Higher Chern-Simons and Yang-Mills forms in the spectral action

Walter van Suijlekom (joint with Teun van Nuland)

Noncommutative geometry: a spectral approach to geometry

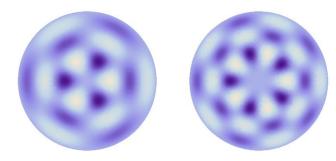
"Can one hear the shape of a drum?" (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

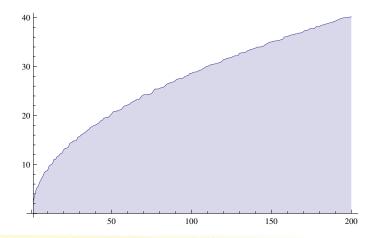
$$\Delta_M u = k^2 u$$

determine the geometry of M?

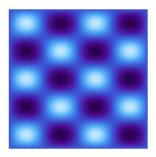
The disc

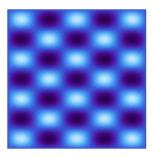


Wave numbers on the disc

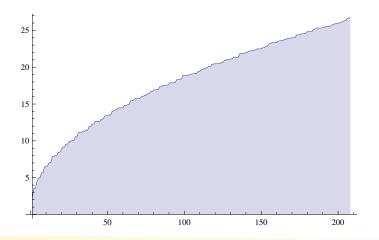


The square

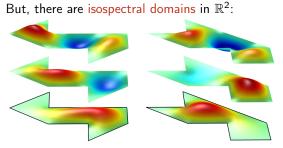




Wave numbers on the square



Isospectral domains



(Gordon, Webb, Wolpert, 1992)

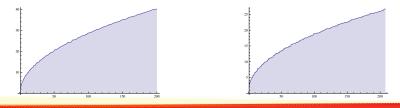
so the answer to Kac's question is no

Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such as dimension d of M:

$$egin{aligned} \mathcal{N}(\Lambda) &= \# ext{wave numbers} &\leq \Lambda \ &\sim rac{\Omega_d ext{Vol}(M)}{d(2\pi)^d} \Lambda^d \end{aligned}$$

For the disc and square this is confirmed by the parabolic shapes $(\sqrt{\Lambda})$:



Analysis: Dirac operator

Recall that k^2 is an eigenvalue of the Laplacian in the Helmholtz equation.

- The Dirac operator is a 'square-root' of the Laplacian, so that its spectrum give the wave numbers *k*.
- First found by Paul Dirac in flat space, but exists on any Riemannian spin manifold *M*.
- Let us give some examples.

The circle

• The Laplacian on the circle \mathbb{S}^1 is given by

$$\Delta_{\mathbb{S}^1} = -rac{d^2}{dt^2}; \qquad (t\in [0,2\pi))$$

• The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -i \frac{d}{dt}$$

with square $\Delta_{\mathbb{S}^1}$.

The 2-dimensional torus

- Consider the two-dimensional torus \mathbb{T}^2 parametrized by two angles $t_1, t_2 \in [0, 2\pi)$.
- The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}.$$

• At first sight it seems difficult to construct a differential operator that squares to $\Delta_{\mathbb{T}^2}$:

$$\left(a\frac{\partial}{\partial t_1} + b\frac{\partial}{\partial t_2}\right)^2 = a^2\frac{\partial^2}{\partial t_1^2} + 2ab\frac{\partial^2}{\partial t_1\partial t_2} + b^2\frac{\partial^2}{\partial t_2^2}$$

• This puzzle was solved by Dirac who considered the possibility that *a* and *b* be complex *matrices*:

$$a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

then $a^2 = b^2 = -1$ and ab + ba = 0

• The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} \\ -\frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} & 0 \end{pmatrix},$$

which satisfies
$$(D_{\mathbb{T}^2})^2 = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}$$

The 4-dimensional torus

• Consider the 4-torus \mathbb{T}^4 parametrized by t_1, t_2, t_3, t_4 and the Laplacian is

$$\Delta_{\mathbb{T}^4} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2} - \frac{\partial^2}{\partial t_3^2} - \frac{\partial^2}{\partial t_4^2}.$$

• The search for a differential operator that squares to $\Delta_{\mathbb{T}^4}$ again involves matrices, but we also need quaternions:

$$i^2 = j^2 = k^2 = ijk = -1.$$

• The Dirac operator on \mathbb{T}^4 is

$$D_{\mathbb{T}^4} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} \\ - \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} & 0 \end{pmatrix}$$

• The relations ij = -ji, ik = -ki, *et cetera* imply that its square coincides with Δ_{14} .

Noncommutative geometry

If combined with the C^* -algebra C(M), then the answer to Kac' question is affirmative.

Connes' reconstruction theorem [2008]:

 $(C(M),D_M)\longleftrightarrow (M,g)$

The "usual" story

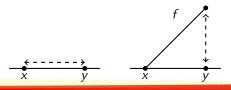
Given cpt Riemannian spin manifold (M, g) with spinor bundle S on M.

- the C^* -algebra C(M)
- the self-adjoint Dirac operator D_M
- both acting on Hilbert space $L^2(M, S)$

 \rightsquigarrow spectral triple: $(C^{\infty}(M), L^{2}(M, S), D_{M})$

Reconstruction of distance function [Connes 1994]:

$$d(x,y) = \sup_{f \in C(M)} \{ |f(x) - f(y)| : ||[D_M, f]|| \le 1 \}$$



Spectral triples $(\mathcal{A}, \mathcal{H}, D)$

- a C^* -algebra $\overline{\mathcal{A}}$
- a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for a ∈ A
- both acting (boundedly, resp. unboundedly) on Hilbert space \mathcal{H}

Applications to gauge theories:

• Gauge group $\mathcal{U}(\mathcal{A})$ of unitaries in \mathcal{A} acting as

$$D \mapsto uDu^* = D + u[D, u^*]$$

• Spectral invariant action functional [Chamseddine-Connes, 1996]:

Trace f(D)

• More general: inner perturbations as gauge fields

$$D\mapsto D'=D+\sum a_j[D,b_j] \qquad (a_j,b_j\in\mathcal{A})$$

Applications to particle physics

We consider asymptotic expansions of the form:

$$\mathsf{Trace}\,f((D+V)/\Lambda)\sim \sum_{k\leq n}f_k\Lambda^k\alpha_k$$

for a suitable f, cutoff Λ and some n (dimension). The α_k are integral invariants of local polynomial functionals in the metric and in V.

Almost-commutative manifolds ($C(M, A_F), L^2(M, S) \otimes H_F, D_M \otimes 1 + \gamma_M \otimes D_F$):

Trace
$$f((D+V)/\Lambda) \sim f_4 \Lambda^4 \text{Vol}(M) + f_2 \Lambda^2 \int R \sqrt{g} + f_0 \int \text{Trace } F_{\mu\nu} F^{\mu\nu} + \cdots$$

Perturbative expansion of the spectral action

Instead, we aim at an expansion of

Trace f(D + V)

in powers of V and then to understand its structure as a gauge invariant action functional.

We will exploit the following trace formula [vS 2012, Skripka 2013, vNuland-Skripka 2021, vNuland-vS 2021]:

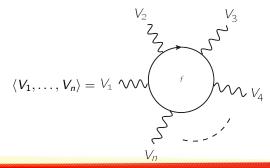
Trace
$$f(D+V)$$
 - Trace $f(D) = \sum_{n \ge 1} \frac{1}{n} \frac{1}{2\pi i}$ Trace $\oint f'(z) \left(V(z-D)^{-1}\right)^n$

$$\mathsf{Trace}\,f(D+V)-\mathsf{Trace}\,f(D)=\sum_n\frac{1}{n}\langle V,V,\ldots,V\rangle$$

where we introduced brackets:

$$\langle V_1, V_2, \dots, V_n \rangle = \frac{1}{2\pi i} \operatorname{Trace} \oint f'(z) \prod_j \left(V_j (z-D)^{-1} \right)$$

This can be depicted as a Feynman diagram:



Ward identity

There is the following amusing property:

$$(z-D)^{-1}a - a(z-D)^{-1} = (z-D)^{-1}[D,a](z-D)^{-1}$$

which is a generalization of the usual Ward identity:

$$\frac{1}{z-p} - \frac{1}{z-(p+q)} = \frac{1}{z-(p+q)}q\frac{1}{z-p}$$

We depict it as

Universal differential forms

For any *-algebra \mathcal{A} we may consider universal differential forms $\Omega^{\bullet}(\mathcal{A}) = \bigoplus_{n \in \mathbb{N}_{0}} \Omega^{n}(\mathcal{A}).$

- This is the universal differential graded algebra over A =: Ω⁰(A), endowed with differential d.
- A universal differential *n*-form ω is given by an expression of the form

$$\omega = \sum_j a_0^j da_1^j \cdots da_n^j,$$

and its differential is

$$d\omega = \sum_j da_0^j da_1^j \cdots da_n^j.$$

• No commutation relations but we do have the Leibniz rule:

$$d(ab) = d(a)b + adb$$

Noncommutative integrals

The main reason for working with universal differential forms is that one may write arbitrary multi-linear functionals on \mathcal{A} as noncommutative integrals.

 if φ_n is a n + 1-linear functional on A with the property that φ_n(a₀, a₁,..., a_n) = 0 if one of the a₁,..., a_n is a complex scalar, then we may write

$$\varphi_n(a_0, a_1, \dots a_n) = \int_{\varphi_n} a_0 da_1 \cdots da_n.$$

- We will be searching for these types of "integrals"
- Let us connect to the spectral action functional.

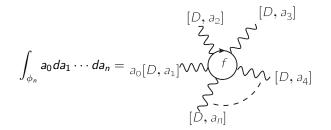
Connes' differential forms

- If we are given a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ then we write $\Omega_D^1(\mathcal{A}) = \{\sum_j a_j[D, b_j] : a_j, b_j \in \mathcal{A}\}$.
- A gauge field is a self-adjoint element $V = V^* \in \Omega_D^1(\mathcal{A})$, corresponding to a universal one-form $A = \sum_i a_i db_i$
- A gauge transformation acts as

$$A \mapsto uAu^* + udu^*$$
; or $V \mapsto uVu^* + u[D, u^*]$

Brackets as noncommutative integrals

We now consider the brackets $\langle V, \ldots, V \rangle$ as they appear in the perturbative expansion of the spectral action and express them in terms of the following noncommutative integrals:

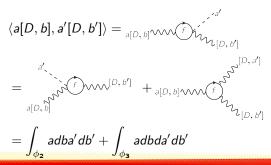


Brackets as noncommutative integrals

For one external edge we find

$$\langle a[D,b] \rangle = a[D,b] \quad \text{(f)} \quad = \int_{\phi_2} adb$$

For two external edges, we apply the Ward identity and derive



Brackets as noncommutative integrals

In conclusion, if $V = \sum_j a_j[D, b_j]$ is a gauge field with corresponding universal 1-form $A = \sum_j a_j db_j$ we may write:

$$\langle V
angle = \int_{\phi_1} A,$$

 $\langle V, V
angle = \int_{\phi_2} A^2 + \int_{\phi_3} A dA,$
 $\langle V, V, V
angle = \int_{\phi_3} A^3 + \int_{\phi_4} A dAA + \int_{\phi_5} A dA dA,$
 $\langle V, V, V, V
angle = \int_{\phi_4} A^4 + \cdots$

Noncommutative integrals

We now introduce another multi-linear functional ψ_{2k-1} by setting

$$\int_{\psi_{2k-1}} \omega = \int_{\phi_{2k-1}} \omega - rac{1}{2} \int_{\phi_{2k}} d\omega; \qquad \omega \in \Omega^{2k-1}(\mathcal{A})$$

For the first two terms, we have that

$$\int_{\phi_1} A + \frac{1}{2} \int_{\phi_2} A^2 = \int_{\psi_1} A + \frac{1}{2} \int_{\phi_2} (dA + A^2)$$

while for the next we may apply the Ward identity, in combination with a noncommutative Stokes theorem to obtain

$$\frac{1}{2} \int_{\phi_3} AdA + \frac{1}{3} \int_{\phi_3} A^3 + \frac{1}{3} \int_{\phi_4} AdAA + \frac{1}{4} \int_{\phi_4} A^4$$
$$= \frac{1}{2} \int_{\psi_3} \left(AdA + \frac{2}{3} A^3 \right) + \frac{1}{4} \int_{\phi_4} (dA + A^2)^2$$

Chern–Simons and Yang–Mills forms

The systematics persist and we find with $F = dA + A^2$ for the curvature and Chern–Simons forms

$$cs_1(A) = A; \qquad cs_3(A) = \frac{1}{2} \left(A dA + \frac{2}{3} A^3 \right);$$

$$cs_5(A) = \frac{1}{3} \left(A (dA)^2 + \frac{3}{4} A dA A^2 + \frac{3}{4} A^3 dA + \frac{3}{5} A^5 \right),$$

that we have

Frace
$$f(D + V) - f(D) = \int_{\psi_1} \operatorname{cs}_1(A) + \frac{1}{2} \int_{\phi_2} F$$

+ $\int_{\psi_3} \operatorname{cs}_3(A) + \frac{1}{4} \int_{\phi_4} F^2 + \int_{\psi_5} \operatorname{cs}_5(A) + \frac{1}{6} \int_{\phi_6} F^3 + \cdots$

The perturbative expansion of the spectral action

Theorem

For a finitely-summable spectral triple (A, H, D) and f in a suitable function class, there is the following absolutely convergent series expansion:

$$\operatorname{Trace}(f(D+V)-f(D)) = \sum_{k=1}^{\infty} \left(\int_{\psi_{2k-1}} \operatorname{cs}_{2k-1}(A) + \frac{1}{2k} \int_{\phi_{2k}} F^k \right)$$

Here the higher-dimensional Chern-Simons forms are given by

$$\operatorname{cs}_{2k-1}(A) := \int_0^1 A(F_t)^{k-1} dt,$$

where $F_t = tdA + t^2A^2$ is the curvature of the gauge field $A_t = tA$.

Hochschild cocycles

The functionals ψ_{2k-1} and ϕ_{2k} turn out to define Hochschild and cyclic cocycles.

Let us recall what this means. On arbitrary multi-linear functionals φ the Hochschild boundary operator b is defined by

$$\begin{split} &\int_{b\varphi} a_0 da_1 \cdots da_{n+1} = \int_{\varphi} a_0 a_1 da_2 \cdots da_{n+1} \\ &+ \sum_{j=1}^n (-1)^j \int_{\varphi} a_0 da_1 \cdots d(a_j a_{j+1}) \cdots da_{n+1} + (-1)^{n+1} \int_{\varphi} a_{n+1} a_0 da_1 \cdots da_n, \end{split}$$

for which one may check that $b^2 = 0$.

Hochschild cocycle means $b\varphi = 0$.

Hochschild cocycles in the spectral action

We claim that $b\phi_{2k-1} = \phi_{2k}$ for the functionals defined in terms of the brackets $\rightsquigarrow b\phi_{2k} = 0$, making ϕ_{2k} Hochschild cocycles.

$$\int_{b\phi_1} a_0 da_1 da_2 = \langle a_0 a_1[D, a_2] \rangle - \langle a_0[D, a_1 a_2] \rangle + \langle a_2 a_0[D, a_1] \rangle$$
$$= \underbrace{\overset{a_0[D, a_1]}{\bigvee}}_{a_2} - \underbrace{\overset{a_2}{\bigvee}}_{a_0[D, a_1]} \underbrace{\overset{a_2}{\bigwedge}}_{a_0[D, a_1]} \underbrace{\overset{a_2}{\bigwedge}}_{a_0[D, a_1]} \underbrace{\overset{a_2}{\bigwedge}}_{a_0[D, a_1]} \underbrace{\overset{a_2}{\bigwedge}}_{a_0[D, a_1]} \underbrace{\overset{a_2}{\bigwedge}}_{a_0[D, a_2]} \underbrace{\overset{a_3}{\bigwedge}}_{a_0} \underbrace{\overset{a_4}{\bigwedge}}_{a_0[D, a_2]} \underbrace{\overset{a_4}{\frown}}_{a_0[D, a_2]} \underbrace{\overset{a_4}{\frown}_{a_0[D, a_2]} \underbrace{\overset{$$

Even and odd cyclic cocycles

There is an additional symmetry encoded by the loop diagrams, which can be translated in terms of the so-called B-boundary operator, defined in general by

$$\int_{Barphi} \mathsf{a}_0 d\mathsf{a}_1 \cdots d\mathsf{a}_n := \sum_{j=0}^n (-1)^{nj} \int_arphi d\mathsf{a}_j d\mathsf{a}_{j+1} \cdots d\mathsf{a}_{j-1},$$

this time lowering the degree of φ by 1. Clearly, $B^2 = 0$ and one may even show that $(b + B)^2 = 0$. We will then define odd cyclic cocycles as sequences of functionals

$$(\varphi_1, \varphi_3, \varphi_5, \ldots);$$
 where $b\varphi_{2k+1} + B\varphi_{2k+3} = 0$,

Similarly for even cyclic cocycles.

Even and odd cyclic cocycles in the spectral action

For the functionals ϕ_{2k} the representation as a 1-loop diagram shows that

$$B\phi_{2k}=0$$

 \rightsquigarrow the sequence $\{\phi_{2k}\}$ that appears in the integrals for the Yang–Mills terms are not only Hochschild cocycles, they are even cyclic cocycles.

For the odd case one may show instead that the functionals ψ_{2k+1} that appear in the integrals for the Chern–Simons forms satisfy

$$B\psi_{2k+1} = 2(2k+1)b\psi_{2k-1}.$$

Hence, after a suitable normalization they give rise to odd cyclic cocycles.

Gauge invariance and pairing with K-theory

For the Yang–Mills terms, it turns out that gauge invariance is a consequence of the fact that φ_{2k} are Hochschild cocycles, showing that:

$$\int_{\phi_{2k}} u F^k u^* = \int_{\phi_{2k}} F^k.$$

- Since the spectral action is a spectral invariant, it is in particular invariant under gauge transformations.
- This combines: also the Chern-Simons terms are gauge invariant:

$$\sum_{k=1}^{\infty} \int_{\psi_{2k-1}} \operatorname{cs}_{2k-1}(uAu^* + udu^*) = \sum_{k=1}^{\infty} \int_{\psi_{2k-1}} \operatorname{cs}_{2k-1}(A)$$

 By considering a pure gauge field, we find that the pairing of ψ with odd K-theory of A is trivial.

Outlook: towards an effective spectral action

- The Feynman diagrams for the brackets suggest to consider loop diagrams in the gauge potential *V*.
- We may apply the background field method in the functional integral and consider contractions of the form

$$\int_{\Omega_D^{\mathbf{1}}(\mathcal{A})} \langle V_1, \dots, V_n, V \rangle \langle V, W_1, \dots, W_m \rangle e^{-\langle V, V \rangle} = \underbrace{\mathcal{K}_{\mathcal{A}}}_{\mathcal{A}} \underbrace{\mathcal{K}_{\mathcal{A}}} \underbrace{\mathcal{K}}}_{\mathcal{A}} \underbrace{\mathcal{K}_{\mathcal{A}}} \underbrace{\mathcal{K}_{\mathcal{A}}} \underbrace{\mathcal{K}_{\mathcal{A}}}_{$$

For a toy model for which Ω¹_D(A) ≃ M_N(C) one arrives at a propagator (if it makes sense) of the form

$$G_{kl} = rac{1}{f'[\lambda_k,\lambda_l]} = rac{\lambda_k - \lambda_l}{f'(\lambda_k) - f'(\lambda_l)}$$

with $\{\lambda_k\}$ the spectrum of *D*.

• At that point, one may start analyzing the structure of a quantum effective spectral action functional with 1PI contributions of the type:

