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Motivation for unbounded KK-theory

e Kasparov's bivariant K-theory: the backbone of Connes’
noncommutative differential geometry

® Many constructions in differential geometry can be captured in
unbounded KK-theory [BJ 1983]

®  With the added value that geometry becomes visible:
— gauge degrees of freedom (Particle Physics [CCvS])
— curvature [Mesland—Rennie-vS].

® A key role played by the internal Kasparov product

S®1+1ey T
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We investigate a notion of curvature emerging from this unbounded
refinement :

Rsv,r)=(S®@1+1@y T)?—(S’®1+10y T?)
=[S01,10v T]+ 1oy T2 —1®y T2

We work in three classes of examples:

- Morita equivalences (applications to particle physics)
[Chamseddine—Connes—Marcolli, vS]

— Riemannian submersions [Kaad—vS, Mesland—Rennie—sS, ..]

— Riemannian immersions: S” < R™ [vS—Verhoeven]
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Spectral triples and Morita equivalence

Given a spectral triple (A, H, D) and a (fgp) Morita equivalence
bimodule €4 construct a spectral triple (B, H', D'):

® Hilbert space: H' =& @4 H

® Choose (hermitian) connection V : £ — £ @4 Q'(A)

e Define an operator D' := 1 ®y D by

(Lov D)(¢@h) = (L@7p)(V(E)h+ & @ (Dh).

where 7p(ad(b)) = a[D, b].
Then (B,£ ®4 H,1 ®v D) is a spectral triple [C96] representing the
internal Kasparov product of [(£,0)] and [(H, Fp)].

Ry = 1Q®y D? — (1 Rv D)2 = 7TD(V2)
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Morita self-equivalences

o  Now take A = B and £ = A as well, then H' =2 H but connection
V:A— QYA) so that

1®y D=D+ mp(w)

® The connection one-form is mp(w)* = mp(w) = 7p(V(1)), or,

mo(w) =Y a[D,b];  (a,b € A)

J

®  Curvature for Morita self-equivalences becomes

Ry = 7T'D(v2) = —7rD(5w +w2)
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Two-point space

®  Consider the spectral triple

(C@C,C@C,D: (9 C))
c 0

® Inner perturbations: mp(w) = <E% C0¢>
®  Curvature:

Ry = (1®v D?) — (1 @y D)?
= D? — (D +mp(w))? = |c(1 = |¢ + 1)1z
® In physical applications A = C*>(M, Ar) for some finite-dimensional

matrix algebra Ar and w is parametrized by gauge fields, scalar
(Higgs) fields [CCvS 2013-].
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Riemannian submersions

Consider the following setup [Kaad-vS, 2016]:
® A Riemannian submersion

T:M— B

of compact spin® manifolds M and B
® It is well-known from wrong-way functoriality [CS 1984] that

[M] = 7!®c(8)[B] (%)
® Can we write the Dirac operator on M as a tensor sum:
Dy = Dy @~ + 1 &y Dg + &()?

for some unbounded KK-cycle (C*°(M), X, Dy ), representing the
internal KK-product (), allowing for curvature defects Q7
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Recall: horizontal and vertical vector fields

® On Z'(M) one can introduce the direct sum connection
Ve =P, VMPy @ V5,
® the second fundamental form:
S(X,Y,2) = (V¥ _pz(PX) —[(1 = P)Z,PX],PY),,.
® the curvature of m: M — B:
QX,Y,Z):=—([(L - P)X,(1 - P)Y],PZ),,

which combined yield a tensor w € Q'(M) @ ¢y Q*(M)
Proposition (Bismut, 1986)

The Levi-Civita connection VY is related to the direct sum
connection V¥ by the following formula

(VYY, Zym = (VSY, Z)m +w(X)(Y, Z).
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Spin geometry and Clifford modules

Suppose that M and B are (even-dim) spin® manifolds, so we have
CI(M) = Endcoo(M)(é”M), Cl(B) = Endcoo(B)(gB)

and hermitian Clifford connections V" and V2.
®  We define the horizontal spinor module:

Sy = éaB@Coo(B) COO(M); C|H(M) & EndCoo(M)(édH); VgH = W*VgB.
e \We define the vertical spinor module:
Ey = g:, ®CIH(M) Em, C|\/(M) = Endcoo(M)(éav)
. 1
VY —10VYy + V& @1+ JeX) @,
®  Finally,

E@coo(mybv = En, compatibly with Cly(M)& coe () Cly (M) 2 CI(M)
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The vertical operator

® We define a C*-correspondence X from C(M) to C(B) by
completing &y with respect to

(1, P2)x(b) := /F (p1,P2) e, dur,

® The following defines an odd self-adjoint unbounded operator in X

dim(F)

Dv =i Z C\/(Gj)Viv
Jj=1

where {g;} is a local orthonormal frame for 2\ (M)
Proposition (Kaad-vS, 2016)
The triple (C*°(M), X, DV) is an even unbounded Kasparov module
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The horizontal operator and the connection

The Dirac operator Dg : Dom(Dg) — L?(&5) is locally

Clearly (C*(B), L*(&£3), Dg;vg) is an (even) spectral triple
®  The following defines a hermitian connection on X
1
VI =V + 5k(Zn)

with k = (Tr@1)(S) € Q' (M) the mean curvature
Lemma (Kaad-vS, 2016)

The following local expression defines an odd symmetric unbounded
operator in X®c(g)L*(&B):

(l®y Dg):=1®@Dg+iY VF§ ®c(f,)
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The tensor sum
®  The tensor sum we are after is given by

(Dv xv D)o := Dy ® vg +1®v Dp :
Dom(DV Xy DB)O — X@C(B)Lz(gg)
®  The closure of this symmetric operator is denoted Dy xv Dg.

Theorem (Kaad-vS, 2016)
(1) We have the identity

D\/ Xv DB = DM — éE(Q)

(2) The spectral triple (C*°(M), L?(&w), D) is the unbounded
KK-product of (C*(M), X, Dy) with the spectral triple

(C>=(B), L*(&8), Dg) up to the curvature term —£c(Q).
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Curvature

® Consider curvature in this context [Mesland—Rennie-vS, 2019]
Ry = 1@y Dj — (1@vy Dg)* = mp,(V?)
® One can show that
Ry = cno (V%) + dk)

in terms of horizontal Clifford multiplication cy, the curvature of
V4" and the mean curvature k
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Toric noncommutative manifolds

This extends to almost-regular fibrations of Riemannian spin® manifolds.

We consider the class of examples coming from actions of a torus T"
on a spin® manifold M with principal stratum M and with

B = M/T" a spin® manifold.

Up to unitary isomorphism, there is a tensor sum factorization
[Kaad—-vS, 2019]:

Dy = Dv®y + 1&vy Dy + €(Q)

Prototype: the four-sphere S* with a T2-action (the starting point
for the Connes—Landi four-sphere)
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The four-sphere

® Toroidal coordinates: 0 < 61,60, < 2w, 0 < ¢ < 7/2,
—m/2 <1 < 7/2, and write

7 =€t COSs ¢ Cos Y;
2, = €% sin p cos 1;
X =siny

e Action of T? is by translating the 61, #>-coordinates
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The orbit space S*/T? = @Q? is a closed quadrant in the two-sphere,
parametrized by

0<p<m/2, —m/2<¢ <7/2

?
w ll \\\\\‘
’9.; m"' “n i

)

Principal stratum S§ is a trivial T2-principal fiber bundle over the
interior Qg of Q2

Moreover, 7 : S§ — Q3 is a (proper) Riemannian submersion for the
metric on Qg induced by the round metric on S?
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Spin geometry of S$*

The Dirac operator for the round metric is a T2-invariant selfadjoint
operator
Dsga - Dom(Dga) — L2(S4,éag4)

with local expression:
1 1 0 1 5 0

—fy _+I—

cospcosy ' 06q sin ¢ cos 1/) 06,

+i 1 s i+lcot —ltan +i 0 3'canzp
cos¢7 dp 2 L v ”* 8¢ 2

Since the ‘subprincipal’ stratum is of codimension two, it follows that
C(Sg) ® C* € L2(S*, 6xe) is a core for Dga

Dsa = i
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Vertical operator

® We consider a C*-correspondence X from Co(S§) to Co(@3), defined
as the Hilbert C*-completion of C>°(Sg) ® C? wrt

(s;thx = / s(01, 02, 0,1) - t(61,02,,1)d01d0; - sin o cos @ cos® 1,
']1‘2
® There is a unitary isomorphism (induced by pointw. multipl.)
u: X ®cyqz) LP(@F) ® C* — L3(S) © C*
®  We define a symmetric operator (Dy)o : C2°(Sg) ® C? — X:

1 16 . 1 20

D -
(Dv)o = cosgpcosd) 691+ smapcosw 90>

We denote its closure by Dy : Dom(Dy) — X.
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®  One can find families of eigenvectors \Unilnz in C*>°(T?) ® C2.

Dy (fV3

nl ny

) = £y - FVE

for any f € C2°(Q2) where

. E
ny n; - .
12 cos? pcos? 1) sin pcos? 1)

® Regularity, selfadjointness and compactness of the resolvent: Dy
defines unbdd Kasparov module from Go(S§) to Co(Q3)
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Horizontal operator

We define an operator (Dqz)o C(Q3) ®C? = L?(Q3) ® C? as the
restriction of the Dirac operator on S? to the open quadrant Qg

.1 50 . ,(0 1
(Dog)o_,cosd}a 8go+la (8¢—2tand)>.

lé’
”" mm\\\ ?‘\
‘Q Illll "

This is a symmetric operator. Its closure Doz defines a half-closed chain
[Hil, 2010] from GCo(Q3) to C
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Tensor sum of Dy and DQS

We lift the operators Dy and Dgz to X ®¢,(q2) L2(@QF) ® C2.
® For Dy we take Dy &~y and have on C°(S§) ® C* that
1 . 0 L 1 2 0
cosgocosz/) 96, ' sin <pcosz/1 960>
®  For the operator DQg, we first need a hermitian connection on X

u(Dy&y)u* =

0 1 1
VQ/3¢:8—¢+§COt(p—§tan(p Va/aw—aw tan

® The operator 1<§>VDQg then becomes

~ 1 0 1 1
u(l@yDgz)u™ = i Sw 73 <—+§cotcp— Etamp)

+ iy (% — ;tanw)

Radboud University




The tensor sum we are after is given by
Dy &y + 18y Dgz
This is a symmetric operator and we denote its closure by
Dy xv Dgz : Dom(Dy xv Dgz) = X ®c,(qz) L*(QF) ® C*.

Since C°(Sg) @ C? R (Q2) C(Q3) ® C? is a core for Dy xv Dqz
which is mapped by u to the core C2°(S3) @ C* of Dse, it follows that

u(Dy xv Dgz)u* = Dge

as an equality on Dom(Dsa)
A connection and positivity property imply that this is an unbounded
representative of the internal product

KK(Co(S5), Co(Q5)) @co(qz) KK(Co(@5), C) — KK(Co(Sg), C)
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Immersions in unbounded KK-theory: S” — R"!

e Consider the embedding 7 : S” < R" 1,
® By [CS 1984] we know that

[Sn] =5 ® [Rn+1]

as classes in KK-theory.
® |et us consider the unbounded version, which starts by writing

1
Drgn+1 :'yl—DSn +’72 iﬁ-’—i
r or 2r

® This is (a local expression for) an essentially self-adjoint operator
with volume form r"dr A doge
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The immersion KK-cycle

® We introduce the immersion module between C(S") and Co(R"*1):
X=GCS"x(1-¢€l+¢)

equipped with Co(R"™"!)-valued inner product given by

(. 2)x(7,6) = (7,80l )

® Self-adjoint operator S : Dom(S) — X defined as multiplication
operator with some suitable f = f(r), such as

f(r)= ;tan m(r—1)

€ 2¢

Proposition (vS—Verhoeven, 2019)
The triple (C*°(S"), X, S) is an unbounded KK-cycle from C(S") to
o(R™H
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The internal Kasparov product

®  We introduce a connection V on X by
V(y) =D, y] - —'C(df)
® The tensor sum is given by
Dy =5S®1+41®y Dgn
1 .0
® As an operator on L?((1 —¢,1+€)) ® C? we have
3 0 iL+if(r)
T =g +77f(r) = (;g—;f(r) "o )

for which we compute that index T =1
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We now arrive at the final result

Theorem

The triple (C™(S"), X ®cy(rn+1) L*(rma), Dy ) is an unbounded
representative both of the internal Kasparov product of 1 and [R"1] as
well as of [S"] and [T] =1 € KK(C,C)

The proof is a check of Kucerovsky's conditions

Interestingly, the curvature can also be computed. Since

n

V=I[D,]- 2rlc(dr)
we find )
n
Ry = -
VT 42

which is (proportional to) the sectional curvature of the n-sphere...
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Outlook

® New notion of curvature that arises in unbounded KK-theory, based
on the difference of two natural symmetric operators that appear in
the (unbounded version of the ) internal Kasparov product

® This notion of curvature is in concordance with the applications to
particle physics, Riemannian submersions, immersions of spheres into
Euclidean spaces

® and much more to be explored!
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