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Motivation for unbounded KK-theory

• Kasparov’s bivariant K-theory: the backbone of Connes’
noncommutative differential geometry

• Many constructions in differential geometry can be captured in
unbounded KK-theory [BJ 1983]

• With the added value that geometry becomes visible:
– gauge degrees of freedom (Particle Physics [CCvS])
– curvature [Mesland–Rennie–vS].

• A key role played by the internal Kasparov product

S ⊗ 1 + 1⊗∇ T



• We investigate a notion of curvature emerging from this unbounded
refinement :

R(S,∇,T ) := (S ⊗ 1 + 1⊗∇ T )2 − (S2 ⊗ 1 + 1⊗∇ T 2)

= [S ⊗ 1, 1⊗∇ T ] + (1⊗∇ T )2 − 1⊗∇ T 2

• We work in three classes of examples:
– Morita equivalences (applications to particle physics)

[Chamseddine–Connes–Marcolli, vS]
– Riemannian submersions [Kaad–vS, Mesland–Rennie–vS, ...]
– Riemannian immersions: Sn ↪→ Rn+1 [vS–Verhoeven]
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Spectral triples and Morita equivalence

Given a spectral triple (A,H,D) and a (fgp) Morita equivalence
bimodule BEA construct a spectral triple (B,H′,D ′):
• Hilbert space: H′ = E ⊗A H
• Choose (hermitian) connection ∇ : E → E ⊗A Ω1(A)
• Define an operator D ′ := 1⊗∇ D by

(1⊗∇ D)(ξ ⊗ h) = (1⊗ πD)(∇(ξ))h + ξ ⊗ (Dh).

where πD(aδ(b)) = a[D, b].
Then (B, E ⊗A H, 1⊗∇ D) is a spectral triple [C96] representing the
internal Kasparov product of [(E , 0)] and [(H,FD)].

R∇ := 1⊗∇ D2 − (1⊗∇ D)2 = πD(∇2)



Morita self-equivalences

• Now take A = B and E = A as well, then H′ ∼= H but connection
∇ : A → Ω1(A) so that

1⊗∇ D ≡ D + πD(ω)

• The connection one-form is πD(ω)∗ = πD(ω) = πD(∇(1)), or,

πD(ω) =
∑
j

aj [D, bj ]; (aj , bj ∈ A)

• Curvature for Morita self-equivalences becomes

R∇ = πD(∇2) = −πD(δω + ω2)



Two-point space

• Consider the spectral triple(
C⊕ C,C⊕ C,D =

(
0 c
c 0

))

• Inner perturbations: πD(ω) =

(
0 cφ
cφ 0

)
• Curvature:

R∇ = (1⊗∇ D2)− (1⊗∇ D)2

≡ D2 − (D + πD(ω))2 = |c |2(1− |φ+ 1|2)12

• In physical applications A = C∞(M,AF ) for some finite-dimensional
matrix algebra AF and ω is parametrized by gauge fields, scalar
(Higgs) fields [CCvS 2013–].
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Riemannian submersions

Consider the following setup [Kaad–vS, 2016]:
• A Riemannian submersion

π : M → B

of compact spinc manifolds M and B
• It is well-known from wrong-way functoriality [CS 1984] that

[M] = π!⊗̂C(B)[B] (∗)

• Can we write the Dirac operator on M as a tensor sum:

DM = DV ⊗ γ + 1⊗∇ DB + c̃(Ω)?

for some unbounded KK-cycle (C∞(M),X ,DV ), representing the
internal KK-product (∗), allowing for curvature defects Ω?



Recall: horizontal and vertical vector fields

• On X (M) one can introduce the direct sum connection

∇⊕ = PV∇MPV ⊕ π∗∇B ,

• the second fundamental form:

S(X ,Y ,Z ) :=
〈
∇V

(1−P)Z (PX )− [(1− P)Z ,PX ],PY
〉
M
,

• the curvature of π : M → B:

Ω(X ,Y ,Z ) := −
〈
[(1− P)X , (1− P)Y ],PZ

〉
M

which combined yield a tensor ω ∈ Ω1(M)⊗C∞(M) Ω2(M)
Proposition (Bismut, 1986)
The Levi-Civita connection ∇M is related to the direct sum
connection ∇⊕ by the following formula

〈∇M
X Y ,Z 〉M = 〈∇⊕XY ,Z 〉M + ω(X )(Y ,Z ).



Spin geometry and Clifford modules

Suppose that M and B are (even-dim) spinc manifolds, so we have

Cl(M) ∼= EndC∞(M)(EM), Cl(B) ∼= EndC∞(B)(EB)

and hermitian Clifford connections ∇EM and ∇EB .
• We define the horizontal spinor module:

EH := EB⊗C∞(B)C
∞(M); ClH(M) ∼= EndC∞(M)(EH); ∇EH := π∗∇EB .

• We define the vertical spinor module:

EV := E ∗H ⊗ClH (M) EM , ClV (M) ∼= EndC∞(M)(EV )

∇EV

X = 1⊗∇E ∗H
X +∇EM

X ⊗ 1 +
1
4
c(ω(X ))⊗ 1,

• Finally,

EH⊗C∞(M)EV
∼= EM , compatibly with ClH(M)⊗̂C∞(M) ClV (M) ∼= Cl(M)



The vertical operator

• We define a C∗-correspondence X from C (M) to C (B) by
completing EV with respect to

〈φ1, φ2〉X (b) :=

∫
Fb

〈φ1, φ2〉EV
dµFb

• The following defines an odd self-adjoint unbounded operator in X

DV = i

dim(F )∑
j=1

cV (ej)∇EV
ej

where {ej} is a local orthonormal frame for XV (M)
Proposition (Kaad-vS, 2016)
The triple (C∞(M),X ,DV ) is an even unbounded Kasparov module
from C (M) to C (B) with grading operator γX : X → X .



The horizontal operator and the connection

• The Dirac operator DB : Dom(DB)→ L2(EB) is locally

DB = i

dim(B)∑
α=1

c(fα)∇EB

fα
: EB → L2(EB)

Clearly (C∞(B), L2(EB),DB ; γB) is an (even) spectral triple
• The following defines a hermitian connection on X

∇X
Z = ∇EV

ZH
+

1
2
k(ZH)

with k = (Tr⊗1)(S) ∈ Ω1(M) the mean curvature
Lemma (Kaad–vS, 2016)
The following local expression defines an odd symmetric unbounded
operator in X ⊗̂C(B)L

2(EB):

(1⊗∇ DB) := 1⊗ DB + i
∑
α

∇X
fα ⊗ c(fα)



The tensor sum

• The tensor sum we are after is given by

(DV ×∇ DB)0 := DV ⊗ γB + 1⊗∇ DB :

Dom(DV ×∇ DB)0 → X ⊗̂C(B)L
2(EB)

• The closure of this symmetric operator is denoted DV ×∇ DB .
Theorem (Kaad–vS, 2016)
(1) We have the identity

DV ×∇ DB = DM −
i

8
c̃(Ω).

(2) The spectral triple (C∞(M), L2(EM),DM) is the unbounded
KK-product of (C∞(M),X ,DV ) with the spectral triple
(C∞(B), L2(EB),DB) up to the curvature term − i

8 c̃(Ω).



Curvature

• Consider curvature in this context [Mesland–Rennie–vS, 2019]

R∇ = 1⊗∇ D2
B − (1⊗∇ DB)2 = πDB

(∇2)

• One can show that

R∇ = cH ◦
(
(∇EV )2 + dk

)
in terms of horizontal Clifford multiplication cH , the curvature of
∇EV and the mean curvature k
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Toric noncommutative manifolds

This extends to almost-regular fibrations of Riemannian spinc manifolds.
• We consider the class of examples coming from actions of a torus Tn

on a spinc manifold M with principal stratum M and with
B = M/Tn a spinc manifold.

• Up to unitary isomorphism, there is a tensor sum factorization
[Kaad–vS, 2019]:

DM = DV ⊗̂γ + 1⊗̂∇DM/Tn + c̃(Ω)

• Prototype: the four-sphere S4 with a T2-action (the starting point
for the Connes–Landi four-sphere)



The four-sphere

• Toroidal coordinates: 0 ≤ θ1, θ2 < 2π, 0 ≤ ϕ ≤ π/2,
−π/2 ≤ ψ ≤ π/2, and write

z1 = e iθ1 cosϕ cosψ;

z2 = e iθ2 sinϕ cosψ;

x = sinψ

• Action of T2 is by translating the θ1, θ2-coordinates



• The orbit space S4/T2 ∼= Q2 is a closed quadrant in the two-sphere,
parametrized by

0 ≤ ϕ ≤ π/2, −π/2 ≤ ψ ≤ π/2

• Principal stratum S4
0 is a trivial T2-principal fiber bundle over the

interior Q2
0 of Q2

• Moreover, π : S4
0 → Q2

0 is a (proper) Riemannian submersion for the
metric on Q2

0 induced by the round metric on S2



Spin geometry of S4

• The Dirac operator for the round metric is a T2-invariant selfadjoint
operator

DS4 : Dom(DS4)→ L2(S4,ES4)

with local expression:

DS4 = i
1

cosϕ cosψ
γ1 ∂

∂θ1
+ i

1
sinϕ cosψ

γ2 ∂

∂θ2

+ i
1

cosψ
γ3
(
∂

∂ϕ
+

1
2

cotϕ− 1
2

tanϕ

)
+ iγ4

(
∂

∂ψ
− 3

2
tanψ

)

• Since the ‘subprincipal’ stratum is of codimension two, it follows that
C∞c (S4

0)⊗ C4 ⊂ L2(S4,ES4) is a core for DS4



Vertical operator

• We consider a C∗-correspondence X from C0(S4
0) to C0(Q2

0 ), defined
as the Hilbert C∗-completion of C∞c (S4

0)⊗ C2 wrt

〈s, t〉X =

∫
T2

s(θ1, θ2, ϕ, ψ) · t(θ1, θ2, ϕ, ψ)dθ1dθ2 · sinϕ cosϕ cos2 ψ,

• There is a unitary isomorphism (induced by pointw. multipl.)

u : X ⊗C0(Q2
0 )
L2(Q2

0 )⊗ C2 → L2(S4
0)⊗ C4

• We define a symmetric operator (DV )0 : C∞c (S4
0)⊗ C2 → X :

(DV )0 = i
1

cosϕ cosψ
σ1 ∂

∂θ1
+ i

1
sinϕ cosψ

σ2 ∂

∂θ2
.

We denote its closure by DV : Dom(DV )→ X .



• One can find families of eigenvectors Ψ±n1n2
in C∞(T2)⊗ C2.

DV

(
f Ψ±n1,n2

)
= ±λn1n2 · f Ψ±n1n2

.

for any f ∈ C∞c (Q2
0 ) where

λn1n2 =

√
n2

1
cos2 ϕ cos2 ψ

+
n2

2

sin2 ϕ cos2 ψ

• Regularity, selfadjointness and compactness of the resolvent: DV

defines unbdd Kasparov module from C0(S4
0) to C0(Q2

0 )



Horizontal operator

We define an operator (DQ2
0
)0 : C∞c (Q2

0 )⊗ C2 → L2(Q2
0 )⊗ C2 as the

restriction of the Dirac operator on S2 to the open quadrant Q2
0 :

(DQ2
0
)0 = i

1
cosψ

σ1 ∂

∂ϕ
+ iσ2

(
∂

∂ψ
− 1

2
tanψ

)
.

This is a symmetric operator. Its closure DQ2
0
defines a half-closed chain

[Hil, 2010] from C0(Q2
0 ) to C



Tensor sum of DV and DQ2
0

We lift the operators DV and DQ2
0
to X ⊗C0(Q2

0 )
L2(Q2

0 )⊗ C2.
• For DV we take DV ⊗̂γ and have on C∞c (S4

0)⊗ C4 that

u(DV ⊗̂γ)u∗ = i
1

cosϕ cosψ
γ1 ∂

∂θ1
+ i

1
sinϕ cosψ

γ2 ∂

∂θ2
,

• For the operator DQ2
0
, we first need a hermitian connection on X

∇∂/∂ϕ =
∂

∂ϕ
+

1
2

cotϕ− 1
2

tanϕ ∇∂/∂ψ =
∂

∂ψ
− tanψ

• The operator 1⊗̂∇DQ2
0
then becomes

u(1⊗̂∇DQ2
0
)u∗ = i

1
cosψ

γ3
(
∂

∂ϕ
+

1
2

cotϕ− 1
2

tanϕ

)
+ iγ4

(
∂

∂ψ
− 3

2
tanψ

)



• The tensor sum we are after is given by

DV ⊗̂γ + 1⊗̂∇DQ2
0

• This is a symmetric operator and we denote its closure by

DV ×∇ DQ2
0

: Dom(DV ×∇ DQ2
0
)→ X ⊗C0(Q2

0 )
L2(Q2

0 )⊗ C2.

• Since C∞c (S4
0)⊗C2 ⊗C∞c (Q2

0 )
C∞c (Q2

0 )⊗C2 is a core for DV ×∇ DQ2
0

which is mapped by u to the core C∞c (S4
0)⊗C4 of DS4 , it follows that

u(DV ×∇ DQ2
0
)u∗ = DS4

as an equality on Dom(DS4)
• A connection and positivity property imply that this is an unbounded

representative of the internal product

KK (C0(S4
0),C0(Q2

0 ))⊗C0(Q2
0 )
KK (C0(Q2

0 ),C)→ KK (C0(S4
0),C)
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Immersions in unbounded KK-theory: Sn ↪→ Rn+1

• Consider the embedding ı : Sn ↪→ Rn+1.
• By [CS 1984] we know that

[Sn] = ı! ⊗ [Rn+1]

as classes in KK-theory.
• Let us consider the unbounded version, which starts by writing

DRn+1 = γ1 1
r
DSn + γ2

(
i
∂

∂r
+

n

2r

)
• This is (a local expression for) an essentially self-adjoint operator

with volume form rndr ∧ dσSn



The immersion KK-cycle

• We introduce the immersion module between C (Sn) and C0(Rn+1):

X = C0(Sn × (1− ε, 1 + ε))

equipped with C0(Rn+1)-valued inner product given by

〈ψ1, ψ2〉X (r , θ) =
1
rn
ψ1(r , θ)ψ2(r , θ)

• Self-adjoint operator S : Dom(S)→ X defined as multiplication
operator with some suitable f ≡ f (r), such as

f (r) =
π

2ε
tan

π(r − 1)

2ε

Proposition (vS–Verhoeven, 2019)
The triple (C∞(Sn),X ,S) is an unbounded KK-cycle from C (Sn) to
C0(Rn+1).



The internal Kasparov product

• We introduce a connection ∇ on X by

∇(ψ) = [D, ψ]− n

2r
ic(dr)

• The tensor sum is given by

D× = S ⊗ 1 + 1⊗∇ DRn+1

= γ1 1
r
DSn + γ2

(
i
∂

∂r

)
+ γ3f (r)

• As an operator on L2((1− ε, 1 + ε))⊗ C2 we have

T := iγ2 ∂
∂r + γ3f (r) =

(
0 i ∂∂r +if (r)

i ∂∂r−if (r) 0

)
for which we compute that indexT = 1



We now arrive at the final result
Theorem
The triple (C∞(Sn),X ⊗C0(Rn+1) L

2(ERn+1),D×) is an unbounded
representative both of the internal Kasparov product of ı! and [Rn+1] as
well as of [Sn] and [T ] = 1 ∈ KK (C,C)

The proof is a check of Kucerovsky’s conditions
Interestingly, the curvature can also be computed. Since

∇ = [D, ·]− n

2r
ic(dr)

we find

R∇ =
n2

4r2

which is (proportional to) the sectional curvature of the n-sphere...



Outlook

• New notion of curvature that arises in unbounded KK-theory, based
on the difference of two natural symmetric operators that appear in
the (unbounded version of the ) internal Kasparov product

• This notion of curvature is in concordance with the applications to
particle physics, Riemannian submersions, immersions of spheres into
Euclidean spaces

• and much more to be explored!
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