Noncommutative spaces at finite resolution

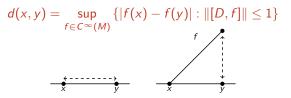
Walter van Suijlekom (joint with Alain Connes)

Motivation: hearing the shape of a drum

Mark Kac (1966):

Riemannian (spin) geometry: (M, g) is not fully determined by spectrum of Δ_M (D_M) .

- This is considerably improved by considering besides D_M also the C^* -algebra C(M) of continuous functions on M [Connes 1989]
- In fact, the Riemannian distance function on M is equal to



Noncommutative geometry

So, if combined with the C^* -algebra C(M), then the answer to Kac' question is affirmative.

Connes' reconstruction theorem [2008]:

 $(C(M), L^2(S_M), D_M) \longleftrightarrow (M, g)$

Spectral data

- The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based on [Connes–vS] (CMP, ongoing)

The "usual" story: spectral triples

- a C^* -algebra A
- a self-adjoint operator D with (local) compact resolvent and bounded commutators [D, a] for a ∈ A ⊂ A
- both acting (boundedly, resp. unboundedly) on Hilbert space \mathcal{H}

Generalized distance function:

- States are positive linear functionals $\phi: A \to \mathbb{C}$ of norm 1
- Pure states are extreme points of state space
- Distance function on state space of A:

$$d(\phi,\psi) = \sup_{\boldsymbol{a}\in\mathcal{A}} \left\{ |\phi(\boldsymbol{a}) - \psi(\boldsymbol{a})| : \|[D,\boldsymbol{a}]\| \le 1 \right\}$$

Towards operator systems..

- (I) Given (A, H, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto \mathcal{PH}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, *PAP* is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x, y) < \epsilon$

So first, some background on operator systems.

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators. Unital: it contains the identity operator.

• *E* is ordered: cone $E_+ \subseteq E$ of positive operators, in the sense that $T \in E_+$ iff

 $\langle \psi, T\psi \rangle \ge 0;$ $(\psi \in \mathcal{H}).$

in fact, E is matrix ordered: cones M_n(E)₊ ⊆ M_n(E) of positive operators on Hⁿ for any n.

Maps between operator systems E, F are completely positive maps in the sense that their extensions $M_n(E) \rightarrow M_n(F)$ are positive for all n. Isomorphisms are complete order isomorphisms

C^* -envelope of a unital operator system

Arveson introduced the notion of C^* -envelope for unital operator systems in 1969, Hamana established existence and uniqueness in 1979. Non-unital case: [Connes-vS 2020], [Kennedy–Kim–Manor 2021]

A *C**-extension $\kappa : E \to A$ of a unital operator system *E* is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$. A *C**-envelope of a unital operator system is a *C**-extension $\kappa : E \to A$ with the following universal property:

Shilov boundaries

There is a useful description of C^* -envelopes using Shilov ideals. **Definition**

Let $\kappa : E \to A$ be a C^{*}-extension of an operator system. A boundary ideal is given by a closed 2-sided ideal $I \subseteq A$ such that the quotient map $q : A \to A/I$ is completely isometric on $\kappa(E) \subseteq A$.

The Shilov boundary ideal is the largest of such boundary ideals.

Proposition

Let $\kappa : E \to A$ be a C^{*}-extension. Then there exists a Shilov boundary ideal J and $C^*_{env}(E) \cong A/J$.

As an example consider the operator system of continuous harmonic functions $C_{harm}(\overline{\mathbb{D}})$ on the closed disc. Then by the maximum modulus principle the Shilov boundary is S^1 . Accordingly, its C^* -envelope is $C(S^1)$.

Propagation number of an operator system

One lets $E^{\circ n}$ be the norm closure of the linear span of products of $\leq n$ elements of E.

Definition

The propagation number prop(E) of E is defined as the smallest integer n such that $\kappa(E)^{\circ n} \subseteq C^*_{env}(E)$ is a C^* -algebra.

Returning to harmonic functions in the disk we have $prop(C_{harm}(\overline{\mathbb{D}})) = 1$.

Proposition

The propagation number is invariant under complete order isomorphisms, as well as under stable=Morita equivalence [EKT, 2019]:

$$prop(E) = prop(E \otimes_{min} \mathcal{K})$$

More generally [Koot, 2021], we have

 $prop(E \otimes_{\min} F) = \max\{prop(E), prop(F)\}$

State spaces of operator systems

- The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- In the finite-dimensional case, the dual E^d of a unital operator system is a unital operator system with

$$E^d_+ = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the matrix order.

- Also, we have $(E^d)^d_+ \cong E_+$ as cones in $(E^d)^d \cong E$.
- It follows that we have the following useful correspondence: pure states on $E \longleftrightarrow$ extreme rays in $(E^d)_+$

and the other way around.

In the infinite-dimensional/non-unital case, this is more subtle (more later..).

Spectral truncation of the circle: Toeplitz matrices

Toeplitz operator system: truncation of $C(S^1)$ on *n* Fourier modes

$$C(S^{1})^{(n)}: \qquad (t_{k-l})_{kl} = \begin{pmatrix} t_{0} & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_{1} & t_{0} & t_{-1} & & t_{-n+2} \\ \vdots & t_{1} & t_{0} & \ddots & \vdots \\ t_{n-2} & \ddots & \ddots & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_{1} & t_{0} \end{pmatrix}$$

We have: $C^*_{\text{env}}(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$ and $\text{prop}(C(S^1)^{(n)}) = 2$ (for any n).

One can show [vS 2020, Hekkelman 2021] that state spaces on $C(S^1)^{(n)}$ (with Connes' distance) Gromov–Hausdorff converge to $S(C(S^1))$.

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

• functions on S¹ with a finite number of non-zero Fourier coefficients:

$$a = (\dots, 0, a_{-n+1}, a_{-n+2}, \dots, a_{-1}, a_0, a_1, \dots, a_{n-2}, a_{n-1}, 0, \dots)$$

• an element *a* is positive iff $\sum_{k} a_{k} e^{ikx}$ is a positive function on S^{1} . The Shilov boundary of the operator system $C^{*}(\mathbb{Z})_{(n)}$ is S^{1} . Consequently, the C^{*} -envelope of $C^{*}(\mathbb{Z})_{(n)}$ is given by $C^{*}(\mathbb{Z})$.

Proposition

- The extreme rays in (C*(Z)_(n))₊ are given by the elements a = (a_k) for which the Laurent series ∑_k a_kz^k has all its zeroes on S¹.
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k \ (\lambda \in S^1)$.

Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes-vS 2020] and [Farenick 2021]: $C(S^1)^{(n)} \times C^*(\mathbb{Z})_{(n)} \to \mathbb{C}$ $(T = (t_{k-l})_{k,l}, a = (a_k)) \mapsto \sum_k a_k t_{-k}$

Proposition

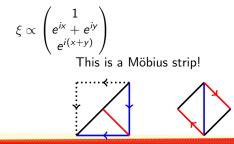
- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_{\lambda}\rangle\langle f_{\lambda}|$ for any $\lambda \in S^1$.
- 2. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/S_n$.

Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$T = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

The pure state space is \mathbb{T}^2/S_2 , given by vector states $|\xi\rangle\langle\xi|$ with



More on non-unital operator systems

Consider a matrix-ordered operator space $(E, \|\cdot\|)$.

• The noncommutative (nc) state space is defined for any n as

$$\mathcal{S}_n(E) := \{\phi \in M_n(E)^*, \|\phi\| = 1, \phi \ge 0\}$$

not always convex nor weakly *-compact

• The nc quasi-state space is defined for any *n* as

 $\widetilde{\mathcal{S}}_n(E) := \{ \phi \in M_n(E)^*, \|\phi\| \le 1, \phi \ge 0 \} \qquad \begin{array}{c} \text{convex} \\ \text{and weakly } *\text{-compact} \end{array}$

• The modified numerical radius $\nu_E : M_n(E) \to \mathbb{C}$ is defined as

$$\nu_{E}(x) = \sup\left\{ \left| \phi \left(\begin{smallmatrix} 0 & x \\ x^{*} & 0 \end{smallmatrix} \right) \right| : \phi \in \widetilde{\mathcal{S}}_{2n}(E) \right\}.$$

Definition (Werner 2002)

A non-unital operator system is given by a matrix-ordered operator space for which $\nu_{E}(\cdot) = \|\cdot\|$.

Approximate order units

We now consider a particular class of non-unital operator systems. *Definition (Ng 1969)*

Let E be a matrix-ordered *-vector space. An approximate order unit for E is an ordered net $\{e_{\lambda}\}_{\lambda \in \Lambda}$ of positive elements such that

for each $x^* = x \in E$ there exists a positive real number t and $\lambda \in \Lambda$ such that

$$-te_{\lambda} \leq x \leq te_{\lambda}.$$

In fact, if the approximate order unit is $\ensuremath{\mathsf{matrix}}\xspace$ norm-defining in the sense that

$$\|x\| = \inf \left\{ t : \begin{pmatrix} te_{\lambda}^{n} & x \\ x^{*} & te_{\lambda}^{n} \end{pmatrix} \in M_{2n}(E)_{+} \text{ for some } \lambda \in \Lambda \right\}$$

then E is a non-unital operator system [Karn 2005, Han 2010].

Assuming the existence of a matrix-norm-defining approximate order unit in E we may show familiar C^* -results such as

1. the nc state space $S_n(E)$ is convex

and if $E \subseteq A$ with a norm-defining approximate order unit for A contained in E we have that

- 2. any (pure) nc state on E can be extended to a (pure) state on A.
- (Jordan decomposition) For each hermitian continuous linear functional φ : M_n(E) → C there exist positive linear functionals φ₊, φ₋ : M_n(E) → C such that φ = φ₊ φ₋ and ||φ|| = ||φ₊|| + ||φ₋||
- 4. we have an isometrical order isomorphism

 $M_n(A)_h^*/M_n(E)_h^\perp \rightarrow M_n(E)_h^*$

This also applies if we replace E and A by dense subspaces \mathcal{E} and \mathcal{A} .

Operator systems, groupoids and bonds

Recall:

- Consider a locally compact groupoid G equipped with a (left invariant) Haar system ν = {ν_x}.
- The space $C_c(G)$ of compactly supported complex-valued continuous functions on G becomes a *-algebra with the convolution product and involution given by

$$f * g(\gamma) = \int_{G_x} f(\gamma \gamma_1^{-1}) g(\gamma_1) d\nu_x(\gamma_1); \qquad f^*(\gamma) = \overline{f(\gamma^{-1})},$$

where $x = s(\gamma)$ for any $\gamma \in G$.

• $C_c(G)$ can be completed to the groupoid C^* -algebra $C^*(G)$

Definition

A bond is a triple (G, ν, Ω) consisting of a locally compact groupoid G, a Haar system $\nu = \{\nu_x\}$ and an open symmetric subset $\Omega \subseteq G$ containing the units $G^{(0)}$.

Proposition

Let (Ω, G, ν) be a bond. The closure of the subspace $C_c(\Omega) \subseteq C_c(G)$ in the C^{*}-algebra C^{*}(G) is an operator system.

Example

- Consider Ω_n = (−n, n) ⊂ Z → Fejér-Riesz operator system inside C*(Z).
- Consider Ω_n = (−n, n) ⊂ C_m (so modulo m). The operator system consists of banded m × m circulant matrices of band width n. Thus, the ambient groupoid is crucial since these two operator systems are not even Morita equivalent.
 - 3. Given the set $X = \{1, ..., m\}$ consider a "band" $R_n \subset X \times X$ around the diagonal of width $n \rightsquigarrow$ banded $m \times m$ matrices of band width n.

Operator systems associated to tolerance relations

- Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.
- Key motivating example: a metric space (X, d) with the relation

$$\mathcal{R}_{\epsilon} := \{ (x, y) \in X \times X : d(x, y) < \epsilon \}$$

If (X, μ) is a measure space and R ⊆ X × X an open subset we obtain the operator system E(R). Note that E(R) ⊆ K(L²(X))

Example

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X and suppose that \mathcal{R} generates the full equivalence class $X \times X$ (i.e. the graph corresponding to \mathcal{R} is connected). Then

- 1. the C^{*}-envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X))$ and $prop(E(\mathcal{R})) = diam(\mathcal{R})$.
- 2. the pure states of $E(\mathcal{R})$ are given by vector states $|v\rangle\langle v|$ for the support of $v \in \ell^2(X)$ is \mathcal{R} -connected.

Finite partial partitions of a metric measure space

A finite partial ϵ -partition of X is a finite collection $P = \{U_i\}$ of disjoint measurable sets $U_i \subseteq X$ such that diam $(U_i) < \epsilon$; directed by refinement.

• The corresponding finite-dimensional algebra \mathcal{A}_P with unit e_P is

$$\mathcal{A}_P = \left\{ \sum_{U, V \in P} a_{UV} |1_U \rangle \langle 1_V | : a_{UV} \in \mathbb{C}
ight\} \cong \mathcal{K}(l^2(P))$$

• A tolerance relation $\mathcal{R}^{P}_{\epsilon}$ on the finite set P is given by

$$\mathcal{R}^{\mathcal{P}}_{\epsilon} = \{U \times V \mid \quad U, V \in \mathcal{P}, \quad U \times V \subseteq \mathcal{R}_{\epsilon}\} \subseteq \mathcal{P} \times \mathcal{P}$$

and yields the operator system $E(\mathcal{R}_{\epsilon}^{P})$.

- If $P \leq P'$ then $E(\mathcal{R}^P_{\epsilon}) \subseteq E(\mathcal{R}^{P'}_{\epsilon})$ and also $\mathcal{A}_P \subseteq \mathcal{A}_{P'}$.
- Approximate order unit $\{e_P\}_P$ of $\lim A_P$ is contained in $\lim E(\mathcal{R}^P_{\epsilon})$

Spaces at finite resolution

Proposition

Let X be a path metric measure space with a measure of full support.

- 1. $\mathcal{E}(\mathcal{R}_{\epsilon}) := \lim_{\epsilon \to \infty} E(\mathcal{R}_{\epsilon}^{P})$ is a dense subspace of $E(\mathcal{R}_{\epsilon})$
- 2. $\mathcal{A}_{\epsilon} := \lim_{X \to 0} \mathcal{A}_{P}$ is a dense *-subalgebra of the C*-algebra $\mathcal{K}(L^{2}(X))$;
- 3. there exists a matrix-norm-defining approximate order unit for \mathcal{A}_{ϵ} which is contained in $\mathcal{E}(\mathcal{R}_{\epsilon})$.

Proposition

Let X be a complete, locally compact path metric measure space with a measure of full support. Then

1. $C^*_{env}(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X)).$

hands

 The pure states of E(R_ϵ) are given by vector states |ψ⟩⟨ψ| where the essential support of ψ ∈ L²(X) is ϵ-connected.

