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1 Introduction

Anyone who has lost track of time
when using a computer knows the
propensity to dream, the urge to
make dreams come true and the
tendency to miss lunch.

—Sir Tim Berners-Lee

The marriage of Quantum Field theory en General Relativity has always been an inter-
esting one. Two of the most well-known quantum relativistic effects are Hawking radiation
(28]) and the Fulling-Davies—Unruh effect [21), 3] [48]. A closely related effect is that
of particle creation in asymptotic static isotropic Friedmann—Lemaitre—Robertson—Walker
(FLRW) spacetimes, as first studied by Parker [37, [38] even before Hawking, Fulling, Davies
and Unruh published their results, and later extensively by Bernard and Duncan [0 [15].

Recently these results have seen a revival of attention from quantum information theo-
rists, studying the effect of relativity on entanglement of quantum states (e.g. in [36] [34]
20, 351 [39]).

Inspired by this revival of interest, we have studied the entanglement, or in the language
of the original papers, the particle creation of fermionic fields in asymptotically static FLRW
spacetimes, generalizing the results to spatially compact asymptotically static Generalized
Friedmann-Lemaitre-Robertson-Walker (GFLRW) spacetimes.

We will proceed as follows. We will conclude this section by introducing the relevant
notation and conventions, which is always challenging when working on the boundary of
two disciplines and having to deal with two sets of not always matching conventions.

In Section 2 we define GFLRW spacetimes and the other relevant geometric notions. We
will define Clifford algebras, the spinor bundle, the spin-connection on the spinor bundle,
and the Dirac operator acting on sections of the spinor bundle. We also define the charge
conjugation operator J on the spinor bundle. We have assumed knowledge of smooth
manifolds and vector bundles, but we will introduce and prove all other notions in depth.
For a good introduction into smooth manifolds and vector bundles, we refer to [33], B2].
Finally we will explain how the Dirac operator on a product spacetime R x X' is uniquely
determined by the Dirac operator on the Riemannian spin manifold X, following the results
of [2].

In Section 3 we find solutions to the Dirac operator on a static product spacetime R x X,
where we assume Y to be compact. We pay close attention to the role of the the charge
conjugation operator J. We also describe the solutions of the Dirac equation on Minkowski
space. Therefore we will also give a short introduction into Fourier theory in this section.
We have assumed knowledge of Functional Analysis, although it is not necessary to get the
general picture. For a good introduction see e.g. [41l 42, 12]. At the end of Section 3 we
define the relevant mathematical notions to make the concept of solutions at infinity more
precise.

In Section 4 we shorty describe the quantization of the Dirac field on a GFLRW, while
we refer to Appendix A for a more detailed introduction into fermionic Fock spaces and
canonical quantization of fermionic fields. We will find relations between the creation and
annihilation operators around ¢t = —o0, called the in-region and the operators around t =
+00, called the out-region. Using our more general setting, we are able to find rather elegant
expressions for these transformations using the charge conjugation operator J. We show
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that these transformations give rise to a unitary map from the Fock space at —oo to the
Fock space at co.

In Section 5 we will give a detailed exposition how the Bogoliubov transformation are
computed in Minkowski space, thus connecting to the existing literature mentioned above,
and how to explicitly perform the necessary calculations. We hope this will be useful for
anyone interested in the subject. We will identify a small typographical error in [I5] which
since then has been plaguing the quantum informational literature. We will finish with a
short conclusion in Section 6.

1.1 Conventions and notation

We write 7(™*) for the standard (indefinite) inner product on R"** of signature (r,s) , but
with reversed order of the coordinates, i.e. for z,y € R"

S r+s
" (@,y) = — Z Ziyi + Z ZiYi-
i=1 i=s+1

This notation is somehow unconventional, but will turn out very convenient for our spinoral
purposes. If we write R™* we mean the inner product space (R"** 7). The first s
coordinates are called the time-coordinates, and the last r coordinates are called the space-
coordinates.

If s = 0 we will often write (z,y) = (™% (z,y). Using this convention, the Minkowski
metric is given by

~1.0 0 0
1o 10 0
=10 01 0

0 0 0 1

We assume all manifolds to be equipped with a smooth structure and all trivializations,
sections etc. are assumed to be smooth. If £ — M is a vector bundle, we denote the
space of (smooth) sections by T'(E). Given a local trivialization (U, ¢) of an n-dimensional
manifold M, we will use the convention that

when there is no room for confusion about which chart is used. Often no explicit chart
will be specified though. Sometimes we will denote it by (U, (z*)). Given such a chart the
coordinate frame of the tangent bundle T'M is denoted by

() = (01,...,0n),
2

where 0, = 5. Given a metric g on T'M its components in this frame are denoted by

Guv = g(@u, 8,,).
We call a frame (e,) pseudo-orthonormal if

gleares) =185,

and we call it orthonormal if s = 0. In general we will use Greek indices when referring to a
coordinate basis, and Latin indices when referring to pseudo-orthonormal frames or bases.
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Given any basis or frame we denote the dual basis or frame by the same symbol with the
index raised. That is, (e,) is a frame of a vector bundle F, then (e®) is the corresponding
coframe of the covector bundle E*, such that
el(ey) = oL.
For the coordinate frame of the cotangent bundle an exception is made. Here (dz*) is the

dual frame corresponding to (0,,). Using these frames, the components of any (n, m)-tensor
Ae (®"TM)® (®™TM) are given by

ai--a _ ay an
A nbl.“bm —A(6 yeees € 7€b17"'aebm)~

When working with indices we will use the Einstein summation convention, i.e. a sum-
mation is implied over repeated indices, e.g.

3
9" Xy =Y 9" X,

pn=0

but only in a strict way: summation over repeated lower or upper indices is not implied.
Summation will take place over all possible values for the index, and otherwise an explicit
summation symbol will be used. For a symmetric (1,1) tensor A we will often write Aj for
its components instead of A%, as it doesn’t matter. Indeed

A% X, =" AnXa = 1% Ape X0 = A X,

Using the metric we can change vectors in covectors and vice versa. Using index notation,
this boils down to raising and lowering of the indices. For example, when X € FE, with
corresponding covector X € E*, we have

X% =X(e), X,=X(ep), X?=n%X,.

When raising and lowering indices of tensors on the tangent bundle, we use the metric
corresponding to the indices. That is if (M, g) is a pseudo-Riemannian manifold and X a
(1,1)-tensor, then

Xa,u = nabXbu = nabg/wXbH-

The Pauli matrices are denoted by

0 1 0 —i 1 0
(o) e (0) e

They are hermitian matrices which square to the identity-matrix. They satisfy the anti-
commutation relations given by

O'in-FUjUZ':Q(sij, Z7j:172,3

We will use (-)* to denote complex conjugation, and (-)T do denote the adjoint of a linear
operator. For a Hermitian inner product we follow the physics convention by defining them
linear in their second slot, i.e.

{aw, Bvy = o™ Blu, v).
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2 Geometry, spinor bundles and the Dirac operator

Aim for the sky, but move slowly,
enjoying every step along the way.
It is all those little steps that
make the journey complete

— Chanda Kochhar

2.1 Generalized FLRW spacetimes

We will start by introducing Friedmann-Lemaitre-Robertson-Walker and globally hyper-
bolic spacetimes and other geometric notions needed for formulating quantum field theory
in curved spacetimes. These will from the fabric on which our other constructions take
place.

Definition 2.1. Let M be a pseudo-Riemannian manifold with metric g. A tangent vector
X e TM is called

o timelike if g(X,X) <0,
e lightlike if g(X,X) =0,
e spacelike if g(X, X) > 0.

A differentiable curve in a manifold M is called timelike, lightlike, or spacelike, if its
tangent vectors are timelike, lightlike, or spacelike at all points in the curve respectively.

A differentiable curve in M is called inextendible if no differentiable reparametrization
of the curve can be continuously extended beyond any of the end points.

Definition 2.2. We say that a Riemannian (M, g) manifold is complete if for any v € TM
the geodesic v : J € R — M with 7/(0) = v is defined for all t € R, i.e. J =R.

Definition 2.3. A metric g on a n + 1 dimensional manifold is called stationary if there is
a timelike Killing vector field.

We say that the metric is static if it is stationary and there is a family of spacelike
hypersurfaces orhogonal to the Killing vector field everywhere. In a globally hyperbolic case
these are Cauchy surfaces.

Using coordinates, these two conditions boil down to that their are coordinates x*, with
t = 20 timelike such that

1. g is independent of ¢, and
2. go; =0 forj=1,...,n.

Using these coordinates the spacelike hypersurfaces orthogonal to the Killing vector are the
t = const. surfaces.

Definition 2.4. A Cauchy hypersurface X in a spacetime (M, g) is a subset of M which is
met exactly once by every inextendible timelike curve.

Definition 2.5. A spacetime (M, g) is called globally hyperbolic if it contains a Cauchy
hypersurface.
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The following theorem states that any globally hyperbolic spacetime are isometric to a
smooth product spacetime. This is a stronger version of Geroch’s topological splitting of
globally hyperbolic spacetimes, as stated in [23].

Theorem 2.6 (A. Bernal and M. Sanchez [8]). Let (M,g) be a globally hyperbolic spacetime.
Then there exists a smooth manifold X, a smooth one-parameter family of Riemannian
metrics (g¢)wer on X and a smooth positive function N on Rx X such that (M, g) is isometric
to (Rx X, —N2dt?®g,). Each {t} x X corresponds to a smooth spacelike Cauchy hypersurface

in (M,g).

In the rest of this thesis we will restrict ourselves to the case that N = 1 and g; = a?(t)gx,
i.e. to the case of a globally hyperbolic GFLRW spacetime.

Definition 2.7. We say that a manifold is a Generalized Friedmann—Lemaitre—Robertson—
Walker (GFLRW) spacetime if it is a product manifold M = I x X, I € R an interval,
endowed with the Lorentzian metric

ds® = —dt? (—BaQ(t)gg,
where g5, is a Riemannian metric on X, and a : I — (0, 00) is a smooth, positive function.

Remark 2.8. This spacetime is called a Generalized FLRW spacetime as it is a generaliza-
tion of a FLRW spacetime, for which the space X' is assumed to be complete and of constant
curvature. The notion of a Generalized Friedmann-Lemaitre-Robertson—Walker spacetime
is introduced by M. Sanchez in [IJ. O

Not all GFLRW spacetimes are globally hyperbolic, but if the metric gx is complete, they
are.

Theorem 2.9. Let (M,g) = (I x X, —dt?> ® a*(t)gs) be a GFLRW spacetime. (M, g) is
globally hyperbolic if and only if (¥, gx) is complete.

Proof. See e.g. [5, Thm. 3.66]). O

Definition 2.10. We say that a generalized Friedmann-Lemaitre-Robertson—Walker space-
time (I x X, —dt> @ a®(t)gx) is spatially closed if the fibre X is compact.

Remark 2.11. Note that a stationary GFLRW spacetime is automatically static. It is
stationary if a(t) is constant and then 0; is a timelike Killing vector field. &
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2.2 Spinor bundles

Before we can define the Dirac operator, we have to define the space its solutions live in:
the spinor bundle, a specific vector bundle over a manifold M. In this section we follow
[2, 43, ).

We first recall some facts about the orthogonal, and special orthogonal groups. Let F
be R or C. Let n = 7 + s. We define the orthogonal group of (F",n("*)) by

O(r,5,F) = {A € GL,,(n,F) | n™)(Av, Aw) = 7" (v, w) Vv, w € F}
and the special orthogonal group by
SO(r,s,F) = {A € O(r,s) | det(A4) = 1}.

For C we only have O(n,C) and SO(n,C), as for a complex vector space there is only one
inner product up to isomorphism. One can check that if » = 0 or s = 0, then SO(r, s,C)
is connected and otherwise it has two connected components. We often write SO(r, s) for
SO(r, s, R).

Definition 2.12. Let V be a vector space. Let {e,} and {f,} be two bases of V, and
AV — V a linear map such that Ae, = f,Vn. We say that {e,} and {f,} have the
same orientation if det(A) > 0. Having the same orientation defines a equivalence relation
on the set of all ordered bases of V, providing two equivalence classes. An orientation is
an assignment of +1 two one equivalence class, and —1 to the other equivalence class. An
orientation preserving map A : V — V is a map respecting the two equivalence classes, i.e.
mapping a basis to a basis with the same orientation.

Definition 2.13. We consider R™* =~ R*@R". We say that an orientation of R™* is a space
and time orientation of R™% if its restrictions to bases of R® and R” define orientations on
R* and R" respectively.

By definition SO(r, s) preserves orientations on R""*. The connected component of the
identity of SO(r, s,F) is denoted by SOq(r, s,F). SOq(r, s) preserves space and time orien-
tations of R™?.

Definition 2.14. Let (V,h) be a vector space V equipped with an inner product h. The
Clifford algebra C1(V, h) is the algebra generated by the vectors v € V', with unit 1, subject
to the relations

vow~+w-v = 2h(v,w). (1)
The Z4 grading

p(v---vg) = (=1)*vy - -y,
on Cl(V, h) gives rise to a decomposition into an even and odd part
CI(V, h) = C1I°(V, h) ® C1*(V, h).

We call p: CI(V,h) — CL(V, h) the parity automorphism. We set

Cl, s = CI(R"+5, 5(73)),
and define the special cases

CL!

n

= Cln,Oa
CL; = Clo,n,
Cl, = CL ® C.
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Ifeq,...,e, is a basis of R™ , then the even part (Clm)O consists of products of an even
number of e;’s and the odd part (Clr’s)1 of products of an odd number of e;’s.

Remark 2.15. Note that for a complex vector space, there is only one inner-product up
to isomorphism, i.e. for all , s we have Cl, s rC = Cl,; ;. When using Cl,,, we will always
use the standard positive definite inner product 79 unless stated otherwise. &

Remark 2.16. In the other half of the literature a minus sign in the definition of a Clifford
algebra is added in i.e 2h(v, w) replaced by —2h(v,w). The reader should be aware
of this when comparing formulas between different articles. &

Proposition 2.17. We have algebra isomorphisms
Cl., = CL, ., Cl,>Cl,,,

induced by the maps
R CL 4 (Cl,,), veeg-v.

Also

Y, =CI,.
Proof. We consider the inclusion R™® < R"*5+! gsuch that if eq,..., e, is the standard
basis of R"*¢, then ey, ..., e,4s is the standard basis of R™5*1, We first construct the map

¥R CIEVSJr17 given by ¥(e;) = epe;. This map extends to a homomorphim
w:Cly —Cl) L.
Indeed for i,j € {1,...,r + s} we have
Ueje; +eje;) = W(e)¥(e;) + ¥le;)¥(e;) = epeiepe; + epejepe;
= —eB(eiej +ejes) = 2 = w(2)),
as e2 = —1. Since ¥ sends basis vectors in Cl, s to basis vectors in 01278 +1 and the dimension

0 - . . .
of Cl, s and Cl,. . coincide, as one can check, ¥ is an isomorphism.

To construct the second isomorphism, we define ¥ : R™** — 012,5 41, again as ¥(e;) =
epei, which again extends to a homomorphism

W:Cl., —ClY,,,.
Indeed for 4,5 € {1,...,r + s} we have
W(eiej + ejei) = W(ei)W(ej) + W(ej)W(ei) = ep€iepe; + epejepe;

= —cj(eie; + eje;) = —2775?) = 2U§;’S) = W(QWZ(;S)),

as now e2 = 1. Again by dimensional analysis this is a isomorphism. Since both 01275 +1 and
c? +1,- are isomorphic to Cl,. s we conclude that for all 7, s € N

0 ~ (0
Cl g1 = Cliy

explicitly given by

€ > Crqs—i-

This concludes the proof as Cl; = Cl§ = R by definition. O
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Remark 2.18. Note that if r + s is odd, ¥ maps the volume element of Cl, ; to the volume
element Cl, 51 . &

Definition 2.19. The complex spin group is given by
Spin®(n) = {v1 ---vg € Cly | v; € C*,[(vj,05)| = 1}
The spin group is given by
Spin(r, s) = {vy --- vy € Clg’S | v; e R", ") (vj,0;) = 1 Vjel,...,n}
The spin group Spin(r, s) is connected if rs = 0 and otherwise the connected component of
the identity of the spin group is given by
k
Sping(r, s) = {v1 - - - vx € Spin(r, s) | v; € R", H n(T"s)(vj,vj) =1}.
j=1

Let F be R or C. For a v € F*, with n("*) (v, v) # 0 we see from [Eq. (1)|that v—!
and that for w € F™ arbitrary

— v
7™ (v,v)

(7,s)
Ad(v)(w) := v 'ww = w — 277”7(%10)11.
77(775) (1)7 ’U)

Hence Ad(v) is the reflection across the hyperplane vt. Since it is know that any element
in SO(r, s) is given by an even number of reflections, it follows that Ad is a homomorphism,

Ad : Spin®(n) — SO(n, C), Ad : Spin(r, s) — SO(r, s,R),

by calculating the kernel of Ad one can check we have the following short exact sequences
of groups
1 — U(1) — Spin®(n) Ad, SO(n,C) — 1,

1 — {+1} — Spin(r, s) Ad, SO(r,s,R) — 1,
One can also check that
Spin®(n) = (Spin(n,0) x U(1))/ ~,

where (g, w) ~ (h, z) if and only if ¢ = —h and w = —z. Moreover we have that Spin,(r, s)
is a double covering of SOq(r, s).

Proposition 2.20. For every pair (r,s) Sping(r,s) is a double covering of the identity
component SOg(r, s), that is there is a short exact sequence

1 — Zy — Sping(r, s) Ad, SOg(r, s) — 1.
Proof. See [31, Thm 2.10]. O

We will now study the representations of Clifford algebras and spin groups.
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Definition 2.21. Let (V,n) be an inner product space over a commutative field F' and
let F 2 F be a field containing F'. Let W be a finite-dimensional vector space over F. A
F-representation of the Clifford algebra C1(V,n) is a F-algebra homomorphism

p: CI(V,n) — Endp(W).
The representation space W is called a C1(V,n)-module over F.
Proposition 2.22. Cly, has a unique faithful irreducible representation
P2k * (Clgk g End(Agk), Agk = (C2k

and Clag 11 has two irreducible representation p* and p~, such that

k

pars1 = pt D p7 : Clopyr — End(Agpi1) ®End(Agpi1), Agpyr = C?
1s faithful.

Proof. We follow [4l, Satz 1.3], and give an explicit representation. We define the matrices

v ) o (% 2 ()

We first assume n = 2k, then for 1 < j < n we define

pn(e2j—1) =iWRIWE® - WRURIRQ---Q1,
pn(e2) =iWRAWR---QWRVRI®---1I.
One can check that the matrices p(e;) satisfy the Clifford relations and that they generate

M (2%, C). Hence p is an algebra-isomorphism.
In the odd case, if n = 2k + 1, we define

pnle;) = (p2r(ej), par(e;)) 1<j<m,
pnlen) =W QW,-W®- - QW).

One can again check that the matrices p(e;) satisfy the clifford relations and that they
generate M (2%, C). The result now follows. O

We call 4A,, a n-spinor module. From these representations we can construct representa-
tions of Cl, ¢ = Cl, s ®rC, where by exception we use the the inner-product n(’“’s) to define
Cl, .

Proposition 2.23. Ifr + s is even Cl, s has a unique faithful irreducible C-representation
prs : Clp s = End(A,4s).
If r + s is odd Cl, s has two irreducible C-representations p;s,p;fs such that
Prs = Prs @ prg i Clyg = End(A, ) @ End(A,)

1s faithful.

10.
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Proof. Given the action p,, : Cl,, — 4A,,, we define the actions p, 5 : Cl, s — A, 5, as follows.
Let {e1,...,er15} be the standard pseudo-orthogonal basis of R™*. Then we define

prs(ej) =ipn(e;) V1I<j<s prs(ej) =pn(e;) Vs+1<j<r+s.

One can easily check that p, s(e;) satisfy the Clifford relations. Uniqueness follows from the
fact that p, s are algebra-isomorphisms, in the same way p,, are, as Cl,. ; = Cl,, . O

One can restrict p, s to Cl, s to obtain irreducible complex representations of Cl,. g

Remark 2.24. If there can be no confusion we will we often drop the index n or indices
r,s on the representation p. &

Remark 2.25. One can also look for real representations of Cl, . In fact Cl, s has two
inequivalent irreducible real representations if

s+1—r=0 mod4

and one otherwise, see [31, Thm. 5.7]. These are not relevant to us, as we are only looking
for complex representations. &

For the real Clifford algebra’s Cl:;r there is also another equivalent way to obtain ir-
reducible representations from the representations of its complexification Cl,, =~ Cl:{ ®rC.
Instead of modifying the representation, we find another embedding of le in Cl,,. This
will be done by using anti-linear maps J* on the n-spinor modules.

Proposition 2.26. For any k > 1 there exist anti-linear operators
JQJ—SC 2 Agp — Ao, J2ik+1 t Agpp1 — Aogkga
such that
Clyy, = {a e Cloy, | [J35, p(a)] = 0},
(Clyjiyr)’ = {a € Clyyy | [Jasy, p(a)] = 0}
The operator J; satisfies for x € C},
(J )2 =¢ Jrx=cuxd,, J. L, =¢"T,J,,

where €,&' " are given in|Table 1| for n modulo 8.

n 0 1 2 3 4 ) 6 7
€ 1 1 -1 -1 -1 -1

e’ 1 -1 1 1 1 -1 1 1
e 1 -1 1 -1

Table 1: The values of ¢,&’,¢” depending on the dimension n modulo 8.

11.
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Proof. We refer to e.g. [50, Prop. 4.7]. We note that
Jy =Jy :C* - C?
U1 71};
Vg v¥ )’
and J; = J; @ J;. O

Definition 2.27. Let ey,...,e, be the standard orthonormal basis of C™. The chirality
element in Cl,, is defined by

L, = (=)Dl e = (—i)ey - en € Cly,
where n = 2m if n is even, and n = 2m + 1 if n is odd.

Proposition 2.28. The chirality element squares to the identity, i.e. I'> = 1. Moreover,
for veR™, we have

vl, = —I,v (n even), vl, = I (nodd). (2)
In general for a € Cl,,
aly, = I'yp(a) (n even), aly, = I'ha (n odd). (3)
Proof. Let n = 2m if n is even and n = 2m + 1 if n is odd. We first note that
1 en = (D) Zicike, ey = (=)D 2 ey = (—1) ey, - e,
since n(n —1)/2 = m mod 2. Now it follows immediately that

I? = (=i)* ey --en-e1-e, = (—1)™(=1)"e? -2 = 1.

This proves the first claim. For every i € 1,...,n we have e;I}, = (=1)""1I,¢;, since e;
anti-commutes with all e;, except when j = ¢ and then they commute. The result now
follows as n — 1 is odd as n is even, and vice versa. O]

Remark 2.29. When ey,..., e, is a pseudo-orthogonal basis of C", such that
(egrery =y,
the chirality element is given by
I, = ()"’ - en,
where again n = 2m if n is even, and n = 2m + 1 if n is odd, since now
{ie1,... 05, €541, €rts}

is an orthonormal basis. &

12.
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We can define projections

pt—1

“(1+
2(1_Fn)7

satisfying
Pt+P =id, PP =P Pt=0,

as one can easily check.
If n is odd, this induces a decomposition

Cl, = Clt @Cl,,
where
As p(I,) = —I,, we have
p(ClE) =C1} .
This means that (CLOL has to be diagonally embedded in this decomposition, i.e.
Cl° = {a +p(a) | ae CL}}. (4)

If n is even on the other hand we can decompose the spinor module into eigenspaces of
p(I,) corresponding to the eigenvalues +1:

A, =A@ A, Ar={aeA,:pl)a=+a}
and define the representations p* with respect to this decomposition such that
p=(p"p7):Clu > AT @A,
The projection onto A¥ are given by p, (P*).
Proposition 2.30. The followings holds for the spin representations of Cl, .
1. Ifn is odd, p decomposes into two non-isomorphic inequivalent sub-representations
p* : Cl, — End(AL, ).
The two representations p™, p~ are distinguished by the action of the chirality element,
pT () =id, p (I,) =—id.
When restricted to Clgs the two representations become equivalent.

2. If n is even, p restricted to (Cl?L, decomposes into two non-isomorphic inequivalent
irreducible sub-representations

pt : ClY - End(AY).

Proof. Let n be odd. By [Proposition 2.17| we have an isomorphism

w:Cl, »Cl,,.

13.
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By [Remark 2.18| we have ¥(I3,) = I},+1. Moreover ¥ induces an isomorphism of represen-
tations

¥ : End(4,) — End’(4A,11) = End®(A) , @ A, )
of representations of Cl,, and representations of C1° . Note that

0 + 0 + _
End0<A:;+1 @A;-&-l) _ ( End (An+1) Hom (An+17An+1)>

HomO(A:L-Hv Ariy) End’ (A1)
Let a € (CI%H, then we have

Y (pn(In)pnla)) = ppi1(Lns1)pn1(¥ (@) = —ppi1(¥(a) pri1(Lnt1)
= -0 (pn(a)pn(Ih)),

using [Proposition 2.28 and the fact that ¥(a) is odd. On the other hand

pn(In)pn(a) = pu(Ina) = pnlaly) = pn(a)pn(lh),

again by [Proposition 2.28] hence ¥(p,(a)) = 0 for a even. This shows

HomO(AT_L+1,AZ+1) = HomO(AL_l, A}H-l) = .
Moreover for b € Cl,, 1 and a4 € Airl, we have

Prt1(b)at = £pni1(0)pnr1(Lnt1)ar = £ppi1(Lnt1)pn+1(P(b))ax = p(b)a.

So we find that if bAT, | € AX |, then be C1° . Therefore,
EndO(A:—LrH) = End(AZ,,).
We thus have a decomposition of p,,:
pn = pr ®p, :Cl, > End(4,) = End(Az_,_l) @End(4, ),
where
pi (@) = pry1(¥(a)).
As I, is in the center of Cl,,, the two sub-representations
py : Cl, — End(AL, )
are invariant under Cl,, and hence irreducible. They are also inequivalent as

pf(Fn) = pyiz—+1(Fn+1) = Fid,+

n+1

But if we restrict them to (Cl?l the representations become equivalent, because of the diagonal
embedding given in
Now let n be even. We have already done most of the work. Indeed we already found
that
End’(A,) = End(A;") @ End(A}).

By [Proposition 2.28| we see that AX are invariant under (Cl?w so they are irreducible repre-
sentations of CI), . They are obviously inequivalent by definition, as the I, acts as +id on
A*, O

14.
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When we restrict these representations to the spin group, we get faithful spin represen-
tations.

Definition 2.31. We define the spin representations

pt @ p~ 1 Sping(r,s) — Aut(Af,,) ®Aut(A,,,) S Aut(A,4s) for r + s even, (5)
p:=pt :Sping(r,s) = Aut(A4, ) for r + s odd, (6)

as the restrictions of the Clifford representations given in [Proposition 2.23|

Proposition 2.32. The spin representations p*,p~ for r + s even, and p for r + s even
are irreducible.
These representations extend to irreducible representations of Spin®(n) =~ Spin(n) xz,
U(1) via
p=([(g, ) = 2 pE(g)a,  p([(9,2)])ex = 2 - plg)a.

Proof. This follows almost immediately if one notices that the algebra generated by
Sping(r, s) is isomorphic to Cl, . O

Proposition 2.33. Let r =2m + 1,
pf ®p; : Clo — End(4,) @ End(A,),

and

Pri,1 : C12,1 - End(A:_rH)

be the representations as defined above. Under the isomorphism

Clyo = CIY,

given by [Proposition 2.17, we have

+ ~ ,t Y ~
pr,lzpra pr,lzpr'

Proof. This follows immediately by considering the action of the chirality element I, on
both representations. O

Proposition 2.34. For every representation
pr.s : Clrs — End(4A,4),
there is a Sping(r, s) invariant hermitian (possible indefinite) inner product {-,-) such that
(ors(W)a, B) = (=1)* e, pr.s(v)(B))- (7)

Proof. Let h be the standard Hermitian inner product on A, ., = (Czk, given by

which is Spin(n) invariant. Let {ej,...,e,} be a pseudo-orthogonal bases of R™*. We have
h(pr,s(ei)aaﬂ) = h(a7pr,s(ei)ﬂ) Vie {S+ 17"'75+T} (8)
h(prs(ej)e, B) = —h(a, prs(e;)B) Vije{l,..., s} (9)

15.
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Let s = 2k if s is even and s = 2k + 1 if s is odd and set

Iy = (=) ey - ey, (10)
Forie{s+1,...,s+r}, je{l,...,s} we have

Iz2=1

S 9

eifs = (—1)sﬁT€Z‘, ejfs = (—1)8_1FT€j.

We also have A R
h(pr,s(Fs)a’ 5) = h(Oé, pr,s(Fs>B)>
since
erat1Crps = (=) Fepps ey

and [Eq. (9)] Now the inner product (-, ) : A5 — C, defined by
<aa /B> = h(pT,s(ﬁs)O‘7 B)

is an hermitian inner product. Indeed,

{a, B)* = h(pns(fs)a, B* = h(ﬂ»PT,S(ﬁS)a) = h(pr,s(ﬁs)ﬁa a) = {B,a).

Forie{s+1,...,5s+r}, we have

<pr,s(ei)aa B> = h(pT,s(ﬁsei)ay 6) = (_1)sh(pr,s(eiﬁs)aa 6)

= (—l)sh(pns(Fs)a,pns(ei)ﬁ) = (_1)S<a7pr78(ei)ﬁ>'

And similarly, for j € {1,..., s}

{prs(ej)a, B) = h(prys(ﬁsej)a,ﬂ) = (*1)571}1(/07’,5(%1%3)04,5)
= (—1)Sh(pT75(Fs)a,pm(ej)ﬁ) = (_1)S<04,Pr,5(6j)5>'
This proves To prove Sping(r, s)-invariance, let g = vy - - v € Sping(r, s). Using
v - v - V1 - U, = 1 and the fact that &k is even, we obtain

(prs(9)ex, prs(9)B) = (1), B) = (v, B).

2.2.1 Principal bundles

We want to define the spinor bundle as an associated vector bundle of a Sping(r, s)-principal
bundle. We will first give an introduction into principal bundles, following [43].

We recall the following about Lie groups and Lie algebras. We will assume that G is a
matrix-Lie group, although everything holds for general Lie groups, unless it is explicitly
stated for matrix Lie groups. The Lie algebra of G is given by g = Lie(G) = T.G where ¢
denotes the unit element of G. The exponential map exp : g — G is defined as

1
exp(4) = ZO EAYZ

16.
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for matrix Lie Groups. If ¢ : G — H is a homomorphism of Lie Groups, we have
Poexpg = deg 0 expy .
For any g € G we have the conjugation map
Cy,:G—G, Cyh)=g 'hg.
The derivative of this map is denoted by
Ad(g) = d.Cy: g — g,

and the map
Ad: G — GL(g), ¢— Ad(g)

is called the adjoint represention of G. It is a Lie group homomorphism. For matrix Lie
algebra’s, we have
Ad(g)A = gAg™!.

Differentiating Ad at the identity element, we get
ad = d. Ad : g — End(g).
For matrix Lie algebra’s one can check that ad is given by
ad(A)B = [A,B] = AB — BA.
Since Ad is a Lie group homomorphism we have
Adoexp = expoad,

as is easily checked for matrix Lie groups.
Example 2.35. The Lie algebra of SO(r, s), is given by

50, = {Ae M, | 1" (Az,y) = =" (2, Ay)},
and the Lie algebra of Spin(r, s) is given by

spin, , = span{e;e; |1 <i<j<r+s}cCl,.

In fact as the spin group is a double covering of the special orthogonal group, their Lie
algebra’s coincide. We will give an explicit isomorphism is [Proposition 2.77 <

Definition 2.36 (Principal bundle). Let M be a manifold and let G be a Lie group. A
principal G-bundle is given by a surjective submersion 7 : P — M with a free right action
of G on P along the fibers of 7 such that P/G ~ M, which is locally trivial.

That is for every x € M there exists an open neighbourhood U of = and a diffeomorphism
¢u 7 HU) — U x G, such that

1. For every g€ G, pe n~1(U), we have

¢u(pg) = du(p)g = (x,hg),
where ¢y (p) = (z, h).

17.
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2. pryyo ¢y(p) = w(p) for all pe n~1(U), i.e. the diagram

I U) 2% U x G

l”%

U

commutes.

For a point € M we call P, := m—*(z) the fiber over x. The diffeomorphism ¢y is called a
local trivialization. By definition one can choose a countable open covering {U,} of M such
that there are local trivializations ¢, := ¢y, . The collection {U,, ¢4} is called a bundle
atlas.

Remark 2.37. One can easily check that each fiber carries a free and transitive action of

G. ¢

Definition 2.38. Given two local trivializations (U, ¢o) and (Ug, ¢g) we define the tran-
sition function
Yap : Ua nUg — G,

by the equation
(a0 057) (@, 9) = (x, gpas()).

Note that since the action of G is free and transitive on each fibre ¢,z is well-defined.

Definition 2.39. A (local) section of a principal bundle 7 : P — M is a smooth map
s:U—P

for an open subset U © M, such that mos =id |y . A global section is a section s : M — P.

Proposition 2.40. Local trivializations of P are in one-to-one correspondence with local
sections.

Proof. Let ¢y : m1(U) — U x G be a local trivialization. Then
s:U—>P s(z)= ¢y (z,1)

is a local section. Here we denoted the unit element of G by 1.

Conversely let s : U — P be a local section. Since the action of G on the fibres is free
and transitive, for every p € P, there is a unique g, such that p = s(x)g,. This defines a
smooth map x : P — G given by k(p) = g,. Now

mxk:m HU)—>UxG
is a local trivialization, since for p € P,
(m x 1) (pg) = (7 x £)(s(x)gpg) = (2, gp9)-
O

Definition 2.41. Let m : P, — M; be a Gy-principal bundle and 7y : P, — M5 be a
Go-principal bundle.

18.
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1. A morphism of principal bundles from P; to P5 is a pair of mapping (6, ) where
0 : P, — P; is smooth and A : G; — G5 is a homomorphism of Lie groups, such that
forallpe P,g€ Gy.

0(pg) = 6(p)A(9)- (11)
2. (0,)) is called an isomorphism if 6 is a diffeomorphism and A an isomorphism of Lie

groups.

Remark 2.42. By the condition and the fact that a fiber carries a transitive
action of G, § maps fibres to fibres. Thus it induces a mapping 6 : M7 — Ms, such that the
following diagram commutes

p—25p
R
M, —2 M,
¢

Definition 2.43. Let m; : P, — M be a G;-principal bundle and w5 : P, — M be a
Go-principal bundle over the same base manifold M and let (6, A) be a morphism between
P1 and PQ.

1. If § = idys then (6, )\) is said to be a vertical bundle morphism.

2. If moreover G; = G3 and X\ = idg, then 0 is called a G-morphism.

Given a principal G-bundle 7= : P — M and a representation p : G — GL(V) we can
form an associated vector bundle P xg V.

Proposition 2.44 (Associated vector bundle). Let 7 : P — M be a principal G-bundle and
p: G — GL(V) a representation of G on a vector space V.. The space

PxgV:i=(PxV)/~,
where
(p1,v1) ~ (p2,v2) if and only if 3g € G s.t. (p1,v1) = (P29~ ", p(g)v2),
has a canonical structure of a vector bundle.
Proof. Let E = P xg V. Elements in E are denoted by [p,v] € E for representatives
(p,v) € P x V. We have [pg,v] = [p, gv], where we have written gv instead of p(g)v. We

define the projection
7:E—> M, 7(p,v])=mn(p).

This is well-defined as m(pg) = m(p), hence we have fibres E, := 7 (z) = {[p,v] | p €
P,,v e V} isomorphic to V. Let 2z € M arbitrary, then we have a open neighbourhood U of
z and a smooth local trivialization ¢y = ¢f; x ¢% : 7 (U) — U x G, using which we can
define a local trivialization of E over U. Indeed, we define ¢y : 7~ (U) — U x V by

v ([p:v]) = (9u(p), 03 (p)v) = (x(p), T (P)0)-
This is well-defined, as

ou(lpg ", gv]) = (r(pg™"), % (g~ "gv) = (x(p), ¢ (p)g ' gv) = (x(p), ¢ (p)v).

So we have defined a smooth local trivialization of E — M over U, hence we conclude that
E = P xg V is a smooth vector bundle. O
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Sections of associated vector bundle are conveniently described by equivarient maps.

Definition 2.45. Let 7 : P — M be a principal G-bundle and p : G — GL(V) a represen-
tation of G on a vector space V. A map

v:P->YV

is called equivariant if
¥(pg) = plg~ )% (p),

for all p € P,g € G. The set of all smooth equivariant maps ¥ : P — V is denoted by
Homg (P, V).

Proposition 2.46. Let m : P — M be a principal G-bundle and p : G — GL(V) a
representation of G on a vector space V. Smooth sections of the associated vector bundle
P xa V are in one to one correspondence with smooth equivariant maps ¥ : P — V.

Proof. Let W € Homg (P, V). We will define a section
oc: M — PxgV.

For any « € M, choose p € P, arbitrary (i.e. choose any local section around z), then we
define

o(z) = [p,¥(p)]-
This is well-defined, since as we had taken another ¢ = pg € P,, we have
[pg, ¥ (pg9)] = [pg. (g™ ¥ (P)] = [pgg ™" ¥ (p)] = [p, ¥ (p)]-

Conversely, let o : M — P x5V be a section. We will define amap ¥ : P — V. Let x € M,
and s(z) = [p,v] for any ¢q € P,, there is a g € G such that ¢ = pg. We define

¥ (q) = plg~")v.

This is indeed equivariant, since for every h € G we have

W(gh) = ¥(pgh) = p((gh) " )v = p(h~")p(g~")v = p(h~")¥(q).

One easily checks that
com = (idp,¥): P> P xgV.

O

Remark 2.47. 1. Sometimes the equivalence relation on P x V defining P x gV is given
by
(p1,v1) ~ (p2,v2) if and only if 3g € G s.t. (p1,v1) = (p2g, p(g)ve).

Then a equivariant mapping has to be defined as map ¥ : P — V such that

¥(pg) = p(9)¥(p),

for the equivalence above to work
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2. If s : U — P is a local section, we can pull back any equivariant mapping ¥ : P — V,
defining a map ¢ = s*¥ : M — V. This maps induces a section 7 : U — P x5 V such
that 7 = o |y, where o is the global section induced by ¥, because the definition of &
is independent of the section s : M — P.

¢

Given a vector bundle and a free and transitive right action of a Lie group G on a subset of
its frames, one can also form a principal bundle from it, see e.g. [45, Par. 1.9] or [43] Par.
1.1].

Proposition 2.48. Let G be any Lie subgroup GL(k,R). Let E — M be a vector bundle
of rank k over M, and let Fg(E,) be space of all bases in the fibre E,, such that we have a
free and transitive right action of G on Fg(E,). Then

Fo(E):= || F(E,)

carries the structure of a G-principal bundle over M.

Proof. Let Fg(FE,) be the set of all bases of the vector space E, such that we have a free
and transitive right action of G on Fg(E;). Then define

Fo(E):= || F(E:) = {(x,5) | 2 € M,s € Fg(Ea)}.
xeM

We have a canonical projection m : Fg(E) — M, which assigns to every G-basis at = the
point 2. We often write s € Fg(F) instead of (x,s) € Fg(F) to simplify notation, and set
7(s) = z. By definition for any G-basis at z, s, = (s1,...,s%) and A € G the ordered set

(Asg ) = Zk: s;Aij
i=1
is again a G-basis at x. We thus get a right action R : Fg(F) x G — Fg(E), given by
Ras = R(s, A) = sA,
which is obviously free. A G-frame over U is defined as an ordered set of sections

s=(s1,...,8;): U —> E,

such that for all x € M, s, € Fg(E,). For any x € M there is a open neighbourhoud U € M
and a local G-frame s : U — E. Given such a local G-frame s, for any o € 7= 1(U) € Fg(E)
there is an A;(0) € G such that o = A;(0)s.(,). This defines a bijection

py N U) - U x G, o¢y(o)=(n(0),As(a)).

We equip Fg(E) with a smooth structure by requiring that all such ¢y are diffeomorphisms.
Then Fg(F) with local trivializations ¢¢ has the structure of a principal bundle. This follows
by definition of ¢y as,

dulog) = (7(0), As(0)g) = du(o)g,
and
pry © ¢u(o) =m(o). u
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Taking the tangent space as the vector bundle and G = O(r, s,R) or SOq(r, s, R), we get
the following result.

Corollary 2.49. Let (M,g) be a n-dimensional pseudo-Riemannian manifold of signature
(r,s), where r + s =n. Let Fo(T, M) be the set of pseudo-orthonormal bases of the tangent
space T, M. Then
Fo(TM) := | [ Fo(T.M)
xeM

carries the structure of a O(r,s,R)-principal bundle. If moreover M is orientable, we can
choose an orientation. Let Fso,(Ty M) be set of positively time and space oriented pseudo-
orthonormal bases, then

Fso, (T M) := ]_[ Fso, (T, M)
xeM

carries the structure of a SOq(r, s, R)-principal bundle.

Definition 2.50. The principal bundle Fgy, g r)(E) is called the frame bundle of E. The
principal bundle Fo(T'M) is the orthonormal frame bundle of TM, and Fso,(TM) is the
(space and time) oriented orthonormal frame bundle of TM.

Definition 2.51. Let M be an oriented pseudo-Riemannian manifold of signature (r,s).
If there exists a Spin“-principal bundle S¢ — M together with a smooth map: 6 : S¢ —
Fso,(T'M) such that (6,Ad) is a vertical bundle morphism, we say that M is a spin®
manifold. We refer to (S¢,0) as a spin® structure.

Definition 2.52 (Spin Manifold). Let M be an oriented pseudo-Riemannian manifold of
signature (r, s). If there exists a Spin,(r, s)-principal bundle S — M together with a smooth
map: 0 : S — Fso,(TM) such that (6, Ad) is a verticle bundle morphism, we say that M is
a spin manifold. We refer to (S,0) as a spin structure.

Remark 2.53. 1. One can check that TM = Fgso,(T'M) xg0,(r,s) R™*, and that
TM =S Xgpin,(r,s) R,
is an equivalent condition for S to be a spin structure.
2. Any spin manifold is also a spin® manifold. Indeed if (S,0) is a spin-structure, then
S¢ =5 x Py,

defines a spin® structure, where Py = M x U(1) is the trivial principal U(1)-bundle
over M.

o

Definition 2.54 (Spinor bundle). Give a pseudo-Riemannian spin® manifold with a fixed
spin® structure (.5, #). The associated vector bundle

S:=5° X Spin¢ Anv

where Spin© acts on 4A,, via the spin representation, is called the spinor bundle.
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Remark 2.55. If we have a spin manifold with spin structure (S, #), then the spinor bundle
is isomorphic to
S X Sping (r,s) Ana

using the isomorphism
S X Sping (r,s) An - (S X PO) X Spin® An
la,w] = [(a, (7s(a), 1)), w],

where Spin(n) = Sping(r, s) xzz2 U(1). This is well-defined since

[(a, (ms(a), =1)),w] = [(=a, (1s5(a), 1)), w] = [(a, (7s(a), 1)), —w].

When we have a spin manifold, we will use this definition for the spinor bundle.

o

Definition 2.56. Let (M, g) be a pseudo-Riemannian manifold of signature (r,s). We
define the Clifford bundles over M as associated vector bundles of the oriented orthonormal
frame bundle:

CI(TM> = FSO() (TM) XSO(}(’I”,S) Clr,s
Ccr (TM) = FSOO (TM) XS0, (r,s) Cls,r
(CI(TM) = FSOO (TM> X80 (r,s) (Clr,s .

Here A € SOq(r,s) acts on Cl, 5 in the following way:
A-(vy-vg) = Avy -+ - Ay,
This action is well-defined for C1(T'M) and its complexification CI(T'M), as for A € SOy(r, s)
7" (Av, Aw) = ™) (v, w), v,we R
For Cl” (T'M) it also is well-defined as
n*") (Av, Aw) = —n") (Av, Aw) = =" (v,w) = ) (v, w).
Definition 2.57. A vector bundle £ — M of dimension k with metric g, with a mapping
¥ : T(TM) — End(T(E)),
fulfilling v(X)? = g(X, X) is called a Clifford module bundle.

Remark 2.58. One can show that a oriented Riemannian manifold M, g is is a spin®
manifold if and only if there is a Clifford module bundle E such that

End(E) = CI(TM) (neven) or End(E)=Cl(TM)° (n odd).

The spinor bundle is the - up to isomorphism - unique Clifford bundle E such that this
holds. See [40, Thm. 2.11]. This justifies using this as an alternative definition of the spinor
bundle, which is widely used settings like Noncommutative Geometry. &

23.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

Definition 2.59. Clifford multiplication
c:T(TM) xT'(S) = T[(S),
is fibrewise defined as
C([e(b)v v], [bv a]) = [b7 p(v)a]v
where [0(b), v] € Fso,(T'M) x50, (r,s) R™® = T M. The Clifford mapping
~v:T(TM) — End(T'(S))
is given by
V(X)¢ = (X, 9)
for X e T(TM), ¢ € T'(S).
Remark 2.60. 1. This is well-defined, as for g € Spin,(r, s) we have
C([Q(bg)a 1}], [bgv a]) = C([a(b) Ad(g), 'U]v [bgv a]) = C([a(b)» Ad(g)v]’ [bv ga])
= [b,gvg~" ga] = [b, gva] = [bg, vo].
2. Since TM < CI(T'M) generates C1(T'M) fibrewise, v induces a unique homomorphism
4 : T(CHTM)) — End(T(S)),

which justifies why + is called the Clifford representation.
¢

Definition 2.61. Let V' be an inner product space. We say that an operator J : V — V is
anti-unitary if for all u,v e V'
{Ju, Jvy = (v, u).

Proposition 2.62. Let M be a Riemannian n-dimensional spin manifold, with spin struc-
ture (S,60) and
§=85 X Spin(n,0) Ay

There is a globally defined anti-unitary operator Jyr : T'(S) — T'(S), such that for ¢ € T'(S)
(Ja) (@) = J, ($(x)).
The following two conditions hold
1. Jyr commutes with the action of real-valued continuous functions on I'(S);
2. Jy commutes with T'(C1™(T'M)) if n is even, and with T'(Cl™(T'M))° if n is odd.
Proof. Let ¢ € T'(S). Let x € M and ¢(z) = [b, «]. We define Jj fibrewise by
(Juy)(x) = [b, J, a].
This is well-defined, as for g = vy - - - v, € Spin(n, 0), considered as element of Cl,,, we have
v v = (=12 (ivy) - (ivg),
and because
(i) (ior) + (ivg) (iv;) = —2(vk, v5),
we see g € (C1,)? and hence J, p(a) = p(a)J,, . The two requirements on .J; follow imme-

diately from the properties of J,
O
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This operator Jy; is called the charge conjugation operator.

Remark 2.63. It can be shown that a Riemannian spin® manifold is a spin manifold if and
only if such a charge conjugation operator exits. See [40, Sec. 2.12] and Theorem 9.6 and
the subsequent discussion in [26]. O

Proposition 2.64. Let (M, g) be a spin manifold of signature (r,s). There is a Sping(r, s)-
invariant (possibly indefinite) Hermitian metric h on S such that

h(Y(X)1,d2) = (=1)"h(d1,7(X)¢2), (12)
for 01,05 € T(S), X e T(TM).
Proof. We define h : T'(S) x I(S) — C® (M) fibrewise by
he Sy x Sy — C,
ha ([bs ], [b, B]) = <, B),

where (-, -) is the inner product given by [Proposition 2.34|and m(b) = z. This is well-defined
since for g € Spiny(r, s) we have

he([bg ™", prs(9)al, [bg ™", prs(9)B]) = {pr.s(9)ax, prs(9)B) = {a, B).

The fact that it is Spin,(r, s)-invariant and that holds, follow immediately from
the fact that these hold for (:,-). O

We often denote the metric h by {:,-), when there is little room for confusion.

Remark 2.65. For a Riemannian manifold the metric given by [Proposition 2.64]is positive
definite, and we set {:, )pos = {:,-). For a pseudo-Riemannian manifold this is not the the
case. Then we define the positive definite metric (-, -)pos fibrewise

<[b’ OZ], [b’ /B]>Pos = O‘*B~

This metric is in general not Spin,(r, s)-invariant. &

Proposition 2.66. In even dimensions the spinor bundle splits into the positive and neg-
ative half-spinor bundles

S=8"aes,

where St = S X pt A:—;S. Clifford multiplication by a tangent vector maps ST to S~ and
vice versa.

Proof. This splitting follows immediately as
S Xp AT+S =S5 X(pt@®p—) (A:+s 6>>A;Jrs) = (S Xpt+ A;Lrs) ® (S X p- A:+s)'

For any X € TM, we have y(X) : ST — S aSXFn:—Fnbe O
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2.2.2 The spinor bundle on a product spacetime

In this section we closely follow [2]. We assume (X, gx) to be a 3-dimensional Riemannian
spin Manifold. We want to study the spinor bundle on the Lorentzian product spacetime
(M =R x X, —dt? @ gx), with spin structure (Sys,6). Let eg = J;. The bundle of oriented
orthonormal frames of X} := {t} x ¥ =~ X' can be embedded into the bundle of space and
time oriented orthonormal frames on M restricted to X, by the map

i: Fso(X) = Fso,(M), i:(e1,e2,e3)— (eg,e1,e2,e3).

Now Sx := 07 1(i(Fso(XY)) defines a spin structure on . We will assume that this spin
structure has been taken on Y. Since n + 1 is even, we have

Sy =S ® Sy,

where by [Proposition 2.33|we have S}, |s= Sx, and that Clifford multiplication is given by

re(X)a =)y (X)a,
where X € TX and () is Clifford multiplication with respect to M. On the other hand
Sy |z= Sy, and Clifford multiplication is given by

12 (X)a = —y(v)y(X)a,

where X € T'Y. The minus sign follows from the way we defined the Clifford module A,

in odd dimensions, see [Eq. (6)]

Remark 2.67. Given the Lorentzian-spin manifold (M := R x X, —dt?> ® g) we will often
use the following explicit construction.
Given a spin representation p3 : Cls — Aut(As), we choose the spin representation

p:Cly — Aut(Ay)
on Ay = Az ® As to be explicitly given by
pleo) = —io1 @I,  p(v) = 02 ® p3(v),
where v € R3. Lifting this to a Clifford representation using we get

v:T(TM) - Aut(T'(S)),

Aeo) = —in ® I, (X) = 02 ®5(X), 13)

where X e (T M).
In the following we will often use the following explicit local realisation of the Clifford
representation «y, given an pseudo-orthogonal basis (eq, 1, €c, €3).

Yo =) = —io1 ®1,

14
’Ya:'.y(ea):oQ@O—a a:17273‘ ( )

We refer to them as the constant gamma-matrices in the Weyl representation. Raising
indices happens with the Minkowski-metric 7, i.e ¥* = n®,. This boils down to

VV=ioy®I, ¥ =,.
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Having explicitly chosen the spin representation, we also define the the curved gamma-
matrices,

Y = (). (15)
Notice that vy = 4. Raising indices happens with the metric g, i.e v* = g"”7,. Defining
coeflicients e# such that

eq = ek, ie. el =g"g(eq, 0,).
we find that the constant and curved gamma matrices are related by

— M5
Ya = ea%r

2.3 Connections

Now we have defined the Spinor bundle and Clifford multiplication, we are only one step
away from defining the Dirac operator. In this section we will define the notion of a con-
nection an principal bundles and vector bundles, and we will lift the Levi-Civita connection
to the spinor bundle.

Let 7 : P — M be a G-principal bundle, and denote the right-action of G of P by R, i.e.
Ryp = pg. Now every element A of the Lie algebra of G defines a vector field A, € I'(T'P),
given by

d

(A*)p = % Rexp(tA) (p)v Vpe P.
t=0

Definition 2.68. A connection form on a principal G-bundle P is a g-valued one-form
w e Q' (P, g) satisfying

1. w(Ay)=A forallAeg

2. Rfw=Ad(g7")ow forallged

Note that these forms are defined over P instead of M. It is often easier to work with local
connection forms, which are pull-backs of the connections forms to M.

Definition 2.69. Given a connection form w and a local section s : U — P, the local
connection form A€ Q'(M,g) (w.r.t. this local section) is given by

A= s*w.

A complete collection of local connection forms contains exactly the same information
as a connection form.

Proposition 2.70. Let w : P — M be a G-principal bundle and {U,, ¢} a bundle atlas
for P. Denote the local section corresponding to ¢o by So. If w is a connection form then
the local connection forms A, := skw satisfy

Ao = PapAsp b + 0o hdpas (16)

Conversely every collection { Ay} of g-valued one-forms subordinate to a bundle atlas

{Uqs @0}, satisfying defines a connection form w on P.
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Proof. We will assume G to be a matrix Lie Group, see [43, Prop. 1.3.12] for the general
case. Let (U,, Sa), (Ug,sp) be two local sections such that U, n Ug # J,0 and let ¢,
be the corresponding transition function, such that s, = sgpas. Let x € U, X € T, M, and
v (=€) — M,

W) =2, o =X
We now compute
d
dxsoz(X) = % _Osa(’}/(t))
= G| 20wt
_d t d t
= t=055(’7( ))pap(@) + tzosﬁ(x)%ﬁﬁ( )
= du53(X)pap (@) + 55(2)p, 5(2)dpas(X).

Using this we get
Aaz(X) = (55w)2(X) = Wy, (2)(dz5a (X))
= Wan (o) (5 (X)pas(2)) + a0y (38(@)0 0} (@)dpas (X))
= Ry (st (Ao () + w0 ((¢2h(@)dpas(X)) )
= Pap(T)Way (a) (dasp(X)) 0p (@) + oo p(@)dipap(X)
= a) (@) Ap o (X) 3 (%) + poh (@) dpas(X),

where we have used the two properties of [Definition 2.68|and the fact that ¢, 5(z)dp.s(X) €
g.

For the converse statement note that such a collection of local connection forms {U,, s4, . Aq}
can be patched together to form a unique and well-defined connection form as [Eq. (16)
ensures {A,} agree on overlaps. O

sa(z)

In the following proposition we will use the following multiple times.

Lemma 2.71. Let m; : My — P, be a Gy-principal bundle, and mo : My — Py a Gs-
principal bundle and let (6, \) be a bundle morphism from Py to Py. Let w be a connection
form on Py. If ¢ : g1 — g2 is a Lie algebra homomorphism, we have

pob*w = 0%(pow).
Proof. This follows immediately by definition, as for any X € TP,
(¢ 0 0%w)(X) = ¢p(w(dOX)) = (¢ ow)(dOX) = (6% (¢ 0 w))(X).
O

Proposition 2.72. Let 7 : M — Py be a G-principal bundle, and o : M — Py a Ga-
principal bundle and let (6,)\) be a vertical bundle morphism from Py to Ps. Let ws be a

connection form on Py. If d\ : g1 — go is a isomorphism of Lie algebra’s, the following
holds:
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1. wy induces a unique connection form wy on Py such that for any pe Py, X e I'(TPy)

df (w1 (X)x)p = (W2 (dOX) s )o(p)-

We have
w1 = (d/\)71 o 9*w2.

2. If s1 : U — Py is a section of P, and sy = Qosy : U — Py, is the corresponding section
of Py and we write
A = sTwy, A = shws,

for the local connection forms, then these are related by

Al = (d)\)il o As.

Proof. 1. First we check that w; is indeed a connection form. For any A € g; we have

d d
dG(A*)P =df (dt’ Rexp(tA(X))(p)> = % 0 (Rexp(tA(X))(p))
t=0 t=0 (17)
d
== Rexp(tax a(x)) (0(p)) = ((dX A)x)o(p)-
t=0

Therefore we have
dA(A) = wa((dA(A))s) = wa(dOAL) = 0*wa(Ay) = d)\_lwl(A*)

and since d\~! is a isomorphism, we find that w(As) = A. To check that w; also
satisfies the second condition for being a connection form, we observe that for X € T Py

dX o Rjwy = Ry(dAowr) = Rj0%ws = (0 0 Rg)* w2 = (Ry(g) © 0) w2 = 0% R}, w2
= 6*(Ad(A(g)™") ows) = Ad(A(g7")) 0 0wy = Ad(A(g71)) 0 0wy
=dC)g-1yod ow; = d(Cyg-1y0 ) owp = d(AoCy1)wy
=d o Ad(g ) owy,

and again because dA is a isomorphism it follows that Rjw; = Ad(g~') ow;. To check
that wy satisfies the condition from the proposition we rewrite the definition of w; into

A1 (X)) = 0¥wa(X) = wa(dOX),

hence (dA (w1 (X)) = (w2(d8X))s. Combining this with for A = wq(X) gives

the desired result. Uniqueness now follows from the fact that d\ is an isomorphism.

2. Indeed,

(dN) "t oAy = (dN) P osFwy = (dN) o (0o sy)Fwy
= (dN) 7 o sT0%wa = sT((dN) T 0 0*wn) = sTwr = Ar.
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Definition 2.73. A connection on a vector bundle £ — M is given by a linear map
V:TI(E) > T(T*M ® E),

that satisfies the Leibniz rule
V(fo) =fV(o)+ df®o,

for all f e C*(M),0 e T'(E).
We often write
VxY = (VY)(X) and V,=V;,.

If h:T(E) xT(E) - C(M) is metric on E, then V is said to be compatible or Hermitian
in the case of a complex vector bundle, if

h(Vo,7) + h(o,VT) = dh(o, 1),
for all o, 7 € T'(E).

Proposition 2.74. Let 7 : P — M be a principal G-bundle and p : G — GL(V) a
representation of G on a vector space V/

1. Any connection form w defines a connection on the associated vector bundle P xg V.
Let W : P — V be an equivariant map defining a section of P xg V', this connection
is given by given by

VU =d¥ +dpowoW.

2. Let s : U — P be a local section of P and write ¢p = s*W. Then this connection is
given by
Vip =dip + Aop

where A = dp o s*w.

3. Given a section X = [s,¢]: U — P xg V, this connection is given by

VX =[s,V¢] = [s,dp + Ao)].

4. Let (U, x) be a local chart of M and (U, ¢) a local trivialization of P with corresponding
section s : U — P. Let {é,} be a basis of V. By writing ¢ = ¢*é, and A = A, dz",
we can write

Vbt = o0 + AZb'(/}b
where Ajly = é%(Ayép).
Proof. Since all maps used in the definition of V are linear, V is linear. To see it satifies
the Leibniz rule, we compute for f e C*(M)

V(f¥) =d(f?)+dpowo f¥
—df @ + fd + fdpowoW
= fV@)+df V.

The other points follow from trivial computations. O
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Remark 2.75. 1. Note that although a section X : M — P xg V is globally defined,
their need not to be globally defined representatives s : M — P,y : M — V such that

X = [S’QM

2. By abuse of notation we will often write VX = dX+AX instead of VX = [s, di)+ Ao)]
for X = [s,] e T(P x¢g V).
¢

For a pseudo-Riemannian Manifold (M, g) there is a unique connection V on T'M com-
patible with ¢ which is torsion free, i.e.

VxY —VyX = [X,Y].

This connection is called the Levi- Civita connection. Choosing a local codrdinate basis {x,},
we define the Christoffel symbols by

Vé, =T}, dz" ® dx.

They are explicitly given by

1
F;Aw = Egp)\(augup + augpu - apguu)-
We can also choose a local pseudo-orthonormal frame (e,) of T'M, using which we define
~b ~ b
the spin-Christoffel symbols by I, =T, .
~b
Ve, = Flmdac“ ® ep.

The spin-Christoffel symbols are related to the ordinary Christoffel symbols by

=b b A Tw A b
Fua =e¢, Calun—¢ aaue)\ ’
where e, is defined by d,, = e,“€,.

Proposition 2.76. Let (M,g) be a pseudo-Riemmanina Manifold. The Levi-Civita con-
nection defines a unique local connection form of Fso,(T M), given by

T =T,6 06 @di", (18)

where f‘zb are the spin-Christoffel symbols, such that the corresponding connection on
Fs0,(TM) X304 (r,s) R™® = T'M is again the Levi-Civita connection.

Proof. We use the notation of [Proposition 2.74} with P = Fso,(TM) and V = R™*. Since
TM = Fso,(TM)x50,(r,s)R™*, where SOq (7, 5) acts on R"* by just matrix-multiplication it
follows that dp = I. Then defines a local connection form using the identifications
Lie(SOq(r, 5)) = 50,5 € M, 4(R) = R"** ® (R"**)*. Indeed T',, € so,., since

~C

nacf;b = g(ea, Vuﬁb) = _g(vuem eb) = —chrua7

by metric compatibility. O
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Proposition 2.77. Let M be a spin manifold with spin structure (S,0) such that (0, Ad)
is the vertical bundle morphism between S and Fso,(TM). Then (dAd)~! is given by

(dAd)~" : s0, , — spin, , < CI)

7,8

1
A ZAabeaeb.

Proof. We denote the map A — iA“beaeb by . It is easy to see that ¢ is an isomorphism
of vector spaces. Let {e,} be a pseudo-orthogonal basis of R™* . A acts on v € R™* by
matrix multplication, i.e. if v = v®e, then

Av) = Aabvbea = e A%0e,.
Under the isomomorphism ¢ this action is given by

A(v) = ad(¢(A))(v) = [¢(A), v].
Indeed

1 1 1
[0(A),v] = ZAavaeaebec - ZAabvceceaeb = ZAab(ebecea + ecepey)

1
= EA“bvc(2{eb,ec}ea) = My A®0le,.

Hence we have found

A =ad(6(A)) = (dAd)(¢(A)),
or equivalently (d Ad)~! = ¢. O

If T is a 50, s-valued one-form, we can also apply ¢ fibre-wise, hence for a vector field
Y e T'(S) we have

[¢(I), Y] = T(Y).

We will use this proving the following proposition.

Proposition 2.78. The Levi-Civita connection V uniquely lifts to a Hermitian connection
V< on the spinor bundle. It satisfies the following Leibniz rule

VI (Y)e) = v(VY)p +7(Y)VZ(p),

for allY e T(TM), ¢ € T'(S). It commutes with the charge conjugation operator Jys. It is
locally given by
1
V% =dx - 19(Vxea, )77’
or using the spin-Christoffel symbols

1-b
S a
Vi =0, — Zrua'y Y.

Proof. Let
§:=85 X Sping (r,s) Ay

32.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

be the spinor bundle. By combining the last two proposition with [Proposition 2.72| we
obtain a local connection form on S, given by

o) = fZF#ae“eb ® dx*.

Apply |Proposition 2.74] and using the canonical identification T'A,, = A,,, so that dvy = ~,
we get that the unique lift of the Levi-Civita connection to the spinor bundle is locally given

1-p
Fp‘apya’yb'

1~ac b
VS = aﬂ - 177 Fua 7(60617) = aﬂ - Z

m

It is Hermitian as the spin-Chirstoffel symbols are real and skew-symmetric. It commutes
with Jy; by [Proposition 2.62] To see that it satisfies the given Leibniz rule, we compute:

VI (YV)p) = d(v(Y)g) + ()Y ) = v(dY)p + v(Y)dep + ¢(T)e
— (7(@Y) + [B(D) 1)) ¢+ 1Y) + (D))
= y(dY +TY)p + 7(Y)VTp = y(VY)p + 7(Y) V.

Definition 2.79. We call the connection VS of [Proposition 2.78| the spin-connection.

2.4 Dirac operators
We now are finally ready to define Dirac operator on the spinor bundle.

Definition 2.80. Let {-,-) be the (possibly indefinite) inner product on the spinor bundle
S over M, given by [Proposition 2.64] Then we define an inner product on I'(S) by

(6,0) = JM<¢, $dv,, (19)

where dV, is the Riemannian volume form of (M, g). We also define

(¢7 q/))pos = JM<¢, 7/}>pos dvg

In the Riemmanian case we have (-, -) = (-, ),,, - The completion of I'(S) w.r.t. this positive

definite inner product is denoted by L?(M,S) or simply L*(S).

Remark 2.81. 1. In the pseudo-Riemmannian case with signature (r,s),s > 0, T'(S) is
a so-called Krein-space with inner-products (-,-) and (-,-) __ related by

pos

('7') = (77([‘5)) )
pos
where I is defined in For more details, see [4, sect. 3.3.1].

2. It is possible to restrict the spinor bundle to certain sections such that the invariant
inner product becomes positive definite, as we will do for Minkowski-space in
sition 3.411

¢
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Definition 2.82 (Dirac operator). Let (M, g) be pseudo-Riemannian manifold of signature
(r,s) and let S be its spinor bundle. The canonical Dirac operator D : T*(S) — I'*(S) is
given by the composition

T METM
—

r°(8) Y5 T(T* M ® ) I°(TM ®8) =<, 7(s)

It is locally given by
D = —i*T13V5.

Remark 2.83. We can also write the Dirac operator locally without the use of a coordinate
basis. Indeed let (e,) be a pseudo-orthogonal local frame, then we have

D= _ierl,yaveSa

or without using indices-notation and Einstein-summation convention

D= —i*t! Z sﬂ(ej)vfj,

j=1

where €; = 7n(e;, €j) replaces the raising of the index on the gamma matrix. The factor itts

is added to make the Dirac operator self-adjoint. When using the opposing definition for
the Clifford algebra (c.f. [Remark 2.16]), one factor i is already incorporated in the gamma-
matrices. The factor —1 in front is somewhat arbitrary and can be incorporated in the
gamma-matrices, but it is added to make sure the plane wave solutions e”** have eigenvalue
k, when using 1 as gamma matrix in the one-dimensional case. I.e. if we have M = R and
we choose
’Y(az) =1,
then
Deikx _ _Zazezkz _ keikz.

¢

Definition 2.84. Let M be a spin manifold of dimension n and let D be the Dirac operator
on M. A real structure is an anti-unitary operator J : L?(S) — L?(S), such that

J? =¢, JD =¢'DJ, JI, = &"T,J if n is even.
Here €,¢’,&” € {1, —1} are given as a function of n modulo 8, as defined in [Table 2

n 0 1 2 3 4 ) 6 7

€ 1 1 -1 -1 -1 -1

e’ 1 -1 1 1 1 -1 1 1
" 1 -1 1 -1

Table 2: The values of ,&’,¢” depending on the dimension n modulo 8.
Proposition 2.85. Fvery spin manifold admits a canonical real structure, which is given
by the charge conjugation operator Jys.

Proof. This follows immediately by the definition of the charge conjugatation operator and
[Proposition 2.26) ]
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2.5 The Dirac operator on generalized Lorentzian cylinder

The Dirac operator on a generalized Lorentzian cylinder is uniquely determined by the Dirac
operators on X. We follow [2] [49]. We first need to define the Weingarten map.

Definition 2.86. Let (M,g) = (R x ¥, —dt> ® g;) be a product spacetime of dimension
n + 1. The Weingarten map W with respect to v = d; is defined by

W:TY -TY, X Viv

The mean curvature H(t) of (X, g¢) is given by

n

D 9l Wiey)),

j=1

H= =t~ =
ntr (W)

S|

for a frame (e;) of T'X.

Lemma 2.87. If (M,g) = (R x ¥, —dt* ® g;) we have g(v,Vxv) =0 for all X e TM.
Proof. This follows by metric compatibility of the connection V. Indeed since g(v,v) = —1
0=dxg(v,v) = g(Vxv,v)+g(v,Vxv),
it follows that ¢(Vxv,v) = —g(Vxv,v) = 0. O
Lemma 2.88. Let (M,g) = (R x X, —dt?> @ g;) be a product spacetime, where (X, g;) is a

Riemannian spin manifold, and let n = dim Y. We have

1
VR =V — SV (X)),

1
VR =dx — Zg(vxea,eb)V“Vb

1 1 1
=dx—7 ), 9(Vxea )y = 19(Vxeo, 1™y = 10(Vxea €)™y

1<a,b<n

1 1
= V}ggz - §Q(VX€07 ep)7"" = Vfgz - §Q(W(X), ep)y’y?

= V¥ - %’YOV(W(X))~

Here we have used that

a

9(Vxea eo)r*r” = —g(Vxeo, ea)v*7” = 9(Vxeo, ea)y™y
because of metric compatibilty, and that

3
W(X) = Z g(W(X),eq)e” = g(Vxeo,eq)e?,

a=1
since Vxeg = Vxd; = 0 by [Cemma 2.87] O
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Theorem 2.89 ([2]). Let (M, g) = (R x X, —dt>*®g;) be a product spacetime, where (X, g;)
is a Riemannian spin Manifold, and let n = dim X. Let (Dy); be a smooth family of Dirac
operators on (X, gt). Using the explicit embedding the canonical Dirac operator
on L?(M,Sy) is equal to

00, + gH) +i0y ® Dy

Proof. Using we have

FIVM = A0V Y ATV

p=1

_ ,yvaM

4
+2
p=1
4 1 3
=V YAV = 5 2 A (W ()
p=1
4
+ ) AMVET +
p=1

3
DA Wi
p=1

| =

4 4
. 1
='ViM + 05 ® 2 ’Y;VEZ + 5’70 Z g W
p=1 p=1
. 1
=V 02 ® 3 ARV + oy T W
p=1

Therefore by writing tr> W = nH, and Vts M = 0, we get

H
D = —25"V5 = 42(0, + ”7) +i0s ® Dy O

Proposition 2.90. Let (M, g) = (R x X, —dt@a?(t)h) be a GFLRW spacetime, where X is
a Riemannian spin manifold. Using the representation given by the Dirac operator
s given by

D—Z.O'1®(at+;zgg) +i0’2®$D2- (20)

Proof. To find the Dirac equation on M we need to calculate the main curvature H. Choos-

ing coordinates (20 = ¢, ), we calculate

1 1 1
VivP =T% = igpo(ajgao + 009goj — 0sgjo) = 59’”@09@) = Egpg(aogaj)-
And we see this is only nonzero if p = 1,2, 3, and

1 1
Lk — =
Viv = 52

2a(t)a(t) ., alt)
a0 " an

¥ (0% (1)) g =

The result follows. O
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Example 2.91. For a Friedmann-Lemaitre-Robertson—Walker spacetime with X = R? we
have
D]R:s = —iO’law - ’L'O'gay - z’alaz,

hence the Dirac operator on a FLRW-spacetime is equal to

0 (5438) 4 L w o B, Lo
?(0+32) +agr v mme (a5 + s )

Proposition 2.92. We assume we are in the situation of |Proposition 2.90L The chirality

element is given by
I 0
r=|72 :
0 —1I,

defining a splitting of the spinor bundle S = ST ® S~ . Regarding to this splitting the Dirac
operator takes the form

where D : T(S%) — T'(8T) is given by

3a(t 1
Dy =io; +z‘—@ F —Ds5.

2a(t)  aft)
Proof. According to [Definition 2.27| the chirality element is given by

I'=(—i)? ivomy2ys = 03 @ Io.

. 0 4 . 0 1
101 = , 102 = y
i 0 -1 0

we see that entails

Using

oo 0 ioy+i349 + LDy
i0, +i329 — LDy

~
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2.6 Analytical aspects

In this section we follow [19].

Proposition 2.93. Let (M,g) be a spin manifold of signature (r,s). The Dirac operator
with domain T'.(S) is a symmetric operator w.r.t to the (possible indefinite) inner product

[Eq._(19). That is for ¢, € T\(S) with supp(¢)  supp(v) compact we have
(Do, ) = (¢, DY)

Moreover, for f € C®(M) we have
[D, f] = —i**1(df).

Proof. By using the local expression for the Dirac operator [Proposition 2.78| and [Proposi-|

we got

(i*Dg, ) = (=i y(dat) Vg, 1) = —(—1)*H! JM<Vi¢,iS+2v(dx“)¢> v,

:f<¢—ﬁ“ﬂMMV?WM@—f“f<¢WVA¢WW@M@ (21)
M M

+ 5t JM 0, y(dz"))ydV,

We observe that the first term is exactly (¢,i° D).
The volume form dVj is given by

AV, = +/|det g|dz' A - A da™
By differentiating the identity In(det g) = tr(In g) with respect to z* we get
1 — v
dorg e detl9) = tx(g™'2p9) = 9" OG-

Hence,

1
Op/Idet g = 5 +/Idet glg"" Opgu

By taking the trace over the second and third indices of the Christoffel symbols we get

1
L. = igwapguv-

A simple computation shows V,(dz*) = — T dz?. Combining our results we get

Vu(dx“)\/|det gl = —\/|det gl T, = —0p+/|det g| dz*,

From this and partial integration, it follows that

| @AV, =it | a0da)eav, o

This proves the first statement.
For the second statement let ¢ € I'(S), then we have by the Leibniz rule for the spinor
connection

[D, 1(¢) = ="'y (dat)[Vy, [l = =i 1y(da?) (0. f)d = =i (df)g.
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From now on we will assume that X is compact and hence complete - c.f. and
Definition 2.10|- , since then there is a complete set of eigenspinors of the Dirac operator.

Theorem 2.94. Let D be a Dirac operator on a compact Riemannian spin manifold X.
Then there exists a complete orthonormal basis (e,)*_; of the Hilbert space L?(Sx) consist-
ing of eigenspinors of the Dirac operator D,

De,, = M\ en.
Moreowver,

1. The set o(D) is a closed subset of R consisting of an unbounded discrete sequence of
eigenvalues, i.e lim, o |A\,| = 0.

The eigenspinors e, are smooth sections.
The eigenspaces of D form a complete orthonormal decomposition of L*(Sx).

Each eigenspace Vy of D is finite-dimensional.

Cro o e

The set o(D) is unbounded on both sides of R and, if moreover n # 3 (mod 4), then
it is symmetric about the origin.

Proof. See [24, Lem. 1.6.3] for the proof of the main statement and items 1 - 3, which is
applicable as the closure of a Dirac operator on a complete Riemannian manifold is elliptic
(see e.g. [25] Prop. 1.3.5]). For the other statements, see [25, Thm. 1.3.7] O

Recall that an unbounded operator 7 is essential self-adjoint if its closure T is self-adjoint.

Proposition 2.95. Let (X, g) be a compact Riemannian spin Manifold. The Dirac operator
D is essentially self-adjoint in L?(Sx). Its closure D has domain the first Sobolev space
HY(Sy) € L*(Sy).

Proof. See e.g. [19, Sec. 4.1, 4.2]. O

We refer to [24] for the definition of Sobolev spaces. For our purposes, the following
characterization of the Sobolev spaces H*(Sy) is sufficient.

Proposition 2.96. Let (e,)%_; be a complete orthonormal basis of L*(Sx) consisting of
eigenspinors of the Dirac operator. For an arbitrary ¢ € L?(Sx) we write

[o0]
P = Z Anen-
n=1

Then +p € H*(Sx) if and only if

0
D7 lan*(An)* < 0.
n=1

Proof. See [19] Sec. 4.2]. O
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Definition 2.97. We denote the eigenspace corresponding to the eigenvalue A\ by Hf , and
the basis of Hy of smooth eigensections by {e}}nen,, where Ny = {1,...,dimH#y'}. The
previous theorems provides us with the following isomorphism

Aeo(D),neNy

here j : D (py{A x Na} 5 N inducted by the orthonormal decomposition of L2(Sx) into
finite dimensional eigenspaces H3y with orthonormal bases {e;}. We also define

AMN—->R

such that A(j(X\,n)) = X. The Dirac operator acts on square summable sequences (a,)%_;
by
Dy(an)y=y = (An)an),_;-
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3 Solutions of the Dirac equation

If you give a hacker a new toy,
the first thing he Il do is take it
apart to figure out how it works.

— Jamie Zawinski

Definition 3.1. Let D be the Dirac operator of a spin manifold M. The Dirac equation
with mass m is given by
(D + m)y = 0.

Remark 3.2. The Dirac equation was first formulated by Dirac in [14] as follows
3 .
10 = (—i Z ol d; + mﬁ) ¥, e LR CY).
j=1

Here 8 and o/ are 4 by 4 matrices given by

5212 0 ’ [0 @)
O _I2 Uj 0

By multiplying the equation by f, it becomes

4704 +map =0,
where ' _
AV =—iB, 4 =—if-ad = ®oay,
are gamma-matrices in the so-called Dirac representation. Writing D = —i470; for the
Dirac operator, we get the formula from the definition for M = R3!. &

In this chapter we will find solutions of the Dirac equation on a generalized n-dimensional
cylinder R x X with constant metric, where X' is a compact odd-dimensional Riemannian
spin manifold. But first we have to recall some functional analysis, with regard to Fourier
Theory and Stone’s theorem.

3.1 Fourier Theory
In this section we follow [41l, Ch. IX], [I2| Par. X.6] and [42 Ch. 7].

Definition 3.3. The normalized Lebesgue measure on R™ is the measure m,, given by

1

We will norm the Lebesgue spaces L™(R™) using this measure, that is for f € LP(R™) we

have
1 » 1/p
191, = sy ([, 177a)
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Definition 3.4. A function f e C®(R") is called rapidly decreasing if

sup sup |z D, f™

a,3 xeR”

< 0,

where « is a multi-index and
. @ ) «a
Dy = (—i0y,)* -+ (=104, ).

The set of all rapidly decreasing functions over R is called the Schwartz space and is denoted
by S, = S(R™).

Proposition 3.5. If 1 < p < o, then S, is dense in LP(R™).
Proof. See [12] Prop. 6.5]. O

Definition 3.6. Let h be an pseudo-Riemannian metric on R™. The Fourier transform
(with respect to the metric h) is the map

F:LY(R") - C(R"),
ff
where

2 1

F) = i | e (22)

Proposition 3.7. For f € L*(R"), we have f € Co(R™) and HfH < fll;-

o0
Proof. See [42] Thm. 7.5]. O
Lemma 3.8. If f € S,, then fe Sh.

Proof. See [41], Lemma on the second page of Ch. IX]. O

If we restrict the Fourier transform to S,, we thus get a map F : S, — S,,. This map is
invertible.

Theorem 3.9. The Fourier transform restricted to the Schwartz space,
F:S,— Sy

s a linear bicontinous bijection with inverse

(FD@) = s | )k,

(2m)m/2 Jg
Proof. See [41l, Thm. IX.1]. O

Theorem 3.10 (Plancherel’s Theorem). 1. If f € S, then || f|, = HfH2

2. The Fourier transform extends to a unitary operator on L*(R™).

Proof. See [41], Thm. IX.6]. O
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Definition 3.11. The unitary extension of the Fourier transform from is
called the Fourier-Plancherel transform. It will sometimes be denoted by F.

Remark 3.12. 1. The formula for the Fourier-Plancherel transform is only given by

if fe LY(R™) n L?(R"), as it does not make sense for f ¢ L!(R").

2. In the following we will often restrict our function to the Schwartz space for notational
clarity, although all calculations can be generalized to L?(R™) by using the Fourier-
Plancherel transform instead of the Fourier transform.

¢

Remark 3.13. When considering Minkowski space R*!, we will often perform the Fourier
transform in the time and special components separately. The Fourier transform in the time
component, called the temporal Fourier transform, is then given by

— f w) = L e—i’fowo o = i eiwt
1) = Flw) = == [ e modzy = —= [ fopetar
0

where t = 2% = —2g and w = k° = —ky. We often denote the temporal Fourier transform
by F if there is no confusion with the full Fourier transform.

¢

Theorem 3.14. Let D = i0; : dom(D) — L?*(R") on dom(D) < L*R™) (where we
parameterize R by t) and let M : dom(M) — L?(R™) be the operator defined by Mf =
wf (where we parameterize R by w). Let F be the temporal Fourier transform. Then
dom(M) = Fdom(D) and

FD =MF.

Proof. See [12] Thm 6.18]. O

Remark 3.15. Sometimes, there is a more canonical measure then the normalized Lebesgue
measure resulting from an (invariant) inner product on L?(R™), given by

1 *
(-9 = s | I Balk)a. (23)

where p(k) is a smooth function. We then define the inverse Fourier transform as

i) = | fla)e 50 ulkjdm, k),

such that the standard inner product on L?(R™, dm,,) of two Fourier transformed functions

leads to an expression of the from [Eq. (23)] i.e.

1

(Fu @) 7 0(@)) 0 = Gy f 1*(k)g(k)uk)dk = (f, ), - ¢

3.2 The Schrodinger equation and Stone’s theorem

In this section we follow [41], 27, [47].
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Definition 3.16. The Schriodinger equation on a Hilbert space H for a self-adjoint operator
Hy is given by

1040(t) = Hop(t), P(t) e H VteR, Y(0) =g € H. (24)
Definition 3.17. An operator valued function
U:R— B(H)
is called a strongly continuous one-parameter unitary group on H if
1. For each t € R, U(t) is a unitary operator on H.
2. For all s,t € R, we have U(t + s) = U(t)U(s).
3. If € H and t — tg, then U(t)p — Ul(to)o.

From a physics point of view, it is a reasonable assumption to consider only solutions
generated by strongly continuous one-parameter unitary groups.

Definition 3.18. A solution to the Schrédinger equation, [Eq. (24)] is called a strong solution
if it is given by
P(t) = U(t)do,

with U(¢) a strongly continuous one-parameter unitary group with U(0) = id.

Recall that using functional calculus, for a self-adjoint (possibly unbounded) operator
T, we can define the unitary operator e®”, for any ¢ € R.

Theorem 3.19 (Stone’s theorem). Let H be a self-adjoint operator on H with domain
D(H) and define U(t) = e *Ht. Then U(t) is a strongly continuous one-parameter unitary
group, and

1. For ¢ € D(H),

d Uls+ h)p— U
i U6 = lim (s + )Z ) _ 5 (s)e.

t=s

2. If L|,_oU(t)¢ exists, ¢ € D(H).

Conversely, let U(t) be a strongly continuous one-parameter unitary group on H. Then there
is a densely defined and self-adjoint operator H on H such that U(t) = et

Proof. See e.g. [41l, Thm. VIIL.7, VIIL.8] or [27, Thm. 10.15] O

The following is an immediate corollary, and provides us with existence and uniqueness
of strong solutions of the Schrédinger equation.

Corollary 3.20. The Schréodinger equation i0pp(t) = Hotp(t) with initial value 1(0) =
Yo € D(Hy) has a unique strong solution given by

() = ety

Remark 3.21. As e 0! is a bounded operator, e~*Hotyy is defined for all vo € H. This
allows us to interpret e *Hoyy as a solution to the Schrodinger equation, even if 1y ¢
D(Ho). ¢
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3.3 Initial value problems

In this section we follow [47, [18, 41]. Let us assume that (M,g) = (R x X, —dt* @ gx),
with (X, g5) a compact odd-dimensional Riemannian spin manifold. We now want to find
solutions of the Dirac equation on M, given by

((ic1 ® I)0; + i02 @ D +m) 1) = 0.

There is of course not a unique solution, but if we require it to satisfy the initial value

condition ¥(0,-) = f € H'(Sx) for a fixed f € H!(Sx) the problem becomes well-posed.
There are multiple ways to find its solutions, one is based on Stone’s theorem and will

be given first. The second, more heuristic approach is based on Fourier transformations.
By multiplying the Dirac equation by o1, the Dirac equation transforms into (c.f.

mark 3.9)
Zatiﬁ = (0’3 ®D2 — m(01 ®ld)> w

If we define Hy = 03® D s +m(01®id), we recognize this to be of the form of the Schrodinger
equation. Hy is essential self-adjoint on L?(Sx) ® C? as Dy is essential self-adjoint and the
Pauli matrices are Hermitian (see [41, Thm. VIIL33]). Its self-adjoint closure Hy is defined
on H1(Sx)® C?. We will show that there is a orthonormal basis of L?(Sx) ® C? consisting
of eigenvalues of Hy. We call Hy the Dirac Hamiltonian. But before we proof this, we recall

that the real structure
J:T(Sx) — T'(Sx),

is fibrewise given by

Jy :C* - C?,
1 —vd
()= ()
It satisfies
JDsx = DxJ,
J=Jgt=-J J*=-1 (25)

Jiai = Z.O'Z'J, JO’Z' = —O’l'J, 1= 1,2,3.
Proposition 3.22. Let (e,)*_; be a orthonormal basisof L*(Sx) consisting of eigenspinors
with eigenvalues A(n). The Dirac Hamiltonian
HO = 03 ®D2 + m(01 ®ld),

on L?(Sx) ® C2, has an orthonormal basis of eigenvectors, given by

[o0]

( [ e, [ Wm) , (26)
Wi (n) Wi(n) n=1
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with corresponding eigenvalues wy(n), —Wx(n), Where wy = VA2 +m2 e, = Je,, and
W — 1 wx + A _ 1 wx+A+m
2m(wx +A) \ —m 2/m(wy +m) \—wx +A—m)’

5 A\ 1 m 1 wx—A+m
w0t = Ju = —— = — :
2m(wx + A) \wx + A 2¢/m(wx +m) \wx +A+m

Proof. Note that for all A € R, (, /%uﬂ‘, \ /%’J)A) is a basis of C2, hence [Eq. (26)| provides

an orthonormal basis of L2 (S2)® C2. To check that w*™ ®e,, is an eigenvector, we check
+ A A = +A
Hy “ Ren | = T Rep
—-m —-m =\ —-m
wy + A2 +m? wx + A
= & en = wy ® en,
—mwy — m\ + mA —-m
where we have written A = A(n). As J® J anti-commutes with Hy it now immediately

follows that @*(") ® g, is an eigenvector with eigenvalue —wy. The two expressions for w*
are equivalent, as

1 wx+A+m _ 1 wx+ A N m
2y/m(wx +m) \—wx + A —m 24/ m(wy +m) —m —wx + A

1 wx + A m wx + A
24/m(wy +m) (( —-m >+w)\+)\< -m ))

B m+wy+ A (wA—F)\)

2wx + AMym(wy +m) \ —m
B m+ wy + A 1 (wA + A)
A/2(wx + A)(wx +m) 4/2m(wy +A) \ —m

B 1 wx+ A
2m(wy +A) \ —m )’

where in the last step we have used

2(wx + A)(wy +m) = 2w3 + 2 m + 2 w) + 2mwy
= w3 + A2+ m? 4 20m + 2 wy + 2mwy = (m + wy + A%

O

Note that by [Proposition 2.96{an arbitrary ¢ € L?(Ss) ® C? is in H*(Sx) ® C? if and

only if
o0
Yo=Y N[ — (anw””) ®en + by ® én) :
n=1 wA(”)
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with

(e0]
Z (|an|2 + |bn|2)<>‘n)2 < .
n=1

Theorem 3.23. Let (M,g) = (Rx X, —dt*@gx), with (X, gs) a compact Riemannian spin
manifold. The Dirac equation

((201®I)0t +i02®D2 +m)’¢ = 07
with initial value ¥(0) = 1o € H(Sx) ® C? for

— / A (1)
Pg = Z . anw ®6 + b, w ® e, )

has a unique strong solution given by

w( ) — ¢ thTZ) _ Z an A(n) ®€n€7iw*(")t + bnﬁ//\(n) ®éneiw,\(n>t) )
1V ¥An)

Proof. This follows immediately from [Corollary 3.20] [Proposition 3.22| and functional cal-
culus. O

We will now obtain this result again by using the Fourier transform. By applying the
Fourier transformation and [Theorem 3.14]to the Dirac equation we get the temporal Fourier
transformed Dirac equation

(w(oy @ I) +ioy ® Dy 4+ m) ¥(w) = 0.

In the following we will often use the tempororal Fourier transformed version of sections of
the spinor bundle. We will also use the notation introduced by That is in
local coordinates we will use w € R, j € N to describe a local section, instead of t e R,x € X.
Solutions of the temporal Fourier transformed Dirac equation will be defined on so called
mass shells.

Definition 3.24. The positive mass shell of mass m is given by

X ={(w,j) e Rx N|w? =\(j)? +m* w>0}.
The negative mass shell of mass m is given by

X, ={(w,j) eRxN|w? =\(j)?+m* w < 0}.
Here A : N — R is as defined in [Definition 2.97

Proposition 3.25. Let X be a compact 3-dimensional Riemannian spin-manifold with
Dirac operator Dy;. We assume that the Dirac operator has a symmetric spectrum {\} € R
with corresponding normalized eigenfunctions e, € L?(Sx),that is

Dxe) = An)e,
Let J be the real structure on X and write

N PO
e, = Jej.
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Then the solution of the temporal Fourier transformed Dirac equation
(wo1 @ I +ios ® Dy + m)ih(w) = 0

on X5 is given by

In both equations w > 0 and

A 1 wx + A 1 wxt+A+m

L = ;
2m(wx +A) \ —m 2¢y/m(wx +m) \—wx + A —m

P Ju — 1 m _ 1 wWx—A+m .
2m(wx + A) \wy + A 2¢/m(wx +m) \wx +A+m

Proof. Every ¢(w) € 12(N) @ C2 can be written as

Y(w) = (anwn)le,
with a,(w) € C and w))(w) € C2. By inserting this into the Dirac equation we see we need

to have

A
wowy, + ioa\(n)wy, + mw, = m w+An) wy, = 0.
w—A(n) m

For solutions to exist, the determinant of this matrix has to be zero, which is the case if
and only if
W= Fwym) = £V/m? + A(n)2

Hence we are only able to define solutions on the mass shells XZ. Then, the (up to normal-
isation) unique solution is given by

w — 1 wx+ A B 1 wxt+A+m
2m(wyx +A) \ —m 2/m(wy +m) \—wy +A—m)’
with A = A(n).

This justifies us to choose w,, = w™ for all n € N such that A(n) = X as we can pull every
scalar into a,,. Hence the solution on X! is given by

Plw) = (w’\(")an):;.

Here and in the future we will assume w > 0, and extract the minus sign from a negative w
into the solution, that is, if w < 0, we will perform the substitution of variables w — —w.
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The solutions corresponding to a positive w will be called the positive frequency solutions,
and the solutions corresponding to a negative w (before the substitution) will be called the
negative frequency solutions. For the solutions w? this entails

1 wy + A 1 —wy + A
2m(wy +A) \ —m 2m(—wy + A) —-m

_7«/)\+w>\ 1 A — wy m
VA —wy \/2m(w)\ -‘r)\) m wy + A

_ VA + 0 —wy)

m

Juw = iJuw.

We set w* = Jw?”, and absorb the factor i in the coefficients. We thus see the operator
J is an convenient way to switch from positive frequency solutions to negative frequency
solutions, and we can expand an arbitrary negative frequency solutions as

it - (),

This is indeed a solution as

(J@J) ((iO’l ®1)Mw + 109 ® Dy —I—m) = ((2'01 ®1)Mw + 109 ® Dy +m) (J@J),
A b)\

n’»’n

The coefficients a have to be determined by an initial value condition. O

Integrating any function f(w,j) over the mass shells is heuristically equal to integrating
fw,5)86(w?—m?2—\(5)?) over the whole space. Here § is a distribution called the Dirac delta
function, as defined in [Eq. (87)} Since this is a delta function with a non linear argument,
we have to take care to define this rigorously.

Proposition 3.26. For any square integrable function f(w,j) on the mass shells we have
NP

N2 f(W)\ j ,.7)
jﬁﬂwJNMU_EZ‘(”|

2wy (;
JeN (])
Xt

Proof. We will proof this only for the positive mass shell, as a completely similar proof holds
for the negative mass shell. Let
xt=|J x&

me(0,00)

We define the map ¢ : (0,00) x N —» X+ by

$(3.3) = (Vy + AG9)
We have
o 1
Y 23/y+ A(j)?
where ¢; is the first component of ¢. Hence for any compactly supported function g we
have d
9(w? = A(j)?)dw = 29(#

Vy+ A6
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If we now take the limit where g(y) converges to a function with a pole at y = A(j)? we
obtain for any integrable function f(w,j) on the positive mass shell

L1l = [ 31566 - m =\

X jeN
_ 7 |20y —m?)dy
—fR%‘f( y+A(J)2,J)) NTEROL

2 1 2 1
- S —_— — N p—— O
j%]}\f(wx(j) l SRS j%]]\f(wm) l o)

For fixed (w,n) € X}, for solutions of [Proposition 3.32| we can write

Y(w,n) = aduw* ®e} € L}(Sy) @ C?

using the isomorphism [Definition 2.97] and similarly for the negatieve mass shell.

Proposition 3.27. The spinors w*®e), W ®& are normalized with respect to the invariant
inner product induced from the invariant inner product on T'(S). That is we have

(w)‘ ®e;\ww’\ ® 62) = — (ﬁ)’\ ® éi‘t, i ® éf;) = 1.
In particular w® and W satisfy
—w

Proof. The second statement follows from a straightforward calculation. Indeed we have

1 w+ A
Af Ao _
w™ oqw 5 (w+>\)(w+)\ m>01<_m>

_ 2mw+ ) I
o 2m(w+ )
Hence by equations [Eq. (25)|
’U_})‘TO'ﬂI}/\ = w/\TJTole’\ = w)‘TJTale’\ = w’\TalJ2w)‘ = —w’\Talw’\ =1.

Now the first statement follows by definition of the invariant inner product as
(w>‘ ® 62, w ® e;\l) = —w Mo uw? <ez | ef‘l> =1,

and
(0* @ &), 0 ®@e)) = —aMoyw? (&) |e)) = 1. O

Definition 3.28. The space of positive (negative) frequency solutions is given by

VE = {¢(w, ) e T(X3E) | (wor ®T) +ioy ® Dy +m) P(w) = 0},
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It will be convenient to write 1) = >3, | aduw*®e) forp e V', and ) = DI ot @ e
for ¢ € VT, using the isomorphism given by m although the domain of these
sections are not conveniently described in this representation.

The Sping(n — 1,1) invariant inner product (-,-) on I'(S) as defined in is not
a definite inner product, hence it is not suitable to define a Hilbert space. But restricting
ourselves to the sections in V%, it is!

Proposition 3.29. The Sping(n — 1,1) invariant inner product (-,-) on I'(S) restricted to
VE is positive (negative) definite. Using Fourier coordinates it is given by

m
(v,) = L ™ 0 w3pos de AV,

— Ny AeX a0 Ay A oA
Moreover forv =2, , aqw’ey, w =2, , cow’ey, we have
1
(v,w) = ] ﬁaﬁ*cﬁ-
An A

Proof. Let (,),,, be the standard positive definite inner product on I'(S). We have that
the Spiny(n — 1, 1) invariant inner product is related to this by

() = (.72'70.)]005_

Note that for v € VAi (v,i092 ® ng)pos =0, as
<wA + )\) . <UJ>\ + )\)
102 =0.
—-m —-m

= (0,m0) 5, = (v, (£ir°wx —io2 ® Dx)v) = Fwy (v,ivov)pos = Fw, (v,v).

pos

Hence
mlvll2,, =

Therefore (v,v) = %Jp” is a positive definite inner product on V,", and a negative definite

inner product on V, . Hence it is a positive definite inner product on V* and a negative
definite inner product on V~. For simplicity we will restrict ourselves in the rest of the
proof to V*, but a similar calculation can also be performed on V' ~. Hence we assume

U_ZaA ,\;\“ W*ZCA )\/\
Then we have

m
(va) = JX* ;<v’w>}705 dw dvtqz

. o) (g e)en

J m a* ,\WA(;(W2 —m? = A})dw
]R)\n

a e
JZ@A* Ao(w? —m —)\Q)dw—z 5 o,
RXn o WA

ol.
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Here we have used

O

Remark 3.30. It is common practice to incorporate the factor i into the coefficients

a?, c*. That is we redefine

n’-n-*
v = Z QwAa,ALw)‘e;\l, w = Z 2w,\cﬁw’\e;\b,

An A,n

such that

¢

Definition 3.31. We define the Hilbert space H™ of particles as the completion of V' with
respect to the positive definite invariant inner product on V.

We define the Hilbert space H ™ of antiparticles as the completion of V'~ with respect to the
negative definite invariant inner product on V.

We define the Hilbert space of solutions H, as the direct sum of both Hilbert spaces

H=HtOH .
Note that we have a unitary maps U+ : H* — L?(Sx) ® C2, induced by
U+(\/20.)>\w’\ ® e;\L) =4 /Ew)‘ ® e;\” U‘(\/2wmk ® é;\L) = 4 /Eu’/\ ® éﬁ (27)
WX WX
Now its time to return from Fourier transformed coordinates and finish this section.

Proposition 3.32. Every strong solution of the initial value problem of the Dirac equation
Y(t) = Z A /% (af‘lw)‘ ®ene A L Pt @ é,{‘bei“’*t)
A,n

as stated in|Theorem 3.28, is the inverse temporal Fourier transform of v = vt +v™, with

vE e VE given by
+ X, AN - A -AZA
v = Z V2wyrajwiey, v = Z V2wyrbw ey .
A,n An

Proof. This almost immediately follows from the previous propositions, and the Fourier
inversion theorem [Theorem 3.9, Note that we have added a factor , /U% L_ to the inverse

A/ 2w
Fourier transform as explained in |[Remark 3.15] O
Remark 3.33. Analog to we will call
"/JA,n(fL') _ e—iwt,wA ® ei\w (28>
'(Z}/\,n(-r) = (J® J)(wk,n) = ethwA ® éj\l-
plane wave solutions. &
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3.3.1 Minkowski-space equivalent

This construction of solutions can be performed in an equivalent manner on Minkowski
space, but one has to take all analytical aspects into account as R? is not compact. We refer
to [47, Sec. 1.4] for a rigorous approach, while we focus here on heuristically constructing
solutions using the full Fourier transform.

We will first study solutions of the Dirac operator on R?, which is given by

Dys = —i010; — 1020y — 1030,.
By applying the Fourier transformed Dirac operator is given by
FDgsF ' = My, 01 + My,00 + My, 03.
For a fixed k, this is just a 2 by 2 matrix.

Lemma 3.34. The matriz

ks ey — ik
k- o =kioy + keoo + k3oz =
k1 + iko —k3

has eigenvalues *|k| with corresponding eigenvectors

w (k) _ 1 |k| + k‘3
? V2R (k] + E3) \Ei + ik )

1 —ky + ik —k ik
By(k) = Jws(k) = ———e [T = %wg(—k)
V2|Ek|([k] + k3) \ |k| + k3 |—k1 + iks]
respectively. Here k(—k) = % is just a phase factor. When k =0, we set

1 _ — Juw (0
'U]Q(k) = (O) 5 wg(k) = J Q(k) = <1> .
Proof. Indeed,

ks ky—iko\ [|K|+ks) |klks + k3 + ki + &3
k1 + iks —k3 k1 + iks |k|(k/’1 + ’Lk‘g) + k)g(k‘l + Zk?g) - kg(kl + ’Lk‘g)

k|l +k
k1 + ko

The Dirac equation of Minkowski space is given by
(0, + m)y = 0.
We use the concrete representation for the gamma-matrices given by ie.

’yo=ial®1—7 7a=02®0a a=17253'
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In this representation the Dirac equation becomes
((icn ® I)&t + iO’Q ® DR3 + m) 1/J(t, CC)

Transforming both sides with the Fourier transform F : S(R*) — S(R*) and [Theorem 3.14}
we find

(W1 ®I) +ico ®k -0+ m)Y(w, k) =0.

As we shall see, solutions of the Fourier transformed Dirac equation are supported on the
so-called mass shells XE.

Definition 3.35. The positive mass shell is given by
X = {keR*|k'k, =m? k° > 0}.
The negative mass shell is given by

X, = {keR*|k'k, =m? k° < 0}.

Using similar calculations as in [Proposition 3.26] one can show that

>k

2w(|k)

is the (up to a constant) unique invariant measure on both mass shells, where

w(k]) = A/ |k[ +m?.

It is invariant with respect to the action of SOg(3,1). For a more details we refer to [41}
Appendix: Lorentz invariant measures].

Proposition 3.36. The solutions of the Fourier transformed Dirac equation on Minkowski
space R
(iv'Eky + m)p(w, k) = (w(o1 @I) +ico @k -0 +m)Y(w, k) =0

are given by

Plw k) = Y 5w — |kI* = m*)agu(k, s)

s=+1
b(—w, k) = Y 5w — k> = m?)bpo(k, 5)
where w > 0
u(k, +1) = wi (|k|) @ wa(k), v(k, +1) = w1 (|k]) ® wa(k),
u(k, 1) = wi(—[k|) ® w2 (k), v(k, —1) = wi(—|k[) @ w2 (k),

o4.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

and
w(|k]) £ |k
wi(Ek|) =
kD= o TR ( )
: ()
2\/m w(k) & [k —m/ (29)
w1 (L|k]) = Jwi(£|k|) = N
(£[kl) (£[K[) 2w |k\ + [k[) (w |k|)+k|>
- w(|k|) F [k| +m
QW w(|kl) £ k] +m
with w(|k|) = 4/ k| +m2.

Proof. The proof is completely similar to the proof of [Proposition 3.32] with wy(+|k|) =
A=k
w .

O

We see that the solutions corresponding to u(k, s) live on the positive mass shell, while the
solutions corresponding to v(k, s) live on the negative mass shell.

Definition 3.37. The space of positive (negative) frequency solutions is given by

= {(w, k) e T(XE) | i7"k, +m)p = 0.}

[Proposition 3.36| tells us that any f € V' can be written as a linear combination of
u(k, £) with scalar coefficients that depend on k. Similarly any f € V'~ can be written as
a linear combination of u(k, +) with scalar coefficients that depend on k.

Remark 3.38. The solutions u(k, +),v(k, £) found in previous proposition are not the
standard solutions which are normally found (see e.g. [44] Ch. 38]) applying Lorentz boosts
to the zero momentum solutions given by

1 (1 ® 1 (1 o
Usg = —F= €s, Vg = —= 68
V2 \ -1 V2 \1

where {e;,e_} and {¢/,, €’ } are two, often equal, orthonormal bases of C2. A pure Lorentz
boost with a speed of % is given by

exp (ml;: . B) ,
where where 1 = sinh™'(£) is called the rapidity, B/ = £[y/,7°] = 474 is the boost

matrix, and k= % is the unit vector in the direction of k. Using the Chiral representation
for the gamma-matrices we find

22'];5 -B = —l%j(z'al ®12)(0'2 ®0’j) = ]Afj(0'3®0'j.)
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Using the trigonometric identities

cosh (1 sinh ™! <k|)> =
2 m

sinh <1 sinh™* <|k|>) = L ! = K| 1
2 m my/2 2 Vom VJw+m’
L

1
= —+Vw+m,
V2m

we then find
exp (mfc : B) = cosh(g) + sinh(%) (2ik - B)
1 13 1
=RV v

V2m
1 J 4
- s (M LR 8 ).

l;?j(03®0j)

The standard boosted solutions are then given by

u(k, s) = exp (mlzz . B) us, 0(k,s) =exp <znl§: . B) Us. (30)
These are even easier found by noticing (—ik, " + m)(ik,v” +m) = —w? + |k|*> +m =0,
causing
ik, ) (il )y, 0K, ) —(ikuy — )
u(k,s) = ——ex—x(—i mus, U(k,s) = —————=—=(i — m)uvs,
2m(w + m) w 2m(w + m) w

to be the same solutions. The solutions found in[Proposition 3.36|are also boosted solutions,
but of zero-momentum vectors based on the eigenvectors ws(k), that is

1

u(k,s) = exp(inl% . B) ( 1) Qwi(k), wv(k,s)= exp(inl% . B) (1) ® wj (k).

We can also obtain them using the same trick as before by

1 o 1 .
1 _ 1 <

Here we have written w; = wg,w,; = Wy for notational convenience. &

Definition 3.39. We define the Dirac adjoint of a solution u(k) in momentum space by

a(k) = iu'rP.
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Remark 3.40. The solutions w; and w; are normalized such that
—wi (k) orwi (£]k]) = @1 (£]k]) or@ (£]k]) = 1,

for later convenience. Using the Dirac adjoint the orthonormality relations can be written
as
u(k, s)u(k,s’) = —v(k,s)v(k,s’) = dss-

The Dirac adjoint is just a convenient way to write the Spiny(3, 1) invariant inner product,

Cu(k), v(k)) = Culk), i v(k))pos = u(k)v (k). <

Proposition 3.41. The Spin,(3,1) invariant inner product (-,-) on T'(S) restricted to func-
tions supported on the mass shells XE is definite. Using Fourier coordinates it is given by

3
(f,9) = fmg(qup,k),g(w(IkzI%k)>(2ﬂ)3(fzi(|k|)

. 5 (31)
_ J mf(w((kl), k)*g(w(kl), k) d’k
R 2w(|k[)? (2m)3/2°
Proof. The proof is almost equal to the proof of [Proposition 3.29| O

Remark 3.42. We will incorporate a factor 3 1(\k\) into sections f(w(|k|), k) such that

_ [ mfw(kD, k)*g(w(lk]). k) _d’k
(f.9) = J]Ri‘ w(|k|) (2m)3/2"

Definition 3.43. We define the Hilbert space H* of particles as the completion of V' with
respect to the positive definite invariant inner product on V.

We define the Hilbert space H~ of antiparticles as the completion of V'~ with respect to the
negative definite invariant inner product on V.

We define the Hilbert space of solutions H, as the direct sum of both Hilbert spaces

H=H"®H .

o

Following the standard convention we have chosen to incorporate the minus signs from
solutions on the negative mass shell into the formula of the solutions when performing the
inverse Fourier transform, while keeping k& € X for all solutions. This makes integration
easier, as we only have to integrate over the positive mass shell.

Theorem 3.44. The solution of the intial value problem
((iUl ®I)0t+i02®DR3+m)1/)=0, ’L/)GS(R4)®(C4
¥(0,) =vo e S(R®) ®C*

is given by

_ 1 m s ikw —iw(k)t | ps —ikx iw(|k|)t
¢‘<2w>3/2fwm m(aw(k@e ¢ + bk, s)e~ et (K1) ag,

where ay,, by, are uniquely determined by solving

. 1 m s ik-x s —ik-x
o = @n)i’ sz S:Zil A /7w(|k:|) (agu(k,s)e™™ + bju(k, s)e ) dk.
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Remark 3.45. A physicist would say that the plane wave solutions of the Dirac equation
are given by
0 . .
w(x) _ ezk “elk'mu(k,s) _ CZk”w“u(k,S),

P(r) = e_"ko"c"e_ik'mv(k, s) = e FTuy(k, ),
corresponding to positive and negative frequency solutions respectively. In both equations
kO = w(lk|) = /|k|* + m2 > 0.

(32)

¢

3.4 Asymptotic solutions of differential equations

In this section we introduce the mathematics needed to speak rigorously of solutions at
infinity of a differential equation, which is needed in next chapter. We begin with a definition
when two functions are asymptotically equivalent. In the following statements F = R or
C, see [10, Par. 5.9] how results for real-valued differential equations can be extended to
complex valued differential equations. Reference materials are [7, Sec. 3.4], [10] 16, 6] [46].

Definition 3.46. Let f,g : R — F be two continuous functions. We say that f(t) is
asymptotically equivalent, or asymptotic to g(t) as x goes to to € [—o0, +00] if

lim f(t)/9(t) = 1,

t—>t0

and we write

f@) ~g(t) (¢t —to).

Remark 3.47. Note that f(t) and g(t) being asymptotically equivalent is different from
having their difference go to zero in the limit. For example e! ~ e! + ¢ (t — o0), while

lim ]et +t—e'|=on.
t—0o0

On the other hand, while lim;_,¢ ‘t — t2’ =0, we don’t have t ~ t? (t — 0) as they approach
zero at different rates. But, when one of the two functions is constant, the notions are the
same. o

Proposition 3.48. Let f : R — F be a continuous function and g = C the constant function
with value 0 # C' € F. Then
Jlim f(t) =C
if and only if
ft) ~g(t) (t—to)

Proof. This is trivial, as

lim f(t) =C < tlLIItl f@)/C =1.

t—to
O

Using the notion of asymptotic equivalence we can state the following theorem, as given in
[16] Theorem 1.9.2]. This is a special case of the Levinson theorem [I1] Theorem 8.1].
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Theorem 3.49. Consider the n'*-order linear homogeneous differential equation
y ™ () + (e +r(0)y V(@) + -+ (en + ra(B)y() = 0 (33)
where ¢; are constants such that the polynomial
A"+ e,
has n distinct zeros A\, (1 <k <n), and r;(t) are functions that satisfy

a0
J |r;(t)] dz < oo,

a

for some a € R. Then |(33)| has n solutions yx(t), which satisfy
y (@) ~ AT (> 0) Y I<i<on.

The following corollary is a special case of this theorem, for n = 2, see [16], Example
1.9.1].

Corollary 3.50. Let
¢"(t) + (W + r(t)o(t) =0,

be a second order homogeneous differential equation with

JOO |r(t)] dt < oo,

a

or some a € R. There are solutions %!, p3%t such that
1 92

B~ (), A~ e (6 o0),

PP ~ e (> 0), 09 ~ —iwe @t (t — ).

If we also assume Sl:oo |r(t)| dt < oo, for some b € R, we also have solutions ¢i™, ¢ being

asymptotic to et e ™t resp. in the limit t — —o0.

We will also recall some standard facts about homogeneous linear differential equations.

Definition 3.51. Let f, g be two differentiable functions. Their Wronskian is given by

Wif, gl =fg —gf"

Proposition 3.52. Let ¢ : R — F be an arbitrary real valued continuous function. Let
y1(t), y2(t) be two solutions of the homogeneous second-order linear differential equation

y" +q(t)y = 0.

Then the Wronskian
Wly1, ya](t) = y1(t)y(t) — ya(t)y (1)

18 constant.

99.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

Proof. See e.g. [29, Lemma VI-1-4]. O

Proposition 3.53. Let
y" +pt)y +a(t)y=0

be a second order linear homogenous differential equation, where p and q are continuous
function. If y1(t) and ya(t) are two solutions of this differential equation, such that the
Wronksian Wy1,ya] is not identically zero, then every solution of the differential equation
can be written as

y = Ciyr + Caya,

for constants C1,C5 € C.
Proof. See, e.g. [40, Thm. 65.5]. O
Definition 3.54. Solutions y;(t), y2(t) of the differential equation

y" +pt)y +a(t)y =0,

satisfying
W[ylv y2] i 07

are called a fundamental set of solutions.
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4 Evolution of quantized Dirac fields in asymptotically
static GFLRW spacetimes

If it’s not tested, it’s broken.

— Bruce Eckel

In this section we study fermionic particle creation due to the expanding of spacetime,
as first studied by Parker [37, B8] and further studied by [I5] and more recently in [20,
39]. We generalize the results from FLRW spacetime to Generalized Friedmann—Lemaitre—
Robertson—Walker (GFLRW) spacetimes.

So let us assume that (M,g) = (R x X, —dt> ® a®(t)h) is a spatially closed, globally
hyperbolic GFLRW spacetime, with X~ a Riemannian spin manifold. We recall that the
Dirac equation on M is equal to

(wl@ (at+ ;Zg;) +1‘02®a(1t)D2+m)¢_0.

We can simplify this equation, by introducing a coordinate transformation on time, given

by
1 . dt
5t = r(t) 6777 1.€e. n= J\r(t) 5

which we will call conformal time. We will also write C() = a?(t). The Dirac equation now
transforms into

(io1 ® (C~Y2(n)d, + 20*1/2(7,)@) +i0a @ CTY2(n)Dg + m)y = 0, (34)

C(n)
and by multiplying with C/2(n) and writing u(n) = mC'/?(n) we get
, 3C(n) .
Op + ——— D =0 35
(201®<n+40(n) +ioa ® Dy + p(n) | ¢ =0, (35)
Proposition 4.1. Let (e)) be a complete orthonormal set of eigenspinors of the Dirac
operator Dy, on X, with corresponding eigenvalues A\, n = 1,...,dim V. The functions 1y
given by
C—3/4N

. . 1
Yan T(wl&n + Niog — u)qbf <i1> ®e,),‘b,

where gb;\—r € C(R)? satisfies the second order homogeneous differential equation

(55 +p2(n) + z‘m%ﬁﬁggm + AQ) ¢x(n) =0,

are solutions of the Dirac equation, |[Eq. (35)

Proof. We choose the ansatz

w)\,n = 0_3/4N§257AL€>\ (Z)SL € O(R) ® C2a

no
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where we have omitted the tensor product for notational brevity. Inserting this into the
Dirac equation, we get

= (2’01 (6,7 + Zggg;) +i02 Dy + ,u> enC =348 (n) =

3 . 3 . -
=03 (— 1i01CTIC +iody + Jio1 CTIC + ioa X + 1) B3
= 073/462 (ial(?n + idg)\ + ,u)qggf

We see that (;NS’; do only depend on A, i.e. we can choose éz\l = q~5>\ for all n. We conclude
that 1, ,, is a solution if and only if

(i010,) + Niog + p)dy = 0. (36)
We choose the ansatz
o = (1010, + Xioa — ), éx € C(R) @ C.
Inserting this into we get

0 = (i010y + Aiog + p)(io10, + Niog — Wy =
= ( — 0,2, — 01020y — 101110y — 101 (0 pt)
— 0201A0, — X2 — oo + to 0y + 102 A\ — ,LLQ)d_))\,

and hence we find that ¢y (n) has to satisfy

(02 +m?C(n) + ia1m20615727()n) + A)a(n) = 0.

(+)

_ 1
By choosing ¢E\i) = %(b/\ (-H) in the +1 eigenspace of o1 we get

(a}, +m2C(n) + im% + /\2> B =o. (37)

Remark 4.2. When C(n) = 0, [Eq. (37)| reduces to the harmonic oscillator and we have
solutions

N (77) = eiiwn’

wx =/ + A2 w=mCY2

where

Proposition 4.3. Suppose that
J ” C(n)

mZ(C’(n) — Cout) £ imm

dn < o
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and )
. Cln)
2 .
m*(C(n) — Cin) ZmZC'l/Q(n) dn < oo,

asymptotic positive frequency solutions (bi"(i), im(i) of |Eq. (87), satisfying

for some a,b € R, where Coyy = lim, .o, C(n) and Ci, = limi_,_OO C(n). Then we have

(Z);n(i) ~ e—iwin()\)n (77 — _oo) and gﬁiut(i) ~ e_iwout(A)n (T] - OO)’

win(A) = \/ [, + A2, wout (A) = \/ [oye + A2,
Min = nErEloom V 0(77)’ Mout = 7711_)Hgom V C(n)

The corresponding asymptotic negative frequency solutions of ¢f\n(i),¢im(i)

¢§\”(J—r)*’ qsi"t(J_r)*

where

are given by

respectively.

Proof. This follows immediately by applying [Corollary 3.50] The sign-flip of + in the
negative frequency solutions originates from the explicit factor i in [Eq. (37) O

Assumption 4.4. We will assume that C(n) satisfies the conditions stated in the proposi-
tion above.

Remark 4.5. Note that for solutions qﬁf\i) of |[Eq. (37), their complex conjugated variants
(bg\i) * satisfy the complex conjugated version of [Eq. (37)) that is

¢ .
<a§ +m?*C(n) F im 015;7()77) + >\2> &% () = 0.

This means that qi)f\_) and ¢E\+)* are solutions to the same equation, and the equivalent
statement with the signs flipped also holds . Therefore

1o Lgow (1) L (1) L e (1
V2 o) ove ) v )t Vet

are solutions to [Eq. (65)] &
Proposition 4.6. Defining

N} = -1
2\/.uin (Wm(/\) + .Uin)

we have for the asymptotic limits

. . n(— 1 —iw;
N}, (i010, + ido — 1) /\( ) ( 1) ~ whe N () — o)

in(— 1 .
N\ (i010,) + iAoy — )¢ <1> ~ @) N (s o)
Equivalent statements hold for ¢"“t(_) and (bo“t(_)*
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Proof. Using rj)f\”(_) ~ e~ win(Nn and 8n¢f\"(_) ~ —iwin (N e in(N7 we get

o 1 . 1
N, (i010y + iAoy — 1) T( ) ( ) ~ N e @inn (g, (N)oy + il — ) ( 1)

-1
_ N emiwmn [ T win(M)HAY (]
o win(A) — A — —1

_ 1 e—iwm()\)ﬁ wl"(A) tA+p
24/ pin(Win(A) + i) —win(A) + A —p
= wf‘ne*i“i"(’\)”.

Similarly, we have

- 1 . 1
N} (1010, + iAog — u)qbé\n( ) <1> ~ N @m0 (N)ay + idoy — p) <1>

= N ewinNn —H —win(A) + A\ (1
_win()‘) = A K 1

_ 1 iwin(A)n Wln(A) - A+ 12
2\//%71 (win ()‘) + ,U/in) Win ()\) +A+p
= wf‘nei‘"""()‘)".

We also proof the following two lemmas for future use.

Lemma 4.7. The following identities hold.

! 1 ou )\ + )\ - Mou —i
(i010y + iAoy — p)e otV _ (woutV) Hout ) —iwour (N
1 Wout ()\) - )\ — Mout

1 1 ou A)—A— ouw i
(i016n + i)\UQ - M)elwout(A)U ( > — ( w t( ) Hout ) elwom(k)’ﬂ'

_1 _wout()\) - )‘ + Hout

Proof. This follows from completely straightforward computations. Indeed for the first
identity we have

1

1 1

_ — Wout ()‘) + A 1 e—iwout()\)ﬁ
waut()\ — )\ —H 1

)
Wout(A) + A — Hout e*iwout(A)n.
()\) - >\ — HMout

. 1 .
(i010y + iAoy — ,u)e_““"“‘(’\)" < ) = (Wout(N) o1 + iAoy — 1) ( ) e~ wour(M)n

Wout
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Similarly, we have for the second identity

. 1 1 ,
(i010y + iAas — p)e™@ont N < 1) = (—wout(A\)o1 + iAoy — 1) ( 1) gtWout(A)m

_ _/14 _wout()‘) + A 1 eiwout()\)n
—wout(A) — A —p -1

ou A)—A— ou i
= w t( ) Hout e“"out(/\)”]. D
_wout<>\) - >\ + Hout

Lemma 4.8. The following identities hold.

1.
ou )\ )\ - Mou )\
,N‘f\utwﬂgl Wout (A) + Hout | _ '
wout()\) — )\ — Hout wout()‘) + Hout

N2 tu—)}\’(o_l wOUt()‘) — A — Hout _ - .
o —wout()\) — A+ Hout wout(/\) + Hout

Proof. To check the first identity, we compute

At Wout ()\) + A= Lout

- o)\utw 01
wout()\) - )\ - ,U/out

:7]\[3‘“ ? ou)\ A ou _ou)\ A= ou
(Nout) (W t(A) F A+ flour —Wout (A) + M t) ot () £ A — ot

2
=- (Nj\ut) (Wout()‘)2 = A2 = 5t = 2boutA = Wour(N)® + X 4 12y — 2ftoueA )
_ *4ﬂout/\ o A

B _4/Jvout (wout()\) + ,U/out) B Wout ()\) + /Jout ’
Similarly, we check the second identity by computing

At Wout(/\) — A= fout
tW 01
_wout()\) - )\ + lffout

(-‘Jout(>\) —A- ﬂout)

N)\
_wout(A) — A+ ,U'out>

:7N(f\u ’ ou)\_)\ ou ou>\ A ou
(V3" (oue ) = At e onaO) + A+ pane) (T

2
== (Nj\ut) (_Woulﬁ()‘)2 + A%+ /~Lz2mt = 2ftout A + Wout ()‘)2 — A - Ngut = 2pboutA )
_4:Uout)\ -A

B 4/1’0ut (Wout(A) + Mout) B waut(A) + Nout .

Proposition 4.9. Let ¢§\n(i)7 (;Siut(i) be the solutions given by , Then
Wy oy ] = 2iwin (N, WIET T, 63 = 2iweur (V)

In particular, the Wronskians are non-zero.
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Proof. We will only show the first equation, since the second follows by a completely similar
computation. By [Proposition 3.52| we know the Wronskian is constant. So to compute its

value, it is sufficient we to compute its limit at —oco. Since by we have

oy~ eI (g —o0), 0,0 T ~ i, (W) T (> —c0),

it follows that

¢§\n(_)6n¢i\n(+)* ~ iwim (M), ¢;n(+)*an¢in(—) ~ —iwin(N),

and using [Proposition 3.48| we find

WIS 60" = lim Way 60N (m) = 2iin ().

O
Proposition 4.10. There are coefficients ag\i), ,Bgi) satisfying
in(i)(n) _ ag\i)qf)iut(i)(n) + Bg\i) ;’\ut(@*(n)_ (38)

Proof. By we know that {(bf\n(i), in(j”)*} and {qzﬁim(i),qﬁiut@)*} are two

fundamental set of solutions of the same differential [Eq. (37)l Hence by [Proposition 3.53|
we can find constants af\i), Bf\i) such that [Eq. (38)| holds. O

Definition 4.11. The coefficients ag\i),ﬁg\i) from |Pr0position 4.10| are called Bogoliubov
coefficients.

Following appendix A of [15], we will prove some relations, relating the Bogoliubov
coefficients for future use.

Proposition 4.12. We have the following relations between the Bogoliubov coefficients.

aE\—H _ wzn()\) — Hin _ Wout<>\) + Hout (39)
ag\_) Wout()\) — Mout Wzn()‘) + Hin ’
§\+) _ wzn()\) — Kin _ _wout ()\) — Mout (40)
Bg\i) Wout ()\) + Hout Win ()\) + Min ’
(=) (D)% _ (=) g(+)x _ Win(A)
ay o — = , 41
A A 6)\ /3)\ (JJout(A) ( )
2
(=) ’2 _wout(A) + Hout | (=) ‘2 _ ,U/outwin()\) <Nout>
«Q R = . 42
’ A Wout(/\) + Hout 5)\ HinWout ()\) Nz ( )

Proof. By defining Dy = id,, £ m+/C(n), [Eq. (37) becomes
DiD$¢&i) = )\? g\i)
Applying D+ again, we get

DD+ (D1¢S") = X(D3o\").
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As every solution of D+D4¢ = A\2¢ is a linear combination of &F) and ¢(F)* it follows that
there are constants Az, Br such that

Dﬂb(i) - Aﬂb(?) + BJ_rd)(i)*_
But as ¢T and 3n¢i are negative frequency solutions in the asymptotic limits we need to
have Bz = 0, hence ’D;d)g\i) = A;(ég\”, for some constants As. And since by [Theorem 3.49

we have

Doy ™ ~ (Win(A) T pan)e™ @M (n — —o0),

we need D+ ¢"™E) = (Wi (N) F prin) ™™ F) We now apply the Bogoliubov transformation on
both sides of this equality, and get

D= (o (+)¢0ut + ﬂ)\ 0ut(+)*) = (Win(\) T ‘um)(a&?)(biut(?) + ﬁ/(\i)d)iut(i)*) (43)
And since again by [Theorem 3.49 we have
003" E) ~ i (N)e et () s oo),
Therefore we see that is asymptotically equivalent to
A" Wout(N) F tout)e ™ N4 B (—wout () F prous)e o V)7
= (Win(\) T meag\ﬁe—iwom(/\)n + 5§\¢)eiwom(z\)n)’

as n — o0. Equating coefficients, we immediately obtain the relations [Eq. (39) and [Eq. (40)|
To obtain [Eq. (41)|we calculate the Wronskians of |[Proposition 3.52/in two different ways,
using the Bogoliubov transfomations

2iwin (X)) = hm W(oy in(=), f\"(““)*] - lim W[¢§\n(_), in(+)*]

= lim W[a) (= )¢out )+ﬁ )(bout ag\+) ¢out(+ B(Jr Out( )]

n—0
= 2iwou(A) (afa{"* = 57807,
from which immediately follows.
Now we will show By observing
1 Wx — M I wx—p  lwux—p

(V) = _ _

(wrx—m)(wx+p) Ap wi—p Ap N Ap

and using the relations [Eq. (39) [Eq. (40)} [Eq. (41), that we have just shown, we obtain:
Moutwin()\) (Nout>2 _ Wln()\) Wout()‘) — Hout

MHinWout ()\) Nzn Wout (>\) Win (>\) — Min
(=)
_ e ( )% (+) ( )% (+
A
Lop B e
A (+)
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which proves O

Proposition 4.13. Let X is a compact Riemannian spin Manifold. Let Hyx = L*(X,Sx).
We assume that the Dirac operator Dy : Hy — Hx has a symmetric spectrum {\} € R
with normalized eigenfunctions e}, n = 1,...,dimVy. Let J be the real structure on X and
write

= Je)‘.

Then the Dirac|Eq. (35) has two sets of solutions given by {¢,\ s VN pin Y and {wf’\urf, ‘j\“ﬁ} that
go over to the plane wave solutions given by|Eq. (28) in the aysmptotzc regions. Here

; iy (1
Ui, = CTAND (i010y + iAo — )i ( 1) ®e,
. . 1
G, = CTAND (i010, + idon — p) @i <1> ®e

and mutatis mutandis for 3t UL,

Proof. This follows immediately from [Proposition 4.1] [Remark 4.5 and |[Proposition 4.6 and
the fact that &) has the same eigenvalue A as e, does. O

Let us denote the unique strong solution of the static Dirac equation with initial value

f € L?(Sx) ® C? and mass m = y, as given by [Theorem 3.23] by 1§ (f).
Now let fi, € L?(Sx) ® C? given by

O KD, (ai,wh, @ ep + b w), @ €))

Here and in the future we will write K = Hinjout _ for the normalization factor.

zn/out wiw/out(k)

3/2

We also adjust the inner product (-|-), {-]-y, to compensate for the explicit factor

Cm . Using the previous proposition, we can construct a solution to the Dirac equation

Fq. (35)
dim Vy

. . 1
Gnfn) = A EANA S (a’{,‘n(wl@nHMQ—u)d&”(_)eﬁ( )
A

n=1 -1

. . 1
+ b3 (i1, + iAo — )y e < ) )

1
(14)
that is asymptotically equivalent with ¥§*" (fi,) for n — —oo In exactly the same way we
have for a fou: € L?(Sx) ® C? a solution Yoyt (fout) such that

’(/}out(fout) ~ uout (fout) (77 - OO)

Using the Bogoliubov transformation given by [Proposition 4.10] we will now construct a
map

U : L2(82) ®(C2 s LZ(SZ‘) @(CQ,
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that assigns to a fous € L2(Sx) ® C? the vector U f,u, such that

inUf) ~ g (f)-

This map represents the evolution of a field from the asymptotic out region to the
asymptotic in region. Before we state and proof the theorem defining the map U, we define
the polarization tensor.

Definition 4.14. The polarization tensor X* is the square matrix of order dim V) with

entries \ \
X (en | Je

(X)\)nm = X7>l\m = < n| m>

wout()\) + lffout

We also set
C)\ _ K’f\n N’L)’I\’L

KX, NA

out out

Theorem 4.15. Let
U:L*(Sy)QC?* - L*(Sy) ® C2,

be the map that assigns to a f € L*(Sx) ® C? the element Uf, such that
inUf) ~ b (f)  (n— 0).
Then the map U is given by U = @, U> , for U* = U, + U2, with

(=)=
o IN 0 0 B
Ue/'\ven = C)\ A (=) ) U(?\dd = C)\ t
0 Oz>\ IN *B 0

with respect to the ordered orthonormal bases ((0%3/4K{\nwf‘n ®e)), (0;3/41(14’\”11);% ®e)))

and ((C(;L?;/QKg\utwg\ut ® e’i‘L)? (C;u?;/QKg\utwout ® é’i\L)) Of Hf ® (CZ'
Here N = dimHy and B = Bg\f)X)‘*.

Proof. Let f € L*(Sx) ® C? arbitrary. As we know that eu(Uf) ~ Y USf) (n — 0),
this reduces finding U to finding coefficients a‘/{%, bi’;’i, such that ¥, (f) = Yout, with

dim V)
— ou out(— 1 ou ou = 1
Your = C 3/4ZK(§MNOAM Z (ax,ﬁDwﬁk t( )62 < 1) I bx,ﬁDwA t(”*eﬁ <1>> .
X _

n=1

To shorten the equations we will write Dy = (i010, + iAoz — p). By applying the
Bogoliubov transformations given by [Proposition 4.10[to ¥;, (f) and equating ¥, (f) = Yout
we get

dim Vi,
; —) cout(— —) ou 1
St 8 (s (o a5 i) ()
A

n=1 -1
1 — out(— - ou > 1
+ bz)\ran)\ <a5\ )*¢>\ t(—)* n 5; )*¢)\ t(+)) 62 <1> ) (45)
dim Vy o) 1 . 1
= D KouNow D | aSuDa e | )+ iupael e | )
A n=1
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Now we transfer to the asymptotic out-

Itlon 4. 6| and |Lemma 4. 7|, we compare the coefficients of ¢,

region. Using the identities given in [Proposi-

out(+) ~ e—iwout (Mn .

N)\ dim V) B ' - w M) N —
D I (R R Y i )
out n=1 Wout()\) — A — Lout
dim Vy

— out
ZKout Z ax An oute

In the same way, we have by comparing coefficients of ¢,

dim Vy

)\
Dt & (A )GAN"A“<
dim V)

out—
Z out Z b A,n out6

—Wout ()\) -

out(£)* - eiwom()\)'r].

)

wout(/\) —A— Hout

>\ + Nout

byl "

— —A
oute )

Hence by using the orthonormality relations for w? (Proposition 3.27) and e}, and the
results of [Lemma 4.8 we get
K)\ N>\ L B dim Vy
out (=) in (=)= A
= ay 'ay’, + B e | Jep, ,
A KoAut Ng\ut ( AT A Wou( + Hout m21 < | >
K)\ N)\ B dim V)
out __ (=)kpin  _ p(—) Je)\ e a )
M K N ( A wour(A) F pour m21 enlen)
Using the just defined polarisation tensor, we get
dim V)
out C)\ ( -) l’rL + Z 6)\ )\m> ,
dim Vy
b())\'lft C)x ( )*bzn Z ﬂg\ XA* a)\ m> )
m=1
As this holds for arbitrary f, and we have for the coefficients
al):ln _ <Ci:l3/4K)\ w, ®€ ‘L{f> znn _ <CZ_TL3/4K1)\ - A ®6 ‘uf>
a(})\u;i - <C¢;¢?;/4Koutwout ® 62 ‘ f>out ’ bK’LthL = <Co_u3t/4Koutwout ® éi\z ‘ f>out )
the result now follows. O

Let us now recall some facts about quantization. We will refer the reader to
for an introduction into canonical quantization of fermionic fields and more details about

the construction.

Using asymptotic equivalences of solutions in the in and out asymptotic regions to solu-
tions of the static Dirac equation, we can define the quantized Dirac field in the in and out
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Fock space as follows. The following construction will be carried out for the in Fock space,
while equivalent results for the out Fock space are obtained mutatis mutandis. Let us define
the in Fock space as F(L?(Sx) ® C?). For any solution v, of the Dirac operator such that

Yin ~ 5" (n > —0)

we define the quantized Dirac field at infinity as an operator on the in Fock space as
w(yh) = C;" Z \f (Fof whed) e ag, + (Fuln wh,eh) e o],
where F is the temporal Fourier transform, and
ay’, =a (C’ 3/4K{\nwm ®e ) ) bi\rfT bt (C 3/4K}nw$n ®éﬁ)

are the annihilation and creation operators for particles and anti-particles respectively. Us-

ing the language that distributions are functions (see [Definition A.6|), we can write
- m . B
_ Cin3/4 Z /;A (e—zwktwkekazn + ezthw)\éﬁbxl;rl> . (46)
A,n

We will use the map U as defined above to define transformations between the Fock spaces
in the in and out regions.
4.1 Abstract Bogoliubov transformations

To generalize and formalize the idea of a Bogoliubov transformation, we proof the following
results. We refer the reader to for an introduction into the canonical quantiza-
tion of fermionic fields, as we will use basic facts and terminology without explanation. We
follow [41l, Thm. XI.108], [30, Prop. 10.12] and [47, Sec. 10.3].

Proposition 4.16. Let H = H, @ H_ be a Hilbert space, and

U. 0 0 U,_
Ueven = - ) Uodd = *
0 U U_. 0

be operators on H. Let forve Hi,we H_, a(v),al(v) and b(w), b (w) be the annihilation
and creation operators on the Fermionic Fock Space F(H) for particles and antiparticles
resp., satisfying the CAR. We define the Bogoliubov transformation

d(v) = a(Uywv) + b1 (U_ v),
V(w) = a'(Uy _w) + b(U_w).

Then o' (v), b (w) satisfy the CAR if and only if

UevgnUC’Uen + UoddUodd = I (47)
UevenUOdd + UoddUeven =0. (48)
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Moreover the Bogoliubov transformation is invertible with inverse

a(v) = d'(ULv) + 01 (UT ), (49)

b(w) = a’T(UT _w) + ' (U w) (50)
if and only if

Ue'uenU;rven + UOddUgdd = I’

UavenUldd + UOddUlven =0.

Proof. The following proof is an adaptation of [30, Prop. 10.12] to a Fermionic Fock space
with both particles and anti-particles. We will show only the first statement, as the second
follows from completely analog computations.

{a’'(v),V'(w)} = {a(Uyv) + b"(U_1v),a' (U —w) + b(U_w)}
= (U0 | Us—w) + (U0 | U_w) = <(ULU+ + UL U ‘ w>

and
(o't (v), b (w)} = <(UI+U, +UTUL ) ‘ w>

are both zero if and only if holds. Moreover for arbitrary vi,ve € Hy and wq,ws € H_

{a’(v1),a’T(v2)} = <(U4T_U+ + UI+U_+)1)1 ‘v2>

and
( (w1), b ()} = <(UIU_ + UL Uy ‘w2>
are equal to (vy | v2) and (wy | we) respectively if and only if holds. O

Any unitary transformation U : H — H can be decomposed into even an odd parts
U= Ueven + Uodda where

U 0 0 U,s_
Ueven = * ’ Uodd = * .
0 U U, 0

U+=P+UP+, U7=P7UP7, U+7=P+UP7, U7+=P7UP+.

Here

Hence U induces a transformation of the annihilation operators:

d(u) = a(Uyu) + b1 (U_ u), forueH,,
V(v) =al(Uy_v) +b(U_v), forveH_,
and hence a transformation of the field operator by
¥ (v) — W' (v) = d' (v) + 0T (v). (51)
Using the elementary facts that UT = U~! and Pl = P? = Py one easily checks that

Uy, U_,Uy_,U_ satisfy [[47)]-[(50)|and hence the transformed operators a’(u), ' (v) satisfy
the CAR.
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Definition 4.17. The transformation given by induced by U is called unitarily
implementable if there exists a unitary operator U : 7 — F such that

V' (v) = U¥(v)UT,
for any v e H.

Definition 4.18. Let H be a Hilbert space with orthonormal basis (e;). An operator
A:H-H

is called Hilbert-Schmidt if .
2 \|Aej||2 < o0.
n=1
We have the following result, stating when Bogoliubov transformations are unitarily

implementable.

Theorem 4.19 (Shale-Stinespring). The transformation U : H — H with U = Ueyen+Uopdd,

where
U 0 0 U,_
Ueven = u ) Uodd = ’ )
0 U U, 0

is unitarily implementable if and only if Uy_ and U_, are Hilbert-Schmidt operators.

Proof. See e.g. [47, Thm. 10.7]. O

4.2 Transformation of the operators in a GFLRW spacetime

Weaponized by our knowledge about abstract Bogoliubov transformation, we can com-
pute how our operators transform under the transformations induced by the metric on the
GFLRW spacetime.

Theorem 4.20. The transformations of creation and annihilation operators as induced by

Bogoliubov transformations on the Hilbert space L?(Sx) ®C? as given by|[Theorem 4.15, are
given by
dim V)

agt = ¢ (a&"a&’fn+ >, ﬁi‘)*x,émbi’fln>,
m=1

B = ¢ (a&%a’fn ) 6§>*X;na’x?m> -
m=1

Proof. This follows immediately from [Proposition 4.16| and [Theorem 4.15| Note that af
and b depend linearly on their arguments, while a and b’ depend anti-linearly on their
arguments. [

To now show that the conditions |(47)| - hold in this case we prove the following
lemma, which will aid in the calculations.
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Lemma 4.21. The following relations hold for the polarization tensor

A2 Wout(A) — 1
X)\ Tx)\ — X)\ X)\ T — I _ out out I 53
( ) ( ) (Wout ()\) + ,U/out)2 Wout<>\) + Mout ( )

Or equivalently

ou A) — ou
XX = DR, = o) ot

wout(/\) + Hout

Proof. This follows from straightforward computations. Indeed,

/\2
ZX)\ XA* - CUout()\) + /4L0ut)2 Z <€2 | Je?ﬂ> <€i\n | JT62>

/\2
= (Wout ) + fowr)? (JTed| (Z \e}n><ejn‘> e
A2 " \2

_ e)\ 6>\ _
B (wout(/\) + /f’fout)2 < " | k> (wout()\) + ,U'out)Q(snlﬁ

where we have used the identity
Z |ef‘n><ef‘n| =id.
m

Moreover we have,

XX = s )A 3 2 (Teh ey (e] Teh)
- G e e
~ (wom(A ;\ )2 Z<em leny{exleny

2
Z §mn5km = A b) 5nk7

- (wout( + N'out (Wout ()\) + Mout)

where we have used the fact that the trace is base independent. The result now follows from
>\2 = (wout(A) - ,uout)(wout ()‘) + ,Ufout)- O

Using [Proposition 4.16| we now show that the commutation relations of a$% and b3% are
retained under the transformations in [Eq. (52)|and compute the inverse transformatlons

Proposition 4.22. The CAR of a§“t and b3“* are retained under the transformations given

TL ’I’L

by|Eq. (52), if and only ifocg\ = ozA )%

Moreover, if that is the case, the inverse transformations of are given by
dim Vy
it = € ( ag= Y o) szbi?:i> 7
dim V),
; t
Z)fn :C < OUt + Z ﬂ)\ mn iun;r> 9
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Proof. Note that we can do the calculation for fixed A, as U does not mix elements corre-
sponding to different A\. Hence we set A fixed in the following calculations. Let

(1 0 0 B
Ueven = CA “ N (-) P Uodd = CA
0 Qy IN —BT 0

with N = dimV) and B = B/(\_)X)‘*, as before. We recall [Eq. (42) which is using our
current notation equal to

@) = o[ 0] (L) 2

To see that holds, we check

21 (2 21 (12 (
UeTvenUeven + [chddeOdd = (CA) ‘Oég\ )‘ IQN + (CA) ‘Bg )‘ <(X)\XAT)T 0

(M2 (1o 4 |gO ((@eutW) = Hout _
=(cY) (‘a/\ ‘ +‘ﬁ/\ ‘ (wout()\)+uout I,y = Iy,

where we have used [Lemma 4.21] To check when holds, we compute

1 0 0 B
U(IvcnUO + UT Ucvcn = C)\ 2 A N
dd + Usaq ) 0 aE\—) Ix) \—B" 0

ol Iy 0 0 -B
" 0 A § Bt 0 ) )
A N

which vanishes if and only if ag\f) — o\7* Note that if agf) is real, Ugyen is a multiple of
the identity and hence central, so the relations [Eq. (49)|and [Eq. (50)[immediately follow as

(ABNT = (BTA)T = A'B,

xM x0T 0)

for A central.
As a result of [Proposition 4.16 the inverse transformations are now given by

'™ (v) = a® (ULv) + b 1(UT L 0),
bin(w) _ CLOUtT(Ulf’LU) + bOUt(UIU)),

U 0 0 U,_
Ueven = * y Uodd = N . O
0 U U, 0

By choosing a specific basis for the eigenspaces V) we can simplify the polarization
tensor. Since the eigenspaces V), are finite-dimensional and Dy J = JDjy, we can apply the
following proposition to the eigenspaces.

with

Proposition 4.23. Let J be an anti-unitary operator on a finite-dimensional Hilbert space
H with J? = —1, then there is an orthonormal basis {fn, f—n} of H such that

an:f—na Jf—nszn~

In particular, H is even dimensional.
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Proof. We follow [50, Lem. 3.8]. Let f; € H be an arbitrary normalized element. Set
f-1 = Jf1. It is orthogonal to f; since

falfy=Uflf) =R H) ==UAA) =—={-1]| ).

Next take another normalized fo L f1, f_1 and set f_o = Jf5. As before f_5 is orthogonal
to fo and also to f1 and f_q :

il feay ={filfoy =P fa| Jfr) = ={fol fo1) =0
(for | f=2) =T fi| I f2) = {fa| f1) = 0.

Continuing in this way gives a basis {f,, f—n} for H with Jf,, = f_,. O

Proposition 4.24. We assume that the Dirac operator Dy has a symmetric spectrum
{\} € R. Then there is a basis of normalized eigenfunctions f;,

1 1
n=—=dimVy,...,—2,—-1,1,2,..., = dim V),
2 2
such that
= JF

A % 5 n( ) out
=C ( )% Ttl )\ —b ,—Tn> ,

Wout (A) + Hout

Moreover we have

(55)
sgn

_ C)\ ( out 6 #aoui‘[ > 7
An A wout( )+Mout A—n

Proof. Let {e}} be an orthonormal basis of eigenvectors of the Dirac operator Dy. Applying
[Proposition 4.23| to every eigenspace Vy, provides us with the basis {f)}. Note that this
is still a basis of eigenvectors. Using this basis we have for the entries of the polarisation

tensor \ \ e
_ - (fa }me> _ —sgn(m)A {f) !f_m> _ sgn(n)A On —m
OJout()\) + Uout wout()\) + Lout Wout()\) + fout

Changing the sums in

A
Xnm

dim Vi 2 dim V
2
n=1 n—fé dim V)

we get the transformations:

n,—n

agt, = (ol ag - B X) 00, = ¢

by, = > (ag—>*b§7g AR, al) =

—-n,n
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4.3 Unitary implementation of the Bogoliubov transformation

In this section we will be looking for a unitary operator that implements the Bogoliubov
transformations found in previous section. That is we want to find a unitary map

U:F—->F
such that
V' (v) = UP(v)UT,
for any v € ‘H. The Shale-Stinespring theorem (Theorem 4.19)) puts conditions on the co-

efficients B/(\*) for the transformation to be unitarily implementable. For the rest of this
section, we will assume these conditions are satisfied. For the following proposition, we have
adapted [39, Appendix A] to our situation.

Proposition 4.25. The Bogoliubov transformation given by are unitarily
implementable if af\_) is real for all A € o(Dyx). Then the unitary operator U : F — F
which implements the transformation is given by

U=@U,.
A

Here Uy : F — F, is given by
Uy =exp (Ly,),

where 1
LUA = 5 Z (0i1i2dzldzz + ejlizdildw) ’
11,12
and
0 - ag’\”‘; 1<i<n
E b, n+1<i<2n,
and

Here A is the square matrixz of order n given by

arccos <C>‘O¢E\_)*) .

A—— B XA (56)

1= (€72

Proof. For notational simplicity we will write

A=l B=cg X2, (57)
and
Q- a4 1<i<n
Y, nt+l<i<2n,
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Using this notation the inverse Bogoliubov transformations given by [Proposition 4.22] can
be written as

, 0 B
d™ = Al d™" — (—BT 0> dot, (58)

We claim there is a unitary map
Uy =exp (Ly,),

with 1
LUA = 5 2 (oiﬂzdzld}; + szliZdildiz) ’

1,02

and 0 an anti-symmetric matrix given by
0 arccos(A) 0 B\ arccos(A) 0 B
~ sin(arccos(A)) \ -7 0) VI—-A2 \-BT 0/’

di" = Und?"'U}.

such that

To proof this, let us first compute
|0] = V070 = arccos(A) I, . (59)
We recall [Eq. (42)] which is using our current notation equal to

— 2 Wou >\ — HMou
1= AP + [0 (MZEALME)

and using this becomes
B'B=8BB=(1-|AI,.

Now we compute 076, and see that [Eq. (59)| holds if ag\_) is real. Indeed

f
oo — arccos?’(4) ( 0 B 0 B\ arccos’(A) (0 —B* 0 B
1= \-B" o) \-BT o) 1-A \B' 0 J\-B" 0
_arccos?(A) ((BBT)T 0 1— AP

I,, = s2(A) Iy, .
a2 0 515 = a2 I arccos” (A) I,

) = arccos?(A)

if A is real. Therefore

cos(|0]) = Alsy, (60)
sin(|6)]) 0 B
0 = . 61
/I T (61
We can now compute
o 1
Und; U}, = Adoexp(Lu, )(d;) = expoad(Lu,)(d;) = 3, 77 ad(Lu,)*(dy),

B
Il
=}
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where ad(Ly, )(d;) = [Lv,,d;] = Lu,d; — d; Ly, . One can check that
ad(Ly,)* (d;) = (=1)" > (10]%)sd;,
and o
ad(Lu, ¥ (d;) = —(=1)* D (101 16]710) jad.

We refer to [39] for the explicit calculations. Hence we have

0 1 92k 0 _1k92k+19719
3 foatie i) - 5 (3 S0 ) a3 (5 S

k=0 i k=0

— Z ((cos(|9|))ji di — (Sin(|9|)|9|_19)ji d;r) '

Using [Eq. (60)| and [Eq. (61)] we see that this is agrees with [Eq. (58)} The result now
follows. 0

When we choose another basis of L?(Sx) such that we have the simplified Bogoliubov
transformations, given by the operators Uy also become less involved. We will
assume this in the following propositions.

One interesting transformation is the transformation of the vacuum. That is we want
to find an expression for the the in-vacuum |0;,) in terms of azut, blut and the out-vacuum
|0pwty - This can be done using the unitary operator found in the previous proposition, see
[39, Appendix B]. We will take a more direct approach, using the method as described in
[9] for a scalar boson field.

Proposition 4.26. Using the Bogoliubov transformation as given in the in-
vacuum s formally given by

(= )*
|0m> U |00ut> <Oout | 0m>HeXp{2 6 m —ma (;\urtrjbouﬂ } ‘Oout>

Proof. By conservation of charge, that is the difference between the number of particles and
anti-particles must be constant, the vacuum must be of the form:

[e.¢]
‘01n> :AO |00ut> + Z Z Z An()\la mi,..., >\2n7 an)

n=1 )\1,...,/\2” M1,...,M2n (62)
outf goutt out} boutT |0 >
A1,ma 7 A2, ma A2n—1,M2n—1" Azn,Map |~0Ut

Here and in the following the sum of m; is assumed to be over the all
1 . 1.
m; € {—5 dimVy,, ..., §d1mV>\i}.

Let us denote symmetric group of n elements by S,,. Note that by symmetry we have for all
(0,5) € Sp x Sp

An()\la my, ..., A2n, mZn) = sgn(a) Sgn(5)An (Ao(l)ama(l)u )‘26(1)3 Mog(1)s- -+

/\2a(n)71 y M2g(n)—1 /\25(n) » 25 (n) )-
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Because (Oput | Oouty = 1, we have
AO = <Oout |Ozn> .
By using |Fq. (55) ai{fm |0;y = 0 and comparing terms in [Eq. (62), we have

0= *Aoﬂ,(\_)*Xﬁl,_mbiﬁT 100ut)

+ Z Z A\, m, XN, m’)af\f)*a‘j\?fﬁla?fﬁbiﬁfz, [0pue)
)\/ m/
and hence
/6(*)*
Al(AamaAa 7m) =22 XA AOa

ag\_)* m,—m
Ar(A,m,k,n) =0 if A # Kk or m # —n.

From higher terms in agffm |0iny = 0 we get the recursion relation

An()\lymla)\la_mla"'7>\namn7An7_m’ﬂ)
1 n—1 p(=)*
= M X A1 (A A
_% (7)* mg,—m; n—l( 1,M1, A1y, =M1, ...,
i=1 Oy,
)\i717_m7ﬁ717)‘i+1ami+1’"'7)‘namn7An7_m’n)7

and all 4,,(---) = 0 for other combination of A; and m;, that are not related to a A, of the
form above by a permutation (0,5) € S, x Sp,.
From this it follows that the in-vacuum is formally given by

B(_)* ou ou
0in) = {Oout |0in>eXp{ZZ /\_) X;v\z,—ma/\,:rjbxitn 100ut)

(=)=
A m Q)
5&7)* A outtyoutt
:<Oout|0in>nexp Z (_)*Xmﬁ_ma/\mb/\,_m [00ut) - O
A m Oé)\

This provides us with an another way to calculate the effect of the unitary map U on a
arbitrary pure state |1)o,t) € Fo. Note that such a state can be written as

|wout> = H H aiﬁﬁjbizg |Oout>7

AeANEN meMy ,neNy

for finite sets
A,A/ e U(Dg),M)\,N)\ c N,.

Corollary 4.27. Let
|wout> = H H ai?gbizg |Oout>7

AeANEN meMy ,neNy

80.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

for finite sets
/1,/1/ o= U(Dz),M)\7N)\ < N,.

Using the Bogoliubov transformations as given in we have
U |’lpout> = <00ut | 02n> 1_[ 1_[ a;\rfjnb;r}jn 1_[

AeA,NeA meMy,neNy A

’6/(\_)* XN 17 outt

” ou ou

exp (_)* kv*kak”,kb)\”,—k |00ut>~
m C\{)\,,

Proof. This follows immediately from [Proposition 4.26| and

outt _ _inf
Uay ' = ax;U

by construction of U in [Proposition 4.25| O
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5 Evolution of quantized Dirac fields in a spatially flat
FLRW spacetime

A bug is never just a mistake. Tt
represents something bigger. An
error of thinking. That makes
you who you are.

— Elliot Alderson (Rami Malek)

In this chapter we transfer our results of the previous chapter to the Minkowski case,
relating our findings to the results presented in [15] [39, 20]. We will omit some details
if the calculations are almost identical to those in the previous chapter, and elaborate
when they are not. We will pay extra attention to calculations when considered useful to
the literature, and correct a small typographical error in [I5] which since then has been
plaguing the literature. We have changed our notation and presentation of results to follow
the literature more closely.

We consider a Dirac field ¢ with mass m on a 4-dimensional spatially flat Friedmann—
Lemaitre-Robertson-Walker spacetime, with metric g,, given by the line element

ds* = —dt* + a*(t)dz;dz’ = C(n)(—dn? + dx;dx?), (63)

where z; are the spacial coordinates and 7 is the so-called conformal time, related to the
time t by n = St %. The dynamics of the field given by the Dirac equation

(F*0, + m)y =0, (64)
where # are the curved-space y-matrices, satisfying
YA + AR = 2gM".

One can show that for this metric this boils down to

(voét—kgzggvo—i—iﬂv-V—km)w—O,

or equivalently

<’70677 + iggzgvo +y-V+ mCl/Q(n)) P =0,

where v# are the constant y-matrices. Since C(n) is independent of the spatial coordinates,
we can sepeparate the solutions, by introducing the ansatz

Vr(n, @) = C~¥4 (v, —mC'?)e* g (n) = e* O34 (100, + ik - v — mC?) g (n).

We see ¢ has to satisfy

(@% +m*C() + 72005”377) + |k|2> OR (65)
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Choosing ¢ = (;5;:)1) or ¢p = qS;c_)u, with u,, v, € C* satisfying

Yuy = —iug, v, = v, (66)

and inserting this into the Dirac equation we find that (;S;;—r) have to satisfy

(a?, +m2C(n) + imwﬂ;% + |k|2> By =o0. (67)

Remark 5.1. Note that for solutions ¢§f) of |[Eq. (67), their complex conjugated variants
gf)* satisfy the complex conjugated version of [Eq. (67)) that is

(a?, +m2C(n) F im%ﬁﬁijgm + Ikl2> k) =o.

This means that ¢§J) and cb;;r)* are solutions to the same equation, and the equivalent
statement with the signs flipped also holds. Therefore

O us B Tos B v 6

are solutions to In the relevant literature these solutions are plagued by typo-

graphical errors, as the non-solution gi);:r)*vs often appears in formulas. This is probably
due to a small typo in [15, Eq. 3.14]. &

If we assume

” . C(n)
L m2(C(n) — Cout) + zmm dn < oo
and . .
ﬁﬁ)m%000—6b0+imm§£3m dn < oo,

for some a,b € R, where Cyy¢ = lim, .o C(n) and Cj;, = lim,—,_, C(n), we are in the same

situation as in [Corollary 3.50, Hence we have positive frequency solutions qﬁfcn(i), gbZ“t(i),
satisfying

d);'cn(i) ~ e—iwin([k)n (7 — —0) and d)zut(i) ~ e~ wour (k)0 (n — ),
where

win([k]) = /[kI* + 12, wour (k[) = /[ + 2,0,

Hin = nli»riloom V C(n)’ Hout = nh—{%om V C(W)

The corresponding negative-frequency solutions are then given by qb:l@)*, qbzut(jr)*, where

the sign of + has flipped as explained in [Remark 5.1l Since the in and out solutions are
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both a complete set of solutions of the same differential equation, we can define Bogoliubov
coefficients a(+) = a(i)(|k|),ﬁ,(ci) = BE)(|k|) satisfying:

¢;cn(i)(n) (+)¢out ( )+ /8](c+)¢OUt +)*( ) (68)
The curved space spinor solutions to the Dirac equation are then given by
N Uin (s, @.m) = NiC(n) = (40, — ()¢~ ()e™ =,
Vin(k, s,@,m) = Ni"C(n) = (46, — p(n) oy * (me=* v,
with similar equations for U,,; and V,,;. Here
Nin — _i (win(|k|) - Mz‘n)l/Q _ —1

for normalization. To relate these solutions to the solutions in the flat case, we recall that the

flat-space spinors with polarization s, momentum k and energy w(|k|) = 1/|k|* + pu2 = k°,
are given by

u(k, s) = Ny (ik - pus,
v(k,s) = Ny(=ik — o,

c.f. The dirac adjoint of a flat-space spinor is defined as
a(k,s) = iu(k,s)'°,  (k,s) =iv(k,s)y°.
The spinors satisfy the orthogonality relations
u(k, s)u(k,s') = —v(k, s)v(k,s") = dsg. (69)

Now it’s easy to check that the curved space solutions go over to the corresponding flat-space
spinors in the asymptotic limits

Uin(k, s,@,1) ~ C%*(—o0)e®@emiwm By, (k. s) - (n — —o0),
Vin(k, s,@,1) ~ C~¥* (—a)em @ eiom Dy, (k,s) - (n — —0),

with similar expressions for U,,; and V,,; in the limit 1 — oo.

5.1 Bogoliubov transformations

Using the theory of fermionic quantization as explained in the field can be
expanded in two ways:

MOUt aout out(k 5 T 77) bout(k S)Vout(ka S7ma 77)) )
Wout |k (70)
Hin i t
ain(k, 8)Uin(k, s, 2,m) + b, (k ;8)Vin(k, s, 2,m).
ana (i) 4 L ol )
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To simplify notation we have written § for

1 (3/2)
SO

We will now first prove the following lemma, which is a straightforward but lengthy spin
calculation, as it is needed in the next step.

Lemma 5.2. We have
o(k, s )(—ik —m)us = —2imNv(0, )k - yu,. (71)
Proof. Indeed,

v(k,s")(—if — m)us = Nivz,(—inm,k“'y” —m) 10 (=in,e kP — m)us

= Niv!, (18, k7" — m)y°(=inpekPy" — m)us

= Niv), (i6,,k"y" — m)(inpek?y 70 — Mpe {77, VO HP = mn " )us
= Niv ,(zélwk“’y” —m) (i1 kP 7Y" = 201,617 kP — mA°)usg

= Nwl,(uSWk“'y” - m)(mpgk”’y”'yo + 2ik° (Y92 — mA%)u,

= Nwl, (16, k" y” — m)(inpekPy” —m) + (i8, k" — m)(2ik°7°)) 7 us
= Nwz, (6, k"y" — m)(inpekPy” —m) + (18, k" — m)(2ik°4°)) 7 us

= Nwl, ( m? — 27Kk - v + m? — 2imk -y — 2/{0(5uyk“7”70 — 2imk0'yo)) Oug
= Nwl, (—2imk -~y — 299Kk - v 4+ 299Kk - v 4+ 2E% — 2imk0'yo)) Oug

= Niv! (—2imk -y + 2(k°)? — 2imk°4°)) 7u,

= Nwl, (=2imk - v)) (—i)us

s/

= —2imNUI,k S Yus,

where in the penultimate step we have used the orthogonality of UI, and ug, for all s,s’. We
also have used the identity

Sumpo k" kP = (K0)* = [k[” +29°kk -y = m® + 29k %k - .

O
Proposition 5.3. The annihilation and creation operators as used in are related
by
Wout(lkDMin lecn (—) ’
bout (k, s) = oy, “bin(k, s) + Xssr (— m (—k,s .
t( ) win(|k|),uout N,ZM Bk Z )
and

aout(ka 5) =

Wout (|k]) frin lecn (= (=)=
o am (k,s) + Xors(— —k,s
Win(|k|)ﬂout N]Zut k ﬁ Z )
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Proof. Using the Bogoliubov transformations [Eq. (68)| we will write a,,; and blut in terms
of a;, and bzn. Indeed by inserting the Bogoliubov transformations in [Eq. (70)| we get

i(aout(k75)Uout(k757$77]) bout(k S)Vout(kasaxvn)> =

wout(|k|)lu’in ) —3/4 prin |
(R o)D)
(8= p) (o 67" ) + B 0 %) e,
81, (e, )C) AN (70, — () (¥ () + B0 ) e ).

We will only calculate the transformation for blut explicitly, as the calculations for a,y:

ut(+)*

are quite similar. Hence collecting only the terms containing qbz we get:

ibout O’U«t k S, &, 77))

Wou k in — in ou ik-x
ﬂ (B $)C ()Y NI (70, — () B 2 (),

Win ‘k| Hout b

(k) C )N (072, - u(n))ai_)*@ﬁim(_)*(n)e*““'%s)
We will now go to the asymptotic limit n — oo, where 0 ¢Z“t ~ iwout(|k|)ei“’°ut(|k|)"
and we get

i out k s Uout k S) —zk»weiwout(|k|)n =

wout(|k‘)/~tin in (- 0 - (=) jik-x i k
oAV (i (Rey 8)NE™ (iwour ([R)YC + ik - — pious) By, eFTeiwout (kDM
win(|k|),uout ) k ( t(l | ) k

k $ Nk ZWout |k|)7 — ik - Y- Mout) (- )* —ikw Zwm”(lk‘)nv ) =

wout(|k‘)ﬂin ) ik m
T ann.. zn k N ” k k - ” et 7'Wauf My,
win(|k|)uout S k (Zwo t(| |)7 tik-y = o t)ﬁ Us

+ 0! (k, s)

Nout a(i) Uout(k, S)G_ik‘weiwout(‘k\)”v )

We will consider both terms on the right hand side separately. By orthonormality of
Vout (K, s) and e~ it follows that

bT t(k,s) _ wout(|k|)ﬂin lecn
ou win(|k|)uout N]ZUt

! (K, ) + B(k, s)

Here B(k, s) has to be determined by solving:

B(k:, ) out (k, 5)e @ eiwout (KD _

Wout ‘k| Hin (=) ik (Ikl)
ke, $)NI (iwous (| k ik - ou et elont
win (K] o )N (iwour ([K[)Y° + ik - = prout) By,
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As we integrate over R3, we can take k — —k on the right-hand side, and get

iB(k, s)e_ik‘wei%“‘(lkl)”vout(k, s)

Wout (| k) pin ' . (=) —ik-x_iwous(|k|)
N W N _’Lk — Hou )6 e T etout Ikl nus~
(KD il R

—ik-x

By using the orthogonality relations for e , multiplying with ¥, (k, s") on both sides,
and using the spin orthonormality relations [Eq. (69) we obtain

Wou k Min ,(— in — .
Bk, ) = — /Mﬂé Db N o ) o

waut(‘k| /~L7,n (=) i
= — 0 ain(—k, )N (—2iptout Ng* 11 ko yug
wzn(|k‘)uout k Z k ( k )

wout(|k‘),u/zn t
= 72N”L o tout (Wout ([K]) + Lou ain(—k,s) X5, (—k
win(|k|),ufout kM t( t(‘ | 1% t Z ( )

wout(|k‘)/-j’zn
e g o S )X ()

Here we have used the result of [Cemma 5.2]
Tout (B, ") (—ik — fous) s = —2ipton: NZ“ 0Tk - yus, (72)

on the second line, and

ou 2
2N ¢ Mout(wout“kl) +:U/0ut) = ]'
in the final step.
We have also defined the polarisation tensor by

—iuz,k CYUs

Xosr(B) = —2p0ut NE tout (<K, 8 )vg = ——2 73
( ) Hout N U t( s )U wout(‘kD + Hout ( )
such that )
—ivlk - yug
X (k)= —"—"—, 74
® ( ) wout(‘kD +Mout ( )
Combining our results we find
Wout (|K|) tin Nllcn )* i (=)
b (K, s) = bl (k,s) + 8y X5 (—k)ain(—k,s') |, (75
() = | s N 2 )], (1)
or equivalently
Wout (k) pin Ng" (-)
bout(k,s) = S| g bin(k,s +ﬁ Ko (— —k,s)|. (76)
t( ) Win(‘kD,uout Nk t k Z (

In a similar way one can find that

wout (|| in Ny
aOUt(k7S) = wj:ak')uout NI(:::ut O[gc azn k S +5( )*ZXSIS -k 5) (77)

O
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Corollary 5.4. The inverse transformations of [Proposition 5.9 are given by

wout(‘kbﬂin len (—)* (—)*
e ()Tl G ZXss k)5t (k. )

and

wout(|k\)um Nllcn (, ’
) - + X .
bin (k. 5) Win (|k]) ot Ng“t o, bout(k, 5) Bk 2 : os( out( k')

Proof. This is completely similar to [Proposition 4.22] O

Remark 5.5. There is a small difference between the results of [Proposition 5.3| and [Corol-|
in comparison with [Theorem 4.20| and |Proposition 4.22] regarding the minus sign
in front of the second term of the transformations. This is due to a small difference in
the definition of the polarisation tensor. In this chapter it contains a factor ¢, while in

Definition 4.14] it does not. &

5.1.1 Checking the anti-commutation relations

We will show that the anti-commutation relations of the creation and annihilation operators
are maintained under the Bogoliubov transformations.

Proposition 5.6. We have the following relations between the Bogoliubov coefficients.

— Kin wout(‘kD + Hout

(%)
= = , (78)
a;ei) Wout (|K|) — tout win (|k|) + tin
k) winllkD) — i our((k]) ~ o (79
,(c_) wout(|k‘) + Hout wzn(lkD + Win ’
(5) (D% _ (=) ()% _ win((K[)
Qo — = —— 80
k k k 6Ic wout(‘kD ( )
2
(7)‘2 Wout(|k:|) — HMout (7)‘2 o Mouthn(|k|) (Nout)
al 7| 4 el Pout | g())T . 81)
‘ k Wout(|k|) + Hout k ,U/inwout(|k|) Nl’ﬂ (
Proof. See |Proposition 4.12] O

Proposition 5.7.

o~)out<|k:|) + lffout

D XE (k)Xo (k) = D) X (k) XE (k) = wout (IK|) = pout

Proof. Using the Weyl representations for the gamma matrices, i.e. 7 = ioc; ® I we see
that the constant zero-momentum spinors, as defined by [Eq. (66)| are of the form

IENEA RN
Ui_\/i 1 €+, Ui_\@ 1 €+,
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where {e,,e_} is an orthonormal basis of C2. Using

1 -1
Zus/ul, = 1 RTI
= 2\-1 1
and ,
(k-0)? = k" = wour (1k])* = 2 = (@our (IK]) = trout) (Wout (IK]) + tout),
we find

. ol ) (S ueul,) G- y)e,
ngs’(ik)Xss’(fk) = (wout<‘k|) + ,U/out)2

(1 1) o (_11 _11> o9 (1) Rel(k-o)I(k-o)es

(wout(|k|) + :uout)z

()G

(Wout (|K]) + /~Lout)2 B (wWout (| k) + Nout)2
. (Wout (|E]) + tout) (Wout (|K]) — frout) . Wout (|k]) — tout

NI

N

(wout(|k|) +,U/out)2 wout(|k‘> +,U/out.

For the other equation we note that
1(1 1 1
vl = 3 (1 1) ® §(I +s03),

and
Dl (ko) I +s03)(k-0)ew =D el (ko) I(k-o)es = 2|k[*.

Therefore,

> Xew (k)X 5 (k)

’

. ug (k- 'Y)Usvl(k : 7)“;
B Z (wout(|k|) + ,U/out)2

(1 71) o9 (1 1) P ( 11> Q1> el,(k co)(I +s03)(k - o)es

1

PN

(Wour (k) + prout)?

0 D))o L

(Wout (|K]) + /~Lou1ﬁ)2 a (Wout (| k) + /‘omt)2
wout(‘kD - /4Lout
wout(‘kD + Hout

PN
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Using previous proposition we now show that the commutation relations of aoy¢ and by
are retained under the transformations [Eq. (75) and [Eq. (75)]

Proposition 5.8. The CAR of aoyr and byy: are retained under the transformations given
by |Eq. (’75)| and|Eq. (77)L if a,(c_) is real.

Proof. This follows from similar calculations as done in [Proposition 4.22] For example,
using the CAR for b;,, and a;,, we have

i 2
+ B wout(|k‘),uin N}in ‘ (7)‘2 ) 1
{boutabout} - win(|k|),ulout ngutz oy {bzn7bzn}

2
+ ‘Bl(ci)‘ (Z X:S/Xsslamazn + Z XSS/Xs*s’a’Z"nai’n)>
s’ s’

o2
Wout (|K]) tin Ny (‘ (—)‘2 ‘ G Wout (|K|) — tout i )
= o bin, b ind T B ‘ 7~ Win, 4
o (R o g ([0 | imsPl} out [BI) F prous 17 00}

in2 ou
_ wout(|k‘)/u'in Nk Noutwin(‘kb (Nk t) =1
win(|k|)ﬂout NEMQ Minwout(‘kD lezn ’

where in the second step we used O

In the following section, we will assume ag) to be real.

5.2 Unitarily implementation of the Bogoliubov transformations

The Bogoliubov transformations provide us with a unitary implementation
U:F—->F

such that
V' (v) = U¥(v)UT,

for any v € H, exactly as in [Proposition 4.251 We will give a similar statement to
using a more physical notation.

Proposition 5.9. Under the Bogoliubov transformations given by the in-
vacuum transforms to

> 1—[ |Oout> 'Ykn |Tk:7 I k>out 'Vku |lk7 k>out + ’Yk”')/ku |Nk:7 (= k>out

\/1 + ‘%n) + ‘an‘ ‘Vklﬂku‘

Proof. The inverse transformation of [Fq. (77)|is, up to some constant which will drop out,
given by

k

ain(k, s) o agg)*aout(k,s) +ZXS/S(]€ (—)*pt

out

(=K, s),

s’

as follows from [Corollary 5.40 To have conservation of spin we must drop the terms con-
taining X4, where s’ # —s., and hence the inverse transformations boil down to
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ain(k,s) o€ Al apu(k,s) — X_y s (—k)BY *b] 0 (—k, —s), (82)
bin(k,5) € Al *bous(k, s) — Xo_o(—k)BL *al (K, —s). (83)

Using the method as described in [9] for a scalar boson field, we can compute the in-vacuum
|0ir in terms of aout, bTut and the out-vacuum |0,y ). By conservation of spin, charge and
momentum the vacuum must be of the form:

|O’L’I’L> =AO ‘Oout>

o0 2n 2n
+ Z JdBkl-”dSkzn Z 5(2 81)5(2 ki)An (K1, 51, .., kon, S2n) (84)
n=1 S815..4,82n =1 =1

cabu (R, 5100 (Ko, 52) -+ by (Kan—1, 820 1)b] 41 (K2n, 520) [Oous)
Because {0yt | Oputy = 1, we have
Ao = Oout | Oin) -
By using |[Fq. (82)| ain(k,$)|0;n) = 0 and comparing terms in we have
= — 4087 X (k)L (— s —5) [00ut)
+ Ak, s,k —s)og " dout (R, $)aby, (k. 5)b)u (k. —5) [0oue)
and hence

(=)=

Ar(k, s, —k, —s) =~ X o(—k) Ao.

From higher terms we get the recursion relations

2n—1 2n—1 1 2n15()*
An(khslw"7k2n71782n717_ Z k:’m_ Z i = 2 1 Z (— )*X*Sj,sj
i=1 n—=1:0 O,
2n—1 2n—1
'5< Z kz>5< Z 31’) Ap_1(k1,s1,. . kj—1,55-1, k41,8541, - - Kan—1, S2n—1)
i=1,i#] i=1,i#j

from which it follows that the in-vacuum is formally given by

|Om> <Oout | Om> exXp { J d3k Z

For the following, we generalize the calculations in [20] from two to four dimensions. From
the previous result, we see that different k does not mix, i.e. if there is a particle with
momentum k, there is always an anti-particle with momentum —k, and hence the vacuum
must be of the form

|07/ﬂ> H BO |00Ut> + Bl( ) |Tk27 lsz>out + BQ(k) |‘Lk7 T*k>out + B3(k) Mlka Tl*k>out) )

()*

‘,'(_k) out(k S)qut( k _S)} |Oout>'
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where

M3 bk Dgur 1= @bt (B, 1)bY e (—Fe, —1) [Ogur)
ks P kDo = @by (B —1)0L 1y (=K, 1) |00t
|le;Tl*k>out = out(k: 1) out( )qut( )b(TJut( k71)‘001“5>7

Since different k do not mix, we only have to consider only one frequency. By applying
to one frequency part, we find that we need to have

B X 11 (k) Bo(K) [k Vg = —0% " * Br(K) |1k Dgus
) X171< k)Bo(K) |1k = —tk " Ba(k) |1k »
ol By (k) [ Nk = By * Xo1.1(—k) B2 (R) [ Tt »
oty By (k) [ Nk = =By * X1 —1(—k)B1 () [T N—keDouy -
Hence
5(7)* 5(7)*
05> = HBo (|00ut> ﬁxu(—k)ﬁk;l—k%m—ﬁxm(—k)ukﬁ—k%m
k k

(—)% 2
+ (f;(c_)*> Xu(fk)XN(*k) |Tl«k7 Tl—k>out)’
k

where X4 (—k) = X1 _1(—k) and X3(—k) = X_; 1(—k). To simplify notation, lets intro-
duce
. B
Ve, =~ Xn (k).
Qe
Normalization of the vacuum {0;,, | 0;,> = 1 gives

|Oout> 'Yk“ |Tk; k>out ’qu |lk7 k>out ""Yk”'yku |Tl«ka - k>out
Oin) = H

\/1 + an’ + ”qu‘ Vkau‘

O

This result has also be found in [39, eq. 23] by uncoupling the operator found in [Propo]
We can now define a unitary mapping of the Fock space, exactly as in [Corol]
As this is not enlightening to repeat, we will conclude be given a simple example
of such a transformation.

Example 5.10. We can compute the evolution of any vector, e.g. for

‘Tl>in = a;‘rn(l’ 1) |Oln>7
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by using [Eq. and the Pauli exclusion principle:

10in = Bo®) (g 110)gue + Xi B850 Mous — 020 NG T

— X BT N Do) + [ ] Bote)ay ™ (1100 gue — Yiur 1103 15 Lt Dous
k#l

= Y 1106 Lks T kD oue T Vi Yior 116 Wi kDot )
= Boay (1 + st ) 10gue — (i + st P25 11065 10Dt )

+ n Bo(k)al(_) (00wt = Vo 1105 Thi b—kows — Vi 1105 bk T—kDous
k£l

+ w’:mzu 11es Nk Tl—k>out)- <
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6 Conclusion

We have generalized the creation of fermionic particles as described in [I5] for an isotropic
FLRW spacetime, to an asymptotically static GFLRW spacetime

(R X Zag = _dt2®a’2(t)92)7

with X a complete and compact Riemannian spin manifold. Future investigations could try
to generalize this even more, to encompass all asasymptotically ymptotic static hyperbolic
spacetimes.

e A generalization to a non-compact X is probably not too troublesome, following the
methods as explained in [22].

e A generalization enlarging the family of metrics to all smooth one-parameter family of
Riemannian metrics (g¢):er on X would be more troublesome, as this would complicate
the mean curvature H of (X, g;), disabling the possibility to find uncoupled solutions
to the Dirac equation. Increasing the family of allowed metrics, while decreasing the
family of allowed spaces X' could be a way forward here.

e A generalization beyond globally hyperbolic spacetimes by allowing a non-static X,
e.g. a pair of pants, looks out of reach at the moment.
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A Quantization

If you can’t give me poetry, can’t
you give me poetical science?

— Ada Lovelace

A.1 Fermionic Fock space

In this section we follow [47, [18, [3]. For now we assume we have a Hilbert space H* as the
state space of a particle, and a Hilbert space H~ = JH™ as the state space of an antiparticle.
Let QT : H = Ht @ H~ — HT be the orthogonal projection onto these two Hilbert spaces.
In the next section we will make these Hilbert spaces concrete. But first, we will define the
Fock space corresponding to these Hilbert spaces. We will define the Fock Spaces F(H™)
related to these Hilbert spaces. If there can be no confusion about the Hilbert spaces in use
we will write Fy = F(HY).

We will define these Fock spaces in multiple steps. We first define

FOo=m,,  FY = JHo =H,

and the n-(anti-)particle Fermionic Fock space }](r") as the the antisymmetrized tensor prod-

uct of n copies of ]___(:)’ ie.

Fi = /n\fi”, F = /n\fﬁ”.

Here we have used the antisymmetrized tensor product or wedge product A on the exterior
algebra. The exterior algebra A (V) of a vector space V is defined as the quotient algebra
of the tensor algebra by the two-sided ideal I generated by all elements of the form v ® v
for all v € V. The wedge product is the product induced by the tensor product on T'(V).

We define the orthogonal projections on these spaces Py : X)" ]—'J(jl) - A" .7-3(;), given
by
p _ 1
(U1 @ RuUp) =UL A AUy = o ZS: SEN(0) Up(1) @« @ Ug()-
oeSy,

To accommodate an arbitrary number of particles and anti-particles we define the Fermionic
Fock space as the Hilbert space direct sum (denoted by @)

g DN ) o @ Em)
‘F = @n,mzof(n’m) = f+ ®f7 = @n ‘F+l ® @m‘/—_; l ’
where F(nm) = F(n) g F(m) and ]__io,o) = f) := C. The elements in the Fock space are
sequences

g — (E(n’m))n,mENa g(’n,m) = f(nvm)

We also define the finite-particle subspace Fy of states in which the total number number
of particles is finite, i.e. instead of the Hilbert space direct sum, one takes the algebraic
direct sum. Note that F{ is dense in F. In the same way we define F,¢ and F_y. To
count how many particles (anti-particles) are in a state we define the number operators
Ny @ Fio = Fio by
Ni ‘]_.(n) =nl
+
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on }'J(In) and extend them linearly to F1o. We also define the total number operator
N=N,+N_:Fy—Fo

and the charge operator
Q:NJr—N— : Fo — Fo.

If we assume conservation of charge, this thus means the difference between the number of
particles and anti-particles is constant. A state of the form

2= (e",0,0,...), AeR,

is called a vacuum state and describes the case when there are no particles or anti-particles.
To go from the vacuum state to a state with particles we will define creation operators.

For v € .Firl) we define C(v),CT(v) : ®;_, ®" ]-'g) > @, " .Firl) by

COYm ® -+ ®un) = (0] ur)us ® -,

CT(U)(ul R Qup) =QU ® -+ Q Up.
The annihilation and creation operator for particles

A(v), A (v) : Fro = Fio
are given by
AW) = VN CW),  AT(0) = Poy/N:CT (),

for v € H*. Notices that C(v) respects the Fermionic Fock space, hence we don’t have to

project onto it. Using the wedge product notation this entails

A)(ur A -+ Aup) = (=1 wlugy ug A ujog Aujer A A ug,

Sl
M=

+| <

AT (ur A - Aun) = VR +1oAu A - A u.

Note that v — A(v) is anti-linear, while v — A'(v) is linear.
Similarly for any v € H~ the annihilation and creation operator for anti-particles

B(?)), BT(U) : .7:70 - ]:70
are given by
B(v) = C(Jv)r/N_,  Bf(v) = P_.\/N_CT(Jv).

Using the wedge product notation this entails

NgE

B)(ug A+ Auy) = (=1 (Jv uj) ug Aujog Aty A A U,

1
Vn
BY(w)(ur A - Aup) =V + 1 JoAug Ao Ay,

1

Note hat v — B(v) is linear, while v — BT(v) is anti-linear.
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Definition A.1. Let H be a Hilbert space and Fo(H) the corresponding finite Fermionic
Fock subspace. Operators A(u), AT(v) : Fo(H) — Fo(H) for u,v € H, are said to satisfy the
canonical anticommutation relations (CAR) if

{A(u), AT(v)} = Culv) I,
{A(u), A(v)} = {AT(u), AT(v)} = 0.

One can check that A(u), AT(u) satisfy the CAR for H = H™T, and also B(v), Bf(v) for
H="H".

We can even extend A(v), AT(v) to bounded operators on the whole Fermionic Fock
space F. Indeed for any & € Fy the CAR implies that

JA@)EI® + [ AT (w)E]|” = (€| AT () Aw)E) + (€| Aw)AT @)€Y = olllIE],

hence
A < fvll,  [JA@)T] < v,

and similarly we extend B(v), BT(v) to F_. Moreover with a bit abuse of notation we extend
A(u), AT (u), B(v), Bt (v) forue HT,ve H™ to F = F, ® F_ by

AF(u) = AF(w) @1, B*(v) = (-1)" I® B*(v),

where A# either means A or Af. The factor (—1)+ is added to satisfy the canonical
commutation relations

{A(u), B(v)} = {AT(u), B'(v)} = {A" (), B(v)} = {A(x), B'(v)} = 0.

Notice also that for any £ € F and v € F we have

A()€ = S{A@), A@))E =0,

which shows that ¢ contains at most one particle in the state v, the so called Pauli exclusion
principle. For B(v) exactly the same holds. If we assume that for a vector £ € F we have

Aw)é =0, B)E=0 YueH T veH,

then it follows £ = A\f2 for A € C, that is we see that the vacuum is unique up to a constant.

Definition A.2. For any v € H we define the field operator
U(v): F—>F

by
¥(v) = A(QTv) + BN (Q ). (85)

Note that this is an anti-linear mapping.

Proposition A.3. The operator ¥ : H — B(F) is an isometry. In particular it is bounded.
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Proof. Using the CAR for A and B' one can also check that ¥ (v) satisfies the CAR for any
v € H. And in the same way as we did for A(v) we have

12 (@)El|” + [t ()e||* = (€| @ ) ()e) + (€ [P ()€) = (o],
hence [[@(v)|| = [[&* ()] = [|v]- 0

Often it is useful to consider the Fock spaces in multiple equivalent ways based on
isomorphic Hilbert spaces. The following lemma provides us with the canonical isomorphism
of Fock spaces based on the underlying isomorphism of Hilbert spaces.

Lemma A.4. A isomorphism of Hilbert spaces U : Hy => Hy induces a isomorphism of
Fock spaces

FU): F(Ha) — F(Ha),

induced by
FO) (1 ®  Quk) =Uu; ® - ® Uug.

Moreover for any v € Hi
FU)Ai(0)F(U) ™" = Ax(Uv),  FU)A[(v)F(U)" = AY(Uv),
for the anmihilation-creation operators A, Al - F(H;) — F(H:),i = 1,2. Moreover,
FU) (0)F(U)™ = ¥ (Uv),
for field operators W; : F(H;) — F(H,;)

Proof. This follows from elementary calculations. O

A.2 Choosing a basis

It is often useful to express things in terms of an orthonormal basis (e, )neny of HT and an
orthonormal basis (&, )neny of ™. Now for n; € {0,1} define

Ini,ng,m3,...), = Vkleg A Aei,  |ning,ng,..o_ = VELUE, Ao A T8,
where 77 < --- < 4, are the indices ¢ for which n; = 1. Then

{In1,n2,ns,.. >, [ni€ 40,1}, n; < oo}, {|na,na,ma, ... ) [ ni € {0,1}, ) n; < oo}

are orthonormal bases for F; and F_ respectively. The fact that n; can only be 0 or 1 is
because of the Pauli exclusion principle. We define

ar = aler), al =a'(ex), by =0bE), b =bl(e),
and the CAR now entails

{ajval} = (Sjk I, {ajvak} = {a;‘aaz} =0,

98.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

and exactly the same holds for by, bL. One can check that

k—1

(_1)Zi=l i niy,...,Ng — 17" '>+ ng = 1
ag|nt, .. gy ..y, =
kl 1 k >+ {0 ng =0,

)X =
i ( 1) i=1 nl,...,nk+1,...>+ ng =0
ay ni,...,ng,...0, =
k| 1 k >+ {0 nk:].,

and similar for bk,bz. Hence we have azak Ini,n2,...), =ng|ni,ne,...), and we have

[ee] 0
N+ = Z aZak, N_ = Z bzb/@,
k=1 k=1
0
N =Ny +N_ = (alax +blb),
k=1
and
0
Q=N —N_ = (alar — blbr)
k=1

as bounded operators with domain Fy. Now since for every v € H
0
v= 2 (en |v)en +(&n|v)en),
n=1

we can write

() - a (2 <en|v>en) ol (2 <env>en)
= Z (<'U|en>an +<v‘én>bjz)

A.3 The quantization of fermionic fields on concrete spaces

In this section we will concertize the field operator by taking a concrete Hilbert space for
HE. We will start by defining the notion of a distribution, which is needed to rigorously
define the quantum field. We follow [I7, Ch. 9].

Definition A.5. A distribution is a linear functional acting on a class of test-functions
D(R™).
T:DR") > R.

Two common choices are smooth functions with compact support, and the Schwartz space,
as defined in Distributions acting on rapidly decreasing functions are called
tempered distributions.

An example of a distribution is the Dirac delta function defined by
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A locally integrable function f : R™ — R™ gives rise to a distribution T, given by

T(0)= | f@polada.

Because of this it is common in physics to adopt a notational fiction that any distribution
is a function.

Definition A.6. For distribution 7' : D(R™) — R, we introduce the formal notation
T(z),z € R™, as if T were a function. This has to be interpreted in the following way:

| r@s@s = 70)

for a test function f. Any notation containing 7'(x) without integration paired with a test
function has to be interpreted in this way.

For example. for the we write the Dirac delta function as if it were a function §(x),
which makes only sense when integrated over paired with a test function in the following
way

(z)¢(x)d"z = $(0). (87)

R’!‘L
It is possible to rigorously define the derivative of a distribution and, if we consider only
tempered distributions, also the Fourier transform of a distribution.

Definition A.7. For a distribution
T:SR") >R
its derivative 77 and Fourier transform F7T are defined by

T'(¢) = -T(¢), F(T)(¢) = T(F9).

Note that the Fourier transform gives an automorphism of the Schwartz-space, as stated

in [Theorem 3.9l

A.3.1 Minkowski space

Now back to quantization. We first consider the Dirac operator D = v*d,, +m on Minkowski
space, with domain contained in L?(R*, dr) ® C* =~ L%(R*, dk)*. We are only interested in
the on shell solutions, nicely expressed in momentum-space by the Hilbert space

H=H"®H
as defined in [Definition 3.43] We first define the field operator following [Eq. (85)] as the

mapping that that maps any vector in the Hilbert space H to a bounded operator on the
Fock space F(H):
U H— B(F(H)).

For various reasons and to coincide with the leading physical literature, we want to make
two changes:
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e Define the field operator for a f € S(R*)* instead of a vector w in the Hilbert space
H. We will use the Fourier transformation to achieve this.

e Use the Fock space based on the Hilbert space L?(R?)?* instead of HE. We will define
isomorphisms U* : H* — L?(R3, (2‘5)’;/3)4 and to achieve this.
Remember that every w™ € H* and every w™ € H~ can be written as

wt (k) = Z as(k)u(k,s), w (k)= Z Bs(k)u(k, s), (88)
s==+

s=+

where ag : R? — C and f3, : R?* — C are given by
as(k) = (us(k), w(k)), Bs(k) = (vs(k), w(k)).
We define the operator
R:SRYH* - H

as the combination of the Fourier-transform, the inclusion into L?(R*)®C* and the orthog-
onal projection onto H. Let Q* : H — H* the projection onto the two subspaces of H, as
before. We define

R* =Q* o R: SRYH)* — H*.

Any f € S(R*)* n F~1H can be written as the inverse Fourier transform of a w € H nS(R)*,
such that Rf = w, that is

_ ikt Vmd3k
f(z) = JX,t,uXm e w(k) we(27)372 (89)
_ ik, xt —ikyat, \/md?)k
_ jm (e wil) + e~ (k) ) o (90)
_ ikul"u + —iku-’liu —(_ \/ﬁd?’k
- JX:Z (e wr(k)+e w™ ( k)) OIS (91)
_ L+ ) (e as(k)ulk, s) + e " B (k)o(k, s)) S @)
where
+
w —w|X;rL, w _w‘x,,;

3
Note that factor % is due to the inner product on H, see [Eq. (31)

We have the isomorphism of Hilbert spaces

given by
Ut (k) = Y (wk, K))
Wi
and
U w(k) = \L/d—r:w((—wk,ks)).
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Note the appearance of a factor of ‘é—?, due to the invariant inner product on H, given by

[Eq. (31)l Using these isomorphisms induce isomorphisms of Fock spaces
FU): F(H®) — F(L*(R?)*).
By construction we now have the identities:
UTRYf(k) = ). @as(k)u(k, s), U R f(k)= ?ﬁs(k)v(k, s).
s=+ k
We are now ready to redefine the quantized field.

Definition A.8. For any f € S(R*)* the quantized Dirac Field is given by

W(f) = FO)(RfFU). (93)

We will expand this definition to obtain an expression for the quantized Dirac field that
is commonly found in quantum field theory books. We denote the annihilation operators
for particles and antiparticles on F(L?(R3)*) by a and b respectivily, that is we have

a(Uv) = FU)A@)FU™),

and similarly for b. We will interpret a,b as operator valued distributions on R3, by re-
stricting their argument to S(R?®)*. Adopting the notational fiction that a distribution is a
function we write

- JRS Z bk, s) (w(k),v(k, )>\(/uTk)d3/2 ’

and similarly,

= a(k, s){w s \/(,de?’k:
-1 3l )tk e, )

Here we have incorporated an arbitrary factor \lﬁ in a(k,s), bl (k, s).

Unraveling the definitions we find that the quantized Dirac field for f € S(R*)* is given
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by

¥(f) = J"(U) (ARTf) + BT(R_f)) FU) =a(UR'f) +b'(UR™ f)

\/; alk,s) + B (k >b*<kys>)(;f)'§/3
\/7 (RF(K), u(k, s)a(k, )
+ (RF(K), vk, s) (K, s>)(2f)’§/3
g Pl (< Jo, s w“i a0tk "
< RE zud z (k,s)>m(k,s)> (Qf)lz/s

4/ <f u(k, s)ye* ™" a(k, s)
dir &Pk

#Cfa) ok, SNV k) T

In the tradition of writing a distribution as if it were a function, we write

J alk, )" u(k, 5) + b1 (k, s)e~ e u(k, ) @k
R3 4 (Uk (27’[’)2/37

which has to be interpreted in the sense of ie.
| a@rvan s = v,

A.3.2 A generalized static Lorentzian cylinder

In this example consider the Dirac operator
((101 ®I)at + ’iUQ ®D2 + m)?/) =0

on a generalized static Lorentzian cylinder, M = R x X, with metric g = —dt? @ g5, where
(X, gx) is a compact Riemmannian spin manifold. The solution space is given by the Hilbert
space
H=Ht'®H"

as defined in Let QT : H — M7 the projection onto the two subspaces of
‘H, as before.

We first define the field operator following as the mapping that that maps any
vector in the Hilbert space H to a bounded operator on the Fock space F(H):

W H — B(F(H)).
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We now want to define the quantized Dirac field for a section f € L?(Sys) instead of a vector
w in the Hilbert space H. We will use the temporal Fourier transformation to achieve this.
Moreover, we want to use the Fock space based on the Hilbert space L?(Ss) ® C? instead
of H*. We will use the unitaries U* : HT — L?(Sx) ® C2, as given in [Eq. (27)| to achieve
this. Let us denote the inner product on L?(Sx) ® C? by {-|-) and the inner product on
Hi by ('7 ) :
Remember that every h € H, can be written as
h=h"+h",
with AT = QTh, h™ = Qh given by

2 V2onadu* ®e), hT = 2 V2wurbrit @ &) (95)
An An
where
= (\/QwAw)‘ ®ef‘l,h+) . b= (\/QW)\?I))\ ®éﬁ7h_) .
We define the operator
R: L2 (SM) - H
as the combination of the temporal Fourier transform and the orthogonal projection onto

H. We define
R*=Q*oR:L*(Sy) — H*.

Note that the following [Remark 3.15| and |Proposition 3.32| we have

F 1V 2wyuw ®e) = 4 /mw’\ ® ede it
w

and similarly
F U2 @) = 4| Sa? @ edeint,
w

where F is the temporal Fourier transform.
We are now ready to redefine the quantized Dirac field.

Definition A.9. For any f € I'(Sy) the quantized Dirac Field is given by
U(f) = FO)W(RFFU), (96)
withU=UT@U".

We denote the annihilation operators for particles and antiparticles on F(L?(Sx) ® C?)
by a and b respectively and we write

a,\)n—a<4/mw ®e> ban = (me)‘@ef;),
Wi wx

such that for h = Rf

a(UTh*) = axn <U+h+
An

A /ﬁw)‘ ®e;\L> = 2 Qxn (}"f, V2wyuw? ®62)
WA A,n
—Zam £F M (V2w ®e)) Zam< ,4/ w @ ee Mt).
)\
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and similarly
= 210 ( \ oo w *@ene ““t) .
An

Unraveling the definitions we find that the quantized Dirac field is given by

U(f) = a( U+R+f)+bT<U R™f)

Zq/ a)\n (f,w* @ene™™ ) ay

L (ot @) )

<f;2 l ,w ®6)\ 7zth o+ ®6)\ zw;t,w)\®—)\bT ))

Using the language that distributions are functions, we write

m
_Z /7 e iwat )\®6 aAn_FezwAtw ®6)\bT )
An W)\

which has to be interpreted in the sense of ie.

f () pl@)ydVy = B(f).

105.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

Acknowledgement

I would like to truly thank my supervisor Walter van Suijlekom for his idea to look into this
subject, his support and our motivating and thought provoking conversations.

I must also thank him for his patience this summer, when I was teaching myself to be an
Ethical Hacker and I had temporarily sidetracked my thesis. The epigraphs at the start of
each section are a reminder to this period, as I acquired each as a small reward for hacking
a box at Hack the Box.

I would also like to thank Klaas Landsman for acting as the second reader of my thesis

106.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

References

[1]

[15]

[16]

[17]

[18]

L. J. Alias, A. Romero, and M. Sanchez. Uniqueness of complete spacelike hypersur-
faces of constant mean curvature in generalized robertson-walker spacetimes. General
Relativity and Gravitation, 27(1):71-84, 1995.

C. Bar, P. Gauduchon, and A. Moroianu. Generalized cylinders in semi-riemannian
and spin geometry. Mathematische Zeitschrift, 249(3):545-580, 2005.

C. Bar, N. Ginoux, and F. Pfafle. Wave equations on Lorentzian manifolds and quan-
tization, volume 3. Furopean Mathematical Society, 2007.

H. Baum. Spin-strukturen und Dirac-operatoren iber pseudoriemannschen mannig-
faltigkeiten, volume 41. Teubner, 1981.

J. K. Beem, P. Ehrlich, and K. Easley. Global Lorentzian Geometry. CRC Press, 1996.
R. Bellman. Stability theory of differential equations. McGraw-Hill, 1953.

C. M. Bender and S. A. Orszag. Advanced mathematical methods for scientists and
engineers I: Asymptotic methods and perturbation theory. McGraw-Hill, 1978.

A. N. Bernal and M. Sanchez. Smoothness of time functions and the metric splitting of
globally hyperbolic spacetimes. Communications in Mathematical Physics, 257(1):43—
50, 2005.

C. Bernard and A. Duncan. Regularization and renormalization of quantum field theory
in curved space-time. Annals of physics, 107(1-2):201-221, 1977.

E. A. Coddington. An Introduction to Ordinary Differential Equations. Courier Cor-
poration, 1989.

E. A. Coddington and N. Levinson. Theory of ordinary differential equations. Tata
McGraw-Hill Education, 1955.

J. B. Conway. A course in functional analysis, volume 96. Springer, 1997.

P. C. Davies. Scalar production in schwarzschild and rindler metrics. Journal of Physics
A: Mathematical and General, 8(4):609, 1975.

P. A. M. Dirac. The quantum theory of the electron. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character,
117(778):610-624, 1928.

A. Duncan. Explicit dimensional renormalization of quantum field theory in curved
space-time. Physical Review D, 17(4):964, 1978.

M. S. P. Eastham. The asymptotic solution of linear differential systems: applications
of the Levinson theorem. Clarendon Press Oxford, 1989.

G. B. Folland. Real analysis: modern techniques and their applications, volume 40.
John Wiley & Sons, 1999.

G. B. Folland. Quantum Field Theory: A tourist guide for mathematicians. Number
149 in Mathematical Surveys and Monographs. American Mathematical Soc., 2008.

107.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]
[28]

[29]

T. Friedrich. Dirac operators in Riemannian geometry, volume 25. American Mathe-
matical Soc., 2000.

I. Fuentes, R. B. Mann, E. Martin-Martinez, and S. Moradi. Entanglement of dirac
fields in an expanding spacetime. Physical Review D, 82(4):045030, 2010.

S. A. Fulling. Nonuniqueness of canonical field quantization in riemannian space-time.
Physical Review D, 7(10):2850, 1973.

S. A. Fulling. Aspects of quantum field theory in curved spacetime, volume 17. Cam-
bridge university press, 1989.

R. Geroch. Domain of dependence. Journal of Mathematical Physics, 11(2):437-449,
1970.

P. B. Gilkey. Invariance theory: the heat equation and the Atiyah-Singer index theorem,
volume 16. CRC press, 1984.

N. Ginoux. The dirac spectrum, volume 1976. Springer Science & Business Media,
20009.

J. M. Gracia-Bondia, J. C. Varilly, and H. Figueroa. FElements of noncommutative
geometry. Birkhauser, 2001.

B. C. Hall. Quantum theory for mathematicians, volume 267. Springer, 2013.

S. W. Hawking. Particle creation by black holes. Communications in mathematical
physics, 43(3):199-220, 1975.

P.-F. Hsieh and Y. Sibuya. Basic theory of ordinary differential equations. Springer
Science & Business Media, 2012.

K. Landsman. Foundations of quantum theory: from classical concepts to operator
algebras. Cham: Springer International Publishing, 2017.

H. B. Lawson and M. L. Michelsohn. Spin geometry. Princeton Univ. Press, 1989.

J. M. Lee. Manifolds and Differential Geometry, volume 107. American Mathematical
Soc., 2009.

J. M. Lee. Smooth manifolds. In Introduction to Smooth Manifolds, pages 1-31.
Springer, 2013.

S. Moradi. Exact solutions of dirac equation and particle creation in (14 3)-dimensional
robertson-walker spacetime. International Journal of Theoretical Physics, 48(4):969—
980, 2009.

S. Moradi, R. Pierini, and S. Mancini. Spin-particles entanglement in robertson-walker
spacetime. Physical Review D, 89(2):024022, 2014.

D. C. Ostapchuk and R. B. Mann. Generating entangled fermions by accelerated
measurements on the vacuum. Physical Review A, 79(4):042333, 2009.

L. Parker. Quantized fields and particle creation in expanding universes. i. Physical
Review, 183(5):1057, 1969.

108.



Fermionic particle creation in asymptotically static GFLRW spacetimes Yari Kraak

[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]
[46]

[47]
[48]
[49]

[50]

L. Parker. Quantized fields and particle creation in expanding universes. ii. Physical
Review D, 3(2):346, 1971.

R. Pierini, S. Moradi, and S. Mancini. The role of spin in entanglement generated by
expanding spacetime. International Journal of Theoretical Physics, 55(6):3059-3078,
2016.

R. Plymen. Strong morita equivalence, spinors and symplectic spinors. Journal of
Operator Theory, pages 305-324, 1986.

M. Reed and B. Simon. Methods of modern mathematical physics. Academic press,
1978.

W. Rudin. Functional analysis. McGraw-Hill Inc., 1991.

G. Rudolph and M. Schmidt. Differential Geometry and Mathematical Physics: Part
II. Fibre Bundles, Topology and Gauge Fields. Springer, 2017.

M. Srednicki. Quantum field theory. Cambridge University Press, 2007.
N. Steenrod. The topology of fibre bundles. Princeton university press, 1999.

M. Tenenbaum and H. Pollard. Ordinary differential equations en elementary textbook
for students of Mathematics, Engineering and the Sciences. Dover Publications, 1985.

B. Thaller. The dirac equation. Springer Science & Business Media, 1992.
W. G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870, 1976.

K. van den Dungen. Families of spectral triples and foliations of space (time). Journal
of Mathematical Physics, 59(6):063507, 2018.

W. D. Van Suijlekom. Noncommutative geometry and particle physics. Springer, 2015.

109.



	Introduction
	Conventions and notation

	Geometry, spinor bundles and the Dirac operator
	Generalized FLRW spacetimes
	Spinor bundles
	Principal bundles
	The spinor bundle on a product spacetime

	Connections
	Dirac operators
	The Dirac operator on generalized Lorentzian cylinder
	Analytical aspects

	Solutions of the Dirac equation
	Fourier Theory
	The Schrödinger equation and Stone's theorem
	Initial value problems
	Minkowski-space equivalent

	Asymptotic solutions of differential equations

	Evolution of quantized Dirac fields in asymptotically static GFLRW spacetimes
	Abstract Bogoliubov transformations
	Transformation of the operators in a GFLRW spacetime
	Unitary implementation of the Bogoliubov transformation

	Evolution of quantized Dirac fields in a spatially flat FLRW spacetime
	Bogoliubov transformations
	Checking the anti-commutation relations

	Unitarily implementation of the Bogoliubov transformations

	Conclusion
	Quantization
	Fermionic Fock space
	Choosing a basis
	The quantization of fermionic fields on concrete spaces
	Minkowski space
	A generalized static Lorentzian cylinder


	Acknowledgement
	References

