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Motivation: hearing the shape of a drum

Mark Kac (1966):
Riemannian (spin) geometry: (M, g) is not fully
determined by spectrum of ∆M (DM).

• This is considerably improved by considering besides DM also the
C∗-algebra C (M) of continuous functions on M [Connes 1989]

• In fact, the Riemannian distance function on M is equal to

d(x , y) = sup
f∈C∞(M)

{|f (x)− f (y)| : ‖[D, f ]‖ ≤ 1}
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Noncommutative geometry

So, if combined with the C∗-algebra C (M), then
the answer to Kac’ question is affirmative.

Connes’ reconstruction theorem [2008]:

(C (M), L2(SM),DM)←→ (M, g)



Spectral data

• The mathematical reformulation of geometry in terms of spectral
data requires the knowledge of all eigenvalues of the Dirac operator.

• From a physical standpoint this is not very realistic: detectors have
limited energy ranges and resolution.

We develop the mathematical formalism for
(noncommutative) geometry with only part of the spectrum
and/or with finite resolution.

This is in line with [D’Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019]
and based on [Connes–vS] (CMP, ongoing)



The “usual” story: spectral triples

• a C∗-algebra A
• a self-adjoint operator D with (local) compact resolvent and

bounded commutators [D, a] for a ∈ A ⊂ A
• both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:
• States are positive linear functionals φ : A→ C of norm 1
• Pure states are extreme points of state space
• Distance function on state space of A:

d(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}



Towards operator systems..

(I) Given (A,H,D) we project onto part of the spectrum of D:
– H 7→ PH, projection onto closed Hilbert subspace
– D 7→ PDP, still a self-adjoint operator
– A 7→ PAP, this is not an algebra any more (unless P ∈ A)

Instead, PAP is an operator system: (PaP)∗ = Pa∗P.

(II) Another approach would be to consider metric spaces up to a finite
resolution :
– Consider integral operators associated to the tolerance relation

Rε given by d(x , y) < ε

So first, some background on operator systems.



Operator systems

Definition (Choi-Effros 1977)
An operator system is a ∗-closed vector space E of bounded operators.
Unital: it contains the identity operator.

• E is ordered: cone E+ ⊆ E of positive operators, in the sense that
T ∈ E+ iff

〈ψ,Tψ〉 ≥ 0; (ψ ∈ H).

• in fact, E is matrix ordered: cones Mn(E )+ ⊆ Mn(E ) of positive
operators on Hn for any n.

Maps between operator systems E ,F are completely positive maps in the
sense that their extensions Mn(E )→ Mn(F ) are positive for all n.
Isomorphisms are complete order isomorphisms



C ∗-envelope of a unital operator system

Arveson introduced the notion of C∗-envelope for unital operator systems
in 1969, Hamana established existence and uniqueness in 1979.
Non-unital case: [Connes-vS 2020], [Kennedy–Kim–Manor 2021]

A C∗-extension κ : E → A of a unital operator system E is given by a
complete order isomorphism onto κ(E ) ⊆ A such that C∗(κ(E )) = A.
A C∗-envelope of a unital operator system is a C∗-extension κ : E → A
with the following universal property:
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Shilov boundaries

There is a useful description of C∗-envelopes using Shilov ideals.
Definition
Let κ : E → A be a C∗-extension of an operator system. A boundary
ideal is given by a closed 2-sided ideal I ⊆ A such that the quotient map
q : A→ A/I is completely isometric on κ(E ) ⊆ A.
The Shilov boundary ideal is the largest of such boundary ideals.
Proposition
Let κ : E → A be a C∗-extension. Then there exists a Shilov boundary
ideal J and C∗env(E ) ∼= A/J.
As an example consider the operator system of continuous harmonic
functions Charm(D) on the closed disc. Then by the maximum modulus
principle the Shilov boundary is S1. Accordingly, its C∗-envelope is
C (S1).



Propagation number of an operator system

One lets E◦n be the norm closure of the linear span of products of ≤ n
elements of E .

Definition
The propagation number prop(E ) of E is defined as the smallest integer
n such that κ(E )◦n ⊆ C∗env(E ) is a C∗-algebra.

Returning to harmonic functions in the disk we have prop(Charm(D)) = 1.

Proposition
The propagation number is invariant under complete order isomorphisms,
as well as under stable=Morita equivalence [EKT, 2019]:

prop(E ) = prop(E ⊗min K)

More generally [Koot, 2021], we have

prop(E ⊗min F ) = max{prop(E ), prop(F )}



State spaces of operator systems

• The existence of a cone E+ ⊆ E of positive elements allows to speak
of states on E as positive linear functionals of norm 1.

• In the finite-dimensional case, the dual E d of a unital operator
system is a unital operator system with

E d
+ =

{
φ ∈ E d : φ(T ) ≥ 0,∀T ∈ E+

}
and similarly for the matrix order.

• Also, we have (E d)d+
∼= E+ as cones in (E d)d ∼= E .

• It follows that we have the following useful correspondence:
pure states on E ←→ extreme rays in (E d)+

and the other way around.

In the infinite-dimensional/non-unital case, this is more subtle (more
later..).



Spectral truncation of the circle: Toeplitz matrices

Toeplitz operator system: truncation of C (S1) on n Fourier modes

C (S1)(n) :
(
tk−l

)
kl

=


t0 t−1 ··· t−n+2 t−n+1
t1 t0 t−1 t−n+2

... t1 t0
. . .

...

tn−2
. . . . . . t−1

tn−1 tn−2 ··· t1 t0


We have: C∗env(C (S1)(n)) ∼= Mn(C) and prop(C (S1)(n)) = 2 (for any n).

One can show [vS 2020, Hekkelman 2021] that state spaces on C (S1)(n)

(with Connes’ distance) Gromov–Hausdorff converge to S(C (S1)).



Dual operator system: Fejér–Riesz

We introduce the Fejér–Riesz operator system C∗(Z)(n):
• functions on S1 with a finite number of non-zero Fourier coefficients:

a = (. . . , 0, a−n+1, a−n+2, . . . , a−1, a0, a1, . . . , an−2, an−1, 0, . . .)

• an element a is positive iff
∑

k ake
ikx is a positive function on S1.

The Shilov boundary of the operator system C∗(Z)(n) is S1.
Consequently, the C∗-envelope of C∗(Z)(n) is given by C∗(Z).

Proposition
1. The extreme rays in (C∗(Z)(n))+ are given by the elements a = (ak)

for which the Laurent series
∑

k akz
k has all its zeroes on S1.

2. The pure states of C∗(Z)(n) are given by a 7→
∑

k akλ
k (λ ∈ S1).



Pure states on the Toeplitz matrices

Duality of C (S1)(n) and C∗(Z)(n) [Connes–vS 2020] and [Farenick 2021]:

C (S1)(n) × C∗(Z)(n) → C

(T = (tk−l)k,l , a = (ak)) 7→
∑
k

akt−k

Proposition
1. The extreme rays in C (S1)

(n)
+ are γ(λ) = |fλ〉〈fλ| for any λ ∈ S1.

2. The pure state space P(C (S1)(n+1)) ∼= Tn/Sn.



Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

T =

t0 t−1 t−2
t1 t0 t−1
t2 t1 t0


The pure state space is T2/S2, given by vector states |ξ〉〈ξ| with

ξ ∝

 1
e ix + e iy

e i(x+y)


This is a Möbius strip!



More on non-unital operator systems
Consider a matrix-ordered operator space (E , ‖ · ‖).
• The noncommutative (nc) state space is defined for any n as

Sn(E ) := {φ ∈ Mn(E )∗, ‖φ‖ = 1, φ ≥ 0} not always convex
nor weakly ∗-compact

• The nc quasi-state space is defined for any n as

S̃n(E ) := {φ ∈ Mn(E )∗, ‖φ‖ ≤ 1, φ ≥ 0}
convex
and weakly ∗-compact

• The modified numerical radius νE : Mn(E )→ C is defined as

νE (x) = sup
{∣∣φ ( 0 x

x∗ 0

)∣∣ : φ ∈ S̃2n(E )
}
.

Definition (Werner 2002)
A non-unital operator system is given by a matrix-ordered operator
space for which νE (·) = ‖ · ‖.



Approximate order units

We now consider a particular class of non-unital operator systems.
Definition (Ng 1969)
Let E be a matrix-ordered ∗-vector space. An approximate order unit for
E is an ordered net {eλ}λ∈Λ of positive elements such that

for each x∗ = x ∈ E there exists a positive real number t and λ ∈ Λ
such that

−teλ ≤ x ≤ teλ.

In fact, if the approximate order unit is matrix-norm-defining in the sense
that

‖x‖ = inf

{
t :

(
tenλ x
x∗ tenλ

)
∈ M2n(E )+ for some λ ∈ Λ

}
then E is a non-unital operator system [Karn 2005, Han 2010].



Assuming the existence of a matrix-norm-defining approximate order unit
in E we may show familiar C∗-results such as
1. the nc state space Sn(E ) is convex

and if E ⊆ A with a norm-defining approximate order unit for A
contained in E we have that
2. any (pure) nc state on E can be extended to a (pure) state on A.
3. (Jordan decomposition) For each hermitian continuous linear

functional φ : Mn(E )→ C there exist positive linear functionals
φ+, φ− : Mn(E )→ C such that φ = φ+ − φ− and
‖φ‖ = ‖φ+‖+ ‖φ−‖

4. we have an isometrical order isomorphism
Mn(A)∗h/Mn(E )⊥h → Mn(E )∗h

This also applies if we replace E and A by dense subspaces E and A.



Operator systems, groupoids and bonds

Recall:
• Consider a locally compact groupoid G equipped with a (left

invariant) Haar system ν = {νx}.
• The space Cc(G ) of compactly supported complex-valued continuous

functions on G becomes a ∗-algebra with the convolution product
and involution given by

f ∗ g(γ) =

∫
Gx

f (γγ−1
1 )g(γ1)dνx(γ1); f ∗(γ) = f (γ−1),

where x = s(γ) for any γ ∈ G .
• Cc(G ) can be completed to the groupoid C∗-algebra C∗(G )



Definition
A bond is a triple (G , ν,Ω) consisting of a locally compact groupoid G , a
Haar system ν = {νx} and an open symmetric subset Ω ⊆ G containing
the units G (0).
Proposition
Let (Ω,G , ν) be a bond. The closure of the subspace Cc(Ω) ⊆ Cc(G ) in
the C∗-algebra C∗(G ) is an operator system.
Example
1. Consider Ωn = (−n, n) ⊂ Z  Fejér–Riesz operator system inside

C∗(Z).
2. Consider Ωn = (−n, n) ⊂ Cm (so modulo m). The operator system

consists of banded m ×m circulant matrices of band width n.
Thus, the ambient groupoid is crucial since these two operator
systems are not even Morita equivalent.

3. Given the set X = {1, . . . ,m} consider a “band” Rn ⊂ X ×X around
the diagonal of width n  banded m ×m matrices of band width n.



Operator systems associated to tolerance relations

• Suppose that X is a set and consider a relation R ⊆ X × X on X
that is reflexive, symmetric but not necessarily transitive.

• Key motivating example: a metric space (X , d) with the relation

Rε := {(x , y) ∈ X × X : d(x , y) < ε}

• If (X , µ) is a measure space and R ⊆ X × X an open subset we
obtain the operator system E (R). Note that E (R) ⊆ K(L2(X ))

Example
Let X be a finite set and R ⊆ X × X a symmetric reflexive relation on X
and suppose that R generates the full equivalence class X × X (i.e. the
graph corresponding to R is connected). Then
1. the C∗-envelope of E (R) is K(`2(X )) and prop(E (R)) = diam(R).
2. the pure states of E (R) are given by vector states |v〉〈v | for the

support of v ∈ `2(X ) is R-connected.



Finite partial partitions of a metric measure space

A finite partial ε-partition of X is a finite collection P = {Ui} of disjoint
measurable sets Ui ⊆ X such that diam(Ui ) < ε; directed by refinement.
• The corresponding finite-dimensional algebra AP with unit eP is

AP =

 ∑
U,V∈P

aUV |1U〉〈1V | : aUV ∈ C

 ∼= K(l2(P))

• A tolerance relation RP
ε on the finite set P is given by

RP
ε = {U × V | U,V ∈ P, U × V ⊆ Rε} ⊆ P × P

and yields the operator system E (RP
ε ).

• If P ≤ P ′ then E (RP
ε ) ⊆ E (RP′

ε ) and also AP ⊆ AP′ .
• Approximate order unit {eP}P of lim−→AP is contained in lim−→E (RP

ε )



Spaces at finite resolution

Proposition
Let X be a path metric measure space with a measure of full support.
1. E(Rε) := lim−→E (RP

ε ) is a dense subspace of E (Rε)
2. Aε := lim−→AP is a dense ∗-subalgebra of the C∗-algebra K(L2(X ));
3. there exists a matrix-norm-defining approximate order unit for Aε

which is contained in E(Rε).
Proposition
Let X be a complete, locally compact path metric measure space with a
measure of full support. Then
1. C∗env(E (Rε)) = K(L2(X )).
2. The pure states of E (Rε) are given by vector states |ψ〉〈ψ| where

the essential support of ψ ∈ L2(X ) is ε-connected.


