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1 Introduction

Anyone who has lost track of time
when using a computer knows the
propensity to dream, the urge to
make dreams come true and the
tendency to miss lunch.

–Sir Tim Berners-Lee

The marriage of Quantum Field theory en General Relativity has always been an inter-
esting one. Two of the most well-known quantum relativistic effects are Hawking radiation
([28]) and the Fulling–Davies–Unruh effect [21, 13, 48]. A closely related effect is that
of particle creation in asymptotic static isotropic Friedmann–Lemâıtre–Robertson–Walker
(FLRW) spacetimes, as first studied by Parker [37, 38] even before Hawking, Fulling, Davies
and Unruh published their results, and later extensively by Bernard and Duncan [9, 15].

Recently these results have seen a revival of attention from quantum information theo-
rists, studying the effect of relativity on entanglement of quantum states (e.g. in [36, 34,
20, 35, 39]).

Inspired by this revival of interest, we have studied the entanglement, or in the language
of the original papers, the particle creation of fermionic fields in asymptotically static FLRW
spacetimes, generalizing the results to spatially compact asymptotically static Generalized
Friedmann–Lemâıtre–Robertson–Walker (GFLRW) spacetimes.

We will proceed as follows. We will conclude this section by introducing the relevant
notation and conventions, which is always challenging when working on the boundary of
two disciplines and having to deal with two sets of not always matching conventions.

In Section 2 we define GFLRW spacetimes and the other relevant geometric notions. We
will define Clifford algebras, the spinor bundle, the spin-connection on the spinor bundle,
and the Dirac operator acting on sections of the spinor bundle. We also define the charge
conjugation operator J on the spinor bundle. We have assumed knowledge of smooth
manifolds and vector bundles, but we will introduce and prove all other notions in depth.
For a good introduction into smooth manifolds and vector bundles, we refer to [33, 32].
Finally we will explain how the Dirac operator on a product spacetime R ˆ Σ is uniquely
determined by the Dirac operator on the Riemannian spin manifold Σ, following the results
of [2].

In Section 3 we find solutions to the Dirac operator on a static product spacetime RˆΣ,
where we assume Σ to be compact. We pay close attention to the role of the the charge
conjugation operator J . We also describe the solutions of the Dirac equation on Minkowski
space. Therefore we will also give a short introduction into Fourier theory in this section.
We have assumed knowledge of Functional Analysis, although it is not necessary to get the
general picture. For a good introduction see e.g. [41, 42, 12]. At the end of Section 3 we
define the relevant mathematical notions to make the concept of solutions at infinity more
precise.

In Section 4 we shorty describe the quantization of the Dirac field on a GFLRW, while
we refer to Appendix A for a more detailed introduction into fermionic Fock spaces and
canonical quantization of fermionic fields. We will find relations between the creation and
annihilation operators around t “ ´8, called the in-region and the operators around t “
`8, called the out-region. Using our more general setting, we are able to find rather elegant
expressions for these transformations using the charge conjugation operator J . We show
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that these transformations give rise to a unitary map from the Fock space at ´8 to the
Fock space at 8.

In Section 5 we will give a detailed exposition how the Bogoliubov transformation are
computed in Minkowski space, thus connecting to the existing literature mentioned above,
and how to explicitly perform the necessary calculations. We hope this will be useful for
anyone interested in the subject. We will identify a small typographical error in [15] which
since then has been plaguing the quantum informational literature. We will finish with a
short conclusion in Section 6.

1.1 Conventions and notation

We write ηpr,sq for the standard (indefinite) inner product on Rr`s of signature pr, sq , but
with reversed order of the coordinates, i.e. for x, y P Rn

ηpr,sqpx, yq “ ´
s
ÿ

i“1

xiyi `
r`s
ÿ

i“s`1

xiyi.

This notation is somehow unconventional, but will turn out very convenient for our spinoral
purposes. If we write Rr,s we mean the inner product space pRr`s, ηpr,sqq. The first s
coordinates are called the time-coordinates, and the last r coordinates are called the space-
coordinates.

If s “ 0 we will often write xx, yy “ ηpn,0qpx, yq. Using this convention, the Minkowski
metric is given by

η “

¨

˚

˚

˝

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

.

We assume all manifolds to be equipped with a smooth structure and all trivializations,
sections etc. are assumed to be smooth. If E Ñ M is a vector bundle, we denote the
space of (smooth) sections by ΓpEq. Given a local trivialization pU, φq of an n-dimensional
manifold M , we will use the convention that

φ “ px1, . . . , xnq,

when there is no room for confusion about which chart is used. Often no explicit chart
will be specified though. Sometimes we will denote it by pU, pxµqq. Given such a chart the
coordinate frame of the tangent bundle TM is denoted by

pBµq “ pB1, . . . , Bnq,

where Bµ “
B
Bxµ . Given a metric g on TM its components in this frame are denoted by

gµν “ gpBµ, Bνq.

We call a frame peaq pseudo-orthonormal if

gpea, ebq “ η
pr,sq
ab ,

and we call it orthonormal if s “ 0. In general we will use Greek indices when referring to a
coordinate basis, and Latin indices when referring to pseudo-orthonormal frames or bases.

3.
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Given any basis or frame we denote the dual basis or frame by the same symbol with the
index raised. That is, peaq is a frame of a vector bundle E, then peaq is the corresponding
coframe of the covector bundle E˚, such that

ebpeaq “ δba.

For the coordinate frame of the cotangent bundle an exception is made. Here pdxµq is the
dual frame corresponding to pBµq. Using these frames, the components of any pn,mq-tensor
A P pbnTMq b pbmTMq are given by

Aa1¨¨¨anb1...bm “ Apea1 , . . . , ean , eb1 , . . . , ebmq.

When working with indices we will use the Einstein summation convention, i.e. a sum-
mation is implied over repeated indices, e.g.

gµνXµ “

3
ÿ

µ“0

gµνXµ,

but only in a strict way: summation over repeated lower or upper indices is not implied.
Summation will take place over all possible values for the index, and otherwise an explicit
summation symbol will be used. For a symmetric p1, 1q tensor A we will often write Aab for
its components instead of Aab, as it doesn’t matter. Indeed

AabXa “ ηacAcbXa “ ηacAbcXa “ A a
b Xa.

Using the metric we can change vectors in covectors and vice versa. Using index notation,
this boils down to raising and lowering of the indices. For example, when X P E, with
corresponding covector X̂ P E˚, we have

Xa “ Xpeaq, Xb “ X̂pebq, Xa “ ηabXb.

When raising and lowering indices of tensors on the tangent bundle, we use the metric
corresponding to the indices. That is if pM, gq is a pseudo-Riemannian manifold and X a
(1,1)-tensor, then

Xaµ “ ηabX
b
µ “ ηabgµνX

bµ.

The Pauli matrices are denoted by

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

.

They are hermitian matrices which square to the identity-matrix. They satisfy the anti-
commutation relations given by

σiσj ` σjσi “ 2δij , i, j “ 1, 2, 3.

We will use p¨q˚ to denote complex conjugation, and p¨q: do denote the adjoint of a linear
operator. For a Hermitian inner product we follow the physics convention by defining them
linear in their second slot, i.e.

xαu, βvy “ α˚βxu, vy.

4.
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2 Geometry, spinor bundles and the Dirac operator

Aim for the sky, but move slowly,
enjoying every step along the way.
It is all those little steps that
make the journey complete

— Chanda Kochhar

2.1 Generalized FLRW spacetimes

We will start by introducing Friedmann–Lemâıtre–Robertson–Walker and globally hyper-
bolic spacetimes and other geometric notions needed for formulating quantum field theory
in curved spacetimes. These will from the fabric on which our other constructions take
place.

Definition 2.1. Let M be a pseudo-Riemannian manifold with metric g. A tangent vector
X P TM is called

• timelike if gpX,Xq ă 0,

• lightlike if gpX,Xq “ 0,

• spacelike if gpX,Xq ą 0.

A differentiable curve in a manifold M is called timelike, lightlike, or spacelike, if its
tangent vectors are timelike, lightlike, or spacelike at all points in the curve respectively.

A differentiable curve in M is called inextendible if no differentiable reparametrization
of the curve can be continuously extended beyond any of the end points.

Definition 2.2. We say that a Riemannian pM, gq manifold is complete if for any v P TM
the geodesic γ : J Ď RÑM with γ1p0q “ v is defined for all t P R, i.e. J “ R.

Definition 2.3. A metric g on a n` 1 dimensional manifold is called stationary if there is
a timelike Killing vector field.

We say that the metric is static if it is stationary and there is a family of spacelike
hypersurfaces orhogonal to the Killing vector field everywhere. In a globally hyperbolic case
these are Cauchy surfaces.

Using coordinates, these two conditions boil down to that their are coordinates xµ, with
t “ x0 timelike such that

1. g is independent of t, and

2. g0j “ 0 for j “ 1, . . . , n.

Using these coordinates the spacelike hypersurfaces orthogonal to the Killing vector are the
t “ const. surfaces.

Definition 2.4. A Cauchy hypersurface Σ in a spacetime pM, gq is a subset of M which is
met exactly once by every inextendible timelike curve.

Definition 2.5. A spacetime pM, gq is called globally hyperbolic if it contains a Cauchy
hypersurface.

5.
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The following theorem states that any globally hyperbolic spacetime are isometric to a
smooth product spacetime. This is a stronger version of Geroch’s topological splitting of
globally hyperbolic spacetimes, as stated in [23].

Theorem 2.6 (A. Bernal and M. Sánchez [8]). Let (M,g) be a globally hyperbolic spacetime.
Then there exists a smooth manifold Σ, a smooth one-parameter family of Riemannian
metrics pgtqtPR on Σ and a smooth positive function N on RˆΣ such that pM, gq is isometric
to pRˆΣ,´N2dt2‘gtq. Each ttuˆΣ corresponds to a smooth spacelike Cauchy hypersurface
in (M,g).

In the rest of this thesis we will restrict ourselves to the case that N “ 1 and gt “ a2ptqgΣ ,
i.e. to the case of a globally hyperbolic GFLRW spacetime.

Definition 2.7. We say that a manifold is a Generalized Friedmann–Lemâıtre–Robertson–
Walker (GFLRW) spacetime if it is a product manifold M “ I ˆ Σ, I Ď R an interval,
endowed with the Lorentzian metric

ds2 “ ´dt2 ‘ a2ptqgΣ ,

where gΣ is a Riemannian metric on Σ, and a : I Ñ p0,8q is a smooth, positive function.

Remark 2.8. This spacetime is called a Generalized FLRW spacetime as it is a generaliza-
tion of a FLRW spacetime, for which the space Σ is assumed to be complete and of constant
curvature. The notion of a Generalized Friedmann–Lemâıtre–Robertson–Walker spacetime
is introduced by M. Sánchez in [1]. ♦

Not all GFLRW spacetimes are globally hyperbolic, but if the metric gΣ is complete, they
are.

Theorem 2.9. Let pM, gq “ pI ˆ Σ,´dt2 ‘ a2ptqgΣq be a GFLRW spacetime. pM, gq is
globally hyperbolic if and only if pΣ, gΣq is complete.

Proof. See e.g. [5, Thm. 3.66]).

Definition 2.10. We say that a generalized Friedmann–Lemâıtre–Robertson–Walker space-
time pI ˆΣ,´dt2 ‘ a2ptqgΣq is spatially closed if the fibre Σ is compact.

Remark 2.11. Note that a stationary GFLRW spacetime is automatically static. It is
stationary if aptq is constant and then Bt is a timelike Killing vector field. ♦
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2.2 Spinor bundles

Before we can define the Dirac operator, we have to define the space its solutions live in:
the spinor bundle, a specific vector bundle over a manifold M . In this section we follow
[2, 43, 4].

We first recall some facts about the orthogonal, and special orthogonal groups. Let F
be R or C. Let n “ r ` s. We define the orthogonal group of pFn, ηpr,sqq by

Opr, s,Fq “ tA P GLnpn,Fq | ηpr,sqpAv,Awq “ ηpr,sqpv, wq @v, w P Fnu

and the special orthogonal group by

SOpr, s,Fq “ tA P Opr, sq | detpAq “ 1u.

For C we only have Opn,Cq and SOpn,Cq, as for a complex vector space there is only one
inner product up to isomorphism. One can check that if r “ 0 or s “ 0, then SOpr, s,Cq
is connected and otherwise it has two connected components. We often write SOpr, sq for
SOpr, s,Rq.

Definition 2.12. Let V be a vector space. Let tenu and tfnu be two bases of V , and
A : V Ñ V a linear map such that Aen “ fn@n. We say that tenu and tfnu have the
same orientation if detpAq ą 0. Having the same orientation defines a equivalence relation
on the set of all ordered bases of V , providing two equivalence classes. An orientation is
an assignment of `1 two one equivalence class, and ´1 to the other equivalence class. An
orientation preserving map A : V Ñ V is a map respecting the two equivalence classes, i.e.
mapping a basis to a basis with the same orientation.

Definition 2.13. We consider Rr,s – Rs‘Rr. We say that an orientation of Rr,s is a space
and time orientation of Rr,s, if its restrictions to bases of Rs and Rr define orientations on
Rs and Rr respectively.

By definition SOpr, sq preserves orientations on Rr`s. The connected component of the
identity of SOpr, s,Fq is denoted by SO0pr, s,Fq. SO0pr, sq preserves space and time orien-
tations of Rr,s.

Definition 2.14. Let pV, hq be a vector space V equipped with an inner product h. The
Clifford algebra ClpV, hq is the algebra generated by the vectors v P V , with unit 1, subject
to the relations

v ¨ w ` w ¨ v “ 2hpv, wq. (1)

The Z2 grading
ppv1 ¨ ¨ ¨ vkq “ p´1qkv1 ¨ ¨ ¨ vk

on ClpV, hq gives rise to a decomposition into an even and odd part

ClpV, hq “ Cl0pV, hq ‘ Cl1pV, hq.

We call p : ClpV, hq Ñ ClpV, hq the parity automorphism. We set

Clr,s “ ClpRr`s, ηpr,sqq,

and define the special cases

Cl`n “ Cln,0,

Cl´n “ Cl0,n,

Cln “ Cl`n bR C.

7.
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If e1, . . . , en is a basis of Rn , then the even part pClr,sq
0 consists of products of an even

number of ei’s and the odd part pClr,sq
1 of products of an odd number of ei’s.

Remark 2.15. Note that for a complex vector space, there is only one inner-product up
to isomorphism, i.e. for all r, s we have Clr,sbRC – Clr`s . When using Cln, we will always
use the standard positive definite inner product ηpn,0q, unless stated otherwise. ♦

Remark 2.16. In the other half of the literature a minus sign in the definition of a Clifford
algebra is added in Eq. (1), i.e 2hpv, wq replaced by ´2hpv, wq. The reader should be aware
of this when comparing formulas between different articles. ♦

Proposition 2.17. We have algebra isomorphisms

Clr,s
–
ÝÑ Cl0r,s`1, Clr,s

–
ÝÑ Cl0s`1,r,

induced by the maps
Rr`s Ñ Cl0r,s`1 pCl0s`1,rq, v ÞÑ e0 ¨ v.

Also
Cl0r,s – Cl0s,r .

Proof. We consider the inclusion Rr,s Ď Rr`s`1 such that if e1, . . . , er`s is the standard
basis of Rr`s, then e0, . . . , er`s is the standard basis of Rr`s`1. We first construct the map
Ψ : Rr`s Ñ Cl0r,s`1, given by Ψpeiq “ e0ei. This map extends to a homomorphim

Ψ : Clr,s Ñ Cl0r,s`1 .

Indeed for i, j P t1, . . . , r ` su we have

Ψpeiej ` ejeiq “ ΨpeiqΨpejq ` ΨpejqΨpeiq “ e0eie0ej ` e0eje0ei

“ ´e2
0peiej ` ejeiq “ 2η

pr,sq
ij “ Ψp2η

pr,sq
ij q,

as e2
0 “ ´1. Since Ψ sends basis vectors in Clr,s to basis vectors in Cl0r,s`1 and the dimension

of Clr,s and Cl0r,s`1 coincide, as one can check, Ψ is an isomorphism.

To construct the second isomorphism, we define Ψ : Rr`s Ñ Cl0r,s`1, again as Ψpeiq “
e0ei, which again extends to a homomorphism

Ψ : Clr,s Ñ Cl0s`1,r .

Indeed for i, j P t1, . . . , r ` su we have

Ψpeiej ` ejeiq “ ΨpeiqΨpejq ` ΨpejqΨpeiq “ e0eie0ej ` e0eje0ei

“ ´e2
0peiej ` ejeiq “ ´2η

ps,rq
ij “ 2η

pr,sq
ij “ Ψp2η

pr,sq
ij q,

as now e2
0 “ 1. Again by dimensional analysis this is a isomorphism. Since both Cl0r,s`1 and

Cl0s`1,r are isomorphic to Clr,s we conclude that for all r, s P N

Cl0r,s`1 – Cl0s`1,r,

explicitly given by
ei ÞÑ er`s´i.

This concludes the proof as Cl´0 “ Cl`0 “ R by definition.

8.
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Remark 2.18. Note that if r` s is odd, Ψ maps the volume element of Clr,s to the volume
element Clr,s`1 . ♦

Definition 2.19. The complex spin group is given by

Spincpnq “ tv1 ¨ ¨ ¨ vk P Cl0n | vj P Cn, |xvj , vjy| “ 1u

The spin group is given by

Spinpr, sq “ tv1 ¨ ¨ ¨ vk P Cl0r,s | vj P Rn, ηpr,sqpvj , vjq “ ˘1 @j P 1, . . . , nu

The spin group Spinpr, sq is connected if rs “ 0 and otherwise the connected component of
the identity of the spin group is given by

Spin0pr, sq “ tv1 ¨ ¨ ¨ vk P Spinpr, sq | vj P Rn,
k
ź

j“1

ηpr,sqpvj , vjq “ 1u.

Let F be R or C. For a v P Fn, with ηpr,sqpv, vq ‰ 0 we see from Eq. (1) that v´1 “ v
ηpr,sqpv,vq

and that for w P Fn arbitrary

Adpvqpwq :“ v´1wv “ w ´ 2
ηpr,sqpv, wq

ηpr,sqpv, vq
v.

Hence Adpvq is the reflection across the hyperplane vK. Since it is know that any element
in SOpr, sq is given by an even number of reflections, it follows that Ad is a homomorphism,

Ad : Spincpnq Ñ SOpn,Cq, Ad : Spinpr, sq Ñ SOpr, s,Rq,

by calculating the kernel of Ad one can check we have the following short exact sequences
of groups

1 Ñ Up1q Ñ Spincpnq
Ad
ÝÝÑ SOpn,Cq Ñ 1,

1 Ñ t˘1u Ñ Spinpr, sq
Ad
ÝÝÑ SOpr, s,Rq Ñ 1,

One can also check that

Spincpnq “ pSpinpn, 0q ˆ Up1qq{ „,

where pg, wq „ ph, zq if and only if g “ ´h and w “ ´z. Moreover we have that Spin0pr, sq
is a double covering of SO0pr, sq.

Proposition 2.20. For every pair pr, sq Spin0pr, sq is a double covering of the identity
component SO0pr, sq, that is there is a short exact sequence

1 Ñ Z2 Ñ Spin0pr, sq
Ad
ÝÝÑ SO0pr, sq Ñ 1.

Proof. See [31, Thm 2.10].

We will now study the representations of Clifford algebras and spin groups.

9.
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Definition 2.21. Let pV, ηq be an inner product space over a commutative field F and
let F Ě F be a field containing F . Let W be a finite-dimensional vector space over F. A
F -representation of the Clifford algebra ClpV, ηq is a F -algebra homomorphism

ρ : ClpV, ηq Ñ EndFpW q.

The representation space W is called a ClpV, ηq-module over F.

Proposition 2.22. Cl2k has a unique faithful irreducible representation

ρ2k : Cl2k Ñ Endp∆2kq, ∆2k “ C2k

and Cl2k`1 has two irreducible representation ρ` and ρ´, such that

ρ2k`1 “ ρ` ‘ ρ´ : Cl2k`1 Ñ Endp∆2k`1q ‘ Endp∆2k`1q, ∆2k`1 “ C2k

is faithful.

Proof. We follow [4, Satz 1.3], and give an explicit representation. We define the matrices

W “

ˆ

1 0
0 ´1

˙

, U “

ˆ

0 1
´1 0

˙

, V “

ˆ

0 i
i 0

˙

.

We first assume n “ 2k, then for 1 ď j ď n we define

ρnpe2j´1q “ iW bW b ¨ ¨ ¨ bW b U b I b ¨ ¨ ¨ b I,

ρnpe2jq “ iW bW b ¨ ¨ ¨ bW b V b I b ¨ ¨ ¨ b I .

One can check that the matrices ρpejq satisfy the Clifford relations and that they generate
Mp2k,Cq. Hence ρ is an algebra-isomorphism.

In the odd case, if n “ 2k ` 1, we define

ρnpejq “ pρ2kpejq, ρ2kpejqq 1 ď j ď m,

ρnpenq “ pW b ¨ ¨ ¨ bW,´W b ¨ ¨ ¨ bW q.

One can again check that the matrices ρpejq satisfy the clifford relations and that they
generate Mp2k,Cq. The result now follows.

We call ∆n a n-spinor module. From these representations we can construct representa-
tions of Clr,s “ Clr,sbRC, where by exception we use the the inner-product ηpr,sq to define
Clr,s .

Proposition 2.23. If r ` s is even Clr,s has a unique faithful irreducible C-representation

ρr,s : Clr,s Ñ Endp∆r`sq.

If r ` s is odd Clr,s has two irreducible C-representations ρ´r,s,ρ
`
r,s such that

ρr,s “ ρ`r,s ‘ ρ
´
r,s : Clr,s Ñ Endp∆r`sq ‘ Endp∆r`sq

is faithful.

10.
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Proof. Given the action ρn : Cln Ñ ∆n, we define the actions ρr,s : Clr,s Ñ ∆r`s, as follows.
Let te1, . . . , er`su be the standard pseudo-orthogonal basis of Rr,s. Then we define

ρr,spejq “ iρnpejq @ 1 ď j ď s ρr,spejq “ ρnpejq @ s` 1 ď j ď r ` s.

One can easily check that ρr,spejq satisfy the Clifford relations. Uniqueness follows from the
fact that ρr,s are algebra-isomorphisms, in the same way ρn are, as Clr,s – Cln .

One can restrict ρr,s to Clr,s to obtain irreducible complex representations of Clr,s

Remark 2.24. If there can be no confusion we will we often drop the index n or indices
r, s on the representation ρ. ♦

Remark 2.25. One can also look for real representations of Clr,s . In fact Clr,s has two
inequivalent irreducible real representations if

s` 1´ r “ 0 mod 4

and one otherwise, see [31, Thm. 5.7]. These are not relevant to us, as we are only looking
for complex representations. ♦

For the real Clifford algebra’s Cl˘n there is also another equivalent way to obtain ir-
reducible representations from the representations of its complexification Cln – Cl`n bRC.
Instead of modifying the representation, we find another embedding of Cl˘n in Cln. This
will be done by using anti-linear maps J˘n on the n-spinor modules.

Proposition 2.26. For any k ě 1 there exist anti-linear operators

J˘2k : ∆2k Ñ ∆2k, J˘2k`1 : ∆2k`1 Ñ ∆2k`1

such that

Cl˘2k – ta P Cl2k | rJ
˘
2k, ρpaqs “ 0u,

pCl˘2k`1q
0 – ta P Cl02k`1 | rJ

˘
2k`1, ρpaqs “ 0u.

The operator J´n satisfies for x P Cl1n

pJ´n q
2 “ ε J´n x “ ε1xJ´n , J´n Γn “ ε2ΓnJ

´
n ,

where ε, ε1, ε2 are given in Table 1 for n modulo 8.

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1

ε1 1 -1 1 1 1 -1 1 1

ε2 1 -1 1 -1

Table 1: The values of ε, ε1, ε2 depending on the dimension n modulo 8.

11.
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Proof. We refer to e.g. [50, Prop. 4.7]. We note that

J´3 “ J´2 : C2 Ñ C2

˜

v1

v2

¸

ÞÑ

˜

´v˚2

v˚1

¸

,

and J´4 “ J´2 ‘ J
´
2 .

Definition 2.27. Let e1, . . . , en be the standard orthonormal basis of Cn. The chirality
element in Cln is defined by

Γn “ p´iq
rpn´1q{2se1 ¨ ¨ ¨ en “ p´iq

me1 ¨ ¨ ¨ en P Cln,

where n “ 2m if n is even, and n “ 2m` 1 if n is odd.

Proposition 2.28. The chirality element squares to the identity, i.e. Γ 2
n “ 1. Moreover,

for v P Rn, we have

vΓn “ ´Γnv (n even), vΓn “ Γnv (n odd). (2)

In general for a P Cln,

aΓn “ Γnppaq (n even), aΓn “ Γna (n odd). (3)

Proof. Let n “ 2m if n is even and n “ 2m` 1 if n is odd. We first note that

e1 ¨ ¨ ¨ en “ p´1q
řn´1
k“1 ken ¨ ¨ ¨ e1 “ p´1qnpn´1q{2en ¨ ¨ ¨ e1 “ p´1qmen ¨ ¨ ¨ e1,

since npn´ 1q{2 “ m mod 2. Now it follows immediately that

Γ 2
n “ p´iq

2me1 ¨ ¨ ¨ en ¨ e1 ¨ en “ p´1qmp´1qme2
1 ¨ ¨ ¨ e

2
n “ 1.

This proves the first claim. For every i P 1, . . . , n we have eiΓn “ p´1qn´1Γnei, since ei
anti-commutes with all ej , except when j “ i and then they commute. The result now
follows as n´ 1 is odd as n is even, and vice versa.

Remark 2.29. When e1, . . . , en is a pseudo-orthogonal basis of Cn, such that

xej , eky “ η
pr,sq
jk ,

the chirality element is given by

Γn “ p´iq
mise1 ¨ en,

where again n “ 2m if n is even, and n “ 2m` 1 if n is odd, since now

tie1, . . . , ies, es`1, . . . , er`su

is an orthonormal basis. ♦

12.
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We can define projections

P˘ “
1

2
p1˘ Γnq,

satisfying
P` ` P´ “ id, P`P´ “ P´P` “ 0,

as one can easily check.
If n is odd, this induces a decomposition

Cln “ Cl`n ‘Cl´n ,

where
Cl˘n “ P˘ ¨ Cln .

As ppΓnq “ ´Γn, we have
ppCl˘n q “ Cl¯n .

This means that Cl0n has to be diagonally embedded in this decomposition, i.e.

Cl0n “ ta` ppaq | a P Cl`n u. (4)

If n is even on the other hand we can decompose the spinor module into eigenspaces of
ρpΓnq corresponding to the eigenvalues ˘1:

∆n “ ∆`n ‘∆
´
n , ∆˘n “ tα P ∆n : ρpΓnqα “ ˘αu,

and define the representations ρ˘ with respect to this decomposition such that

ρ “ pρ`, ρ´q : Cln Ñ ∆`n ‘∆
´
n .

The projection onto ∆˘n are given by ρnpP
˘q.

Proposition 2.30. The followings holds for the spin representations of Cln .

1. If n is odd, ρ decomposes into two non-isomorphic inequivalent sub-representations

ρ˘ : Cln Ñ Endp∆˘n`1q.

The two representations ρ`, ρ´ are distinguished by the action of the chirality element,

ρ`pΓnq “ id, ρ´pΓnq “ ´ id .

When restricted to Cl0r,s the two representations become equivalent.

2. If n is even, ρ restricted to Cl0n, decomposes into two non-isomorphic inequivalent
irreducible sub-representations

ρ˘ : Cl0n Ñ Endp∆˘n q.

Proof. Let n be odd. By Proposition 2.17 we have an isomorphism

Ψ : Cln Ñ Cl0n`1 .

13.
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By Remark 2.18 we have ΨpΓnq “ Γn`1. Moreover Ψ induces an isomorphism of represen-
tations

Ψ̃ : Endp∆nq Ñ End0
p∆n`1q “ End0

p∆`n`1 ‘∆
´
n`1q

of representations of Cln and representations of Cl0n . Note that

End0
p∆`n`1 ‘∆

´
n`1q “

ˆ

End0
p∆`n`1q Hom0

p∆`n`1, ∆
´
n`1q

Hom0
p∆´n`1, ∆

`
n`1q End0

p∆´n`1q.

˙

Let a P Cl0n`1, then we have

Ψ̃ pρnpΓnqρnpaqq “ ρn`1pΓn`1qρn`1pΨpaqq “ ´ρn`1pΨpaqqρn`1pΓn`1q

“ ´Ψ̃ pρnpaqρnpΓnqq ,

using Proposition 2.28 and the fact that Ψpaq is odd. On the other hand

ρnpΓnqρnpaq “ ρnpΓnaq “ ρnpaΓnq “ ρnpaqρnpΓnq,

again by Proposition 2.28, hence Ψ̃pρnpaqq “ 0 for a even. This shows

Hom0
p∆´n`1, ∆

`
n`1q “ Hom0

p∆`n`1, ∆
1
n`1q “ H.

Moreover for b P Cln`1 and α˘ P ∆
˘
n`1, we have

ρn`1pbqα˘ “ ˘ρn`1pbqρn`1pΓn`1qα˘ “ ˘ρn`1pΓn`1qρn`1pppbqqα˘ “ ppbqα˘.

So we find that if b∆˘n`1 Ď ∆˘n`1, then b P Cl0n . Therefore,

End0
p∆˘n`1q “ Endp∆˘n`1q.

We thus have a decomposition of ρn:

ρn “ ρ`n ‘ ρ
´
n : Cln Ñ Endp∆nq – Endp∆`n`1q ‘ Endp∆´n`1q,

where
ρ˘n paq “ ρ˘n`1pΨpaqq.

As Γn is in the center of Cln, the two sub-representations

ρ˘n : Cln Ñ Endp∆˘n`1q

are invariant under Cln and hence irreducible. They are also inequivalent as

ρ˘n pΓnq “ ρ˘n`1pΓn`1q “ ˘ id∆˘n`1
.

But if we restrict them to Cl0n the representations become equivalent, because of the diagonal
embedding given in Eq. (4).

Now let n be even. We have already done most of the work. Indeed we already found
that

End0
p∆nq – Endp∆`n q ‘ Endp∆´n q.

By Proposition 2.28 we see that ∆˘n are invariant under Cl0n, so they are irreducible repre-
sentations of Cl0n . They are obviously inequivalent by definition, as the Γn acts as ˘ id on
∆˘n .

14.
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When we restrict these representations to the spin group, we get faithful spin represen-
tations.

Definition 2.31. We define the spin representations

ρ` ‘ ρ´ : Spin0pr, sq Ñ Autp∆`r`sq ‘Autp∆´r`sq Ď Autp∆r`sq for r ` s even, (5)

ρ :“ ρ` : Spin0pr, sq Ñ Autp∆r`sq for r ` s odd, (6)

as the restrictions of the Clifford representations given in Proposition 2.23.

Proposition 2.32. The spin representations ρ`, ρ´ for r ` s even, and ρ for r ` s even
are irreducible.

These representations extend to irreducible representations of Spincpnq – Spinpnq ˆZ2

Up1q via
ρ˘prpg, zqsqα “ z ¨ ρ˘pgqα, ρprpg, zqsqα “ z ¨ ρpgqα.

Proof. This follows almost immediately if one notices that the algebra generated by
Spin0pr, sq is isomorphic to Clr`s .

Proposition 2.33. Let r “ 2m` 1,

ρ`r ‘ ρ
´
r : Clr,0 Ñ Endp∆rq ‘ Endp∆rq,

and
ρ˘r,1 : Cl0r,1 Ñ Endp∆˘r`1q

be the representations as defined above. Under the isomorphism

Clr,0 – Cl0r,1

given by Proposition 2.17, we have

ρ`r,1 – ρ`r , ρ´r,1 – ρ´r .

Proof. This follows immediately by considering the action of the chirality element Γn on
both representations.

Proposition 2.34. For every representation

ρr,s : Clr,s Ñ Endp∆r`sq,

there is a Spin0pr, sq invariant hermitian (possible indefinite) inner product x¨, ¨y such that

xρr,spvqα, βy “ p´1qsxα, ρr,spvqpβqy. (7)

Proof. Let h be the standard Hermitian inner product on ∆r`s “ C2k , given by

hpα, βq “ α˚Tβ,

which is Spinpnq invariant. Let te1, . . . , enu be a pseudo-orthogonal bases of Rr,s. We have

hpρr,speiqα, βq “ hpα, ρr,speiqβq @ i P ts` 1, . . . , s` ru (8)

hpρr,spejqα, βq “ ´hpα, ρr,spejqβq @ j P t1, . . . , su. (9)
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Let s “ 2k if s is even and s “ 2k ` 1 if s is odd and set

Γ̂s “ p´iq
k`se1 ¨ ¨ ¨ es. (10)

For i P ts` 1, . . . , s` ru, j P t1, . . . , su we have

Γ̂ 2
s “ 1, eiΓ̂s “ p´1qsΓ̂rei, ejΓ̂s “ p´1qs´1Γ̂rej .

We also have
hpρr,spΓ̂sqα, βq “ hpα, ρr,spΓ̂sqβq,

since
er`1 ¨ ¨ ¨ er`s “ p´1qker`s ¨ ¨ ¨ er`1

and Eq. (9). Now the inner product x¨, ¨y : ∆r`s Ñ C, defined by

xα, βy “ hpρr,spΓ̂sqα, βq

is an hermitian inner product. Indeed,

xα, βy˚ “ hpρr,spΓ̂sqα, βq
˚ “ hpβ, ρr,spΓ̂sqαq “ hpρr,spΓ̂sqβ, αq “ xβ, αy.

For i P ts` 1, . . . , s` ru, we have

xρr,speiqα, βy “ hpρr,spΓ̂seiqα, βq “ p´1qshpρr,speiΓ̂sqα, βq

“ p´1qshpρr,spΓ̂sqα, ρr,speiqβq “ p´1qsxα, ρr,speiqβy.

And similarly, for j P t1, . . . , su

xρr,spejqα, βy “ hpρr,spΓ̂sejqα, βq “ p´1qs´1hpρr,spejΓ̂sqα, βq

“ p´1qshpρr,spΓ̂sqα, ρr,spejqβq “ p´1qsxα, ρr,spejqβy.

This proves Eq. (7). To prove Spin0pr, sq-invariance, let g “ v1 ¨ ¨ ¨ vk P Spin0pr, sq. Using
vk ¨ ¨ ¨ v1 ¨ v1 ¨ ¨ ¨ vk “ 1 and the fact that k is even, we obtain

xρr,spgqα, ρr,spgqβy “ p´1qksxα, βy “ xα, βy.

2.2.1 Principal bundles

We want to define the spinor bundle as an associated vector bundle of a Spin0pr, sq-principal
bundle. We will first give an introduction into principal bundles, following [43].

We recall the following about Lie groups and Lie algebras. We will assume that G is a
matrix-Lie group, although everything holds for general Lie groups, unless it is explicitly
stated for matrix Lie groups. The Lie algebra of G is given by g “ LiepGq “ TeG where e
denotes the unit element of G. The exponential map exp : gÑ G is defined as

exppAq “
8
ÿ

n“0

1

n!
An,

16.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

for matrix Lie Groups. If φ : GÑ H is a homomorphism of Lie Groups, we have

φ ˝ expG “ deφ ˝ expH .

For any g P G we have the conjugation map

Cg : GÑ G, Cgphq “ g´1hg.

The derivative of this map is denoted by

Adpgq “ deCg : gÑ g,

and the map
Ad : GÑ GLpgq, g ÞÑ Adpgq

is called the adjoint represention of G. It is a Lie group homomorphism. For matrix Lie
algebra’s, we have

AdpgqA “ gAg´1.

Differentiating Ad at the identity element, we get

ad “ de Ad : gÑ Endpgq.

For matrix Lie algebra’s one can check that ad is given by

adpAqB “ rA,Bs “ AB ´BA.

Since Ad is a Lie group homomorphism we have

Ad ˝ exp “ exp ˝ ad,

as is easily checked for matrix Lie groups.

Example 2.35. The Lie algebra of SOpr, sq, is given by

sor,s “ tA PMn | η
pr,sqpAx, yq “ ´ηpr,sqpx,Ayqu,

and the Lie algebra of Spinpr, sq is given by

spinr,s “ spanteiej | 1 ď i ă j ď r ` su Ă Cl0r,s .

In fact as the spin group is a double covering of the special orthogonal group, their Lie
algebra’s coincide. We will give an explicit isomorphism is Proposition 2.77. C

Definition 2.36 (Principal bundle). Let M be a manifold and let G be a Lie group. A
principal G-bundle is given by a surjective submersion π : P Ñ M with a free right action
of G on P along the fibers of π such that P {G –M , which is locally trivial.

That is for every x PM there exists an open neighbourhood U of x and a diffeomorphism
φU : π´1pUq Ñ U ˆG, such that

1. For every g P G, p P π´1pUq, we have

φU ppgq “ φU ppqg “ px, hgq,

where φU ppq “ px, hq.

17.
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2. prU ˝ φU ppq “ πppq for all p P π´1pUq, i.e. the diagram

π´1pUq U ˆG

U

φU

π
prU

commutes.

For a point x PM we call Px :“ π´1pxq the fiber over x. The diffeomorphism φU is called a
local trivialization. By definition one can choose a countable open covering tUαu of M such
that there are local trivializations φα :“ φUα . The collection tUα, φαu is called a bundle
atlas.

Remark 2.37. One can easily check that each fiber carries a free and transitive action of
G. ♦

Definition 2.38. Given two local trivializations pUα, φαq and pUβ , φβq we define the tran-
sition function

ϕαβ : Uα X Uβ Ñ G,

by the equation
pφα ˝ φ

´1
β qpx, gq “ px, gϕαβpxqq.

Note that since the action of G is free and transitive on each fibre ϕαβ is well-defined.

Definition 2.39. A (local) section of a principal bundle π : P ÑM is a smooth map

s : U Ñ P

for an open subset U ĎM , such that π ˝s “ id |U . A global section is a section s : M Ñ P .

Proposition 2.40. Local trivializations of P are in one-to-one correspondence with local
sections.

Proof. Let φU : π´1pUq Ñ U ˆG be a local trivialization. Then

s : U Ñ P spxq “ φ´1
U px, 1q

is a local section. Here we denoted the unit element of G by 1.
Conversely let s : U Ñ P be a local section. Since the action of G on the fibres is free

and transitive, for every p P Px there is a unique gp such that p “ spxqgp. This defines a
smooth map κ : P Ñ G given by κppq “ gp. Now

π ˆ κ : π´1pUq Ñ U ˆG

is a local trivialization, since for p P Px

pπ ˆ κqppgq “ pπ ˆ κqpspxqgpgq “ px, gpgq.

Definition 2.41. Let π1 : P1 Ñ M1 be a G1-principal bundle and π2 : P2 Ñ M2 be a
G2-principal bundle.

18.
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1. A morphism of principal bundles from P1 to P2 is a pair of mapping pθ, λq where
θ : P1 Ñ P2 is smooth and λ : G1 Ñ G2 is a homomorphism of Lie groups, such that
for all p P P1, g P G1.

θppgq “ θppqλpgq. (11)

2. pθ, λq is called an isomorphism if θ is a diffeomorphism and λ an isomorphism of Lie
groups.

Remark 2.42. By the condition Eq. (11) and the fact that a fiber carries a transitive
action of G, θ maps fibres to fibres. Thus it induces a mapping θ̄ : M1 ÑM2, such that the
following diagram commutes

P1 P2

M1 M2

θ

π1 π2

θ̄

♦

Definition 2.43. Let π1 : P1 Ñ M be a G1-principal bundle and π2 : P2 Ñ M be a
G2-principal bundle over the same base manifold M and let pθ, λq be a morphism between
P1 and P2.

1. If θ̄ “ idM then pθ, λq is said to be a vertical bundle morphism.

2. If moreover G1 “ G2 and λ “ idG, then θ is called a G-morphism.

Given a principal G-bundle π : P Ñ M and a representation ρ : G Ñ GLpV q we can
form an associated vector bundle P ˆG V .

Proposition 2.44 (Associated vector bundle). Let π : P ÑM be a principal G-bundle and
ρ : GÑ GLpV q a representation of G on a vector space V . The space

P ˆG V :“ pP ˆ V q{ „,

where
pp1, v1q „ pp2, v2q if and only if Dg P G s.t. pp1, v1q “ pp2g

´1, ρpgqv2q,

has a canonical structure of a vector bundle.

Proof. Let E “ P ˆG V . Elements in E are denoted by rp, vs P E for representatives
pp, vq P P ˆ V. We have rpg, vs “ rp, gvs, where we have written gv instead of ρpgqv. We
define the projection

π̃ : E ÑM, π̃prp, vsq “ πppq.

This is well-defined as πppgq “ πppq, hence we have fibres Ex :“ π̃´1pxq “ trp, vs | p P
Px, v P V u isomorphic to V . Let x PM arbitrary, then we have a open neighbourhood U of
x and a smooth local trivialization φU “ φ1

U ˆ φ2
U : π´1pUq Ñ U ˆG, using which we can

define a local trivialization of E over U . Indeed, we define φ̃U : π´1pUq Ñ U ˆ V by

φ̃U prp, vsq “ pφ
1
U ppq, φ

2
U ppqvq “ pπppq, φ

2
U ppqvq.

This is well-defined, as

φ̃U prpg
´1, gvsq “ pπppg´1q, φ2

U ppg
´1qgvq “ pπppq, φ2

U ppqg
´1gvq “ pπppq, φ2

U ppqvq.

So we have defined a smooth local trivialization of E ÑM over U , hence we conclude that
E “ P ˆG V is a smooth vector bundle.
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Sections of associated vector bundle are conveniently described by equivarient maps.

Definition 2.45. Let π : P ÑM be a principal G-bundle and ρ : GÑ GLpV q a represen-
tation of G on a vector space V . A map

Ψ : P Ñ V

is called equivariant if
Ψppgq “ ρpg´1qΨppq,

for all p P P, g P G. The set of all smooth equivariant maps Ψ : P Ñ V is denoted by
HomGpP, V q.

Proposition 2.46. Let π : P Ñ M be a principal G-bundle and ρ : G Ñ GLpV q a
representation of G on a vector space V . Smooth sections of the associated vector bundle
P ˆG V are in one to one correspondence with smooth equivariant maps Ψ : P Ñ V.

Proof. Let Ψ P HomGpP, V q. We will define a section

σ : M Ñ P ˆG V.

For any x P M , choose p P Px arbitrary (i.e. choose any local section around x), then we
define

σpxq “ rp, Ψppqs.

This is well-defined, since as we had taken another q “ pg P Px, we have

rpg, Ψppgqs “ rpg, ρpg´1qΨppqs “ rpgg´1, Ψppqs “ rp, Ψppqs.

Conversely, let σ : M Ñ P ˆG V be a section. We will define a map Ψ : P Ñ V. Let x PM ,
and spxq “ rp, vs for any q P Px, there is a g P G such that q “ pg. We define

Ψpqq “ ρpg´1qv.

This is indeed equivariant, since for every h P G we have

Ψpqhq “ Ψppghq “ ρppghq´1qv “ ρph´1qρpg´1qv “ ρph´1qΨpqq.

One easily checks that
σ ˝ π “ pidP , Ψq : P Ñ P ˆG V.

Remark 2.47. 1. Sometimes the equivalence relation on P ˆV defining P ˆGV is given
by

pp1, v1q „ pp2, v2q if and only if Dg P G s.t. pp1, v1q “ pp2g, ρpgqv2q.

Then a equivariant mapping has to be defined as map Ψ : P Ñ V such that

Ψppgq “ ρpgqΨppq,

for the equivalence above to work
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2. If s : U Ñ P is a local section, we can pull back any equivariant mapping Ψ : P Ñ V ,
defining a map ψ “ s˚Ψ : M Ñ V . This maps induces a section τ : U Ñ P ˆG V such
that τ “ σ |U , where σ is the global section induced by Ψ , because the definition of σ
is independent of the section s : M Ñ P.

♦

Given a vector bundle and a free and transitive right action of a Lie group G on a subset of
its frames, one can also form a principal bundle from it, see e.g. [45, Par. 1.9] or [43, Par.
1.1].

Proposition 2.48. Let G be any Lie subgroup GLpk,Rq. Let E Ñ M be a vector bundle
of rank k over M , and let FGpExq be space of all bases in the fibre Ex, such that we have a
free and transitive right action of G on FGpExq. Then

FGpEq :“
ž

xPM

F pExq

carries the structure of a G-principal bundle over M .

Proof. Let FGpExq be the set of all bases of the vector space Ex such that we have a free
and transitive right action of G on FGpExq. Then define

FGpEq :“
ž

xPM

F pExq “ tpx, sq | x PM, s P FGpExqu.

We have a canonical projection π : FGpEq Ñ M, which assigns to every G-basis at x the
point x. We often write s P FGpEq instead of px, sq P FGpEq to simplify notation, and set
πpsq “ x. By definition for any G-basis at x, sx “ ps

1
x, . . . , s

k
xq and A P G the ordered set

pAsxq
j :“

k
ÿ

i“1

sixA
i
j

is again a G-basis at x. We thus get a right action R : FGpEq ˆGÑ FGpEq, given by

RAs “ Rps,Aq “ sA,

which is obviously free. A G-frame over U is defined as an ordered set of sections

s “ ps1, . . . , skq : U Ñ E,

such that for all x PM , sx P FGpExq. For any x PM there is a open neighbourhoud U ĎM
and a local G-frame s : U Ñ E. Given such a local G-frame s, for any σ P π´1pUq Ď FGpEq
there is an Aspσq P G such that σ “ Aspσqsπpσq. This defines a bijection

φU : π´1pUq Ñ U ˆG, φU pσq “ pπpσq, Aspσqq.

We equip FGpEq with a smooth structure by requiring that all such φU are diffeomorphisms.
Then FGpEq with local trivializations φU has the structure of a principal bundle. This follows
by definition of φU as,

φU pσgq “ pπpσq, Aspσqgq “ φU pσqg,

and
prU ˝ φU pσq “ πpσq.
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Taking the tangent space as the vector bundle and G “ Opr, s,Rq or SO0pr, s,Rq, we get
the following result.

Corollary 2.49. Let pM, gq be a n-dimensional pseudo-Riemannian manifold of signature
pr, sq, where r` s “ n. Let FOpTxMq be the set of pseudo-orthonormal bases of the tangent
space TxM . Then

FOpTMq :“
ž

xPM

FOpTxMq

carries the structure of a Opr, s,Rq-principal bundle. If moreover M is orientable, we can
choose an orientation. Let FSO0pTxMq be set of positively time and space oriented pseudo-
orthonormal bases, then

FSO0
pTMq :“

ž

xPM

FSO0
pTxMq

carries the structure of a SO0pr, s,Rq-principal bundle.

Definition 2.50. The principal bundle FGLpk,RqpEq is called the frame bundle of E. The
principal bundle FOpTMq is the orthonormal frame bundle of TM , and FSO0

pTMq is the
(space and time) oriented orthonormal frame bundle of TM .

Definition 2.51. Let M be an oriented pseudo-Riemannian manifold of signature pr, sq.
If there exists a Spinc-principal bundle Sc Ñ M together with a smooth map: θ : Sc Ñ
FSO0

pTMq such that pθ,Adq is a vertical bundle morphism, we say that M is a spinc

manifold. We refer to pSc, θq as a spinc structure.

Definition 2.52 (Spin Manifold). Let M be an oriented pseudo-Riemannian manifold of
signature pr, sq. If there exists a Spin0pr, sq-principal bundle S ÑM together with a smooth
map: θ : S Ñ FSO0pTMq such that pθ,Adq is a verticle bundle morphism, we say that M is
a spin manifold. We refer to pS, θq as a spin structure.

Remark 2.53. 1. One can check that TM – FSO0
pTMq ˆSO0pr,sq Rr,s, and that

TM – S ˆSpin0pr,sq
Rr,s,

is an equivalent condition for S to be a spin structure.

2. Any spin manifold is also a spinc manifold. Indeed if pS, θq is a spin-structure, then

Sc “ S ˆ P0,

defines a spinc structure, where P0 “ M ˆ Up1q is the trivial principal Up1q-bundle
over M .

♦

Definition 2.54 (Spinor bundle). Give a pseudo-Riemannian spinc manifold with a fixed
spinc structure pS, θq. The associated vector bundle

S :“ Sc ˆSpinc ∆n,

where Spinc acts on ∆n via the spin representation, is called the spinor bundle.
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Remark 2.55. If we have a spin manifold with spin structure pS, θq, then the spinor bundle
is isomorphic to

S ˆSpin0pr,sq
∆n,

using the isomorphism

S ˆSpin0pr,sq
∆n Ñ pS ˆ P0q ˆSpinc ∆n

ra,ws ÞÑ rpa, pπSpaq, 1qq, ws,

where Spincpnq “ Spin0pr, sq ˆZ2 Up1q. This is well-defined since

rpa, pπSpaq,´1qq, ws “ rp´a, pπSpaq, 1qq, ws “ rpa, pπSpaq, 1qq,´ws.

When we have a spin manifold, we will use this definition for the spinor bundle.
♦

Definition 2.56. Let pM, gq be a pseudo-Riemannian manifold of signature pr, sq. We
define the Clifford bundles over M as associated vector bundles of the oriented orthonormal
frame bundle:

ClpTMq “ FSO0
pTMq ˆSO0pr,sq Clr,s

Cl´pTMq “ FSO0pTMq ˆSO0pr,sq Cls,r

ClpTMq “ FSO0
pTMq ˆSO0pr,sq Clr,s .

Here A P SO0pr, sq acts on Clr,s in the following way:

A ¨ pv1 ¨ ¨ ¨ vkq “ Av1 ¨ ¨ ¨Avk.

This action is well-defined for ClpTMq and its complexification ClpTMq, as for A P SO0pr, sq

ηpr,sqpAv,Awq “ ηpr,sqpv, wq, v, w P Rr`s

For Cl´pTMq it also is well-defined as

ηps,rqpAv,Awq “ ´ηpr,sqpAv,Awq “ ´ηpr,sqpv, wq “ ηps,rqpv, wq.

Definition 2.57. A vector bundle E ÑM of dimension k with metric g, with a mapping

γ : ΓpTMq Ñ EndpΓpEqq,

fulfilling γpXq2 “ gpX,Xq is called a Clifford module bundle.

Remark 2.58. One can show that a oriented Riemannian manifold M, g is is a spinc

manifold if and only if there is a Clifford module bundle E such that

EndpEq “ ClpTMq (n even) or EndpEq “ ClpTMq0 (n odd).

The spinor bundle is the - up to isomorphism - unique Clifford bundle E such that this
holds. See [40, Thm. 2.11]. This justifies using this as an alternative definition of the spinor
bundle, which is widely used settings like Noncommutative Geometry. ♦
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Definition 2.59. Clifford multiplication

c : ΓpTMq ˆ ΓpSq Ñ ΓpSq,

is fibrewise defined as
cprθpbq, vs, rb, αsq “ rb, ρpvqαs,

where rθpbq, vs P FSO0
pTMq ˆSO0pr,sq Rr,s – TM. The Clifford mapping

γ : ΓpTMq Ñ EndpΓpSqq

is given by
γpXqφ “ cpX,φq

for X P ΓpTMq, φ P ΓpSq.

Remark 2.60. 1. This is well-defined, as for g P Spin0pr, sq we have

cprθpbgq, vs, rbg, αsq “ cprθpbqAdpgq, vs, rbg, αsq “ cprθpbq,Adpgqvs, rb, gαsq

“ rb, gvg´1gαs “ rb, gvαs “ rbg, vσs.

2. Since TM Ď ClpTMq generates ClpTMq fibrewise, γ induces a unique homomorphism

γ̂ : ΓpClpTMqq Ñ EndpΓpSqq,

which justifies why γ is called the Clifford representation.
♦

Definition 2.61. Let V be an inner product space. We say that an operator J : V Ñ V is
anti-unitary if for all u, v P V

xJu, Jvy “ xv, uy.

Proposition 2.62. Let M be a Riemannian n-dimensional spin manifold, with spin struc-
ture pS, θq and

S “ S ˆSpinpn,0q ∆n.

There is a globally defined anti-unitary operator JM : ΓpSq Ñ ΓpSq, such that for ψ P ΓpSq

pJMψqpxq “ J´n pψpxqq.

The following two conditions hold

1. JM commutes with the action of real-valued continuous functions on ΓpSq;

2. JM commutes with ΓpCl´pTMqq if n is even, and with ΓpCl´pTMqq0 if n is odd.

Proof. Let ψ P ΓpSq. Let x PM and ψpxq “ rb, αs. We define JM fibrewise by

pJMψqpxq “ rb, J
´
n αs.

This is well-defined, as for g “ v1 ¨ ¨ ¨ vk P Spinpn, 0q, considered as element of Cln, we have

v1 ¨ ¨ ¨ vk “ p´1qk{2piv1q ¨ ¨ ¨ pivkq,

and because
pivjqpivkq ` pivkqpivjq “ ´2xvk, vjy,

we see g P pCl´n q
0 and hence J´n ρpaq “ ρpaqJ´n . The two requirements on JM follow imme-

diately from the properties of J´n
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This operator JM is called the charge conjugation operator.

Remark 2.63. It can be shown that a Riemannian spinc manifold is a spin manifold if and
only if such a charge conjugation operator exits. See [40, Sec. 2.12] and Theorem 9.6 and
the subsequent discussion in [26]. ♦

Proposition 2.64. Let pM, gq be a spin manifold of signature pr, sq. There is a Spin0pr, sq-
invariant (possibly indefinite) Hermitian metric h on S such that

hpγpXqφ1, φ2q “ p´1qshpφ1, γpXqφ2q, (12)

for σ1, σ2 P ΓpSq, X P ΓpTMq.

Proof. We define h : ΓpSq ˆ ΓpSq Ñ C8pMq fibrewise by

hx : Sx ˆ Sx Ñ C,
hxprb, αs, rb, βsq “ xα, βy,

where x¨, ¨y is the inner product given by Proposition 2.34 and πpbq “ x. This is well-defined
since for g P Spin0pr, sq we have

hxprbg
´1, ρr,spgqαs, rbg

´1, ρr,spgqβsq “ xρr,spgqα, ρr,spgqβy “ xα, βy.

The fact that it is Spin0pr, sq-invariant and that Eq. (12) holds, follow immediately from
the fact that these hold for x¨, ¨y.

We often denote the metric h by x¨, ¨y, when there is little room for confusion.

Remark 2.65. For a Riemannian manifold the metric given by Proposition 2.64 is positive
definite, and we set x¨, ¨ypos “ x¨, ¨y. For a pseudo-Riemannian manifold this is not the the
case. Then we define the positive definite metric x¨, ¨ypos fibrewise

xrb, αs, rb, βsypos “ α˚β.

This metric is in general not Spin0pr, sq-invariant. ♦

Proposition 2.66. In even dimensions the spinor bundle splits into the positive and neg-
ative half-spinor bundles

S “ S` ‘ S´,

where S˘ “ S ˆρ˘ ∆
˘
r`s. Clifford multiplication by a tangent vector maps S` to S´ and

vice versa.

Proof. This splitting follows immediately as

S ˆρ ∆r`s “ S ˆpρ`‘ρ´q p∆
`
r`s ‘∆

´
r`sq “ pS ˆρ` ∆

`
r`sq ‘ pS ˆρ´ ∆

´
r`sq.

For any X P TM , we have γpXq : S˘ Ñ S¯ as XΓn “ ´ΓnX by Eq. (2).
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2.2.2 The spinor bundle on a product spacetime

In this section we closely follow [2]. We assume pΣ, gΣq to be a 3-dimensional Riemannian
spin Manifold. We want to study the spinor bundle on the Lorentzian product spacetime
pM :“ RˆΣ,´dt2 ‘ gΣq, with spin structure pSM , θq. Let e0 “ Bt. The bundle of oriented
orthonormal frames of Σt :“ ttu ˆ Σ – Σ can be embedded into the bundle of space and
time oriented orthonormal frames on M restricted to Σt, by the map

i : FSOpΣq Ñ FSO0pMq, i : pe1, e2, e3q ÞÑ pe0, e1, e2, e3q.

Now SΣ :“ θ´1pipFSOpΣqq defines a spin structure on Σ. We will assume that this spin
structure has been taken on Σ. Since n` 1 is even, we have

SM “ S`M ‘ S´M ,

where by Proposition 2.33 we have S`M |Σ“ SΣ , and that Clifford multiplication is given by

γΣpXqα “ γpνqγpXqα,

where X P TΣ and γp¨q is Clifford multiplication with respect to M . On the other hand
S´M |Σ“ SΣ , and Clifford multiplication is given by

γΣpXqα “ ´γpνqγpXqα,

where X P TΣ. The minus sign follows from the way we defined the Clifford module ∆r`s

in odd dimensions, see Eq. (6).

Remark 2.67. Given the Lorentzian-spin manifold pM :“ RˆΣ,´dt2 ‘ gq we will often
use the following explicit construction.

Given a spin representation ρ3 : Cl3 Ñ Autp∆3q, we choose the spin representation

ρ : Cl4 Ñ Autp∆4q

on ∆4 “ ∆3 ‘∆3 to be explicitly given by

ρpe0q “ ´iσ1 b I, ρpvq “ σ2 b ρ3pvq,

where v P R3. Lifting this to a Clifford representation using Definition 2.59 we get

γ : ΓpTMq Ñ AutpΓpSqq,
γpe0q “ ´iσ1 b I, γpXq “ σ2 b γΣpXq,

(13)

where X P ΓpTMq.
In the following we will often use the following explicit local realisation of the Clifford

representation γ, given an pseudo-orthogonal basis pe0, e1, ee, e3q.

γ0 “ γpνq “ ´iσ1 b I,

γa “ γpeaq “ σ2 b σa a “ 1, 2, 3.
(14)

We refer to them as the constant gamma-matrices in the Weyl representation. Raising
indices happens with the Minkowski-metric η, i.e γa “ ηabγb. This boils down to

γ0 “ iσ1 b I, γa “ γa.
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Having explicitly chosen the spin representation, we also define the the curved gamma-
matrices,

γ̃µ “ γpBµq. (15)

Notice that γ0 “ γ̃0. Raising indices happens with the metric g, i.e γµ “ gµνγν . Defining
coefficients eµa such that

ea “ eµaBµ, i.e. eµa “ gµνgpea, Bµq.

we find that the constant and curved gamma matrices are related by

γa “ eµa γ̃µ.

♦

2.3 Connections

Now we have defined the Spinor bundle and Clifford multiplication, we are only one step
away from defining the Dirac operator. In this section we will define the notion of a con-
nection an principal bundles and vector bundles, and we will lift the Levi-Civita connection
to the spinor bundle.

Let π : P ÑM be a G-principal bundle, and denote the right-action of G of P by R, i.e.
Rgp “ pg. Now every element A of the Lie algebra of G defines a vector field A˚ P ΓpTP q,
given by

pA˚qp “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

RexpptAqppq, @p P P.

Definition 2.68. A connection form on a principal G-bundle P is a g-valued one-form
ω P Ω1

pP, gq satisfying

1. ωpA˚q “ A for all A P g

2. R˚gω “ Adpg´1q ˝ ω for all g P G

Note that these forms are defined over P instead of M . It is often easier to work with local
connection forms, which are pull-backs of the connections forms to M .

Definition 2.69. Given a connection form ω and a local section s : U Ñ P , the local
connection form A P Ω1

pM, gq (w.r.t. this local section) is given by

A “ s˚ω.

A complete collection of local connection forms contains exactly the same information
as a connection form.

Proposition 2.70. Let π : P Ñ M be a G-principal bundle and tUα, φαu a bundle atlas
for P . Denote the local section corresponding to φα by sα. If ω is a connection form then
the local connection forms Aα :“ s˚αω satisfy

Aα “ ϕαβAβϕ
´1
αβ ` ϕ

´1
αβdϕαβ (16)

Conversely every collection tAαu of g-valued one-forms subordinate to a bundle atlas
tUα, φαu, satisfying Eq. (16) defines a connection form ω on P .
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Proof. We will assume G to be a matrix Lie Group, see [43, Prop. 1.3.12] for the general
case. Let pUα, sαq, pUβ , sβq be two local sections such that Uα X Uβ ‰ H, 0 and let ϕαβ
be the corresponding transition function, such that sα “ sβϕαβ . Let x P U,X P TxM, and
γ : p´ε, εq ÑM,

γp0q “ x,
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

γptq “ X.

We now compute

dxsαpXq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

sαpγptqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

sβpγptqqϕαβpγptqq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

sβpγptqqϕαβpxq `
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

sβpxqϕαβpγptqq

“ dxsβpXqϕαβpxq ` sβpxqϕ
´1
αβpxqdϕαβpXq.

Using this we get

Aα,xpXq “ ps
˚
αωqxpXq “ ωsαpxqpdxsαpXqq

“ ωsαpxq pdxsβpXqϕαβpxqq ` ωsαpxq

´

sβpxqϕ
´1
αβpxqdϕαβpXq

¯

“ Rϕαβpxqωsβpxq pdxsβpXqq ` ω
´´

ϕ´1
αβpxqdϕαβpXq

¯

˚

¯

sαpxq

“ ϕαβpxqωsβpxq pdxsβpXqqϕ
´1
αβpxq ` ϕ

´1
αβpxqdϕαβpXq

“ ϕαβqpxqAβ,xpXqϕ
´1
αβpxq ` ϕ

´1
αβpxqdϕαβpXq,

where we have used the two properties of Definition 2.68 and the fact that ϕαβpxqdϕαβpXq P
g.
For the converse statement note that such a collection of local connection forms tUα, sα,Aαu

can be patched together to form a unique and well-defined connection form as Eq. (16)
ensures tAαu agree on overlaps.

In the following proposition we will use the following multiple times.

Lemma 2.71. Let π1 : M1 Ñ P1 be a G1-principal bundle, and π2 : M2 Ñ P2 a G2-
principal bundle and let pθ, λq be a bundle morphism from P1 to P2. Let ω be a connection
form on P2. If φ : g1 Ñ g2 is a Lie algebra homomorphism, we have

φ ˝ θ˚ω “ θ˚pφ ˝ ωq.

Proof. This follows immediately by definition, as for any X P TP1

pφ ˝ θ˚ωqpXq “ φpωpdθXqq “ pφ ˝ ωqpdθXq “ pθ˚pφ ˝ ωqqpXq.

Proposition 2.72. Let π1 : M Ñ P1 be a G1-principal bundle, and π2 : M Ñ P2 a G2-
principal bundle and let pθ, λq be a vertical bundle morphism from P1 to P2. Let ω2 be a
connection form on P2. If dλ : g1 Ñ g2 is a isomorphism of Lie algebra’s, the following
holds:
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1. ω2 induces a unique connection form ω1 on P1 such that for any p P P1, X P ΓpTP1q

dθpω1pXq˚qp “ pω2pdθXq˚qθppq.

We have
ω1 “ pdλq

´1 ˝ θ˚ω2.

2. If s1 : U Ñ P1 is a section of P1 and s2 “ θ˝s1 : U Ñ P2, is the corresponding section
of P2 and we write

A1 “ s˚1ω1, A2 “ s˚2ω2,

for the local connection forms, then these are related by

A1 “ pdλq
´1 ˝A2.

Proof. 1. First we check that ω1 is indeed a connection form. For any A P g1 we have

dθpA˚qp “ dθ

ˆ

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

RexpptApXqqppq

˙

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

θ
`

RexpptApXqqppq
˘

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Rexppt dλApXqqpθppqq “ ppdλ Aq˚qθppq.

(17)

Therefore we have

dλpAq “ ω2ppdλpAqq˚q “ ω2pdθA˚q “ θ˚ω2pA˚q “ dλ´1ω1pA˚q

and since dλ´1 is a isomorphism, we find that ωpA˚q “ A. To check that ω1 also
satisfies the second condition for being a connection form, we observe that for X P TP1

dλ ˝R˚gω1 “ R˚g pdλ ˝ ω1q “ R˚g θ
˚ω2 “ pθ ˝Rgq

˚ω2 “ pRλpgq ˝ θq
˚ω2 “ θ˚R˚λpgqω2

“ θ˚pAdpλpgq´1q ˝ ω2q “ Adpλpg´1qq ˝ θ˚ω2 “ Adpλpg´1qq ˝ θ˚ω2

“ dCλpg´1q ˝ dλ ˝ ω1 “ dpCλpg´1q ˝ λq ˝ ω1 “ dpλ ˝ Cg´1qω1

“ dλ ˝Adpg´1q ˝ ω1,

and again because dλ is a isomorphism it follows that R˚gω1 “ Adpg´1q ˝ω1. To check
that ω1 satisfies the condition from the proposition we rewrite the definition of ω1 into

dλpω1pXqq “ θ˚ω2pXq “ ω2pdθXq,

hence pdλpω1pXqqq˚ “ pω2pdθXqq˚. Combining this with Eq. (17) for A “ ω1pXq gives
the desired result. Uniqueness now follows from the fact that dλ is an isomorphism.

2. Indeed,

pdλq´1 ˝A2 “ pdλq
´1 ˝ s˚2ω2 “ pdλq

´1 ˝ pθ ˝ s1q
˚ω2

“ pdλq´1 ˝ s˚1θ
˚ω2 “ s˚1 ppdλq

´1 ˝ θ˚ω2q “ s˚1ω1 “ A1.
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Definition 2.73. A connection on a vector bundle E ÑM is given by a linear map

∇ : ΓpEq Ñ ΓpT˚M b Eq,

that satisfies the Leibniz rule

∇pfσq “ f∇pσq ` df b σ,

for all f P C8pMq, σ P ΓpEq.
We often write

∇XY “ p∇Y qpXq and ∇µ “ ∇Bµ .

If h : ΓpEq ˆ ΓpEq Ñ CpMq is metric on E, then ∇ is said to be compatible or Hermitian
in the case of a complex vector bundle, if

hp∇σ, τq ` hpσ,∇τq “ dhpσ, τq,

for all σ, τ P ΓpEq.

Proposition 2.74. Let π : P Ñ M be a principal G-bundle and ρ : G Ñ GLpV q a
representation of G on a vector space V

1. Any connection form ω defines a connection on the associated vector bundle P ˆG V .
Let Ψ : P Ñ V be an equivariant map defining a section of P ˆG V , this connection
is given by given by

∇Ψ “ dΨ ` dρ ˝ ω ˝ Ψ.

2. Let s : U Ñ P be a local section of P and write ψ “ s˚Ψ. Then this connection is
given by

∇ψ “ dψ `A ˝ ψ

where A “ dρ ˝ s˚ω.

3. Given a section X “ rs, ψs : U Ñ P ˆG V , this connection is given by

∇X “ rs,∇ψs “ rs, dψ `A ˝ ψs.

4. Let pU, xq be a local chart of M and pU, φq a local trivialization of P with corresponding
section s : U Ñ P . Let têau be a basis of V . By writing ψ “ ψaêa and A “ Aµdx

µ,
we can write

∇µψ
a “ Bµψ

a `Aaµbψ
b

where Aaµb “ êapAµêbq.

Proof. Since all maps used in the definition of ∇ are linear, ∇ is linear. To see it satifies
the Leibniz rule, we compute for f P C8pMq

∇pfΨq “ dpfΨq ` dρ ˝ ω ˝ fΨ

“ df b Ψ ` fdΨ ` fdρ ˝ ω ˝ Ψ

“ f∇pΨq ` df b Ψ.

The other points follow from trivial computations.
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Remark 2.75. 1. Note that although a section X : M Ñ P ˆG V is globally defined,
their need not to be globally defined representatives s : M Ñ P,ψ : M Ñ V such that
X “ rs, ψs.

2. By abuse of notation we will often write ∇X “ dX`AX instead of ∇X “ rs, dψ`A˝ψs
for X “ rs, ψs P ΓpP ˆG V q.

♦

For a pseudo-Riemannian Manifold pM, gq there is a unique connection ∇ on TM com-
patible with g which is torsion free, i.e.

∇XY ´∇YX “ rX,Y s.

This connection is called the Levi-Civita connection. Choosing a local coördinate basis txµu,
we define the Christoffel symbols by

∇Bν “ Γλµν dxµ b Bλ.

They are explicitly given by

Γλµν “
1

2
gρλpBµgνρ ` Bνgρµ ´ Bρgµνq.

We can also choose a local pseudo-orthonormal frame peaq of TM , using which we define

the spin-Christoffel symbols by Γ̃
b

µa “ Γ̃
b

µ a.

∇ea “ Γ̃
b

µadx
µ b eb.

The spin-Christoffel symbols are related to the ordinary Christoffel symbols by

Γ̃
b

µa “ e b
ν e

λ
a Γνµλ´ eλaBµe

b
λ ,

where eλa is defined by Bµ “ e a
µ ea.

Proposition 2.76. Let pM, gq be a pseudo-Riemmanina Manifold. The Levi-Civita con-
nection defines a unique local connection form of FSO0

pTMq, given by

Γ̃ “ Γ̃
b

µaêb b ê
a b dxµ, (18)

where Γ̃
a

µb are the spin-Christoffel symbols, such that the corresponding connection on
FSO0pTMq ˆSO0pr,sq Rr,s – TM is again the Levi-Civita connection.

Proof. We use the notation of Proposition 2.74, with P “ FSO0
pTMq and V “ Rr,s. Since

TM – FSO0
pTMqˆSO0pr,sqRr,s, where SO0pr, sq acts on Rr,s by just matrix-multiplication it

follows that dρ “ I . Then Eq. (18) defines a local connection form using the identifications
LiepSO0pr, sqq “ sor,s ĎMr`spRq – Rr`s b pRr`sq˚. Indeed Γ̃µ P sor,s, since

ηacΓ̃
c

µb “ gpea,∇µebq “ ´gp∇µea, ebq “ ´ηbcΓ̃
c

µa,

by metric compatibility.
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Proposition 2.77. Let M be a spin manifold with spin structure pS, θq such that pθ,Adq
is the vertical bundle morphism between S and FSO0

pTMq. Then pdAdq´1 is given by

pdAdq´1 : sor,s Ñ spinr,s Ď Cl0r,s

A ÞÑ
1

4
Aabeaeb.

Proof. We denote the map A ÞÑ 1
4A

abeaeb by ϕ. It is easy to see that ϕ is an isomorphism
of vector spaces. Let teau be a pseudo-orthogonal basis of Rr,s . A acts on v P Rr,s by
matrix multplication, i.e. if v “ vaea then

Apvq “ Aabv
bea “ ηbcA

abvcea.

Under the isomomorphism φ this action is given by

Apvq “ adpφpAqqpvq “ rφpAq, vs.

Indeed

rφpAq, vs “
1

4
Aabvceaebec ´

1

4
Aabvceceaeb “

1

4
Aabpebecea ` ecebeaq

“
1

4
Aabvcp2teb, ecueaq “ ηbcA

abvcea.

Hence we have found
A “ adpφpAqq “ pdAdqpφpAqq,

or equivalently pdAdq´1 “ φ.

If Γ̃ is a sor,s-valued one-form, we can also apply φ fibre-wise, hence for a vector field
Y P ΓpSq we have

rφpΓ̃q, Y s “ Γ̃pY q.

We will use this proving the following proposition.

Proposition 2.78. The Levi-Civita connection ∇ uniquely lifts to a Hermitian connection
∇S on the spinor bundle. It satisfies the following Leibniz rule

∇SpγpY qϕq “ γp∇Y qϕ` γpY q∇Spϕq,

for all Y P ΓpTMq, ϕ P ΓpSq. It commutes with the charge conjugation operator JM . It is
locally given by

∇S
X “ dX ´

1

4
gp∇Xea, ebqγ

aγb,

or using the spin-Christoffel symbols

∇S
µ “ Bµ ´

1

4
Γ̃
b

µaγ
aγb.

Proof. Let
S :“ S ˆSpin0pr,sq

∆n
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be the spinor bundle. By combining the last two proposition with Proposition 2.72, we
obtain a local connection form on S, given by

φpΓ̃q “ ´
1

4
Γ̃
b

µae
aeb b dx

µ.

Apply Proposition 2.74 and using the canonical identification T∆n – ∆n, so that dγ “ γ,
we get that the unique lift of the Levi-Civita connection to the spinor bundle is locally given

∇S
µ “ Bµ ´

1

4
η̃ac Γbµa γpecebq “ Bµ ´

1

4
Γ̃
b

µaγ
aγb.

It is Hermitian as the spin-Chirstoffel symbols are real and skew-symmetric. It commutes
with JM by Proposition 2.62. To see that it satisfies the given Leibniz rule, we compute:

∇SpγpY qϕq “ dpγpY qϕq ` φpΓ̃qγpY qϕ “ γpdY qϕ` γpY qdϕ` φpΓ̃qϕ

“

´

γpdY q ` rφpΓ̃q, γpY qs
¯

ϕ` γpY qpdϕ` φpΓ̃qϕq

“ γpdY ` Γ̃Y qϕ` γpY q∇Sϕ “ γp∇Y qϕ` γpY q∇Sϕ.

Definition 2.79. We call the connection ∇S of Proposition 2.78 the spin-connection.

2.4 Dirac operators

We now are finally ready to define Dirac operator on the spinor bundle.

Definition 2.80. Let x¨, ¨y be the (possibly indefinite) inner product on the spinor bundle
S over M , given by Proposition 2.64. Then we define an inner product on ΓpSq by

pφ, ψq “

ż

M

xφ, ψy dVg, (19)

where dVg is the Riemannian volume form of pM, gq. We also define

pφ, ψqpos “

ż

M

xφ, ψypos dVg.

In the Riemmanian case we have p¨, ¨q “ p¨, ¨qpos . The completion of ΓpSq w.r.t. this positive

definite inner product is denoted by L2pM,Sq or simply L2pSq.

Remark 2.81. 1. In the pseudo-Riemmannian case with signature pr, sq, s ą 0, ΓpSq is
a so-called Krein-space with inner-products p¨, ¨q and p¨, ¨qpos related by

p¨, ¨q “
´

¨, γpΓ̂sq¨
¯

pos
,

where Γ̂s is defined in Eq. (10). For more details, see [4, sect. 3.3.1].

2. It is possible to restrict the spinor bundle to certain sections such that the invariant
inner product becomes positive definite, as we will do for Minkowski-space in Propo-
sition 3.41.

♦
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Definition 2.82 (Dirac operator). Let pM, gq be pseudo-Riemannian manifold of signature
pr, sq and let S be its spinor bundle. The canonical Dirac operator D : Γ8pSq Ñ Γ8pSq is
given by the composition

Γ8pSq
∇S
ÝÝÑ ΓpT˚M b Sq T˚M

g
–TM

ÝÝÝÝÝÝÝÑ Γ8pTM b Sq ´i
s`1cp¨q

ÝÝÝÝÝÝÑ Γ8pSq

It is locally given by
D “ ´is`1γ̃µ∇S

µ .

Remark 2.83. We can also write the Dirac operator locally without the use of a coordinate
basis. Indeed let peaq be a pseudo-orthogonal local frame, then we have

D “ ´is`1γa∇S
ea

or without using indices-notation and Einstein-summation convention

D “ ´is`1
n
ÿ

j“1

εjγpejq∇S
ej ,

where εj “ ηpej , ejq replaces the raising of the index on the gamma matrix. The factor i1`s

is added to make the Dirac operator self-adjoint. When using the opposing definition for
the Clifford algebra (c.f. Remark 2.16), one factor i is already incorporated in the gamma-
matrices. The factor ´1 in front is somewhat arbitrary and can be incorporated in the
gamma-matrices, but it is added to make sure the plane wave solutions eikx have eigenvalue
k, when using 1 as gamma matrix in the one-dimensional case. I.e. if we have M “ R and
we choose

γpBxq “ 1,

then
Deikx “ ´iBxe

ikx “ keikx.

♦
Definition 2.84. Let M be a spin manifold of dimension n and let D be the Dirac operator
on M . A real structure is an anti-unitary operator J : L2pSq Ñ L2pSq, such that

J2 “ ε, JD “ ε1DJ, JΓn “ ε2ΓnJ if n is even.

Here ε, ε1, ε2 P t1,´1u are given as a function of n modulo 8, as defined in Table 2.

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1

ε1 1 -1 1 1 1 -1 1 1

ε2 1 -1 1 -1

Table 2: The values of ε, ε1, ε2 depending on the dimension n modulo 8.

Proposition 2.85. Every spin manifold admits a canonical real structure, which is given
by the charge conjugation operator JM .

Proof. This follows immediately by the definition of the charge conjugatation operator and
Proposition 2.26
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2.5 The Dirac operator on generalized Lorentzian cylinder

The Dirac operator on a generalized Lorentzian cylinder is uniquely determined by the Dirac
operators on Σ. We follow [2, 49]. We first need to define the Weingarten map.

Definition 2.86. Let pM, gq “ pR ˆ Σ,´dt2 ‘ gtq be a product spacetime of dimension
n` 1. The Weingarten map W with respect to ν “ Bt is defined by

W : TΣ Ñ TΣ, X ÞÑ ∇M
X ν.

The mean curvature Hptq of pΣ, gtq is given by

H “
1

n
trΣpW q “

1

n

n
ÿ

j“1

gpej ,W pejqq,

for a frame pejq of TΣ.

Lemma 2.87. If pM, gq “ pRˆΣ,´dt2 ‘ gtq we have gpν,∇Xνq “ 0 for all X P TM .

Proof. This follows by metric compatibility of the connection ∇. Indeed since gpν, νq “ ´1

0 “ dXgpν, νq “ gp∇Xν, νq ` gpν,∇Xνq,

it follows that gp∇Xν, νq “ ´gp∇Xν, νq “ 0.

Lemma 2.88. Let pM, gq “ pR ˆ Σ,´dt2 ‘ gtq be a product spacetime, where pΣ, gtq is a
Riemannian spin manifold, and let n “ dimΣ. We have

∇SM
X “ ∇SΣ

X ´
1

2
γ0γpW pXqq.

Proof.

∇SM
X “ dX ´

1

4
gp∇Xea, ebqγ

aγb

“ dX ´
1

4

ÿ

1ďa,bďn

gp∇Xea, ebqγ
aγb ´

1

4
gp∇Xe0, ebqγ

0γb ´
1

4
gp∇Xea, e0qγ

aγ0

“ ∇SΣ
X ´

1

2
gp∇Xe0, ebqγ

0γb “ ∇SΣ
X ´

1

2
gpW pXq, ebqγ

0γb

“ ∇SΣ
X ´

1

2
γ0γpW pXqq.

Here we have used that

gp∇Xea, e0qγ
aγ0 “ ´gp∇Xe0, eaqγ

aγ0 “ gp∇Xe0, eaqγ
0γa

because of metric compatibilty, and that

W pXq “
3
ÿ

a“1

gpW pXq, eaqe
a “ gp∇Xe0, eaqe

a,

since ∇Xe0 “ ∇XBt “ 0 by Lemma 2.87.

35.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

Theorem 2.89 ([2]). Let pM, gq “ pRˆΣ,´dt2‘gtq be a product spacetime, where pΣ, gtq
is a Riemannian spin Manifold, and let n “ dimΣ. Let pDtqt be a smooth family of Dirac
operators on pΣ, gtq. Using the explicit embedding Eq. (13), the canonical Dirac operator
on L2pM,SM q is equal to

γ0pBt `
n

2
Hq ` iσ2 bDt

Proof. Using Eq. (13), we have

γ̃µ∇SM
µ “ γ̃0∇SM

t `

4
ÿ

µ“1

γ̃mu∇SM
µ

“ γ0∇SM
t `

4
ÿ

µ“1

γ̃µ∇SΣ
µ ´

1

2

3
ÿ

µ“1

γ̃µγ0γpW pBµqq

“ γ0∇SM
t `

4
ÿ

µ“1

γ̃µ∇SΣ
µ `

1

2
γ0

3
ÿ

µ“1

γ̃µγ̃νWµν

“ γ0∇SM
t ` σ2 b

4
ÿ

µ“1

γ̃µΣ∇
SΣ
µ `

1

2
γ0

4
ÿ

µ“1

gµνWµν

“ γ0∇SM
t ` σ2 b

4
ÿ

µ“1

γ̃µΣ∇
SΣ
µ `

1

2
γ0 trΣW

Therefore by writing trΣW “ nH, and ∇SM
t “ Bt we get

D “ ´i2γ̃µ∇S
µ “ γ0pBt `

nH

2
q ` iσ2 bDt.

Proposition 2.90. Let pM, gq “ pRˆΣ,´dt‘a2ptqhq be a GFLRW spacetime, where Σ is
a Riemannian spin manifold. Using the representation given by Eq. (14) the Dirac operator
is given by

D “ iσ1 b

ˆ

Bt `
3

2

9aptq

aptq

˙

` iσ2 b
1

aptq
DΣ . (20)

Proof. To find the Dirac equation on M we need to calculate the main curvature H. Choos-
ing coordinates px0 “ t, xiq, we calculate

∇jν
ρ “ Γρj0 “

1

2
gρσpBjgσ0 ` B0gσj ´ Bσgj0q “

1

2
gρσpB0gσjq “

1

2
gρσpB0gσjq.

And we see this is only nonzero if ρ “ 1, 2, 3, and

∇jν
k “

1

2

1

a2ptq
hkipBta

2ptqqhij “
2 9aptqaptq

2a2ptq
hkihij “

9aptq

aptq
δkj .

The result follows.
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Example 2.91. For a Friedmann–Lemâıtre–Robertson–Walker spacetime with Σ “ R3 we
have

DR3 “ ´iσ1Bx ´ iσ2By ´ iσ1Bz,

hence the Dirac operator on a FLRW-spacetime is equal to

γ0

ˆ

Bt `
3

2

9a

a

˙

`
1

aptq
γ ¨∇ “ iσ1 b

ˆ

Bt `
3

2

9aptq

aptq

˙

`
1

aptq
σ2 b σ ¨∇. C

Proposition 2.92. We assume we are in the situation of Proposition 2.90. The chirality
element is given by

Γ “

˜

I2 0

0 ´ I2

¸

,

defining a splitting of the spinor bundle S “ S` ‘ S´. Regarding to this splitting the Dirac
operator takes the form

D “

˜

0 D´

D` 0

¸

,

where D˘ : ΓpS˘q Ñ ΓpS¯q is given by

D˘ “ iBt ` i
3

2

9aptq

aptq
¯

1

aptq
DΣ .

Proof. According to Definition 2.27 the chirality element is given by

Γ “ p´iq2 ¨ iγ0γ1γ2γ3 “ σ3 b I2 .

Using

iσ1 “

˜

0 i

i 0

¸

, iσ2 “

˜

0 1

´1 0

¸

,

we see that Eq. (20) entails

D “

˜

0 iBt ` i
3
2

9aptq
aptq `

1
aptqDΣ

iBt ` i
3
2

9aptq
aptq ´

1
aptqDΣ

¸

.
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2.6 Analytical aspects

In this section we follow [19].

Proposition 2.93. Let pM, gq be a spin manifold of signature pr, sq. The Dirac operator
with domain ΓcpSq is a symmetric operator w.r.t to the (possible indefinite) inner product
Eq. (19). That is for φ, ψ P ΓpSq with supppφq X supppψq compact we have

pDφ,ψq “ pφ,Dψq .

Moreover, for f P C8pMq we have

rD, f s “ ´is`1γpdfq.

Proof. By using the local expression for the Dirac operator Proposition 2.78 and Proposi-
tion 2.64 we get

pisDφ,ψq “
`

´is`1γpdxµq∇S
µφ, ψ

˘

“ ´p´1q2s`1

ż

M

x∇S
µφ, i

s`2γpdxµqψydVg

“

ż

M

xφ,´is`1γpdxµq∇S
µψydVg ´ i

s`1

ż

M

xφ, γp∇µpdxµqqψy dVg

` is`1

ż

M

Bµxφ, γpdxµqψy dVg

(21)

We observe that the first term is exactly pφ, isDψq.
The volume form dVg is given by

dVg “
a

|det g|dx1 ^ ¨ ¨ ¨ ^ dxn

By differentiating the identity lnpdet gq “ trpln gq with respect to xρ we get

1

det g
Bρ detpgq “ trpg´1Bρgq “ gµνBρgµν .

Hence,

Bρ

a

|det g| “ 1

2

a

|det g|gµνBρgµν

By taking the trace over the second and third indices of the Christoffel symbols we get

Γµρµ “
1

2
gµνBρgµν .

A simple computation shows ∇µpdxµq “ ´Γµρµ dxρ. Combining our results we get

∇µpdxµq
a

|det g| “ ´
a

|det g| Γµρµ “ ´Bρ
a

|det g|dxµ,

From this and partial integration, it follows that

is`1

ż

M

xφ, γp∇µpdxµqqψy dVg ´ i
s`1

ż

M

Bµxφ, γpdxµqψy dVg “ 0.

This proves the first statement.
For the second statement let φ P ΓpSq, then we have by the Leibniz rule for the spinor

connection

rD, f spφq “ ´is`1γpdxµqr∇S
µ , f sφ “ ´i

s`1γpdxµqpBµfqφ “ ´i
s`1γpdfqφ.
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From now on we will assume that Σ is compact and hence complete - c.f. Theorem 2.9 and
Definition 2.10 - , since then there is a complete set of eigenspinors of the Dirac operator.

Theorem 2.94. Let D be a Dirac operator on a compact Riemannian spin manifold Σ.
Then there exists a complete orthonormal basis penq

8
n“1 of the Hilbert space L2pSΣq consist-

ing of eigenspinors of the Dirac operator D,

Den “ λnen.

Moreover,

1. The set σpDq is a closed subset of R consisting of an unbounded discrete sequence of
eigenvalues, i.e limnÑ8 |λn| “ 8.

2. The eigenspinors en are smooth sections.

3. The eigenspaces of D form a complete orthonormal decomposition of L2pSΣq.

4. Each eigenspace Vλ of D is finite-dimensional.

5. The set σpDq is unbounded on both sides of R and, if moreover n ‰ 3 pmod 4q, then
it is symmetric about the origin.

Proof. See [24, Lem. 1.6.3] for the proof of the main statement and items 1 - 3, which is
applicable as the closure of a Dirac operator on a complete Riemannian manifold is elliptic
(see e.g. [25, Prop. 1.3.5]). For the other statements, see [25, Thm. 1.3.7]

Recall that an unbounded operator T is essential self-adjoint if its closure T̄ is self-adjoint.

Proposition 2.95. Let pΣ, gq be a compact Riemannian spin Manifold. The Dirac operator
D is essentially self-adjoint in L2pSΣq. Its closure D̄ has domain the first Sobolev space
H1pSΣq Ď L2pSΣq.

Proof. See e.g. [19, Sec. 4.1, 4.2].

We refer to [24] for the definition of Sobolev spaces. For our purposes, the following
characterization of the Sobolev spaces HkpSΣq is sufficient.

Proposition 2.96. Let penq
8
n“1 be a complete orthonormal basis of L2pSΣq consisting of

eigenspinors of the Dirac operator. For an arbitrary ψ P L2pSΣq we write

ψ “
8
ÿ

n“1

anen.

Then ψ P HkpSΣq if and only if

8
ÿ

n“1

|an|2pλnq2k ă 8.

Proof. See [19, Sec. 4.2].

39.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

Definition 2.97. We denote the eigenspace corresponding to the eigenvalue λ by HΣ
λ , and

the basis of HΣ
λ of smooth eigensections by teλnunPNλ , where Nλ “ t1, . . . ,dimHΣ

λ u. The
previous theorems provides us with the following isomorphism

L2pSΣq
–
ÝÑ l2pNq,

ÿ

λPσpDq,nPNλ

aλne
λ
n ÞÑ pajpλ,nqq,

here j :
À

λPσpDqtλˆNλu
–
ÝÑ N inducted by the orthonormal decomposition of L2pSΣq into

finite dimensional eigenspaces HΣ
λ with orthonormal bases teλnu. We also define

λ : NÑ R

such that λpjpλ1, nqq “ λ1. The Dirac operator acts on square summable sequences panq
8
n“1

by
DΣpanq

8
n“1 “ pλpnqanq

8
n“1.
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3 Solutions of the Dirac equation

If you give a hacker a new toy,
the first thing he ll do is take it
apart to figure out how it works.

— Jamie Zawinski

Definition 3.1. Let D be the Dirac operator of a spin manifold M . The Dirac equation
with mass m is given by

pD `mqψ “ 0.

Remark 3.2. The Dirac equation was first formulated by Dirac in [14] as follows

iBtψ “

˜

´i
3
ÿ

j“1

αjBj `mβ

¸

ψ, ψ P L2pR3,1;C4q.

Here β and αj are 4 by 4 matrices given by

β “

˜

I2 0

0 ´ I2

¸

, αj “

˜

0 σj

σj 0

¸

.

By multiplying the equation by β, it becomes

γ̂jBjψ `mψ “ 0,

where
γ̂0 “ ´iβ, γ̂j “ ´iβ ¨ αj “ σ2 b σj ,

are gamma-matrices in the so-called Dirac representation. Writing D “ ´iγ̂jBj for the
Dirac operator, we get the formula from the definition for M “ R3,1. ♦

In this chapter we will find solutions of the Dirac equation on a generalized n-dimensional
cylinder R ˆ Σ with constant metric, where Σ is a compact odd-dimensional Riemannian
spin manifold. But first we have to recall some functional analysis, with regard to Fourier
Theory and Stone’s theorem.

3.1 Fourier Theory

In this section we follow [41, Ch. IX], [12, Par. X.6] and [42, Ch. 7].

Definition 3.3. The normalized Lebesgue measure on Rn is the measure mn given by

dmnpxq “
1

p2πqpn{2q
dx.

We will norm the Lebesgue spaces LnpRnq using this measure, that is for f P LppRnq we
have

‖f‖p “
1

p2πqpn{2q

ˆ
ż

Rn
|f |pdx

˙1{p

.
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Definition 3.4. A function f P C8pRnq is called rapidly decreasing if

sup
α,β

sup
xPRn

∣∣∣xβDαf
pnq

∣∣∣ ă 8,
where α is a multi-index and

Dα “ p´iBx1
qα1 ¨ ¨ ¨ p´iBxnq

αn .

The set of all rapidly decreasing functions over Rn is called the Schwartz space and is denoted
by Sn “ SpRnq.

Proposition 3.5. If 1 ď p ă 8, then Sn is dense in LppRnq.

Proof. See [12, Prop. 6.5].

Definition 3.6. Let h be an pseudo-Riemannian metric on Rn. The Fourier transform
(with respect to the metric h) is the map

F : L1pRnq Ñ CpRnq,

f ÞÑ f̂ ,

where

f̂pkq “
1

p2πqn{2

ż

Rn
fpxqe´ihpk,xqdx (22)

Proposition 3.7. For f P L1pRnq, we have f̂ P C0pRnq and
∥∥∥f̂∥∥∥

8
ď ‖f‖1.

Proof. See [42, Thm. 7.5].

Lemma 3.8. If f P Sn then f̂ P Sn.

Proof. See [41, Lemma on the second page of Ch. IX].

If we restrict the Fourier transform to Sn we thus get a map F : Sn Ñ Sn. This map is
invertible.

Theorem 3.9. The Fourier transform restricted to the Schwartz space,

F : Sn Ñ Sn

is a linear bicontinous bijection with inverse

pF´1fqpxq “
1

p2πqn{2

ż

Rn
fpkqeihpk,xqdk.

Proof. See [41, Thm. IX.1].

Theorem 3.10 (Plancherel’s Theorem). 1. If f P Sn, then ‖f‖2 “

∥∥∥f̂∥∥∥
2
.

2. The Fourier transform extends to a unitary operator on L2pRnq.

Proof. See [41, Thm. IX.6].
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Definition 3.11. The unitary extension of the Fourier transform from Theorem 3.10 is
called the Fourier-Plancherel transform. It will sometimes be denoted by F .

Remark 3.12. 1. The formula for the Fourier-Plancherel transform is only given by
Eq. (22) if f P L1pRnq X L2pRnq, as it does not make sense for f R L1pRnq.

2. In the following we will often restrict our function to the Schwartz space for notational
clarity, although all calculations can be generalized to L2pRnq by using the Fourier-
Plancherel transform instead of the Fourier transform.

♦

Remark 3.13. When considering Minkowski space R3,1, we will often perform the Fourier
transform in the time and special components separately. The Fourier transform in the time
component, called the temporal Fourier transform, is then given by

fptq ÞÑ f̂pωq “
1
?

2π

ż

R
fptqe´ik

0x0dx0 “
1
?

2π

ż

R
fptqeiωtdt,

where t “ x0 “ ´x0 and ω “ k0 “ ´k0. We often denote the temporal Fourier transform
by F if there is no confusion with the full Fourier transform.

♦

Theorem 3.14. Let D “ iBt : dompDq Ñ L2pRnq on dompDq Ď L2pRnq (where we
parameterize R by t) and let M : dompMq Ñ L2pRnq be the operator defined by Mf “
ωf (where we parameterize R by ω). Let F be the temporal Fourier transform. Then
dompMq “ F dompDq and

FD “MF .

Proof. See [12, Thm 6.18].

Remark 3.15. Sometimes, there is a more canonical measure then the normalized Lebesgue
measure resulting from an (invariant) inner product on L2pRnq, given by

pf, gqinv “
1

p2πqn{2

ż

Rn
f˚pkqgpkqµpkqdk, (23)

where µpkq is a smooth function. We then define the inverse Fourier transform as

F´1
µ fpkq “

ż

Rn
fpxqe´ihpk,xq

a

µpkqdmnpkq,

such that the standard inner product on L2pRn, dmnq of two Fourier transformed functions
leads to an expression of the from Eq. (23), i.e.

`

F´1
µ fpxq,F´1

µ gpxq
˘

std
“

1

p2πqn{2

ż

Rn
f˚pkqgpkqµpkqdk “ pf, gqinv . ♦

3.2 The Schrödinger equation and Stone’s theorem

In this section we follow [41, 27, 47].
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Definition 3.16. The Schrödinger equation on a Hilbert space H for a self-adjoint operator
H0 is given by

iBtψptq “ H0ψptq, ψptq P H @t P R, ψp0q “ ψ0 P H. (24)

Definition 3.17. An operator valued function

U : RÑ BpHq

is called a strongly continuous one-parameter unitary group on H if

1. For each t P R, Uptq is a unitary operator on H.

2. For all s, t P R, we have Upt` sq “ UptqUpsq.

3. If φ P H and tÑ t0, then UptqφÑ Upt0qφ.

From a physics point of view, it is a reasonable assumption to consider only solutions
generated by strongly continuous one-parameter unitary groups.

Definition 3.18. A solution to the Schrödinger equation, Eq. (24), is called a strong solution
if it is given by

ψptq “ Uptqψ0,

with Uptq a strongly continuous one-parameter unitary group with Up0q “ id .

Recall that using functional calculus, for a self-adjoint (possibly unbounded) operator
T , we can define the unitary operator eitT , for any t P R.

Theorem 3.19 (Stone’s theorem). Let H be a self-adjoint operator on H with domain
DpHq and define Uptq “ e´iHt. Then Uptq is a strongly continuous one-parameter unitary
group, and

1. For φ P DpHq,

i
d

dt

ˇ

ˇ

ˇ

ˇ

t“s

Uptqφ :“ lim
hÑ0

Ups` hqφ´ Upsqφ

h
“ HUpsqφ.

2. If d
dt |t“0Uptqφ exists, φ P DpHq.

Conversely, let Uptq be a strongly continuous one-parameter unitary group on H. Then there
is a densely defined and self-adjoint operator H on H such that Uptq “ e´iHt.

Proof. See e.g. [41, Thm. VIII.7, VIII.8] or [27, Thm. 10.15]

The following is an immediate corollary, and provides us with existence and uniqueness
of strong solutions of the Schrödinger equation.

Corollary 3.20. The Schrödinger equation (24) iBtψptq “ H0ψptq with initial value ψp0q “
ψ0 P DpH0q has a unique strong solution given by

ψptq “ e´iH0tψ0.

Remark 3.21. As e´iH0t is a bounded operator, e´iH0tψ0 is defined for all ψ0 P H. This
allows us to interpret e´iH0tψ0 as a solution to the Schrödinger equation, even if ψ0 R

DpH0q. ♦
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3.3 Initial value problems

In this section we follow [47, 18, 41]. Let us assume that pM, gq “ pR ˆ Σ,´dt2 ‘ gΣq,
with pΣ, gΣq a compact odd-dimensional Riemannian spin manifold. We now want to find
solutions of the Dirac equation on M , given by

ppiσ1 b IqBt ` iσ2 bDΣ `mqψ “ 0.

There is of course not a unique solution, but if we require it to satisfy the initial value
condition ψp0, ¨q “ f P H1pSΣq for a fixed f P H1pSΣq the problem becomes well-posed.

There are multiple ways to find its solutions, one is based on Stone’s theorem and will
be given first. The second, more heuristic approach is based on Fourier transformations.

By multiplying the Dirac equation by σ1, the Dirac equation transforms into (c.f. Re-
mark 3.2)

iBtψ “ pσ3 bDΣ ´mpσ1 b idqqψ.

If we define H0 “ σ3bDΣ`mpσ1bidq, we recognize this to be of the form of the Schrödinger
equation. H0 is essential self-adjoint on L2pSΣq bC2 as DΣ is essential self-adjoint and the
Pauli matrices are Hermitian (see [41, Thm. VIII.33]). Its self-adjoint closure H̄0 is defined
on H1pSΣq bC2. We will show that there is a orthonormal basis of L2pSΣq bC2 consisting
of eigenvalues of H0. We call H0 the Dirac Hamiltonian. But before we proof this, we recall
that the real structure

J : ΓpSΣq Ñ ΓpSΣq,

is fibrewise given by

J´3 : C2 Ñ C2,
˜

v1

v2

¸

ÞÑ

˜

´v˚2

v˚1

¸

.

It satisfies
JDΣ “ DΣJ,

J: “ J´1 “ ´J, J2 “ ´1

Jiσi “ iσiJ, Jσi “ ´σiJ, i “ 1, 2, 3.

(25)

Proposition 3.22. Let penq
8
n“1 be a orthonormal basisof L2pSΣq consisting of eigenspinors

with eigenvalues λpnq. The Dirac Hamiltonian

H0 “ σ3 bDΣ `mpσ1 b idq,

on L2pSΣq b C2, has an orthonormal basis of eigenvectors, given by

ˆ

c

m

ωλpnq
wλpnq b en,

c

m

ωλpnq
w̄λpnq b ēn

˙8

n“1

, (26)
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with corresponding eigenvalues ωλpnq,´ωλpnq, where ωλ “
?
λ2 `m2, ēn “ Jen, and

wλ “
1

a

2mpωλ ` λq

˜

ωλ ` λ

´m

¸

“
1

2
a

mpωλ `mq

˜

ωλ ` λ`m

´ωλ ` λ´m

¸

,

w̄λ “ Jwλ “
1

a

2mpωλ ` λq

˜

m

ωλ ` λ

¸

“
1

2
a

mpωλ `mq

˜

ωλ ´ λ`m

ωλ ` λ`m

¸

.

Proof. Note that for all λ P R,
´

b

m
ωλ
wλ,

b

m
ωλ
w̄λ

¯

is a basis of C2, hence Eq. (26) provides

an orthonormal basis of L2pSΣq bC2. To check that wλpnq b en is an eigenvector, we check

H0

˜˜

ωλ ` λ

´m

¸

b en

¸

“

˜

λ ´m

´m ´λ

¸˜

ωλ ` λ

´m

¸

b en

“

˜

ωλ ` λ
2 `m2

´mωλ ´mλ`mλ

¸

b en “ ωλ

˜

ωλ ` λ

´m

¸

b en,

where we have written λ “ λpnq. As J b J anti-commutes with H0 it now immediately
follows that w̄λpnq b ēn is an eigenvector with eigenvalue ´ωλ. The two expressions for wλ

are equivalent, as

1

2
a

mpωλ `mq

˜

ωλ ` λ`m

´ωλ ` λ´m

¸

“
1

2
a

mpωλ `mq

˜˜

ωλ ` λ

´m

¸

`

˜

m

´ωλ ` λ

¸¸

“
1

2
a

mpωλ `mq

˜˜

ωλ ` λ

´m

¸

`
m

ωλ ` λ

˜

ωλ ` λ

´m

¸¸

“
m` ωλ ` λ

2pωλ ` λq
a

mpωλ `mq

˜

ωλ ` λ

´m

¸

“
m` ωλ ` λ

a

2pωλ ` λqpωλ `mq

1
a

2mpωλ ` λq

˜

ωλ ` λ

´m

¸

“
1

a

2mpωλ ` λq

˜

ωλ ` λ

´m

¸

,

where in the last step we have used

2pωλ ` λqpωλ `mq “ 2ω2
λ ` 2λm` 2λωλ ` 2mωλ

“ ω2
λ ` λ

2 `m2 ` 2λm` 2λωλ ` 2mωλ “ pm` ωλ ` λq
2.

Note that by Proposition 2.96 an arbitrary ψ0 P L
2pSΣq b C2 is in H1pSΣq b C2 if and

only if

ψ0 “

8
ÿ

n“1

c

m

ωλpnq

´

anw
λpnq b en ` bnw̄

λpnq b ēn

¯

,
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with
8
ÿ

n“1

p|an|2 ` |bn|2qpλnq2 ă 8.

Theorem 3.23. Let pM, gq “ pRˆΣ,´dt2‘gΣq, with pΣ, gΣq a compact Riemannian spin
manifold. The Dirac equation

ppiσ1 b IqBt ` iσ2 bDΣ `mqψ “ 0,

with initial value ψp0q “ ψ0 P H
1pSΣq b C2 for

ψ0 “

8
ÿ

n“1

c

m

ωλpnq

´

anw
λpnq b en ` bnw̄

λpnq b ēn

¯

,

has a unique strong solution given by

ψptq “ e´iHtψ0 “

8
ÿ

n“1

c

m

ωλpnq

´

anw
λpnq b ene

´iωλpnqt ` bnw̄
λpnq b ēne

iωλpnqt
¯

.

Proof. This follows immediately from Corollary 3.20, Proposition 3.22 and functional cal-
culus.

We will now obtain this result again by using the Fourier transform. By applying the
Fourier transformation and Theorem 3.14 to the Dirac equation we get the temporal Fourier
transformed Dirac equation

pωpσ1 b Iq ` iσ2 bDΣ `mq ψ̂pωq “ 0.

In the following we will often use the tempororal Fourier transformed version of sections of
the spinor bundle. We will also use the notation introduced by Definition 2.97. That is in
local coordinates we will use ω P R, j P N to describe a local section, instead of t P R,x P Σ.
Solutions of the temporal Fourier transformed Dirac equation will be defined on so called
mass shells.

Definition 3.24. The positive mass shell of mass m is given by

X`m “ tpω, jq P Rˆ N | ω2 “ λpjq2 `m2, ω ą 0u.

The negative mass shell of mass m is given by

X´m “ tpω, jq P Rˆ N | ω2 “ λpjq2 `m2, ω ă 0u.

Here λ : NÑ R is as defined in Definition 2.97.

Proposition 3.25. Let Σ be a compact 3-dimensional Riemannian spin-manifold with
Dirac operator DΣ. We assume that the Dirac operator has a symmetric spectrum tλu Ď R
with corresponding normalized eigenfunctions en P L

2pSΣq,that is

DΣe
λ
n “ λpnqen

Let J be the real structure on Σ and write

ēλn “ Jeλn.
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Then the solution of the temporal Fourier transformed Dirac equation

pωσ1 b I `iσ2 bDΣ `mqψ̂pωq “ 0

on X`m is given by

ψ̂pωq “
´

wλpnqan

¯8

n“1
,

while the solution on X´m is given by

ψ̂p´ωq “
´

wλpnqbn

¯8

n“1
.

In both equations ω ą 0 and

wλ “
1

a

2mpωλ ` λq

˜

ωλ ` λ

´m

¸

“
1

2
a

mpωλ `mq

˜

ωλ ` λ`m

´ωλ ` λ´m

¸

,

w̄λ “ Jwλ “
1

a

2mpωλ ` λq

˜

m

ωλ ` λ

¸

“
1

2
a

mpωλ `mq

˜

ωλ ´ λ`m

ωλ ` λ`m

¸

.

Proof. Every ψ̂pωq P l2pNq b C2 can be written as

ψ̂pωq “ panwnq
8

n“1 ,

with anpωq P C and wλnpωq P C2. By inserting this into the Dirac equation we see we need
to have

ωσ1wn ` iσ2λpnqwn `mwn “

˜

m ω ` λpnq

ω ´ λpnq m

¸

wn “ 0.

For solutions to exist, the determinant of this matrix has to be zero, which is the case if
and only if

ω “ ˘ωλpnq “ ˘
a

m2 ` λpnq2.

Hence we are only able to define solutions on the mass shells X˘m. Then, the (up to normal-
isation) unique solution is given by

wλ “
1

a

2mpωλ ` λq

˜

ωλ ` λ

´m

¸

“
1

2
a

mpωλ `mq

˜

ωλ ` λ`m

´ωλ ` λ´m

¸

,

with λ “ λpnq.
This justifies us to choose wn “ wλ for all n P N such that λpnq “ λ as we can pull every

scalar into an. Hence the solution on X`m is given by

ψ̂pωq “
´

wλpnqan

¯8

n“1
.

Here and in the future we will assume ω ą 0, and extract the minus sign from a negative ω
into the solution, that is, if ω ă 0, we will perform the substitution of variables ω ÞÑ ´ω.
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The solutions corresponding to a positive ω will be called the positive frequency solutions,
and the solutions corresponding to a negative ω (before the substitution) will be called the
negative frequency solutions. For the solutions wλ this entails

1
a

2mpωλ ` λq

˜

ωλ ` λ

´m

¸

ÞÑ
1

a

2mp´ωλ ` λq

˜

´ωλ ` λ

´m

¸

“ ´

?
λ` ωλ

?
λ´ ωλ

1
a

2mpωλ ` λq

λ´ ωλ
m

˜

m

ωλ ` λ

¸

“

a

pλ` ωλqpλ´ ωλq

m
Jwλ “ iJwλ.

We set w̄λ “ Jwλ, and absorb the factor i in the coefficients. We thus see the operator
J is an convenient way to switch from positive frequency solutions to negative frequency
solutions, and we can expand an arbitrary negative frequency solutions as

ψ̂p´ωq “
´

wλpnqbn

¯8

n“1
.

This is indeed a solution as

pJ b Jq ppiσ1 b 1qMω ` iσ2 bDΣ `mq “ ppiσ1 b 1qMω ` iσ2 bDΣ `mq pJ b Jq,

The coefficients aλn, b
λ
n have to be determined by an initial value condition.

Integrating any function fpω, jq over the mass shells is heuristically equal to integrating
fpω, jqδpω2´m2´λpjq2q over the whole space. Here δ is a distribution called the Dirac delta
function, as defined in Eq. (87). Since this is a delta function with a non linear argument,
we have to take care to define this rigorously.

Proposition 3.26. For any square integrable function fpω, jq on the mass shells we have

ÿ

ż

X˘m

|fpω, jq|2dω “
ÿ

jPN

∣∣fpωλpjq, jq∣∣2
2ωλpjq

Proof. We will proof this only for the positive mass shell, as a completely similar proof holds
for the negative mass shell. Let

X` “
ď

mPp0,8q

X`m.

We define the map φ : p0,8q ˆ NÑ X` by

φpy, jq “ p
a

y ` λpjq2, jq.

We have
Bφ1

By
“

1

2
a

y ` λpjq2

where φ1 is the first component of φ. Hence for any compactly supported function g we
have

gpω2 ´ λpjq2qdω “
gpyqdy

2
a

y ` λpjq2
.
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If we now take the limit where gpyq converges to a function with a pole at y “ λpjq2 we
obtain for any integrable function fpω, jq on the positive mass shell

ÿ

ż

X`m

|fpω, jq|2dω “
ż

R

ÿ

jPN
|fpω, jq|2δpω2 ´m2 ´ λpjq2qdω

“

ż

R

ÿ

jPN

∣∣∣fpay ` λpjq2, jq
∣∣∣2 δpy ´m2qdy

2
a

y ` λpjq2

“
ÿ

jPN

∣∣fpωλpjq, jq∣∣2 1

2
a

m2 ` λpjq2
“

ÿ

jPN

∣∣fpωλpjq, jq∣∣2 1

2ωλpjq
.

For fixed pω, nq P X`m, for solutions of Proposition 3.32 we can write

ψ̂pω, nq “ aλnw
λ b eλn P L

2pSΣq b C2

using the isomorphism Definition 2.97, and similarly for the negatieve mass shell.

Proposition 3.27. The spinors wλbeλn, w̄
λbēλn are normalized with respect to the invariant

inner product induced from the invariant inner product on ΓpSq. That is we have

`

wλ b eλn, w
λ b eλn

˘

“ ´
`

w̄λ b ēλn, w̄
λ b ēλn

˘

“ 1.

In particular wλ and w̄λ satisfy

´wλ:σ1w
λ “ w̄λ:σ1w̄

λ “ 1.

Proof. The second statement follows from a straightforward calculation. Indeed we have

wλ:σ1w
λ “

1

2mpω ` λq

´

ω ` λ ´m
¯

σ1

˜

ω ` λ

´m

¸

“
´2mpω ` λq

2mpω ` λq
“ ´1

Hence by equations Eq. (25)

w̄λ:σ1w̄
λ “ wλ:J:σ1Jw

λ “ wλ:J:σ1Jw
λ “ wλ:σ1J

2wλ “ ´wλ:σ1w
λ “ 1.

Now the first statement follows by definition of the invariant inner product Eq. (19), as

`

wλ b eλn, w
λ b eλn

˘

“ ´wλ:σ1w
λ
@

eλn
ˇ

ˇ eλn
D

“ 1,

and
`

w̄λ b ēλn, w̄
λ b ēλn

˘

“ ´w̄λ:σ1w̄
λ
@

ēλn
ˇ

ˇ ēλn
D

“ ´1.

Definition 3.28. The space of positive (negative) frequency solutions is given by

V ˘ “ tψpω, jq P ΓpX˘mq | pωpσ1 b Iq ` iσ2 bDΣ `mq ψ̂pωq “ 0u,
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It will be convenient to write ψ “
ř

n,λ a
λ
nw

λ b eλn for ψ P V `, and ψ “
ř

n,λ b
λ
nw̄

λ b ēλn
for ψ P V `, using the isomorphism given by Definition 2.97, although the domain of these
sections are not conveniently described in this representation.

The Spin0pn ´ 1, 1q invariant inner product p¨, ¨q on ΓpSq as defined in Eq. (19), is not
a definite inner product, hence it is not suitable to define a Hilbert space. But restricting
ourselves to the sections in V ˘, it is!

Proposition 3.29. The Spin0pn´ 1, 1q invariant inner product p¨, ¨q on ΓpSq restricted to
V ˘ is positive (negative) definite. Using Fourier coordinates it is given by

pv, wq “

ż

X`m

m

ω
xv, wypos dω dVgΣ .

Moreover for v “
ř

λ,n a
λ
nw

λeλn, w “
ř

λ,n c
λ
nw

λeλn, we have

pv, wq “
ÿ

λ,n

1

2ωλ
aλ˚n cλn.

Proof. Let p¨, ¨qpos be the standard positive definite inner product on ΓpSq. We have that
the Spin0pn´ 1, 1q invariant inner product is related to this by

p¨, ¨q “
`

¨, iγ0¨
˘

pos
.

Note that for v P V ˘λ pv, iσ2 bDΣvqpos “ 0, as

˜

ωλ ` λ

´m

¸

iσ2

˜

ωλ ` λ

´m

¸

“ 0.

Hence

m‖v‖2
pos “ pv,mvqpos “

`

v, p˘iγ0ωλ ´ iσ2 bDΣqv
˘

pos
“ ˘ωλ

`

v, iγ0v
˘

pos
“ ˘ωλ pv, vq .

Therefore pv, vq “
m‖v‖2

pos

˘ωλ
is a positive definite inner product on V `λ , and a negative definite

inner product on V ´λ . Hence it is a positive definite inner product on V ` and a negative
definite inner product on V ´. For simplicity we will restrict ourselves in the rest of the
proof to V `, but a similar calculation can also be performed on V ´. Hence we assume

v “
ÿ

λ,n

aλnw
λeλn, w “

ÿ

λ,n

cλnw
λeλn.

Then we have

pv, wq “

ż

X`m

m

ω
xv, wypos dω dVgΣ

“

ż

X`m

m

ω

˜

ÿ

λ,n

aλnw
λeλn

¸:˜

ÿ

λ1,n1

cλ
1

n1w
λ1eλ

1

n1

¸

dω dVgΣ

“

ż

R

ÿ

λ,n

m

ω
aλ˚n cλn

ωλ
m
δpω2 ´m2 ´ λ2qdω

“

ż

R

ÿ

λ,n

aλ˚n cλnδpω
2 ´m2 ´ λ2qdω “

ÿ

λ,n

aλ˚n cλn
2ωλ

.
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Here we have used
wλ:wλ “

ωλ
m
.

Remark 3.30. It is common practice to incorporate the factor 1
2ωλ

into the coefficients

aλn, c
λ
n. That is we redefine

v “
ÿ

λ,n

?
2ωλa

λ
nw

λeλn, w “
ÿ

λ,n

?
2ωλc

λ
nw

λeλn,

such that
pv, wq “

ÿ

λ,n

aλ˚n cλn.

♦

Definition 3.31. We define the Hilbert space H` of particles as the completion of V ` with
respect to the positive definite invariant inner product on V `.
We define the Hilbert space H´ of antiparticles as the completion of V ´ with respect to the
negative definite invariant inner product on V ´.
We define the Hilbert space of solutions H, as the direct sum of both Hilbert spaces

H “ H` ‘H´.

Note that we have a unitary maps U˘ : H˘ Ñ L2pSΣq b C2, induced by

U`p
?

2ωλw
λ b eλnq “

c

m

ωλ
wλ b eλn, U´p

?
2ωλw̄

λ b ēλnq “

c

m

ωλ
w̄λ b ēλn (27)

Now its time to return from Fourier transformed coordinates and finish this section.

Proposition 3.32. Every strong solution of the initial value problem of the Dirac equation

ψptq “
ÿ

λ,n

c

m

ωλ

`

aλnw
λ b eλne

´iωλt ` bλnw̄
λ b ēλne

iωλt
˘

as stated in Theorem 3.23, is the inverse temporal Fourier transform of v “ v` ` v´, with
v˘ P V ˘ given by

v` “
ÿ

λ,n

?
2ωλa

λ
nw

λeλn, v´ “
ÿ

λ,n

?
2ωλb

λ
nw̄

λēλn.

Proof. This almost immediately follows from the previous propositions, and the Fourier

inversion theorem Theorem 3.9. Note that we have added a factor
b

m
ωλ

1?
2ωλ

to the inverse

Fourier transform as explained in Remark 3.15.

Remark 3.33. Analog to Remark 3.45 we will call

ψλ,npxq “ e´iωtwλ b eλn,

ψ̄λ,npxq “ pJ b Jqpψλ,nq “ eiωtw̄λ b ēλn.
(28)

plane wave solutions. ♦
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3.3.1 Minkowski-space equivalent

This construction of solutions can be performed in an equivalent manner on Minkowski
space, but one has to take all analytical aspects into account as R3 is not compact. We refer
to [47, Sec. 1.4] for a rigorous approach, while we focus here on heuristically constructing
solutions using the full Fourier transform.

We will first study solutions of the Dirac operator on R3, which is given by

DR3 “ ´iσ1Bx ´ iσ2By ´ iσ3Bz.

By applying Theorem 3.14 the Fourier transformed Dirac operator is given by

FDR3F´1 “Mk1σ1 `Mk2σ2 `Mk3σ3.

For a fixed k, this is just a 2 by 2 matrix.

Lemma 3.34. The matrix

k ¨ σ “ k1σ1 ` k2σ2 ` k3σ3 “

˜

k3 k1 ´ ik2

k1 ` ik2 ´k3

¸

has eigenvalues ˘|k| with corresponding eigenvectors

w2pkq “
1

a

2|k|p|k|` k3q

˜

|k|` k3

k1 ` ik2

¸

,

w̄2pkq “ Jw2pkq “
1

a

2|k|p|k|` k3q

˜

´k1 ` ik2

|k|` k3

¸

“
´k1 ` ik2

|´k1 ` ik2|
w2p´kq

respectively. Here κp´kq “ ´k1`ik2
|´k1`ik2| is just a phase factor. When k “ 0, we set

w2pkq “

˜

1

0

¸

, w̄2pkq “ Jw2pkq “

˜

0

1

¸

.

Proof. Indeed,

˜

k3 k1 ´ ik2

k1 ` ik2 ´k3

¸˜

|k|` k3

k1 ` ik2

¸

“

˜

|k|k3 ` k
2
3 ` k

2
1 ` k

2
2

|k|pk1 ` ik2q ` k3pk1 ` ik2q ´ k3pk1 ` ik2q

¸

“ |k|

˜

|k|` k3

k1 ` ik2

¸

.

The Dirac equation of Minkowski space is given by

pγµBµ `mqψ “ 0.

We use the concrete representation for the gamma-matrices given by Eq. (14), i.e.

γ0 “ iσ1 b I, γa “ σ2 b σa a “ 1, 2, 3.
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In this representation the Dirac equation becomes

ppiσ1 b IqBt ` iσ2 bDR3 `mqψpt,xq.

Transforming both sides with the Fourier transform F : SpR4q Ñ SpR4q and Theorem 3.14,
we find

pωpσ1 b Iq ` iσ2 b k ¨ σ `mq ψ̂pω,kq “ 0.

As we shall see, solutions of the Fourier transformed Dirac equation are supported on the
so-called mass shells X˘m.

Definition 3.35. The positive mass shell is given by

X`m “ tk P R4 | kµkµ “ m2, k0 ą 0u.

The negative mass shell is given by

X´m “ tk P R4 | kµkµ “ m2, k0 ă 0u.

Using similar calculations as in Proposition 3.26, one can show that

d3k

2ωp|k|q

is the (up to a constant) unique invariant measure on both mass shells, where

ωp|k|q “
b

|k|2 `m2.

It is invariant with respect to the action of SO0p3, 1q. For a more details we refer to [41,
Appendix: Lorentz invariant measures].

Proposition 3.36. The solutions of the Fourier transformed Dirac equation on Minkowski
space

piγµkµ `mqψpω,kq “ pωpσ1 b Iq ` iσ2 b k ¨ σ `mq ψ̂pω,kq “ 0

are given by

ψ̂pω,kq “
ÿ

s“˘1

δpω2 ´ |k|2 ´m2qaskupk, sq

ψ̂p´ω,kq “
ÿ

s“˘1

δpω2 ´ |k|2 ´m2qbskvpk, sq

where ω ą 0

upk,`1q “ w1p|k|q b w2pkq, vpk,`1q “ w̄1p|k|q b w2pkq,

upk,´1q “ w1p´|k|q b w̄2pkq, vpk,´1q “ w̄1p´|k|q b w̄2pkq,
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and

w1p˘|k|q “
1

a

2mpωp|k|q ˘ |k|q

˜

ωp|k|q ˘ |k|
´m

¸

“
1

2
a

mpωp|k|q `mq

˜

ωp|k|q ˘ |k|`m
´ωp|k|q ˘ |k|´m

¸

,

w̄1p˘|k|q “ Jw1p˘|k|q “
1

a

2mpωp|k|q ˘ |k|q

˜

m

ωp|k|q ˘ |k|

¸

“
1

2
a

mpωp|k|q `mq

˜

ωp|k|q ¯ |k|`m
ωp|k|q ˘ |k|`m

¸

,

(29)

with ωp|k|q “
b

|k|2 `m2.

Proof. The proof is completely similar to the proof of Proposition 3.32, with w1p˘|k|q “
wλ“˘|k|.

We see that the solutions corresponding to upk, sq live on the positive mass shell, while the
solutions corresponding to vpk, sq live on the negative mass shell.

Definition 3.37. The space of positive (negative) frequency solutions is given by

V ˘ “ tψpω,kq P ΓpX˘mq | piγ
µkµ `mqψ “ 0.u

Proposition 3.36 tells us that any f P V ` can be written as a linear combination of
upk,˘q with scalar coefficients that depend on k. Similarly any f P V ´ can be written as
a linear combination of upk,˘q with scalar coefficients that depend on k.

Remark 3.38. The solutions upk,˘q, vpk,˘q found in previous proposition are not the
standard solutions which are normally found (see e.g. [44, Ch. 38]) applying Lorentz boosts
to the zero momentum solutions given by

us “
1
?

2

˜

1

´1

¸

b es, vs “
1
?

2

˜

1

1

¸

b e1s

where te`, e´u and te1`, e
1
´u are two, often equal, orthonormal bases of C2. A pure Lorentz

boost with a speed of k
m is given by

exp
´

iηk̂ ¨B
¯

,

where where η “ sinh´1
p km q is called the rapidity, Bj “ i

4 rγ
j , γ0s “ i

2γ
jγ0 is the boost

matrix, and k̂ “ k
|k| is the unit vector in the direction of k. Using the Chiral representation

for the gamma-matrices we find

2ik̂ ¨B “ ´k̂jpiσ1 b I2qpσ2 b σjq “ k̂jpσ3 b σj .q
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Using the trigonometric identities

cosh

ˆ

1

2
sinh´1

ˆ

|k|
m

˙˙

“
1
?

2

g

f

f

e

d

|k|2

m2
` 1` 1 “

1
?

2m

?
ω `m,

sinh

ˆ

1

2
sinh´1

ˆ

|k|
m

˙˙

“
|k|
m
?

2

1
c

b

|k|2
m2 ` 1` 1

“
|k|
?

2m

1
?
ω `m

,

we then find

exp
´

iηk̂ ¨B
¯

“ cosh
´η

2

¯

` sinh
´η

2

¯

p2ik̂ ¨Bq

“
1

?
2m

?
ω `m`

|k|
?

2m

1
?
ω `m

k̂jpσ3 b σjq

“
1

a

2mpω `mq

`

pω `mq I4`k
jpσ3 b σj

˘

.

The standard boosted solutions are then given by

ũpk, sq “ exp
´

iηk̂ ¨B
¯

us, ṽpk, sq “ exp
´

iηk̂ ¨B
¯

vs. (30)

These are even easier found by noticing p´ikµγ
µ `mqpikνγ

ν `mq “ ´ω2 ` |k|2 `m “ 0,
causing

ũpk, sq “
1

a

2mpω `mq
p´ikµγ

µ `mqus, ṽpk, sq “
1

a

2mpω `mq
pikµγ

µ ´mqvs,

to be the same solutions. The solutions found in Proposition 3.36 are also boosted solutions,
but of zero-momentum vectors based on the eigenvectors w2pkq, that is

upk, sq “ exp
´

iηk̂ ¨B
¯

˜

1

´1

¸

b ws2pkq, vpk, sq “ exp
´

iηk̂ ¨B
¯

˜

1

1

¸

b ws2pkq.

We can also obtain them using the same trick as before by

upk, sq “
1

2
a

mpω `mq
p´ikµγ

µ `mq

˜

1

´1

¸

b ws2pkq,

vpk, sq “
1

2
a

mpω `mq
pikµγ

µ `mq

˜

1

1

¸

b ws2pkq.

Here we have written w`2 “ w2, w
´
2 “ w̄2 for notational convenience. ♦

Definition 3.39. We define the Dirac adjoint of a solution upkq in momentum space by

ūpkq “ iu:γ0.

56.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

Remark 3.40. The solutions w1 and w̄1 are normalized such that

´w1p˘|k|q:σ1w1p˘|k|q “ w̄1p˘|k|q:σ1w̄1p˘|k|q “ 1,

for later convenience. Using the Dirac adjoint the orthonormality relations can be written
as

ūpk, squpk, s1q “ ´v̄pk, sqvpk, s1q “ δss1 .

The Dirac adjoint is just a convenient way to write the Spin0p3, 1q invariant inner product,
as

xupkq, vpkqy “ xupkq, iγ0vpkqypos “ ūpkqvpkq. ♦

Proposition 3.41. The Spin0p3, 1q invariant inner product p¨, ¨q on ΓpSq restricted to func-
tions supported on the mass shells X˘m is definite. Using Fourier coordinates it is given by

pf, gq “

ż

X`m

xfpωp|k|q,kq, gpωp|k|q,kqy d3k

p2πq3{2ωp|k|q

“

ż

R3

mfpωp|k|q,kq˚gpωp|k|q,kq
2ωp|k|q2

d3k

p2πq3{2
.

(31)

Proof. The proof is almost equal to the proof of Proposition 3.29.

Remark 3.42. We will incorporate a factor 1?
2ωp|k|q

into sections fpωp|k|q,kq such that

pf, gq “

ż

R3

mfpωp|k|q,kq˚gpωp|k|q,kq
ωp|k|q

d3k

p2πq3{2
. ♦

Definition 3.43. We define the Hilbert space H` of particles as the completion of V ` with
respect to the positive definite invariant inner product on V `.
We define the Hilbert space H´ of antiparticles as the completion of V ´ with respect to the
negative definite invariant inner product on V ´.
We define the Hilbert space of solutions H, as the direct sum of both Hilbert spaces

H “ H` ‘H´.

Following the standard convention we have chosen to incorporate the minus signs from
solutions on the negative mass shell into the formula of the solutions when performing the
inverse Fourier transform, while keeping k P X`m for all solutions. This makes integration
easier, as we only have to integrate over the positive mass shell.

Theorem 3.44. The solution of the intial value problem

ppiσ1 b IqBt ` iσ2 bDR3 `mqψ “ 0, ψ P SpR4q b C4

ψp0, ¨q “ ψ0 P SpR3q b C4

is given by

ψ “
1

p2πq3{2

ż

R3

ÿ

s“˘1

c

m

ωp|k|q

´

askupk, sqe
ik¨xe´iωp|k|qt ` bskvpk, sqe

´ik¨xeiωp|k|qt
¯

dk,

where ask, b
s
k are uniquely determined by solving

ψ0 “
1

p2πq3{2

ż

R3

ÿ

s“˘1

c

m

ωp|k|q
`

askupk, sqe
ik¨x ` bskvpk, sqe

´ik¨x
˘

dk.
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Remark 3.45. A physicist would say that the plane wave solutions of the Dirac equation
are given by

ψpxq “ eik
0x0eik¨xupk, sq “ eik

µxµupk, sq,

ψ̄pxq “ e´ik
0x0e´ik¨xvpk, sq “ e´ik

µxµvpk, sq,
(32)

corresponding to positive and negative frequency solutions respectively. In both equations

k0 “ ωp|k|q “
b

|k|2 `m2 ą 0.

♦

3.4 Asymptotic solutions of differential equations

In this section we introduce the mathematics needed to speak rigorously of solutions at
infinity of a differential equation, which is needed in next chapter. We begin with a definition
when two functions are asymptotically equivalent. In the following statements F “ R or
C, see [10, Par. 5.9] how results for real-valued differential equations can be extended to
complex valued differential equations. Reference materials are [7, Sec. 3.4], [10, 16, 6, 46].

Definition 3.46. Let f, g : R Ñ F be two continuous functions. We say that fptq is
asymptotically equivalent, or asymptotic to gptq as x goes to t0 P r´8,`8s if

lim
tÑt0

fptq{gptq “ 1,

and we write
fptq „ gptq ptÑ t0q.

Remark 3.47. Note that fptq and gptq being asymptotically equivalent is different from
having their difference go to zero in the limit. For example et „ et ` t ptÑ8q, while

lim
tÑ8

∣∣et ` t´ et∣∣ “ 8.
On the other hand, while limtÑ0

∣∣t´ t2∣∣ “ 0, we don’t have t „ t2 ptÑ 0q as they approach
zero at different rates. But, when one of the two functions is constant, the notions are the
same. ♦

Proposition 3.48. Let f : RÑ F be a continuous function and g “ C the constant function
with value 0 ‰ C P F. Then

lim
tÑt0

fptq “ C

if and only if
fptq „ gptq ptÑ t0q.

Proof. This is trivial, as

lim
tÑt0

fptq “ C ðñ lim
tÑt0

fptq{C “ 1.

Using the notion of asymptotic equivalence we can state the following theorem, as given in
[16, Theorem 1.9.2]. This is a special case of the Levinson theorem [11, Theorem 8.1].
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Theorem 3.49. Consider the nth-order linear homogeneous differential equation

ypnqptq ` pc1 ` r1ptqqy
pn´1qptq ` ¨ ¨ ¨ ` pcn ` rnptqqyptq “ 0 (33)

where cj are constants such that the polynomial

λn ` c1λ
n´1 ` ¨ ¨ ¨ ` cn

has n distinct zeros λk p1 ď k ď nq, and rjptq are functions that satisfy

ż 8

a

|rjptq|dx ă 8,

for some a P R. Then (33) has n solutions ykptq, which satisfy

y
pi´1q
k ptq „ λi´1

k eλkx pxÑ8q @ 1 ď i ď n.

The following corollary is a special case of this theorem, for n “ 2, see [16, Example
1.9.1].

Corollary 3.50. Let
φ2ptq ` pω2 ` rptqqφptq “ 0,

be a second order homogeneous differential equation with

ż 8

a

|rptq|dt ă 8,

for some a P R. There are solutions φout1 , φout2 such that

φout1 „ eiωt ptÑ8q, Btφ
out
1 „ iωeiωt ptÑ8q,

φout2 „ e´iωt ptÑ8q, Btφ
out
2 „ ´iωe´iωt ptÑ8q.

If we also assume
şb

´8
|rptq|dt ă 8, for some b P R, we also have solutions φin1 , φ

in
2 being

asymptotic to eiωt, e´iωt resp. in the limit tÑ ´8.

We will also recall some standard facts about homogeneous linear differential equations.

Definition 3.51. Let f, g be two differentiable functions. Their Wronskian is given by

W rf, gs “ fg1 ´ gf 1.

Proposition 3.52. Let q : R Ñ F be an arbitrary real valued continuous function. Let
y1ptq, y2ptq be two solutions of the homogeneous second-order linear differential equation

y2 ` qptqy “ 0.

Then the Wronskian
W ry1, y2sptq “ y1ptqy

1
2ptq ´ y2ptqy

1
1ptq

is constant.
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Proof. See e.g. [29, Lemma VI-1-4].

Proposition 3.53. Let
y2 ` pptqy1 ` qptqy “ 0

be a second order linear homogenous differential equation, where p and q are continuous
function. If y1ptq and y2ptq are two solutions of this differential equation, such that the
Wronksian W ry1, y2s is not identically zero, then every solution of the differential equation
can be written as

y “ C1y1 ` C2y2,

for constants C1, C2 P C.

Proof. See, e.g. [46, Thm. 65.5].

Definition 3.54. Solutions y1ptq, y2ptq of the differential equation

y2 ` pptqy1 ` qptqy “ 0,

satisfying
W ry1, y2s ı 0,

are called a fundamental set of solutions.
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4 Evolution of quantized Dirac fields in asymptotically
static GFLRW spacetimes

If it’s not tested, it’s broken.

— Bruce Eckel

In this section we study fermionic particle creation due to the expanding of spacetime,
as first studied by Parker [37, 38] and further studied by [15] and more recently in [20,
39]. We generalize the results from FLRW spacetime to Generalized Friedmann–Lemâıtre–
Robertson–Walker (GFLRW) spacetimes.

So let us assume that pM, gq “ pR ˆ Σ,´dt2 ‘ a2ptqhq is a spatially closed, globally
hyperbolic GFLRW spacetime, with Σ a Riemannian spin manifold. We recall that the
Dirac equation on M is equal to

ˆ

iσ1 b

ˆ

Bt `
3

2

9aptq

aptq

˙

` iσ2 b
1

aptq
DΣ `m

˙

ψ “ 0.

We can simplify this equation, by introducing a coordinate transformation on time, given
by

Bt “
1

aptq
Bη, i.e. η “

ż

dt

aptq
,

which we will call conformal time. We will also write Cpηq “ a2ptq. The Dirac equation now
transforms into

piσ1 b pC
´1{2pηqBη `

3

4
C´1{2pηq

9Cpηq

Cpηq
q ` iσ2 b C

´1{2pηqDΣ `mqψ “ 0, (34)

and by multiplying with C1{2pηq and writing µpηq “ mC1{2pηq we get

˜

iσ1 b

˜

Bη `
3

4

9Cpηq

Cpηq

¸

` iσ2 bDΣ ` µpηq

¸

ψ “ 0, (35)

Proposition 4.1. Let peλnq be a complete orthonormal set of eigenspinors of the Dirac
operator DΣ on Σ, with corresponding eigenvalues λ, n “ 1, . . . ,dimVλ. The functions ψλ,n
given by

ψλ,n “
C´3{4N
?

2
piσ1Bη ` λiσ2 ´ µqφ

˘
λ

˜

1

˘1

¸

b eλn,

where φ˘λ P CpRq2 satisfies the second order homogeneous differential equation

˜

B2
η ` µ

2pηq ˘ im
9Cpηq

2C1{2pηq
` λ2

¸

φ˘λ pηq “ 0,

are solutions of the Dirac equation, Eq. (35).

Proof. We choose the ansatz

ψλ,n “ C´3{4Nφ̃nλe
λ
n, φ̃nλ P CpRq b C2,
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where we have omitted the tensor product for notational brevity. Inserting this into the
Dirac equation, we get

0 “

˜

iσ1

˜

Bη `
3

4

9Cpηq

Cpηq

¸

` iσ2DΣ ` µ

¸

eλnC
´3{4φ̃nλpηq “

“ C´3{4eλn
`

´
3

4
iσ1C

´1 9C ` iσ1Bη `
3

4
iσ1C

´1 9C ` iσ2λ` µ
˘

φ̃nλ

“ C´3{4eλn
`

iσ1Bη ` iσ2λ` µ
˘

φ̃nλ.

We see that φ̃nλ do only depend on λ, i.e. we can choose φ̃nλ “ φ̃λ for all n. We conclude
that ψλ,n is a solution if and only if

piσ1Bη ` λiσ2 ` µqφ̃λ “ 0. (36)

We choose the ansatz

φ̃λ “ piσ1Bη ` λiσ2 ´ µqφ̄λ, φ̄λ P CpRq b C2.

Inserting this into Eq. (36), we get

0 “ piσ1Bη ` λiσ2 ` µqpiσ1Bη ` λiσ2 ´ µqφ̄λ “

“
`

´ B2
η ´ σ1σ2λBη ´ iσ1µBη ´ iσ1pBηµq

´ σ2σ1λBη ´ λ
2 ´ iσ2λµ` iσ1µBη ` iσ2λµ´ µ

2
˘

φ̄λ,

and hence we find that φ̄λpηq has to satisfy

pB2
η `m

2Cpηq ` iσ1m
9Cpηq

2C1{2pηq
` λ2qφ̄λpηq “ 0.

By choosing φ̄
p˘q

λ “ 1?
2
φ
p˘q

λ

˜

1

˘1

¸

in the ˘1 eigenspace of σ1 we get

˜

B2
η `m

2Cpηq ˘ im
9Cpηq

2C1{2pηq
` λ2

¸

φ
p˘q

λ pηq “ 0. (37)

Remark 4.2. When 9Cpηq “ 0, Eq. (37) reduces to the harmonic oscillator and we have
solutions

φλpηq “ e˘iωη,

where
ωλ “

a

µ2 ` λ2, µ “ mC1{2.

♦

Proposition 4.3. Suppose that

ż 8

a

∣∣∣∣∣m2pCpηq ´ Coutq ˘ im
9Cpηq

2C1{2pηq

∣∣∣∣∣dη ă 8

62.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

and
ż b

´8

∣∣∣∣∣m2pCpηq ´ Cinq ˘ im
9Cpηq

2C1{2pηq

∣∣∣∣∣ dη ă 8,

for some a, b P R, where Cout “ limηÑ8 Cpηq and Cin “ limηÑ´8 Cpηq. Then we have

asymptotic positive frequency solutions φ
inp˘q
λ , φ

outp˘q
λ of Eq. (37), satisfying

φ
inp˘q
λ „ e´iωinpλqη pη Ñ ´8q and φ

outp˘q
λ „ e´iωoutpλqη pη Ñ8q,

where

ωinpλq “
b

µ2
in ` λ

2, ωoutpλq “
b

µ2
out ` λ

2,

µin “ lim
ηÑ´8

m
a

Cpηq, µout “ lim
ηÑ8

m
a

Cpηq.

The corresponding asymptotic negative frequency solutions of φ
inp˘q
λ , φ

outp˘q
λ are given by

φ
inp¯q˚
λ , φ

outp¯q˚
λ respectively.

Proof. This follows immediately by applying Corollary 3.50. The sign-flip of ˘ in the
negative frequency solutions originates from the explicit factor i in Eq. (37).

Assumption 4.4. We will assume that Cpηq satisfies the conditions stated in the proposi-
tion above.

Remark 4.5. Note that for solutions φ
p˘q

λ of Eq. (37), their complex conjugated variants

φ
p˘q˚

λ satisfy the complex conjugated version of Eq. (37), that is
˜

B2
η `m

2Cpηq ¯ im
9Cpηq

2C1{2pηq
` λ2

¸

φ
p˘q˚

λ pηq “ 0.

This means that φ
p´q

λ and φ
p`q˚

λ are solutions to the same equation, and the equivalent
statement with the signs flipped also holds . Therefore

1
?

2
φ
p´q

λ

˜

1

´1

¸

,
1
?

2
φ
p´q˚

λ

˜

1

1

¸

,
1
?

2
φ
p`q

λ

˜

1

1

¸

,
1
?

2
φ
p`q˚

λ

˜

1

´1

¸

are solutions to Eq. (65). ♦

Proposition 4.6. Defining

Nλ
in “

´1

2
a

µinpωinpλq ` µinq

we have for the asymptotic limits

Nλ
inpiσ1Bη ` iλσ2 ´ µqφ

inp´q
λ

˜

1

´1

¸

„ wλine
´iωinpλqη pη Ñ ´8q

Nλ
inpiσ1Bη ` iλσ2 ´ µqφ

inp´q˚
λ

˜

1

1

¸

„ w̄λine
iωinpλqη pη Ñ ´8q

Equivalent statements hold for φoutp´q and φoutp´q˚
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Proof. Using φ
inp´q
λ „ e´iωinpλqη and Bηφ

inp´q
λ „ ´iωinpλqe

´iωinpλqη we get

Nλ
inpiσ1Bη ` iλσ2 ´ µqφ

inp´q
λ

˜

1

´1

¸

„ Nλ
ine

´iωinpλqηpωinpλqσ1 ` iλσ2 ´ µq

˜

1

´1

¸

“ Nλ
ine

´iωinpλqη

˜

´µ ωinpλq ` λ

ωinpλq ´ λ ´µ

¸˜

1

´1

¸

“
1

2
a

µinpωinpλq ` µinq
e´iωinpλqη

˜

ωinpλq ` λ` µ

´ωinpλq ` λ´ µ

¸

“ wλine
´iωinpλqη.

Similarly, we have

Nλ
inpiσ1Bη ` iλσ2 ´ µqφ

inp´q˚
λ

˜

1

1

¸

„ Nλ
ine

iωinpλqηp´ωinpλqσ1 ` iλσ2 ´ µq

˜

1

1

¸

“ Nλ
ine

iωinpλqη

˜

´µ ´ωinpλq ` λ

´ωinpλq ´ λ ´µ

¸˜

1

1

¸

“
1

2
a

µinpωinpλq ` µinq
eiωinpλqη

˜

ωinpλq ´ λ` µ

ωinpλq ` λ` µ

¸

“ wλine
iωinpλqη.

We also proof the following two lemmas for future use.

Lemma 4.7. The following identities hold.

1.

piσ1Bη ` iλσ2 ´ µqe
´iωoutpλqη

˜

1

1

¸

“

˜

ωoutpλq ` λ´ µout

ωoutpλq ´ λ´ µout

¸

e´iωoutpλqη.

2.

piσ1Bη ` iλσ2 ´ µqe
iωoutpλqη

˜

1

´1

¸

“

˜

ωoutpλq ´ λ´ µout

´ωoutpλq ´ λ` µout

¸

eiωoutpλqη.

Proof. This follows from completely straightforward computations. Indeed for the first
identity we have

piσ1Bη ` iλσ2 ´ µqe
´iωoutpλqη

˜

1

1

¸

“ pωoutpλqσ1 ` iλσ2 ´ µq

˜

1

1

¸

e´iωoutpλqη

“

˜

´µ ωoutpλq ` λ

ωoutpλq ´ λ ´µ

¸˜

1

1

¸

e´iωoutpλqη

“

˜

ωoutpλq ` λ´ µout

ωoutpλq ´ λ´ µout

¸

e´iωoutpλqη.
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Similarly, we have for the second identity

piσ1Bη ` iλσ2 ´ µqe
iωoutpλqη

˜

1

´1

¸

“ p´ωoutpλqσ1 ` iλσ2 ´ µq

˜

1

´1

¸

eiωoutpλqη

“

˜

´µ ´ωoutpλq ` λ

´ωoutpλq ´ λ ´µ

¸˜

1

´1

¸

eiωoutpλqη

“

˜

ωoutpλq ´ λ´ µout

´ωoutpλq ´ λ` µout

¸

eiωoutpλqη.

Lemma 4.8. The following identities hold.

1.

´Nλ
outw

λ:σ1

˜

ωoutpλq ` λ´ µout

ωoutpλq ´ λ´ µout

¸

“
λ

ωoutpλq ` µout
.

2.

Nλ
outw̄

λ:σ1

˜

ωoutpλq ´ λ´ µout

´ωoutpλq ´ λ` µout

¸

“
´λ

ωoutpλq ` µout
.

Proof. To check the first identity, we compute

´Nλ
outw

λ:σ1

˜

ωoutpλq ` λ´ µout

ωoutpλq ´ λ´ µout

¸

“ ´
`

Nλ
out

˘2
´

ωoutpλq ` λ` µout ´ωoutpλq ` λ´ µout

¯

˜

ωoutpλq ´ λ´ µout

ωoutpλq ` λ´ µout

¸

“ ´
`

Nλ
out

˘2 `
ωoutpλq

2 ´ λ2 ´ µ2
out ´ 2µoutλ´ ωoutpλq

2 ` λ2 ` µ2
out ´ 2µoutλ

˘

“ ´
´4µoutλ

4µoutpωoutpλq ` µoutq
“

λ

ωoutpλq ` µout
.

Similarly, we check the second identity by computing

Nλ
outw̄

λ:σ1

˜

ωoutpλq ´ λ´ µout

´ωoutpλq ´ λ` µout

¸

“ ´
`

Nλ
out

˘2
´

ωoutpλq ´ λ` µout ωoutpλq ` λ` µout

¯

˜

´ωoutpλq ´ λ` µout

ωoutpλq ´ λ´ µout

¸

“ ´
`

Nλ
out

˘2 `
´ωoutpλq

2 ` λ2 ` µ2
out ´ 2µoutλ` ωoutpλq

2 ´ λ2 ´ µ2
out ´ 2µoutλ

˘

“
´4µoutλ

4µoutpωoutpλq ` µoutq
“

´λ

ωoutpλq ` µout
.

Proposition 4.9. Let φ
inp˘q
λ , φ

outp˘q
λ be the solutions given by Proposition 4.3. Then

W rφ
inp´q
λ , φ

inp`q˚
λ s “ 2iωinpλq, W rφ

outp´q
λ , φ

outp`q˚
λ s “ 2iωoutpλq

In particular, the Wronskians are non-zero.
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Proof. We will only show the first equation, since the second follows by a completely similar
computation. By Proposition 3.52 we know the Wronskian is constant. So to compute its
value, it is sufficient we to compute its limit at ´8. Since by Corollary 3.50 we have

φ
inp´q
λ „ e´iωinpλqη pη Ñ ´8q, Bηφ

inp`q˚
λ „ ´iωinpλqe

iωinpλqη pη Ñ ´8q,

it follows that

φ
inp´q
λ Bηφ

inp`q˚
λ „ iωinpλq, φ

inp`q˚
λ Bηφ

inp´q
λ „ ´iωinpλq,

and using Proposition 3.48 we find

W rφ
inp´q
λ , φ

inp`q˚
λ s “ lim

ηÑ´8
W rφ

inp´q
λ , φ

inp`q˚
λ spηq “ 2iωinpλq.

Proposition 4.10. There are coefficients α
p˘q

λ , β
p˘q

λ satisfying

φ
inp˘q
λ pηq “ α

p˘q

λ φ
outp˘q
λ pηq ` β

p˘q

λ φ
outp¯q˚
λ pηq. (38)

Proof. By Proposition 4.9 we know that tφ
inp˘q
λ , φ

inp¯q˚
λ u and tφ

outp˘q
λ , φ

outp¯q˚
λ u are two

fundamental set of solutions of the same differential Eq. (37). Hence by Proposition 3.53

we can find constants α
p˘q

λ , β
p˘q

λ such that Eq. (38) holds.

Definition 4.11. The coefficients α
p˘q

λ , β
p˘q

λ from Proposition 4.10 are called Bogoliubov
coefficients.

Following appendix A of [15], we will prove some relations, relating the Bogoliubov
coefficients for future use.

Proposition 4.12. We have the following relations between the Bogoliubov coefficients.

α
p`q

λ

α
p´q

λ

“
ωinpλq ´ µin
ωoutpλq ´ µout

“
ωoutpλq ` µout
ωinpλq ` µin

, (39)

β
p`q

λ

β
p´q

λ

“ ´
ωinpλq ´ µin
ωoutpλq ` µout

“ ´
ωoutpλq ´ µout
ωinpλq ` µin

, (40)

α
p´q

λ α
p`q˚

λ ´ β
p´q

λ β
p`q˚

λ “
ωinpλq

ωoutpλq
, (41)∣∣∣αp´qλ

∣∣∣2 ´ ´ωoutpλq ` µout
ωoutpλq ` µout

∣∣∣βp´qλ

∣∣∣2 “ µoutωinpλq

µinωoutpλq

ˆ

Nout
Nin

˙2

. (42)

Proof. By defining D˘ “ iBη ˘m
a

Cpηq, Eq. (37) becomes

D˘D¯φp˘qλ “ λ2φ
p˘q

λ .

Applying D¯ again, we get

D¯D˘pD¯φp˘qλ q “ λ2pD¯φp˘qλ q.
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As every solution of D¯D˘φ “ λ2φ is a linear combination of φp¯q and φp˘q˚ it follows that
there are constants A¯, B¯ such that

D¯φp˘q “ A¯φ
p¯q `B¯φ

p˘q˚.

But as φ˘ and Bηφ
˘ are negative frequency solutions in the asymptotic limits we need to

have B¯ “ 0, hence D¯φp˘qλ “ A¯φ
p¯q

λ , for some constants A¯. And since by Theorem 3.49
we have

D¯φinp˘qλ „ pωinpλq ¯ µinqe
´iωinpλqη pη Ñ ´8q,

we need D¯φinp˘q “ pωinpλq¯µinqφinp¯q. We now apply the Bogoliubov transformation on
both sides of this equality, and get

D¯pαp˘qλ φ
outp˘q
λ ` β

p˘q

λ φ
outp¯q˚
λ q “ pωinpλq ¯ µinqpα

p¯q

λ φ
outp¯q
λ ` β

p¯q

λ φ
outp˘q˚
λ q (43)

And since again by Theorem 3.49 we have

Bηφ
outp˘q
λ „ ´iωoutpλqe

´iωoutpλqη pη Ñ8q.

Therefore we see that Eq. (43) is asymptotically equivalent to

α
p˘q

λ pωoutpλq ¯ µoutqe
´iωoutpλqη`β

p˘q

λ p´ωoutpλq ¯ µoutqe
iωoutpλqη

“ pωinpλq ¯ µinqpα
p¯q

λ e´iωoutpλqη ` β
p¯q

λ eiωoutpλqηq,

as η Ñ8. Equating coefficients, we immediately obtain the relations Eq. (39) and Eq. (40).
To obtain Eq. (41) we calculate the Wronskians of Proposition 3.52 in two different ways,

using the Bogoliubov transfomations

2iωinpλq “ lim
ηÑ´8

W rφ
inp´q
λ , φ

inp`q˚
λ s “ lim

ηÑ8
W rφ

inp´q
λ , φ

inp`q˚
λ s

“ lim
ηÑ8

W rα
p´q

λ φ
outp´q
λ ` β

p´q

λ φ
outp`q˚
λ , α

p`q˚

λ φ
outp`q˚
λ ` β

p`q˚

λ φ
outp´q
λ s

“ 2iωoutpλq
´

α
p´q

λ α
p`q˚

λ ´ β
p´q

λ β
p`q˚

λ

¯

,

from which Eq. (41) immediately follows.

Now we will show Eq. (42). By observing

pNλq2 “
1

pωλ ´ µqpωλ ` µq

ωλ ´ µ

4µ
“

1

ω2
λ ´ µ

2

ωλ ´ µ

4µ
“

1

λ2

ωλ ´ µ

4µ

and using the relations Eq. (39), Eq. (40), Eq. (41), that we have just shown, we obtain:

µoutωinpλq

µinωoutpλq

ˆ

Nout
Nin

˙2

“
ωinpλq

ωoutpλq

ωoutpλq ´ µout
ωinpλq ´ µin

“
α
p´q

λ

α
p`q

λ

pα
p´q˚

λ α
p`q

λ ´ β
p´q˚

λ β
p`q

λ q

“

∣∣∣αp´qλ

∣∣∣2 ´ β
p´q˚

λ β
p`q

λ α
p´q

λ

α
p`q

λ

“

∣∣∣αp´qλ

∣∣∣2 ´ ∣∣∣βp´qλ

∣∣∣2 ˆ ωinpλq ` µin
ωoutpλq ` µout

˙ˆ

´
ωoutpλq ´ µout
ωinpλq ` µin

˙

“

∣∣∣αp´qλ

∣∣∣2 ` ∣∣∣βp´qλ

∣∣∣2 ˆωoutpλq ´ µout
ωoutpλq ` µout

˙

,
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which proves Eq. (42).

Proposition 4.13. Let Σ is a compact Riemannian spin Manifold. Let HΣ “ L2pΣ,SΣq.
We assume that the Dirac operator DΣ : HΣ Ñ HΣ has a symmetric spectrum tλu Ď R
with normalized eigenfunctions eλn, n “ 1, . . . ,dimVλ. Let J be the real structure on Σ and
write

ēλn “ Jeλn.

Then the Dirac Eq. (35) has two sets of solutions given by tψinλ,n, ψ̄
in
λ,nu and tψoutλ,n, ψ̄

out
λ,nu that

go over to the plane wave solutions given by Eq. (28) in the aysmptotic regions. Here

ψinλ,n “ C´3{4Nλ
inpiσ1Bη ` iλσ2 ´ µqφ

inp´q
λ

˜

1

´1

¸

b eλn,

ψ̄inλ,n “ C´3{4Nλ
inpiσ1Bη ` iλσ2 ´ µqφ

inp´q˚
λ

˜

1

1

¸

b ēλn

and mutatis mutandis for ψoutλ,n, ψ̄
out
λ,n.

Proof. This follows immediately from Proposition 4.1, Remark 4.5 and Proposition 4.6, and
the fact that ēλn has the same eigenvalue λ as eλn does.

Let us denote the unique strong solution of the static Dirac equation with initial value
f P L2pSΣq b C2 and mass m “ µ, as given by Theorem 3.23, by ψµ0 pfq.

Now let fin P L
2pSΣq b C2 given by

fin “ C
´3{4
in

ÿ

λ,n

Kλ
in

`

ainλ,nw
λ
in b e

λ
n ` b

in
λ,nw̄

λ
in b ē

λ
n

˘

.

Here and in the future we will write Kλ
in{out “

b

µin{out
ωin{outpλq

for the normalization factor.

We also adjust the inner product x¨ | ¨yin “ C
3{2
in x¨ | ¨y , to compensate for the explicit factor

C
´3{4
in . Using the previous proposition, we can construct a solution to the Dirac equation

Eq. (35),

ψinpfinq “ C´3{4
ÿ

λ

Kλ
inN

λ
in

dimVλ
ÿ

n“1

˜

ainλ,npiσ1Bη ` iλσ2 ´ µqφ
inp´q
λ eλn

˜

1

´1

¸

` binλ,npiσ1Bη ` iλσ2 ´ µqφ
inp´q˚
λ ēλn

˜

1

1

¸¸

,

(44)
that is asymptotically equivalent with ψµin0 pfinq for η Ñ ´8 In exactly the same way we
have for a fout P L

2pSΣq b C2 a solution ψoutpfoutq such that

ψoutpfoutq „ ψµout0 pfoutq pη Ñ8q.

Using the Bogoliubov transformation given by Proposition 4.10, we will now construct a
map

U : L2pSΣq b C2 Ñ L2pSΣq b C2,
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that assigns to a fout P L
2pSΣq b C2 the vector Ufout, such that

ψinpUfq „ ψµout0 pfq.

This map represents the evolution of a field from the asymptotic out region to the
asymptotic in region. Before we state and proof the theorem defining the map U , we define
the polarization tensor.

Definition 4.14. The polarization tensor Xλ is the square matrix of order dimVλ with
entries

pXλqnm “ Xλ
nm “

´λ
@

eλn
ˇ

ˇ Jeλm
D

ωoutpλq ` µout

We also set

Cλ “ Kλ
in

Kλ
out

Nλ
in

Nλ
out

.

Theorem 4.15. Let
U : L2pSΣq b C2 Ñ L2pSΣq b C2,

be the map that assigns to a f P L2pSΣq b C2 the element Uf , such that

ψinpUfq „ ψµout0 pfq pη Ñ8q.

Then the map U is given by U “
À

λ U
λ , for Uλ “ Uλeven ` U

λ
odd with

Uλeven “ Cλ
˜

α
p´q˚

λ IN 0

0 α
p´q

λ IN

¸

, Uλodd “ Cλ
˜

0 B
´B: 0

¸

with respect to the ordered orthonormal bases ppC
´3{4
in Kλ

inw
λ
in b eλnq, pC

´3{4
in Kλ

inw̄
λ
in b ēλnqq

and ppC
´3{2
out Kλ

outw
λ
out b e

λ
nq, pC

´3{2
out Kλ

outw̄
λ
out b ē

λ
nqq of HΣ

λ b C2.

Here N “ dimHΣ
λ and B “ β

p´q

λ Xλ˚.

Proof. Let f P L2pSΣq b C2 arbitrary. As we know that ψoutpUfq „ ψµout0 pUfq pη Ñ 8q,
this reduces finding U to finding coefficients aoutλ,n, b

out
λ,n, such that ψinpfq “ ψout, with

ψout “ C´3{4
ÿ

λ

Kλ
outN

λ
out

dimVλ
ÿ

n“1

˜

aoutλ,nDλφ
outp´q
λ eλn

˜

1

´1

¸

` boutλ,nDλφ
outp`q˚
λ ēλn

˜

1

1

¸¸

.

To shorten the equations we will write Dλ “ piσ1Bη ` iλσ2 ´ µq. By applying the
Bogoliubov transformations given by Proposition 4.10 to ψinpfq and equating ψinpfq “ ψout
we get

ÿ

λ

Kλ
inN

λ
in

dimVλ
ÿ

n“1

´

ainλ,nDλ

´

α
p´q

λ φ
outp´q
λ ` β

p´q

λ φ
outp`q˚
λ

¯

eλn

˜

1

´1

¸

` binλ,nDλ

´

α
p´q˚

λ φ
outp´q˚
λ ` β

p´q˚

λ φ
outp`q
λ

¯

ēλn

˜

1

1

¸

¯

“
ÿ

λ

Kλ
outN

λ
out

dimVλ
ÿ

n“1

˜

aoutλ,nDλφ
outp´q
λ eλn

˜

1

´1

¸

` boutλ,nDλφ
outp`q˚
λ ēλn

˜

1

1

¸¸

.

(45)
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Now we transfer to the asymptotic out-region. Using the identities given in Proposi-

tion 4.6 and Lemma 4.7, we compare the coefficients of φ
outp˘q
λ „ e´iωoutpλqη:

ÿ

λ

Kλ
in

Nλ
in

Nλ
out

dimVλ
ÿ

n“1

´

ainλ,nα
p´q

λ wλoute
λ
n ` b

in
λ,nβ

p´q˚

λ JeλnN
λ
out

˜

ωoutpλq ` λ´ µout

ωoutpλq ´ λ´ µout

¸

¯

“
ÿ

λ

Kλ
out

dimVλ
ÿ

n“1

aoutλ,nw
λ
oute

λ
n.

In the same way, we have by comparing coefficients of φ
outp˘q˚
λ „ eiωoutpλqη:

ÿ

λ

Kλ
in

Nλ
in

Nλ
out

dimVλ
ÿ

n“1

´

ainλ,nβ
p´q

λ eλnN
λ
out

˜

ωoutpλq ´ λ´ µout

´ωoutpλq ´ λ` µout

¸

` binλ,nα
p´q˚

λ w̄λoutē
λ
n

¯

“
ÿ

λ

Kλ
out

dimVλ
ÿ

n“1

boutλ,nw̄
λ
outē

λ
n.

Hence by using the orthonormality relations for wλ (Proposition 3.27) and eλn, and the
results of Lemma 4.8 we get

aoutλ,n “
Kλ
in

Kλ
out

Nλ
in

Nλ
out

˜

α
p´q

λ ainλ,n ` β
p´q˚

λ

´λ

ωoutpλq ` µout

dimVλ
ÿ

m“1

@

eλn
ˇ

ˇ Jeλm
D

binλ,m

¸

,

boutλ,n “
Kλ
in

Kλ
out

Nλ
in

Nλ
out

˜

α
p´q˚

λ binλ,n ´ β
p´q

λ

´λ

ωoutpλq ` µout

dimVλ
ÿ

m“1

@

Jeλn
ˇ

ˇ eλm
D

ainλ,m

¸

.

Using the just defined polarisation tensor, we get

aoutλ,n “ Cλ
˜

α
p´q

λ ainλ,n `
dimVλ
ÿ

m“1

β
p´q˚

λ Xλ
nmb

in
λ,m

¸

,

boutλ,n “ Cλ
˜

α
p´q˚

λ binλ,n ´
dimVλ
ÿ

m“1

β
p´q

λ Xλ˚
mna

in
λ,m

¸

.

As this holds for arbitrary f , and we have for the coefficients

ainλ,n “
A

C
´3{4
in Kλ

inw
λ
in b e

λ
n

ˇ

ˇ

ˇ
Uf

E

in
, binλ,n “

A

C
´3{4
in Kλ

inw̄
λ
in b ē

λ
n

ˇ

ˇ

ˇ
Uf

E

in
,

aoutλ,n “

A

C
´3{4
out Kλ

outw
λ
out b e

λ
n

ˇ

ˇ

ˇ
f
E

out
, boutλ,n “

A

C
´3{4
out Kλ

outw̄
λ
out b ē

λ
n

ˇ

ˇ

ˇ
f
E

out
,

the result now follows.

Let us now recall some facts about quantization. We will refer the reader to Appendix A
for an introduction into canonical quantization of fermionic fields and more details about
the construction.

Using asymptotic equivalences of solutions in the in and out asymptotic regions to solu-
tions of the static Dirac equation, we can define the quantized Dirac field in the in and out
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Fock space as follows. The following construction will be carried out for the in Fock space,
while equivalent results for the out Fock space are obtained mutatis mutandis. Let us define
the in Fock space as FpL2pSΣq bC2q. For any solution ψin of the Dirac operator such that

ψin „ ψµin0 pη Ñ ´8q

we define the quantized Dirac field at infinity as an operator on the in Fock space as

Ψpψµin0 q “ C
´3{4
in

ÿ

λ,n

c

m

ωλ

´

`

Fψµin0 , wλine
λ
n

˘

e´iωλtainλ,n `
`

Fψµin0 , w̄λinē
λ
n

˘

eiωλtbin:λ,n

¯

,

where F is the temporal Fourier transform, and

ainλ,n “ a
´

C
´3{4
in Kλ

inw
λ
in b e

λ
n

¯

, bin:λ,n “ b:
´

C
´3{4
in Kλ

inw̄
λ
in b ē

λ
n

¯

are the annihilation and creation operators for particles and anti-particles respectively. Us-
ing the language that distributions are functions (see Definition A.6), we can write

Ψpxq “ C
´3{4
in

ÿ

λ,n

c

m

ωλ

´

e´iωλtwλeλna
in
λ,n ` e

iωλtw̄λēλnb
in:
λ,n

¯

. (46)

We will use the map U as defined above to define transformations between the Fock spaces
in the in and out regions.

4.1 Abstract Bogoliubov transformations

To generalize and formalize the idea of a Bogoliubov transformation, we proof the following
results. We refer the reader to Appendix A for an introduction into the canonical quantiza-
tion of fermionic fields, as we will use basic facts and terminology without explanation. We
follow [41, Thm. XI.108], [30, Prop. 10.12] and [47, Sec. 10.3].

Proposition 4.16. Let H “ H` ‘H´ be a Hilbert space, and

Ueven “

˜

U` 0

0 U´

¸

, Uodd “

˜

0 U`´

U´` 0

¸

be operators on H. Let for v P H`, w P H´, apvq, a:pvq and bpwq, b:pwq be the annihilation
and creation operators on the Fermionic Fock Space FpHq for particles and antiparticles
resp., satisfying the CAR. We define the Bogoliubov transformation

a1pvq “ apU`vq ` b
:pU´`vq,

b1pwq “ a:pU`´wq ` bpU´wq.

Then a1pvq, b1pwq satisfy the CAR if and only if

U :evenUeven ` U
:

oddUodd “ I, (47)

U :evenUodd ` U
:

oddUeven “ 0. (48)
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Moreover the Bogoliubov transformation is invertible with inverse

apvq “ a1pU :`vq ` b
1:pU :´`vq, (49)

bpwq “ a1:pU :`´wq ` b
1pU :´wq (50)

if and only if

UevenU
:
even ` UoddU

:

odd “ I,

UevenU
:

odd ` UoddU
:
even “ 0.

Proof. The following proof is an adaptation of [30, Prop. 10.12] to a Fermionic Fock space
with both particles and anti-particles. We will show only the first statement, as the second
follows from completely analog computations.

ta1pvq, b1pwqu “ tapU`vq ` b
:pU´`vq, a

:pU`´wq ` bpU´wqu

“ xU`v |U`´wy ` xU´`v |U´wy “
A

pU :`´U` ` U
:
´U´`qv

ˇ

ˇ

ˇ
w
E

and
ta1:pvq, b1:pwqu “

A

pU :´`U´ ` U
:
`U`´qv

ˇ

ˇ

ˇ
w
E

are both zero if and only if (47) holds. Moreover for arbitrary v1, v2 P H` and w1, w2 P H´

ta1pv1q, a
1:pv2qu “

A

pU :`U` ` U
:
´`U´`qv1

ˇ

ˇ

ˇ
v2

E

and
tb1pw1q, b

1:pw2qu “

A

pU :´U´ ` U
:
`´U`´qw1

ˇ

ˇ

ˇ
w2

E

are equal to xv1 | v2y and xw1 |w2y respectively if and only if (48) holds.

Any unitary transformation U : H Ñ H can be decomposed into even an odd parts
U “ Ueven ` Uodd, where

Ueven “

˜

U` 0

0 U´

¸

, Uodd “

˜

0 U`´

U´` 0

¸

.

Here
U` “ P`UP`, U´ “ P´UP´, U`´ “ P`UP´, U´` “ P´UP`.

Hence U induces a transformation of the annihilation operators:

a1puq “ apU`uq ` b
:pU´`uq, for u P H`,

b1pvq “ a:pU`´vq ` bpU´vq, for v P H´,

and hence a transformation of the field operator by

Ψpvq ÞÑ Ψ 1pvq “ a1pvq ` b1:pvq. (51)

Using the elementary facts that U : “ U´1 and P :˘ “ P 2
˘ “ P˘ one easily checks that

U`, U´, U`´, U´` satisfy (47) - (50) and hence the transformed operators a1puq, b1pvq satisfy
the CAR.
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Definition 4.17. The transformation given by Eq. (51) induced by U is called unitarily
implementable if there exists a unitary operator U : F Ñ F such that

Ψ 1pvq “ UΨpvqU:,

for any v P H.

Definition 4.18. Let H be a Hilbert space with orthonormal basis pejq. An operator

A : HÑ H

is called Hilbert-Schmidt if
8
ÿ

n“1

‖Aej‖2
ă 8.

We have the following result, stating when Bogoliubov transformations are unitarily
implementable.

Theorem 4.19 (Shale-Stinespring). The transformation U : HÑ H with U “ Ueven`Uodd,
where

Ueven “

˜

U` 0

0 U´

¸

, Uodd “

˜

0 U`´

U´` 0

¸

,

is unitarily implementable if and only if U`´ and U´` are Hilbert-Schmidt operators.

Proof. See e.g. [47, Thm. 10.7].

4.2 Transformation of the operators in a GFLRW spacetime

Weaponized by our knowledge about abstract Bogoliubov transformation, we can com-
pute how our operators transform under the transformations induced by the metric on the
GFLRW spacetime.

Theorem 4.20. The transformations of creation and annihilation operators as induced by
Bogoliubov transformations on the Hilbert space L2pSΣqbC2 as given by Theorem 4.15, are
given by

aoutλ,n “ Cλ
˜

α
p´q

λ ainλ,n `
dimVλ
ÿ

m“1

β
p´q˚

λ Xλ
nmb

in:
λ,m

¸

,

boutλ,n “ Cλ
˜

α
p´q

λ binλ,n ´
dimVλ
ÿ

m“1

β
p´q˚

λ Xλ
mna

in
λ,m

¸

.

(52)

Proof. This follows immediately from Proposition 4.16 and Theorem 4.15. Note that a:

and b depend linearly on their arguments, while a and b: depend anti-linearly on their
arguments.

To now show that the conditions (47) - (50) hold in this case we prove the following
lemma, which will aid in the calculations.
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Lemma 4.21. The following relations hold for the polarization tensor

pXλq:Xλ “ XλpXλq: “
λ2

pωoutpλq ` µoutq2
I “

ωoutpλq ´ µout
ωoutpλq ` µout

I . (53)

Or equivalently
ÿ

m

Xλ
nmX

λ˚
km “

ÿ

m

Xλ˚
kmX

λ
nm “

ωoutpλq ´ µout
ωoutpλq ` µout

δnk

Proof. This follows from straightforward computations. Indeed,

ÿ

m

Xλ
nmX

λ˚
km “

λ2

pωoutpλq ` µoutq2

ÿ

m

@

eλn
ˇ

ˇ Jeλm
D @

eλm
ˇ

ˇ J:eλk
D

“
λ2

pωoutpλq ` µoutq2
@

J:eλn
∣∣˜ÿ

m

∣∣eλmD @eλm∣∣¸ ∣∣J:eλkD
“

λ2

pωoutpλq ` µoutq2
@

eλn
ˇ

ˇ eλk
D

“
λ2

pωoutpλq ` µoutq2
δnk,

where we have used the identity
ÿ

m

∣∣eλmD @eλm∣∣ “ id .

Moreover we have,

ÿ

m

Xλ˚
kmX

λ
nm “

λ2

pωoutpλq ` µoutq2

ÿ

m

@

Jeλm
ˇ

ˇ eλn
D @

eλk
ˇ

ˇ Jeλm
D

“
λ2

pωoutpλq ` µoutq2
Tr
`
∣∣eλnD @eλk∣∣˘

“
λ2

pωoutpλq ` µoutq2

ÿ

m

@

eλm
ˇ

ˇ eλn
D @

eλk
ˇ

ˇ eλm
D

“
λ2

pωoutpλq ` µoutq2

ÿ

m

δmnδkm “
λ2

pωoutpλq ` µoutq2
δnk,

where we have used the fact that the trace is base independent. The result now follows from

λ2 “ pωoutpλq ´ µoutqpωoutpλq ` µoutq.

Using Proposition 4.16 we now show that the commutation relations of aoutλ,n and boutλ,n are
retained under the transformations in Eq. (52) and compute the inverse transformations.

Proposition 4.22. The CAR of aoutλ,n and boutλ,n are retained under the transformations given

by Eq. (52), if and only if α
p´q

λ “ α
p´q˚.
λ

Moreover, if that is the case, the inverse transformations of Eq. (52) are given by

ainλ,n “ Cλ
˜

α
p´q˚

λ aoutλ,n ´

dimVλ
ÿ

m“1

β
p´q˚

λ Xλ
nmb

out:
λ,m

¸

,

binλ,n “ Cλ
˜

α
p´q˚

λ boutλ,n `

dimVλ
ÿ

m“1

β
p´q˚

λ Xλ
mna

out:
λ,m

¸

,
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Proof. Note that we can do the calculation for fixed λ, as U does not mix elements corre-
sponding to different λ. Hence we set λ fixed in the following calculations. Let

Ueven “ Cλ
˜

α
p´q˚

λ IN 0

0 α
p´q

λ IN

¸

, Uodd “ Cλ
˜

0 B
´B: 0

¸

with N “ dimVλ and B “ β
p´q

λ Xλ˚, as before. We recall Eq. (42), which is using our
current notation equal to

`

Cλ
˘´2

“

∣∣∣αp´qλ

∣∣∣2 ` ∣∣∣βp´qλ

∣∣∣2 ˆωoutpλq ´ µout
ωoutpλq ` µout

˙

. (54)

To see that Eq. (47) holds, we check

U :evenUeven ` U
:

oddUodd “
`

Cλ
˘2

∣∣∣αp´qλ

∣∣∣2 I2N `
`

Cλ
˘2

∣∣∣βp´qλ

∣∣∣2 ˜pXλ:XλqT 0

pXλXλ:qT 0

¸

“
`

Cλ
˘2

ˆ∣∣∣αp´qλ

∣∣∣2 ` ∣∣∣βp´qλ

∣∣∣2 ˆωoutpλq ´ µout
ωoutpλq ` µout

˙˙

I2N “ I2N ,

where we have used Lemma 4.21. To check when Eq. (48) holds, we compute

U :evenUodd ` U
:

oddUeven “
`

Cλ
˘2

˜˜

α
p´q˚

λ IN 0

0 α
p´q

λ IN

¸˜

0 B
´B: 0

¸

`

˜

α
p´q

λ IN 0

0 α
p´q˚

λ IN

¸˜

0 ´B
B: 0

¸¸

,

which vanishes if and only if α
p´q

λ “ α
p´q˚.
λ Note that if α

p´q

λ is real, Ueven is a multiple of
the identity and hence central, so the relations Eq. (49) and Eq. (50) immediately follow as

pAB:q: “ pB:Aq: “ A:B,

for A central.
As a result of Proposition 4.16 the inverse transformations are now given by

ainpvq “ aoutpU :`vq ` b
out:pU :´`vq,

binpwq “ aout:pU :`´wq ` b
outpU :´wq,

with

Ueven “

˜

U` 0

0 U´

¸

, Uodd “

˜

0 U`´

U´` 0

¸

.

By choosing a specific basis for the eigenspaces Vλ we can simplify the polarization
tensor. Since the eigenspaces Vλ are finite-dimensional and DΣJ “ JDΣ , we can apply the
following proposition to the eigenspaces.

Proposition 4.23. Let J be an anti-unitary operator on a finite-dimensional Hilbert space
H with J2 “ ´1, then there is an orthonormal basis tfn, f´nu of H such that

Jfn “ f´n, Jf´n “ ´fn.

In particular, H is even dimensional.
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Proof. We follow [50, Lem. 3.8]. Let f1 P H be an arbitrary normalized element. Set
f´1 “ Jf1. It is orthogonal to f1 since

xf´1 | f1y “ xJf1 | f1y “
@

Jf1

ˇ

ˇ J2f1

D

“ ´xJf1 | f1y “ ´ xf´1 | f1y .

Next take another normalized f2 K f1, f´1 and set f´2 “ Jf2. As before f´2 is orthogonal
to f2 and also to f1 and f´1 :

xf1 | f´2y “ xf1 | Jf2y “
@

J2f2

ˇ

ˇ Jf1

D

“ ´xf2 | f´1y “ 0

xf´1 | f´2y “ xJf1 | Jf2y “ xf2 | f1y “ 0.

Continuing in this way gives a basis tfn, f´nu for H with Jfn “ f´n.

Proposition 4.24. We assume that the Dirac operator DΣ has a symmetric spectrum
tλu Ď R. Then there is a basis of normalized eigenfunctions fλn ,

n “ ´
1

2
dimVλ, . . . ,´2,´1, 1, 2, . . . ,

1

2
dimVλ,

such that

fλ´n “ Jfλn .

Moreover we have

ainλ,n “ Cλ
ˆ

α
p´q˚

λ aoutλ,n ´ β
p´q˚

λ

sgnpnqλ

ωoutpλq ` µout
bout:λ,´n

˙

,

binλ,n “ Cλ
ˆ

α
p´q˚

λ boutλ,n ´ β
p´q˚

λ

sgnpnqλ

ωoutpλq ` µout
aout:λ,´n

˙

,

(55)

Proof. Let teλnu be an orthonormal basis of eigenvectors of the Dirac operator DΣ . Applying
Proposition 4.23 to every eigenspace Vλ, provides us with the basis tfλn u. Note that this
is still a basis of eigenvectors. Using this basis we have for the entries of the polarisation
tensor

Xλ
nm “

´λ
@

fλn
ˇ

ˇ Jfλm
D

ωoutpλq ` µout
“
´ sgnpmqλ

@

fλn
ˇ

ˇ fλ´m
D

ωoutpλq ` µout
“

sgnpnqλ δn,´m
ωoutpλq ` µout

Changing the sums in Eq. (52)

dimVλ
ÿ

n“1

ù

1
2 dimVλ
ÿ

n“´ 1
2 dimVλ

,

we get the transformations:

ainλ,n “ Cλ
´

α
p´q˚

λ aoutλ,n ´ β
p´q˚

λ Xλ
n,´nb

out:
λ,´n

¯

“ Cλ
ˆ

α
p´q˚

λ aoutλ,n ´ β
p´q˚

λ

sgnpnqλ

ωoutpλq ` µout
bout:λ,´n

˙

,

binλ,n “ Cλ
´

α
p´q˚

λ boutλ,n ` β
p´q˚

λ Xλ
´n,na

out:
λ,´n

¯

“ Cλ
ˆ

α
p´q˚

λ boutλ,n ´ β
p´q˚

λ

sgnpnqλ

ωoutpλq ` µout
aout:λ,´n

˙

.
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4.3 Unitary implementation of the Bogoliubov transformation

In this section we will be looking for a unitary operator that implements the Bogoliubov
transformations found in previous section. That is we want to find a unitary map

U : F Ñ F

such that
Ψ 1pvq “ UΨpvqU:,

for any v P H. The Shale-Stinespring theorem (Theorem 4.19) puts conditions on the co-

efficients β
p´q

λ for the transformation to be unitarily implementable. For the rest of this
section, we will assume these conditions are satisfied. For the following proposition, we have
adapted [39, Appendix A] to our situation.

Proposition 4.25. The Bogoliubov transformation given by Theorem 4.20 are unitarily

implementable if α
p´q

λ is real for all λ P σpDΣq. Then the unitary operator U : F Ñ F
which implements the transformation is given by

U “
à

λ

Uλ.

Here Uλ : F Ñ F , is given by
Uλ “ exp pLUλq ,

where

LUλ “
1

2

ÿ

i1,i2

´

θi1i2d
:

i1
d:i2 ` θ

˚
i1i2di1di2

¯

,

and

di “

#

aoutλ,i 1 ď i ď n

boutλ,i´n n` 1 ď i ď 2n,

and

θ “

˜

0 A

´AT 0

¸

.

Here A is the square matrix of order n given by

A “ ´
arccos

´

Cλαp´q˚λ

¯

b

1´ pCλαp´q˚λ q2
Cλβp´q˚λ Xλ (56)

Proof. For notational simplicity we will write

A “ Cλαp´q˚λ , B “ Cλβp´q˚λ Xλ, (57)

and

di “

#

aoutλ,i 1 ď i ď n

boutλ,i´n n` 1 ď i ď 2n,
.
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Using this notation the inverse Bogoliubov transformations given by Proposition 4.22, can
be written as

din “ A I2n d
out ´

˜

0 B
´BT 0

¸

dout:. (58)

We claim there is a unitary map
Uλ “ exp pLUλq ,

with

LUλ “
1

2

ÿ

i1,i2

´

θi1i2d
:

i1
d:i2 ` θ

˚
i1i2di1di2

¯

,

and θ an anti-symmetric matrix given by

θ “
arccospAq

sinparccospAqq

˜

0 B
´BT 0

¸

“
arccospAq
?

1´A2

˜

0 B
´BT 0

¸

.

such that
dini “ Uλdouti U:λ.

To proof this, let us first compute

|θ| “
?
θ:θ “ arccospAq I2n . (59)

We recall Eq. (42), which is using our current notation equal to

1 “ |A|2 `
∣∣∣Cλβp´qλ

∣∣∣2 ˆωoutpλq ´ µout
ωoutpλq ` µout

˙

,

and using Lemma 4.21 this becomes

B:B “ BB: “ p1´ |A|2q In .

Now we compute θ:θ, and see that Eq. (59) holds if α
p´q

λ is real. Indeed

θ:θ “
arccos2pAq

1´A2

˜

0 B
´BT 0

¸:˜

0 B
´BT 0

¸

“
arccos2pAq

1´A2

˜

0 ´B˚

B: 0

¸˜

0 B
´BT 0

¸

“
arccos2pAq

1´A2

˜

pBB:qT 0

0 B:B

¸

“ arccos2pAq1´ |A|2

1´A2
I2n “ arccos2pAq I2n .

if A is real. Therefore

cosp|θ|q “ A I2n, (60)

sinp|θ|q
|θ|

θ “

˜

0 B
´BT 0

¸

. (61)

We can now compute

UλdjU:λ “ Ad ˝ exppLUλqpdjq “ exp ˝ adpLUλqpdjq “
8
ÿ

k“0

1

k!
adpLUλq

kpdjq,
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where adpLUλqpdiq “ rLUλ , dis “ LUλdi ´ diLUλ . One can check that

adpLUλq
2kpdjq “ p´1qk

ÿ

i

p|θ|2kqjidi,

and
adpLUλq

2k`1pdjq “ ´p´1qk
ÿ

i

p|θ|2k`1|θ|´1
θqjid

:

i .

We refer to [39] for the explicit calculations. Hence we have

8
ÿ

k“0

1

k!
adpLUλq

kpdjq “
ÿ

i

˜

8
ÿ

k“0

p´1qk|θ|2k

p2kq!

¸

ji

di ´
ÿ

i

˜

8
ÿ

k“0

p´1qk|θ|2k`1|θ|´1
θ

p2k ` 1q!

¸

ji

d:i

“
ÿ

i

ˆ

pcosp|θ|qqji di ´
´

sinp|θ|q|θ|´1
θ
¯

ji
d:i

˙

.

Using Eq. (60) and Eq. (61) we see that this is agrees with Eq. (58). The result now
follows.

When we choose another basis of L2pSΣq such that we have the simplified Bogoliubov
transformations, given by Eq. (55), the operators Uλ also become less involved. We will
assume this in the following propositions.

One interesting transformation is the transformation of the vacuum. That is we want
to find an expression for the the in-vacuum |0iny in terms of a:out, b

:
out and the out-vacuum

|0outy . This can be done using the unitary operator found in the previous proposition, see
[39, Appendix B]. We will take a more direct approach, using the method as described in
[9] for a scalar boson field.

Proposition 4.26. Using the Bogoliubov transformation as given in Eq. (55), the in-
vacuum is formally given by

|0iny “ U |0outy “ x0out | 0iny
ź

λ

exp

#

ÿ

m

β
p´q˚

λ

α
p´q˚

λ

Xλ
m,´ma

out:
λ,m b

out:
λ,´m

+

|0outy .

Proof. By conservation of charge, that is the difference between the number of particles and
anti-particles must be constant, the vacuum must be of the form:

|0iny “A0 |0outy `
8
ÿ

n“1

ÿ

λ1,...,λ2n

ÿ

m1,...,m2n

Anpλ1,m1, . . . , λ2n,m2nq

¨ aout:λ1,m1
bout:λ2,m2

¨ ¨ ¨ aout:λ2n´1,m2n´1
bout:λ2n,m2n

|0outy

(62)

Here and in the following the sum of mi is assumed to be over the all

mi P t´
1

2
dimVλi , . . . ,

1

2
dimVλiu.

Let us denote symmetric group of n elements by Sn. Note that by symmetry we have for all
pσ, σ̄q P Sn ˆ Sn

Anpλ1,m1, . . . , λ2n,m2nq “ sgnpσq sgnpσ̄qAnpλσp1q,mσp1q, λ2σ̄p1q,m2σ̄p1q, . . . ,

λ2σpnq´1,m2σpnq´1λ2σ̄pnq,m2σ̄pnqq.
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Because x0out | 0outy “ 1, we have

A0 “ x0out | 0iny .

By using Eq. p55q, ainλ,m |0iny “ 0 and comparing terms in Eq. (62), we have

0 “ ´A0β
p´q˚

λ Xλ
m,´mb

out:
λ,´m |0outy

`
ÿ

λ1

ÿ

m1

A1pλ,m, λ
1,m1qα

p´q˚

λ aoutλ,ma
out:
λ,m b

out:
λ1,m1 |0outy

and hence

A1pλ,m, λ,´mq “
β
p´q˚

λ

α
p´q˚

λ

Xλ
m,´mA0,

A1pλ,m, κ, nq “ 0 if λ ‰ κ or m ‰ ´n.

From higher terms in ainλ,m |0iny “ 0 we get the recursion relation

Anpλ1,m1, λ1,´m1, . . . , λn,mn, λn,´mnq

“
1

2n

n´1
ÿ

i“1

β
p´q˚

λi

α
p´q˚

λi

Xλi
mi,´miAn´1pλ1,m1, λ1,´m1, . . . ,

λi´1,´mi´1, λi`1,mi`1, . . . , λn,mn, λn,´mnq,

and all Anp¨ ¨ ¨ q “ 0 for other combination of λi and mi, that are not related to a An of the
form above by a permutation pσ, σ̄q P Sn ˆ Sn.

From this it follows that the in-vacuum is formally given by

|0iny “ x0out | 0iny exp

#

ÿ

λ

ÿ

m

β
p´q˚

λ

α
p´q˚

λ

Xλ
m,´ma

out:
λ,m b

out:
λ,´m

+

|0outy

“ x0out | 0iny
ź

λ

exp

#

ÿ

m

β
p´q˚

λ

α
p´q˚

λ

Xλ
m,´ma

out:
λ,m b

out:
λ,´m

+

|0outy .

This provides us with an another way to calculate the effect of the unitary map U on a
arbitrary pure state |ψouty P F0. Note that such a state can be written as

|ψouty “
ź

λPΛ,λ1PΛ1

ź

mPMλ,nPNλ

aout:λ,m b
out:
λ1,n |0outy ,

for finite sets
Λ,Λ1 Ď σpDΣq,Mλ, Nλ Ď Nλ.

Corollary 4.27. Let

|ψouty “
ź

λPΛ,λ1PΛ1

ź

mPMλ,nPNλ

aout:λ,m b
out:
λ1,n |0outy ,

80.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

for finite sets
Λ,Λ1 Ď σpDΣq,Mλ, Nλ Ď Nλ.

Using the Bogoliubov transformations as given in Eq. (55), we have

U |ψouty “ x0out | 0iny
ź

λPΛ,λ1PΛ1

ź

mPMλ,nPNλ

ain:λ,mb
in:
λ1,n

ź

λ2

exp

#

ÿ

m

β
p´q˚

λ2

α
p´q˚

λ2

Xλ2

k,´ka
out:
λ2,kb

out:
λ2,´k

+

|0outy .

Proof. This follows immediately from Proposition 4.26 and

Uaout:λ,k “ ain:λ,kU

by construction of U in Proposition 4.25.

81.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

5 Evolution of quantized Dirac fields in a spatially flat
FLRW spacetime

A bug is never just a mistake. It
represents something bigger. An
error of thinking. That makes
you who you are.

— Elliot Alderson (Rami Malek)

In this chapter we transfer our results of the previous chapter to the Minkowski case,
relating our findings to the results presented in [15, 39, 20]. We will omit some details
if the calculations are almost identical to those in the previous chapter, and elaborate
when they are not. We will pay extra attention to calculations when considered useful to
the literature, and correct a small typographical error in [15] which since then has been
plaguing the literature. We have changed our notation and presentation of results to follow
the literature more closely.

We consider a Dirac field ψ with mass m on a 4-dimensional spatially flat Friedmann–
Lemâıtre–Robertson–Walker spacetime, with metric gµν given by the line element

ds2 “ ´dt2 ` a2ptqdxidx
i “ Cpηqp´dη2 ` dxidx

iq, (63)

where xi are the spacial coordinates and η is the so-called conformal time, related to the
time t by η “

şt dt1

apt1q . The dynamics of the field given by the Dirac equation

pγ̄µBµ `mqψ “ 0, (64)

where γ̄µ are the curved-space γ-matrices, satisfying

γ̄µγ̄ν ` γ̄ν γ̄µ “ 2gµν .

One can show that for this metric this boils down to
ˆ

γ0Bt `
3

2

9aptq

aptq
γ0 `

1

aptq
γ ¨∇`m

˙

ψ “ 0,

or equivalently
˜

γ0Bη `
3

4

9Cpηq

Cpηq
γ0 ` γ ¨∇`mC1{2pηq

¸

ψ “ 0,

where γµ are the constant γ-matrices. Since Cpηq is independent of the spatial coordinates,
we can sepeparate the solutions, by introducing the ansatz

ψkpη,xq “ C´3{4pγµBµ ´mC
1{2qeik¨xφkpηq “ eik¨xC´3{4pγ0Bη ` ik ¨ γ ´mC

1{2qφkpηq.

We see φk has to satisfy

˜

B2
η `m

2Cpηq ` γ0
9Cpηq

2C1{2pηq
` |k|2

¸

φ
p˘q

k pηq “ 0. (65)
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Choosing φk “ φ
p`q

k v or φk “ φ
p´q

k u, with us, vs P C4 satisfying

γ0us “ ´ius, γ0vs “ ivs (66)

and inserting this into the Dirac equation we find that φ
p˘q

k have to satisfy

˜

B2
η `m

2Cpηq ˘ im
9Cpηq

2C1{2pηq
` |k|2

¸

φ
p˘q

k pηq “ 0. (67)

Remark 5.1. Note that for solutions φ
p˘q

k of Eq. (67), their complex conjugated variants

φ
p˘q˚

k satisfy the complex conjugated version of Eq. (67), that is

˜

B2
η `m

2Cpηq ¯ im
9Cpηq

2C1{2pηq
` |k|2

¸

φ
p˘q˚

k pηq “ 0.

This means that φ
p´q

k and φ
p`q˚

k are solutions to the same equation, and the equivalent
statement with the signs flipped also holds. Therefore

φ
p´q

k us, φ
p´q˚

k vs, φ
p`q

k vs, φ
p`q˚

k us

are solutions to Eq. (65). In the relevant literature these solutions are plagued by typo-

graphical errors, as the non-solution φ
p`q˚

k vs often appears in formulas. This is probably
due to a small typo in [15, Eq. 3.14]. ♦

If we assume
ż 8

a

∣∣∣∣∣m2pCpηq ´ Coutq ˘ im
9Cpηq

2C1{2pηq

∣∣∣∣∣dη ă 8

and
ż b

´8

∣∣∣∣∣m2pCpηq ´ Cinq ˘ im
9Cpηq

2C1{2pηq

∣∣∣∣∣ dη ă 8,

for some a, b P R, where Cout “ limηÑ8 Cpηq and Cin “ limηÑ´8 Cpηq, we are in the same

situation as in Corollary 3.50. Hence we have positive frequency solutions φ
inp˘q
k , φ

outp˘q
k ,

satisfying

φ
inp˘q
k „ e´iωinp|k|qη pη Ñ ´8q and φ

outp˘q
k „ e´iωoutp|k|qη pη Ñ8q,

where

ωinp|k|q “
b

|k|2 ` µ2
in, ωoutp|k|q “

b

|k|2 ` µ2
out,

µin “ lim
ηÑ´8

m
a

Cpηq, µout “ lim
ηÑ8

m
a

Cpηq.

The corresponding negative-frequency solutions are then given by φ
inp¯q˚
k , φ

outp¯q˚
k , where

the sign of ˘ has flipped as explained in Remark 5.1. Since the in and out solutions are
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both a complete set of solutions of the same differential equation, we can define Bogoliubov

coefficients α
p˘q

k “ αp˘qp|k|q, βp˘qk “ βp˘qp|k|q satisfying:

φ
inp˘q
k pηq “ α

p˘q

k φ
outp˘q
k pηq ` β

p˘q

k φ
outp¯q˚
k pηq (68)

The curved space spinor solutions to the Dirac equation are then given by

N in
k Uinpk, s,x, ηq “ N in

k Cpηq´3{4pγµBµ ´ µpηqqφ
inp´q
k pηqeik¨xus,

Vinpk, s,x, ηq “ N in
k Cpηq´3{4pγµBµ ´ µpηqqφ

inp´q˚
k pηqe´ik¨xvs,

with similar equations for Uout and Vout. Here

N in
k “ ´

1

|k|

ˆ

ωinp|k|q ´ µin
2µin

˙1{2

“
´1

a

2µinpωinp|k|q ` µinq

for normalization. To relate these solutions to the solutions in the flat case, we recall that the

flat-space spinors with polarization s, momentum k and energy ωp|k|q “
b

|k|2 ` µ2 “ k0,

are given by

upk, sq “ Nkpi{k ´ µqus,

vpk, sq “ Nkp´i{k ´ µqvs,

c.f. Remark 3.38. The dirac adjoint of a flat-space spinor is defined as

ūpk, sq “ iupk, sq:γ0, v̄pk, sq “ ivpk, sq:γ0.

The spinors satisfy the orthogonality relations

ūpk, squpk, s1q “ ´v̄pk, sqvpk, s1q “ δss1 . (69)

Now it’s easy to check that the curved space solutions go over to the corresponding flat-space
spinors in the asymptotic limits

Uinpk, s,x, ηq „ C´3{4p´8qeik¨xe´iωinp|k|qηuinpk, sq pη Ñ ´8q,

Vinpk, s,x, ηq „ C´3{4p´8qe´ik¨xeiωinp|k|qηvinpk, sq pη Ñ ´8q,

with similar expressions for Uout and Vout in the limit η Ñ8.

5.1 Bogoliubov transformations

Using the theory of fermionic quantization as explained in Appendix A, the field can be
expanded in two ways:

ψ “

c

µout
ωoutp|k|q

ÿ

ż

´

aoutpk, sqUoutpk, s,x, ηq ` b
:
outpk, sqVoutpk, s,x, ηq

¯

,

ψ “

c

µin
ωinp|k|q

ÿ

ż

´

ainpk, sqUinpk, s,x, ηq ` b
:

inpk, sqVinpk, s,x, ηq.
¯

(70)
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To simplify notation we have written
ř

ş

for

1

2π

p3{2q ż

d3k
ÿ

s

.

We will now first prove the following lemma, which is a straightforward but lengthy spin
calculation, as it is needed in the next step.

Lemma 5.2. We have

v̄pk, s1qp´i{k ´mqus “ ´2imNvp0, s1q:k ¨ γus. (71)

Proof. Indeed,

v̄pk, s1qp´i{k ´mqus “ Niv:s1p´iηµνk
µγν ´mq:γ0p´iηρσk

ργσ ´mqus

“ Niv:s1piδµνk
µγν ´mqγ0p´iηρσk

ργσ ´mqus

“ Niv:s1piδµνk
µγν ´mqpiηρσk

ργσγ0 ´ iηρσtγ
σ, γ0ukρ ´mγ0qus

“ Niv:s1piδµνk
µγν ´mqpiηρσk

ργσγ0 ´ 2iηρση
σ0kρ ´mγ0qus

“ Niv:s1piδµνk
µγν ´mqpiηρσk

ργσγ0 ` 2ik0pγ0q2 ´mγ0qus

“ Niv:s1
`

piδµνk
µγν ´mqpiηρσk

ργσ ´mq ` piδµνk
µγν ´mqp2ik0γ0q

˘

γ0us

“ Niv:s1
`

piδµνk
µγν ´mqpiηρσk

ργσ ´mq ` piδµνk
µγν ´mqp2ik0γ0q

˘

γ0us

“ Niv:s1
`

´m2 ´ 2γ0k0k ¨ γ `m2 ´ 2imk ¨ γ ´ 2k0δµνk
µγνγ0 ´ 2imk0γ0q

˘

γ0us

“ Niv:s1
`

´2imk ¨ γ ´ 2γ0k0k ¨ γ ` 2γ0k0k ¨ γ ` 2E2 ´ 2imk0γ0q
˘

γ0us

“ Niv:s1
`

´2imk ¨ γ ` 2pk0q2 ´ 2imk0γ0q
˘

γ0us

“ Niv:s1 p´2imk ¨ γqq p´iqus

“ ´2imNv:s1k ¨ γus,

where in the penultimate step we have used the orthogonality of v:s1 and us, for all s, s1. We
also have used the identity

δµνηρσk
µkργνγσ “ pk0q2 ´ |k|2 ` 2γ0k0k ¨ γ “ m2 ` 2γ0k0k ¨ γ.

Proposition 5.3. The annihilation and creation operators as used in Eq. (70) are related
by

boutpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q

k binpk, sq ` β
p´q˚

k

ÿ

s1

Xss1p´kqa
:

inp´k, s
1q

¸

.

and

aoutpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q

k ainpk, sq ` β
p´q˚

k

ÿ

s1

Xs1sp´kqb
:

inp´k, s
1q

¸
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Proof. Using the Bogoliubov transformations Eq. (68) we will write aout and b:out in terms

of ain and b:in. Indeed by inserting the Bogoliubov transformations in Eq. (70) we get
ÿ

ż

´

aoutpk, sqUoutpk, s,x, ηq ` b
:
outpk, sqVoutpk, s,x, ηq

¯

“

ÿ

ż

d

ωoutp|k|qµin
ωinp|k|qµout

´

ainpk, sqCpηq
´3{4N in

k ¨

pγµBµ ´ µpηqq
´

α
p´q

k φ
outp´q
k pηq ` β

p´q

k φ
outp`q˚
k

¯

eik¨xus

` b:inpk, sqCpηq
´3{4N in

k pγ
µBµ ´ µpηqq

´

α
p´q˚

k φ
outp´q˚
k pηq ` β

p´q˚

k φ
outp`q
k pηq

¯

e´ik¨xvs

¯

.

We will only calculate the transformation for b:out explicitly, as the calculations for aout
are quite similar. Hence collecting only the terms containing φ

outp˘q˚
k we get:

ÿ

ż

b:outpk, sqVoutpk, s,x, ηqq “

ÿ

ż

d

ωoutp|k|qµin
ωinp|k|qµout

´

ainpk, sqCpηq
´3{4N in

k pγ
µBµ ´ µpηqqβ

p´q

k φ
outp`q˚
k pηqeik¨xus

` b:inpk, sqCpηq
´3{4N in

k pγ
µBµ ´ µpηqqα

p´q˚

k φ
outp´q˚
k pηqe´ik¨xvs

¯

We will now go to the asymptotic limit η Ñ 8, where Bηφ
outp˘q˚
k „ iωoutp|k|qeiωoutp|k|qη

and we get
ÿ

ż

b:outpk, sqvoutpk, sqe
´ik¨xeiωoutp|k|qη “

ÿ

ż

d

ωoutp|k|qµin
ωinp|k|qµout

´

ainpk, sqN
in
k piωoutp|k|qγ0 ` ik ¨ γ ´ µoutqβ

p´q

k eik¨xeiωoutp|k|qηus

` b:inpk, sqN
in
k piωoutp|k|qγ0 ´ ik ¨ γ ´ µoutqα

p´q˚

k e´ik¨xeiωoutp|k|qηvs

¯

“

ÿ

ż

d

ωoutp|k|qµin
ωinp|k|qµout

´

ainpk, sqN
in
k piωoutp|k|qγ0 ` ik ¨ γ ´ µoutqβ

p´q

k eik¨xeiωoutp|k|qηus

` b:inpk, sq
N in

k

Nout
k

α
p´q˚

k voutpk, sqe
´ik¨xeiωoutp|k|qη

¯

.

We will consider both terms on the right hand side separately. By orthonormality of
voutpk, sq and e´ik¨x it follows that

b:outpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

α
p´q˚

k b:inpk, sq `Bpk, sq

Here Bpk, sq has to be determined by solving:
ÿ

ż

Bpk, sqvoutpk, sqe
´ik¨xeiωoutp|k|qη “

d

ωoutp|k|qµin
ωinp|k|qµout

ÿ

ż

ainpk, sqN
in
k piωoutp|k|qγ0 ` ik ¨ γ ´ µoutqβ

p´q

k eik¨xeiωoutp|k|qηus.
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As we integrate over R3, we can take k ÞÑ ´k on the right-hand side, and get
ÿ

ż

Bpk, sqe´ik¨xeiωoutp|k|qηvoutpk, sq

“
ÿ

ż

d

ωoutp|k|qµin
ωinp|k|qµout

ainp´k, sqN
in
k p´i{k ´ µoutqβ

p´q

k e´ik¨xeiωoutp|k|qηus.

By using the orthogonality relations for e´ik¨x, multiplying with v̄outpk, s
1q on both sides,

and using the spin orthonormality relations Eq. (69) we obtain

Bpk, s1q “ ´

d

ωoutp|k|qµin
ωinp|k|qµout

β
p´q

k

ÿ

s

ainp´k, sqN
in
k v̄outpk, s

1qp´i{k ´ µoutqus

“ ´

d

ωoutp|k|qµin
ωinp|k|qµout

β
p´q

k

ÿ

s

ainp´k, sqN
in
k p´2iµoutN

out
k v:s1k ¨ γusq

“

d

ωoutp|k|qµin
ωinp|k|qµout

2N in
k Nout

k µoutpωoutp|k|q ` µoutqβp´qk

ÿ

s

ainp´k, sqX
˚
s1sp´kq

“

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

β
p´q

k

ÿ

s

ainp´k, sqX
˚
s1sp´kq.

Here we have used the result of Lemma 5.2,

v̄outpk, s
1qp´i{k ´ µoutqus “ ´2iµoutN

out
k v:s1k ¨ γus, (72)

on the second line, and

2Nout
k

2
µoutpωoutp|k|q ` µoutq “ 1

in the final step.
We have also defined the polarisation tensor by

Xss1pkq “ ´2µoutN
out
k ūoutp´k, s

1qvs “
´iu:s1k ¨ γvs

ωoutp|k|q ` µout
, (73)

such that

X˚ss1p´kq “
´iv:sk ¨ γus1

ωoutp|k|q ` µout
, (74)

Combining our results we find

b:outpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q˚

k b:inpk, sq ` β
p´q

k

ÿ

s1

X˚ss1p´kqainp´k, s
1q

¸

, (75)

or equivalently

boutpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q

k binpk, sq ` β
p´q˚

k

ÿ

s1

Xss1p´kqa
:

inp´k, s
1q

¸

. (76)

In a similar way one can find that

aoutpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q

k ainpk, sq ` β
p´q˚

k

ÿ

s1

Xs1sp´kqb
:

inp´k, s
1q.

¸

(77)
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Corollary 5.4. The inverse transformations of Proposition 5.3 are given by

ainpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q˚

k aoutpk, sq ` β
p´q˚

k

ÿ

s1

Xss1p´kqb
:
outp´k, s

1q

¸

and

binpk, sq “

d

ωoutp|k|qµin
ωinp|k|qµout

N in
k

Nout
k

˜

α
p´q˚

k boutpk, sq ` β
p´q˚

k

ÿ

s1

Xs1sp´kqa
:
outp´k, s

1q

¸

.

Proof. This is completely similar to Proposition 4.22.

Remark 5.5. There is a small difference between the results of Proposition 5.3 and Corol-
lary 5.4 in comparison with Theorem 4.20 and Proposition 4.22, regarding the minus sign
in front of the second term of the transformations. This is due to a small difference in
the definition of the polarisation tensor. In this chapter it contains a factor i, while in
Definition 4.14 it does not. ♦

5.1.1 Checking the anti-commutation relations

We will show that the anti-commutation relations of the creation and annihilation operators
are maintained under the Bogoliubov transformations.

Proposition 5.6. We have the following relations between the Bogoliubov coefficients.

α
p`q

k

α
p´q

k

“
ωinp|k|q ´ µin
ωoutp|k|q ´ µout

“
ωoutp|k|q ` µout
ωinp|k|q ` µin

, (78)

β
p`q

k

β
p´q

k

“ ´
ωinp|k|q ´ µin
ωoutp|k|q ` µout

“ ´
ωoutp|k|q ´ µout
ωinp|k|q ` µin

, (79)

α
p´q

k α
p`q˚

k ´ β
p´q

k β
p`q˚

k “
ωinp|k|q
ωoutp|k|q

, (80)∣∣∣αp´qk

∣∣∣2 ` ωoutp|k|q ´ µout
ωoutp|k|q ` µout

∣∣∣βp´qk

∣∣∣2 “ µoutωinp|k|q
µinωoutp|k|q

ˆ

Nout
Nin

˙2

. (81)

Proof. See Proposition 4.12.

Proposition 5.7.

ÿ

s1

X˚ss1p´kqXss1p´kq “
ÿ

s1

Xss1p´kqX
˚
ss1p´kq “

ωoutp|k|q ´ µout
ωoutp|k|q ` µout

.

Proof. Using the Weyl representations for the gamma matrices, i.e. γ0 “ iσ1 b I we see
that the constant zero-momentum spinors, as defined by Eq. (66), are of the form

u˘ “
1
?

2

˜

1

´1

¸

b e˘, v˘ “
1
?

2

˜

1

1

¸

b e˘,
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where te`, e´u is an orthonormal basis of C2. Using

ÿ

s1

us1u
:

s1 “
1

2

˜

1 ´1

´1 1

¸

b I

and
pk ¨ σq2 “ |k|2 “ ωoutp|k|q2 ´ µ2

out “ pωoutp|k|q ´ µoutqpωoutp|k|q ` µoutq,
we find

ÿ

s1

X˚ss1p´kqXss1p´kq “
v:spk ¨ γq

´

ř

s1 us1u
:

s1

¯

pk ¨ γqvs

pωoutp|k|q ` µoutq2

“

1
4

´

1 1
¯

σ2

˜

1 ´1

´1 1

¸

σ2

˜

1

1

¸

b e:spk ¨ σq Ipk ¨ σqes

pωoutp|k|q ` µoutq2

“

1
4

´

1 1
¯

˜

1 1

1 1

¸˜

1

1

¸

b |k|2

pωoutp|k|q ` µoutq2
“

|k|2

pωoutp|k|q ` µoutq2

“
pωoutp|k|q ` µoutqpωoutp|k|q ´ µoutq

pωoutp|k|q ` µoutq2
“
ωoutp|k|q ´ µout
ωoutp|k|q ` µout

.

For the other equation we note that

vsv
:
s “

1

2

˜

1 1

1 1

¸

b
1

2
pI `sσ3q,

and
ÿ

s1

e:s1pk ¨ σqpI `sσ3qpk ¨ σqes1 “
ÿ

s1

e:s1pk ¨ σq Ipk ¨ σqes1 “ 2|k|2.

Therefore,
ÿ

s1

Xss1p´kqX
˚
ss1p´kq

“
ÿ

s1

us1pk ¨ γqvsv
:
spk ¨ γqu

:

s1

pωoutp|k|q ` µoutq2

“

1
4

´

1 ´1
¯

σ2

˜

1 1

1 1

¸

σ2

˜

1

´1

¸

b 1
2

ř

s1 e
:

s1pk ¨ σqpI `sσ3qpk ¨ σqes1

pωoutp|k|q ` µoutq2

“

1
4

´

1 ´1
¯

˜

1 ´1

´1 1

¸˜

1

´1

¸

b 2
2 |k|

2

pωoutp|k|q ` µoutq2
“

|k|2

pωoutp|k|q ` µoutq2

“
ωoutp|k|q ´ µout
ωoutp|k|q ` µout

.
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Using previous proposition we now show that the commutation relations of aout and bout
are retained under the transformations Eq. (75) and Eq. (75).

Proposition 5.8. The CAR of aout and bout are retained under the transformations given

by Eq. (75) and Eq. (77), if α
p´q

k is real.

Proof. This follows from similar calculations as done in Proposition 4.22. For example,
using the CAR for bin and ain we have

tbout, b
:
outu “

ωoutp|k|qµin
ωinp|k|qµout

N in
k

2

Nout
k

2

ˆ∣∣∣αp´qk

∣∣∣2tbin, b:inu
`

∣∣∣βp´qk

∣∣∣2pÿ
s1

X˚ss1Xss1aina
:

in `
ÿ

s1

Xss1X
˚
ss1a

:

inainq

˙

“
ωoutp|k|qµin
ωinp|k|qµout

N in
k

2

Nout
k

2

ˆ∣∣∣αp´qk

∣∣∣2tbin, b:inu ` ∣∣∣βp´qk

∣∣∣2ωoutp|k|q ´ µout
ωoutp|k|q ` µout

tain, a
:

inu

˙

“
ωoutp|k|qµin
ωinp|k|qµout

N in
k

2

Nout
k

2

µoutωinp|k|q
µinωoutp|k|q

ˆ

Nout
k

N in
k

˙2

“ 1,

where in the second step we used Eq. (81).

In the following section, we will assume α
p´q

k to be real.

5.2 Unitarily implementation of the Bogoliubov transformations

The Bogoliubov transformations provide us with a unitary implementation

U : F Ñ F

such that
Ψ 1pvq “ UΨpvqU:,

for any v P H, exactly as in Proposition 4.25. We will give a similar statement to Proposi-
tion 4.26 using a more physical notation.

Proposition 5.9. Under the Bogoliubov transformations given by Corollary 5.4 the in-
vacuum transforms to

|0iny “
ź

k

|0outy ´ γ˚kŒ
|Òk; Ó´kyout ´ γ

˚
kŒ

|Ók; Ò´kyout ` γ
˚
kŒ
γ˚kÖ

|Ök; Ö´kyout
c

1`
∣∣∣γ˚kŒ

∣∣∣2 ` ∣∣∣γ˚kÖ

∣∣∣2 ` ∣∣∣γ˚kŒ
γ˚kÖ

∣∣∣2 .

Proof. The inverse transformation of Eq. p77q is, up to some constant which will drop out,
given by

ainpk, sq 9 α
p´q˚

k aoutpk, sq `
ÿ

s1

Xs1spkqβ
p´q˚

k b:outp´k, s
1q,

as follows from Corollary 5.4. To have conservation of spin we must drop the terms con-
taining Xss1 , where s1 ‰ ´s., and hence the inverse transformations boil down to
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ainpk, sq 9 α
p´q˚

k aoutpk, sq ´X´s,sp´kqβ
p´q˚

k b:outp´k,´sq, (82)

binpk, sq 9 α
p´q˚

k boutpk, sq ´Xs,´sp´kqβ
p´q˚

k a:outp´k,´sq. (83)

Using the method as described in [9] for a scalar boson field, we can compute the in-vacuum

|0iny in terms of a:out, b
:
out and the out-vacuum |0outy . By conservation of spin, charge and

momentum the vacuum must be of the form:

|0iny “A0 |0outy

`

8
ÿ

n“1

ż

d3k1 ¨ ¨ ¨ d
3k2n

ÿ

s1,...,s2n

δp
2n
ÿ

i“1

siqδp
2n
ÿ

i“1

kiqAnpk1, s1, . . . ,k2n, s2nq

¨ a:outpk1, s1qb
:
outpk2, s2q ¨ ¨ ¨ a

:
outpk2n´1, s2n´1qb

:
outpk2n, s2nq |0outy

(84)

Because x0out | 0outy “ 1, we have

A0 “ x0out | 0iny .

By using Eq. p82q, ainpk, sq |0iny “ 0 and comparing terms in Eq. (84), we have

0 “ ´A0β
p´q˚

k X´s,sp´kqb
:
outp´k,´sq |0outy

`A1pk, s,´k,´sqα
p´q˚

k aoutpk, sqa
:
outpk, sqb

:
outp´k,´sq |0outy

and hence

A1pk, s,´k,´sq “
β
p´q˚

k

α
p´q˚

k

X´s,sp´kqA0.

From higher terms we get the recursion relations

Anpk1, s1, . . . ,k2n´1, s2n´1,´
2n´1
ÿ

i“1

ki,´
2n´1
ÿ

i“1

siq “
1

2n´ 1

2n´1
ÿ

j“1

β
p´q˚

kj

α
p´q˚

kj

X´sj ,sj

¨ δ

˜

2n´1
ÿ

i“1,i‰j

ki

¸

δ

˜

2n´1
ÿ

i“1,i‰j

si

¸

An´1pk1, s1, . . . ,kj´1, sj´1,kj`1, sj`1, . . . ,k2n´1, s2n´1q

from which it follows that the in-vacuum is formally given by

|0iny “ x0out | 0iny exp

#

ż

d3k
ÿ

s

β
p´q˚

k

α
p´q˚

k

X´s,sp´kqa
:
outpk, sqb

:
outp´k,´sq

+

|0outy .

For the following, we generalize the calculations in [20] from two to four dimensions. From
the previous result, we see that different k does not mix, i.e. if there is a particle with
momentum k, there is always an anti-particle with momentum ´k, and hence the vacuum
must be of the form

|0iny “
ź

k

pB0pkq |0outy `B1pkq |Òk; Ó´kyout `B2pkq |Ók; Ò´kyout `B3pkq |Ök; Ö´kyoutq ,
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where

|Òk; Ó´kyout :“ a:outpk, 1qb
:
outp´k,´1q |0outy ,

|Ók; Ò´kyout :“ a:outpk,´1qb:outp´k, 1q |0outy ,

|Ök; Ö´kyout :“ a:outpk, 1qa
:
outpk,´1qb:outp´k,´1qb:outp´k, 1q |0outy ,

Since different k do not mix, we only have to consider only one frequency. By applying
Eq. (82) to one frequency part, we find that we need to have

β
p´q˚

k X´1,1p´kqB0pkq |Ó´kyout “ ´α
p´q˚

k B1pkq |Ó´kyout ,

β
p´q˚

k X1,´1p´kqB0pkq |Ò´kyout “ ´α
p´q˚

k B2pkq |Ò´kyout ,

α
p´q˚

k B3pkq |Ók; Ö´kyout “ ´β
p´q˚

k X´1,1p´kqB2pkq |Ók; Ö´kyout ,

α
p´q˚

k B3pkq |Òk; Ö´kyout “ ´β
p´q˚

k X1,´1p´kqB1pkq |Òk; Ö´kyout .

Hence

|0iny “
ź

k

B0pkq

ˆ

|0outy ´
β
p´q˚

k

α
p´q˚

k

XŒp´kq |Òk; Ó´kyout ´
β
p´q˚

k

α
p´q˚

k

XÖp´kq |Ók; Ò´kyout

`

˜

β
p´q˚

k

α
p´q˚

k

¸2

XŒp´kqXÖp´kq |Ök; Ö´kyout

˙

,

where XÖp´kq “ X1,´1p´kq and XŒp´kq “ X´1,1p´kq. To simplify notation, lets intro-
duce

γ˚kÖ “
β
p´q˚

k

α
p´q˚

k

XÖp´kq.

Normalization of the vacuum x0in | 0iny “ 1 gives

|0iny “
ź

k

|0outy ´ γ˚kŒ
|Òk; Ó´kyout ´ γ

˚
kŒ

|Ók; Ò´kyout ` γ
˚
kŒ
γ˚kÖ

|Ök; Ö´kyout
c

1`
∣∣∣γ˚kŒ

∣∣∣2 ` ∣∣∣γ˚kÖ

∣∣∣2 ` ∣∣∣γ˚kŒ
γ˚kÖ

∣∣∣2 ,

This result has also be found in [39, eq. 23] by uncoupling the operator found in Propo-
sition 4.25. We can now define a unitary mapping of the Fock space, exactly as in Corol-
lary 4.27. As this is not enlightening to repeat, we will conclude be given a simple example
of such a transformation.

Example 5.10. We can compute the evolution of any vector, e.g. for

|Òlyin “ a:inpl, 1q |0iny ,
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by using Eq. (82) and the Pauli exclusion principle:

|Òlyin “ B0plq
`

α
p´q

l |Òlyout `X
˚
lŒβ

p´q

l γ˚lŒ |Òlyout ´ α
p´q

l γ˚lŒ |Öl; Ò´lyout

´X˚lŒβ
p´q

l γ˚lŒγ
˚
lÖ |Öl; Ò´lyout

˘

`
ź

k‰l

B0pkqα
p´q

l

`

|Òlyout ´ γ
˚
kŒ |Òl; Òk; Ó´kyout

´ γ˚kŒ |Òl; Ók; Ò´kyout ` γ
˚
kŒγ

˚
kÖ |Òl; Ök; Ö´kyout

˘

“ B0plqα
p´q

l

`

p1` |γlŒ|2q |Òlyout ´ pγ
˚
lŒ ` |γlŒ|2γ˚lÖq |Öl; Ò´lyout

˘

`
ź

k‰l

B0pkqα
p´q

l

`

|Òlyout ´ γ
˚
kŒ |Òl; Òk; Ó´kyout ´ γ

˚
kŒ |Òl; Ók; Ò´kyout

` γ˚kŒγ
˚
kÖ |Òl; Ök; Ö´kyout

˘

. C
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6 Conclusion

We have generalized the creation of fermionic particles as described in [15] for an isotropic
FLRW spacetime, to an asymptotically static GFLRW spacetime

pRˆΣ, g “ ´dt2 ‘ a2ptqgΣq,

with Σ a complete and compact Riemannian spin manifold. Future investigations could try
to generalize this even more, to encompass all asasymptotically ymptotic static hyperbolic
spacetimes.

• A generalization to a non-compact Σ is probably not too troublesome, following the
methods as explained in [22].

• A generalization enlarging the family of metrics to all smooth one-parameter family of
Riemannian metrics pgtqtPR on Σ would be more troublesome, as this would complicate
the mean curvature H of pΣ, gtq, disabling the possibility to find uncoupled solutions
to the Dirac equation. Increasing the family of allowed metrics, while decreasing the
family of allowed spaces Σ could be a way forward here.

• A generalization beyond globally hyperbolic spacetimes by allowing a non-static Σ,
e.g. a pair of pants, looks out of reach at the moment.
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A Quantization

If you can’t give me poetry, can’t
you give me poetical science?

— Ada Lovelace

A.1 Fermionic Fock space

In this section we follow [47, 18, 3]. For now we assume we have a Hilbert space H` as the
state space of a particle, and a Hilbert space H´ “ JH` as the state space of an antiparticle.
Let Q˘ : H “ H` ‘H´ Ñ H˘ be the orthogonal projection onto these two Hilbert spaces.
In the next section we will make these Hilbert spaces concrete. But first, we will define the
Fock space corresponding to these Hilbert spaces. We will define the Fock Spaces FpH˘q
related to these Hilbert spaces. If there can be no confusion about the Hilbert spaces in use
we will write F˘ “ FpH˘q.
We will define these Fock spaces in multiple steps. We first define

F p1q` :“ H`, F p1q´ :“ JH´ “ H`,

and the n-(anti-)particle Fermionic Fock space F pnq˘ as the the antisymmetrized tensor prod-

uct of n copies of F p1q˘ , i.e.

F pnq` “

n
ľ

F p1q` , F pnq´ “

n
ľ

F p1q´ .

Here we have used the antisymmetrized tensor product or wedge product ^ on the exterior
algebra. The exterior algebra

Ź

pV q of a vector space V is defined as the quotient algebra
of the tensor algebra by the two-sided ideal I generated by all elements of the form v b v
for all v P V. The wedge product is the product induced by the tensor product on T pV q.

We define the orthogonal projections on these spaces P˘ :
Ân F p1q˘ Ñ

Źn F p1q˘ , given
by

P˘pu1 b ¨ ¨ ¨ b unq “ u1 ^ ¨ ¨ ¨ ^ un “
1

k!

ÿ

σPSn

sgnpσq uσp1q b ¨ ¨ ¨ b uσpkq.

To accommodate an arbitrary number of particles and anti-particles we define the Fermionic
Fock space as the Hilbert space direct sum (denoted by ‘̂)

F “ ˆà8

n,m“0
F pn,mq “ F` b F´ “ ˆà8

n
F pnq` b

ˆà8

m
F pmq´ ,

where F pn,mq “ F pnq b F pmq and F p0,0q˘ “ F p0q˘ :“ C. The elements in the Fock space are
sequences

ξ “ pξpn,mqqn,mPN, ξpn,mq P F pn,mq.
We also define the finite-particle subspace F0 of states in which the total number number
of particles is finite, i.e. instead of the Hilbert space direct sum, one takes the algebraic
direct sum. Note that F0 is dense in F . In the same way we define F`0 and F´0. To
count how many particles (anti-particles) are in a state we define the number operators
N˘ : F˘0 Ñ F˘0 by

N˘ |Fpnq
˘

“ n I
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on F pnq˘ and extend them linearly to F˘0. We also define the total number operator

N “ N` `N´ : F0 Ñ F0

and the charge operator
Q “ N` ´N´ : F0 Ñ F0.

If we assume conservation of charge, this thus means the difference between the number of
particles and anti-particles is constant. A state of the form

Ω “ peiλ, 0, 0, . . .q, λ P R,

is called a vacuum state and describes the case when there are no particles or anti-particles.
To go from the vacuum state to a state with particles we will define creation operators.

For v P F p1q˘ we define Cpvq, C:pvq :
À8

n“0

Ân F p1q˘ Ñ
À8

n“0

Ân F p1q˘ by

Cpvqpu1 b ¨ ¨ ¨ b unq “ xv |u1yu2 b ¨ ¨ ¨un,

C:pvqpu1 b ¨ ¨ ¨ b unq “ v b u1 b ¨ ¨ ¨ b un.

The annihilation and creation operator for particles

Apvq, A:pvq : F`0 Ñ F`0

are given by

Apvq “
a

N`Cpvq, A:pvq “ P`
a

N`C
:pvq,

for v P H`. Notices that Cpvq respects the Fermionic Fock space, hence we don’t have to
project onto it. Using the wedge product notation this entails

Apvqpu1 ^ ¨ ¨ ¨ ^ unq “
1
?
n

n
ÿ

j“1

p´1qj xv |ujy u1 ^ ¨ ¨ ¨uj´1 ^ uj`1 ^ ¨ ¨ ¨ ^ uk,

A:pvqpu1 ^ ¨ ¨ ¨ ^ unq “
?
n` 1 v ^ u1 ^ ¨ ¨ ¨ ^ uk.

Note that v Ñ Apvq is anti-linear, while v Ñ A:pvq is linear.
Similarly for any v P H´ the annihilation and creation operator for anti-particles

Bpvq, B:pvq : F´0 Ñ F´0

are given by

Bpvq “ CpJvq
a

N´, B:pvq “ P´
a

N´C
:pJvq.

Using the wedge product notation this entails

Bpvqpu1 ^ ¨ ¨ ¨ ^ unq “
1
?
n

n
ÿ

j“1

p´1qj xJv |ujy u1 ^ ¨ ¨ ¨uj´1 ^ uj`1 ^ ¨ ¨ ¨ ^ uk,

B:pvqpu1 ^ ¨ ¨ ¨ ^ unq “
?
n` 1 Jv ^ u1 ^ ¨ ¨ ¨ ^ uk,

Note hat v ÞÑ Bpvq is linear, while v ÞÑ B:pvq is anti-linear.
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Definition A.1. Let H be a Hilbert space and F0pHq the corresponding finite Fermionic
Fock subspace. Operators Apuq, A:pvq : F0pHq Ñ F0pHq for u, v P H, are said to satisfy the
canonical anticommutation relations (CAR) if

tApuq, A:pvqu “ xu | vy I,

tApuq, Apvqu “ tA:puq, A:pvqu “ 0.

One can check that Apuq, A:puq satisfy the CAR for H “ H`, and also Bpvq, B:pvq for
H “ H´.

We can even extend Apvq, A:pvq to bounded operators on the whole Fermionic Fock
space F`. Indeed for any ξ P F0 the CAR implies that

‖Apvqξ‖2
`
∥∥A:pvqξ∥∥2

“
@

ξ
ˇ

ˇA:pvqApvqξ
D

`
@

ξ
ˇ

ˇApvqA:pvqξ
D

“ ‖v‖2‖ξ‖2
,

hence
‖Apvq‖ ď ‖v‖,

∥∥Apvq:∥∥ ď ‖v‖,

and similarly we extend Bpvq, B:pvq to F´. Moreover with a bit abuse of notation we extend
Apuq, A:puq, Bpvq, B:pvq for u P H`, v P H´ to F “ F` b F´ by

A#puq “ A#puq b I, B#pvq “ p´1qN` I b B#pvq,

where A# either means A or A:. The factor p´1qN` is added to satisfy the canonical
commutation relations

tApuq, Bpvqu “ tA:puq, B:pvqu “ tA:puq, Bpvqu “ tApuq, B:pvqu “ 0.

Notice also that for any ξ P F and v P F` we have

A2pvqξ “
1

2
tApvq, Apvquξ “ 0,

which shows that ξ contains at most one particle in the state v, the so called Pauli exclusion
principle. For Bpvq exactly the same holds. If we assume that for a vector ξ P F we have

Apuqξ “ 0, Bpvqξ “ 0 @u P H`, v P H´,

then it follows ξ “ λΩ for λ P C, that is we see that the vacuum is unique up to a constant.

Definition A.2. For any v P H we define the field operator

Ψpvq : F Ñ F

by
Ψpvq “ ApQ`vq `B:pQ´vq. (85)

Note that this is an anti-linear mapping.

Proposition A.3. The operator Ψ : HÑ BpFq is an isometry. In particular it is bounded.
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Proof. Using the CAR for A and B: one can also check that Ψpvq satisfies the CAR for any
v P H. And in the same way as we did for Apvq we have

‖Ψpvqξ‖2
`
∥∥Ψ :pvqξ∥∥2

“
@

ξ
ˇ

ˇΨ :pvqΨpvqξ
D

`
@

ξ
ˇ

ˇΨpvqΨ :pvqξ
D

“ ‖v‖2‖ξ‖2
,

hence ‖Ψpvq‖ “ ‖Ψ˚pvq‖ “ ‖v‖.

Often it is useful to consider the Fock spaces in multiple equivalent ways based on
isomorphic Hilbert spaces. The following lemma provides us with the canonical isomorphism
of Fock spaces based on the underlying isomorphism of Hilbert spaces.

Lemma A.4. A isomorphism of Hilbert spaces U : H1
–
ÝÑ H2 induces a isomorphism of

Fock spaces
FpUq : FpH1q Ñ FpH2q,

induced by
FpUqpu1 b ¨ ¨ ¨ b ukq “ Uu1 b ¨ ¨ ¨ b Uuk.

Moreover for any v P H1

FpUqA1pvqF pUq
´1 “ A2pUvq, FpUqA:1pvqF pUq´1 “ A:2pUvq,

for the annihilation-creation operators Ai, A
:

i : FpHiq Ñ FpHiq, i “ 1, 2. Moreover,

FpUqΨ1pvqFpUq´1 “ Ψ2pUvq,

for field operators Ψi : FpHiq Ñ FpHiq

Proof. This follows from elementary calculations.

A.2 Choosing a basis

It is often useful to express things in terms of an orthonormal basis penqnPN of H` and an
orthonormal basis pēnqnPN of H´. Now for ni P t0, 1u define

|n1, n2, n3, . . .y` “
?
k!ei1 ^ ¨ ¨ ¨ ^ eik , |n1, n2, n3, . . .y´ “

?
k!Jēi1 ^ ¨ ¨ ¨ ^ Jēik ,

where i1 ă ¨ ¨ ¨ ă ik are the indices i for which ni “ 1. Then

t|n1, n2, n3, . . .y` | ni P t0, 1u,
ÿ

ni ă 8u, t|n1, n2, n3, . . .y´ | ni P t0, 1u,
ÿ

ni ă 8u

are orthonormal bases for F` and F´ respectively. The fact that ni can only be 0 or 1 is
because of the Pauli exclusion principle. We define

ak “ apekq, a:k “ a:pekq, bk “ bpēkq, b:k “ b:pēkq,

and the CAR now entails

taj , a
:

ku “ δjk I, taj , aku “ ta
:

j , a
:

ku “ 0,
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and exactly the same holds for bk, b
:

k. One can check that

ak |n1, . . . , nk, . . .y` “

#

p´1q
řk´1
i“1 ni |n1, . . . , nk ´ 1, . . .y` nk “ 1

0 nk “ 0,

a:k |n1, . . . , nk, . . .y` “

#

p´1q
řk´1
i“1 ni |n1, . . . , nk ` 1, . . .y` nk “ 0

0 nk “ 1,

and similar for bk, b
:

k. Hence we have a:kak |n1, n2, . . .y` “ nk |n1, n2, . . .y` and we have

N` “
8
ÿ

k“1

a:kak, N´ “
8
ÿ

k“1

b:kbk,

N “ N` `N´ “
8
ÿ

k“1

pa:kak ` b
:

kbkq,

and

Q “ N` ´N´ “
8
ÿ

k“1

pa:kak ´ b
:

kbkq

as bounded operators with domain F0. Now since for every v P H

v “
8
ÿ

n“1

pxen | vy en ` xēn | vy ēnq,

we can write

Ψpvq “ a

˜

8
ÿ

n“1

xen | vy en

¸

` b:

˜

8
ÿ

n“1

xēn | vy ēn

¸

“

8
ÿ

n“1

`

xv | eny an ` xv | ēny b
:
n

˘

(86)

A.3 The quantization of fermionic fields on concrete spaces

In this section we will concertize the field operator by taking a concrete Hilbert space for
H˘. We will start by defining the notion of a distribution, which is needed to rigorously
define the quantum field. We follow [17, Ch. 9].

Definition A.5. A distribution is a linear functional acting on a class of test-functions
DpRnq.

T : DpRnq Ñ R.

Two common choices are smooth functions with compact support, and the Schwartz space,
as defined in Definition 3.4. Distributions acting on rapidly decreasing functions are called
tempered distributions.

An example of a distribution is the Dirac delta function defined by

δpφq “ φp0q.
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A locally integrable function f : Rn Ñ Rn gives rise to a distribution Tf , given by

Tf pφq “

ż

Rn
fpxqφpxqdnx.

Because of this it is common in physics to adopt a notational fiction that any distribution
is a function.

Definition A.6. For distribution T : DpRnq Ñ R, we introduce the formal notation
T pxq, x P Rn, as if T were a function. This has to be interpreted in the following way:

ż

Rn
T pxqφpxqdnx “ T pφq

for a test function f . Any notation containing T pxq without integration paired with a test
function has to be interpreted in this way.

For example. for the we write the Dirac delta function as if it were a function δpxq,
which makes only sense when integrated over paired with a test function in the following
way

ż

Rn
δpxqφpxqdnx “ φp0q. (87)

It is possible to rigorously define the derivative of a distribution and, if we consider only
tempered distributions, also the Fourier transform of a distribution.

Definition A.7. For a distribution

T : SpRnq Ñ R

its derivative T 1 and Fourier transform FT are defined by

T 1pφq “ ´T pφ1q, FpT qpφq “ T pFφq.

Note that the Fourier transform gives an automorphism of the Schwartz-space, as stated
in Theorem 3.9.

A.3.1 Minkowski space

Now back to quantization. We first consider the Dirac operator D “ γµBµ`m on Minkowski
space, with domain contained in L2pR4, dxq b C4 – L2pR4, dkq4. We are only interested in
the on shell solutions, nicely expressed in momentum-space by the Hilbert space

H “ H` ‘H´

as defined in Definition 3.43. We first define the field operator following Eq. (85), as the
mapping that that maps any vector in the Hilbert space H to a bounded operator on the
Fock space FpHq:

Ψ : HÑ BpFpHqq.

For various reasons and to coincide with the leading physical literature, we want to make
two changes:
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• Define the field operator for a f P SpR4q4 instead of a vector w in the Hilbert space
H. We will use the Fourier transformation to achieve this.

• Use the Fock space based on the Hilbert space L2pR3q4 instead of H˘. We will define

isomorphisms U˘ : H˘ Ñ L2pR3, d3k
p2πq2{3

q4 and Lemma A.4 to achieve this.

Remember that every w` P H` and every w´ P H´ can be written as

w`pkq “
ÿ

s“˘

αspkqupk, sq, w´pkq “
ÿ

s“˘

βspkqvpk, sq, (88)

where αs : R3 Ñ C and βs : R3 Ñ C are given by

αspkq “ xuspkq, wpkqy, βspkq “ xvspkq, wpkqy.

We define the operator
R : SpR4q4 Ñ H

as the combination of the Fourier-transform, the inclusion into L2pR4qbC4 and the orthog-
onal projection onto H. Let Q˘ : H Ñ H˘ the projection onto the two subspaces of H, as
before. We define

R˘ “ Q˘ ˝R : SpR4q4 Ñ H˘.

Any f P SpR4q4XF´1H can be written as the inverse Fourier transform of a w P HXSpRq4,
such that Rf “ w, that is

fpxq “

ż

X`mYX
´
m

eikµx
µ

wpkq

?
md3k

ωkp2πq3{2
(89)

“

ż

X`m

´

eikµx
µ

wpkq ` e´ikµx
µ

wp´kq
¯

?
md3k

ωkp2πq3{2
(90)

“

ż

X`m

´

eikµx
µ

w`pkq ` e´ikµx
µ

w´p´kq
¯

?
md3k

ωkp2πq3{2
(91)

“

ż

X`m

ÿ

s“˘

´

eikµx
µ

αspkqupk, sq ` e
´ikµx

µ

βspkqvpk, sq
¯

?
md3k

ωkp2πq3{2
, (92)

where
w` “ w |X`m , w´ “ w |X´m .

Note that factor
?
md3k

ωkp2πq3{2
is due to the inner product on H, see Eq. (31).

We have the isomorphism of Hilbert spaces

U˘ : H˘
–
ÝÑ L2pR3q4

given by

U`wpkq “

?
m

ωk
wppωk,kqq

and

U´wpkq “

?
m

ωk
wpp´ωk,kqq.
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Note the appearance of a factor of
?
m
ωk

, due to the invariant inner product on H, given by

Eq. (31). Using Lemma A.4 these isomorphisms induce isomorphisms of Fock spaces

FpU˘q : FpH˘q Ñ FpL2pR3q4q.

By construction we now have the identities:

U`R`fpkq “
ÿ

s“˘

?
m

ωk
αspkqupk, sq, U´R´fpkq “

ÿ

s“˘

?
m

ωk
βspkqvpk, sq.

We are now ready to redefine the quantized field.

Definition A.8. For any f P SpR4q4 the quantized Dirac Field is given by

ψpfq “ FpUqΨpRfqFpUq´1. (93)

We will expand this definition to obtain an expression for the quantized Dirac field that
is commonly found in quantum field theory books. We denote the annihilation operators
for particles and antiparticles on FpL2pR3q4q by a and b respectivily, that is we have

apUvq “ FpUqApvqFpU´1q,

and similarly for b. We will interpret a, b as operator valued distributions on R3, by re-
stricting their argument to SpR3q4. Adopting the notational fiction that a distribution is a
function we write

b:pwq “

ż

R3

ÿ

s“˘

bpk, sq:xwpkq, vpk, sqy

?
ωkd

3k

p2πq3{2
,

and similarly,

apwq “

ż

R3

ÿ

s“˘

apk, sqxwpkq, upk, sqy

?
ωkd

3k

p2πq3{2
.

Here we have incorporated an arbitrary factor 1?
ωk

in apk, sq, b:pk, sq.

Unraveling the definitions we find that the quantized Dirac field for f P SpR4q4 is given
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by

ψpfq “ FpUq
`

ApR`fq `B:pR´fq
˘

FpU´1q “ apUR`fq ` b:pUR´fq

“

ż

ÿ

s“˘

c

m

ωk

`

α˚s pkqapk, sq ` β
˚
s pkqb

:pk, sq
˘ d3k

p2πq2{3

“

ż

ÿ

s“˘

c

m

ωk

´

xRfpkq, upk, sqyapk, sq

` xRfpkq, vpk, sqyb:pk, sq
¯ d3k

p2πq2{3

“

ż

ÿ

s“˘

c

m

ωk

˜

B
ż

R4

fpxqe´ikµx
µ d4x

4π2
, upk, sq

F

apk, sq

`

B
ż

R4

fpxqeikµx
µ d4x

4π2
, vp´k, sq

F

b:p´k, sq

¸

d3k

p2πq2{3

“

ż ż

ÿ

s“˘

c

m

ωk

´

xfpxq, upk, sqyeikµx
µ

apk, sq

` xfpxq, vpk, sqye´ikµx
µ

b:pk, sq
¯d4x

4π2

d3k

p2πq2{3
.

(94)

In the tradition of writing a distribution as if it were a function, we write

ψpxq “

ż

R3

ÿ

s“˘

c

m

ωk

´

apk, sqeikµx
µ

upk, sq ` b:pk, sqe´ikµx
µ

vpk, sq
¯ d3k

p2πq2{3
,

which has to be interpreted in the sense of Eq. (94), i.e.

ż

R4

xfpxq, ψpxqy
d4x

4π2
:“ ψpfq.

A.3.2 A generalized static Lorentzian cylinder

In this example consider the Dirac operator

ppiσ1 b IqBt ` iσ2 bDΣ `mqψ “ 0

on a generalized static Lorentzian cylinder, M “ RˆΣ, with metric g “ ´dt2 ‘ gΣ , where
pΣ, gΣq is a compact Riemmannian spin manifold. The solution space is given by the Hilbert
space

H “ H` ‘H´

as defined in Definition 3.31. Let Q˘ : H Ñ H˘ the projection onto the two subspaces of
H, as before.

We first define the field operator following Eq. (85), as the mapping that that maps any
vector in the Hilbert space H to a bounded operator on the Fock space FpHq:

Ψ : HÑ BpFpHqq.
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We now want to define the quantized Dirac field for a section f P L2pSM q instead of a vector
w in the Hilbert space H. We will use the temporal Fourier transformation to achieve this.
Moreover, we want to use the Fock space based on the Hilbert space L2pSΣq b C2 instead
of H˘. We will use the unitaries U˘ : H˘ Ñ L2pSΣq b C2, as given in Eq. (27) to achieve
this. Let us denote the inner product on L2pSΣq b C2 by x¨ | ¨y and the inner product on
H˘ by p¨, ¨q .

Remember that every h P H, can be written as

h “ h` ` h´,

with h` “ Q`h, h´ “ Q´h given by

h` “
ÿ

λ,n

?
2ωλa

λ
nw

λ b eλn, h´ “
ÿ

λ,n

?
2ωλb

λ
nw̄

λ b ēλn. (95)

where
aλn “

`?
2ωλw

λ b eλn, h
`
˘

, bλn “
`?

2ωλw̄
λ b ēλn, h

´
˘

.

We define the operator
R : L2pSM q Ñ H

as the combination of the temporal Fourier transform and the orthogonal projection onto
H. We define

R˘ “ Q˘ ˝R : L2pSM q Ñ H˘.
Note that the following Remark 3.15 and Proposition 3.32 we have

F´1p
?

2ωλw
λ b eλnq “

c

m

ω
wλ b eλne

´iωλt

and similarly

F´1p
?

2ωλw̄
λ b ēλnq “

c

m

ω
w̄λ b ēλne

iωλt,

where F is the temporal Fourier transform.
We are now ready to redefine the quantized Dirac field.

Definition A.9. For any f P ΓpSM q the quantized Dirac Field is given by

ψpfq “ FpUqΨpRfqFpUq´1, (96)

with U “ U` ‘ U´.

We denote the annihilation operators for particles and antiparticles on FpL2pSΣq bC2q

by a and b respectively and we write

aλ,n “ a

ˆc

m

ωλ
wλ b eλn

˙

, bλ,n “ b

ˆc

m

ωλ
w̄λ b ēλn

˙

,

such that for h “ Rf

apU`h`q “
ÿ

λ,n

aλ,n

B

U`h`
ˇ

ˇ

ˇ

ˇ

c

m

ωλ
wλ b eλn

F

“
ÿ

λ,n

aλ,n
`

Ff,
?

2ωλw
λ b eλn

˘

“
ÿ

λ,n

aλ,n
`

f,F´1p
?

2ωλw
λ b eλnq

˘

“
ÿ

λ,n

aλ,n

ˆ

f,

c

m

ωλ
wλ b eλne

´iωλt

˙

.
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and similarly

b:pU´h´q “
ÿ

λ,n

b:λ,n

ˆ

f,

c

m

ωλ
w̄λ b ēλne

iωλt

˙

.

Unraveling the definitions we find that the quantized Dirac field is given by

ψpfq “ apU`R`fq ` b:pU´R´fq

“
ÿ

λ,n

c

m

ωλ

´

aλ,n
`

f, wλ b eλne
´iωλt

˘

aλ,n

` b:λ,n
`

f, w̄λ b ēλne
iωλt

˘

¯

“

˜

f,
ÿ

λ,n

c

m

ωλ

´

wλ b eλne
´iωλtaλ,n ` w̄

λ b ēλne
iωλtw̄λ b ēλnb

:

λ,n

¯

¸

.

(97)

Using the language that distributions are functions, we write

ψpxq “
ÿ

λ,n

c

m

ωλ

´

e´iωλtwλ b eλnaλ,n ` e
iωλtw̄λ b ēλnb

:

λ,n

¯

.

which has to be interpreted in the sense of Eq. (97), i.e.

ż

M

xfpxq, ψpxqydVg :“ ψpfq.
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