Noncommutative spaces at finite resolution

Walter van Suijlekom (joint with Alain Connes)

Motivation: hearing the shape of a drum

Mark Kac (1966):

Riemannian (spin) geometry: (M, g) is not fully determined by spectrum of Δ_M (D_M) .

- This is considerably improved by considering besides D_M also the C^* -algebra C(M) of continuous functions on M [Connes 1989]
- In fact, the Riemannian distance function on M is equal to

$$d(x,y) = \sup_{f \in C^{\infty}(M)} \{ |f(x) - f(y)| : ||[D, f]|| \le 1 \}$$

Noncommutative geometry

So, if combined with the C^* -algebra C(M), then the answer to Kac' question is affirmative.

Connes' reconstruction theorem [2008]:

$$(C(M), D_M) \longleftrightarrow (M, g)$$

Spectral data

- The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based on [Connes–vS] (CMP, ongoing)

The "usual" story: spectral triples

- a C*-algebra A
- a self-adjoint operator D with (local) compact resolvent and bounded commutators [D,a] for $a \in \mathcal{A} \subset A$
- both acting (boundedly, resp. unboundedly) on Hilbert space \mathcal{H}

Generalized distance function:

- States are positive linear functionals $\phi: A \to \mathbb{C}$ of norm 1
- Pure states are extreme points of state space
- Distance function on state space of A:

$$d(\phi, \psi) = \sup_{\mathbf{a} \in A} \{ |\phi(\mathbf{a}) - \psi(\mathbf{a})| : ||[D, \mathbf{a}]|| \le 1 \}$$

Towards operator systems..

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, PAP is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - Consider integral operators associated to the tolerance relation $d(x, y) < \epsilon$

So first, some background on operator systems.

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators. Unital if it contains the identity operator.

• *E* is ordered: cone $E_+ \subseteq E$ of positive operators, in the sense that $T \in E_+$ iff

$$\langle \psi, T\psi \rangle \ge 0; \qquad (\psi \in \mathcal{H}).$$

• in fact, E is matrix ordered: cones $M_n(E)_+ \subseteq M_n(E)$ of positive operators on \mathcal{H}^n for any n.

Maps between operator systems E, F are complete positive maps in the sense that their extensions $M_n(E) \to M_n(F)$ are positive for all n.

Isomorphisms are complete order isomorphisms

C*-envelope of a unital operator system

Arveson introduced the notion of C^* -envelope for unital operator systems in 1969, Hamana established existence and uniqueness in 1979.

A C^* -extension $\kappa: E \to A$ of a unital operator system E is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$.

A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$ with the following universal property:

Shilov boundaries

There is a useful description of C^* -envelopes using Shilov ideals.

Definition

Let $\kappa: E \to A$ be a C^* -extension of an operator system. A boundary ideal is given by a closed 2-sided ideal $I \subseteq A$ such that the quotient map $q: A \to A/I$ is completely isometric on $\kappa(E) \subseteq A$.

The Shilov boundary ideal is the largest of such boundary ideals.

Proposition

Let $\kappa: E \to A$ be a C^* -extension. Then there exists a Shilov boundary ideal J and $C^*_{env}(E) \cong A/J$.

As an example consider the operator system of continuous harmonic functions $C_{\text{harm}}(\overline{\mathbb{D}})$ on the closed disc. Then by the maximum modulus principle the Shilov boundary is S^1 . Accordingly, its C^* -envelope is $C(S^1)$.

Propagation number of an operator system

One lets $E^{\circ n}$ be the norm closure of the linear span of products of $\leq n$ elements of E.

Definition

The propagation number prop(E) of E is defined as the smallest integer n such that $\kappa(E)^{\circ n} \subseteq C^*_{env}(E)$ is a C^* -algebra.

Returning to harmonic functions in the disk we have $\operatorname{prop}(\mathcal{C}_{\operatorname{harm}}(\overline{\mathbb{D}}))=1.$

Proposition

The propagation number is invariant under complete order isomorphisms, as well as under stable=Morita equivalence:

$$prop(E) = prop(E \otimes_{min} \mathcal{K})$$

More generally [Koot, 2021], we have

$$prop(E \otimes_{min} F) = max\{prop(E), prop(F)\}$$

State spaces of operator systems

- The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- In the finite-dimensional case, the dual E^d of a unital operator system is a unital operator system with

$$E_+^d = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the matrix order.

- Also, we have $(E^d)_+^d \cong E_+$ as cones in $(E^d)^d \cong E$.
- It follows that we have the following useful correspondence:

pure states on
$$E \longleftrightarrow$$
 extreme rays in $(E^d)_+$

and the other way around.

In the infinite-dimensional/non-unital case, this is more subtle (more later..).

Spectral truncation of the circle: Toeplitz matrices

Toeplitz operator system: truncation of $C(S^1)$ on n Fourier modes

$$C(S^{1})^{(n)}: \qquad (t_{k-l})_{kl} = \begin{pmatrix} t_{0} & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_{1} & t_{0} & t_{-1} & & t_{-n+2} \\ \vdots & t_{1} & t_{0} & \ddots & \vdots \\ t_{n-2} & \vdots & \ddots & \vdots \\ t_{n-1} & t_{n-2} & \cdots & t_{1} & t_{0} \end{pmatrix}$$

We have: $C_{\text{env}}^*(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$ and $\text{prop}(C(S^1)^{(n)}) = 2$ (for any n).

One can show [vS 2020, Hekkelman 2021] that state spaces on $C(S^1)^{(n)}$ (with Connes' distance) Gromov–Hausdorff converge to $S(C(S^1))$.

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

• functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

• an element a is positive iff $\sum_k a_k e^{ikx}$ is a positive function on S^1 . The Shilov boundary of the operator system $C^*(\mathbb{Z})_{(n)}$ is S^1 . Consequently, the C^* -envelope of $C^*(\mathbb{Z})_{(n)}$ is given by $C^*(\mathbb{Z})$.

Proposition

- 1. The extreme rays in $(C^*(\mathbb{Z})_{(n)})_+$ are given by the elements $a = (a_k)$ for which the Laurent series $\sum_k a_k z^k$ has all its zeroes on S^1 .
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k$ $(\lambda \in S^1)$.

Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes–vS 2020] and [Farenick 2021]:

$$C(S^1)^{(n)} imes C^*(\mathbb{Z})_{(n)} o \mathbb{C} \ (T=(t_{k-l})_{k,l},a=(a_k))\mapsto \sum_k a_k t_{-k}$$

Proposition

- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_{\lambda}\rangle\langle f_{\lambda}|$ for any $\lambda \in S^1$.
- 2. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/\widetilde{S_n}$.

Curiosities on Toeplitz matrices

Theorem (Carathéodory)

Let T be an $n \times n$ Toeplitz matrix. Then $T \ge 0$ iff $T = V\Delta V^*$ with

$$\Delta = \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix}; \qquad V = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix},$$

for some $d_1, \ldots, d_n \geq 0$ and $\lambda_1, \ldots, \lambda_n \in S^1$.

Farenick continues to exploit the duality by showing:

- every positive linear map of the $n \times n$ complex matrices is completely positive when restricted to the Toeplitz operator system.
- every unital isometry of the $n \times n$ Toeplitz matrices into the algebra of $n \times n$ complex matrices is a unitary similarity transformation.

More on non-unital operator systems

Consider a matrix-ordered operator space $(E, \|\cdot\|)$.

• The noncommutative (nc) state space is defined for any n as

$$\mathcal{S}_n(E) := \{ \phi \in M_n(E)^*, \|\phi\| = 1, \phi \ge 0 \}$$
 not always convex nor weakly *-compact

The nc quasi-state space is defined for any n as

$$\widetilde{\mathcal{S}}_n(E) := \{ \phi \in M_n(E)^*, \|\phi\| \le 1, \phi \ge 0 \}$$
 convex and weakly *-compact

• The modified numerical radius $\nu_E: M_n(E) \to \mathbb{C}$ is defined as

$$u_{E}(x) = \sup \left\{ \left| \phi \left(\begin{smallmatrix} 0 & x \\ x^{*} & 0 \end{smallmatrix} \right) \right| : \phi \in \widetilde{\mathcal{S}}_{2n}(E) \right\}.$$

Definition (Werner 2002)

A non-unital operator system is given by a matrix-ordered operator space for which $\nu_E(\cdot) = \|\cdot\|$.

Approximate order units

We now consider a particular class of non-unital operator systems.

Definition (Ng 1969)

Let E be a matrix-ordered *-vector space. An approximate order unit for E is an ordered net $\{e_{\lambda}\}_{{\lambda}\in{\Lambda}}$ of positive elements such that

for each $x^* = x \in E$ there exists a positive real number t and $\lambda \in \Lambda$ such that

$$-te_{\lambda} \leq x \leq te_{\lambda}$$
.

In fact, if the approximate order unit is norm defining in the sense that

$$||x|| = \inf \left\{ t : \begin{pmatrix} te_{\lambda}^n & x \\ x^* & te_{\lambda}^n \end{pmatrix} \in M_{2n}(E)_+ \text{ for some } \lambda \in \Lambda \right\}$$

then E is a non-unital operator system [Karn 2005, Han 2010].

Assuming the existence of a norm-defining approximate order unit in E we may show familiar C^* -results such as

- 1. the nc state space $S_n(E)$ is convex and if $E \subseteq A$ with a norm-defining approximate order unit for A contained in E we have that
 - 2. any (pure) nc state on E can be extended to a (pure) state on A.
 - 3. (Jordan decomposition) For each hermitian continuous linear functional $\phi: M_n(E) \to \mathbb{C}$ there exist positive linear functionals $\phi_+, \phi_-: M_n(E) \to \mathbb{C}$ such that $\phi = \phi_+ \phi_-$ and $\|\phi\| = \|\phi_+\| + \|\phi_-\|$
 - 4. we have an isometrical order isomorphism

$$M_n(A)_h^*/M_n(E)_h^{\perp} o M_n(E)_h^*$$

This also applies if we replace E and A by dense subspaces E and A.

Operator systems, groupoids and bonds

Recall:

- Consider a locally compact groupoid G equipped with a (left invariant) Haar system $\nu = {\{\nu_x\}}$.
- The space $C_c(G)$ of compactly supported complex-valued continuous functions on G becomes a *-algebra with the convolution product and involution given by

$$f * g(\gamma) = \int_{G_{\mathsf{x}}} f(\gamma \gamma_1^{-1}) g(\gamma_1) d\nu_{\mathsf{x}}(\gamma_1); \qquad f^*(\gamma) = \overline{f(\gamma^{-1})},$$

where $x = s(\gamma)$ for any $\gamma \in G$.

• $C_c(G)$ can be completed to the groupoid C^* -algebra $C^*(G)$

Definition

A bond is a triple (G, ν, Ω) consisting of a locally compact groupoid G, a Haar system $\nu = \{\nu_x\}$ and an open symmetric subset $\Omega \subseteq G$ containing the units $G^{(0)}$.

Proposition

Let (Ω, G, ν) be a bond. The closure of the subspace $C_c(\Omega) \subseteq C_c(G)$ in the C^* -algebra $C^*(G)$ is an operator system.

Example

- 1. Consider $\Omega_n = (-n, n) \subset \mathbb{Z} \leadsto Fejér-Riesz \ operator \ system \ inside <math>C^*(\mathbb{Z})$.
- 2. Consider $\Omega_n = (-n, n) \subset C_m$ (so modulo m). The operator system consists of banded $m \times m$ circulant matrices of band width n.

Thus, the ambient groupoid is crucial since these two operator systems are not even Morita equivalent.

Operator systems associated to tolerance relations

- Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.
- Key motivating example: a metric space (X, d) equipped with the relation

$$\mathcal{R}_{\epsilon} := \{ (x, y) \in X \times X : d(x, y) < \epsilon \}$$

• If (X, μ) is a measure space and $\mathcal{R} \subseteq X \times X$ an open subset we obtain the operator system $E(\mathcal{R})$. Note that $E(\mathcal{R}) \subseteq \mathcal{K}(L^2(X))$

Example

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X and suppose that \mathcal{R} generates the full equivalence class $X \times X$ (i.e. the graph corresponding to \mathcal{R} is connected). Then the C^* -envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X))$ while $prop(E(\mathcal{R})) = diam(\mathcal{R})$.

Finite partial partitions of a metric measure space

A finite partial ϵ -partition of X is a finite collection $P = \{U_i\}$ of disjoint measurable sets $U \subseteq X$ such that diam $(U_i) < \epsilon$; directed by refinement.

• The corresponding finite-dimensional algebra A_P with unit e_P is

$$\mathcal{A}_P = \left\{ \sum_{U,V \in P} \mathsf{a}_{UV} |1_U
angle \langle 1_V| : \mathsf{a}_{UV} \in \mathbb{C}
ight\} \cong \mathcal{K}(\mathit{I}^2(P))$$

• A tolerance relation \mathcal{R}^P_ϵ on the finite set P is given by

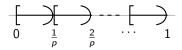
$$\mathcal{R}_{\epsilon}^{P} = \{U \times V \mid U, V \in P, U \times V \subseteq \mathcal{R}_{\epsilon}\} \subseteq P \times P$$

and yields the operator system $E(\mathcal{R}_{\epsilon}^{P})$.

- If $P \leq P'$ then $E(\mathcal{R}_{\epsilon}^P) \subseteq E(\mathcal{R}_{\epsilon}^{P'})$ and also $\mathcal{A}_P \subseteq \mathcal{A}_{P'}$.
- Approximate order unit $\{e_P\}_P$ of $\varprojlim A_P$ is contained in $\varprojlim E(\mathcal{R}^P_\epsilon)$

Example: finite ϵ -partitions of the unit interval

Consider with $1/p < \epsilon$:



• The unital operator system $\mathcal{E}_P(\mathcal{R}_\epsilon)$ can be identified with the operator system $\mathcal{E}_{p,N}$ of $p \times p$ band matrices B of band width N, *i.e.*,

$$\mathcal{E}_{p,N} := \{ B = (b_{ij}) \in M_p(\mathbb{C}) \mid b_{ij} = 0 \text{ if } |i - j| > N \}$$

• Since $\mathcal{E}_{p,N}\mathcal{E}_{p,N'}=\mathcal{E}_{p,N+N'}$ the propagation number of $\mathcal{E}_{p,N}\subseteq M_p(\mathbb{C})$ is equal to $\lceil p/N \rceil$.

Spaces at finite resolution

Proposition

Let X be a path metric measure space with a measure of full support.

- 1. $\mathcal{E}(\mathcal{R}_{\epsilon}) := \underline{\lim} \, \mathcal{E}(\mathcal{R}_{\epsilon}^{P})$ is a dense subspace of $\mathcal{E}(\mathcal{R}_{\epsilon})$
- 2. $A_{\epsilon} := \varinjlim A_P$ is a dense *-subalgebra of the C*-algebra $\mathcal{K}(L^2(X))$;
- 3. there exists a norm-defining approximate order unit for A_{ϵ} which is contained in $\mathcal{E}(\mathcal{R}_{\epsilon})$.

Proposition

Let X be a complete, locally compact path metric measure space with a measure of full support. Then $C^*_{env}(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X))$.

The pure states of $E(\mathcal{R}_{\epsilon})$ are given by vector states $|\psi\rangle\langle\psi|$ where the essential support of $\psi \in L^2(X)$ is ϵ -connected.

Outlook

- Spectral truncations: tori, compact Lie groups, etc.
- Bonds: approximate order unit, duality, etc.
- Metric structure on state spaces for spaces at finite resolution
- Gromov–Hausdorff convergence, entropy
- General theory of spectral triples for operator systems
- ..