𝐶0(𝑈,𝑉). The fibers of 𝐸 are𝑉 for 𝑥 ∈ 𝑈 and {0}, for 𝑥 ∉ 𝑈.

The following example illustrates how the projections associated to such bundles behave.

Example 5.1.21. Let𝑈 ⊂𝑋 be open and let𝑉 = span𝑣0 ⊂ 𝐻, with ‖𝑣0‖𝐻 = 1. We will
investigate the projection associated to the Hilbert 𝐶0(𝑋)-module 𝐸 = 𝐶0(𝑈,𝑉) by
Proposition 5.1.19.

Let {𝜂𝑖}𝑖 be a compactly supported partition of unity on𝑈, so that∑𝑖 𝜂
2
𝑖 (𝑥) = 1𝑈(𝑥)

for 𝑥 ∈ 𝑋. Then, 𝑣 = ∑𝑖 𝑣0𝜂
2
𝑖 ⟨𝑣,𝑣0⟩ for all 𝑣 ∈ 𝐸, so that {𝑒𝑖

def= 𝑣0𝜂𝑖}𝑖 is a frame of
𝐶0(𝑈,𝑉). In fact, any frame 𝑓 is of this form: we have 𝜂𝑖 = ⟨𝑣0,𝑓𝑖⟩.

Now, let {𝑤𝑖}𝑖 be an orthonormal basis of𝐻. Then, 𝜃𝑒, the frame transform of 𝑒, maps
𝑤 ∈ 𝐶0(𝑈,𝑉) to∑𝑖𝑤𝑖 ⟨𝑒𝑖,𝑤⟩.

Although the image 𝛤0(𝑋,𝜃𝑒𝜃
∗
𝑒) of 𝜃𝑒 (consisting of those elements 𝑤 of𝐶0(𝑋,𝐻) for

which ⟨𝑤𝑖,𝑤⟩ has support contained in that of 𝑒𝑖) is isomorphic to𝐶0(𝑈,𝑉) through
the map 𝜃∗𝑒 , it looks decidedly different from the isomorphic subspace 𝐶0(𝑈,𝑉) of
𝐶0(𝑋,𝐻) we started with. The associated projection 𝑃 = 𝜃𝑒𝜃

∗
𝑒 maps elements 𝑤 to

∑𝑖𝑤𝑖𝜂𝑖∑𝑗 𝜂𝑗 ⟨𝑤,𝑤𝑗⟩.

In the previous Example, note that ‖𝑃(𝑥)‖ = 1 for 𝑥 ∈ 𝑈 and ‖𝑃(𝑥)‖ = 0 for 𝑥 ∉ 𝑈.
Thus, 𝑃 ∈ 𝐶str

b (𝑋,𝐵(𝐻)) lies in𝐶𝑏(𝑋,𝐵(𝐻)) if and only if𝑈 is clopen, that is, if and
only if the bundle {(𝑥,ℎ) ∣ ℎ = 1𝑈(𝑥)ℎ} is locally trivial. This illustrates a general
criterion for local triviality:

Remark 5.1.22. If 𝑃 ∈ 𝐶𝑏(𝑋,𝐵(𝐻)) ⊂ 𝐶
str
b (𝑋,𝐵(𝐻)) is a projection, then each 𝑥 ∈ 𝑋

has a neighbourhood on which ∥𝑃(𝑦)−𝑃(𝑥)∥ < 1, so that there exists a continuous
map 𝑦 ↦ 𝑢𝑦 with 𝑃(𝑦) = 𝑢𝑦𝑃(𝑥)𝑢

∗
𝑦 by [Weg93, Proposition 5.2.6]. We conclude that

the bundle {(𝑥,ℎ) ∣ ℎ ∈ 𝑃(𝑥)𝐻} is locally trivial.
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Conversely, if the bundle is locally trivial, at least when the fibers are constant, we
can choose 𝑃 to be norm continuous. More precisely, if we let 𝑝 ∶ 𝐹 →𝑋 be a locally
trivial bundle ofHilbert spaces with separable, infinite-dimensional fiber𝐻. By [RW98,
Corollary 4.79] 𝐹 is isomorphic to𝑋×𝐻, and 𝛤0(𝐹) is isomorphic to𝐶0(𝑋,𝐻). We
may thus choose 𝑃 = id𝐻 ∈ 𝐶𝑏(𝑋,𝐵(𝐻)) in Proposition 5.1.19.

If instead𝐻 is finite-dimensional, then by the Serre-Swan theorem [GVF01, Theo-
rem 2.10] there exists a projection 𝑝 ∈𝑀𝑛(𝐴)with 𝑝𝐴

𝑛 ≃ 𝛤0(𝐹). Thus, in Proposi-
tion 5.1.19 we may choose𝐻 = ℂ𝑛 and 𝑃 = 𝑝.
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Chapter 6

Schatten classes for Hilbert
𝐶0(𝑋)-modules

We introduce a new definition of Schatten classes of endomorphisms on Hilbert mod-
ules over separable abelianC∗-algebras𝐴 = 𝐶0(𝑋), such that the resulting trace class is
equipped with an𝐴-valued trace. A detailed investigation of the case of the standard
module𝐻⊗ℂ𝐴 ≃ 𝐶0(𝑋,𝐻) leads us to establish several desirable properties that are
familiar from the Hilbert space case.

6.1 Introduction and definition

When𝐴 is abelian, i.e. 𝐴 ≃ 𝐶0(𝑋) for some locally compact Hausdorff space𝑋, each
adjointable operator 𝑇 on a Hilbert𝐴-module 𝐸𝐴 can be localized by the pure states 𝜒
of𝐴 to yield a family 𝜒∗𝑇 of operators on the Hilbert spaces 𝜒∗𝐸𝐴. We will unify the
pointwise Schatten classesℒ𝑝 (𝜒∗𝐸𝐴) into a two-sided idealℒ

𝑝 (𝐸𝐴) ⊂ ℒ(𝐸𝐴) and
define an𝐴-valued trace onℒ1 (𝐸𝐴).

Assumption 6.1.1. We will require all of our Hilbert 𝐴-modules to be countably
generated in order to ensure access to frames using Proposition 5.1.12.

We will denote the character space of a commutative𝐶∗-algebra𝐴 equipped with the

weak∗ topology by𝐴, so that𝐴 ≃ 𝐶0(𝐴)with𝐴 a locally compact Hausdorff space.

The leastwe should demand of ‘Schatten-class operators’𝑇 on𝐸𝐴 is that their pointwise
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Schatten norm, i.e. the trace of |𝜒∗𝑇|
𝑝, varies continuously with 𝜒 ∈ 𝐴. In fact, this

is the way to ensure that the ‘trace-class operators’ have traces with values in 𝐴 and
that the other Schatten classes respect this property in their pairing. The most we
could reasonably demand, in contrast, is that the operators 𝜒∗𝑇 are continuous in
Schatten norm with respect to some trivialization of 𝐸𝐴 (see Definition 6.2.1, below).
It will turn out that these requirements, properly understood, are equivalent and yield
a well-behaved Schatten class.

Definition 6.1.2. The 𝑝-th Schatten classℒ𝑝 (𝐸𝐴) for 1 ≤ 𝑝 < ∞ is the space of all endo-

morphisms 𝑇 ∈ ℒ(𝐸𝐴) for which the function tr |𝑇|
𝑝 ∶ 𝐴 →ℝ∪{∞},𝜒 ↦ tr |𝜒∗𝑇|

𝑝

lies in𝐴.

The following proposition, familiar from the Hilbert space case, is immediate from the
definition:

Proposition 6.1.3. Let 1 ≤ 𝑝 < ∞ and let 𝑇 ∈ ℒ(𝐸𝐴). Then

𝑇 ∈ ℒ𝑝 (𝐸𝐴) ⟺ |𝑇| ∈ ℒ𝑝 (𝐸𝐴) ⟺ |𝑇|𝑝 ∈ ℒ1 (𝐸𝐴).

Remark 6.1.4. Recall that Dini’s theorem, translated to the abelianC∗-algebraic con-
text, states the following: if 𝑎𝑖 is a sequence of positive elements in𝐴, then∑𝑖 𝑎𝑖 con-
verges in norm if and only if the function 𝑥 ↦∑𝑖 𝑥(𝑎𝑖) is an element of𝐶0(𝑋) ≃ 𝐴.
This theorem plays a crucial role throughout, because it allows us to relate the fiberwise
Schatten norms on bundles of Hilbert spaces to various expressions for the element
tr |𝑇|𝑝 ∈ 𝐴, for 𝑇 ∈ ℒ𝑝 (𝐸𝐴).

We will use the existence of frames (cf. Proposition 5.1.12), to relateℒ𝑝 (𝐸𝐴) to the
Schatten classesℒ𝑝 (𝑙2(𝐴)) on the standardmodule 𝑙2(𝐴) and to relate the trace tr |𝑇|𝑝
to a series expression in terms of (arbitrary) frames.

Theorem 6.1.5. Let𝑇 ∈ℒ(𝐸𝐴). Then𝑇 ∈ℒ
𝑝 (𝐸𝐴) if and only if 𝜃𝑒𝑇𝜃

∗
𝑒 ∈ℒ

𝑝 (𝑙2(𝐴))
for any frame 𝑒 of 𝐸𝐴 with frame transform 𝜃𝑒. Equivalently, 𝑇 ∈ ℒ𝑝 (𝐸𝐴) if and only
if the series∑∞

𝑖=1 ⟨𝑒𝑖, |𝑇|
𝑝𝑒𝑖⟩ converges in norm; the limit equals tr |𝑇|

𝑝 = tr𝜃𝑒|𝑇|
𝑝𝜃∗𝑒 .

Proof. We start with the second part. As 𝜒∗(𝑒) is a frame of the Hilbert space 𝜒∗𝐸𝐴,
one has tr |𝜒∗𝑇|

𝑝 =∑∞
𝑖=1 ⟨𝜒∗(𝑒𝑖), |𝜒∗𝑇|

𝑝𝜒∗(𝑒𝑖)⟩ = ∑
∞
𝑖=1𝜒(⟨𝑒𝑖, |𝑇|

𝑝𝑒𝑖⟩). Hence if 𝑇 ∈
ℒ𝑝 (𝐸𝐴), the positive series∑

∞
𝑖=1 ⟨𝑒𝑖, |𝑇|

𝑝𝑒𝑖⟩ converges in norm to an element tr |𝑇|𝑝
of𝐴 by Dini’s theorem.
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Conversely, if the series∑∞
𝑖=1 ⟨𝑒𝑖, |𝑇|

𝑝𝑒𝑖⟩ converges in norm, then the limit provides an
element tr |𝑇|𝑝 ∈ 𝐴 such that 𝜒(tr |𝑇|𝑝) = tr |𝜒∗𝑇|

𝑝 for all characters 𝜒 of 𝐴, so that
𝑇 ∈ ℒ𝑝 (𝐸𝐴).

For the first part, because 𝜃∗𝑒𝜃𝑒 = id𝐸𝐴 , we have |𝜃𝑒𝑇𝜃
∗
𝑒|
𝑝 = 𝜃𝑒|𝑇|

𝑝𝜃∗𝑒 . Furthermore, note
that {𝑓𝑖

def= 𝜃𝑒(𝑒𝑖)}𝑖 is a frame of 𝜃𝑒𝜃
∗
𝑒𝑙
2(𝐴) ≃ 𝐸𝐴 so that the elements {ℎ𝑖

def= 𝜒∗𝑓𝑖}𝑖 form
a frame of 𝜒∗𝜃𝑒𝜃

∗
𝑒𝑙
2(𝐴) by Proposition 5.1.10. Now, by definition of the ℎ𝑖 we have

𝜒∗(𝜃𝑒|𝑇|
𝑝𝜃∗𝑒)(ℎ𝑖) = 𝜒∗(𝜃𝑒|𝑇|

𝑝𝑒𝑖) and so ⟨ℎ𝑖,𝜒∗(𝜃𝑒|𝑇|
𝑝𝜃∗𝑒)(ℎ𝑖)⟩ = 𝜒(⟨𝜃𝑒𝑒𝑖, 𝜃𝑒|𝑇|

𝑝𝑒𝑖⟩)
= 𝜒(⟨𝑒𝑖, |𝑇|

𝑝𝑒𝑖⟩). That is,

tr𝜒∗𝜃𝑒|𝑇|
𝑝𝜃∗𝑒 =

∞
∑
𝑖=1

⟨ℎ𝑖,𝜒∗(𝜃𝑒|𝑇|
𝑝𝜃∗𝑒)(ℎ𝑖)⟩ =

∞
∑
𝑖=1

𝜒(⟨𝑒𝑖, |𝑇|
𝑝𝑒𝑖⟩) .

Thus, if∑∞
𝑖=1 ⟨𝑒𝑖, |𝑇|

𝑝𝑒𝑖⟩ converges to an element of𝐴, we have 𝜃𝑒|𝑇|
𝑝𝜃∗𝑒 ∈ℒ

𝑝 (𝑙2(𝐴)).
Conversely, if 𝜃𝑒|𝑇|

𝑝𝜃∗𝑒 ∈ ℒ
𝑝 (𝑙2(𝐴)) then the function 𝜒 ↦∑∞

𝑖=1𝜒(⟨𝑒𝑖, |𝑇|
𝑝𝑒𝑖⟩) for

𝜒 ∈𝐴 lies in𝐶0(𝑋) ≃𝐴. The seriesmust then converge in normbyDini’s theorem.

Corollary 6.1.6. Let 𝑆 ∈ ℒ(𝐸𝐴) and 𝑇 ∈ ℒ𝑝 (𝐸𝐴). If |𝑆|
𝑝 ≤ |𝑇|𝑝, then 𝑆 ∈ ℒ𝑝 (𝐸𝐴)

and in particular tr |𝑆|𝑝 ≤ tr |𝑇|𝑝.

Proof. Let 𝑒 be a frame of 𝐸𝐴. Then∑𝑖∈𝐹 ⟨𝑒𝑖, |𝑆|
𝑝𝑒𝑖⟩ ≤ ∑𝑖∈𝐹 ⟨𝑒𝑖, |𝑇|

𝑝𝑒𝑖⟩ for all finite
𝐹 ⊂ ℕ; in particular, the left-hand side is Cauchy whenever the right-hand side is. By
Theorem 6.1.5, this will suffice.

Remark 6.1.7. The above Corollary is weaker than the Hilbert space version, cf.
Lemma 6.2.7(3) below. Instead, Corollary 6.2.16 below gives a stronger result but
an additional assumption on 𝑆 is required. Note that this is the only point in the
treatment of this chapter where such a difference between the Hilbert module and
Hilbert space Schatten classes appears.

The most straightforward road to analyzing the structure and properties ofℒ𝑝 (𝐸𝐴)
now lies open: we will investigateℒ𝑝 (𝑙2(𝐴)) and use the pullback by the frame trans-
forms to transfer its properties toℒ𝑝 (𝐸𝐴). It will turn out thatℒ

𝑝 (𝑙2(𝐴)) is indeed
very well-behaved, so that this allows us to recover many of the familiar properties of
the Schatten classes of operators on Hilbert spaces.
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6.2 The Schatten class on the standard module

Let𝐻 be a separable Hilbert space and let 𝐴 = 𝐶0(𝑋) be an abelian 𝐶
∗-algebra. Re-

call from Section 5.1 that the Hilbert 𝐴-module𝐻⊗ℂ𝐴 is isomorphic to 𝐶0(𝑋,𝐻)
through the canonical isomorphism 𝜒∗(𝐻⊗ℂ𝐴) ≃ 𝐻 (with a character 𝜒 ∈ 𝐴 always
corresponding via the Gelfand transform to a point 𝑥 ∈ 𝑋). Recall, moreover, that its
endomorphism space is given by𝐶str

b (𝑋,𝐻)with the fiberwise action given simply by
𝑇(ℎ)(𝑥) def= 𝑇(𝑥)(ℎ(𝑥)) for 𝑥 ∈ 𝑋.

Because all fibers are identified canonically with𝐻, we may canonically compare the
localizations of an operator 𝑇 ∈ ℒ(𝐻⊗ℂ𝐴) between different fibers. This technically
useful difference between𝐻⊗ℂ𝐴 and other Hilbert𝐴-modules will allow us to use
topologies on 𝐵(𝐻) to define particular subsets ofℒ(𝐻⊗ℂ𝐴). Most importantly,

Definition 6.2.1. The space of continuous Schatten-class operators on𝐶0(𝑋,𝐻) ≃𝐻⊗ℂ
𝐴 is the subspace𝐶0(𝑋,ℒ

𝑝 (𝐻)) of𝐶str
b (𝑋,𝐵(𝐻)).

Note that where the requirement that tr |𝑇|𝑝 ∈ 𝐴 is the least restrictive among reason-
able criteria for a ‘Schatten-class operator’ 𝑇, as discussed above Definition 6.1.2, the
condition of Definition 6.2.1 is arguably themost restrictive.

However, we will prove that the demands are, in fact, equivalent, so that the 𝑝-th Schat-
ten classℒ𝑝 (𝐻⊗ℂ𝐴) on the standard module can be identified with the Banach space
𝐶0(𝑋,ℒ

𝑝 (𝐻)) of continuous Schatten-class operators. This will later —specifically
in Theorem 6.3.1—allow us to combine the properties that follow straightforwardly
from either of the two definitions.

Remark 6.2.2. Clearly, one has𝐶0(𝑋,ℒ
𝑝 (𝐻)) ⊂ ℒ𝑝 (𝐶0(𝑋,𝐻)) because, for contin-

uous maps 𝑇 from𝑋 toℒ𝑝 (𝐻) and 𝑥,𝑦 ∈ 𝑋, we have ∥𝑇(𝑥)−𝑇(𝑦)∥
𝑝
≥ |‖𝑇(𝑥)‖𝑝 −

∥𝑇(𝑦)∥
𝑝
| so that 𝑥 ↦ ‖𝑇(𝑥)‖𝑝 ∈ 𝐴.

The ostensibly more restrictive definition of the continuous Schatten class has some ad-
vantages to that ofℒ𝑝 (𝐶0(𝑋,𝐻)). For instance, it is immediate from the definition that
𝐶0(𝑋,ℒ

𝑝 (𝐻)) is closed under addition, as we have not yet shown forℒ𝑝 (𝐶0(𝑋,𝐻)).
Moreover, we can easily obtain a continuous version of the Hölder–von Neumann
inequality:

Proposition 6.2.3. Let 𝑝,𝑞,𝑟 ≥ 1 such that 1
𝑝 +

1
𝑞 =

1
𝑟 , and let 𝑆 ∈ 𝐶0(𝑋,ℒ

𝑝 (𝐻)) and
𝑇 ∈ 𝐶0(𝑋,ℒ

𝑞 (𝐻)). Then 𝑆𝑇 ∈ 𝐶0(𝑋,ℒ
𝑟 (𝐻)) and ‖𝑆𝑇‖𝑟 ≤ ‖𝑆‖𝑝 ‖𝑇‖𝑞.
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Proof. For any 𝑥,𝑦 ∈ 𝑋we have

∥𝑆𝑇(𝑥)−𝑆𝑇(𝑦)∥
𝑟
≤ ∥𝑆(𝑥)−𝑆(𝑦)∥

𝑝
‖𝑇(𝑥)‖𝑞 +∥𝑆(𝑦)∥𝑝 ∥𝑇(𝑥)−𝑇(𝑦)∥𝑞 ,

by theHölder–vonNeumann inequality [Sim05, Theorem2.8]. We conclude that𝑆𝑇 is
continuous as a map from𝑋 toℒ𝑟 (𝐻). Moreover, since ‖𝑆𝑇(𝑥)‖𝑟 ≤ ‖𝑆(𝑥)‖𝑝 ‖𝑇(𝑥)‖𝑞
for all𝑥, the statement on thenorms follows aswell as the claim that𝑆𝑇 ∈𝐶0(𝑋,ℒ

𝑟 (𝐻)).

We now identify a subset of 𝐶0(𝑋,ℒ
𝑝 (𝐻)) ⊆ ℒ𝑝 (𝐻⊗ℂ𝐴) (cf. Remark 6.2.2 for

the latter inclusion) whose completion in the Banach norm of 𝐶0(𝑋,ℒ
𝑝 (𝐻)) is all

ofℒ𝑝 (𝐻⊗ℂ𝐴). This will show thatℒ𝑝 (𝐻⊗ℂ𝐴) coincides with the Banach space
𝐶0(𝑋,ℒ

𝑝 (𝐻)). Moreover, the fact that this common subset consists of finite-rank
operators, in the Hilbert module sense, allows us to show thatℒ𝑝 (𝐸𝐴) ⊂ 𝒦(𝐸𝐴) in
Theorem 6.3.1.

Proposition 6.2.4. The finite-rank operators on𝐶0(𝑋,𝐻) (in the HilbertC∗-module
sense) lie in𝐶0(𝑋,ℒ

𝑝 (𝐻)).

Proof. Let 𝑇 = |𝑣⟩⟨𝑤|with 𝑣,𝑤 ∈ 𝐶0(𝑋,𝐻). Then, for 𝑥,𝑦 ∈ 𝑋, we have

∥(𝑇𝑥 −𝑇𝑦)∥𝑝 ≤ ∥|𝑣𝑥 −𝑣𝑦⟩ ⟨𝑤𝑦|∥𝑝 +∥|𝑣𝑦⟩ ⟨𝑤𝑥 −𝑤𝑦|∥𝑝 .

Pointwise in𝐻, however, we have ∥|𝜉⟩⟨𝜂|∥
𝑝
= ‖𝜉‖∥𝜂∥, so that norm continuity of 𝑣

and 𝑤 finish the proof.

Lemma6.2.5. Let𝑉⊂𝐻befinite-dimensional and consider𝐶0(𝑋,𝐵(𝑉)) as a subspace
of𝐶str

b (𝑋,𝐵(𝐻))by themap𝑇↦𝑇⊕0 ∈ 𝐵(𝑉)⊕𝐵(𝑉⟂) ⊂ 𝐵(𝐻). Then, all elements of
𝐶0(𝑋,𝐵(𝑉)) are finite rank operators on the Hilbert modules𝐶0(𝑋,𝐻). In particular,
we have𝐶0(𝑋,𝐵(𝑉)) ⊂ 𝐶0(𝑋,ℒ

𝑝 (𝐻)) for all 1 ≤ 𝑝 < ∞.

Proof. Let 𝑇 ∈ 𝐶0(𝑋,𝐵(𝑉)) and decompose so that 𝑇 = 𝑆|𝑇|
1
2 . Then let {𝑒𝑖}

𝑛
𝑖=1 be an

orthonormal basis of𝑉. Because∑𝑖 |𝑒𝑖⟩ ⟨𝑒𝑖| = id𝑉, we see that𝑇= 𝑆∑𝑖 |𝑒𝑖⟩ ⟨𝑒𝑖| |𝑇|
1
2 =

∑𝑖 |𝑆𝑒𝑖⟩ ⟨|𝑇|
1
2 𝑒𝑖|, where we denote for 𝑅 ∈ 𝐶0(𝑋,𝐵(𝑉)) by 𝑅𝑒𝑖 the element 𝑥 ↦

𝑅(𝑥)𝑒𝑖 of𝐶0(𝑋,𝑉). We conclude that 𝑇 is of finite rank.

Remark 6.2.6. By a theorem of Fell [Fel61, Theorem 4.1], compact operators of
bounded rank on 𝐶0(𝑋,𝐻) automatically have continuous trace. See remark 6.3.2,
below, for the link to the study of continuous-traceC∗-algebras.
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6.2. The Schatten class on the standard module

Some properties of the Schatten classes on Hilbert spaces

We assemble here some more or less well-known properties of the ordinary Schatten
classes on 𝐵(𝐻). The purpose is to show that one can use the series that defines the
trace of |𝑇|𝑝 to control the rate at which certain finite-rank approximations of 𝑇will
converge to 𝑇 in Schatten norm.

Lemma 6.2.7. Let 𝑇 ∈ ℒ𝑝 (𝐻).

1. For 1 ≤ 𝑝 < 2 one has ‖𝑇‖𝑝𝑝 = inf{𝑒𝑖}𝑖∑
∞
𝑖=1 ‖𝑇𝑒𝑖‖

𝑝
, where the infimum is taken

over orthonormal bases {𝑒𝑖}𝑖 of𝐻.

2. For 𝑝 ≥ 2, one has ‖𝑇‖𝑝𝑝 = sup{𝑒𝑖}𝑖
∑∞

𝑖=1 ‖𝑇𝑒𝑖‖
𝑝
, where the supremum is over

orthonormal bases {𝑒𝑖}𝑖 of𝐻.

3. Let 𝑝 ≥ 2. For any bounded endomorphism 𝑆 ∈ ℒ(𝐻), if |𝑆|2 ≤ 𝑇 for some

𝑇 ∈ ℒ𝑝/2 (𝐻), then 𝑆 ∈ ℒ𝑝 (𝐻) and ‖𝑆‖𝑝𝑝 ≤ ‖𝑇‖
𝑝/2
𝑝/2.

Proof. Let {𝑒𝑖}𝑖 be an orthonormal eigenbasis of (the compact, normal operator) 𝑇
∗𝑇,

ordered by decreasing of the corresponding eigenvalues {𝜆𝑖}.

First note that tr |𝑇|𝑝 = ∑∞
𝑖=1 ⟨𝑇𝑒𝑖,𝑇𝑒𝑖⟩

𝑝/2. Any other orthonormal basis {𝑓𝑖 = 𝑈𝑒𝑖}
of𝐻 is related to {𝑒𝑖} by some unitary operator𝑈 ∈ 𝐵(𝐻).

For 1 ≤ 𝑝 < 2, the function 𝑥 ↦ 𝑥𝑝/2 is concave onℝ+. Thus, since

⟨𝑇𝑓𝑖,𝑇𝑓𝑖⟩ =∑
𝑗
⟨𝑓𝑖,𝑇

∗𝑇𝑒𝑗⟩ ⟨𝑒𝑗,𝑓𝑖⟩ =∑
𝑗
𝜆𝑗 ∣⟨𝑒𝑗,𝑓𝑖⟩∣

2
,

we find that ∥𝑇𝑓𝑖∥
𝑝 ≥∑𝑗 𝜆

𝑝/2
𝑗 ∣⟨𝑒𝑗,𝑓𝑖⟩∣

2
= ⟨𝑓𝑖, |𝑇|

𝑝𝑓𝑖⟩. We conclude that

∞
∑
𝑖=1

∥𝑇𝑓𝑖∥
𝑝 ≥

∞
∑
𝑖=1

⟨𝑓𝑖, |𝑇|
𝑝𝑓𝑖⟩ = tr𝑈∗|𝑇|𝑝𝑈 = tr |𝑇|𝑝.

For 𝑝 ≥ 2 the function 𝑥 ↦ 𝑥𝑝/2 is convex onℝ+ and we find,mutatis mutandis in the
argument as above that now

∞
∑
𝑖=1

∥𝑇𝑓𝑖∥
𝑝 ≤

∞
∑
𝑖=1

⟨𝑓𝑖, |𝑇|
𝑝𝑓𝑖⟩ = tr𝑈∗|𝑇|𝑝𝑈 = tr |𝑇|𝑝.
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6.2. The Schatten class on the standard module

For the final claim, if |𝑆|2 ≤ 𝑅∗𝑅, one has ‖𝑆𝑒𝑖‖
𝑝 ≤ ‖𝑅𝑒𝑖‖

𝑝
so that ‖𝑆‖𝑝𝑝 ≤ ‖𝑅‖𝑝𝑝 =

‖𝑅∗𝑅‖𝑝/2𝑝/2.

We will need the following Corollary in the proof of Lemma 6.2.9.

Corollary 6.2.8. Let 𝑇 ∈ 𝐵(𝐻) and let 𝑒 be a finite-rank projection. For any 𝑝 ≥ 2we
have 𝑇𝑒 ∈ ℒ𝑝 (𝐻) and, in fact,

‖𝑇𝑒‖𝑝𝑝 ≤ tr𝑒|𝑇|𝑝𝑒.

Proof. As in Lemma 6.2.7, let 𝑒𝑇∗𝑇𝑒 have eigenbasis {𝑔𝑖}with eigenvalues {𝜆𝑖}. Then,
for any 𝑣 ∈ 𝐻, we have ⟨𝑇𝑒𝑣,𝑇𝑒𝑣⟩ = ⟨𝑒|𝑇|2𝑒𝑣,𝑣⟩ = ∑𝑗 𝜆𝑗| ⟨𝑣,𝑔𝑗⟩ |

2. In particular,

⟨𝑇𝑒𝑣,𝑇𝑒𝑣⟩𝑝/2 = ‖𝑣‖𝑝 (∑
𝑗
𝜆𝑗
| ⟨𝑣,𝑔𝑗⟩ |

2

⟨𝑣,𝑣⟩ )

𝑝/2

.

By convexity of 𝑥 ↦ 𝑥𝑝/2 onℝ+ for 𝑝 ≥ 2we have

⟨𝑇𝑒𝑣,𝑇𝑒𝑣⟩𝑝/2 ≤ ‖𝑣‖𝑝−2∑
𝑗
𝜆𝑝/2𝑗 | ⟨𝑣,𝑔𝑗⟩ |

2 = ‖𝑣‖𝑝−2 ⟨𝑣, 𝑒|𝑇|𝑝𝑒𝑣⟩ .

But from the Lemma it then follows that

‖𝑇𝑒‖𝑝𝑝 = sup
{𝑓𝑖}

∑
𝑖
∥𝑇𝑒𝑓𝑖∥

𝑝 ≤ sup
{𝑓𝑖}

∑
𝑖
∥𝑓𝑖∥

𝑝−2 ⟨𝑓𝑖, 𝑒|𝑇|
𝑝𝑒𝑓𝑖⟩ ≤ tr𝑒|𝑇|𝑝𝑒.

With respect to a choice of orthonormal basis on𝐻, we can viewℒ𝑝 (𝐻) as a completion
of the direct limitMatℂ of finite matrix algebrasMat𝑛(ℂ) in the Schatten norm. This
can be done ‘uniformly’, where the convergence of the limit is controlled by the trace,
as we will show in Proposition 6.2.10 below.

Given 𝑇 ∈ ℒ(𝐻) and a sequence of increasing finite-dimensional subspaces 𝑃𝐻 ⊂ 𝐻,
the operator 𝑃𝑇𝑃 converges to 𝑇 ∗-strongly as 𝑃→ id𝐻. The following Lemma allows
us to control the 𝑝-norm of the difference when increasing the rank of 𝑃 by one, such
that 𝑃𝑇𝑃→ 𝑇 in 𝑝-norm precisely when 𝑇 ∈ ℒ𝑝 (𝐻).

Lemma 6.2.9. Let 𝑝 ∈ [1,∞) and let 𝑇 ∈ ℒ𝑝 (𝐻). Let 𝑒 be a finite-rank projection in
𝐻, let 𝑃 be a finite-rank projection with 𝑃𝑒 = 𝑒𝑃 = 0 and let𝑄 = 𝑃+𝑒. Then,

‖𝑄𝑇𝑄−𝑃𝑇𝑃‖𝑝 ≤ ‖𝑇‖
1/2
𝑝 ((tr𝑒|𝑇∗|𝑝𝑒)1/2𝑝 +(tr𝑒|𝑇|𝑝𝑒)1/2𝑝)
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6.2. The Schatten class on the standard module

Proof. One has𝑄𝑇𝑄−𝑃𝑇𝑃 = 𝑃𝑇𝑒+𝑒𝑇𝑒+𝑒𝑇𝑃 = 𝑒𝑇𝑄+𝑃𝑇𝑒, so that ‖𝑄𝑇𝑄−𝑃𝑇𝑃‖𝑝
≤ ‖𝑒𝑇𝑄‖𝑝 + ‖𝑃𝑇𝑒‖𝑝. Now compose 𝑇 as 𝑇 = 𝑆|𝑇|

1
2 with |𝑆|2 = |𝑇|. Then, by the

Hölder-von Neumann inequality, ‖𝑒𝑇𝑄‖𝑝 ≤ ‖𝑒𝑆‖2𝑝‖|𝑇|
1/2𝑄‖2𝑝 and similarly ‖𝑃𝑇𝑒‖𝑝

≤ ‖𝑃𝑆‖2𝑝‖|𝑇|
1/2𝑒‖2𝑝. Moreover, ‖𝑃𝑆‖2𝑝 ≤ ‖𝑇‖

1/2
𝑝 and ‖|𝑇|1/2𝑄‖2𝑝 ≤ ‖𝑇‖

1/2
𝑝 , and as

‖𝑒𝑆‖2𝑝 = ‖𝑆
∗𝑒‖2𝑝, wemaynow applyCorollary 6.2.8 directly to ‖𝑆∗𝑒‖2𝑝 and ‖|𝑇|

1/2𝑒‖2𝑝
in order to finish the proof.

Identification of ℒ𝑝 (𝐻⊗ℂ𝐴) with 𝐶0(𝐴,ℒ
𝑝 (𝐻))

It is a well-known fact that the finite-rank operators are dense inℒ𝑝 (𝐻) for any𝑝, as can
easily be seen from the spectral theorem for compact self-adjoint operators. This argu-
ment, however, does not extend uniformly to self-adjoint 𝑇 ∈ 𝐶0(𝑋,ℒ

𝑝 (𝐻)) unless 𝑇
is continuously diagonalizable. The explicit, albeit apparently somewhat clumsy, result
of Lemma 6.2.9 presents a solution to this problem. Namely, orthogonal projections
𝑃 ∈ 𝐵(𝐻) can be lifted to constant projections𝐶str

b (𝑋,𝐵(𝐻)). This allows the Lemma
to be applied uniformly to all of𝐶str

b (𝑋,𝐵(𝐻)), as we do in Proposition 6.2.10 below.
This will then provide the main ingredient of main result of this section, to wit, the
identification ofℒ𝑝 (𝐻⊗ℂ𝐴)with𝐶0(𝑋,ℒ

𝑝 (𝐻)) (Theorem 6.2.11).

Proposition 6.2.10. Let𝑇 ∈𝐶str
b (𝑋,𝐵(𝐻)), let𝑝 ∈ [1,∞) and assume that the function

tr |𝑇|𝑝 ∶ 𝑥 ∈ 𝑋 ↦ tr |𝑇(𝑥)|𝑝 is defined everywhere and lies in𝐴 = 𝐶0(𝑋).

Let {𝑒𝑖}𝑖 be an orthonormal basis of 𝐻 and let, for any 𝑛 ≥ 0, 𝑃𝑛
def= ∑𝑛

𝑖=1 |𝑒𝑖⟩ ⟨𝑒𝑖|
be the corresponding spectral projections. Then the operators 𝑇𝑛

def= 𝑃𝑛𝑇𝑃𝑛 (as in
Lemma 6.2.9) are elements in𝐶0(𝑋,ℒ

𝑝 (𝐻)) and, for𝑚 ≥ 𝑛,

‖𝑇𝑚 −𝑇𝑛‖
2𝑝
𝑝 ≤ 22𝑝−1 sup

𝑥∈𝑋
tr |𝑇(𝑥)|𝑝

𝑚
∑
𝑖=𝑛+1

⟨𝑒𝑖, (|𝑇(𝑥)|
𝑝 +|𝑇∗(𝑥)|𝑝)𝑒𝑖⟩

Proof. Note that 𝑇𝑛 is a finite-rank operator and in particular 𝑇𝑛 ∈ 𝐶0(𝑋,ℒ
𝑝 (𝐻)), by

Lemma 6.2.5. The result follows from Lemma 6.2.9 applied to the projections 𝑃 = 𝑃𝑛,
𝑄 = 𝑃𝑚 and 𝑒 = 𝑃𝑚 −𝑃𝑛 and by the simple equality (𝑥+𝑦)

2𝑝 ≤ 22𝑝−1(𝑥2𝑝 +𝑦2𝑝).

Theorem 6.2.11. Let 𝑇 ∈ 𝐶str
b (𝑋,𝐵(𝐻)). Then 𝑇 ∈ 𝐶0(𝑋,ℒ

𝑝 (𝐻)) if and only if
𝑇 ∈ ℒ𝑝 (𝐶0(𝑋,𝐻)).

Proof. The implication⇒was already established in Remark 6.2.2. For the converse,
assume that 𝑇 ∈ 𝐶str

b (𝑋,𝐵(𝐻)) and that 𝑥 ↦ tr |𝑇(𝑥)|𝑝 lies in 𝐶0(𝑋). Then, pick an
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6.2. The Schatten class on the standard module

orthonormal basis {𝑒𝑖}𝑖 of𝐻 and write again 𝑇𝑛 = 𝑃𝑛𝑇𝑃𝑛 as in Proposition 6.2.10.
Since 𝑥 ↦ tr |𝑇(𝑥)|𝑝 = tr |𝑇∗(𝑥)|𝑝 is in 𝐶0(𝑋), the series∑

∞
𝑖=1 ⟨𝑒𝑖, |𝑇(𝑥)|

𝑝𝑒𝑖⟩ as well
as the series∑∞

𝑖=1 ⟨𝑒𝑖, |𝑇
∗(𝑥)|𝑝𝑒𝑖⟩must converge uniformly on compact subsets of𝑋

by Dini’s theorem. That, in turn, implies that

sup
𝑥∈𝑋

‖𝑇𝑛+𝑘(𝑥)−𝑇𝑛(𝑥)‖𝑝 < [2
2𝑝−1 sup

𝑥∈𝑋
tr |𝑇(𝑥)|𝑝

𝑛+𝑘
∑
𝑖=𝑛+1

⟨𝑒𝑖, (|𝑇(𝑥)|
𝑝 +|𝑇∗(𝑥)|𝑝)𝑒𝑖⟩]

1/2𝑝

goes to zero for large 𝑛. Since𝐶0(𝑋,ℒ
𝑝 (𝐻)) is a Banach space, the sequence 𝑇𝑛 thus

converges (to 𝑇) in Schatten 𝑝-norm, so that 𝑇 ∈ 𝐶0(𝑋,ℒ
𝑝 (𝐻)).

Remark 6.2.12. In terms of tensor products of Banach spaces, Theorem 6.2.11 trans-
lates to the statement thatℒ𝑝 (𝐻⊗ℂ𝐴) ≃ ℒ𝑝 (𝐻)⊗𝜖𝐴, the injective tensor product.

Corollary 6.2.13. The continuous Schatten class 𝐶0(𝑋,ℒ
𝑝 (𝐻)) forms a two-sided

ideal in𝐶str
b (𝑋,𝐵(𝐻)).

Proof. Let 𝑇 ∈ 𝐶0(𝑋,ℒ
𝑝 (𝐻)) and let 𝑇′ ∈ 𝐶str

b (𝑋,𝐵(𝐻)). Then, for any basis {𝑒𝑖}𝑖
of𝐻 the operators 𝑇𝑛

def= 𝑃𝑛𝑇𝑃𝑛 (𝑝 ≥ 2) or 𝑇𝑛
def= 𝑃𝑛𝑆𝑃𝑛|𝑇|

1
2𝑃𝑛 (𝑝 < 2), with 𝑃𝑛 and

𝑆 as inProposition 6.2.10, converge to𝑇 in the continuous Schatten𝑝-norm. Now, note
that∥𝑇′(𝑇𝑚 −𝑇𝑛)∥𝑝 ≤ ∥𝑇

′∥‖𝑇𝑚 −𝑇𝑛‖𝑝 and∥(𝑇𝑚 −𝑇𝑛)𝑇
′∥
𝑝
≤ ∥𝑇′∥‖𝑇𝑚 −𝑇𝑛‖𝑝; thus,

𝑇′𝑇𝑛 and 𝑇𝑛𝑇
′ converge to 𝑇′𝑇 and 𝑇𝑇′, respectively, in the norm of𝐶0(𝑋,ℒ

𝑝 (𝐻)).

Remark 6.2.14. This result does not follow directly from the fact thatℒ𝑝 (𝐻) is an
ideal of 𝐵(𝐻) equipped with a Banach norm such that the inclusion into 𝐵(𝐻) is
continuous: each such ideal induces a two-sided ideal 𝐶𝑏(𝑋,𝐼) ⊂ 𝐶𝑏(𝑋,𝐵(𝐻)), but
that is not necessarily an ideal of 𝐶str

b (𝑋,𝐵(𝐻)). An easy counterexample is given by
𝐼 = 𝐵(𝐻) itself.

Corollary 6.2.15. The continuous Schatten class𝐶0(𝑋,ℒ
𝑝 (𝐻)) is contained in the

compact operators on the Hilbert𝐶∗-module𝐶0(𝑋,𝐻).

Proof. The operators 𝑇𝑛 of Proposition 6.2.10 are of finite rank in the Hilbert module
sense, because they are contained in𝐶0(𝑋,𝐵(𝑉)) for some finite-dimensional𝑉 ⊂ 𝐻
so that we can apply Lemma 6.2.5. As 𝑇𝑛 →𝑇 for 𝑇 ∈ 𝐶0(𝑋,ℒ

𝑝 (𝐻)) in the Schatten
𝑝-norm, 𝑇𝑛 → 𝑇 in operator norm as well. We conclude that 𝑇 is compact in the
Hilbert module sense.

113



6.3. Properties of the Schatten classes on Hilbert modules

The following slight strengthening of Corollary 6.1.6 to𝐶0(𝑋,ℒ
𝑝 (𝐻)) now translates

toℒ𝑝 (𝐶0(𝑋,𝐻)).

Corollary 6.2.16. If 0 ≤ 𝑆 ≤ 𝑇 ∈ 𝐶str
b (𝑋,𝐵(𝐻)) and𝑇 ∈ℒ𝑝 (𝐶0(𝑋,𝐻)) and addition-

ally we have 𝑆 ∈ 𝐶norm
𝑏 (𝑋,𝐵(𝐻)), then 𝑆 ∈ ℒ𝑝 (𝐶0(𝑋,𝐻)) and tr |𝑆|

𝑝 ≤ tr |𝑇|𝑝.

Proof. The operators 𝑆,𝑇 are pointwise compact, norm continuous (this is where we
use the additional assumption on 𝑆) and positive, so that their individual eigenvalues 𝜆𝑘
(ordered decreasingly) are continuous ([Kat95, p. IV.3.5], see also Lemma 7.2.2 below).

Then, by the min-max theorem, the 𝑘’th singular value of 𝜒∗𝑆 is bounded by the 𝑘’th
singular value of 𝜒∗𝑇, so that the same holds for their 𝑝’th powers. As the Schatten
normof𝜒∗𝑇 is the sumof those 𝑝’th powers, which converges to a continuous function,
the convergence must be uniform by Dini’s theorem. Thus, the series∑𝑘 𝜆𝑘(𝑇)

𝑝 of
elements of 𝐴 is Cauchy, so that the series∑𝑘 𝜆𝑘(𝑆)

𝑝 must be Cauchy as well. We

conclude that 𝑥 ↦ ∥𝜒∗𝑆∥𝑝 lies in𝐴.

Remark 6.2.17. The additional assumption in Corollary 6.2.16 is necessary because
the positive compact operators on a Hilbert 𝐶∗-module, in contrast to those on a
Hilbert space, may not necessarily form an order ideal: there is an additional continuity
requirement on the (pointwise compact) localizations. In contrast, as inCorollary 6.1.6,
the positive trace-class operators on a Hilbert𝐶∗-module do form an order ideal.

6.3 Properties of the Schatten classes on Hilbert modules

We now return to the general setup of countably generated Hilbert𝐶∗-modules over
commutative𝐶∗-algebras. For the case of the standard module 𝑙2(𝐴)with𝐴 = 𝐶0(𝑋)
Theorem 6.2.11 shows that ℒ𝑝 (𝑙2(𝐴)) is a Banach space and a two-sided ideal of
ℒ(𝑙2(𝐴)) that is moreover contained in𝒦(𝑙2(𝐴)). These are very desirable properties
for general, countably generated Hilbert 𝐴-modules. Fortuitously, the existence of
frames (Proposition 5.1.12) and the pull-back criterion of Theorem 6.1.5 allows us to
easily establish equivalent properties ofℒ𝑝 (𝐸𝐴) for all countably generated Hilbert
𝐴-modules 𝐸𝐴.

Theorem 6.3.1. The spaceℒ𝑝 (𝐸𝐴) is a two-sided ideal ofℒ(𝐸𝐴) that is contained in
𝒦(𝐸𝐴).

Proof. Choose a frame 𝑒 of 𝐸𝐴 and let 𝜙𝑒 be the ∗-homomorphism induced by the
frame transform: 𝜙𝑒 ∶ ℒ(𝐸𝐴) → ℒ(𝑙2(𝐴)),𝑇 ↦ 𝜃𝑒𝑇𝜃

∗
𝑒 . Recall that 𝑇 ∈ ℒ𝑝 (𝐸𝐴) if
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and only if 𝜙𝑒(𝑇) ∈ ℒ
𝑝 (𝑙2(𝐴)) by Theorem 6.1.5. By Theorem 6.2.11, then,ℒ𝑝 (𝐸𝐴)

is closed under finite linear combinations. Moreover, for 𝑆 ∈ ℒ(𝐸𝐴),𝑇 ∈ ℒ𝑝 (𝐸𝐴), we
have 𝜙𝑒(𝑆𝑇) ∈ℒ

𝑝 (𝑙2(𝐴)) and 𝜙𝑒(𝑇𝑆) ∈ℒ
𝑝 (𝑙2(𝐴)) byCorollary 6.2.13. We conclude

thatℒ𝑝 (𝐸𝐴) is a two-sided ideal.

Moreover, as in thepreviousparagraph,𝑇∈ℒ𝑝 (𝐸𝐴) iff𝜃𝑒𝑇𝜃
∗
𝑒 ∈ℒ

𝑝 (𝑙2(𝐴)) ⊂𝒦(𝑙2(𝐴))
by Corollary 6.2.15. But if 𝜃𝑒𝑇𝜃

∗
𝑒 is compact, then the operator 𝑇 = 𝜃∗𝑒𝜃𝑒𝑇𝜃

∗
𝑒𝜃𝑒 is com-

pact as well (essentially because 𝜃∗𝑒(|𝑒𝑖⟩ ⟨𝑒𝑗|)𝜃𝑒 = |𝑒𝑖⟩ ⟨𝑒𝑗| for any 𝑖, 𝑗 ∈ ℕ).

Remark 6.3.2. Dixmier’s definition of continuous-trace C∗-algebras [Dix77, Chapter
4.5] applies to𝒦(𝐸𝐴). ByTheorem6.3.1, the corresponding trace andHilbert-Schmidt
classes agree with ourℒ1 (𝐸𝐴) andℒ

2 (𝐸𝐴) respectively. The projections satisfying
Fell’s criterion are then the compact finite-rank ones, that is, those that correspond to
finitely generated projective modules.

Remark 6.3.3. In the light of Theorem 6.3.1, we have obtained an a fortiori method
of determine whether a positive operator 𝑇 on a HilbertC∗-module over an abelian
𝐶∗-algebra is compact: it suffices that tr𝑇𝑝 lies in 𝐴 for some 𝑝 ≥ 1. Compare e.g.
the proof of [KS17, Proposition 7] and [ibid., Remark 6] to see that showing such
compactness directly can be a nontrivial undertaking.

UsingTheorems 6.1.5 and 6.2.11, we can pull back the Banach normon𝐶0(𝑋,ℒ
𝑝 (𝐻))

toℒ𝑝 (𝐸𝐴), and this turns out rather well:

Theorem 6.3.4. The function ‖⋅‖𝑝 ∶ 𝑇 ↦ ∥tr |𝑇|𝑝∥1/𝑝
𝐴

is a norm that turnsℒ𝑝 (𝐸𝐴)
into a normed vector space. Moreover, for all 𝑇 ∈ ℒ𝑝 (𝐸𝐴),

1. ‖𝑇‖𝑝 = sup𝜒∈𝐴 ∥𝜒∗𝑇∥𝑝

2. ‖𝑇∗‖𝑝 = ‖𝑇‖𝑝

3. ‖𝑆𝑇‖𝑝 ≤ ‖𝑆‖‖𝑇‖𝑝 for all 𝑆 ∈ ℒ(𝐸𝐴)

4. ‖𝑇‖ ≤ ‖𝑇‖𝑝

5. For 𝑝,𝑞,𝑟 ≥ 1, if 𝑆 ∈ ℒ𝑞 (𝐸𝐴) and 𝑇 ∈ ℒ𝑝 (𝐸𝐴) with
1
𝑝 +

1
𝑞 = 1/𝑟 then 𝑆𝑇 ∈

ℒ𝑟 (𝐸𝐴) and ‖𝑆𝑇‖𝑟 ≤ ‖𝑆‖𝑞 ‖𝑇‖𝑝.

Moreover,ℒ𝑝 (𝐸𝐴) is a Banach space.
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Proof. Let 𝑒 be a frame of 𝐸𝐴 and consider the projection 𝑃𝑒
def= 𝜃𝑒𝜃

∗
𝑒 in ℒ(𝑙2(𝐴)).

Recall that the invertible ∗-homomorphism 𝜙𝑒 ∶ 𝑇 ↦ 𝜃𝑒𝑇𝜃
∗
𝑒 mapsℒ

𝑝 (𝐸𝐴) into the
subspace 𝑃𝑒ℒ

𝑝 (𝑙2(𝐴))𝑃𝑒 by Theorem 6.1.5. Moreover, elementary calculation shows
that 𝜙𝑒 ∣ℒ𝑝(𝐸𝐴) is an isomorphism of normed spaces.

For the properties of the norm, recall that 𝜒(tr |𝑇|𝑝) = tr |𝜒∗𝑇|
𝑝 = ∥𝜒∗𝑇∥

𝑝
𝑝
. Thus, the

norm satisfies ∥tr |𝑇|𝑝∥1/𝑝
𝐴

= sup𝜒∈𝐴 ∥𝜒∗𝑇∥
1/𝑝
𝑝

. Therefore, by the analogous proper-

ties ofℒ𝑝 (𝐻), we see that ‖𝑇∗‖𝑝 = ‖𝑇‖𝑝, ‖𝑇‖𝑝 ≥ ‖𝑇‖ = sup𝜒∈𝐴 ∥𝜒∗𝑇∥ and ‖𝑆𝑇‖𝑝 ≤
sup𝜒∈𝐴 ∥𝜒∗(𝑆)∥∥𝜒∗𝑇∥𝑝 which is bounded by ‖𝑆‖‖𝑇‖𝑝.

For property 5, recall that 𝜃𝑒𝑆𝑇𝜃
∗
𝑒 = 𝜃𝑒𝑆𝜃

∗
𝑒𝜃𝑒𝑇𝜃

∗
𝑒 ∈ ℒ

𝑟 (𝑙2(𝐴)) by Proposition 6.2.3,
and so 𝑆𝑇 ∈ ℒ𝑟 (𝐸𝐴) by Theorem 6.1.5. The norm inequality then follows from the
Hölder–von Neumann inequality for operators on Hilbert spaces.

Finally, to establish completeness ofℒ𝑝 (𝐸𝐴) it is enough to prove that its pullback
to 𝑙2(𝐴), which equals 𝑃𝑒ℒ

𝑝 (𝑙2(𝐴))𝑃𝑒, is a closed subspace of ℒ
𝑝 (𝑙2(𝐴)). But if

𝑃𝑒𝑇𝑛𝑃𝑒 →𝑇 inℒ𝑝 (𝑙2(𝐴)) then

‖𝑃𝑒𝑇𝑛𝑃𝑒 −𝑃𝑒𝑇𝑃𝑒‖𝑝 = ‖𝑃𝑒(𝑃𝑒𝑇𝑛𝑃𝑒 −𝑇)𝑃𝑒‖𝑝 ≤ ‖𝑃𝑒‖
2‖(𝑃𝑒𝑇𝑛𝑃𝑒 −𝑇)‖𝑝 →0

as𝑛→∞, in virtue of the just-proved inequality 3. Hence,𝑃𝑒𝑇𝑛𝑃𝑒 converges to𝑃𝑒𝑇𝑃𝑒 ∈
𝑃𝑒ℒ

𝑝 (𝑙2(𝐴))𝑃𝑒 as desired.

6.4 The Hilbert module of Hilbert–Schmidt operators

The Hilbert–Schmidt classℒ2 (𝐸𝐴) is a somewhat special case among the Schatten
classes, because the map 𝑇 ↦ tr𝑇∗𝑇 is a positive definite quadratic form. That is, it
induces an inner product as we will now explore.

Definition 6.4.1. The pairing ⟨⋅, ⋅⟩2 ∶ ℒ
2 (𝐸𝐴) ×ℒ

2 (𝐸𝐴) → 𝐴 is given by

⟨𝑆,𝑇⟩2
def= 1

4 ∑
𝑘∈ℤ/4ℤ

𝑖𝑘 tr |𝑇+ 𝑖𝑘𝑆|2

When viewed fiberwise, this is just the ordinary Hilbert–Schmidt inner product:

Proposition 6.4.2. For 𝑆,𝑇 ∈ ℒ2 (𝐸𝐴) and a character 𝜒 of 𝐴 the pairing ⟨𝑆,𝑇⟩2
satisfies 𝜒(⟨𝑆,𝑇⟩2) = tr((𝜒∗𝑆)

∗𝜒∗𝑇). Moreover, the series∑∞
𝑖=1 ⟨𝑆𝑒𝑖,𝑇𝑒𝑖⟩ converges in

norm to ⟨𝑆,𝑇⟩2 for any frame 𝑒 of 𝐸𝐴.
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Proof. Since 𝜒∗ is a homomorphism, the first part follows from the fact that tr𝜒∗(|𝑇+
𝑖𝑘𝑆|2) = 𝜒(tr |𝑇+𝑖𝑘𝑆|2) by the polarization identity for the fiberwiseHilbert–Schmidt
inner product. Since

⟨𝑆𝑒𝑖,𝑇𝑒𝑖⟩ = ⟨𝑒𝑖,𝑆
∗𝑇𝑒𝑖⟩ =

1
4 ∑
𝑘∈ℤ/4ℤ

𝑖𝑘 ⟨𝑒𝑖, |𝑇+ 𝑖
𝑘𝑆|2𝑒𝑖⟩ ,

the second part follows from Theorem 6.1.5.

Corollary 6.4.3. The pairing ⟨⋅, ⋅⟩2 onℒ
2 (𝐸𝐴) is non-degenerate and sesquilinear.

Next, because𝐴 is commutative 𝐸𝐴 is automatically an𝐴-bimodule. In fact, there is a
∗-homomorphism 𝜌∶ 𝐴 →ℒ(𝐸𝐴) given by 𝜌(𝑎)(𝑣)

def= 𝑣 ⋅ 𝑎. This makesℒ(𝐸𝐴) an
𝐴-bimodule with 𝑎 ⋅𝑇 ⋅ 𝑏 = 𝜌(𝑎) ∘𝑇 ∘𝜌(𝑏) for all 𝑎,𝑏 ∈ 𝐴 and 𝑇 ∈ ℒ(𝐸𝐴).

Proposition 6.4.4. The𝐴-bimodule structure ofℒ(𝐸𝐴) restricts toℒ
𝑝 (𝐸𝐴) for all

1 ≤ 𝑝 < ∞ and satisfies ‖𝑇 ⋅ 𝑎‖𝑝 ≤ ‖𝑎‖‖𝑇‖𝑝 as well as ‖𝑎 ⋅𝑇‖𝑝 ≤ ‖𝑎‖‖𝑇‖𝑝.

Proof. Since any ∗-homomorphism between𝐶∗-algebras is norm decreasing, this fol-
lows from Theorem 6.3.1 since ∥𝑇𝜌(𝑎)∥

𝑝
≤ ∥𝜌(𝑎)∥‖𝑇‖𝑝 ≤ ‖𝑎‖‖𝑇‖𝑝.

All this leads to the following result for the case that 𝑝 = 2:

Proposition 6.4.5. With the above right𝐴-action and the inner product ⟨⋅, ⋅⟩2,ℒ
2 (𝐸𝐴)

becomes a Hilbert𝐴-module.

Proof. Note that𝜒∗(𝑇∘𝜌(𝑎)) = 𝜒(𝑎)𝜒∗𝑇 for all𝑎 ∈𝐴 and characters𝜒of𝐴. Thus, with
Proposition 6.4.2, the inner product is𝐴-sesquilinear. All that is left to show, therefore,
is thatℒ2 (𝐸𝐴) is complete. That, however, was proven already in Theorem 6.3.1.

Proposition 6.4.6. Let𝐻 be a separable Hilbert space. Then,ℒ2 (𝐻⊗ℂ𝐴) is isomor-
phic, as a Hilbert𝐴-module, toℒ2 (𝐻)⊗ℂ𝐴.

Proof. Under the isomorphism𝐻⊗ℂ𝐴 ≃ 𝐶0(𝑋,𝐻),ℒ
2 (𝐻⊗ℂ𝐴) is mapped isomet-

rically onto𝐶0(𝑋,ℒ
2 (𝐻)) by Theorem 6.2.11. Under this identification, the Hilbert

𝐶∗-module structure ofℒ2 (𝐻⊗ℂ𝐴) coincides with the canonical Hilbert𝐶∗-module
structure on𝐶0(𝑋,ℒ

2 (𝐻)) induced by the inner product on theHilbert spaceℒ2 (𝐻).
Thus, we haveℒ2 (𝐻⊗ℂ𝐴) ≃ 𝐶0(𝑋,ℒ

2 (𝐻)) as Hilbert 𝐶∗-modules. Now, invoke
once again the isomorphismℒ2 (𝐻)⊗ℂ𝐴 ≃ 𝐶0(𝑋,ℒ

2 (𝐻)), this time for the Hilbert
spaceℒ2 (𝐻), to complete the proof.
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6.5 The trace class and the trace

Wewill refer to the idealℒ1 (𝐸𝐴) ⊂ ℒ(𝐸𝐴) consisting of those operators 𝑇 for which
tr |𝑇| is given by an element of𝐴, as the trace class. In the case of Schatten classes of
Hilbert spaces, i.e. 𝐴 = ℂ and 𝐸𝐴 = 𝐻, it is customary to identify the trace class as the
ideal generated by squares of elements of the Hilbert–Schmidt class, in order to relate
the Hilbert–Schmidt inner product to a linear function, the trace, onℒ1 (𝐻). The
situation here is completely analogous:

Proposition 6.5.1. Letℒ2 (𝐸𝐴)ℒ
2 (𝐸𝐴) = {𝑅𝑆 ∣ 𝑅 ∈ℒ2 (𝐸𝐴),𝑆 ∈ ℒ

2 (𝐸𝐴)} as a sub-
set ofℒ(𝐸𝐴). Then,ℒ

2 (𝐸𝐴)ℒ
2 (𝐸𝐴) = ℒ

1 (𝐸𝐴).

Proof. The inclusionℒ2 (𝐸𝐴)ℒ
2 (𝐸𝐴) ⊂ℒ

1 (𝐸𝐴) is a direct consequenceof theHölder–
von Neumann inequality in Theorem 6.3.4(5)Conversely, let 𝑇 ∈ ℒ1 (𝐸𝐴). Then,
𝑇 = 𝑆|𝑇|

1
2 in the usual weak polar decomposition, with |𝑆| = |𝑇|

1
2 . By Proposi-

tion 6.1.3, 𝑆 and |𝑇|
1
2 lie inℒ2 (𝐸𝐴).

This furnishes us with a way to turn the bilinear map ⟨⋅, ⋅⟩2 onℒ
2 (𝐸𝐴) into a linear

map tr onℒ1 (𝐸𝐴) called the trace:

Definition 6.5.2. The trace onℒ1 (𝐸𝐴) is the map tr ∶ 𝑇 ↦ ⟨𝑆∗, |𝑇|
1
2 ⟩2, where 𝑇 =

𝑆|𝑇|
1
2 is the weak polar decomposition.

Proposition 6.5.3. The trace is well-defined. Moreover, let 𝑒 be a frame. Then, the
series∑𝑖 ⟨𝑒𝑖,𝑇𝑒𝑖⟩ converges in norm to tr𝑇.

Proof. Assume 𝑇 = 𝑅𝑆 with 𝑅,𝑆 ∈ ℒ2 (𝐸𝐴) and let 𝑒 be a frame. Then ⟨𝑅
∗,𝑆⟩2 by

definition equals∑𝑖 ⟨𝑅
∗𝑒𝑖,𝑆𝑒𝑖⟩, which converges in norm by Proposition 6.4.2. As

⟨𝑅∗𝑒𝑖,𝑆𝑒𝑖⟩ = ⟨𝑒𝑖,𝑇𝑒𝑖⟩, we have two expressions for tr𝑇: one independent of the de-
composition 𝑇 = 𝑅𝑆 and one independent of the choice 𝑒 of frame. The proposition
follows.

Corollary 6.5.4. Let𝜒 be a character of𝐴 and let𝑇 ∈ℒ1 (𝐸𝐴). Then, tr𝜒∗𝑇 = 𝜒(tr𝑇).

Proof. Note that𝜒(⟨𝑒𝑖,𝑇𝑒𝑖⟩) = ⟨𝜒∗𝑒𝑖,𝜒∗𝑇𝜒∗𝑒𝑖⟩. Since𝜒∗𝑒𝑖 is a frame of𝜒∗𝐸𝐴 the result
then follows from Corollary 5.1.6.
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Corollary 6.5.5. For𝑇 ∈ ℒ1 (𝐸𝐴), | tr𝑇| ≤ tr |𝑇|, as elements of𝐴. In particular, if𝐴
is unital | tr𝑇| ≤ tr |𝑇| ≤ ‖𝑇‖1 1𝐴.

Proof. For all 𝜒 ∈ 𝐴we have 𝜒(| tr𝑇|) = | tr𝜒∗𝑇| ≤ tr |𝜒∗𝑇| = 𝜒(tr |𝑇|) by the inequal-
ity | tr𝑆| ≤ tr |𝑆| onℒ1 (𝐻) for Hilbert spaces𝐻. As the characters separate 𝐴, the
first statement follows immediately. The last statement follows from the inequality
𝑎 ≤ ‖𝑎‖1𝐴 for positive elements of any unitalC

∗-algebra.

Now, we can finally show that the trace is cyclic. The standard approach is as follows:

Proposition 6.5.6. If 𝑆,𝑇 ∈ ℒ(𝐸𝐴) are such that 𝑆𝑇 ∈ ℒ1 (𝐸𝐴) and 𝑇𝑆 ∈ ℒ
1 (𝐸𝐴),

then tr𝑆𝑇 = tr𝑇𝑆.

Proof. Consider the value of a character 𝜒 ∈ 𝐴 on the difference tr𝑆𝑇− tr𝑇𝑆 ∈ 𝐴 and
use Corollary 6.5.4 above:

𝜒(tr𝑆𝑇− tr𝑇𝑆) = 𝜒(tr(𝑆𝑇))−𝜒(tr(𝑇𝑆))
= tr(𝜒∗(𝑆𝑇))− tr(𝜒∗(𝑇𝑆))
= tr(𝜒∗(𝑆)𝜒∗(𝑇))− tr(𝜒∗(𝑇)𝜒∗(𝑆))

Wemay now use the tracial property of the trace onℒ1 (𝜒∗𝐸𝐴) (cf. [Sim05, Corollary
3.8]) and the fact that 𝜒 separates𝐴 to conclude the proof.
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Chapter 7

Applications of Schatten classes

We investigate several applications of the just-developed theory of Schatten classes, to
wit: the Fredholm determinant, the operator zeta functions, and a new definition of
summability of unbounded Kasparov (𝐴,𝐵)-cycles when 𝐵 is commutative.

7.1 The Fredholm determinant

As a first application of the above theory of Schatten classes for Hilbert modules over
unital abelian𝐶∗-algebras, we consider the Fredholm determinant. Let𝐴 be a commu-
tativeC∗-algebra and let 𝐸𝐴 be a countably generated𝐴-module.

Definition 7.1.1. Let 𝐺(𝐸𝐴) ⊂ ℒ(𝐸𝐴) be the set of bounded, invertible endomor-
phisms of 𝐸𝐴 of the form id𝐸𝐴 +𝑇, where 𝑇 ∈ ℒ1 (𝐸𝐴).

Note that𝐺(𝐸𝐴) is a group under the multiplication ofℒ(𝐸𝐴) because we have

(id+𝑇)−1 = id−𝑇(id+𝑇)−1,

andℒ1 (𝐸𝐴) is an ideal. We will define the Fredholm determinant, first on the standard
module, and then by pullback by a frame transform on general countably generated
Hilbert𝐴-modules.

The following definition of the Fredholm determinant on a Hilbert space𝐻 is well-
known. See e.g. [Sim05, Chapter 3] for a brief discussion in the context of Lidskii’s
theorem.
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Definition 7.1.2. Let 𝑇 ∈ ℒ1 (𝐻ℂ). Then, the Fredholm determinant of id+𝑇 is

det(id+𝑇) def=
∞
∑
𝑘=0

tr⋀𝑘𝑇.

Recall that the series converges by the estimate ‖⋀𝑘𝑇‖1 ≤ ‖𝑇‖
𝑘
1/𝑘!.

Remark 7.1.3. Wehave |det(id+𝑇1)−det(id+𝑇2)| ≤ ‖𝑇1 −𝑇2‖1 exp(‖𝑇1‖1+‖𝑇2‖1+
1), cf. [Sim05, Theorem 3.4]. Thus, 𝑇 ↦ det(id+𝑇) is a continuous function on
ℒ1 (𝐻).

The Fredholm determinant of id+𝑇 is invariant under conjugation of 𝑇 by partial
isometries that commute with 𝑇:

Lemma 7.1.4. If 𝑢 ∶ 𝐻 → 𝐾 is a partial isometry of Hilbert spaces, and 𝑇 ∈ ℒ1 (𝐻)
is such that 𝑢∗𝑢𝑇 = 𝑇𝑢∗𝑢 = 𝑇, then id+𝑢𝑇𝑢∗ ∈ 𝐺(𝐾ℂ) and in fact det(id𝐾+𝑢𝑇𝑢

∗) =
det(id𝐻+𝑇).

Proof. Note that we have

(id+𝑢𝑇𝑢∗)(id−𝑢𝑇(id+𝑇)−1𝑢∗) = (id+𝑢𝑇𝑢∗)−𝑢(id+𝑇)𝑇(id+𝑇)−1𝑢∗ = id,

so that id+𝑢𝑇𝑢∗ ∈ 𝐺(𝐾ℂ).

Next, note that tr⋀𝑘 𝑢𝑇𝑢∗ = tr⋀𝑘 𝑢∗𝑢𝑇 = tr⋀𝑘𝑇 so that indeed

det(id𝐻+𝑇) =
∞
∑
𝑘=0

tr⋀𝑘𝑇 =
∞
∑
𝑘=0

tr⋀𝑘 𝑢𝑇𝑢∗ = det(id𝐾+𝑢𝑇𝑢
∗).

Proposition 7.1.5. If 𝐾 is a separable Hilbert space equipped with a frame 𝑒 and
𝑇 ∈ ℒ1 (𝐾), then det(1 + 𝜃𝑒𝑇𝜃

∗
𝑒) = det(1 +𝑇) in terms of the corresponding frame

transform 𝜃𝑒 ∶ 𝐾→ 𝑙2.

Proof. Since 𝜃∗𝑒𝜃𝑒 = id𝐾 commutes with 𝑇we can apply Lemma 7.1.4.

Definition 7.1.6. Let 𝐸𝐴 be a countably generated Hilbert 𝐶∗-module over a unital
and abelianC∗-algebra𝐴. For 𝑇 ∈ ℒ1 (𝐸𝐴), the Fredholm determinant det(id+𝑇) of
id+𝑇 is the function on𝐴 given by 𝜒 ↦ det(𝜒∗(id+𝑇)).
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7.1. The Fredholm determinant

Proposition 7.1.7. Let𝐴 be unital and abelian as above. For 𝑇 ∈ ℒ1 (𝐸𝐴), the Fred-
holmdeterminant lies in𝐴≡𝐶(𝐴) and as suchwehave𝜒(det(id+𝑇)) = det(𝜒∗(id+𝑇)).

Proof. Let 𝑒 be a frame of 𝐸𝐴. Note that det(𝜒∗(id+𝑇)) = det(𝜒∗(id+𝜃𝑒𝑇𝜃
∗
𝑒)) for

all 𝜒 ∈ 𝐴 by Proposition 7.1.5. That is, det(id+𝑇) = det(id+𝜃𝑒𝑇𝜃
∗
𝑒). Now, 𝜃𝑒𝑇𝜃

∗
𝑒 ∈

ℒ1 (𝑙2(𝐴)) by Theorem 6.1.5. With Remark 7.1.3 we see that 𝜒 ↦ det(id+𝜒∗𝑆) is
continuous whenever 𝑆 ∈ ℒ1 (𝑙2(𝐴)). Thus, since𝐴 is unital (and thus𝐴 compact)

we find that det(id+𝑇) ∈ 𝐶(𝐴) = 𝐴.

Proposition 7.1.8. Let 𝑇 ∈ 𝐶(𝑋,ℒ1 (𝐻))with𝑋 = 𝐴. Then we have

⋀𝑘(𝑇) ∈ 𝐶(𝑋,ℒ1 (⋀𝑘𝐻)) .

In particular, one has det(id+𝑧𝑇) =∑𝑘≥0 𝑧
𝑘 tr⋀𝑘(𝑇), and 𝑧 ↦ det(id+𝑧𝑇) is entire

(as an𝐴-valued function onℂ).

Proof. Let𝐴,𝐵 ∈ ℒ1 (𝐻) and note that⋀𝑘+1(𝐴)−⋀𝑘+1(𝐵) = (⋀𝑘(𝐴)−⋀𝑘(𝐵))∧
𝐴+⋀𝑘(𝐵)∧ (𝐴−𝐵), which can be iterated to yield

∥⋀𝑘(𝐴)−⋀𝑘(𝐵)∥
1
≤ ‖𝐴−𝐵‖1

𝑘−1
∑
𝑚=0

‖𝐴‖𝑚1 ‖𝐵‖
𝑘−1−𝑚
1 .

As a consequence,we see that⋀𝑘(𝑇) ∈𝐶(𝑋,ℒ1 (⋀𝑘𝐻))whenever𝑇∈𝐶(𝑋,ℒ1 (𝐻)).

Moreover, we have the pointwise series expression

det(𝜒∗(id+𝑧𝑇)) = det(id+𝑧 𝜒∗𝑇) =∑
𝑘≥0

𝑧𝑘 tr⋀𝑘(𝜒∗𝑇)

as in [Sim05, Lemma 3.3]. Since tr⋀𝑘(𝜒∗𝑇) ≤ ∥𝜒∗𝑇∥
𝑘
1
/𝑘! the series∑𝑘≥0 𝑧

𝑘 tr⋀𝑘(𝑇)
in𝐴 converges absolutely for all 𝑧 ∈ ℂ. This implies in particular that 𝑧 ↦ det(id+𝑧𝑇)
is entire.

Remark 7.1.9. If 𝑓 ∈ 𝐴 is invertible, then det(id−𝑓−1𝑇) = 0 in𝐴 if and only if 𝜒(𝑓) =
𝑓(𝑥) is a (nonzero) eigenvalue of 𝜒∗𝑇 for all 𝜒 ∈ 𝐴 (corresponding to the point 𝑥 ∈ 𝑋).

Proposition 7.1.10. The Fredholm determinant is multiplicative in the sense that

det(id+𝑇)(id+𝑆) = det(id+𝑇)det(id+𝑆).
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7.1. The Fredholm determinant

Proof. This follows simply from the analogous property of the Fredholm determinant
on Hilbert spaces, since

𝜒(det((id+𝑇)(id+𝑆))) = det(𝜒∗((id+𝑇)(id+𝑆)))
= det(𝜒∗(id+𝑇))det(𝜒∗(id+𝑆)))
= 𝜒(det(id+𝑇)𝜒(det(id+𝑆)),

for all id+𝑇, id+𝑆 in𝐺(𝐸𝐴) and all 𝜒 ∈ 𝐴.

Proposition 7.1.11. For 0 ≤ |𝑧| < ‖𝑇‖−11 , the Fredholm determinant satisfies

det(id+𝑧𝑇) = exp(
∞
∑
𝑛=1

(−1)𝑛+1

𝑛 𝑧𝑛 tr𝑇𝑛) ,

and the series converges absolutely.

Proof. Absolute convergence follows from the fact that ‖tr𝑇𝑛‖ ≤ ‖𝑇𝑛‖1 ≤ ‖𝑇‖
𝑛
1 , so that

the sum of the norms of the summands is bounded by log(1+𝑧‖𝑇‖1).

As the characters separate𝐴, it will suffice to prove the formula for the case 𝐸𝐴 = 𝐻ℂ,
where it is well-known. For |𝑧|‖𝑇‖1 < 1, by absolute convergence of the trace and
Lidskii’s theorem,

∞
∑
𝑛=1

(−1)𝑛+1

𝑛 𝑧𝑛 tr𝑇𝑛 =
∞
∑
𝑛=1

(−1)𝑛+1𝑧𝑛∑
𝑘

𝜆𝑘(𝑇)
𝑛

𝑛

=∑
𝑘
log(1+𝑧𝜆𝑘(𝑇)),

so that the exponential of the right-hand side equals det(id+𝑧𝑇) by Definition 7.1.2.

Proposition 7.1.12. Let𝑇 ∈ℒ1 (𝐸𝐴). Then id+𝑇 is invertible (that is, id+𝑇 ∈𝐺(𝐸𝐴))
if and only if det(id+𝑇) ∈ 𝐴 is invertible.

Proof. By Proposition 7.1.10, det(id+𝑇) is invertible whenever id+𝑇 is.

For the converse statement, in view of Proposition 7.1.5 we may assume without loss of
generality that 𝐸𝐴 = 𝑙

2(𝐴) ≃ 𝐶(𝑋,𝐻) - where𝑋 is compact by the assumption that𝐴
be unital. So, if det(id+𝑇) is invertible then it follows that id+𝜒∗𝑇 is invertible for all
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7.2. The zeta function

𝜒 by [Sim05, Theorem 3.5b)]. Moreover, as for 𝑆1,𝑆2 ∈ 𝐺(𝐻)we have ∥𝑆
−1
1 −𝑆−12 ∥

1
≤

∥𝑆−11 ∥∥𝑆−12 ∥‖𝑆1 −𝑆2‖1, the 𝐵(𝐻)-valued map 𝜒 ↦ (id+𝜒∗𝑇)
−1 lies in𝐶𝑏(𝑋,𝐵(𝐻)))

whenever it is bounded.

Now, for all eigenvalues 𝜆 ∈ 𝜎(𝜒∗𝑇)we have det(id−𝜆
−1𝜒∗𝑇) = 0 so that det(id−𝜆

−1𝑇)
is not invertible in𝐴. Thus, if there exist a sequence 𝜆((𝜒𝑖)∗𝑇) ∈ 𝜎((𝜒𝑖)∗𝑇) converging
(inℂ) to−1, the element det(id+𝑇) = lim𝑖 det(id−𝜆(𝑥𝑖)

−1𝑇) is contained in the closed
set consisting of the non-invertible elements of𝐴, which contradicts the assumpion.

We conclude that there exists 𝜇 > 0 with inf𝑛 |1+𝜆𝑛(𝜒∗𝑇)| > 𝜇 uniformly for 𝜒 ∈ 𝐴.
In particular, ∥(id+𝜒∗𝑇)

−1∥ = sup𝑛 |1+𝜆𝑛(𝜒∗𝑇)|
−1 < 1/𝜇 for all 𝑥. We conclude that

𝜒 ↦ (id+𝜒∗𝑇)
−1 is bounded and therefore continuous.

Corollary 7.1.13. The Fredholm determinant is a homomorphism from the group
𝐺(𝐸𝐴) to the group of invertible elements of𝐴.

In particular, the map det extends the (matrix) determinant homomorphism𝐾alg

1 (𝐴) =
𝐺𝐿∞(𝐴)/[𝐺𝐿∞(𝐴),𝐺𝐿∞(𝐴)] → 𝐴 to all of𝐺(𝑙2(𝐴)).

Remark 7.1.14. In [Alm73; Alm74] it was shown that the Fredholm determinant is the
unique additive invariant of endomorphisms𝑇 ∶ 𝐸→𝐸 on finitely generated projective
𝐴-modules. It is an interesting open question to see under which additional conditions
this result extends to the countably generated Hilbert module context. Clearly, the
Fredholm determinant discussed above gives rise to a additive map from a countably
generated Hilbert𝐴-module 𝐸 equipped with a trace-class operator 𝑇 to analytic𝐴-
valued functions.

7.2 The zeta function

As a second application we consider zeta functions associated to positive Schatten class
operators on a Hilbert module. Again,𝐴 is a commutative𝐶∗-algebra and we identify

𝐴 = 𝑋 so that𝐴 ≅ 𝐶0(𝑋).

Definition 7.2.1. Let 0 ≤ 𝑇 ≤ 1 ∈ℒ𝑝 (𝐸𝐴), for 𝑝 ≥ 1. For 𝑧 ∈ ℂwithℜ𝑧 > 𝑝, define𝑇𝑧

using the continuous functional calculus inℒ(𝐸𝐴). Then, the associated zeta function
is the function on the complex half-planeℜ𝑧 > 𝑝 given by

𝜁(𝑧,𝑇) def= tr𝑇𝑧.
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7.2. The zeta function

We will show that the zeta function is in fact holomorphic (in the sense of Banach space-
valued holomorphic functions, see e.g. [Rud91, Definition 3.30]) on the defining
half-plane.

First, let us recall that the individual (fiberwise) eigenvalues of positive compact opera-
tors are themselves continuous.

Lemma 7.2.2. Let 0 ≤ 𝑇 ∈𝒦(𝐸𝐴). For 𝑘 ≥ 0 and𝜒 ∈ 𝐴 be the character corresponding
to the point 𝑥 ∈ 𝑋, let {𝜆𝑘(𝑥)}𝑘 be the eigenvalues of 𝜒∗𝑇, in decreasing order with
multiplicity. Then, the map 𝑥 ↦ 𝜆𝑘(𝑥) is an element of𝐴.

Proof. A proof can be found in [MT05, Theorem 6.4.2] (see also op.cit. Section 6.6).

Remark 7.2.3. Note that it is important to know that both 𝑇 is pointwise compact
and that 𝑇 is norm continuous. Dropping the latter assumption is fatal (see e.g. Exam-
ple 5.1.21).

By self-adjointness and norm continuity, the full spectrum of 𝑇 is continuous in norm
topology, cf. [Kat95, Remark IV.3.3]. However, the spectral projections (or even the
eigenvectors) can in general not be continuously extended over any open neighbour-
hood, even in the case where the module is finitely generated: see e.g. [Kad84]. A
fortiori, continuous diagonalizability (‘diagonability’) is entirely out of the question in
general.

The classical treatment of zeta functions of operators on Hilbert spaces is in terms
of the Dirichlet series tr𝑇𝑧 = ∑𝑘 𝜆

𝑧
𝑘. The Jensen–Cahen theorem (see e.g. [HR64])

shows that these series converge uniformly on angular regions contained in the defining
half-plane, so that the limit is in fact holomorphic. The theorem translates very well to
the Hilbert module setting.

Lemma 7.2.4. Suppose that 0 ≤ 𝑇 ≤ 1 ∈ℒ𝑝 (𝐸𝐴). For 0 < 𝛼 < 𝜋/2, denote the angular
region {𝑧 ∈ ℂ ∣ |Arg(𝑧 −𝑝)| ≤ 𝛼} by 𝐶𝛼. Then, for all 𝜖 > 0 there exists𝑚0 ≥ 0 such
that, for all 𝑛 ≥ 𝑚 ≥ 𝑚0 and all 𝑧 ∈ 𝐶𝛼,

∥
𝑛
∑
𝑘=𝑚

𝜆𝑧𝑘∥
𝐴

< 𝜖.

126



7.2. The zeta function

Proof. The proof is based on [HR64, Theorem 2]. Consider the series∑𝑛
𝑘=𝑚 𝜆

𝑝
𝑘𝜆

𝑧−𝑝
𝑘 .

Write 𝐴(𝑝,𝑞) def= ∑𝑞
𝑘=𝑝 𝜆

𝑝
𝑘 and 𝛥𝑧,𝑘

def= 𝜆𝑧𝑘+1 − 𝜆
𝑧
𝑘. Then, by Abel’s lemma on partial

summation [Abe26], we have

𝑛
∑
𝑘=𝑚

𝜆𝑧𝑘 =
𝑛−1
∑
𝑘=𝑚

𝐴(𝑚,𝑘)𝛥𝑧,𝑘 +𝐴(𝑚,𝑛)𝜆
𝑧
𝑛

Now, because the series ∑∞
𝑘=0 𝜆𝑘(𝑥)

𝑝 converges pointwise to tr𝑇𝑝, Dini’s theorem

shows that∑∞
𝑘=0 𝜆

𝑝
𝑘 converges in norm. In particular, for all 𝜖 > 0 there exists𝑚0 such

that ∥𝐴(𝑚,𝑞)∥ < 𝜖cos𝛼 for all 𝑞 ≥ 𝑚 ≥ 𝑚0.

By [HR64, Lemma 2], we have𝛥𝑧,𝑘 ≤ |𝑧|/𝑝𝛥𝑝,𝑘. Thus, as |𝑧|/𝑝 ≤ sec𝛼 throughout𝐶𝛼,
we have

∥
𝑛
∑
𝑘=𝑚

𝜆𝑧𝑘∥ < 𝜖(
𝑛−1
∑
𝑘=𝑚

𝛥𝑝,𝑘 +𝜆
𝑝
𝑛) = 𝜖𝜆

𝑝
𝑛 < 𝜖∥𝑇𝑝∥ .

As in the classical case, the Jensen–Cahen theorem paves the way for a holomorphic zeta
function.

Theorem 7.2.5. Let 0 ≤ 𝑇 ≤ 1 ∈ ℒ𝑝 (𝐸𝐴). Then the map 𝑧 ↦ 𝜁(𝑧,𝑇) is holomorphic
on the half-planeℂℜ𝑧>𝑝 = {𝑧 ∣ ℜ𝑧 > 𝑝}. Moreover, for all compact subsets𝐾 ⊂ ℂℜ𝑧>𝑝,
all 𝑥 ∈ 𝑋 and all 𝜖 > 0, there is a neighbourhood𝑈 of 𝑥 on which

sup
𝑧∈𝐾

|𝜁(𝑧,𝑇)(𝑦)−𝜁(𝑧,𝑇)(𝑥)| < 𝜖

for all 𝑦 ∈ 𝑈.

Proof. For the first statement we consider the𝐴-valued function 𝜁𝑛(⋅,𝑇) ∶ 𝑧 ↦∑𝑛
𝑘=0 𝜆

𝑧
𝑘

onℂℜ𝑧>𝑝. Recall that all bounded functionals𝐴→ℂ decompose in four positive linear
functionals. By the Riesz representation theorem, all such positive linear functionals

are given by positive, finite, regular Borel measures 𝜇 on 𝐴 under the identification

𝜙𝜇(𝑓)
def= ∫𝑓𝑑𝜇. In particular, we have𝜙𝜇(𝜆

𝑧
𝑘) = ∫𝜆𝑘(𝑥)

𝑧𝑑𝜇(𝑥). Now, if𝐶 is a contour

around 𝑧0 in ℂℜ𝑧>𝑝, the contour integral ∮𝐶 𝜆𝑘(𝑥)
𝑧 vanishes for all 𝑥 ∈ 𝑋. Note that

|𝜆𝑧𝑘| = 𝜆
ℜ𝑧
𝑘 and so, by Fubini’s theorem,∮𝐶∫𝜆𝑘(𝑥)

𝑧𝑑𝜇(𝑥) = ∫(∮𝐶 𝜆𝑘(𝑥)
𝑧)𝑑𝜇(𝑥) = 0.

ByMorera’s theorem, we conclude that 𝜙𝜇(𝜁𝑛) is holomorphic onℂℜ𝑧>𝑝. Moreover,
as 𝜁𝑛(⋅,𝑇) → 𝜁(⋅,𝑇) uniformly on compact subsets of ℂℜ𝑧>𝑝 by Lemma 7.2.4, the
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function 𝜙𝜇(𝜁(⋅,𝑇)) is holomorphic onℂℜ𝑧>𝑝 as well. By [Rud91, Theorem 3.31], we
may conclude that 𝜁(⋅,𝑇) is holomorphic, as an𝐴-valued function, on the half-plane
ℜ𝑧 > 𝑝.

For the second statement, note that by Lemma 7.2.4, for all 𝜖 > 0 there is, for all compact
subsets𝐾⊂ℂℜ𝑧>𝑝, some𝑚0 with ‖𝜁𝑚(𝑧,𝑇)−𝜁(𝑧,𝑇)‖𝐴 < 𝜖 for all 𝑧 ∈ 𝐾 and all𝑚≥𝑚0.

Assume without loss of generality that 𝜆𝑘(𝑥) > 0 and pick a neighbourhood𝑈 of 𝑥 on
which 𝜆𝑘(𝑦) > 0, for all 𝑘 = 1,… ,𝑚. For any 𝜖0 > 0 let𝑉 ⊂ 𝑈 be such that | ln𝜆𝑘(𝑥)−
ln𝜆𝑘(𝑦)| < 𝜖0 for all 𝑥,𝑦 ∈ 𝑉. Then, 𝜆𝑘(𝑦)

𝑧 = 𝑒𝑧 ln𝜆𝑘(𝑦) for all 𝑧 ∈ 𝐾, so that |𝜆𝑘(𝑥)
𝑧 −

𝜆𝑘(𝑦)
𝑧| ≤ |1−𝑒𝑧𝑠||𝜆𝑝𝑘(𝑥)| for some 𝑠 ∈ ℂwith |𝑠| < 𝜖0. Moreover, |1−𝑒𝑧𝑠| ≤ |1−𝑒𝜖1| ≤

𝜖1𝑒
𝜖1 , where 𝜖1 = 𝜖0 sup𝑧∈𝐾 |𝑧|.

If we now pick 𝜖0 such that 𝜖1𝑒
𝜖1|𝜆𝑝𝑘(𝑥)| < 𝜖/𝑚, we conclude that for all 𝑦 ∈ 𝑉 and

all 𝑧 ∈ 𝐾we have |𝜆𝑘(𝑥)
𝑧 −𝜆𝑘(𝑦)

𝑧| < 𝜖/𝑚. Consequently, we find that ‖𝜁𝑚(⋅,𝑇)(𝑥)−
𝜁𝑚(⋅,𝑇)(𝑦)‖ < 𝜖 as desired.

Remark 7.2.6. It would be desirable to extend the previous Lemma and Theorem to
the functions tr𝑎𝑇𝑧, for 𝑎 ∈ ℒ(𝐸𝐴). However, since the spectral projections of 𝑇 are
in general not even weakly continuous, this would be a nontrivial extension. We expect
that a possibility for such an extension would be to investigate the functions

𝑥 ↦ tr𝑝𝑘(𝑥)𝑎(𝑥)𝑝𝑘(𝑥)/ rank(𝑝𝑘(𝑥)),

where 𝑝𝑘(𝑥) is the spectral projection on the eigenspace belonging to the eigenvalue
𝜆𝑘(𝑥) of𝑇(𝑥), and then use these expressions as coefficients in the continuous Dirichlet
series.

The next step in the classical case would be to show that certain operators have zeta
functions that can be continued meromorphically to all of ℂ, with a discrete set of
poles. The residues at these poles then yields interesting information about the operator

𝑇. For instance, if 𝑇 is the bounded transform (1 +𝐷2)−1/2 of a pseudodifferential
operator these residues give geometric information about the pertinent background
manifold (for more details, cf. [BGV04]). For this reason, it would be very desirable
to have a reasonable criterion under which our zeta function of operators on Hilbert
C∗-modules can be continued meromorphically to all ofℂ, but further research in that
direction is beyond the scope of the present work.
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7.3 Summability of unbounded Kasparov cycles

Tomotivate investigating summability of unbounded KK-cycles, we will recall some
foundational results that motivate the notion of summability of (the special case of)
spectral triples.

Summability and spectral triples

Wewill aim to generalize the following property [GVF01, Definition 10.8] of certain
spectral triples in noncommutative geometry.

Definition 7.3.1. A spectral triple (𝐴,𝐻,𝐷) is said to be finitely summable if there

exists 𝑝 ∈ ℝ≥0 such that 𝑎(1+𝐷
2)−𝑝/2 is inℒ1 (𝐻) for all 𝑎 ∈ 𝐴.

By the Jensen-Cahen theorem, for such spectral triples the zeta function 𝜁(𝑧,𝑎) =
tr𝑎(1+𝐷2)−𝑧/2 is holomorphic on the half-planeℜ𝑧 > 𝑝, for any 𝑎 ∈ 𝐴.

Example 7.3.2. Let𝑀 be a compact Riemannianmanifold of dimension𝑚 and𝐷 be a
Dirac-type operator on a smooth hermitian bundle𝒮 over𝑀. Then, by the asymptotic
expansion [BGV04, Theorem2.30] of the heat kernel 𝑘𝑡(𝑥,𝑦) of𝐷

2, there exists smooth
families𝛹𝑖 of morphisms of 𝒮 such that, for 𝑦 sufficiently close to 𝑥,

𝑘𝑡(𝑥,𝑦) ∼ (4𝜋𝑡)
−𝑚/2𝑒−𝑑(𝑥,𝑦)

2/4𝑡
∞
∑
𝑖=0

𝑡𝑖𝛹𝑖(𝑥,𝑦),

in the sense that the latter is an asymptotic expansion of the former as 𝑡 → 0. In
particular, for endomorphisms ℎ of 𝒮 this provides us with the expansion

trℎ𝑒−𝑡𝐷
2
∼ (4𝜋𝑡)−𝑚/2

∞
∑
𝑖=0

𝑡𝑖∫
𝑀
tr𝒮𝑥

(ℎ𝛹𝑖(𝑥,𝑥))𝑑vol(𝑥).

Under a Mellin transform, this proves that (𝐴,𝐻,𝐷) is in fact𝑚+-summable, and that
moreover 𝜁(𝑎, ⋅) extends holomorphically toℂ⧵{𝑚−2𝑗 ∣ 𝑗 ≥ 0}. Moreover,

res𝑧=𝑗−𝑚 𝜁(𝑧,𝑎)𝛤(𝑧) = ∫
𝑀
𝑎(𝑥) tr𝒮𝑥

(ℎ𝛹𝑗(𝑥,𝑥))𝑑vol(𝑥),

where in particular tr𝒮𝑥
𝛹(𝑥,𝑥) = rk𝒮 so that

res𝑧=−𝑚 𝜁(𝑧,𝑎)𝛤(𝑧) = ∫
𝑀
𝑎(𝑥)𝑑vol(𝑥)
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7.3. Summability of unbounded Kasparov cycles

and (4𝜋)𝑚/2 tr𝒮𝑥
𝛹1(𝑥,𝑥) = 𝑠(𝑥)/6−

1
4 ∫𝑀 𝑠(𝑦)𝑑vol(𝑦), where 𝑠 denotes the scalar cur-

vature of𝑀.

The previous example shows at the very least that the residues of the zeta function (or, in
analytically less tractable situations, the Dixmier traces) associated to𝐷 are of geometric
interest (in the sense ofmetric geometry), and that moreover the infinimal degree 𝑝 of
summability itself already contains some geometric information. A further application
of the relevance of these residues to metric geometry in the truly noncommutative
setting can be seen in (the literature based on) [CC97].

An important motivation for the development of noncommutative geometry comes
from the fact that it is a natural framework in which to consider vast generalizations of
the Atiyah-Singer index theorem. The topic of zeta residues (or Dixmier traces) and
summability interlockswith that story from the very beginning, so itmay be informative
to dwell upon it for a while.

The Chern character and zeta residues in differential topology

Let (𝐴,𝐻,𝐹,𝛾) be an even Fredholmmodule that is (𝑛+1)-summable, in the sense that
[𝐹,𝑎] ∈ ℒ𝑛+1 (𝐻) for all 𝑎 in (a dense subalgebra1 𝒜 of)𝐴. To simplify the exposition,
we assumed that the module is even. Then, the Chern character

Ch∗(𝐹) ∶ (𝑎0,… ,𝑎𝑛) ↦
𝛤( 𝑛2 +1)
2𝑛! tr(𝛾𝐹[𝐹,𝑎0]⋯[𝐹,𝑎𝑛])

of the module defines a class in the periodic cyclic cohomology of𝒜, as in [Con94,
Definition 4.1.𝛽.3]. Under Connes’ pairing [Con85, Corollary II.2.17] between cyclic
cohomology and K-theory, this Chern character implements Atiyah’s index map on
the K-theory of𝒜 [Con94, Proposition 4.1.𝛾.4].

This, however, is far from sufficient to encapsulate the statement of the Atiyah-Singer
index theorem. On a smooth vector bundle𝐸→𝑀, if𝐹 is an elliptic psuedodifferential
operator of order 0, it is not at all clear a priori how to interpret the trace above in terms
of local quantities associated to 𝐹.

Now, the definition of a spectral triple (𝐴,𝐻,𝐷) is precisely tailored to ensure that its
bounded transform (𝐴,𝐻,𝐹𝐷

def= 𝐷(1+𝐷2)−1/2) is a Fredholm module, and moreover
we have [𝐹𝐷, 𝑎] ∈ ℒ

𝑝 (𝐻) for all 𝑎 ∈ 𝐴whenever (𝐴,𝐻,𝐷) is 𝑝-summable.
1Which is assumed to be closed under the holomorphic functional calculus, so that the K-theory of𝒜

agrees with that of𝐴 [Con94, Proposition 4.1.𝛽.7]
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7.3. Summability of unbounded Kasparov cycles

Atiyah and Bott showed by a simple calculation that, for a graded spectral triple𝐷 =
𝐷−⊕𝐷+,

index𝐷+ = res𝑧=0𝛤(𝑧) tr𝛾(1+𝐷
2)−𝑧.

In fact, the invariant on the left-hand side can be vastly refined. In this language, Connes
andMoscovici showed [CM95] that there exist universal constants 𝑐𝑝𝑞 such that the
cycle

𝛷𝐷(𝑎0,… ,𝑎𝑝)
def= ∑

𝑘𝑗≥0
𝑐𝑝𝑘 res𝑧=0 tr(𝛾𝑎0[𝐷,𝑎0]

(𝑘1)⋯[𝐷,𝑎𝑝]
(𝑘𝑝)|𝐷|𝑧−𝑝−2∑𝑗 𝑘𝑗)

is cohomologous in (periodic) cyclic cohomology toCh∗(𝐹𝐷). Here 𝑥(𝑘) denotes the
𝑘th iterated commutator [𝐷2,… , [𝐷2, 𝑥]]with𝐷2.

All this goes to show that there is an important and natural role to play for zeta functions
in the context of spectral triples, even if they are only viewed topologically, that is, as
unbounded representatives of the associated Fredholm modules. As (unbounded) KK-
cycles are the natural bivariant generalization of (spectral tripes) Fredholmmodules, it
is to be expected that traces and zeta residues will be instrumental in further developing
KK-theory in the framework of noncommutative geometry.

Summability of right-commutative unbounded Kasparov cycles

We now apply the theory of Schatten classes on Hilbert modules to arrive at a notion of
summability for unbounded Kasparov cycles over a commutative𝐶∗-algebra. This no-
tion is supposed to generalize summability for spectral triples (as unbounded Kasparov
cycles overℂ) as just defined. We refer to [BJ83; Mes14; KL12; MR16] for all relevant
notions of unbounded Kasparov cycles, external and internal Kasparov product, and to
[KS18; SV19] for the specific application to Riemannian submersions and immersions
to be discussed below.

In order to set the notation, for𝐴,𝐵 two𝐶∗-algebras we let (𝐴𝐸𝐵,𝑆) be an unbounded
Kasparov𝐴−𝐵 cycle, consisting of

• 𝐸𝐵 is a (graded) Hilbert 𝐵-module

• 𝐴 is represented on 𝐸𝐵 by adjointable (even) operators.

• 𝑆 is a regular, self-adjoint (and odd) operator, densely defined on dom(𝑆) ⊂ 𝐸𝐴.

• 𝑎(1+𝑆2)−1/2 is in𝒦(𝐸𝐵) for all 𝑎 ∈ 𝐴.
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7.3. Summability of unbounded Kasparov cycles

• There exists a dense subalgebra𝒜 ⊂ 𝐴 that preserves dom(𝑆) and is such that
for all 𝑎 ∈ 𝒜, the commutator [𝑆,𝑎] extends to an adjointable operator on 𝐸𝐵.

Definition 7.3.3. Let 𝐵 be a unital, commutative C∗-algebra and let (𝐴𝐸𝐵,𝑆) be an
unbounded Kasparov𝐴−𝐵 cycle. We say that (𝐴𝐸𝐵,𝑆) is 𝑝-summable if

(1+𝑆2)−
1
2 ∈ ℒ𝑞 (𝐸𝐵).

For simplicity, we restrict to the case where𝐴 is unital. See [Car+14, Section 2] for an
understanding of the nonunital case.

Example 7.3.4. If (𝐴,𝐻,𝐷) is a 𝑝-summable spectral triple (cf. [GVF01, Definition
10.8]), then it is an unbounded 𝑝-summable Kasparov (𝐴,ℂ) cycle.

By the very definition of the Schatten classes, the localization of an unbounded 𝑝-
summable Kasparov (𝐴,𝐵)-cycle along a character of 𝐵 yields a 𝑝-summable spectral
triple. In the other direction, it is not true that if all such localized spectral triples are
𝑝-summable, then the original unbounded KK-cycle is 𝑝-summable: one needs the
fiberwiseℒ𝑝-norms of the resolvents to be continuous over the base.

There is, however, a reasonably simple criterion that is sufficient for a pointwise 𝑝-
summable spectral triple to be 𝑝-summable. All our examples will be of this type.

Proposition 7.3.5. Let 𝐵 be a commutative C∗-algebra and let (𝐴𝐸𝐵,𝐷) be an un-
bounded Kasparov (𝐴,𝐵)-cycle that is boundedly pointwise 𝑝-summable, in the sense
that

sup
𝑥∈𝐵

‖𝑥∗(1+𝐷
2)−1/2‖𝑝 < ∞.

Assume moreover that 𝑥 ↦ ‖𝑥∗𝑎‖ lies in 𝐵 (as opposed to𝑀(𝐵)) for all 𝑎 ∈ 𝐴.

Then, if there exists for each 𝑥 ∈ 𝐵 a neighbourhood 𝑈 and for each 𝑦 ∈ 𝑈 a (not

necessarily surjective) isometry 𝜏𝑦 ∶ 𝐸𝑦 →𝐸𝑥 such that, with𝐴𝑦
def= 𝐷𝑥 −𝜏𝑦𝐷𝑦𝜏

∗
𝑦,

• dom𝐴𝑦 is dense in 𝐸𝑥

• 𝐴𝑦(𝐷𝑥 +𝑖)
−1 extends to a bounded operator on 𝐸𝑥,

• ∥𝐴𝑦(𝐷𝑥 +𝑖)
−1∥→ 0 as 𝑦 → 𝑥,

then (𝐴𝐸𝐵,𝐷) is 𝑝-summable.
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7.3. Summability of unbounded Kasparov cycles

Proof. Write 𝑇 = 𝜏𝑥𝐷𝑥𝜏
∗
𝑥 and 𝑆 = 𝜏𝑦𝐷𝑦𝜏

∗
𝑦. As dom𝑇∩dom𝐴𝑦 = dom𝐴𝑦 is dense in

𝐻, the fact that𝐴𝑦 is 𝑇-bounded implies that the domain of the closure of𝐴 contains
dom𝑇. Under the last assumption, let 0 < 𝜖 < 1. There exists a neighbourhood𝑉 ⊂ 𝑈
of 𝑥 ∈ 𝐵 such that ∥𝐴𝑦(𝑇+ 𝑖)

−1∥ < 𝜖, so that 1+𝐴𝑦(𝑇+𝑖)
−1 has an inverse that satisfies

∥(1+𝐴𝑦(𝑇+ 𝑖)
−1)−1∥ ≤ (1 − 𝜖)−1. Thus, the operator 𝑆 + 𝑖 = 𝑇 +𝐴𝑦 + 𝑖 is (selfad-

joint and) invertible, and its inverse satisfies (𝑆+ 𝑖)−1 = (𝑇+ 𝑖)−1(1+𝐴𝑦(𝑇+ 𝑖)
−1)−1,

so that in particular ∥(𝑆+ 𝑖)−1∥
𝑞
≤ (1 − 𝜖)−1 ∥(𝑇+ 𝑖)−1∥

𝑞
and ∥(𝑇+ 𝑖)−1∥

𝑞
≤ (1 +

𝜖)∥(𝑆+ 𝑖)−1∥
𝑞
. As ∥(𝜏𝑦𝐷𝑦𝜏

∗
𝑦 +𝑖)

−1∥
𝑞
= ∥(1+𝜏𝑦𝐷

2
𝑦𝜏

∗
𝑦)
−1/2∥

𝑞
for all 𝑦, the continu-

ity of the trace follows from the pointwise existence. That the trace of 𝑎(1+𝐷2)−𝑞/2

then vanishes at infinity for 𝑎 ∈ 𝐴 follows from the fact that tr𝑥∗𝑎(1 +𝐷
2)−𝑞/2 ≤

‖𝑥∗𝑎‖∥𝑥∗(1+𝐷
2)−1/2∥

𝑞
.

Some remarks are in order here.

• Themaps 𝜏𝑏 are to be thought of as a slightly weaker version of parallel transport:
we need not assume that the bundle 𝐸𝐵 be locally trivial.

• We have assumed here that 𝑥∗(1+𝐷
2)−𝑞/2, instead of 𝑥∗𝑎(1+𝐷

2)−𝑞/2, is in the
trace class; this corresponds to the ‘compact fiber’ assumption in the case of
Riemannian submersions, below.

Example 7.3.6 (Differentiable frames). Let 𝑒 be a frame such that 𝑒𝑖 ∈ dom(𝐷) for all
𝑖, so that dom(𝜃𝑒𝐷𝜃

∗
𝑒) contains all finite sequences in 𝐵. Then, for all 𝑦 ∈ 𝐵, 𝑦(𝑒) is a

frame of 𝐸𝑦 so that 𝜃𝑥(𝑒)𝜃
∗
𝑦(𝑒) ∶ 𝐸𝑦 →𝐸𝑥 is an isometry such that 𝐴𝑦 = 𝐷𝑥 −𝜏𝑦𝐷𝑦𝜏

∗
𝑦 is

densely defined and symmetric. Now, the condition in the proposition amounts to

𝐴𝑦(1+𝐷
2
𝑥)

−1/2 ∈ 𝐶norm
𝑏 (𝑈,𝐵(𝐻)). That is, in this setup the question is whether the

relative perturbations of𝐷𝑥 are norm continuous.

Compatibility with the unbounded Kasparov product

We expect the summability of (a reasonably large class of) unbounded KK-cycles to
correspond to some fiber dimension and, therefore, be additive under the internal and
external unbounded Kasparov product.

Apart from the examples presented below, a very rough general analysis goes as follows.

Let (𝐴𝐸𝐵,𝐷) be an unboundedKK-cycle. Consider the localizations 𝜌𝑦 ∶ 𝐴→ℒ(𝐸𝑦)
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7.3. Summability of unbounded Kasparov cycles

of the representation of 𝐴 by elements 𝑦 ∈ 𝐵. These will in general not be faithful,
even if the representation 𝜌∶ 𝐴→ℒ(𝐸) is. Instead, each 𝜌𝑦 will define a closed ideal
𝐼𝑦

def= ker𝜌𝑦 of 𝐴, so that there is a closed subset 𝐹𝑦 of 𝐴 with 𝐼𝑦 = {𝑓 ∈ 𝐴∶ 𝑓(𝑥) =
0 for all 𝑥 ∈ 𝐹𝑦} and so 𝜌𝑦 is in fact a faithful representation of𝐶0(𝐹𝑦) ≃ 𝐴/𝐼𝑦.

If we assume that the𝐶0(𝐹𝑦)-spectral triples (𝑦∗𝐸,𝑦∗𝐷) are given by first-order elliptic
operators on some vector bundle over 𝐹𝑦, then by the analysis of e.g. [See67], they are
dim𝐹𝑦-summable. That is to say, under this assumption of local ellipticity and under
for instance one of the assumptions of Proposition 7.3.5, the summability of (𝐸,𝐷) is
equal to sup𝑦∈𝐵 dim𝐹𝑦.

As for additivity of the fiber dimension under the unbounded Kasparov product:
under the interior product of modules 𝐴𝐸𝐵,𝐵𝐸

′
𝐶, the subspaces 𝐹𝑦 dual to ker𝜌𝑦 and

𝐹′𝑧 dual to ker𝜌′𝑧 satisfy ker(𝜌⊗𝐵 𝜌
′)𝑧 = ∩𝑦∈∁𝐹′𝑧 ker𝜌𝑦 so that the closed subset of 𝐴

corresponding to this ideal is⋃𝑦∈𝐹′𝑧
𝐹𝑦, which has Hausdorff dimension bounded from

above by dim𝐹′𝑧 + sup𝑦 dim𝐹𝑦.

Remark 7.3.7. The rather strong assumption of ellipticity of the localizations made
here fails verymuch in general, but itmay fail in away that does not impact the rest of the
story. For instance, if we consider the general construction of (bounded representatives)
of the shriek map in [CS84, Definition 2.1], then we see that we might end up with
a vertically elliptic operator over the neighbourhood {𝑥 ∣ 𝑑(𝑓(𝑥),𝑦) < 𝜖} of the ‘true’
fiber 𝑓−1(𝑦). Due to this vertical ellipticity, however, the principal symbols constructed
there still correspond (to the bounded transforms of) dim𝑓−1(𝑦)-summable operators.

There is a large class of nontrivial examples associated to pseudodifferential operators,
which deserves a somewhat more detailed treatment.

Example: Riemannian submersions

In [KS18] the factorization of theDirac operator𝐷𝑌 on𝑌 in terms of a vertical operator
𝑆 and the Dirac operator𝐷𝑋 on 𝑋 was studied for a Riemannian submersion 𝑌 →
𝑋 of compact spin𝑐 manifolds (more general proper Riemannian submersions were
considered in [KS17; Dun18; Dun20]).

We let 𝐿2(𝒮𝑋) and 𝐿
2(𝒮𝑌) denote the Hilbert space completions of the spinor mod-

ules 𝛤∞(𝒮𝑋) and 𝛤
∞(𝒮𝑌), respectively. Based on a certain𝐶

∞(𝑌)-module of smooth
sections of the vertical spinor bundle 𝒮𝑉 one then defines a Hilbert𝐶∗-module 𝐸𝐶(𝑋)
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between𝐶(𝑌) and𝐶(𝑋), together with a self-adjoint and regular unbounded operator
𝐷𝑉 on 𝐸, such that

𝐿2(𝒮𝑌) ≅ 𝐸⊗̂𝐶(𝑋)𝐿
2(𝒮𝑋)

and in such a way that the operator𝐷𝑌 corresponds to the tensor sum𝐷𝑉⊗𝛾𝐸 +1⊗∇
𝐷𝑋 for some metric connection∇ on 𝐸𝐶(𝑋) and the grading operator 𝛾𝐸 on 𝐸 (up to
an explicit error term related to the curvature).

Let us analyze here the summability aspects of the operator𝐷𝑉 ∶ dom(𝐷𝑉) → 𝐸. The
main property that we will use below is that𝐷𝑉 is the closure of a so-called vertically
elliptic operator𝒟 ∶ 𝛤∞(𝒮𝑉) → 𝛤∞(𝒮𝑉). This means that for all 𝑓 ∈ 𝐶

∞(𝑌), [𝒟,𝑓] is
an endomorphism of 𝛤∞(𝒮𝑉) that is invertible at all points where 𝑑𝑓|ker𝑑𝜋 is nonzero
(see [KS18; KS17] for more details). In fact, this allows one to prove [KS17, Theorem
3] that the pair (𝐸,𝐷𝑉) is an unbounded Kasparov𝐶(𝑌)−𝐶(𝑋) cycle.

As far as summability is concerned, note that the restrictions 𝜒∗𝒟 =𝒟𝑥 of𝒟 to the
fibers of 𝑥 ∈ 𝑋 (for the character 𝜒 ∶ 𝐶(𝑋)→ℂ) are elliptic Dirac type operators. Since
the dimension of the fibers is constant and equal to dim𝐹 for the typical fiber 𝐹, one
has ∥(1+𝐷2

𝑥)
−1/2∥

𝑝
< ∞ for all 𝑝 > dim𝐹 [Con96] (cf. [GVF01, Theorem 11.1]). The

question, then, is whether this pointwise trace is continuous.

Proposition 7.3.8. Theℒ𝑝-norm of (1+𝒟2
𝑥)

−1/2 defines (as 𝑥 varies over𝑋) a con-
tinuous function on𝑋 for any 𝑝 > dim𝐹. Consequently, the unbounded Kasparov
𝐶(𝑌)−𝐶(𝑋) cycle (𝐸,𝐷𝑉) is 𝑝-summable for all 𝑝 > dim𝐹.

Proof (based on [KS17, Section 2.3]). For simplicity of exposition, we will assume that
the bundle 𝒮𝑌 →𝑌 is locally trivial over𝑋; that is, we assume that around each point
𝑥0 ∈ 𝑋 there exists a neighbourhood𝑈 ⊂ 𝑋 such that 1) 𝜋−1(𝑈) is diffeomorphic to
𝑈×𝐹, and 2) the bundle 𝒮𝑌 → 𝑌 can be smoothly and unitarily trivialized over 𝑈.
If we pull sections of 𝒮𝑌 over𝑈 back through this trivialization, we obtain a family

of Dirac-type differential operators {𝒟𝑥} on the trivial bundle ℂ
𝑘 over the compact

Riemannian manifold 𝐹.

In particular, these operators can be written as

𝒟𝑥 =
dim𝐹
∑
𝑗=1

𝐴𝑗(𝑥,𝑧)
𝜕
𝜕𝑧𝑗

+𝐵(𝑥,𝑧)

with𝐴𝑗,𝐵 symmetricmatrix-valued smooth functions on𝑈×𝐹 and𝐴𝑗 invertible. Thus,

there are smooth families𝑍𝑥,𝑥′(𝑧) = 𝐴𝑗(𝑥
′, 𝑧)𝐴−1

𝑗 (𝑥,𝑧),𝑊𝑥,𝑥′(𝑧) = 𝐵(𝑥
′, 𝑧)−𝑍𝑥,𝑥′𝐵(𝑥,𝑧)
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of matrices such that𝒟𝑥′ = 𝑍𝑥,𝑥′𝒟𝑥 +𝑊𝑥,𝑥′ , with in particular lim𝑥′→𝑥(id−𝑍𝑥,𝑥′) = 0 =
lim𝑥′→𝑥𝑊𝑥,𝑥′ .

Now denote the closure of𝒟𝑥 by𝐷𝑥. Note that𝐷𝑥 is selfadjoint by compactness of
𝐹. Moreover, because𝒟𝑥 is an elliptic differential operator of order 1, the resolvent

(𝐷𝑥 +𝑖)
−1 lies inℒ𝑝 (𝐿2(𝐹,ℂ𝑘)) for all 𝑝 > dim𝐹.

Then,𝐷𝑥(𝐷𝑥 + 𝑖)
−1 being bounded, we see that lim𝑥′→𝑥 ‖(𝐷𝑥′ −𝐷𝑥)(𝐷𝑥 + 𝑖)

−1‖ = 0.
Now, apply Proposition 7.3.5: that is, by the resolvent identity, we conclude that

lim
𝑥′→𝑥

‖(𝐷𝑥 +𝑖)
−1 −(𝐷𝑥′ +𝑖)

−1‖𝑝 = 0

for all 𝑝 > dim𝐹, and so (1+𝐷2)−1/2 ∈ ℒ𝑝 (𝐸) if and only if 𝑝 > dim𝐹.

Note that when we combine this result with the factorization result [KS18] of𝐷𝑌 in
terms of𝐷𝑉 and𝐷𝑋 we obtain for Riemannian submersions of spin𝑐 manifolds the
desired additivity of summability for the unbounded interior Kasparov product.

Example: Embedding spheres in Euclidean space

We consider a special class of immersions, given by the embedding of spheres 𝑆𝑛 in
Euclidean spaceℝ𝑛+1. This is based on [CS84; SV19; Ver19]. As in [CS84] the em-
bedding 𝑆𝑛 →ℝ𝑛+1 gives rise to an immersion class in KK-theory. For spheres, the
unbounded representative is given by the module𝐶0(𝑆

𝑛 × (−𝜖, 𝜖)) based on a normal
neighborhood of 𝑆𝑛 ⊂ ℝ𝑛+1, equipped with the regular self-adjoint operator 𝑆 given by
the multiplication operator with a suitable function 𝑓 ∶ (−𝜖, 𝜖) → ℝ. For convenience,
we will take 𝑆 to be multiplication by the function

𝑓(𝑠) = 𝜋
2𝜖 tan(

𝜋𝑠
2𝜖 ) ; (𝑠 ∈ (−𝜖, 𝜖)).

Since (𝑖 + 𝑓)−1 is clearly a 𝐶0-function on 𝑆
𝑛 × (−𝜖, 𝜖), we find as in [SV19, Lemma

2.3] that (𝑖+𝑆)−1 is a compact operator on the Hilbert module𝐶0(𝑆
𝑛 × (−𝜖, 𝜖)) and so

forms an unbounded Kasparov𝐶(𝑆𝑛)−𝐶0(ℝ
𝑛+1) cycle.

Proposition 7.3.9. We have (1+𝑆2)−1/2 ∈ ℒ𝑝(𝐶0(𝑆
𝑛 × (−𝜖, 𝜖))) for any 𝑝 > 0. Hence

the unbounded Kasparov𝐶(𝑆𝑛)−𝐶0(ℝ
𝑛+1) is 𝑝-summable for all 𝑝 > 0.

Proof. For any locally compact Hausdorff space𝑋, the pointwise localizations of the
Hilbert𝐶0(𝑋)-module𝐶0(𝑋) are one-dimensional, so that the pointwiseℒ

𝑝-norm
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7.3. Summability of unbounded Kasparov cycles

of any 𝑔 ∈ ℒ(𝐶0(𝑋)) = 𝐶𝑏(𝑋) is given by pointwise evaluation of |𝑔|. Hence, tr(1+
𝑆2)−𝑝/2 = (1+𝑓2)−𝑝/2, which lies in𝐶0 for all 𝑝 > 0.

Again, this is a confirmationof additivity for summability under the unbounded interior
Kasparov product. Indeed, in [SV19] it was shown that 𝐷𝑆𝑛 can be related to the
immersion class defined by 𝑆 as above and𝐷ℝ𝑛+1 in the following way. Namely, the
unbounded interior product of 𝑆 and𝐷ℝ𝑛+1 is equal to the unbounded interior product
of𝐷𝑆𝑛 with a so-called index cycle 𝑇. The latter represents the identity at the bounded
level but is in fact a 𝑝-summable Kasparov cycle for all 𝑝 > 1.

Proposition 7.3.10. The selfadjoint closure 𝑇 of the operator

𝑇0 = (
0 −𝑖𝜕𝑠 −𝑖𝑓(𝑠)

𝑖𝜕𝑠 +𝑖𝑓(𝑠) 0 )

on𝐶∞
𝑐 ((−𝜖, 𝜖),ℂ

2) is 𝑝-summable for all 𝑝 > 1.

Proof. As in [SV19, Lemma 2.11], for |𝜆| > 𝜋
2𝜖 we have 𝛥𝜖 +1 < 𝑇

2 +𝜆2 +1, where
𝛥𝜖 is the closure of the Dirichlet Laplacian on 𝐶

∞
𝑐 ((−𝜖, 𝜖))

⊕2. On the other hand, if
𝛥𝜖/2 is the closure of the Dirichlet Laplacian on𝐶

∞
𝑐 ((−𝜖/2, 𝜖/2))

⊕2 and 𝑐 = 𝑓2(𝜖/2)+
|𝑓′(𝜖/2)|, then ∥𝑇2 −𝛥𝜖/2|𝐿2((−𝜖/2,𝜖/2))⊕2∥ = 𝑐 < ∞ so that, by the min-max principle,

the singular values 𝜎𝑛(𝑇
2) are bounded from above by 𝜎𝑛(𝛥𝜖/2) + 𝑐. Thus, one has

‖(𝛥𝜖/2 +𝜆
2 +𝑐+1)−1‖𝑝 ≤ ‖(𝑇

2 +𝜆2 +1)−1‖𝑝 ≤ ‖(𝛥+1)
−1‖𝑝 and so (𝑇±𝜆𝑖)

−1 ∈ ℒ𝑝 if
and only if 𝑝 > 1.

As such, the summability of 𝐷ℝ𝑛+1 plus that of the immersion cycle (i.e. 0+) indeed
coincides with the summability of𝐷𝑆𝑛 plus that of the index cycle.

Example: Actions of ℤ

Consider the standard𝐶(𝑋)-module 𝐸 = 𝐿2(𝑆1)⊗ℂ𝐶(𝑋) equipped with the ‘Dirac’
operator

𝐷 = 𝐷𝑆1 ⊗1.

Then tr𝜒∗|𝐷|
−𝑝 = tr |𝐷𝑆1|

−𝑝 < ∞ for all characters 𝜒 and 𝑝 > 1 so that we have |𝐷|−1 ∈
ℒ𝑝 (𝐸) for 𝑝 > 1.

As an example of an unbounded Kasparov cycle, consider a homeomorphism on𝑋 and

consider the action 𝑛 ⋅𝑓 def= 𝑓 ∘𝜙𝑛 of ℤ on𝐶(𝑋). Let𝐶(𝑋)⋊𝜙 ℤ be the corresponding
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7.3. Summability of unbounded Kasparov cycles

full crossed productC∗-algebra. Consider the unitary𝑈 ∈ℒ(𝐸) given by𝑈 = 𝑆⊗1,
where 𝑆 is multiplication by 𝜃 ↦ 𝑒𝑖𝜋𝜃 on 𝐿2(𝑆1). Then, the map 𝜌 defined on finite
sums in𝐶(𝑋)⋊𝜙 ℤ by

𝜌∶ ∑
𝑘
𝑓𝑘𝑢𝑘 ↦∑

𝑘
𝑓𝑘𝑈

𝑘,

where the left actionof𝐶(𝑋) is just givenbypointwisemultiplication, extends byuniver-
sality to a representation of𝐶(𝑋)⋊𝜙ℤ. Moreover, [𝐷,∑𝑘𝑓𝑘𝑈

𝑘] =∑𝑘 𝑘𝑓𝑘𝑈
𝑘 because

[𝐷𝑆1 ,𝑆
𝑘] = 𝑘𝑆, so that there is a dense subalgebra of 𝐶(𝑋)⋊𝜙 ℤwith [𝐷,𝑎] bounded.

We conclude that (𝐸𝐶(𝑋),𝐷) is an unbounded𝑝-summableKasparov𝐶(𝑋)⋊𝜙ℤ−𝐶(𝑋)
cycle for all 𝑝 > 1.

In particular, one has

𝜁𝐷(𝑓𝑢𝑘, 𝑧)(𝑥) = tr𝜒∗(𝑓𝑈
𝑘𝐷−𝑧) = 𝑓(𝑥) tr𝐿2(𝑆1)𝑆

𝑘|𝐷𝑆1|
−𝑧,

so that 𝜁𝐷(∑𝑘𝑓𝑘𝑢𝑘, 𝑧) extends meromorphically toℂ⧵{1} and in fact

res𝑧=1 𝜁𝐷(∑
𝑘
𝑓𝑘𝑢𝑘, 𝑧) ∝ 𝑓0.

Summability and the exterior Kasparov product

One of the key results in [BJ83] was an explicit and linear formula for the external
Kasparov product. More precisely, they showed that two unbounded Kasparov cycles
(restricting to the even-odd case for simplicity) (𝐸𝐵, 𝛾,𝑆) and (𝐹𝐶,𝑇) can be combined
into an external product unbounded KK-cycle over the minimal tensor product 𝐵⊗ℂ:

((𝐸⊗𝐹)𝐵⊗𝐶,𝑆⊗1+𝛾⊗𝑇).

For spectral triples this can be understood as the direct product of the corresponding
(noncommutative) spaces. In any case, it is desirable to have an additive property of
summability for this external product in the case of a commutative base.

Lemma 7.3.11. If 𝑎,𝑏 are positive, (resolvent) commuting, regular operators on a
HilbertC∗-module, then for 𝑝,𝑞 > 0 one has

(1+𝑎+𝑏)−𝑝−𝑞 ≤ (1+𝑎)−𝑝/2(1+𝑏)−𝑞(1+𝑎)−𝑝/2

Proof. By positivity of 𝑎,𝑏, we have (𝑏+1)−1 ≥ (𝑎+𝑏+1)−1 ≤ (𝑎+1)−1, and by com-
mutativity of theC∗-algebra generated by the resolvents of𝑎,𝑏, we have (𝑎+𝑏+1)−𝑝−𝑞 ≤
(𝑎+1)−𝑝/2(𝑎+𝑏+1)−𝑞(𝑎+1)−𝑝/2 ≤ (𝑎+1)−𝑝/2(𝑏+1)−𝑞(𝑎+1)−𝑝/2.
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7.3. Summability of unbounded Kasparov cycles

Corollary 7.3.12. The summability of unbounded Kasparov modules (over commu-
tative𝐶∗-algebras) is additive under the exterior product.

Proof. The corresponding selfadjoint operators (𝑆⊗ 1) and (𝛾⊗𝑇) on 𝐸⊗𝐹 anti-
commute, and the actions of 𝐵,𝐶 commute. Thus, we have |𝑆⊗1+𝛾⊗𝑇|2 = |𝑆⊗
1|2+|𝛾⊗𝑇|2, whose summands commute. Moreover, the exterior product {𝑒𝑖⊗𝑓𝑗}𝑖𝑗
of frames is a frame. We conclude, with the Lemma, that |𝑆⊗ 1+ 1⊗𝑇+ 𝑖|−𝑝−𝑞 ≤
|𝑆⊗1+ 𝑖|−𝑝|1⊗𝑇+ 𝑖|−𝑞, and the 𝐵⊗𝐶-valued trace of the latter is just the tensor
product of the traces of |𝑆+ 𝑖|−𝑝 and |𝑇+ 𝑖|−𝑞.

Summability and the interior Kasparov product

Of course, the real challenge is to establish the compatibility of summability with the
internal unbounded Kasparov product. Clearly, Lemma 7.3.11 is then not sufficient.
We leave its (challenging) extension to further research, but provide a very first step if
only to exhibit the easier part.

The following Lemma would appear to be relevant. The operators 𝑠 and 𝑡 in its state-
ment should correspond to the 𝑝th and 𝑞th (absolute) powers of the respective resol-
vents.

Lemma 7.3.13. Let 𝐵,𝐶 be separable, commutative C∗-algebras and let 𝐸𝐵, 𝐹𝐶 be
countably generated HilbertC∗-modules, and let 𝑒 be any frame of 𝐸𝐵. Then, for all
𝑠 ∈ ℒ2 (𝐸𝐵) and all 0 ≤ 𝑡 ∈ ℒ

1 (𝐹𝐶), one has

(𝑠∗⊗1)(1⊗𝑒 𝑡)(𝑠⊗1) ∈ ℒ1 (𝐸𝐵⊗𝐵 𝐹𝐶),

where⊗𝑒 denotes the product along the Grassman connection associated to 𝑒,

(1⊗𝑒 𝑡)(𝑥⊗𝐵 𝑦)
def= ∑

𝑖
𝑒𝑖⊗𝐵 ⟨𝑒𝑖, 𝑥⟩ 𝑡𝑦.

Proof. Choose a frame 𝑓𝑗 of𝐹𝐶, so that 𝜂𝑖𝑗
def= 𝑒𝑖⊗𝐵𝑓𝑗 is a frame of𝐸𝐵⊗𝐵𝐹𝐶. Because

⟨𝑥⊗𝑦,(1⊗𝑒 𝑡)𝑥⊗𝑦⟩ =∑
𝑖
⟨𝑦, ⟨𝑥, 𝑒𝑖⟩ 𝑡 ⟨𝑒𝑖, 𝑥⟩𝑦⟩ ≥ 0,

the product operator is positive so that the statement of the Lemma is equivalent to the
convergence of its trace along a frame of 𝐸𝐵⊗𝐵 𝐹𝐶. Now,

⟨𝜂𝑖𝑗, (𝑠
∗⊗1)(1⊗∇ 𝑡)(𝑠⊗1)𝜂𝑖𝑗⟩ =∑

𝑘
⟨𝑓𝑗, ⟨𝑒𝑖, 𝑠𝑒𝑘⟩ 𝑡 ⟨𝑠𝑒𝑘, 𝑒𝑖⟩𝑓𝑗⟩ .

139



7.3. Summability of unbounded Kasparov cycles

Write 𝑠𝑖𝑘
def= ⟨𝑒𝑖, 𝑠𝑒𝑘⟩. For finite subsets𝐹 ⊂ℕ

2, one has∑𝑖𝑘∈𝐹 𝑠
∗
𝑖𝑘𝑡𝑠𝑖𝑘 ∈ℒ

1 (𝐹𝐶), and then
∥tr∑𝑖𝑘∈𝐹 𝑠

∗
𝑖𝑘𝑡𝑠𝑖𝑘∥ = ∥tr 𝑡∑𝑖𝑘∈𝐹 𝑠

∗
𝑖𝑘𝑠𝑖𝑘∥ ≤ ‖𝑡‖1 ∥∑𝑖𝑘∈𝐹 𝑠

∗
𝑖𝑘𝑠𝑖𝑘∥𝐵. As the series∑𝑖𝑘 𝑠

∗
𝑖𝑘𝑠𝑖𝑘 and

∑𝑘 𝑠
∗
𝑖𝑘𝑠𝑖𝑘 are Cauchy (with limits tr 𝑠

∗𝑠 ∈ 𝐵 and ⟨𝑠𝑒𝑖, 𝑠𝑒𝑖⟩ ∈ 𝐵, respectively), we conclude
that∑𝑖𝑘 𝑠

∗
𝑖𝑘𝑡𝑠𝑖𝑘 converges inℒ

1 (𝐹𝐶), so that the statement follows.

The rather extreme assumptions of the following Lemma, which is itself a simple
corollary of Lemma 7.3.11, allow us to compare the 𝑝+𝑞-th power of the resolvent of
the unbounded Kasparov product to the expression in the statement of Lemma 7.3.13.

Lemma 7.3.14. Let∇ be any 𝑇-connection on 𝐸𝐵. Then, if either

• (𝐸𝐵,𝑆) is graded, {𝑆⊗1,𝛾⊗∇𝑇} = 0 and 𝑆×∇𝑇
def= 𝑆⊗1+𝛾⊗∇𝑇, or

• [𝑆⊗1,1⊗∇𝑇] = 0 and 𝑆×∇𝑇
def= ( 0 𝑆⊗1+ 𝑖⊗∇𝑇

𝑆⊗1− 𝑖⊗∇𝑇 0 ),

then |𝑆×∇𝑇+𝑖|
−𝑝−𝑞 ≤ |𝑆⊗1+ 𝑖|−𝑝/2|1⊗𝑇+𝑖|−𝑞|𝑆⊗1+ 𝑖|−𝑝/2.

As the resolvent of 𝑆⊗1 is just that of 𝑆 tensored with 1, all that we need now in order
to apply Lemma 7.3.13 is an estimate on the 𝑞-th absolute power of the resolvent of
1⊗∇𝑇 or 𝛾⊗∇𝑇.

In order to treat this resolvent when ∇ is a Grassman connection, we will work in
the larger module 𝐻⊗ℂ 𝐹. To this end, let 𝑢 be the unitary isomorphism between
the Hilbert 𝐶-modules𝐻⊗ℂ 𝐹 and𝐻⊗ℂ 𝐵⊗𝐵 𝐹. Then, for any frame 𝑒 of 𝐸𝐵, let

𝑄𝑒
def= 𝑢∗(𝜃∗𝑒𝜃𝑒⊗1)𝑢, so that we have𝑄𝑒(𝐻⊗ℂ𝐹) ≃ 𝐸⊗𝐵𝐹. Let𝑇

def= 1⊗𝑇∶ 𝐻⊗ℂ𝐹→
𝐻⊗ℂ 𝐹.

Now, the conditions of the following Lemma are satisfied rather generally, cf. the
analysis of [KL13, Lemma 5.3] and the differentiable frames constructed in [Kaa17].

Lemma 7.3.15. If there exists a frame 𝑒 of 𝐸𝐵 such that [𝑇,𝑄𝑒] extends to a bounded,
adjointable operator on𝐻⊗ℂ 𝐹, then there exists bounded, adjointable𝐴 = 𝑄𝑇(1−
𝑄)+(1−𝑄)𝑇𝑄 ∈ ℒ(𝐻⊗ℂ 𝐹) such that the operator 1⊗∇0

𝑇 = 𝑄𝑇𝑄 satisfies

1⊗∇0
𝑇 = 𝑄(𝑇−𝐴) = (𝑇−𝐴)𝑄.

In particular, |1⊗∇0
𝑇+𝜇|−2 ≤ ‖𝐴‖2𝑄|𝑇+𝜇|−2𝑄 = ‖𝐴‖2 1⊗∇0

|𝑇+𝜇|−2.
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As in [KL13, Proposition 6.6]. Note that𝐴 is bounded and adjointable by the identity
𝐴 = [𝑄,𝑇](1 −𝑄)+ (1−𝑄)[𝑇,𝑄]. Now, we have 𝑄𝑇𝑄 = 𝑄(𝑄𝑇𝑄+ (1−𝑄)𝑇(1−
𝑄)) =𝑄(𝑇−𝐴) and𝑄𝑇𝑄= (𝑄𝑇𝑄+(1−𝑄)𝑇(1−𝑄))𝑄 = (𝑇−𝐴)𝑄. The expression
for the resolvent now follows from the resolvent identity.

We conclude that, under the joint assumptions of Lemma 7.3.15 and Lemma 7.3.13,
the unbounded Kasparov product is 𝑝+𝑞-summable whenever 𝑞 ≤ 2.

Remark 7.3.16. There is aℒ(𝐹)-valued, unbounded, ‘partial trace’

𝜏𝑒 ∶ dom𝜏𝑒 ⊂ ℒ(𝐸⊗𝐵 𝐹)→ℒ(𝐹),

given by 𝜏𝑒(𝑥)(𝑓) =∑𝑖 ⟨𝑒𝑖|𝑥|𝑒𝑖⊗𝑓⟩, where ⟨𝑒𝑖| is seen as an 𝐹-valued map on𝐸⊗𝐵𝐹.
Clearly we have dom𝜏𝑒 ⊃ ℒ

1 (𝐸⊗𝐵 𝐹). Note that tr𝜏𝑒(𝑥) = tr𝑥 so that for positive 𝑥
we have 𝑥 ∈ ℒ1 (𝐸⊗𝐵 𝐹) ⊂ dom𝜏𝑒 if and only if 𝜏𝑒(𝑥) ∈ ℒ

1 (𝐹).

As seen in Lemma 7.3.13, all operators of the form 𝑠(1 ⊗𝑒 𝑡)𝑠 with 𝑠 ∈ ℒ
2 (𝐸) are

contained in dom𝜏𝑒, and moreover 𝜏𝑒(𝑠(1⊗𝑒 𝑡)𝑠) ∈ ℒ
1 (𝐹)whenever 𝑡 ∈ ℒ1 (𝐹).

It follows trivially that when 0 ≤ 𝑥𝑞 ≤ 1⊗𝑒 𝑥
𝑞
0 , we have 𝜏𝑒(𝑠𝑥

𝑞𝑠) ∈ ℒ1 (𝐹)whenever 𝑥0 ∈
ℒ𝑞 (𝐹). However, wehaveno such guaranteewhenever0 ≤ 𝑥 ≤ 1⊗𝑒𝑥0with𝑥0 ∈ℒ

𝑞 (𝐹)
instead: unfortunately, the range of the partial trace 𝜏𝑒 is the noncommutative C

∗-
algebraℒ(𝐹), so that the techniques for traces with values in a commutativeC∗-algebra
developed here (such as Corollary 6.2.16 in particular) do not apply. See Chapter 8.
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Chapter 8

Outlook: the noncommutative case

The approach to the Schatten classes outlined in Chapter 6 relies heavily on the com-
mutativity of the algebra𝐴. Not just the common proof technique, which boils down
to combining the properties ofℒ𝑝 (𝐻ℂ)with the uniformity argument of Theorem
6.2.11, fails in the noncommutative case: key results no longer hold.

For instance, we can build on [FL02, Example 1.1] to show that the set {𝑇 ∈ℒ(𝑙2(𝐴)) ∣
tr |𝑇|𝑝 ∈ 𝐴} is no longer a two-sided ideal inℒ(𝑙2(𝐴))when𝐴=𝐵(𝐻) in the following
example. Moreover, the following example shows that the finite matrices𝑀(𝐵(𝐻))
cannot be contained in a two-sided ideal inℒ(𝑙2(𝐵(𝐻))) on which the trace is even
weakly convergent.

Example 8.0.1. Let𝐴 be a unitalC∗-algebra that contains a copy of the Cuntz algebra
𝒪𝑛: a family {𝑢𝑖}

𝑛
𝑖=1 of isometries such that𝑢

∗
𝑖𝑢𝑖 = 1 and∑𝑗 𝑢𝑗𝑢

∗
𝑗 = 1. Let𝑇𝑛 ∈Mat𝑛(𝐴)

be given by

𝑇𝑛 = [
𝑢1 0 … 0
⋮ ⋮ ⋮
𝑢𝑛 0 … 0

]

so that in particular ‖𝑇𝑛‖Mat𝑛(𝐴)
= 1 and

𝑇∗
𝑛𝑇𝑛 = [

1 0 …
0 0 ⋱
⋮ ⋱ ⋱

] 𝑇𝑛𝑇
∗
𝑛 = [

1 0 …
0 ⋱ ⋱
⋮ ⋱ ⋱

] .
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8.1. Ideals inside a smaller endomorphism algebra

Consider the “trace” tr onMat𝑛(𝐴) given by𝑇↦∑𝑖𝑇𝑖𝑖. Then, the element𝑆 =𝑇
∗
1𝑇1 ∈

Mat1(𝐴) satisfies tr𝑇𝑛𝑆𝑇
∗
𝑛 = 𝑛.

In the language of frames, note that 𝑒 = (𝑢1,… ,𝑢𝑛) is a frame of theHilbert𝐴-module𝐴
because∑𝑖 𝑎

∗𝑢∗𝑖𝑢𝑖𝑏 = 𝑎
∗𝑏 for 𝑎,𝑏 ∈ 𝐴. The frame transform 𝜃𝑒 now sends the identity

1𝐴 to 𝑇𝑛𝑇
∗
𝑛, so that tr𝜃𝑒1𝐴𝜃

∗
𝑒 = 𝑛.

In particular, if𝐴 contains a copy of𝒪∞ (as does𝐵(𝐻) in particular), wemust conclude
that no trace ideal inℒ(𝑙2(𝐴)) can containMat(𝐴).

In the general case, then, there is no hope for an extension of Theorem 6.3.1 to provide
for a two-sided trace ideal inℒ(𝑙2(𝐴)) that at least containsMat𝐴, as it should in order
to really extend the “trace” onMat𝑛𝐴.

8.1 Ideals inside a smaller endomorphism algebra

As a counterpoint to Example 8.0.1, we can assign a subalgebra ofℒ(𝑙2(𝐴))with an
associated trace ideal in the general case, as the following example shows.

Example 8.1.1 (The Schatten classes of[Nis91]). For 𝑎 ∈ 𝐴 and 𝑡 ∈ 𝐵(𝐻), we have
𝑡⊗𝑎 ∈ ℒ(𝑙2(𝐴)) by the inclusionℒ(𝑙2)⊗ℒ(𝐴)↪ℒ(𝑙2⊗ℂ𝐴). Moreover, as the

projective tensor norm on𝐵(𝐻)⊗𝐴 dominates the operator norm ofℒ(𝑙2(𝐴)), there
is an inclusion𝐵(𝐻)⊗𝜋𝐴↪ℒ(𝑙2(𝐴)) of Banach algebras. This implies the inclusion
ℒ𝑝 (𝐻)⊗𝜋𝐴 ⊂ 𝐵(𝐻)⊗𝜋𝐴 ⊂ℒ(𝑙2(𝐴)).

For 𝑇 ∈ ℒ𝑝 (𝐻) ⊗𝜋 𝐴 there exist (cf. [Rya02, Chapter 2.1]) bounded sequences
{𝑎𝑖}𝑖, {𝑡𝑖}𝑖 in the unit ball of𝐴 andℒ𝑝 (𝐻), respectively, and {𝜆𝑖}𝑖 ∈ 𝑙

1 with∑𝑖 𝜆𝑖𝑡𝑖⊗
𝑎𝑖 = 𝑇, and similar for 𝑆 ∈ 𝐵(𝐻)⊗𝜋 𝐴. Thus, ∑𝑖𝑗 𝜆𝑖𝜇𝑗𝑠𝑖𝑡𝑗 ⊗ 𝑎𝑖𝑏𝑗 = 𝑆𝑇 converges

in ℒ𝑝 (𝐻) ⊗𝜋 𝐴 because ∥𝑠𝑖𝑡𝑗∥𝑝 ≤ ‖𝑠𝑖‖∥𝑡𝑗∥𝑝. Mutatis mutandis, we also see that

𝑇𝑆 ∈ ℒ𝑝 (𝐻)⊗𝜋𝐴 and therefore conclude thatℒ𝑝 (𝐻)⊗𝜋𝐴 is a two-sided ideal in
𝐵(𝐻)⊗𝜋𝐴.

By projectivity, the map trℒ𝑝(𝐻)⊗1𝐴 extends continuously toℒ
𝑝 (𝐻)⊗𝜋𝐴. With the

algebraic identificationMat𝐴 =Matℂ⊗𝐴, this projective trace extends that onMat𝐴.

The crucial difference between Example 8.0.1 and Example 8.1.1, is that the Schatten
classes of the latter are only two-sided ideals inside 𝐵(𝐻)⊗𝜋𝐴, not in all ofℒ(𝑙2(𝐴)).
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8.1. Ideals inside a smaller endomorphism algebra

Example 8.1.1, however, does not solve the problem fully. First of all, we now treat
the commutative and noncommutative case very differently1, without a clear bridge
between the two cases. Second, there are likely to be many examples where the algebra
𝐵(𝐻)⊗𝜋𝐴 is insufficiently large to accomodate a given representation, even when the
𝐴-valued “trace” may still be perfectly well-defined on a subset thereof that does form a
two-sided ideal – as is of course the case when𝐴 is commutative, or even almost so.

In the light of this example, we should perhaps not require the domain of an𝐴-valued
“trace” to be an ideal inside all ofℒ(𝑙2(𝐴)), but rather inside some subalgebra. That
would be particularly natural in the language of KK-cycles: if one has a KK-cycle
(𝐴𝐸𝐵,𝐹), there is already a designated subalgebra𝐴 ⊂ℒ(𝐸𝐵) and one might like to say
the cycle is 𝑝-summable if {𝑎 ∈ 𝐴∶ [𝐹,𝑎] ∈ ℒ𝑝 (𝐴𝐸𝐵)} is dense inside𝐴, or something
to that effect. We would then only needℒ𝑝 (𝐴𝐸𝐵), whatever its definition will be, to
be a two-sided ideal in (or, at least, be closed under multiplication by)𝐴 ⊂ℒ(𝐸𝐵), not
in all ofℒ(𝐸𝐵).

Example 8.1.2. Note that the functional 𝑇 ↦ √‖ tr𝑇∗𝑇‖ on the matrix algebras is
subadditive, bounded from below by the operator norm. Only from the left, it is
even unitarily invariant and submultiplicative in the usual sense. This, given a normed
subalgebra𝐶 ⊂ ℒ(𝑙2(𝐴)), might lead one to define a two-sided Hilbert-Schmidt ideal

“relative to 𝐶” as the completion of𝑀(𝐴) in the norm ‖𝑇‖22;𝐶 = sup{‖ tr𝑆∗𝑇∗𝑇𝑆‖ ∣
𝑆 ∈ 𝐶,‖𝑆‖𝐶 ≤ 1}.

Remark 8.1.3. Building on the previous example, a rather different extension on the
lines of the Hattori-Stallings trace would be to first compose with the quotient map
𝑞 ∶ 𝐴→𝐴/[𝐴,𝐴], i.e. to define the trace with values in the latter as∑𝑖 𝑞(⟨𝑒𝑖,𝑇𝑒𝑖⟩) for
any given frame. The resulting space of Hilbert-Schmidt operators (i.e. those for which
the trace of the square converges in the norm on the abelianization) is then a two-sided
ideal in the adjointable endomorphisms of a countably generated Hilbert𝐴-module.
The square of this Hilbert-Schmidt ideal then gives a two-sided trace class ideal. Unlike
for the Hattori-Stallings trace it is not clear, however, that this construction possesses
even a non-canonical lift to𝐴 itself.

1Note that 𝐵(𝐻)⊗𝜋 𝐶0(𝑋) ⊂ 𝐶0(𝑋,𝐵(𝐻)) ⊊ 𝐶
str
b (𝑋,𝐵(𝐻)) unless𝐻 is finite-dimensional or 𝑋 is

finite (assuming of course it is Hausdorff). Moreover, even thoughℒ𝑝 (𝐻)⊗𝜋 𝐶0(𝑋) ⊂ 𝐶0(𝑋,ℒ
𝑝 (𝐻))

always, the spaces need not agree: the diagonal elements of ℒ1 (𝑙2) ⊗𝜋 𝐶0(𝑋) consists of the absolutely
summable sequences in 𝐶0(𝑋), whereas the diagonal elements of 𝐶0(𝑋,ℒ

1 (𝑙2)) consists of the uncondi-
tionally summable sequences, cf. [Rya02].
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8.2. The bivariant Chern character

8.2 The bivariant Chern character

Because the trace onMat(𝐴) is not cyclic for noncommutative𝐴, it is more natural to
regard it as a map (the Dennis trace) between Hochschild or cyclic complexes instead.
That brings us to a highly desired – but elusive – application: the bivariant Chern
character. This introduces two additional complications, however: that of working

with more general locally convex algebras 𝒜 ⊂ 𝐴 and that of the trace onMat(𝒜)⊗̂𝑛

with values in the tensor product 𝒜⊗̂𝑛.

If (𝐴𝐻,𝛾,𝐹) is a finitely summable (even) Fredholm module (with respect to the dense
subalgebra𝒜 ⊂ 𝐴), Connes’ Chern character

Ch∗(𝐹) ∶ (𝑎0,… ,𝑎2𝑛) ↦
𝛤(𝑛+1)
2𝑛! tr(𝛾𝐹[𝐹,𝑎0]⋯[𝐹,𝑎2𝑛])

(see also pp. 130) and the Chern character of an idempotent 𝑒 ∈𝑀𝑘(𝒜),

Ch∗(𝑒) = (𝑛!)−1 ∑
0≤𝑖𝑗≤𝑘

𝑒𝑖0𝑖1 ⊗⋯⊗𝑒𝑖2𝑚𝑖0 ,

produce classes inHC2𝑛(𝒜) andHC2𝑛(𝒜) respectively that are independent of the
choices of representative (𝐴𝐻,𝐹) and 𝑒 of their respective classes in K-theory and K-
homology. Moreover, their pairing ⟨Ch∗(𝑒),Ch∗(𝐹)⟩ equals the index of F on the
K-theory class [𝑒], cf. [Con94, Chapter 4.1].

If (𝐵𝐸𝐴,𝐹) is a (bounded) Kasparov (ℬ,𝒜)-module and 𝑒 ∈ 𝑀𝑘(ℬ) a projection
representing the classes [𝐸,𝐹] ∈ KK𝑖(ℬ,𝒜) and [𝑒] ∈ 𝐾0(ℬ) respectively, then their
Kasparov product [𝑒]⊗𝐵 [𝐸,𝐹] is an element of𝐾

𝑖(𝒜). The bivariant index problem,
as posed by Connes in [Con83] and confronted by Nistor in [Nis93], is to determine a
mapCh ∶ KK𝑖(ℬ,𝒜)→HC2𝑛+𝑖(ℬ,𝒜) such that

⟨Ch∗ ([𝑒]⊗𝐵 [𝐸,𝐹]) ,𝜙⟩ = ⟨Ch
∗[𝑒],Ch∗([𝐸,𝐹])(𝜙)⟩

for all 𝜙 ∈HC2𝑛+𝑖(𝒜). For a discussion of the precise definition ofHC2𝑛+𝑖(ℬ,𝒜) in
this context and the way in which to regard its elements as maps from HC•(𝒜) to
HC•(ℬ), see [Nis93].

Now, the connection between the topic of the Connes-Chern character and the present
discussion of the trace is that the construction of the Chern character proposed in
[Nis91; Nis93] factors through a generalization of the (Dennis trace) map tr𝑛. That is,
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8.2. The bivariant Chern character

consider the map

tr𝑛 ∶ 𝑀(𝒜)⊗(𝑛+1) →𝒜⊗(𝑛+1),

tr𝑛(𝑇0⊗⋯⊗𝑇𝑛) = ∑
𝑖0,⋯ ,𝑖𝑛

𝑇0
𝑖0,𝑖1 ⊗⋯⊗𝑇𝑛

𝑖𝑛,𝑖0 .

Given a choice ⊗̂ of tensor product appropriate to the computation of HC(𝒜), a
proper generalization of tr𝑛 would then be constructed from a pair (ℒ𝑝

𝒜,⊗̂
,ℒ∞

𝒜,⊗̂) of
subalgebras ofℒ(𝐻⊗ℂ𝐴)with at least the following properties:

• The domain domtr•, which is spanned by all tensor products ⨂̂
𝑛
𝑖=1ℒ

𝑝𝑖
𝒜,⊗̂

such

that the reciprocals of the 𝑝𝑖 sum to∑𝑘
𝑖=1 𝑝

−1
𝑖 = 1, is closed under contractions,

and

• the series defining tr𝑛 converges to a continuous map domtr• →⨁𝑛𝒜
⊗̂(𝑛+1).

Nistor’s original construction takesℒ𝑝
𝒜,⊗̂

def= ℒ𝑝 (𝐻)⊗𝜋𝒜 andℒ∞
𝒜,⊗̂

def= 𝐵(𝐻)⊗𝜋𝒜, as
in Example 8.1.1. It is important to note that the resulting definition of a ‘1-summable
boundedKasparovmodule’ (𝐻⊗ℂ𝐴,𝐹) requires both that the representation of𝒜⊂𝐴
land in 𝐵(𝐻)⊗𝜋𝒜 and that the commutators [𝐹,𝑎] land inℒ1 (𝐻)⊗𝜋𝒜, again as in
Example 8.1.1. This is more restrictive than one might desire, as we will see below.

The Chern character of the Toeplitz extension

An important case for the Chern character is that of the boundary map in the Pimsner-
Voiculescu sequence. That is to say, consider the Toeplitz extension [Pim97]

0→𝒦(𝑙2(𝐴)) →𝒯(𝐴,𝛼) → 𝐴⋊𝛼 ℤ→ 0.

Its class inKK1(𝐴⋊𝛼 ℤ,𝐴) is represented by the unbounded cycle (𝐸,𝐷) presented in
Example 8.2.1 below, cf. [GMR18, Theorem 1] and [AM19, Section 4].

Example 8.2.1. Let𝐴 be a unitalC∗-algebra equippedwith an automorphism 𝛼 ∶ 𝐴→
𝐴. Then, consider the crossed productC∗-algebra𝐴⋊𝛼 ℤ generated by𝐴 and a unitary
𝑢 satisfying 𝛼𝑛(𝑎) = 𝑢𝑛𝑎𝑢∗𝑛.

Equip the Hilbert 𝐴-module 𝐸 = 𝐿2(𝑆1)⊗ℂ𝐴 with the Dirac operator𝐷 = 𝐷𝑆1 ⊗1
and consider the unitary𝑈 = 𝑆⊗1 ∈ ℒ(𝐸), where 𝑆 is multiplication by 𝜃 ↦ 𝑒𝑖𝜋𝜃 on
𝐿2(𝑆1). Then, we may represent𝐴⋊𝛼 ℤ on 𝐸 by the map 𝜌∶ ∑𝑘 𝑎𝑘𝑢

𝑘 ↦∑𝑘 𝑎𝑘𝑈
𝑘.
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8.2. The bivariant Chern character

Note that there is a dense subalgebra of𝐴⋊𝛼ℤwith [𝐷,𝑏]bounded because [𝐷𝑆1 ,𝑆] = 1,
so that (𝐸,𝐷) is an unbounded Kasparov (𝐴⋊𝛼 ℤ,𝐴)-module.

Taking the interior Kasparov product with this cycle, in turn, implements the boundary
map 𝜕 in the Pimsner-Voiculescu six-term exact sequence [PV80]

K0(𝐴) K0(𝐴) K0(𝐴⋊𝛼 ℤ)

K1(𝐴⋊𝛼 ℤ) K1(𝐴) K1(𝐴)

1−𝛼−1∗ 𝜄∗

𝜕𝜕

𝜄∗ 1−𝛼−1∗

.

In [Nes88], Nest constructed a – notoriously complicated – map

# ∶ HC•(𝒜) →HC•+1(𝒜⋊𝛼 ℤ),

compatible with the boundary map 𝜕 discussed above, that yields the compatible dia-
gram

HCev(𝒜) HCev(𝒜) HCev(𝒜⋊𝛼 ℤ)

HCodd(𝒜⋊𝛼 ℤ) HCodd(𝒜) HCodd(𝒜)

#

1−𝛼−1∗
𝜄∗

𝜄∗ 1−𝛼−1∗

# .

It would be a beautiful result to realize both the boundary map 𝜕 in KK-theory and
the corresponding map # in cyclic cohomology as resulting from the same, simple
unbounded Kasparov cycle (𝐸,𝐷). The former is already known to be its class in
KK-theory, and the latter should arise as its Chern character.

Nistor’s theory of bivariant Chern characters, however, does not apply here in the
desired generality. The problem is that the spaces 𝐵(𝐻)⊗𝜋𝒜 andℒ𝑝 (𝐻)⊗𝜋𝒜may
be too small, as the following example shows.

Example 8.2.2. Let𝑀 be a compact smooth manifold that is equipped with a diffeo-
morphism 𝜙∶ 𝑀→𝑀 and consider the unbounded Kasparov (𝐶(𝑀)⋊𝜙 ℤ,𝐶(𝑀))-
cycle (𝐸,𝐷) as in Example 8.2.1 (note: this is precisely the 1+-summable cycle of Sec-
tion 7.3).

If 𝜙 is topologically 2-transitive and 𝑓 ∈ 𝐶∞(𝑀) takes at least two different values 𝑧1, 𝑧2,
then the element 𝑓𝑢0 ∈ 𝐶

str
b (𝑀,ℒ(𝐿2(𝑆1))) is not norm continuous. That is to say,

in that case the image of 𝑓𝑢0 inℒ(𝐸) does not lie in (the obvious representation of)
ℒ(𝐿2(𝑆1))⊗𝜋𝐶(𝑀).
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8.2. The bivariant Chern character

Even though we have constructed well-behaved Schatten classes in the case where𝐴
is a commutativeC∗-algebra, that does not suffice to treat this example. We are likely
to wish to consider the cyclic cohomology of some locally convex subalgebra𝒜 ⊂ 𝐴,
say, of smooth functions, where Dini’s theorem no longer applies. Moreover, even
if we really desire to work with𝐴 itself, the relation (if any) between convergence of
the tensor trace tr𝑛 and that of tr depends on the choice of topological tensor product.
Given the fickle nature of these complications, it seems advisable for further treatment
of the subject to embark with very specific examples in mind.
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Samenvatting

Dit proefschrift verkent twee facetten van de spectrale meetkunde: dat van eindige
benadering en dat van continue verandering. In deze samenvatting, bedoeld voor de
geïnteresseerde van buiten het vakgebied, probeer ik een idee te geven van wat de drie
schuingedrukte termen uit die vorige zin inhouden in de context van dit proefschrift.

Spectrale meetkunde

Welk geluid een muziekinstrument maakt, wordt bepaald door de frequenties waarmee
het kan trillen (als reactie op de handelingen van de muzikant). De hoogte van die
frequenties is vervolgens afhankelijk van de vorm van het instrument. Zo kan je aan
bijvoorbeeld de lengte van een pianosnaar of de straal van een trommel al zien hoe hoog
die zal klinken.Wiskundig gezien zoudenwe zeggen: demeetkunde (de vorm, in dit geval
van het instrument) zegt iets over het spectrum (de frequenties) van bepaalde operatoren
(zoals de wiskundige bewerking die – in bovenstaand voorbeeld – de voortstuwing van
geluidsgolven door het instrument beschrijft).

De spectrale meetkunde gaat over de omgekeerde kwestie: als we alleen dat spectrum (de
frequenties dus)weten–of het nou van een instrument, een tafel, of eenwaterstofatoom
is – wat kunnen we daarmee zeggen over de vorm?

Eindige benadering

Omdat we het in de praktijk moeten doen met een beperkt waarnemingsvermogen en
een beperkte rekencapaciteit, introduceert dit proefschrift een methode om vormen
te beschrijven aan de hand van een klein deel van de mogelijke resonantiefrequenties2.

2Dat wil hier zeggen: van stationaire geluidsgolven of, algemener, van het spectrum van een operator
van het Laplace-type.
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Het blijkt zo te zijn dat steeds hogere frequenties steeds meer detail toevoegen, maar
juist steeds minder van doen hebben met de grote lijnen (zie figuur 1). Daarom kunnen
we de lagere frequenties gebruiken om een soort schets te maken.

Figuur 1: Een klein deel van de frequenties overheerst het geluid: ook
zonder de hoge frequenties (onder) blijven de grote lijnen behouden.

De hoofdstukken 2 en 3 gaan dus over de vraag: hoe weet je welke vorm een object heeft,
als je alleen maar deels weet hoe het klinkt? Eerst wordt in hoofdstuk 2 een techniek
ontwikkeld om – door het gedrag van hittestroom3 op heel korte termijn te bekijken
en in verband te brengen met het gedrag van stationaire hittegolven van steeds hogere
frequentie – de meetkundige rol van de laagfrequente resonanties te isoleren.

Vervolgens legt hoofdstuk 3 een verband tussen lokalisatie – in de zin van op-één-plek-
zijn – en de ingrediënten uit hoofdstuk 2. Door combinaties van laagfrequente golven
te maken die zoveel mogelijk zijn gelokaliseerd, krijgen we een (schetsmatig) beeld van
de kleinste stukjes waar de vorm uit bestaat (zie figuur 2). Die stukjes worden vervolgens
aan elkaar gekoppeld door een formule van Connes, die de afstand tussen punten
relateert aan de frequenties van golven die ertussen bewegen.

Figuur 2: Optimaal gelokaliseerde,
laagfrequente golven op de bol.

Figuur 3: Een reconstructie door
PointForge.

Opbasis vandezewiskundige constructie schrevenwevervolgenshet computerprogramma

3Hittestroom is gerelateerd aan het gedrag van geluidsgolven: het gaat allebei om het verspreiden van
trillingen door het materiaal.
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PointForge, dat een reeks resonantiefrequenties kan vertalen in een afbeelding van het
resonerende object (zie figuur 3).

De vraag die centraal staat in hoofdstuk 4 is: voor welke patronen van resonantie-
frequenties bestaat er daadwerkelijk een vorm die zo klinkt? In dit hoofdstuk zetten we
de eerste stappen in die richting, door een natuurkundig concept te gebruiken om zulke
patronen te detecteren en dat concept aan te passen aan de situatiewaar alleen kennis van
de lage frequenties beschikbaar is. In een computerverificatie van deze methode – een
experiment, zogezegd – vonden we een nieuwe meetkundige structuur die verrassend
genoeg op lage frequenties beter de eigenschappen van een bol vertoont dan de bol
dat zelf doet. Dat wil zeggen, als we niet al van tevoren hadden geweten welke van de
getalletjes in onze computer daadwerkelijk een bol voorstelden, hadden we de verkeerde
gekozen.

Als de vraag uit dit hoofdstuk in verder onderzoek wordt beantwoord, kunnen we de
wereld van alle mogelijke vormen verkennen in termen van de wereld van alle ‘correcte’
patronen van resonantiefrequenties: we kunnen dan ‘op gehoor’ vormen construeren.

Debeoogde toepassing vandit hele onderzoek naar de gedeeltelijke resonantiespectra ligt
in de quantumzwaartekracht, omdat de daarvoor cruciale interactie tussen meetkunde
en energie veel tastbaarder is in termen van resonantiefrequenties. Verder is er een sterk
verband met de computerwetenschap, omdat inmachine learning en computer graphics
een zoektocht gaande is naar nieuwe methodes om grip te krijgen op de meetkunde van
zowel abstracte vormen (zoals datasets) als concrete vormen (voor beeldmanipulatie en
animatie).

Continue verandering

Het spoor is een fundamenteel en veelzijdig wiskundig gereedschap in de functionaal-
analyse, en in het bijzonder in de spectrale meetkunde; bijvoorbeeld alle meetkundige
informatie uit hoofdstuk 2 wordt uitgedrukt in termen van sporen. Kort en inadequaat
gezegd is het spoor een manier om het spectrum van een operator in één getal samen te
vatten, zoals je bijvoorbeeld een gemiddelde zou gebruiken om een hoop verschillende
getallen te representeren. We komen zometeen op deze sporen terug.

In de spectrale meetkunde wordt het concept van verandering (van vorm) beschreven
door een verder verfijnd concept van de vormen zelf – we zouden zeggen dat de vorm
langs iets, zoals bijvoorbeeld langs een tijdslijn, verandert, en beschouwen vervolgens
dat hele veranderende proces in één keer, zoals in figuur 4.
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Figuur 4: Twee cirkels veranderen in
één cirkel: een verandering van vorm
is zelf ook een vorm.

Figuur 5: Een regenboog verliest zijn
hoogfrequente kleuren.

Wiskundig gezien wordt zo’n veranderende vorm beschreven met zogenaamde Hilbert-
modules over abelseC∗-algebras. In deze context, echter, bestond zoiets als een spoor
nog niet, en dat belemmerde ons om onze spoorformules uit de spectrale meetkunde
toe te passen in deze bredere sfeer en zo een beter begrip te krijgen van de relatie tussen
verandering en eindpunt. Het laatste deel van dit proefschrift introduceert dan ook een
systematische theorie van sporen in de context van zulke Hilbert-modules.
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