Cyclic cocycles in the spectral action

and one-loop corrections

Walter van Suijlekom

(joint with Teun van Nuland)

Radboud University # %¢

HING



Spectral triples (A, 7, D) and gauge theories
®  Gauge group U(A) of unitaries in A acting as
D — uDu* = D+ u[D, u*]
® Spectral invariant action functional [Chamseddine—Connes, 1996]:

Trf(D) =) f(\)
k

® More general: inner perturbations as gauge fields [Connes, 1996]

Dw— D+ V; V = Z aj[D, bJ] € Q})(A)s.a. (ajv bJ € A)
J
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Asymptotic expansion of the spectral action

If (A, H, D) is a regular spectral triple with simple dimension spectrum
Sd, and f(/*) a Laplace transform, then the spectral action is given
asymptotically (as A — o) by

Trf(D/A) ~ > fsNres,— Tr D% + £(0)¢p(0) + O(A™1)
Besd
where f3 := [ f(v)v?~ldv. [Connes—Marcolli 2007, vS 2015]

Example
Almost-commutative manifolds [Chamseddine—-Connes—Marcolli 2007, vS]
(C(MvAF)v Lz(Mvs) ® HF? Dy ®1 +Im & DF) :

Trf((D+ V)/A) ~ f4A4VoI(l\/I)+f2/\2/R\/E+fO/Rz\/§+...

+’ﬁ3/TrFWFW—EA2/|¢|2+%/|¢|“+---
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Theorem (Chamseddine—Connes, 2006)
The scale-invariant part of the spectral action in dimension 4 is

1 1 1
Gorv(0)-o(0) = ~ f VO 145 f (V0 15 fvD g fvo e
Moreover, if { VD=1 = 0 ('vanishing tadpole’) we may write

1 2 1
Cor() = co(0) =~ [ (4A+ 3% + 4 [ oA+ A2

W To
where A=} a;(b;) is the universal one-form for V' = %" a;[D, bj].
® Recognize Chern-Simons form cs3(A) and Yang—Mills form F2

1 is a cyclic 3-cocycle and 7y is a Hochschild cocycle.
®  The pairing (¢, u) with Ki-group of A is trivial.

Goal: extend these expansions in powers of V' and in A from the
scale-invariant part to the full spectral action Trf(D + V)
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Perturbative expansion of the spectral action

In [vS 2012] derived an expansion in powers of V of the form:

Trf(D—I—V)—Trf(D):Z%(V, V,...,V)

where (for suitable f):

1
(Vi, Vo, ... V) = %Tr]{f’(z)vl(z — D). Vy(z— D)}

Such expansions exist for varying assumptions on f and D
[Skripka 2013, vNuland-Skripka 2021, vNuland-vS 2021]:

(Vi, Vo, oo, Vi) =D TRV Vi Vi, Vi),
j=1
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Cyclic permutations and a Ward identity

There are the following two properties of the bracket:

Vi, Vi) = (Va, .o Vi V) 0)
(Vl,...,a\/j,...7vn>—<V1,...,VJ',137...,V,-,>
=<V17-~'7[Dva]7-~-,vn> (”)

Identity (I1) boils down to the 'Ward identity’

(z—D)ta—a(z—D)'=(z— D) }D,a(z—D)?!
We associate the following multi-linear functionals ¢, on A:

/ 20021~ 6a, = (a0[D. a1 [D, aa]. ... [D, a,])

n
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Brackets and cyclic cocycles

We repeat: f¢" agday - --da, = (ao[D, a1],[D, az], . . ., [D, an])

The n-cochain ¢, has the following properties:
®  Byo, is invariant under cyclic permutations, so Bp, = nBy¢, for odd
n and B¢, = 0 for even n.
®  bpok—1 = @2k 50 by = 0.
Proof (k =1):

/b(b agdaiday = <8081[D7 32]> — <80[D, 3132]> + <3280[D, 31]>

= —<a()[D7 31]82> + <3230[D, 31]> = <30[D, 31]7 [D, 32]>
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Brackets and cyclic cocycles

We repeat: f¢" agday - --da, = (ao[D, a1],[D, az], . . ., [D, an])
The n-cochain ¢, has the following properties:
®  By¢, is invariant under cyclic permutations, so B¢, = nBy¢, for odd
n and B¢, = 0 for even n.
boak—1 = 2k S0 boak = 0.
®  bBogok = 22k — Bodok+1
Proof (k =1):

/ agdaidan :/ apgaidas —/ apd(araz) +/ aragday
bBo ¢2 Bo g2 Bo 2 Bo g2

= <[Dv aOal]v [Dv 32]> - <[D7 a0]’ [Dv ala2]> + <[D’a230]’ [D7 81]>

= 2<30[D7 al]v [D7 a2]> - <[D> ao], [Dv 31], [D7 32]>
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Brackets and cyclic cocycles

We repeat: f¢" agday - --da, = (ao[D, a1],[D, az], . . ., [D, an])

The n-cochain ¢, has the following properties:

®  Byo, is invariant under cyclic permutations, so B¢, = nBy¢, for odd
n and B¢, = 0 for even n.
boak—1 = 2k S0 boax = 0.

®  bBopok = 2¢2k — Bodak+1

Motivated by this we define
Vok—1 = dak—1 — 3 Bodax = Bipoii1 = 2(2k + 1) bios_1.
Proposition (van Nuland—vS 2021)

1. The sequence (¢2x) is an even (b, B)-cocycle and each ¢,y defines
an even Hochschild cocycle: bpyi = 0.

2. The sequence ({/Jvzk_l = (—1)k1 (Qkk ll))l,wgk 1) is an odd
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Spectral action and universal forms

Reconsider the perturbative expansion >, 1(V,... V) and recall that
f¢n apday - dap, = (ao[D, a1],[D, a2, - - ., [D, an])

® For n=1 we find with V = a;[D, bj] and A = a;(b)):
V) =(al.b)) = [ A

® For n =2, we apply the Ward identity and derive

(V, V) =(a[D, b, a;s[D, by])
= (3j[D, bjlay, [D, by]) + (a;[D, by], [D, ay], [D, by'])

/A2 /A(SA
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Brackets as noncommutative integrals

In conclusion, if V =3_:3;[D, b is a gauge field with corresponding
universal 1-form A =3 a;0b; we may write:

<V>: A,
$1
(v,v>:/ A2+/ ASA,
(V,V, v>:/ A3+/ A5AA+/ ASASA,
3 4 ?s

VvV = [ At
®a
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Re-ordering the terms

Let us see how this can be expressed using the cochain ¥y,_1, i.e.

/ w= / w— L dw; w € Q?1(A)
hak—1 2k—1 2 P2k

For the first two terms, we have that

/A+1/ A2:/ A+1/ (6A + A?)
¢1 2 2 1 2 2

while for the next we may apply the Ward identity, in combination with a
noncommutative Stokes theorem to obtain

1 1 1 1
| ASA+Z | A 4+Z | AjAA+Z | A%
2/35+3/3 +3/45 +4/4
1 2 1
_ - ASA+ ZA3) + = A+ A?)?
2/3(6 +3 )+4/4(6+ )
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The perturbative expansion of the spectral action

Consider the following function class:
gri={fec®: 3G > 1st 1(Fum)®@) |y < CPF " ¥m < s, > o}

Theorem (van Nuland-vS, 2021)

For a s-summable spectral triple (A, H, D) and f € £57 with v € (0,1),
there is the following absolutely convergent series expansion:

Tr(f(D+ V) —f(D)) =) (/w csak_1(A) + ﬂ/¢ F )

k=1 2k
Here V =3 .a;[D, bj], A =3, a;0b;, and the higher-dimensional
Chern—Simons forms are given by

1
csok—1(A) ;:/ A(Fp)<Ldt; Fi = t6A + t2 A
0
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Gauge invariance

®  For the Yang—Mills terms, it turns out that gauge invariance is a
consequence of the fact that ¢, are Hochschild cocycles, showing

that:
/ uF*u* :/ Fk.
Pak P2k

® Since the spectral action is a spectral invariant, it is in particular
invariant under gauge transformations.
® This combines: also the Chern—Simons terms are gauge invariant:

Z/ csok—1(LAU™ + udu™) = Z/ csok—1(A)
k=1 P k=1 P

2k—1 2k—1
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Pairing with K-theory

Theorem (van Nuland—vS, 2021)
Let f € &7 for v < 1. Then:

1. The sequence (1;2”1) defines an odd entire cocycle with respect to
the Banach norm ||a||y = ||a]| + ||[D, a]|| on A.

2. the pairing of (V1) with Ki(A) is trivial, i.e. (u,1)) =0

Proof.
1. Multiple operator integrals: 3C > 1 such that for all n we have

cn N_1IS
= (5= ) Ml vl = 7

Apply this to Vi = a[D, a1], Vo = [D, a3], ..., V,, = [D, a,] to find that
ICs s.t. |Yakt1(@o0, - - - a2k+1)] < Co/k! for any bounded subset ¥ C A.
2. Take A =0 and realize that }_, csok_1(wou*) = (u,p) =0 O

D,D,....D
HTM (Vi,..., Vi)
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Loop corrections

Goal: Compute the quantum partition function and analyze loop
corrections to the spectral action

Concretely, we try to make sense of the partition function in the
background field:

Z[J, V] — /e— Tr f(D+V+Q)+(J,V)d[Q]

where
e V= Zj a;[D, bj] € Qh(A)s.a. is a background gauge field
® Jis a source field in the dual space Q}(A)z

s.a.

® (@ is a quantum field that is integrated over in the path integral
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Loop corrections

In order to makes sense of the path integral we let Q be an arbitrary finite
size hermitian matrix Q@ = (Q) in an eigenbasis of D (eigenvalues: Ax).

The quadratic term becomes:

<o Q) = QZQk/Q/kf [, A

and, more generally
0@ =2 3] QunOia - Qo PP A+ 5 A
9 9 - n. ' Iii2 X213 Inl1 11y M2 ) M
1yeeeyin
expressed in terms of divided differences:

P F0) g Pl =l
N S X —z

fly] =

)
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Gauge propagator

For suitable f' we may perform the Gaussian integration:

- QuQmne™2@2dQ 1
QkIan = f “ 1 = 5kn5/m,—
e 2<an>dQ f [)\k, )\/]

-100 -50

Example of a positive function f Divided difference f'[m, n]
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Feynman diagrams

[ Ais A

PR

271'1 f Z=2yg) (2=

)
11) (z— >‘In)

dz

1
FTINGN]
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Quantum Ward identity

We thus have a gauge propagator, and may consider all one-particle
irreducible diagrams:

Va Vi
(Va,..., Vo)
a a [D, 4]
®  There is a bosonic Ward identity: >—‘< - >;<: >/b\<
which is a consequence of the fact that
1

(A = A D AL A
[ My Am] = /[N, Am] o A ks Aml [N, Al
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In any case, it induces the following quantum Ward identity for the
divergent one-loop contributions:

(Va,...,aVy, . VD —(Va, .. Viiqa, . Vo)

o0 o0

= (Va,..., Vi1, [D,a], V..., V)EE ()

oo
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Proof of (aVi, Vo))ll — (Wi, Vea)ll = ([D, a], Vi, Vo))

WO,ONW

e

Vi
V2
al \a D, a]
1 \
1 1
w .,\fr’@‘m
1 1
\ 1
1 1
1 1
a a
a
< :3’@‘“«1
v, w» -

V. [D.4] (D.a] v D3]
- /?\ vy >3:c>u
Vi
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One-loop renormalizable spectral action

In general, as a consequence of the quantum Ward identity one can show
that the divergent part of the 1L contribution (V/,..., V))Cle) has the
same structure as (V,..., V):

1 Lo L
; E<<V""’ V>>o<€ = ; <'/~2k_0182k—1(/\) + K /}55k> .

where the cyclic cocycles 5 and {j)v are the analogues of ¢ and v but now
defined using the double bracket.

We conclude that the passage to the one-loop renormalized spectral
action can be realized by a transformation in the space of cyclic cocycles,

sending ¢ — ¢ — ¢ and Y — Y — 1.
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