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1. Introduction

The trace is a fundamental and highly versatile invariant of operators on Hilbert 
spaces. In many applications, however, one is rather concerned with continuous families
of such operators. From the perspective of Gelfand duality, the natural framework for 
such continuous families is that of Hilbert C∗-modules over an abelian base. The present 
study provides a systematic construction of trace and Schatten classes in this setting. 
We establish some key properties for them that are familiar from the Hilbert space case. 
We also consider some applications of the general theory.

The finite-rank trace. The ∗-algebra M(A) of finite matrices over a C∗-algebra A comes 
naturally equipped with a positive linear map

tr : M(A) → A, (aij)ij →
∑
i

aii,

which clearly commutes with the entrywise lift of linear maps between C∗-algebras, and 
is cyclic if and only if the algebra A is commutative.

If E is a finitely generated projective Hilbert A-module, any compact adjointable 
endomorphism of E can be represented as an element of M(A) by a choice of isomorphism 
between E and a complemented submodule of An. Whenever A is commutative, cyclicity 
implies that the trace of the resulting matrix is invariant under the choice of isomorphism 
and so constitutes the A-valued (Hattori-Stallings) trace on EndA(E).

Chapter 3, below, introduces a robust framework that generalizes the construction to 
countably generated Hilbert modules.

Continuous families of Schatten-class operators. Given a finite-rank Hermitian vector 
bundle V over a locally compact Hausdorff space X, Gelfand duality and the Serre-Swan 
theorem imply that the finite-rank trace is just the fiberwise trace tr: Γ(EndV ) → C0(X)
of continuous sections of the endomorphism bundle.

If V → X is instead a continuous field of separable Hilbert spaces, then there is still 
a trace map on the fiberwise trace classes. The challenge is then to unify these fiberwise 



A.B. Stern, W.D. van Suijlekom / Journal of Functional Analysis 281 (2021) 109042 3
trace classes in such a way as to yield a C0(X)-valued fiberwise trace that retains the 
fundamental properties of the trace class on a fixed Hilbert space H.

As a fundamental example, consider the trivial bundle H ×X → X with fiber a fixed 
separable Hilbert space H. The C∗-algebra of its adjointable endomorphisms consists of 
all ∗-strongly continuous, bounded families of bounded operators on H. One wonders 
whether this algebra, denoted Cstr

b (X, B(H)), contains two-sided ideals of “continuous 
Schatten-class operators” such that some or most of the usual theory of Schatten classes 
on Hilbert spaces is preserved.

In order to ensure continuity of the trace, the least one should demand of such an ideal 
is that the pointwise Schatten norms lie in C0(X). On the other hand, the strongest rea-
sonable condition at hand is that the families are themselves Schatten-norm continuous, 
that is, that they lie in the Banach space C0(X, Lp (H)). Through careful control over 
the relation between the Schatten classes on the standard Hilbert space l2(C) and the 
complex matrix algebras Mn(C), we are able in Theorem 3.18 to show that these condi-
tions do in fact coincide on Cstr

b (X, B(H)) and yield a two-sided ideal that is contained 
in the compact operators and is closed under its Banach norm.

Kasparov’s stabilization theorem and unitary invariance of the Schatten norms allow 
us to easily generalize the trivial bundle example to all continuous fields of separable 
Hilbert spaces in Theorem 3.25. A further upshot of this approach is that much of the 
pointwise Schatten-class theory, including the Hölder-von Neumann inequality, carries 
over easily to the general case, cf. Theorem 3.28.

Frames and the fiberwise trace. The theory of Schatten classes on Hilbert spaces is often 
mediated through the language of orthonormal bases and diagonalization. The approach 
of Section 3.1 shows that one may very well work with (standard normalized) frames
[18,33] instead. This allows for straightforward generalization of the familiar formulas to 
the theory of Hilbert modules, and indeed, the result is what one would hope for: the 
fiberwise trace turns out to be the norm-convergent sum over the diagonal in a given 
frame, cf. Theorem 3.5. In the context of frames, it was earlier remarked in [12], [18, 
Proposition 4.8] that the obvious notion of Hilbert-Schmidt inner product is invariant 
both under the choice of frame and under the adjoint. That observation is supplied with 
the necessary context as a special case of our Schatten-class operators in Section 3.3.

Applications. By the same principles as for the finite-rank trace, [2] introduced, in the 
context of K-theory, the Fredholm determinant of endomorphisms of finitely generated 
modules over unital commutative algebras. As the Fredholm determinant is interesting 
in its own right, Section 4.1 uses the result on the Schatten classes to extend its definition 
and basic properties to the setting of countably generated modules over unital commu-
tative C∗-algebras. A straightforward generalization of [3] remains however elusive, due 
to the conceptual problems in generalizing the relevant category.

Spectral geometry is the study of Riemannian manifolds M via the spectra of dif-
ferential operators, such as spinc-Dirac operators D, on M . An important example of 
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spectral invariant is the localized heat trace t �→ tr fe−tD2
, f ∈ C(M). It determines the 

volume and total scalar curvature of M , is strongly related to the Atiyah-Singer Index 
Theorem [19], and is able to describe classical field theories on M through the spectral 
action principle [11, Chapter 11]. The first step in generalizing the above to unbounded 
Kasparov cycles, that is, certain (C0(M), C0(N))-Hilbert bimodules carrying a selfad-
joint, regular, C0(N)-linear unbounded operator S, is to make sense of the expressions 
tr fe−tS2 and tr f |S|−z as elements of C0(N). Sections 4.2, 4.3 embark on the necessary 
theory. Open questions for further research remain, particularly in the direction of zeta 
residues and compatibility with the interior product in unbounded KK-theory. Moreover, 
the case where the target algebra is noncommutative is still wide open.

2. Preliminaries

We start by recalling the notion of frames on Hilbert C∗-modules over C∗-algebras. 
For basic definitions on Hilbert C∗-modules, adjointable maps, tensor products, et cetera
we refer to e.g. [40]. We also recall the definition of unbounded Kasparov cycles [4].

Keep in mind that we will, in later sections, specialize to the case of abelian C∗-
algebras, that is, those of the form C0(X) for X a locally compact Hausdorff space. 
Hilbert C∗-modules over such C∗-algebras are given by the sections of continuous fields 
of Hilbert spaces; cf. [38,14].

2.1. Frames on Hilbert C∗-modules

We start this section by recalling two well-known results on Hilbert C∗-modules. For 
completeness we include their (short) proofs.

Proposition 2.1. Let A be a C∗-algebra and let EA be a Hilbert A-module. Then EAA is 
dense in E, and the map u : v ⊗A a �→ va, EA ⊗A A → EA, is unitary.

Proof. Let {eλ} be an approximate unit of A. For all elements v ∈ EA one has 
〈v − veλ, v − veλ〉 = 〈v, v〉− eλ 〈v, v〉− 〈v, v〉 eλ + eλ 〈v, v〉 eλ, which converges to 0; thus, 
v is the norm limit of the sequence veλ ∈ EAA.

Clearly u is isometric, so that its range is closed. As the range is dense, it must be 
surjective and, therefore, unitary. �
Proposition 2.2. Let A and B be C∗-algebras and let EA be a Hilbert A-module. If φ :
A → B is a ∗-homomorphism, then B is a left A-module with the action a · b := φ(a)b. 
Then, there is an adjointable map

φ∗ : EA → EA ⊗A B,

such that 〈φ∗v, φ∗w〉B = φ(〈v, w〉A).
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Moreover, if T ∈ L (EA) then φ∗T := T ⊗ 1 is an adjointable endomorphism of 
EA ⊗A B, i.e. there is an induced map φ∗ : L (EA) → L (EA ⊗A B).

Proof. Recall that the map id∗ : v · a �→ v ⊗A a, EA → EA ⊗A A, is an isomorphism. 
We set φ∗ := (id⊗Aφ) ◦ id∗ and find that for v ⊗A a ∈ EA ⊗A A one has 〈φ∗v, φ∗v〉B =
〈φ(a), 〈v, v〉 · φ(a)〉 = φ(a)∗φ(〈v, v〉)φ(a) = φ(〈v · a, v · a〉). �

A convenient basic fact about separable Hilbert spaces H is that they possess count-
able orthonormal bases {ei}. For one thing, this allows one to explicitly relate the 
compact operators B0(H) to the direct limit M(C) of matrix algebras over the base 
field C and in particular to treat the trace on L1(H) using the series expression 
trT =

∑
i 〈ei, T ei〉.

The situation for Hilbert C∗-modules is slightly less straightforward: we will introduce 
the analogous but strictly weaker concept of a frame. In spite of the increased generality, 
we will see that frames provide sufficient flexibility to mimic standard treatments of 
trace-class operators on Hilbert spaces in the setting of Hilbert C0(X)-modules.

Definition 2.3. Let EA be a countably generated Hilbert C∗-module over a C∗-algebra 
A. A frame e of EA is a sequence ei of elements of EA, such that

〈v, w〉 =
∞∑
i=1

〈v, ei〉 〈ei, w〉 ,

in norm, for all v, w ∈ EA.

Such objects e were called ‘standard normalized frames’ in [18]. Note that the sub-
sequent treatment in [33], which is very similar to the definition used here, is different 
for non-unital C∗-algebras: we require the ei to be in EA, not in the ‘multiplier mod-
ule’ L (AA, EA). This choice will later imply, for instance, that we do not consider the 
identity on the C0(X)-module C0(X), for noncompact spaces X, to be in the trace class.

Example 2.4. Let H be a separable Hilbert space. Let P ∈ B(H) be a projection and 
K = PH ⊂ H. Then, if {ei} is an orthonormal basis of H, we have

〈v, w〉 =
∞∑
i=1

〈Pv, ei〉 〈ei, Pw〉 =
∞∑
i=1

〈v, P ei〉 〈P ei, w〉 ,

for all v, w ∈ K. That is, e = {Pei} is a frame of K. Note that e is not an orthonormal 
basis, because the ei might be neither orthogonal nor of norm 1.

Now, in the context of trace-class operators on a separable Hilbert space H, frames 
‘are as good as orthonormal bases’, in the sense of Corollary 2.6 below.
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Lemma 2.5. Let e, f be frames of a separable Hilbert space H and let T be a bounded 
endomorphism of H. Then, the series 

∑∞
i=1 〈T ∗fi, T

∗fi〉 converges if and only if ∑∞
i=1 〈T ei, T ei〉 converges, and the limits agree.

Proof. Assume that 
∑∞

i=1 〈T ei, T ei〉 < ∞. Then for finite subsets F ⊂ N,

∑
i∈F

〈T ∗fi, T
∗fi〉 =

∑
i∈F

∞∑
j=1

〈T ∗fi, ej〉 〈ej , T ∗fi〉 !=
∑
i∈F

∞∑
j=1

〈ej , T ∗fi〉 〈T ∗fi, ej〉

≤
∞∑
j=1

〈T ej , T ej〉 .

Being bounded and monotone, the series 
∑∞

i=1 〈T ∗fi, T ∗fi〉 must converge. If we now 
switch T and T ∗, e and f and repeat the calculation, we see that the limits must in fact 
agree. �
Corollary 2.6. Let e be a frame of a separable Hilbert space H. Then, for bounded endo-
morphisms T of H, we have T ∈ L2 (H) whenever 

∑∞
i=1 〈T ei, T ei〉 < ∞. Moreover, for 

T ∈ L1 (H), one has trT =
∑∞

i=1 〈ei, T ei〉.

Proof. For the first part, let f be an orthonormal basis and note that by Lemma 2.5, ∑∞
i=1 〈T ei, T ei〉 converges whenever 

∑∞
i=1 〈T ∗fi, T

∗fi〉 does, and the latter fact is equiv-
alent to T ∗ ∈ L2 (H), which is equivalent to T ∈ L2 (H).

For the second part, note that L1 (H) = L2 (H)L2 (H). It is thus sufficient to con-
sider an element T = |S|2 ∈ L1 (H) with S ∈ L2 (H). Then, tr |S|2 = tr |S∗|2 =∑∞

i=1 〈S∗fi, S
∗fi〉, which equals 

∑∞
i=1 〈Sei, Sei〉 by Lemma 2.5. �

We will see later that the Example 2.4 is a very good prototype for the general 
situation for Hilbert C∗-modules as well.

Example 2.7. Let A be a unital C∗-algebra and let l2(A) = l2 ⊗C AA be its standard 
module. Let {ei} be the standard orthonormal basis of l2 and define {ei := ei ⊗ 1A} in 
l2(A). Then clearly

〈v, w〉 =
∞∑
i=1

〈v, ei〉 〈ei, w〉 ; (v, w ∈ l2(A)).

If P ∈ L (EA) is a projection (i.e. P 2 = P ∗ = P ) and FA = P (EA), then

〈Pv, Pw〉 =
∞∑
i=1

〈Pv, ei〉 〈ei, Pw〉 =
∞∑
i=1

〈v, P ei〉 〈P ei, w〉 ,

so {P ei} is a frame of FA.
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Each frame of EA gives rise to a unitary θe : EA → (θeθ∗e )l2(A), as follows.

Proposition 2.8. Let e be a frame of EA. The frame transform θe : EA → l2(A), given by

θe(v) := (〈ei, v〉)i

is adjointable, and its adjoint satisfies θ∗e (ek ⊗ a) = ek · a. Moreover, e is a frame if and 
only if θ∗e θe = idE.

For the proof we refer to [33, Theorem 3.5].

Remark 2.9. Note that, unless A is unital, the converse does not hold: not every isometry 
sending EA to a complemented submodule of l2(A) is induced by a frame. The frame 
elements ei would be given by θ∗e (δij1A)j , but the latter is not an element of l2(A) unless 
A is unital. This is where our treatment differs from that of [33], which works with frames 
(in the present sense) of the multiplier module L (EA, A) instead.

Frames are compatible with ∗-homomorphisms. In particular, this means that charac-
ters of a commutative C∗-algebra map frames of Hilbert C∗-modules to frames of Hilbert 
spaces.

Proposition 2.10. Let A, B be C∗-algebras, EA a Hilbert A-module and φ : A → B a 
∗-homomorphism. If e is a frame of EA and if φ is surjective, then φ∗(e) is a frame of 
EA ⊗A B.

Proof. Consider f := φ∗(e) = {φ∗(ei)}i ∈ EA ⊗A B. Note that θf(φ∗v) = φ∗θe(v), as 
elements of φ∗l2(A) ⊂ l2(B). Thus, 〈θf(φ∗v), θf(φ∗w)〉 = φ(〈θe(v), θe(w)〉) = φ(〈v, w〉) =
〈φ∗v, φ∗w〉 so that with Proposition 2.8 it follows that f is a frame. �
2.1.1. Existence of frames

Kasparov’s stabilization Theorem [27] shows that Example 2.7 describes the general 
unital (and, as we will see, the non-unital) case very well.

Theorem 2.11. Let A be a unital C∗-algebra and let EA be a countably generated Hilbert 
A-module. Then there exists a projection P 2 = P = P ∗ in L 

(
l2(A)

)
such that EA 

P
(
l2(A)

)
. In particular, EA possesses a frame.

For the proof we refer to [27] (see also [29, Theorem 6.2]).
The non-unital case requires more effort, but the end result is the same. We refer to 

[22, Section 2] for a proof.

Proposition 2.12 ([22, Proposition 2.6]). Let A be a C∗-algebra. Then, all countably 
generated Hilbert A-modules possess a frame.
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2.2. The standard module over abelian C∗-algebras

For the rest of this subsection, let X be a locally compact Hausdorff space. The C∗-
algebra C0(X) is abelian – and, by Gelfand duality, all abelian C∗-algebras are of this 
type.

We will investigate the Hilbert C0(X)-module C0(X, H), for H a separable Hilbert 
space, which will later provide a useful tool in investigating the Schatten classes of 
operators on more general Hilbert C0(X)-modules. We start with some basic definitions 
and results, whose proof we leave to the reader.

Definition 2.13. Let f be a map from a locally compact topological space X to a normed 
space. We say that f vanishes at infinity whenever for all ε > 0, {x ∈ X : ‖f(x)‖ ≥ ε}
is compact.

Definition 2.14. Let Y be a Banach space, equipped with its norm topology. The space 
C0(X, Y ) consists of the continuous functions from X to Y that vanish at infinity.

Proposition 2.15. Let Y be a Banach space and X be a locally compact topological space. 
Then, C0(X, Y ) is a Banach space when equipped with the norm ‖f‖ := supx∈X ‖f(x)‖. 
Moreover, for f ∈ C0(X, Y ), the map x �→ ‖f(x)‖ lies in C0(X).

Proposition 2.16. Let H be a separable Hilbert space. Then, the Banach space C0(X, H)
has the structure of a Hilbert C∗-module when equipped with the C0(X)-valued inner 
product 〈v, w〉 (x) := 〈v(x), w(x)〉H .

Proposition 2.17. The Hilbert C∗-module C0(X, H) is unitarily equivalent to the tensor 
product H ⊗C C0(X) of Hilbert C∗-modules.

Proof. Let {ei}i be an orthonormal basis of H, and for v ∈ C0(X, H) write vi : x �→
〈v(x), ei〉; this defines a sequence of functions in C0(X). Because 〈v, v〉 =

∑∞
i=1 v

∗
i vi

converges pointwise, is positive and lies in C0(X), it converges in the norm of C0(X) by 
Dini’s theorem.

Consider then the C0(X)-linear map θ : C0(X, H) → H ⊗C C0(X) defined by v �→∑
i ei ⊗ vi. This series converges in H ⊗C C0(X) because

∥∥∥∥∥∑
i∈F

ei ⊗ vi

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i,j∈F

〈vi, 〈ei, ej〉 vj〉

∥∥∥∥∥∥ =

∥∥∥∥∥∑
i∈F

〈vi, vi〉
∥∥∥∥∥ .

Moreover, taking limits on both sides we see that θ is isometric.
Now, the map m : H ⊗C C0(X) → C0(X, H), h ⊗ a �→ ha, is isometric because 

〈
∑

i hi ⊗ ai,
∑

i hi ⊗ ai〉 =
∑

ij 〈hi, hj〉 a∗i aj = 〈
∑

i m(hi ⊗ ai),
∑

i m(hi ⊗ ai)〉. As m in-
verts θ by orthonormality of the {ei}i, we conclude that θ is a surjective C0(X)-linear 



A.B. Stern, W.D. van Suijlekom / Journal of Functional Analysis 281 (2021) 109042 9
isometry, so that it is adjointable (with adjoint m) and moreover unitary. Therefore, 
C0(X, H) is unitarily equivalent to H ⊗C C0(X). �
Proposition 2.18. The C∗-algebra L (C0(X,H)) of adjointable endomorphisms of the 
Hilbert C0(X)-module C0(X, H) is isomorphic to the C∗-algebra Cstr

b (X,B(H)) of 
bounded, ∗-strongly continuous maps from X to B(H).

Proof. Consider a point x in X as a character χ : C0(X) → C given by evaluation in x. 
By Proposition 2.2 there is an adjointable map χ∗ : C0(X, H) → C0(X, H) ⊗C0(X,H) C

whose image χ∗(C0(X, H)) can be canonically identified with H. Accordingly, in terms 
of the map χ∗ : L (C0(X,H)) → L (C0(X,H)) given by T �→ T ⊗ 1, we have canonically 
χ∗L (C0(X,H))  B(H).

Now take T ∈ L (C0(X,H)) and a convergent sequence xi → x in X. Let 
h ∈ H and let v0 ∈ C0(X, H) be constant in a neighborhood of x with v0(x) =
h. Since T is an adjointable endomorphism, both Tv0 and T ∗v0 lie in C0(X, H), 
so that ‖Tv0(xi) − Tv0(x)‖ → 0 and ‖T ∗v0(xi) − Tv0(x)‖ → 0. That is to say, 
‖(χi∗T )h− (χ∗T )h‖ → 0 and ‖(χi∗T

∗)h− (χ∗T
∗)h‖ → 0. As x and h were arbitrary, we 

conclude that T ∈ Cstr(X,B(H)). Moreover, if ‖T (x)‖ > C for some x ∈ X and C > 0, 
there is v0 as above with ‖v0‖ ≤ 1 and ‖Tv0‖ > C − ε for all ε > 0, so that we conclude 
that ‖T‖ ≥ C. Thus, if T preserves C0(X, H) it must lie in Cstr

b (X,B(H)).
Conversely, for all T ∈ Cstr

b (X,B(H)) we have that x �→ T (x)v(x) and x �→ T ∗(x)v(x)
define maps in C0(X, H) for all v ∈ C0(X, H). Since 〈Tv,w〉 (x) = 〈T (x)v(x), w(x)〉 =
〈v(x), T ∗(x)w(x)〉 we conclude that the pointwise adjoint provides an adjoint of T as an 
operator of C0(X, H). That is, all such T are adjointable operators on C0(X, H). �
2.2.1. General Hilbert C∗-modules over a commutative base

We now apply the above results to the case of general Hilbert C0(X)-modules. For a 
deeper topological understanding of such modules, see [38,14].

Proposition 2.19. Let E be a Hilbert C0(X)-module. Then there exists a ∗-strongly contin-
uous projection P ∈ Cstr

b (X, B(H)) such that E is isomorphic to the subset Γ0(X, P ) ⊂
C0(X, H) of those elements h of C0(X, H) satisfying h(x) ∈ ranPx. Moreover, under 
this identification L (E) is isomorphic to the set of elements T ∈ Cstr

b (X, B(H)) such 
that PT = TP = T .

Proof. If X is compact, this is a direct consequence of Kasparov’s stabilization Theo-
rem 2.11 and Propositions 2.17 and 2.18. If not, consider E as an C0(X)+-module and 
note that the endomorphism P from Theorem 2.11 is already in Cstr

b (X+, B(H)) in terms 
of the one-point compactification X+ of X. But since (e, e) ∈ C0(X) for e ∈ E, the map 
P must project into a subspace of C0(X, H).

For the last statement, let T ∈ Cstr
b (X, B(H)) such that PT = TP = T . Then 

PTP = T so that T preserves Γ0(X, P ). Conversely, let S ∈ L (Γ0(X,P )). Then, the 
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map T = SP is a composition of adjointable operators and is therefore an element of 
L (C0(X,H))  Cstr

b (X, B(H)) using Proposition 2.18. We clearly have PT = TP = T

so that the claim follows. �
Note that the fibers PxH of E may vary quite wildly with x ∈ X, as the following 

example shows.

Example 2.20. Let U ⊂ X be open and let P be the orthogonal projection onto a closed 
subspace V ⊂ H. Then, E = C0(U, V ) ⊂ C0(X, V ) is (in particular) a Hilbert C0(X)-
module because the action of C0(X) on C0(X, V ) by pointwise multiplication preserves 
the subspace C0(U, V ). The fibers of E are V for x ∈ U and {0}, for x /∈ U .

The following example illustrates how the projections associated to such bundles be-
have.

Example 2.21. Let U ⊂ X be open and let V = span v0 ⊂ H, with ‖v0‖H = 1. We 
will investigate the projection associated to the Hilbert C0(X)-module E = C0(U, V ) by 
Proposition 2.19.

Let {ηi}i be a compactly supported partition of unity on U , so that 
∑

i η
2
i (x) = 1U (x)

for x ∈ X. Then, v =
∑

i v0η
2
i 〈v, v0〉 for all v ∈ E, so that {ei := v0ηi}i is a frame of 

C0(U, V ). In fact, any frame f is of this form: we have ηi = 〈v0, fi〉.
Now, let {wi}i be an orthonormal basis of H. Then, θe, the frame transform of e, 

maps w ∈ C0(U, V ) to 
∑

i wi 〈ei, w〉.
Although the image Γ0(X, θeθ∗e ) of θe (consisting of those elements w of C0(X, H) for 

which 〈wi, w〉 has support contained in that of ei) is isomorphic to C0(U, V ) through the 
map θ∗e , it looks decidedly different from the isomorphic subspace C0(U, V ) of C0(X, H)
we started with. The associated projection P = θeθ

∗
e maps w to 

∑
i wiηi

∑
j ηj 〈w,wj〉.

In the previous Example, note that ‖P (x)‖ = 1 for x ∈ U and ‖P (x)‖ = 0 for x /∈ U . 
Thus, P ∈ Cstr

b (X,B(H)) lies in Cb(X, B(H)) if and only if U is clopen, that is, if and 
only if the bundle {(x, h) | h = 1U (x)h} is locally trivial. This illustrates a general 
criterion for local triviality:

Remark 2.22. If P ∈ Cb(X, B(H)) ⊂ Cstr
b (X,B(H)) is a projection, then each x ∈ X

has a neighborhood on which ‖P (y) − P (x)‖ < 1, so that there exists a continuous map 
y �→ uy with P (y) = uyP (x)u∗

y by [40, Proposition 5.2.6]. We conclude that the bundle 
{(x, h) | h ∈ P (x)H} is locally trivial.

Conversely, if the bundle is locally trivial, at least when the fibers are constant, we can 
choose P to be norm continuous. More precisely, if we let p : F → X be a locally trivial 
bundle of Hilbert spaces with separable, infinite-dimensional fiber H. By [34, Corollary 
4.79] F is isomorphic to X × H, and Γ0(F ) is isomorphic to C0(X, H). We may thus 
choose P = idH ∈ Cb(X, B(H)) in Proposition 2.19.
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If instead H is finite-dimensional, then by the Serre-Swan theorem [20, Theorem 2.10]
there exists a projection p ∈ Mn(A) with pAn  Γ0(F ). Thus, in Proposition 2.19 we 
may choose H = Cn and P = p.

3. Schatten classes for Hilbert C0(X)-modules

When A is abelian, i.e. A  C0(X) for some locally compact Hausdorff space X, each 
adjointable operator T on a Hilbert A-module EA can be localized by the pure states 
χ of A to yield a family χ∗T of operators on the Hilbert spaces χ∗EA. We will unify 
the pointwise Schatten classes Lp (χ∗EA) into a two-sided ideal Lp (EA) ⊂ L (EA) and 
define an A-valued trace on L1 (EA).

Assumption 3.1. We will require all of our Hilbert A-modules to be countably generated 
in order to ensure access to frames using Proposition 2.12.

We will denote the character space of a commutative C∗-algebra A equipped with the 
weak∗ topology by Â, so that A  C0(Â) with Â a locally compact Hausdorff space.

The least we should demand of ‘Schatten-class operators’ T on EA is that their point-
wise Schatten norm, i.e. the trace of |χ∗T |p, varies continuously with χ ∈ Â. In fact, this 
is the way to ensure that the ‘trace-class operators’ have traces with values in A and 
that the other Schatten classes respect this property in their pairing. The most we could 
reasonably demand, in contrast, is that the operators χ∗T are continuous in Schatten 
norm with respect to some trivialization of EA (see Definition 3.8, below). It will turn out 
that these requirements, properly understood, are equivalent and yield a well-behaved 
Schatten class.

Definition 3.2. The p-th Schatten class Lp (EA) for 1 ≤ p < ∞ is the space of all endo-
morphisms T ∈ L (EA) for which the function tr |T |p : Â → R ∪ {∞}, χ �→ tr |χ∗T |p lies 
in A.

The following proposition, familiar from the Hilbert space case, is immediate from the 
definition:

Proposition 3.3. Let 1 ≤ p < ∞ and let T ∈ L (EA). Then

T ∈ Lp (EA) ⇐⇒ |T | ∈ Lp (EA) ⇐⇒ |T |p ∈ L1 (EA) .

Remark 3.4. Recall that Dini’s theorem, translated to the abelian C∗-algebraic context, 
states the following: if ai is a sequence of positive elements in A, then 

∑
i ai converges in 

norm if and only if the function x �→
∑

i x(ai) is an element of C0(X)  A. This theorem 
plays a crucial role throughout, because it allows us to relate the fiberwise Schatten 
norms on bundles of Hilbert spaces to various expressions for the element tr |T |p ∈ A, 
for T ∈ Lp (EA).
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We will use the existence of frames (cf. Proposition 2.12), to relate Lp (EA) to the 
Schatten classes Lp

(
l2(A)

)
on the standard module l2(A) and to relate the trace tr |T |p

to a series expression in terms of (arbitrary) frames.

Theorem 3.5. Let T ∈ L (EA). Then T ∈ Lp (EA) if and only if θeTθ∗e ∈ Lp
(
l2(A)

)
for 

any frame e of EA with frame transform θe. Equivalently, T ∈ Lp (EA) if and only if the 
series 

∑∞
i=1 〈ei, |T |pei〉 converges in norm; the limit equals tr |T |p = tr θe|T |pθ∗e .

Proof. We start with the second part. As χ∗(e) is a frame of the Hilbert space χ∗EA, one 
has tr |χ∗T |p =

∑∞
i=1 〈χ∗(ei), |χ∗T |pχ∗(ei)〉 =

∑∞
i=1 χ(〈ei, |T |pei〉). Hence if T ∈ Lp (EA), 

the positive series 
∑∞

i=1 〈ei, |T |pei〉 converges in norm to an element tr |T |p of A by Dini’s 
theorem.

Conversely, if the series 
∑∞

i=1 〈ei, |T |pei〉 converges in norm, then the limit provides 
an element tr |T |p ∈ A such that χ(tr |T |p) = tr |χ∗T |p for all characters χ of A, so that 
T ∈ Lp (EA).

For the first part, because θ∗eθe = idEA
, we have |θeTθ∗e |p = θe|T |pθ∗e . Furthermore, 

note that {fi := θe(ei)}i is a frame of θeθ∗e l2(A)  EA so that the elements {ei := χ∗fi}i
form a frame of χ∗θeθ

∗
e l

2(A) by Proposition 2.10. Now, by definition of the ei we have 
χ∗(θe|T |pθ∗e )(ei) = χ∗(θe|T |pei) and so 〈ei, χ∗(θe|T |pθ∗e )(ei)〉 = 〈χ∗(θeei), χ∗(θe|T |pei)〉 =
χ(〈ei, |T |pei〉). That is,

trχ∗θe|T |pθ∗e =
∞∑
i=1

〈ei, χ∗(θe|T |pθ∗e )(ei)〉 =
∞∑
i=1

χ (〈ei, |T |pei〉) .

Thus, if 
∑∞

i=1 〈ei, |T |pei〉 converges to an element of A, we have θe|T |pθ∗e ∈ Lp
(
l2(A)

)
. 

Conversely, if θe|T |pθ∗e ∈ Lp
(
l2(A)

)
then the function on Â defined by χ �→∑∞

i=1 χ (〈ei, |T |pei〉) lies in C0(X)  A. The series must then converge in norm by 
Dini’s theorem. �
Corollary 3.6. Let S ∈ L (EA) and T ∈ Lp (EA). If |S|p ≤ |T |p, then S ∈ Lp (EA) and 
in particular tr |S|p ≤ tr |T |p.

Proof. Let e be a frame of EA. Then 
∑

i∈F 〈ei, |S|pei〉 ≤
∑

i∈F 〈ei, |T |pei〉 for all finite 
F ⊂ N; in particular, the left-hand side is Cauchy whenever the right-hand side is. By 
Theorem 3.5, this will suffice. �
Remark 3.7. The above Corollary is weaker than the Hilbert space version (cf.
Lemma 3.14(3) below. Instead, Corollary 3.23 below gives a stronger result but an 
additional assumption on S is required. Note that this is the only point in the treatment 
of this chapter where such a difference between the Hilbert module and Hilbert space 
Schatten classes appears.
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The most straightforward road to analyzing the structure and properties of Lp (EA)
now lies open: we will investigate Lp

(
l2(A)

)
and use the pullback by the frame transforms 

to transfer its properties to Lp (EA). It will turn out that Lp
(
l2(A)

)
is indeed very well-

behaved, so that this allows us to recover many of the familiar properties of the Schatten 
classes of operators on Hilbert spaces.

3.1. The Schatten class on the standard module

Let H be a separable Hilbert space and let A = C0(X) be an abelian C∗-algebra. 
Recall from Section 2.2 that the Hilbert A-module H ⊗C A is isomorphic to C0(X, H)
through the canonical isomorphism χ∗(H ⊗C A)  H (with a character χ ∈ Â always 
corresponding via the Gelfand transform to a point x ∈ X). Recall, moreover, that its 
endomorphism space is given by Cstr

b (X, H) with the fiberwise action given simply by 
T (h)(x) := T (x)(h(x)) for x ∈ X.

Because all fibers are identified canonically with H, we may canonically compare the 
localizations of an operator T ∈ L (H ⊗C A) between different fibers. This technically 
useful difference between H ⊗C A and other Hilbert A-modules will allow us to use 
topologies on B(H) to define particular subsets of L (H ⊗C A). Most importantly,

Definition 3.8. The space of continuous Schatten-class operators on C0(X, H)  H⊗CA

is the subspace C0(X, Lp (H)) of Cstr
b (X, B(H)).

Note that where the requirement that tr |T |p ∈ A is the least restrictive among rea-
sonable criteria for a ‘Schatten-class operator’ T , as discussed above Definition 3.2, the 
condition of Definition 3.8 is arguably the most restrictive.

However, we will prove that the demands are, in fact, equivalent, so that the 
space Lp (H ⊗C A) of Schatten-class operators can be identified with the Banach space 
C0(X, Lp (H)) of continuous Schatten-class operators. This will later—specifically in 
Theorem 3.25—allow us to combine the properties that follow straightforwardly from 
either of the two definitions.

Remark 3.9. Clearly, one has C0(X, Lp (H)) ⊂ Lp (C0(X,H)) because, for T ∈
C0(X, Lp (H)) and x, y ∈ X, we have ‖T (x) − T (y)‖p ≥ | ‖T (x)‖p − ‖T (y)‖p | so that 
x �→ ‖T (x)‖p ∈ A.

The ostensibly more restrictive definition of the continuous Schatten class has some 
advantages to that of Lp (C0(X,H)). For instance, it is immediate from the definition 
that C0(X, Lp (H)) is closed under addition, as we have not yet shown for Lp (C0(X,H)). 
Moreover, we can easily obtain a continuous version of the Hölder–von Neumann inequal-
ity:

Proposition 3.10. Let p, q, r ≥ 1 such that 1
p + 1

q = 1
r , and let S ∈ C0(X, Lp (H)) and 

T ∈ C0(X, Lq (H)). Then ST ∈ C0(X, Lr (H)) and ‖ST‖r ≤ ‖S‖p ‖T‖q.
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Proof. For any x, y ∈ X we have

‖ST (x) − ST (y)‖r ≤ ‖(S(x) − S(y))T (x) + S(y)(T (x) − T (y))‖r ,

which is bounded by ‖S(x) − S(y)‖p ‖T (x)‖q + ‖S(y)‖p ‖T (x) − T (y)‖q due to the 
Hölder–von Neumann inequality [36, Theorem 2.8]. We conclude that ST is continu-
ous as a map from X to Lr (H). Moreover, since ‖ST (x)‖r ≤ ‖S(x)‖p ‖T (x)‖q for all x, 
the statement on the norms follows as well as the claim that ST ∈ C0(X, Lr (H)). �

We now identify a subset of C0(X, Lp (H)) ⊆ Lp (H ⊗C A) (cf. Remark 3.9 for 
the latter inclusion) whose completion in the Banach norm of C0(X, Lp (H)) is all 
of Lp (H ⊗C A). This will show that Lp (H ⊗C A) coincides with the Banach space 
C0(X, Lp (H)). Moreover, the fact that this common subset consists of finite-rank op-
erators, in the Hilbert module sense, allows us to show that Lp (EA) ⊂ K (EA) in 
Theorem 3.25.

Proposition 3.11. The finite-rank operators (in the Hilbert C∗-module sense) on C0(X, H)
lie in C0(X, Lp (H)).

Proof. Let T = |v〉 〈w| with v, w ∈ C0(X, H). Then, for x, y ∈ X, ‖(Tx − Ty)‖p ≤
‖|vx − vy〉 〈wy|‖p + ‖|vy〉 〈wx − wy|‖p. Pointwise in H, however, we have ‖|ξ〉 〈η|‖p =
‖ξ‖ ‖η‖, so that norm continuity of v and w finish the proof. �
Lemma 3.12. Let V ⊂ H be finite-dimensional and consider C0(X,B(V )) as a subspace 
of Cstr

b (X,B(H)) by the map T �→ T ⊕ 0 ∈ B(V ) ⊕B(V ⊥) ⊂ B(H). Then, all elements 
of C0(X, B(V )) are finite rank operators on the Hilbert modules C0(X, H). In particular, 
we have C0(X,B(V )) ⊂ C0(X, Lp (H)) for all 1 ≤ p < ∞.

Proof. Let T ∈ C0(X, B(V )) and decompose so that T = S|T | 12 . Then let {ei}ni=1 be an 
orthonormal basis of V . Because 

∑
i |ei〉 〈ei| = idV , we have T = S

∑
i |ei〉 〈ei| |T |

1
2 =∑

i |Sei〉 〈|T |
1
2 ei|, where we denote for R ∈ C0(X, B(V )) by Rei the element x �→ R(x)ei

of C0(X, V ). We conclude that T is of finite rank. �
Remark 3.13. By a theorem of Fell [17, Theorem 4.1], the compact operators on C0(X, H)
that have bounded rank automatically have continuous trace. See Remark 3.26, below, 
for the link to the study of continuous-trace C∗-algebras.

3.1.1. Some properties of the Schatten classes on Hilbert spaces
We assemble here some more or less well-known properties of the ordinary Schatten 

classes on B(H). The purpose is to show that one can use the series that defines the 
trace of |T |p to control the rate at which certain finite-rank approximations of T will 
converge to T in Schatten norm.
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Lemma 3.14. Let T ∈ Lp (H).

(1) For 1 ≤ p < 2 one has ‖T‖pp = inf{ei}i

∑∞
i=1 ‖Tei‖

p, where the infimum is taken 
over orthonormal bases {ei}i of H.

(2) For p ≥ 2, one has ‖T‖pp = sup{ei}i

∑∞
i=1 ‖Tei‖

p, where the supremum is over 
orthonormal bases {ei}i of H.

(3) Let p ≥ 2. For any bounded endomorphism S ∈ L (H), if |S|2 ≤ T for some T ∈
Lp/2 (H), then S ∈ Lp (H) and ‖S‖pp ≤ ‖T‖p/2p/2.

Proof. Let {ei}i be an orthonormal eigenbasis of (the compact, normal operator) T ∗T , 
ordered by decreasing of the corresponding eigenvalues {λi}.

First note that tr |T |p =
∑∞

i=1 〈Tei, T ei〉
p/2. Any other orthonormal basis {fi = Uei}

of H is related to {ei} by some unitary operator U ∈ B(H).
For 1 ≤ p < 2, the function x �→ xp/2 is concave on R+. Thus, since 〈Tfi, T fi〉 =∑
j 〈fi, T ∗Tej〉 〈ej , fi〉 =

∑
j λj |〈ej , fi〉|2 we find that ‖Tfi‖p ≥

∑
j λ

p/2
j |〈ej , fi〉|2 =

〈fi, |T |pfi〉. We conclude that

∞∑
i=1

‖Tfi‖p ≥
∞∑
i=1

〈fi, |T |pfi〉 = trU∗|T |pU = tr |T |p.

For p ≥ 2 the function x �→ xp/2 is convex on R+ and we find, mutatis mutandis in 
the argument as above that now

∞∑
i=1

‖Tfi‖p ≤
∞∑
i=1

〈fi, |T |pfi〉 = trU∗|T |pU = tr |T |p.

For the final claim, if |S|2 ≤ R∗R, one has ‖Sei‖p ≤ ‖Rei‖p so that ‖S‖pp ≤ ‖R‖pp =
‖R∗R‖p/2p/2. �

We will need the following Corollary in the proof of Lemma 3.16.

Corollary 3.15. Let T ∈ B(H) and let e be a finite-rank projection. For any p ≥ 2 we 
have Te ∈ Lp (H) and, in fact,

‖Te‖pp ≤ tr e|T |pe.

Proof. As in Lemma 3.14, let eT ∗Te have eigenbasis {gi} with eigenvalues {λi}. Then, 
for any v ∈ H, we have 〈Tev, Tev〉 =

〈
e|T |2ev, v

〉
=

∑
j λj | 〈v, gj〉 |2. In particular,

〈Tev, Tev〉p/2 = ‖v‖p
⎛⎝∑

j

λj
| 〈v, gj〉 |2
〈v, v〉

⎞⎠p/2

.
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By convexity of x �→ xp/2 on R+ for p ≥ 2 we have

〈Tev, Tev〉p/2 ≤ ‖v‖p−2 ∑
j

λ
p/2
j | 〈v, gj〉 |2 = ‖v‖p−2 〈v, e|T |pev〉 .

But from the Lemma it then follows that

‖Te‖pp = sup
{fi}

∑
i

‖Tefi‖p ≤ sup
{fi}

∑
i

‖fi‖p−2 〈fi, e|T |pefi〉 ≤ tr e|T |pe. �

With respect to a choice of orthonormal basis on H, we can view Lp (H) as a comple-
tion of the direct limit MatC of finite matrix algebras Matn(C) in the Schatten norm. 
This can be done ‘uniformly’, where the convergence of the limit is controlled by the 
trace, as we will show in Proposition 3.17 below.

Given T ∈ L (H) and a sequence of increasing finite-dimensional subspaces PH ⊂ H, 
the operator PTP converges to T ∗-strongly as P → idH . The following Lemma allows 
us to control the p-norm of the difference when increasing the rank of P by one, such 
that PTP → T in p-norm precisely when T ∈ Lp (H).

Lemma 3.16. Let p ∈ [1, ∞) and let T ∈ Lp (H). Let e be a finite-rank projection in H, 
let P be a finite-rank projection with Pe = eP = 0 and let Q = P + e. Then,

‖QTQ− PTP‖p ≤ ‖T‖1/2
p

(
(tr e|T ∗|pe)1/2p + (tr e|T |pe)1/2p

)
Proof. One has QTQ − PTP = PTe + eTe + eTP = eTQ + PTe, so that ‖QTQ −
PTP‖p ≤ ‖eTQ‖p + ‖PTe‖p. Now compose T as T = S|T | 12 with |S|2 = |T |. Then, by 
the Hölder-von Neumann inequality, we have ‖eTQ‖p ≤ ‖eS‖2p‖|T |1/2Q‖2p and similarly 
‖PTe‖p ≤ ‖PS‖2p‖|T |1/2e‖2p. Moreover, ‖PS‖2p ≤ ‖T‖1/2

p and ‖|T |1/2Q‖2p ≤ ‖T‖1/2
p , 

and as ‖eS‖2p = ‖S∗e‖2p, we may now apply Corollary 3.15 directly (to ‖S∗e‖2p and 
‖|T |1/2e‖2p) in order to finish the proof. �
3.1.2. Identification of Lp (H ⊗C A) with C0(X, Lp (H))

It is a well-known fact that the finite-rank operators are dense in Lp (H) for any 
p, as can easily be seen from the spectral theorem for compact self-adjoint operators. 
This argument, however, does not extend uniformly to self-adjoint T ∈ C0(X, Lp (H))
unless T is continuously diagonalizable. The explicit, albeit apparently somewhat clumsy, 
result of Lemma 3.16 presents a solution to this problem. Namely, orthogonal projections 
P ∈ B(H) can be lifted to constant projections Cstr

b (X,B(H)). This allows the Lemma 
to be applied uniformly to all of Cstr

b (X,B(H)), as we do in Proposition 3.17 below. 
This will then provide the main ingredient of main result of this section, to wit, the 
identification of Lp (H ⊗C A) with C0(X, Lp (H)) (Theorem 3.18).

Proposition 3.17. Let T ∈ Cstr
b (X,B(H)), let p ∈ [1, ∞) and assume that the function 

tr |T |p : x ∈ X �→ tr |T (x)|p is defined everywhere and lies in A = C0(X).
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Let {ei}i be an orthonormal basis of H and let, for any n ≥ 0, Pn :=
∑n

i=1 |ei〉 〈ei|
be the corresponding spectral projections. Then the operators Tn := PnTPn (as in 
Lemma 3.16) are elements in C0(X, Lp (H)) and, for m ≥ n,

‖Tm − Tn‖2p
p ≤ 22p−1 sup

x∈X
tr |T (x)|p

m∑
i=n+1

〈ei, (|T (x)|p + |T ∗(x)|p) ei〉

Proof. Note that Tn is a finite-rank operator and in particular Tn ∈ C0(X, Lp (H)), 
by Lemma 3.12. Moreover, by Lemma 3.16 applied to the projections P = Pn, 
Q = Pm and e = Pm − Pn, and by convexity of x �→ x2p, we have ‖Tm − Tn‖2p

p ≤
22p−1‖T‖pp

∑m
i=n+1 〈ei, |T |p + |T ∗|pei〉. �

Theorem 3.18. Let T ∈ Cstr
b (X,B(H)). Then T ∈ C0(X, Lp (H)) if and only if T ∈

Lp (C0(X,H)).

Proof. The implication ⇒ was already established in Remark 3.9. For the converse, as-
sume that T ∈ Cstr

b (X,B(H)) and that x �→ tr |T (x)|p lies in C0(X). Then, pick an 
orthonormal basis {ei}i of H and write again Tn = PnTPn as in Proposition 3.17. 
Since x �→ tr |T (x)|p = tr |T ∗(x)|p is in C0(X), the series 

∑∞
i=1 〈ei, |T (x)|pei〉 and ∑∞

i=1 〈ei, |T ∗(x)|pei〉 must converge uniformly on compact subsets of X by Dini’s theo-
rem. That, in turn, implies that

sup
x∈X

‖Tn+k(x) − Tn(x)‖p <

[
22p−1 sup

x∈X
tr |T (x)|p

n+k∑
i=n+1

〈ei, (|T (x)|p + |T ∗(x)|p) ei〉
] 1

2p

goes to zero for large n. Since C0(X, Lp (H)) is a Banach space, the sequence Tn thus 
converges (to T ) in Schatten p-norm, so that T ∈ C0(X, Lp (H)). �
Remark 3.19. In terms of tensor products of Banach spaces, Theorem 3.18 translates to 
the statement that Lp (H ⊗C A)  Lp (H) ⊗ε A, the injective tensor product.

Corollary 3.20. The continuous Schatten class C0(X, Lp (H)) forms a two-sided ideal in 
Cstr

b (X,B(H)).

Proof. Let T ∈ C0(X, Lp (H)) and let T ′ ∈ Cstr
b (X,B(H)). Then, for any basis {ei}i

of H the operators Tn := PnTPn with Pn and S as in Proposition 3.17, converge to T
in the continuous Schatten p-norm. Now, note that ‖T ′(Tm − Tn)‖p ≤ ‖T ′‖ ‖Tm − Tn‖p
and ‖(Tm − Tn)T ′‖p ≤ ‖T ′‖ ‖Tm − Tn‖p; thus, the finite-rank operators T ′Tn and TnT

′

converge to T ′T and TT ′, respectively, in the norm of C0(X, Lp (H)). �
Remark 3.21. This result does not follow directly from the fact that Lp (H) is an ideal 
of B(H) equipped with a Banach norm such that the inclusion into B(H) is continuous: 
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each such ideal induces a two-sided ideal Cb(X, I) ⊂ Cb(X, B(H)), but that is not 
necessarily an ideal of Cstr

b (X, B(H)). An easy counterexample is given by I = B(H)
itself.

Corollary 3.22. The continuous Schatten class C0(X, Lp (H)) is contained in the compact 
operators on the Hilbert C∗-module C0(X, H).

Proof. The operators Tn of Proposition 3.17 are of finite rank in the Hilbert module 
sense, because they are contained in C0(X, B(V )) for some finite-dimensional V ⊂ H

so that we can apply Lemma 3.12. As Tn → T for T ∈ C0(X, Lp (H)) in the Schatten 
p-norm, Tn → T in operator norm as well. We conclude that T is compact in the Hilbert 
module sense. �

The following slight strengthening of Corollary 3.6 to C0(X, Lp (H)) now translates 
to Lp (C0(X,H)).

Corollary 3.23. If 0 ≤ S ≤ T ∈ Cstr
b (X,B(H)) and T ∈ Lp (C0(X,H)) and additionally 

we have S ∈ Cnorm
b (X, B(H)), then S ∈ Lp (C0(X,H)) and tr |S|p ≤ tr |T |p.

Proof. The operators S, T are pointwise compact, norm continuous (this is where we 
use the additional assumption on S) and positive, so that their individual eigenvalues 
λk (ordered decreasingly) are continuous ([28, IV.3.5], see also Lemma 4.16 below).

Then, by the min-max theorem, the k’th singular value of χ∗S is bounded by the k’th 
singular value of χ∗T , so that the same holds for their p’th powers. As the Schatten norm 
of χ∗T is the sum of those p’th powers, which converges to a continuous function, the 
convergence must be uniform by Dini’s theorem. Thus, the series 

∑
k λk(T )p of elements 

of A is Cauchy, so that the series 
∑

k λk(S)p must be Cauchy as well. We conclude that 
x �→ ‖χ∗S‖p lies in A. �
Remark 3.24. The additional assumption in Corollary 3.23 is necessary because the pos-
itive compact operators on a Hilbert C∗-module, in contrast to those on a Hilbert space, 
may not necessarily form an order ideal: there is an additional continuity requirement 
on the (pointwise compact) localizations. In contrast, as in Corollary 3.6, the positive 
trace-class operators on a Hilbert C∗-module do form an order ideal.

3.2. Properties of the Schatten classes on Hilbert modules

We now return to the general setup of countably generated Hilbert C∗-modules over 
commutative C∗-algebras. For the case of the standard module l2(A) with A = C0(X)
Theorem 3.18 shows that Lp

(
l2(A)

)
is a Banach space and a two-sided ideal of L 

(
l2(A)

)
that is moreover contained in K

(
l2(A)

)
. These are very desirable properties for general, 

countably generated Hilbert A-modules. Fortuitously, the existence of frames (Propo-
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sition 2.12) and the pull-back criterion of Theorem 3.5 allows us to easily establish 
equivalent properties of Lp (EA) for all countably generated Hilbert A-modules EA.

Theorem 3.25. The space Lp (EA) is a two-sided ideal of L (EA) that is contained in 
K (EA).

Proof. Choose a frame e of EA and let φe be the ∗-homomorphism induced by the frame 
transform: φe : L (EA) → L 

(
l2(A)

)
, T �→ θeTθ

∗
e . By Theorem 3.5, we have T ∈ Lp (EA)

if and only if φe(T ) ∈ Lp
(
l2(A)

)
. By Theorem 3.18, then, Lp (EA) is closed under 

finite linear combinations. Moreover, for S ∈ L (EA) , T ∈ Lp (EA), we have φe(ST ) ∈
Lp

(
l2(A)

)
and φe(TS) ∈ Lp

(
l2(A)

)
by Corollary 3.20. We conclude that Lp (EA) is a 

two-sided ideal.
Moreover, as in the previous paragraph, T ∈ Lp (EA) iff θeTθ∗e ∈ Lp

(
l2(A)

)
⊂

K
(
l2(A)

)
by Corollary 3.22. But if θeTθ∗e is compact, then the operator T = θ∗e θeTθ

∗
e θe

is compact as well (essentially because θ∗e (|ei〉 〈ej |)θe = |ei〉 〈ej | for any i, j ∈ N). �
Remark 3.26. Dixmier’s definition of continuous-trace C∗-algebras [13, Chapter 4.5] ap-
plies to K (EA). By Theorem 3.25, the corresponding trace and Hilbert-Schmidt classes 
agree with our L1 (EA) and L2 (EA) respectively. The projections satisfying Fell’s cri-
terion are then the compact finite-rank ones, that is, those that correspond to finitely 
generated projective modules.

Remark 3.27. In the light of Theorem 3.25, we have obtained an a fortiori method of 
determine whether a positive operator T on a Hilbert C∗-module over an abelian C∗-
algebra is compact: it suffices that trT p lies in A for some p ≥ 1. Compare e.g. the proof 
of [24, Proposition 7] and [24, Remark 6] to see that showing such compactness directly 
can be a nontrivial undertaking.

Using Theorem 3.5, we can pull back the Banach norm on C0(X, Lp (H)) 
Lp (H ⊗C A) to Lp (EA), and this turns out rather well:

Theorem 3.28. The function ‖·‖p : T �→ ‖tr |T |p‖1/p
A is a norm that turns Lp (EA) into 

a normed vector space. Moreover, for all T ∈ Lp (EA),

(1) ‖T‖p = supχ∈Â ‖χ∗T‖p
(2) ‖T ∗‖p = ‖T‖p
(3) ‖ST‖p ≤ ‖S‖ ‖T‖p for all S ∈ L (EA)
(4) ‖T‖ ≤ ‖T‖p
(5) For p, q, r ≥ 1, if S ∈ Lq (EA) and T ∈ Lp (EA) with 1

p + 1
q = 1/r then ST ∈ Lr (EA)

and ‖ST‖r ≤ ‖S‖q ‖T‖p.

Moreover, Lp (EA) is a Banach space.
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Proof. Let e be a frame of EA and consider the projection Pe := θeθ
∗
e in L 

(
l2(A)

)
. Recall 

that the invertible ∗-homomorphism φe : T �→ θeTθ
∗
e maps Lp (EA) into PeLp

(
l2(A)

)
Pe

by Theorem 3.5. Moreover, elementary calculation shows that φe |Lp(EA) is an isomor-
phism of normed spaces.

For the properties of the norm, recall that χ(tr |T |p) = tr |χ∗T |p = ‖χ∗T‖pp. 
Thus, ‖tr |T |p‖1/p

A = supχ∈Â ‖χ∗T‖1/p
p . Therefore, by the analogous properties of 

Lp (H), we see that ‖T ∗‖p = ‖T‖p, ‖T‖p ≥ ‖T‖ = supχ∈Â ‖χ∗T‖ and ‖ST‖p ≤
supχ∈Â ‖χ∗(S)‖ ‖χ∗T‖p ≤ ‖S‖ ‖T‖p.

For property 5, recall that θeSTθ∗e = θeSθ
∗
e θeTθ

∗
e ∈ Lr

(
l2(A)

)
by Proposition 3.10, 

and so ST ∈ Lr (EA) by Theorem 3.5. The norm inequality then follows from the 
Hölder–von Neumann inequality for operators on Hilbert spaces.

Finally, to establish completeness of Lp (EA) it is enough to prove that its pullback 
PeLp

(
l2(A)

)
Pe is a closed subspace of Lp

(
l2(A)

)
. But if PeTnPe → T in Lp

(
l2(A)

)
then

‖PeTnPe − PeTPe‖p = ‖Pe(PeTnPe − T )Pe‖p ≤ ‖Pe‖2‖(PeTnPe − T )‖p → 0

as n → ∞, in virtue of the just-proved inequality 3. Hence, PeTnPe converges to PeTPe ∈
PeLp

(
l2(A)

)
Pe as desired. �

3.3. The Hilbert module of Hilbert–Schmidt operators

The Hilbert–Schmidt class L2 (EA) is a somewhat special case among the Schatten 
classes, because the map T �→ trT ∗T is a positive definite quadratic form. That is, it 
induces an inner product as we will now explore.

Definition 3.29. The pairing 〈·, ·〉2 : L2 (EA) × L2 (EA) → A is given by

〈S, T 〉2 := 1
4

∑
k∈Z/4Z

ik tr |T + ikS|2

When viewed fiberwise, this is just the ordinary Hilbert–Schmidt inner product:

Proposition 3.30. For S, T ∈ L2 (EA) and a character χ of A the pairing 〈S, T 〉2 sat-
isfies χ (〈S, T 〉2) = tr((χ∗S)∗χ∗T ). Moreover, if e is a frame of EA, then the series ∑∞

i=1 〈Sei, T ei〉 converges in norm to 〈S, T 〉2.

Proof. Since χ∗ is a homomorphism, the first part follows from the fact that trχ∗(|T +
ikS|2) = χ(tr |T + ikS|2) by the polarization identity for the fiberwise Hilbert–Schmidt 
inner product. Since

〈Sei, T ei〉 = 〈ei, S∗T ei〉 = 1
4

∑
k∈Z/4Z

ik
〈
ei, |T + ikS|2ei

〉
,

the second part follows from Theorem 3.5. �
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Corollary 3.31. The pairing 〈·, ·〉2 on L2 (EA) is non-degenerate and sesquilinear.

Next, because A is commutative EA is automatically an A-bimodule. In fact, there 
is a ∗-homomorphism ρ : A → L (EA) given by ρ(a)(v) := v · a. This makes L (EA) an 
A-bimodule with a · T · b = ρ(a) ◦ T ◦ ρ(b) for all a, b ∈ A and T ∈ L (EA).

Proposition 3.32. The A-bimodule structure of L (EA) restricts to Lp (EA) for all 1 ≤
p < ∞ and satisfies ‖T · a‖p ≤ ‖a‖ ‖T‖p as well as ‖a · T‖p ≤ ‖a‖ ‖T‖p.

Proof. Since any ∗-homomorphism between C∗-algebras is norm decreasing, this follows 
from Theorem 3.25 since ‖Tρ(a)‖p ≤ ‖ρ(a)‖ ‖T‖p ≤ ‖a‖ ‖T‖p. �

All this leads to the following result for the case that p = 2:

Proposition 3.33. With the above right A-action and the inner product of Definition 3.29, 
L2 (EA) becomes a Hilbert A-module.

Proof. Note that χ∗(T ◦ρ(a)) = χ(a)χ∗T for all a ∈ A and characters χ of A. Thus, with 
Proposition 3.30, the inner product is A-sesquilinear. All that is left to show, therefore, 
is that L2 (EA) is complete. That, however, was proven already in Theorem 3.25. �
Proposition 3.34. Let H be a separable Hilbert space. Then, L2 (H ⊗C A) is isomorphic, 
as a Hilbert A-module, to L2 (H) ⊗C A.

Proof. Under the isomorphism H ⊗C A  C0(X, H), L2 (H ⊗C A) is mapped iso-
metrically onto C0(X, L2 (H)) by Theorem 3.18. Under this identification, the Hilbert 
C∗-module structure of L2 (H ⊗C A) coincides with the canonical Hilbert C∗-module 
structure on C0(X, L2 (H)) induced by the inner product on the Hilbert space L2 (H). 
Thus, we have L2 (H ⊗C A)  C0(X, L2 (H)) as Hilbert C∗-modules. Now, invoke once 
again the isomorphism L2 (H) ⊗C A  C0(X, L2 (H)), this time for the Hilbert space 
L2 (H), to complete the proof. �
3.4. The trace class and the trace

We will refer to the ideal L1 (EA) ⊂ L (EA) consisting of those operators T for which 
tr |T | is given by an element of A, as the trace class. In the case of Schatten classes 
of Hilbert spaces, i.e. A = C and EA = H, it is customary to identify the trace class 
as the ideal generated by squares of elements of the Hilbert–Schmidt class, in order to 
relate the Hilbert–Schmidt inner product to a linear function, the trace, on L1 (H). The 
situation here is completely analogous:

Proposition 3.35. Let L2 (EA)L2 (EA) denote the set {RS | R ∈ L2 (EA) , S ∈
L2 (EA)} ⊂ L (EA). Then, L2 (EA)L2 (EA) = L1 (EA).
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Proof. The inclusion L2 (EA)L2 (EA) ⊂ L1 (EA) is a direct consequence of the Hölder–
von Neumann inequality in Theorem 3.28(5)Conversely, let T ∈ L1 (EA). Then, T =
S|T | 12 in the usual weak polar decomposition, with |S| = |T | 12 . By Proposition 3.3, S
and |T | 12 lie in L2 (EA). �

This furnishes us with a way to turn the bilinear map 〈·, ·〉2 on L2 (EA) into a linear 
map tr on L1 (EA) called the trace:

Definition 3.36. The trace on L1 (EA) is the map tr : T �→ 〈S∗, |T | 12 〉2, where T = S|T | 12
is the weak polar decomposition.

Proposition 3.37. The trace is well-defined. Moreover, let e be a frame. Then, the series ∑
i 〈ei, T ei〉 converges in norm to trT .

Proof. Assume T = RS with R, S ∈ L2 (EA) and let e be a frame. Then 〈R∗, S〉2 =∑
i 〈R∗ei, Sei〉, which converges in norm by Proposition 3.30. As 〈R∗ei, Sei〉 = 〈ei, T ei〉, 

we have two expressions for trT : one independent of the decomposition T = RS and one 
independent of the choice e of frame. The proposition follows. �
Corollary 3.38. Let χ be a character of A and let T ∈ L1 (EA). Then, trχ∗T = χ(trT ).

Proof. Note that χ(〈ei, T ei〉) = 〈χ∗ei, χ∗Tχ∗ei〉. Since χ∗ei is a frame of χ∗EA the result 
then follows from Corollary 2.6. �
Corollary 3.39. For T ∈ L1 (EA), | trT | ≤ tr |T |, as elements of A. In particular, if A is 
unital | trT | ≤ tr |T | ≤ ‖T‖1 1A.

Proof. For all χ ∈ Â we have χ(| trT |) = | trχ∗T | ≤ tr |χ∗T | = χ(tr |T |) by the inequality 
| trS| ≤ tr |S| on L1 (H) for Hilbert spaces H. As the characters separate A, the first 
statement follows immediately. The last statement follows from the inequality a ≤ ‖a‖ 1A
for positive elements of any unital C∗-algebra. �

Now, we can finally show that the trace is cyclic. The standard approach is as follows:

Proposition 3.40. If S, T ∈ L (EA) are such that ST ∈ L1 (EA) and TS ∈ L1 (EA), then 
trST = trTS.

Proof. Consider the value of a character χ ∈ Â on the difference trST − trTS ∈ A and 
use Corollary 3.38 above:

χ(trST − trTS) = χ(tr(ST )) − χ(tr(TS))

= tr(χ∗(ST )) − tr(χ∗(TS))

= tr(χ∗(S)χ∗(T )) − tr(χ∗(T )χ∗(S))



A.B. Stern, W.D. van Suijlekom / Journal of Functional Analysis 281 (2021) 109042 23
We may now use the tracial property of the trace on L1 (χ∗EA) (cf. [36, Corollary 3.8]) 
and the fact that the χ separate A to conclude the proof. �
4. Applications of Schatten classes

4.1. The Fredholm determinant

As a first application of the above theory of Schatten classes for Hilbert modules 
over unital abelian C∗-algebras, we consider the Fredholm determinant. Let A be a 
commutative C∗-algebra and let EA be a countably generated A-module.

Definition 4.1. Let G(EA) ⊂ L (EA) be the set of bounded, invertible endomorphisms of 
EA of the form idEA

+T , where T ∈ L1 (EA).

Note that G(EA) is a group under the multiplication of L (EA) because we have 
(id +T )−1 = id−T (id +T )−1 and L1 (EA) is an ideal. We will define the Fredholm 
determinant, first on the standard module, and then by pullback by a frame transform 
on general countably generated Hilbert A-modules.

The following definition of the Fredholm determinant on a Hilbert space H is well-
known. See e.g. [36, Chapter 3] for a brief discussion in the context of Lidskii’s theorem.

Definition 4.2. Let T ∈ L1 (HC). Then, the Fredholm determinant of id +T is

det(id +T ) :=
∞∑
k=0

tr
∧k

T.

Recall that the series converges by the estimate ‖
∧k

T‖1 ≤ ‖T‖k1/k!.

Remark 4.3. We have | det(id +T1) − det(id +T2)| ≤ ‖T1 − T2‖1 exp(‖T1‖1 + ‖T2‖1 + 1), 
cf. [36, Theorem 3.4]. Thus, T �→ det(id +T ) is a continuous function on L1 (H).

The Fredholm determinant of id+T is invariant under conjugation of T by partial 
isometries that commute with T :

Lemma 4.4. If u : H → K is a partial isometry of Hilbert spaces, and T ∈ L1 (H) is 
such that u∗uT = Tu∗u = T , then id+uTu∗ ∈ G(KC) and in fact det(idK +uTu∗) =
det(idH +T ).

Proof. Note that we have

(id +uTu∗)(id−uT (id +T )−1u∗) = (id +uTu∗) − u(id +T )T (id +T )−1u∗ = id,

so that id +uTu∗ ∈ G(KC).
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Next, note that tr
∧k

uTu∗ = tr
∧k

u∗uT = tr
∧k

T so that indeed det(idH +T ) =∑∞
k=0 tr

∧k
T =

∑∞
k=0 tr

∧k
uTu∗ = det(idK +uTu∗). �

Proposition 4.5. If K is a separable Hilbert space equipped with a frame e and T ∈ L1 (K), 
then det(1 +θeTθ

∗
e ) = det(1 +T ) in terms of the corresponding frame transform θe : K →

l2.

Proof. Since θ∗e θe = idK commutes with T we can apply Lemma 4.4. �
Definition 4.6. Let EA be a countably generated Hilbert C∗-module over a unital and 
abelian C∗-algebra A. For T ∈ L1 (EA), the Fredholm determinant det(id +T ) of id +T

is the function on Â given by χ �→ det(χ∗(id +T )).

Proposition 4.7. Let A be unital and abelian as above. For T ∈ L1 (EA), the Fredholm 
determinant lies in A ≡ C(Â) and as such we have χ(det(id +T )) = det(χ∗(id +T )).

Proof. Let e be a frame of EA. Note that, for all χ ∈ Â, det(χ∗(id +T )) =
det(χ∗(id +θeTθ

∗
e )) by Proposition 4.5. That is, det(id +T ) = det(id +θeTθ

∗
e ). Now, 

θeTθ
∗
e ∈ L1 (l2(A)

)
by Theorem 3.5. With Remark 4.3 we see that χ �→ det(id +χ∗S) is 

continuous whenever S ∈ L1 (l2(A)
)
. Thus, since A is unital (and thus Â compact) we 

find that det(id +T ) ∈ C(Â) = A. �
Proposition 4.8. Let T ∈ C(X, L1 (H)) with X = Â. Then we have 

∧k(T ) ∈
C
(
X,L1

(∧k
H
))

. In particular, one has det(id +zT ) =
∑

k≥0 z
k tr

∧k(T ), and z �→
det(id +zT ) is entire (as an A-valued function on C).

Proof. Let A, B ∈ L1 (H) and note that 
∧k+1(A) −

∧k+1(B) = (
∧k(A) −

∧k(B)) ∧ A +∧k(B) ∧ (A −B), which can be iterated to yield

∥∥∥∥∧k
(A) −

∧k
(B)

∥∥∥∥
1
≤ ‖A−B‖1

k−1∑
m=0

‖A‖m1 ‖B‖k−1−m
1 .

As a consequence, we see that 
∧k(T ) ∈ C

(
X,L1

(∧k
H
))

whenever T lies in 

C(X, L1 (H)).
Moreover, we have the pointwise series expression

det(χ∗(id +zT )) = det(id +z χ∗T ) =
∑
k≥0

zk tr
∧k

(χ∗T )

as in [36, Lemma 3.3]. Since tr
∧k(χ∗T ) ≤ ‖χ∗T‖k1 /k! the series 

∑
k≥0 z

k tr
∧k(T ) in A

converges absolutely for all z ∈ C. This implies in particular that z �→ det(id +zT ) is 
entire. �
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Remark 4.9. If f ∈ A is invertible, then det(id−f−1T ) = 0 in A if and only if χ(f) = f(x)
is a (nonzero) eigenvalue of χ∗T for all χ ∈ Â (corresponding to the point x ∈ X).

Proposition 4.10. The Fredholm determinant is multiplicative in the sense that det(id +
T )(id +S) = det(id +T ) det(id +S).

Proof. This follows simply from the analogous property of the Fredholm determinant on 
Hilbert spaces, since

χ(det((id +T )(id +S))) = det(χ∗((id +T )(id +S)))

= det(χ∗(id +T )) det(χ∗(id +S)))

= χ(det(id +T )χ(det(id +S)),

for all id +T , id +S in G(EA) and all χ ∈ Â. �
Proposition 4.11. For 0 ≤ |z| < ‖T‖−1

1 , the Fredholm determinant satisfies

det(id +zT ) = exp
( ∞∑

n=1

(−1)n+1

n
zn trTn

)
,

and the series converges absolutely.

Proof. Absolute convergence follows from the fact that ‖trTn‖ ≤ ‖Tn‖1 ≤ ‖T‖n1 , so 
that the sum of the norms of the summands is bounded by log(1 + z ‖T‖1).

As the characters separate A, it will suffice to prove the formula for the case EA = HC, 
where it is well-known. For |z| ‖T‖1 < 1, by absolute convergence of the trace and 
Lidskii’s theorem,

∞∑
n=1

(−1)n+1

n
zn trTn =

∞∑
n=1

(−1)n+1zn
∑
k

λk(T )n

n

=
∑
k

log(1 + zλk(T )),

so that the exponential of the right-hand side equals det(id +zT ) by Definition 4.2. �
Proposition 4.12. Let T ∈ L1 (EA). Then id+T is invertible (that is, id+T ∈ G(EA)) if 
and only if det(id +T ) ∈ A is invertible.

Proof. By Proposition 4.10, det(id +T ) is invertible whenever id +T is.
For the converse statement, in view of Proposition 4.5 we may assume without loss 

of generality that EA = l2(A)  C(X, H) – where X is compact by the assumption that 
A be unital. So, if det(id +T ) is invertible then it follows that id+χ∗T is invertible for 
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all χ by [36, Theorem 3.5b)]. Moreover, as for S1, S2 ∈ G(H) we have 
∥∥S−1

1 − S−1
2

∥∥
1 ≤∥∥S−1

1
∥∥∥∥S−1

2
∥∥ ‖S1 − S2‖1, the B(H)-valued map χ �→ (id +χ∗T )−1 lies in Cb(X, B(H)))

whenever it is bounded.
Now, for all eigenvalues λ ∈ σ(χ∗T ) we have det(id−λ−1χ∗T ) = 0 so that 

det(id−λ−1T ) is not invertible in A. Thus, if there exists a sequence λi := λ((χi)∗T ) ∈
σ((χi)∗T ) converging (in C) to −1, the element det(id +T ) = limi det(id−λ−1

i T ) is con-
tained in the closed set consisting of the non-invertible elements of A, which contradicts 
the assumption.

We conclude that there exists μ > 0 with infn |1 +λn(χ∗T )| > μ uniformly for χ ∈ Â. 
In particular, 

∥∥(id +χ∗T )−1
∥∥ = supn |1 + λn(χ∗T )|−1 < 1/μ for all x. We conclude that 

χ �→ (id +χ∗T )−1 is bounded and therefore continuous. �
Corollary 4.13. The Fredholm determinant is a homomorphism from the group G(EA)
to the group of invertible elements of A.

In particular, the map det extends the (matrix) determinant homomorphism 
Kalg

1 (A) = GL∞(A)/[GL∞(A), GL∞(A)] → A to all of G(l2(A)).

Remark 4.14. In [2,3] it was shown that the Fredholm determinant det(id +zT ) is the 
unique additive invariant of an endomorphism T : E → E on finitely generated projective 
A-modules. It is an interesting open question to see under which additional conditions 
this result extends to the countably generated Hilbert module context. Clearly, the 
Fredholm determinant discussed above gives rise to a additive map from a countably 
generated Hilbert A-module E equipped with a trace-class operator T to analytic A-
valued functions.

4.2. The zeta function

As a second application we consider zeta functions associated to positive Schatten 
class operators on a Hilbert module. Again, A is a commutative C∗-algebra and we 
identify Â = X so that A ∼= C0(X).

Definition 4.15. Let 0 ≤ T ≤ 1 ∈ Lp (EA), for p ≥ 1. For z ∈ C with �z > p, define T z

using the continuous functional calculus in L (EA). Then, the associated zeta function is 
the function on the complex half-plane �z > p given by

ζ(z, T ) := trT z.

We will show that the zeta function is in fact holomorphic (in the sense of Banach 
space-valued holomorphic functions, see e.g. [35, Definition 3.30]) on the defining half-
plane.

First, let us recall that the individual (fiberwise) eigenvalues of positive compact 
operators are themselves continuous.
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Lemma 4.16. Let 0 ≤ T ∈ K (EA). For k ≥ 0 and χ ∈ Â be the character corresponding 
to the point x ∈ X, let {λk(x)}k be the eigenvalues of χ∗T , in decreasing order with 
multiplicity. Then, the map x �→ λk(x) is an element of A.

Proof. A proof can be found in [30, Theorem 6.4.2] (see also [30] Section 6.6). �
Remark 4.17. Note that it is important to know that both T is pointwise compact and 
that T is norm continuous. Dropping the latter assumption is fatal (see e.g. Exam-
ple 2.21).

By self-adjointness and norm continuity, the full spectrum of T is continuous in norm 
topology, cf. [28, Remark IV.3.3]. However, the spectral projections (or even the eigen-
vectors) can in general not be continuously extended over any open neighborhood, even 
in the case where the module is finitely generated: see e.g. [26]. A fortiori, continuous 
diagonalizability (‘diagnosability’) is entirely out of the question in general.

The classical treatment of zeta functions of operators on Hilbert spaces is in terms of 
the Dirichlet series trT z =

∑
k λ

z
k. The Jensen–Cahen theorem (see e.g. [21]) shows that 

these series converge uniformly on angular regions contained in the defining half-plane, 
so that the limit is in fact holomorphic. The theorem translates very well to the Hilbert 
module setting.

Lemma 4.18. Suppose that 0 ≤ T ≤ 1 ∈ Lp (EA). For 0 < α < π/2, denote the angular 
region {z ∈ C | | Arg(z − p)| ≤ α} by Cα. Then, for all ε > 0 there exists m0 ≥ 0 such 
that, for all n ≥ m ≥ m0 and all z ∈ Cα,∥∥∥∥∥

n∑
k=m

λz
k

∥∥∥∥∥
A

< ε.

Proof. The proof is based on [21, Theorem 2]. Consider the series 
∑n

k=m λp
kλ

z−p
k . Write 

A(p, q) :=
∑q

k=p λ
p
k and Δz,k := λz

k+1−λz
k. Then, by Abel’s lemma on partial summation 

[1], we have

n∑
k=m

λz
k =

n−1∑
k=m

A(m, k)Δz,k + A(m,n)λz
n

Now, because the series 
∑∞

k=0 λk(x)p converges pointwise to trT p, Dini’s theorem shows 
that 

∑∞
k=0 λ

p
k converges in norm. In particular, for all ε > 0 there exists m0 such that 

‖A(m, q)‖ < ε cosα for all q ≥ m ≥ m0.
By [21, Lemma 2], we have Δz,k ≤ |z|/pΔp,k. Thus, as |z|/p ≤ secα throughout Cα, 

we have ∥∥∥∥∥
n∑

λz
k

∥∥∥∥∥ < ε

(
n−1∑

Δp,k + λp
n

)
= ελp

n < ε ‖T p‖ . �

k=m k=m
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As in the classical case, the Jensen–Cahen theorem paves the way for a holomorphic
zeta function.

Theorem 4.19. Let 0 ≤ T ≤ 1 ∈ Lp (EA). Then the map z �→ ζ(z, T ) is holomorphic on 
the half-plane C�z>p = {z | �z > p}. Moreover, for all compact subsets K ⊂ C�z>p, all 
x ∈ X and all ε > 0, there is a neighborhood U of x on which

sup
z∈K

|ζ(z, T )(y) − ζ(z, T )(x)| < ε

for all y ∈ U .

Proof. For the first statement we consider the A-valued function ζn(·, T ) : z �→
∑n

k=0 λ
z
k

on C�z>p. Recall that all bounded functionals A → C decompose in four positive linear 
functionals. By the Riesz representation theorem, all such positive linear functionals 
are given by positive, finite, regular Borel measures μ on Â under the identification 
φμ(f) :=

∫
fdμ. In particular, we have φμ(λz

k) =
∫
λk(x)zdμ(x). Now, if C is a contour 

around z0 in C�z>p, the contour integral 
∮
C
λk(x)z vanishes for all x ∈ X. Note that 

|λz
k| = λ�z

k and so, by Fubini’s theorem, 
∮
C

∫
λk(x)zdμ(x) =

∫ (∮
C
λk(x)z

)
dμ(x) = 0. 

By Morera’s theorem, we conclude that φμ(ζn) is holomorphic on C�z>p. Moreover, as 
ζn(·, T ) → ζ(·, T ) uniformly on compact subsets of C�z>p by Lemma 4.18, the function 
φμ(ζ(·, T )) is holomorphic on C�z>p as well. By [35, Theorem 3.31], we may conclude 
that ζ(·, T ) is holomorphic, as an A-valued function, on the half-plane �z > p.

For the second statement, note that by Lemma 4.18, for all ε > 0 there is, for all 
compact subsets K ⊂ C�z>p, some m0 with ‖ζm(z, T ) − ζ(z, T )‖A < ε for all z ∈ K and 
all m ≥ m0.

Assume without loss of generality that λk(x) > 0 and pick a neighborhood U of x
on which λk(y) > 0, for all k = 1, . . . , m. For any ε0 > 0 let V ⊂ U be such that 
| lnλk(x) − lnλk(y)| < ε0 for all x, y ∈ V . Then, λk(y)z = ez lnλk(y) for all z ∈ K, 
so that |λk(x)z − λk(y)z| ≤ |1 − ezs||λp

k(x)| for some s ∈ C with |s| < ε0. Moreover, 
|1 − ezs| ≤ |1 − eε1 | ≤ ε1e

ε1 , where ε1 = ε0 supz∈K |z|.
If we now pick ε0 such that ε1eε1 |λp

k(x)| < ε/m, we conclude that for all y ∈ V and 
all z ∈ K we have |λk(x)z − λk(y)z| < ε/m. Consequently, we find that ‖ζm(·, T )(x) −
ζm(·, T )(y)‖ < ε as desired. �
Remark 4.20. It would be desirable to extend the previous Lemma and Theorem to 
the functions tr aT z, for a ∈ L (EA). However, since the spectral projections of T are 
in general not even weakly continuous, this would be a nontrivial extension. We ex-
pect that a possibility for such an extension would be to investigate the functions 
x �→ tr pk(x)a(x)pk(x)/ rank(pk(x)), where pk(x) is the spectral projection on the 
eigenspace belonging to the eigenvalue λk(x) of T (x), and then use these expressions 
as coefficients in the continuous Dirichlet series.
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The next step in the classical case would be to show that certain operators have zeta 
functions that can be continued meromorphically to all of C, with a discrete set of poles. 
The residues at these poles then yield interesting information about the operator T . For 
instance, if T is the bounded transform (1 +D2)−1/2 of a pseudodifferential operator these 
residues give geometric information about the pertinent background manifold (cf. [5] for 
more details). For this reason, it would be very desirable to have a reasonable criterion 
under which our zeta function of operators on Hilbert C∗-modules can be continued 
meromorphically to all of C, but further research in that direction is beyond the scope 
of the present work.

4.3. Summability of unbounded Kasparov cycles

We now apply the just-developed theory of Schatten classes to arrive at a notion of 
summability for unbounded Kasparov cycles over a commutative C∗-algebra. This notion 
is supposed to generalize summability for spectral triples (as unbounded Kasparov cycles 
over C) [9, Section IV.2] (cf. [20, Definition 10.8]). We refer to [4,31,23,32] for all relevant 
notions of unbounded Kasparov cycles, external and internal Kasparov product, and to 
[25,37] for the specific application to Riemannian submersions and immersions to be 
discussed below.

In order to set the notation, for A, B two C∗-algebras we let (AEB , S) be an unbounded 
Kasparov A −B cycle, consisting of

• EB is a (graded) Hilbert B-module
• A is represented on EB by adjointable (even) operators.
• S is a regular, self-adjoint (and odd) operator, densely defined on dom(S) ⊂ EA.
• a(1 + S2)−1/2 is in K (EB) for all a ∈ A.
• There exists a dense subalgebra A ⊂ A that preserves dom(S) and is such that for 

all a ∈ A, the commutator [S, a] extends to an adjointable operator on EB.

Definition 4.21. Let B be a unital, commutative C∗-algebra and let (AEB , S) be an 
unbounded Kasparov A −B cycle. We say that (AEB , S) is p-summable if

(1 + S2)− 1
2 ∈ Lp (EB) .

For simplicity, we restrict to the case where A is unital. See [7, Section 2] for an 
understanding of the nonunital case.

Example 4.22. If (A, H, D) is a p-summable spectral triple (cf. [20, Definition 10.8]), then 
it is an unbounded p-summable Kasparov (A, C) cycle.

By the very definition of the Schatten classes, the localization of an unbounded p-
summable Kasparov (A, B)-cycle along a character of B yields a p-summable spectral 
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triple. In the other direction, it is not true that if all such localized spectral triples are p-
summable, then the original unbounded KK-cycle is p-summable: one needs the fiberwise 
Lp-norms of the resolvents to be continuous over the base.

4.3.1. Summability and the external Kasparov product
One of the key results in [4] was an explicit and linear formula for the external 

Kasparov product. More precisely, they showed that two unbounded Kasparov cycles 
(restricting to the even-odd case for simplicity) (EB , γ, S) and (FC , T ) can be combined 
into an external product unbounded KK-cycle over the minimal tensor product B ⊗C:

((E ⊗ F )B⊗C , S ⊗ 1 + γ ⊗ T ).

For spectral triples this can be understood as the direct product of the corresponding 
(noncommutative) spaces. In any case, it is desirable to have an additive property of 
summability for this external product in the case of a commutative base.

Lemma 4.23. If a, b are positive, (resolvent) commuting, regular operators on a Hilbert 
C∗-module over a commutative C∗-algebra, then for p, q > 0 one has

(1 + a + b)−p−q ≤ (1 + a)−p/2(1 + b)−q(1 + a)−p/2

Proof. By positivity of a, b, we have (b + 1)−1 ≥ (a + b + 1)−1 ≤ (a + 1)−1, and by 
commutativity of the C∗-algebra generated by the resolvents of a, b, we have (a + b +
1)−p−q ≤ (a + 1)−p/2(a + b + 1)−q(a + 1)−p/2 ≤ (a + 1)−p/2(b + 1)−q(a + 1)−p/2. �
Corollary 4.24. The summability of unbounded Kasparov modules (over commutative C∗-
algebras) is additive under the exterior product.

Proof. The corresponding selfadjoint operators (S⊗1) and (γ⊗T ) on E⊗F anticommute, 
and the actions of B, C commute. Thus, we have |S⊗1 +γ⊗T |2 = |S⊗1|2+|γ⊗T |2, whose 
summands commute. Moreover, the exterior product {ei⊗ fj}ij of frames is a frame. We 
conclude, with the Lemma, that |S⊗ 1 +1 ⊗T + i|−p−q ≤ |S⊗ 1 + i|−p|1 ⊗T + i|−q, and 
the B ⊗C-valued trace of the latter is just the tensor product of the traces of |S + i|−p

and |T + i|−q. �
Of course, the real challenge is to establish the compatibility of summability with the 

internal unbounded Kasparov product. Clearly, Lemma 4.23 is then not sufficient but 
we leave its (challenging) extension for future research. Instead, we limit ourselves to 
establishing such summability results for certain classes of geometric examples. When 
combined with [6,25,15,37] where these examples were described in terms of unbounded 
Kasparov cycles, one may conclude the sought-for compatibility of summability with the 
internal product at least for these geometric examples.
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4.3.2. Example: Riemannian submersions
In [25] the factorization of the Dirac operator DY on Y in terms of a vertical operator S

and the Dirac operator DX on X was studied for a Riemannian submersion π : Y → X of 
compact spinc manifolds (more general proper Riemannian submersions were considered 
in [24,15,16]).

We let L2(SX) and L2(SY ) denote the Hilbert space completions of the spinor modules 
Γ∞(SX) and Γ∞(SY ), respectively. Based on a certain C∞(Y )-module of smooth sections 
of the vertical spinor bundle SV one then defines a Hilbert C∗-module EC(X) between 
C(Y ) and C(X), together with a self-adjoint and regular unbounded operator DV on E, 
such that

L2(SY ) ∼= E⊗̂C(X)L
2(SX)

and in such a way that the operator DY corresponds to the tensor sum DV ⊗γE+1 ⊗∇DX

for some metric connection ∇ on EC(X) and the grading operator γE on E (up to an 
explicit error term related to the curvature).

Let us analyze here the summability aspects of the operator DV : dom(DV ) → E. The 
main property that we will use below is that DV is the closure of a so-called vertically 
elliptic operator D : Γ∞(SV ) → Γ∞(SV ). This means that for all f ∈ C∞(Y ), [D, f ] is 
an endomorphism of Γ∞(SV ) that is invertible at all points where df |ker dπ is nonzero 
(see [25,24] for more details). In fact, this allows one to prove [24, Theorem 3] that the 
pair (E, DV ) is an unbounded Kasparov C(Y ) − C(X) cycle.

As far as summability is concerned, note that the restrictions χ∗D = Dx of D to the 
fibers of x ∈ X (for the character χ : C(X) → C) are elliptic Dirac type operators. Since 
the dimension of the fibers is constant and equal to dimF for the typical fiber F , one 
has 

∥∥(1 + D2
x)−1/2

∥∥
p
< ∞ for all p > dimF [10] (cf. [20, Theorem 11.1]). The question, 

then, is whether this pointwise trace is continuous.

Proposition 4.25. The Lp-norm of (1 +D2
x)−1/2 defines (as x varies over X) a continuous 

function on X for any p > dimF . Consequently, the unbounded Kasparov C(Y ) −C(X)
cycle (E, DV ) is p-summable for all p > dimF .

Proof (based on [24, Section 2.3]). For simplicity of exposition, we will assume that the 
bundle SY → Y is locally trivial over X; that is, we assume that around each point 
x0 ∈ X there exists a neighborhood U ⊂ X such that 1) there exists a diffeomorphism 
ψ : π−1(U) → U×F , and 2) the bundle SY → Y can be smoothly and unitarily trivialized 
over U . If we pull sections of SY over U back through this trivialization, we obtain 
a family of Dirac-type differential operators {Dx} on the trivial bundle Ck over the 
compact Riemannian manifold F .

In particular, these operators can be written as

Dx =
dimF∑

Aj(x, z)
∂

∂zj
+ B(x, z)
j=1
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with Aj , B symmetric matrix-valued smooth functions on U × F and Aj invert-
ible. Thus, there are smooth families Zx,x′(z) = Aj(x′, z)A−1

j (x, z), Wx,x′(z) =
B(x′, z) − Zx,x′B(x, z) of matrices such that Dx′ = Zx,x′Dx + Wx,x′ , with in partic-
ular limx′→x(id−Zx,x′) = limx′→x Wx,x′ = 0.

Now denote the closure of Dx by Dx. Note that Dx is selfadjoint by compactness 
of F . Moreover, because Dx is an elliptic differential operator of order 1, the resolvent 
(Dx + i)−1 lies in Lp

(
L2(F,Ck)

)
for all p > dimF .

Then, Dx(Dx + i)−1 being bounded, we see that limx′→x ‖(Dx′ −Dx)(Dx + i)−1‖ ≤
limx′→x ‖ id−Zx,x′‖ + ‖Wx,x′‖ = 0. Thus, by the resolvent identity, we conclude that 
limx′→x ‖(Dx + i)−1 − (Dx′ + i)−1‖p = 0 for all p > dimF , and so (1 +D2)−1/2 ∈ Lp (E)
if and only if p > dimF . �

Note that when we combine this result with the factorization result [25] of DY in 
terms of DV and DX we obtain for Riemannian submersions of spinc manifolds the 
desired additivity of summability for the unbounded interior Kasparov product.

4.3.3. Example: embedding spheres in Euclidean space
We consider a special class of immersions, given by the embedding of spheres Sn in 

Euclidean space Rn+1. This is based on [8,37,39]. As in [8] the embedding Sn → Rn+1

gives rise to an immersion class in KK-theory. For spheres, the unbounded representative 
is given by the module C0(Sn × (−ε, ε)) based on a normal neighborhood of Sn ⊂
Rn+1, equipped with the regular self-adjoint operator S given by the multiplication 
operator with a suitable function f : (−ε, ε) → R. For convenience, we will take S to be 
multiplication by the function

f(s) = π

2ε tan
(πs

2ε

)
; (s ∈ (−ε, ε)).

Since (i + f)−1 is clearly a C0-function on Sn × (−ε, ε), we find as in [37, Lemma 2.3]
that (i + S)−1 is a compact operator on the Hilbert module C0(Sn × (−ε, ε)) and so 
forms an unbounded Kasparov C(Sn) − C0(Rn+1) cycle.

Proposition 4.26. We have (1 +S2)−1/2 ∈ Lp(C0(Sn× (−ε, ε))) for any p > 0. Hence the 
unbounded Kasparov C(Sn) − C0(Rn+1) is p-summable for all p > 0.

Proof. For any locally compact Hausdorff space X, the pointwise localizations of the 
Hilbert C0(X)-module C0(X) are one-dimensional, so that the pointwise Lp-norm of any 
g ∈ L (C0(X)) = Cb(X) is given by pointwise evaluation of |g|. Hence, tr(1 + S2)−p/2 =
(1 + f2)−p/2, which lies in C0 for all p > 0. �

Again, this is a confirmation of additivity for summability under the unbounded in-
terior Kasparov product. Indeed, in [37] it was shown that DSn can be related to the 
immersion class defined by S as above and DRn+1 in the following way. Namely, the 
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unbounded interior product of S and DRn+1 is equal to the unbounded interior product 
of DSn with a so-called index cycle T . The latter represents the identity at the bounded 
level but is in fact a p-summable Kasparov cycle for all p > 1.

Proposition 4.27. The selfadjoint closure T of the operator

T0 =
(

0 −i∂s − if(s)
i∂s + if(s) 0

)
on C∞

c ((−ε, ε), C2) is p-summable for all p > 1.

Proof. As in [37, Lemma 2.11], for |λ| > π
2ε we have Δε+1 < T 2+λ2+1, where Δε is the 

closure of the Dirichlet Laplacian on C∞
c ((−ε, ε))⊕2. On the other hand, if Δε/2 is the 

closure of the Dirichlet Laplacian on C∞
c ((−ε/2, ε/2))⊕2 and c = f2(ε/2) +|f ′(ε/2)|, then ∥∥T 2 − Δε/2|L2((−ε/2,ε/2))⊕2

∥∥ = c < ∞ so that, by the min-max principle, the singular 
values σn(T 2) are bounded from above by σn(Δε/2) + c. Thus, one has ‖(Δε/2 + λ2 +
c + 1)−1‖p ≤ ‖(T 2 + λ2 + 1)−1‖p ≤ ‖(Δ + 1)−1‖p and so (T ± λi)−1 ∈ Lp if and only if 
p > 1. �

As such, the summability of DRn+1 plus that of the immersion cycle (i.e. 0+) indeed 
coincides with the summability of DSn plus that of the index cycle.

4.3.4. Example: actions of Z
Consider the standard C(X)-module E = L2(S1) ⊗C C(X) equipped with the ‘Dirac’ 

operator

D = DS1 ⊗ 1.

Then trχ∗|D|−p = tr |DS1 |−p < ∞ for all characters χ and p > 1 so that we have 
|D|−1 ∈ Lp (E) for p > 1.

As an example of an unbounded Kasparov cycle, consider a homeomorphism on X
and consider the action n ·f := f ◦φn of Z on C(X). Let C(X) �φZ be the corresponding 
full crossed product C∗-algebra. Consider the unitary U ∈ L (E) given by U = S ⊗ 1, 
where S is multiplication by θ �→ eiπθ on L2(S1). Then, the map ρ defined on finite sums 
in C(X) �φ Z by

ρ :
∑
k

fkuk �→
∑
k

fkU
k,

where the left action of C(X) is just given by pointwise multiplication, extends by 
universality to a representation of C(X) �φ Z. Moreover, [D, 

∑
k fkU

k] =
∑

k kfkU
k

because [DS1 , Sk] = kS, so that there is a dense subalgebra of C(X) �φ Z with [D, a]
bounded. We conclude that (EC(X), D) is an unbounded p-summable Kasparov C(X) �φ

Z − C(X) cycle for all p > 1.
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In particular, one has

ζD(fuk, z)(x) = trχ∗(fUkD−z) = f(x) trL2(S1) S
k|DS1 |−z,

so that ζD(
∑

k fkuk, z) extends meromorphically to C \ {1} and in fact

Resz=1 ζD(
∑
k

fkuk, z) ∝ f0.
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