Factorization of Dirac operators in unbounded KK-theory

Walter van Suijlekom (joint with Jens Kaad, Bram Mesland and Adam Rennie, Luuk Verhoeven)

Motivation: unbounded KK-theory, curvature

Spectral triples and Morita equivalence

Riemannian submersions

Toric noncommutative manifolds

Immersions: spheres in Euclidean space

Outline

Motivation: unbounded KK-theory, curvature

Spectral triples and Morita equivalence

Riemannian submersions

Toric noncommutative manifolds

Immersions: spheres in Euclidean space

Motivation for unbounded KK-theory

- Kasparov's bivariant K-theory: the backbone of Connes' noncommutative differential geometry
- Many constructions in differential geometry can be captured in unbounded KK-theory [BJ 1983]
- With the added value that geometry becomes visible:
 - gauge degrees of freedom (Particle Physics [CCvS])
 - curvature [Mesland–Rennie–vS].
- A key role played by the internal Kasparov product

 $S\otimes 1+1\otimes_{\nabla} T$

• We investigate a notion of curvature emerging from this unbounded refinement :

$$R_{(S,\nabla,T)} := (S \otimes 1 + 1 \otimes_{\nabla} T)^2 - (S^2 \otimes 1 + 1 \otimes_{\nabla} T^2)$$
$$= [S \otimes 1, 1 \otimes_{\nabla} T] + (1 \otimes_{\nabla} T)^2 - 1 \otimes_{\nabla} T^2$$

- We work in three classes of examples:
 - Morita equivalences (applications to particle physics) [Chamseddine–Connes–Marcolli, vS]
 - Riemannian submersions [Kaad-vS, Mesland-Rennie-vS, ...]
 - Riemannian immersions: $S^n \hookrightarrow \mathbb{R}^{n+1}$ [vS–Verhoeven]

Outline

Motivation: unbounded KK-theory, curvature

Spectral triples and Morita equivalence

Riemannian submersions

Toric noncommutative manifolds

Immersions: spheres in Euclidean space

Spectral triples and Morita equivalence

Given a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ and a (fgp) Morita equivalence bimodule $_{\mathcal{B}}\mathcal{E}_{\mathcal{A}}$ construct a spectral triple $(\mathcal{B}, \mathcal{H}', D')$:

- Hilbert space: $\mathcal{H}' = \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H}$
- Choose (hermitian) connection $\nabla : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^{1}(\mathcal{A})$
- Define an operator $D' := 1 \otimes_{\nabla} D$ by

$$(1 \otimes_{\nabla} D)(\xi \otimes h) = (1 \otimes \pi_D)(\nabla(\xi))h + \xi \otimes (Dh).$$

where $\pi_D(a\delta(b)) = a[D, b]$.

Then $(\mathcal{B}, \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H}, 1 \otimes_{\nabla} D)$ is a spectral triple [C96] representing the internal Kasparov product of $[(\mathcal{E}, 0)]$ and $[(\mathcal{H}, \mathcal{F}_D)]$.

$$R_
abla := 1 \otimes_
abla D^2 - (1 \otimes_
abla D)^2 = \pi_D(
abla^2)$$

Morita self-equivalences

• Now take $\mathcal{A} = \mathcal{B}$ and $\mathcal{E} = \mathcal{A}$ as well, then $\mathcal{H}' \cong \mathcal{H}$ but connection $\nabla : \mathcal{A} \to \Omega^1(\mathcal{A})$ so that

$$1 \otimes_{\nabla} D \equiv D + \pi_D(\omega)$$

• The connection one-form is $\pi_D(\omega)^* = \pi_D(\omega) = \pi_D(\nabla(1))$, or,

$$\pi_D(\omega) = \sum_j a_j[D, b_j]; \qquad (a_j, b_j \in \mathcal{A})$$

Curvature for Morita self-equivalences becomes

$$R_{\nabla} = \pi_D(\nabla^2) = -\pi_D(\delta\omega + \omega^2)$$

Two-point space

• Consider the spectral triple

$$\left(\mathbb{C}\oplus\mathbb{C},\mathbb{C}\oplus\mathbb{C},D=\begin{pmatrix}0&c\\\overline{c}&0\end{pmatrix}
ight)$$

- Inner perturbations: $\pi_D(\omega) = \begin{pmatrix} 0 & c\phi \\ \overline{c}\overline{\phi} & 0 \end{pmatrix}$
- Curvature:

$$egin{aligned} &\mathcal{R}_
abla &= (1\otimes_
abla D^2) - (1\otimes_
abla D)^2 \ &\equiv D^2 - (D + \pi_D(\omega))^2 = |c|^2(1 - |\phi + 1|^2)\mathbf{1}_2 \end{aligned}$$

In physical applications A = C[∞](M, A_F) for some finite-dimensional matrix algebra A_F and ω is parametrized by gauge fields, scalar (Higgs) fields [CCvS 2013–].

Outline

Motivation: unbounded KK-theory, curvature

Spectral triples and Morita equivalence

Riemannian submersions

Toric noncommutative manifolds

Immersions: spheres in Euclidean space

Riemannian submersions

Consider the following setup [Kaad-vS, 2016]:

• A Riemannian submersion

$$\pi: M \to B$$

of compact spin^c manifolds M and B

• It is well-known from wrong-way functoriality [CS 1984] that

$$[M] = \pi! \widehat{\otimes}_{C(B)}[B] \tag{(*)}$$

• Can we write the Dirac operator on *M* as a tensor sum:

$$D_M = D_V \otimes \gamma + 1 \otimes_{\nabla} D_B + \widetilde{c}(\Omega)?$$

for some unbounded KK-cycle ($C^{\infty}(M), X, D_V$), representing the internal KK-product (*), allowing for curvature defects Ω ?

Recall: horizontal and vertical vector fields

• On $\mathscr{X}(M)$ one can introduce the direct sum connection

$$\nabla^{\oplus} = P_V \nabla^M P_V \oplus \pi^* \nabla^B,$$

• the second fundamental form:

$$S(X,Y,Z) := \left\langle \nabla_{(1-P)Z}^{V}(PX) - [(1-P)Z,PX], PY \right\rangle_{M},$$

• the curvature of $\pi: M \to B$:

$$\Omega(X, Y, Z) := - \big\langle [(1 - P)X, (1 - P)Y], PZ \big\rangle_M$$

which combined yield a tensor $\omega \in \Omega^1(M) \otimes_{C^{\infty}(M)} \Omega^2(M)$ **Proposition (Bismut, 1986)**

The Levi-Civita connection ∇^M is related to the direct sum connection ∇^\oplus by the following formula

$$\langle \nabla_X^M Y, Z \rangle_M = \langle \nabla_X^{\oplus} Y, Z \rangle_M + \omega(X)(Y, Z).$$

Spin geometry and Clifford modules

Suppose that M and B are (even-dim) spin^c manifolds, so we have

$$\operatorname{Cl}(M) \cong \operatorname{End}_{C^{\infty}(M)}(\mathscr{E}_M), \qquad \operatorname{Cl}(B) \cong \operatorname{End}_{C^{\infty}(B)}(\mathscr{E}_B)$$

and hermitian Clifford connections $\nabla^{\mathscr{E}_{M}}$ and $\nabla^{\mathscr{E}_{B}}.$

• We define the horizontal spinor module:

$$\mathscr{E}_{H} := \mathscr{E}_{B} \otimes_{C^{\infty}(B)} C^{\infty}(M); \quad \operatorname{Cl}_{H}(M) \cong \operatorname{End}_{C^{\infty}(M)}(\mathscr{E}_{H}); \quad \nabla^{\mathscr{E}_{H}} := \pi^{*} \nabla^{\mathscr{E}_{B}}.$$

• We define the vertical spinor module:

$$\mathscr{E}_{V} := \mathscr{E}_{H}^{*} \otimes_{\operatorname{Cl}_{H}(M)} \mathscr{E}_{M}, \qquad \operatorname{Cl}_{V}(M) \cong \operatorname{End}_{C^{\infty}(M)}(\mathscr{E}_{V})$$
 $\nabla_{X}^{\mathscr{E}_{V}} = 1 \otimes \nabla_{X}^{\mathscr{E}_{H}^{*}} + \nabla_{X}^{\mathscr{E}_{M}} \otimes 1 + \frac{1}{4}c(\omega(X)) \otimes 1,$

• Finally,

 $\mathscr{E}_H \otimes_{C^{\infty}(M)} \mathscr{E}_V \cong \mathscr{E}_M$, compatibly with $\operatorname{Cl}_H(M) \widehat{\otimes}_{C^{\infty}(M)} \operatorname{Cl}_V(M) \cong \operatorname{Cl}(M)$

The vertical operator

We define a C*-correspondence X from C(M) to C(B) by completing C_V with respect to

$$\langle \phi_1, \phi_2 \rangle_X(b) := \int_{F_b} \langle \phi_1, \phi_2 \rangle_{\mathscr{E}_V} \, d\mu_{F_b}$$

• The following defines an odd self-adjoint unbounded operator in X

$$D_V = i \sum_{j=1}^{\dim(F)} c_V(e_j)
abla_{e_j}^{\mathscr{E}_V}$$

where $\{e_j\}$ is a local orthonormal frame for $\mathscr{X}_V(M)$ **Proposition (Kaad-vS, 2016)** The triple $(C^{\infty}(M), X, D_V)$ is an even unbounded Kasparov module from C(M) to C(B) with grading operator $\gamma_X : X \to X$.

The horizontal operator and the connection

• The Dirac operator $D_B : \text{Dom}(D_B) \to L^2(\mathscr{E}_B)$ is locally

$$D_B = i \sum_{\alpha=1}^{\dim(B)} c(f_\alpha) \nabla_{f_\alpha}^{\mathscr{E}_B} : \mathscr{E}_B \to L^2(\mathscr{E}_B)$$

Clearly $(C^{\infty}(B), L^{2}(\mathscr{E}_{B}), D_{B}; \gamma_{B})$ is an (even) spectral triple

• The following defines a hermitian connection on X

$$\nabla_Z^X = \nabla_{Z_H}^{\mathscr{E}_V} + \frac{1}{2}k(Z_H)$$

with $k = (\text{Tr} \otimes 1)(S) \in \Omega^1(M)$ the mean curvature Lemma (Kaad–vS, 2016)

The following local expression defines an odd symmetric unbounded operator in $X \widehat{\otimes}_{C(B)} L^2(\mathscr{E}_B)$:

$$(1 \otimes_{\nabla} D_{\mathcal{B}}) := 1 \otimes D_{\mathcal{B}} + i \sum \nabla_{f_{\alpha}}^{X} \otimes c(f_{\alpha})$$

The tensor sum

• The tensor sum we are after is given by

$$egin{aligned} (D_V imes_
abla \ D_B)_0 &:= D_V\otimes \gamma_B + 1\otimes_
abla \ D_B : \ & ext{Dom}(D_V imes_
abla \ D_B)_0 o X\widehat{\otimes}_{\mathcal{C}(B)} L^2(\mathscr{E}_B) \end{aligned}$$

 The closure of this symmetric operator is denoted D_V ×_∇ D_B. Theorem (Kaad-vS, 2016) (1) We have the identity

$$D_V imes_
abla D_B = D_M - rac{i}{8} \widetilde{c}(\Omega).$$

(2) The spectral triple $(C^{\infty}(M), L^{2}(\mathscr{E}_{M}), D_{M})$ is the unbounded KK-product of $(C^{\infty}(M), X, D_{V})$ with the spectral triple $(C^{\infty}(B), L^{2}(\mathscr{E}_{B}), D_{B})$ up to the curvature term $-\frac{i}{8}\widetilde{c}(\Omega)$.

Curvature

• Consider curvature in this context [Mesland-Rennie-vS, 2019]

$$R_
abla = 1 \otimes_
abla D_B^2 - (1 \otimes_
abla D_B)^2 = \pi_{D_B}(
abla^2)$$

• One can show that

$$R_{\nabla} = c_H \circ \left((\nabla^{\mathscr{E}_V})^2 + dk \right)$$

in terms of horizontal Clifford multiplication $c_H,$ the curvature of $\nabla^{\mathscr{E}_V}$ and the mean curvature k

Outline

Motivation: unbounded KK-theory, curvature

Spectral triples and Morita equivalence

Riemannian submersions

Toric noncommutative manifolds

Immersions: spheres in Euclidean space

Toric noncommutative manifolds

This extends to almost-regular fibrations of Riemannian spin^c manifolds.

- We consider the class of examples coming from actions of a torus Tⁿ on a spin^c manifold M with principal stratum M and with B = M/Tⁿ a spin^c manifold.
- Up to unitary isomorphism, there is a tensor sum factorization [Kaad-vS, 2019]:

$$D_{\overline{M}} = D_V \widehat{\otimes} \gamma + 1 \widehat{\otimes}_{\nabla} D_{M/\mathbb{T}^n} + \widetilde{c}(\Omega)$$

 Prototype: the four-sphere S⁴ with a T²-action (the starting point for the Connes–Landi four-sphere)

The four-sphere

• Toroidal coordinates: $0 \le \theta_1, \theta_2 < 2\pi, 0 \le \varphi \le \pi/2, -\pi/2 \le \psi \le \pi/2$, and write

$$z_1 = e^{i\theta_1} \cos \varphi \cos \psi;$$

$$z_2 = e^{i\theta_2} \sin \varphi \cos \psi;$$

$$x = \sin \psi$$

• Action of \mathbb{T}^2 is by translating the θ_1, θ_2 -coordinates

• The orbit space $\mathbb{S}^4/\mathbb{T}^2\cong Q^2$ is a closed quadrant in the two-sphere, parametrized by

- Principal stratum \mathbb{S}_0^4 is a trivial \mathbb{T}^2 -principal fiber bundle over the interior Q_0^2 of Q^2
- Moreover, $\pi : \mathbb{S}_0^4 \to Q_0^2$ is a (proper) Riemannian submersion for the metric on Q_0^2 induced by the round metric on \mathbb{S}^2

Spin geometry of $\ensuremath{\mathbb{S}}^4$

• The Dirac operator for the round metric is a \mathbb{T}^2 -invariant selfadjoint operator

$$D_{\mathbb{S}^4}:\mathsf{Dom}(D_{\mathbb{S}^4}) o L^2(\mathbb{S}^4,\mathscr{E}_{\mathbb{S}^4})$$

with local expression:

$$\begin{split} D_{\mathbb{S}^4} &= i \frac{1}{\cos\varphi\cos\psi} \gamma^1 \frac{\partial}{\partial\theta_1} + i \frac{1}{\sin\varphi\cos\psi} \gamma^2 \frac{\partial}{\partial\theta_2} \\ &+ i \frac{1}{\cos\psi} \gamma^3 \left(\frac{\partial}{\partial\varphi} + \frac{1}{2}\cot\varphi - \frac{1}{2}\tan\varphi \right) + i \gamma^4 \left(\frac{\partial}{\partial\psi} - \frac{3}{2}\tan\psi \right) \end{split}$$

• Since the 'subprincipal' stratum is of codimension two, it follows that $C_c^{\infty}(\mathbb{S}^4_0)\otimes \mathbb{C}^4 \subset L^2(\mathbb{S}^4, \mathscr{E}_{\mathbb{S}^4})$ is a core for $D_{\mathbb{S}^4}$

Vertical operator

We consider a C^{*}-correspondence X from C₀(S⁴₀) to C₀(Q²₀), defined as the Hilbert C^{*}-completion of C[∞]_c(S⁴₀) ⊗ C² wrt

$$\langle s,t\rangle_{X} = \int_{\mathbb{T}^{2}} \overline{s(\theta_{1},\theta_{2},\varphi,\psi)} \cdot t(\theta_{1},\theta_{2},\varphi,\psi) d\theta_{1} d\theta_{2} \cdot \sin\varphi \cos\varphi \cos^{2}\psi,$$

• There is a unitary isomorphism (induced by pointw. multipl.)

$$u: X \otimes_{C_0(Q^2_0)} L^2(Q^2_0) \otimes \mathbb{C}^2 \to L^2(\mathbb{S}^4_0) \otimes \mathbb{C}^4$$

We define a symmetric operator (D_V)₀ : C[∞]_c(S⁴₀) ⊗ C² → X:

$$(D_V)_0 = i \frac{1}{\cos\varphi\cos\psi} \sigma^1 \frac{\partial}{\partial\theta_1} + i \frac{1}{\sin\varphi\cos\psi} \sigma^2 \frac{\partial}{\partial\theta_2}.$$

We denote its closure by D_V : Dom $(D_V) \rightarrow X$.

• One can find families of eigenvectors $\Psi_{n_1n_2}^{\pm}$ in $C^{\infty}(\mathbb{T}^2) \otimes \mathbb{C}^2$.

$$D_V\left(f\Psi_{n1,n_2}^{\pm}\right)=\pm\lambda_{n_1n_2}\cdot f\Psi_{n_1n_2}^{\pm}.$$

for any $f \in C^\infty_c(Q^2_0)$ where

• Regularity, selfadjointness and compactness of the resolvent: D_V defines unbdd Kasparov module from $C_0(\mathbb{S}_0^4)$ to $C_0(Q_0^2)$

Horizontal operator

We define an operator $(D_{Q_0^2})_0 : C_c^{\infty}(Q_0^2) \otimes \mathbb{C}^2 \to L^2(Q_0^2) \otimes \mathbb{C}^2$ as the restriction of the Dirac operator on \mathbb{S}^2 to the open quadrant Q_0^2 :

$$(D_{Q_0^2})_0 = i \frac{1}{\cos \psi} \sigma^1 \frac{\partial}{\partial \varphi} + i \sigma^2 \left(\frac{\partial}{\partial \psi} - \frac{1}{2} \tan \psi \right).$$

This is a symmetric operator. Its closure $D_{Q_0^2}$ defines a half-closed chain [Hil, 2010] from $C_0(Q_0^2)$ to \mathbb{C}

Tensor sum of D_V and $D_{Q_0^2}$

We lift the operators D_V and $D_{Q_0^2}$ to $X \otimes_{C_0(Q_0^2)} L^2(Q_0^2) \otimes \mathbb{C}^2$.

• For D_V we take $D_V \widehat{\otimes} \gamma$ and have on $C^\infty_c(\mathbb{S}^4_0) \otimes \mathbb{C}^4$ that

$$u(D_V\widehat{\otimes}\gamma)u^* = i\frac{1}{\cos\varphi\cos\psi}\gamma^1\frac{\partial}{\partial\theta_1} + i\frac{1}{\sin\varphi\cos\psi}\gamma^2\frac{\partial}{\partial\theta_2},$$

• For the operator $D_{Q_0^2}$, we first need a hermitian connection on X

$$\nabla_{\partial/\partial\varphi} = \frac{\partial}{\partial\varphi} + \frac{1}{2}\cot\varphi - \frac{1}{2}\tan\varphi \qquad \nabla_{\partial/\partial\psi} = \frac{\partial}{\partial\psi} - \tan\psi$$

• The operator $1 \widehat{\otimes}_{\nabla} D_{Q_0^2}$ then becomes

$$\begin{split} u(1\widehat{\otimes}_{\nabla}D_{Q_{0}^{2}})u^{*} &= i\frac{1}{\cos\psi}\gamma^{3}\left(\frac{\partial}{\partial\varphi} + \frac{1}{2}\cot\varphi - \frac{1}{2}\tan\varphi\right) \\ &+ i\gamma^{4}\left(\frac{\partial}{\partial\psi} - \frac{3}{2}\tan\psi\right) \end{split}$$

• The tensor sum we are after is given by

$$D_V \widehat{\otimes} \gamma + 1 \widehat{\otimes}_{\nabla} D_{Q_0^2}$$

• This is a symmetric operator and we denote its closure by

 $D_V \times_{\nabla} D_{Q_0^2} : \mathsf{Dom}(D_V \times_{\nabla} D_{Q_0^2}) \to X \otimes_{C_0(Q_0^2)} L^2(Q_0^2) \otimes \mathbb{C}^2.$

• Since $C_c^{\infty}(\mathbb{S}_0^4) \otimes \mathbb{C}^2 \otimes_{C_c^{\infty}(Q_0^2)} C_c^{\infty}(Q_0^2) \otimes \mathbb{C}^2$ is a core for $D_V \times_{\nabla} D_{Q_0^2}$ which is mapped by u to the core $C_c^{\infty}(\mathbb{S}_0^4) \otimes \mathbb{C}^4$ of $D_{\mathbb{S}^4}$, it follows that

$$u(D_V \times_{\nabla} D_{Q_0^2})u^* = D_{\mathbb{S}^4}$$

as an equality on $Dom(D_{S^4})$

• A connection and positivity property imply that this is an unbounded representative of the internal product

 $\mathit{KK}(\mathit{C}_0(\mathbb{S}^4_0), \mathit{C}_0(\mathit{Q}^2_0)) \otimes_{\mathit{C}_0(\mathit{Q}^2_0)} \mathit{KK}(\mathit{C}_0(\mathit{Q}^2_0), \mathbb{C}) \to \mathit{KK}(\mathit{C}_0(\mathbb{S}^4_0), \mathbb{C})$

Outline

Motivation: unbounded KK-theory, curvature

Spectral triples and Morita equivalence

Riemannian submersions

Toric noncommutative manifolds

Immersions: spheres in Euclidean space

Immersions in unbounded KK-theory: $\mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$

- Consider the embedding $\iota : \mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$.
- By [CS 1984] we know that

$$[\mathbb{S}^n] = \imath_! \otimes [\mathbb{R}^{n+1}]$$

as classes in KK-theory.

• Let us consider the unbounded version, which starts by writing

$$D_{\mathbb{R}^{n+1}} = \gamma^1 \frac{1}{r} D_{\mathbb{S}^n} + \gamma^2 \left(i \frac{\partial}{\partial r} + \frac{n}{2r} \right)$$

• This is (a local expression for) an essentially self-adjoint operator with volume form $r^n dr \wedge d\sigma_{\mathbb{S}^n}$

The immersion KK-cycle

• We introduce the immersion module between $C(\mathbb{S}^n)$ and $C_0(\mathbb{R}^{n+1})$:

$$X = C_0(\mathbb{S}^n \times (1 - \epsilon, 1 + \epsilon))$$

equipped with $C_0(\mathbb{R}^{n+1})$ -valued inner product given by

$$\langle \psi_1, \psi_2 \rangle_X(r, \theta) = \frac{1}{r^n} \overline{\psi_1(r, \theta)} \psi_2(r, \theta)$$

• Self-adjoint operator $S : \text{Dom}(S) \to X$ defined as multiplication operator with some suitable $f \equiv f(r)$, such as

$$f(r) = \frac{\pi}{2\epsilon} \tan \frac{\pi(r-1)}{2\epsilon}$$

Proposition (vS–Verhoeven, 2019) The triple $(C^{\infty}(\mathbb{S}^n), X, S)$ is an unbounded KK-cycle from $C(\mathbb{S}^n)$ to $C_0(\mathbb{R}^{n+1})$.

The internal Kasparov product

• We introduce a connection ∇ on X by

$$abla(\psi) = [D,\psi] - rac{n}{2r}ic(dr)$$

• The tensor sum is given by

$$D_{\times} = S \otimes 1 + 1 \otimes_{\nabla} D_{\mathbb{R}^{n+1}}$$
$$= \gamma^{1} \frac{1}{r} D_{\mathbb{S}^{n}} + \gamma^{2} \left(i \frac{\partial}{\partial r} \right) + \gamma^{3} f(r)$$

• As an operator on $L^2((1-\epsilon,1+\epsilon))\otimes \mathbb{C}^2$ we have

$$T := i\gamma^2 \frac{\partial}{\partial r} + \gamma^3 f(r) = \begin{pmatrix} 0 & i\frac{\partial}{\partial r} + if(r) \\ i\frac{\partial}{\partial r} - if(r) & 0 \end{pmatrix}$$

for which we compute that index T = 1

We now arrive at the final result

Theorem

The triple $(C^{\infty}(\mathbb{S}^n), X \otimes_{C_0(\mathbb{R}^{n+1})} L^2(\mathscr{E}_{\mathbb{R}^{n+1}}), D_{\times})$ is an unbounded representative both of the internal Kasparov product of $i_!$ and $[\mathbb{R}^{n+1}]$ as well as of $[\mathbb{S}^n]$ and $[T] = 1 \in KK(\mathbb{C}, \mathbb{C})$

The proof is a check of Kucerovsky's conditions Interestingly, the curvature can also be computed. Since

$$\nabla = [D, \cdot] - \frac{n}{2r}ic(dr)$$

we find

$$R_{\nabla} = \frac{n^2}{4r^2}$$

which is (proportional to) the sectional curvature of the *n*-sphere...

Outlook

- New notion of curvature that arises in unbounded KK-theory, based on the difference of two natural symmetric operators that appear in the (unbounded version of the) internal Kasparov product
- This notion of curvature is in concordance with the applications to particle physics, Riemannian submersions, immersions of spheres into Euclidean spaces
- and much more to be explored!

