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Noncommutative geometry:
a spectral approach to geometry

“Can one hear the shape of a
drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



The disc



Wave numbers on the disc
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The square



Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac’s question is no



Weyl’s estimate

Nevertheless, certain information can be extracted from spectrum, such
as dimension d of M:

N(Λ) = #wave numbers ≤ Λ

∼ ΩdVol(M)

d(2π)d
Λd

For the disc and square this is confirmed by the parabolic shapes (
√

Λ):
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Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz
equation.
• The Dirac operator is a ‘square-root’ of the Laplacian, so that its

spectrum give the wave numbers k .
• First found by Paul Dirac in flat space, but exists on any Riemannian

spin manifold M.
• Let us give some examples.



The circle

• The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

• The Dirac operator on the circle is

DS1 = −i d
dt

with square ∆S1 .



The 2-dimensional torus

• Consider the two-dimensional torus T2 parametrized by two angles
t1, t2 ∈ [0, 2π).

• The Laplacian reads

∆T2 = − ∂2

∂t21
− ∂2

∂t22
.

• At first sight it seems difficult to construct a differential operator
that squares to ∆T2 :(

a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t21
+ 2ab

∂2

∂t1∂t2
+ b2 ∂

2

∂t22



• This puzzle was solved by Dirac who considered the possibility that a
and b be complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0

• The Dirac operator on the torus is

DT2 =

(
0 ∂

∂t1
+ i ∂∂t2

− ∂
∂t1

+ i ∂∂t2 0

)
,

which satisfies (DT2)2 = − ∂2

∂t21
− ∂2

∂t22
.



The 4-dimensional torus

• Consider the 4-torus T4 parametrized by t1, t2, t3, t4 and the
Laplacian is

∆T4 = − ∂2

∂t21
− ∂2

∂t22
− ∂2

∂t23
− ∂2

∂t24
.

• The search for a differential operator that squares to ∆T4 again
involves matrices, but we also need quaternions:

i2 = j2 = k2 = ijk = −1.

• The Dirac operator on T4 is

DT4 =

(
0 ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4
− ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4
0

)
• The relations ij = −ji , ik = −ki , et cetera imply that its square

coincides with ∆T4 .



Noncommutative geometry

If combined with the C∗-algebra C (M), then the
answer to Kac’ question is affirmative.

Connes’ reconstruction theorem [2008]:

(C (M),DM)←→ (M, g)



The “usual” story

Given cpt Riemannian spin manifold (M, g) with spinor bundle S on M.
• the C∗-algebra C (M)
• the self-adjoint Dirac operator DM

• both acting on Hilbert space L2(M,S)

 spectral triple: (C∞(M), L2(M,S),DM)

Reconstruction of distance function [Connes 1994]:

d(x , y) = sup
f∈C(M)

{|f (x)− f (y)| : ‖[DM , f ]‖ ≤ 1}

x y x y

f



Spectral triples (A,H,D)

• a C∗-algebra A
• a self-adjoint operator D with compact resolvent and bounded

commutators [D, a] for a ∈ A
• both acting (boundedly, resp. unboundedly) on Hilbert space H
Applications to gauge theories:
• Gauge group U(A) of unitaries in A acting as

D 7→ uDu∗ = D + u[D, u∗]

• Spectral invariant action functional [Chamseddine–Connes, 1996]:

Trace f (D)

• More general: inner perturbations as gauge fields

D 7→ D ′ = D +
∑
j

aj [D, bj ] (aj , bj ∈ A)



Applications to particle physics

We consider asymptotic expansions of the form:

Trace f ((D + V )/Λ) ∼
∑
k≤n

fkΛkαk

for a suitable f , cutoff Λ and some n (dimension).
The αk are integral invariants of local polynomial functionals in the
metric and in V .

Almost-commutative manifolds
(C (M,AF ), L2(M,S)⊗ HF ,DM ⊗ 1 + γM ⊗ DF ) :

Trace f ((D+V )/Λ) ∼ f4Λ4Vol(M)+f2Λ2
∫

R
√
g+f0

∫
TraceFµνF

µν+· · ·



Perturbative expansion of the spectral action

Instead, we aim at an expansion of

Trace f (D + V )

in powers of V and then to understand its structure as a gauge invariant
action functional.

We will exploit the following trace formula [vS 2012, Skripka 2013,
vNuland-Skripka 2021, vNuland-vS 2021]:

Trace f (D + V )− Trace f (D) =
∑
n≥1

1
n

1
2πi

Trace

∮
f ′(z)

(
V (z − D)−1)n



Trace f (D + V )− Trace f (D) =
∑
n

1
n
〈V ,V , . . . ,V 〉

where we introduced brackets:

〈V1,V2, . . . ,Vn〉 =
1
2πi

Trace

∮
f ′(z)

∏
j

(
Vj(z − D)−1)

This can be depicted as a Feynman diagram:

〈V1, . . . ,Vn〉 =



Ward identity

There is the following amusing property:

(z − D)−1a− a(z − D)−1 = (z − D)−1[D, a](z − D)−1

which is a generalization of the usual Ward identity:

1
z − /p

− 1
z − (/p + /q)

=
1

z − (/p + /q)
/q

1
z − /p

We depict it as



Universal differential forms

For any ∗-algebra A we may consider universal differential forms
Ω•(A) = ⊕n∈N0Ωn(A).
• This is the universal differential graded algebra over A =: Ω0(A),

endowed with differential d .
• A universal differential n-form ω is given by an expression of the form

ω =
∑
j

aj0da
j
1 · · · da

j
n,

and its differential is

dω =
∑
j

daj0da
j
1 · · · da

j
n.

• No commutation relations but we do have the Leibniz rule:

d(ab) = d(a)b + adb



Noncommutative integrals

The main reason for working with universal differential forms is that one
may write arbitrary multi-linear functionals on A as noncommutative
integrals.
• if ϕn is a n + 1-linear functional on A with the property that

ϕn(a0, a1, . . . , an) = 0 if one of the a1, . . . , an is a complex scalar,
then we may write

ϕn(a0, a1, . . . an) =

∫
ϕn

a0da1 · · · dan.

• We will be searching for these types of “integrals”
• Let us connect to the spectral action functional.



Connes’ differential forms

• If we are given a spectral triple (A,H,D) then we write
Ω1

D(A) = {
∑

j aj [D, bj ] : aj , bj ∈ A} .
• A gauge field is a self-adjoint element V = V ∗ ∈ Ω1

D(A),
corresponding to a universal one-form A =

∑
j ajdbj

• A gauge transformation acts as

A 7→ uAu∗ + udu∗; or V 7→ uVu∗ + u[D, u∗]



Brackets as noncommutative integrals

We now consider the brackets 〈V , . . . ,V 〉 as they appear in the
perturbative expansion of the spectral action and express them in terms
of the following noncommutative integrals:

∫
φn

a0da1 · · · dan =



Brackets as noncommutative integrals

For one external edge we find

〈a[D, b]〉 = =

∫
φ2

adb

For two external edges, we apply the Ward identity and derive

〈a[D, b], a′[D, b′]〉 =

= +

=

∫
φ2

adba′db′ +

∫
φ3

adbda′db′



Brackets as noncommutative integrals

In conclusion, if V =
∑

j aj [D, bj ] is a gauge field with corresponding
universal 1-form A =

∑
j ajdbj we may write:

〈V 〉 =

∫
φ1

A,

〈V ,V 〉 =

∫
φ2

A2 +

∫
φ3

AdA,

〈V ,V ,V 〉 =

∫
φ3

A3 +

∫
φ4

AdAA +

∫
φ5

AdAdA,

〈V ,V ,V ,V 〉 =

∫
φ4

A4 + · · ·



Noncommutative integrals

We now introduce another multi-linear functional ψ2k−1 by setting∫
ψ2k−1

ω =

∫
φ2k−1

ω − 1
2

∫
φ2k

dω; ω ∈ Ω2k−1(A)

For the first two terms, we have that∫
φ1

A +
1
2

∫
φ2

A2 =

∫
ψ1

A +
1
2

∫
φ2

(dA + A2)

while for the next we may apply the Ward identity, in combination with a
noncommutative Stokes theorem to obtain

1
2

∫
φ3

AdA +
1
3

∫
φ3

A3 +
1
3

∫
φ4

AdAA +
1
4

∫
φ4

A4

=
1
2

∫
ψ3

(
AdA +

2
3
A3
)

+
1
4

∫
φ4

(dA + A2)2



Chern–Simons and Yang–Mills forms

The systematics persist and we find with F = dA + A2 for the curvature
and Chern–Simons forms

cs1(A) = A; cs3(A) =
1
2

(
AdA +

2
3
A3
)

;

cs5(A) =
1
3

(
A(dA)2 +

3
4
AdAA2 +

3
4
A3dA +

3
5
A5
)
,

that we have

Trace f (D + V )− f (D) =

∫
ψ1

cs1(A) +
1
2

∫
φ2

F

+

∫
ψ3

cs3(A) +
1
4

∫
φ4

F 2 +

∫
ψ5

cs5(A) +
1
6

∫
φ6

F 3 + · · ·



The perturbative expansion of the spectral action

Theorem
For a finitely-summable spectral triple (A,H,D) and f in a suitable
function class, there is the following absolutely convergent series
expansion:

Trace(f (D + V )− f (D)) =
∞∑
k=1

(∫
ψ2k−1

cs2k−1(A) +
1
2k

∫
φ2k

F k

)

Here the higher-dimensional Chern–Simons forms are given by

cs2k−1(A) :=

∫ 1

0
A(Ft)

k−1dt,

where Ft = tdA + t2A2 is the curvature of the gauge field At = tA.



Hochschild cocycles

The functionals ψ2k−1 and φ2k turn out to define Hochschild and cyclic
cocycles.

Let us recall what this means. On arbitrary multi-linear functionals ϕ the
Hochschild boundary operator b is defined by∫

bϕ

a0da1 · · · dan+1 =

∫
ϕ

a0a1da2 · · · dan+1

+
n∑

j=1

(−1)j
∫
ϕ

a0da1 · · · d(ajaj+1) · · · dan+1 + (−1)n+1
∫
ϕ

an+1a0da1 · · · dan,

for which one may check that b2 = 0.

Hochschild cocycle means bϕ = 0.



Hochschild cocycles in the spectral action

We claim that bφ2k−1 = φ2k for the functionals defined in terms of the
brackets  bφ2k = 0, making φ2k Hochschild cocycles.

∫
bφ1

a0da1da2 = 〈a0a1[D, a2]〉 − 〈a0[D, a1a2]〉+ 〈a2a0[D, a1]〉

= −

=

=

∫
φ2

a0da1da2



Even and odd cyclic cocycles

There is an additional symmetry encoded by the loop diagrams, which
can be translated in terms of the so-called B-boundary operator, defined
in general by∫

Bϕ

a0da1 · · · dan :=
n∑

j=0

(−1)nj
∫
ϕ

dajdaj+1 · · · daj−1,

this time lowering the degree of ϕ by 1. Clearly, B2 = 0 and one may
even show that (b + B)2 = 0.
We will then define odd cyclic cocycles as sequences of functionals

(ϕ1, ϕ3, ϕ5, . . .); where bϕ2k+1 + Bϕ2k+3 = 0,

Similarly for even cyclic cocycles.



Even and odd cyclic cocycles in the spectral action

For the functionals φ2k the representation as a 1-loop diagram shows that

Bφ2k = 0

 the sequence {φ2k} that appears in the integrals for the Yang–Mills
terms are not only Hochschild cocycles, they are even cyclic cocycles.

For the odd case one may show instead that the functionals ψ2k+1 that
appear in the integrals for the Chern–Simons forms satisfy

Bψ2k+1 = 2(2k + 1)bψ2k−1.

Hence, after a suitable normalization they give rise to odd cyclic cocycles.



Gauge invariance and pairing with K-theory

• For the Yang–Mills terms, it turns out that gauge invariance is a
consequence of the fact that φ2k are Hochschild cocycles, showing
that: ∫

φ2k

uF ku∗ =

∫
φ2k

F k .

• Since the spectral action is a spectral invariant, it is in particular
invariant under gauge transformations.

• This combines: also the Chern–Simons terms are gauge invariant:

∞∑
k=1

∫
ψ2k−1

cs2k−1(uAu∗ + udu∗) =
∞∑
k=1

∫
ψ2k−1

cs2k−1(A)

• By considering a pure gauge field, we find that the pairing of ψ with
odd K -theory of A is trivial.



Outlook: towards an effective spectral action

• The Feynman diagrams for the brackets suggest to consider loop
diagrams in the gauge potential V .

• We may apply the background field method in the functional integral
and consider contractions of the form

∫
Ω1

D (A)

〈V1, . . . ,Vn,V 〉〈V ,W1, . . . ,Wm〉e−〈V ,V 〉 =



• For a toy model for which Ω1
D(A) ∼= MN(C) one arrives at a

propagator (if it makes sense) of the form

Gkl =
1

f ′[λk , λl ]
=

λk − λl
f ′(λk)− f ′(λl)

with {λk} the spectrum of D.
• At that point, one may start analyzing the structure of a quantum

effective spectral action functional with 1PI contributions of the type:

... tbc ...


