Noncommutative spaces at finite resolution

Walter van Suijlekom (joint with Alain Connes)

A spectral approach to geometry

"Can one hear the shape of a drum?" (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

$$\Delta_M u = k^2 u$$

determine the geometry of M?

The disc

Wave numbers on the disc

The square

Wave numbers on the square

Isospectral domains

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no

Weyl's estimate

Nevertheless, certain information can be extracted from the spectrum:

$$egin{aligned} \mathcal{N}(\Lambda) &= \# ext{wave numbers} &\leq \Lambda \ &\sim rac{\Omega_d ext{Vol}(M)}{d(2\pi)^d} \Lambda^d \end{aligned}$$

For the disc and square this is confirmed by the parabolic shapes $(\sqrt{\Lambda})$:

Analysis: Dirac operator

Recall that k^2 is an eigenvalue of the Laplacian in the Helmholtz equation.

- The Dirac operator is a 'square-root' of the Laplacian, so that its spectrum give the wave numbers *k*.
- First found by Paul Dirac in flat space, but exists on any Riemannian spin manifold *M*.
- Let us give some examples.

The circle

• The Laplacian on the circle \mathbb{S}^1 is given by

$$\Delta_{\mathbb{S}^1} = -rac{d^2}{dt^2}; \qquad (t\in [0,2\pi))$$

• The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -i \frac{d}{dt}$$

with square $\Delta_{\mathbb{S}^1}$.

The 2-dimensional torus

- Consider the two-dimensional torus \mathbb{T}^2 parametrized by two angles $t_1, t_2 \in [0, 2\pi)$.
- The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}.$$

• At first sight it seems difficult to construct a differential operator that squares to $\Delta_{\mathbb{T}^2}$:

$$\left(a\frac{\partial}{\partial t_1} + b\frac{\partial}{\partial t_2}\right)^2 = a^2\frac{\partial^2}{\partial t_1^2} + 2ab\frac{\partial^2}{\partial t_1\partial t_2} + b^2\frac{\partial^2}{\partial t_2^2}$$

 This puzzle was solved by Dirac who considered the possibility that a and b be complex matrices:

$$a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

then $a^2 = b^2 = -\mathbb{I}$ and ab + ba = 0

The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} \\ -\frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} & 0 \end{pmatrix},$$

which satisfies $(D_{\mathbb{T}^2})^2 = (-\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2})\mathbb{I}.$

The 4-dimensional torus

• The 4-torus \mathbb{T}^4 can be parametrized by t_1, t_2, t_3, t_4 with Laplacian:

$$\Delta_{\mathbb{T}^4} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2} - \frac{\partial^2}{\partial t_3^2} - \frac{\partial^2}{\partial t_4^2}$$

• The search for a differential operator that squares to $\Delta_{\mathbb{T}^4}$ again involves matrices, but we also need quaternions:

$$i^2 = j^2 = k^2 = ijk = -1.$$

• The Dirac operator on \mathbb{T}^4 is

$$D_{\mathbb{T}^4} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} \\ - \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} & 0 \end{pmatrix}$$

• The relations ij = -ji, ik = -ki, ..., imply that $D_{\mathbb{T}^4}$ squares to $\Delta_{\mathbb{T}^4}$.

Noncommutative geometry

If combined with the C^* -algebra C(M), then the answer to Kac' question is affirmative.

Connes' reconstruction theorem [2008]:

 $(C(M), L^2(S_M), D_M) \longleftrightarrow (M, g)$

The "usual" story

Given cpt Riemannian spin manifold (M, g) with spinor bundle S_M on M.

- the C^* -algebra C(M)
- the self-adjoint Dirac operator D_M
- both acting on Hilbert space $L^2(S_M)$
- \rightsquigarrow spectral triple: $(C(M), L^2(S_M), D_M)$

Reconstruction of distance function [Connes 1994]:

$$d(x,y) = \sup_{f \in C(M)} \{ |f(x) - f(y)| : ||[D_M, f]|| \le 1 \}$$

Spectral triples

More generally, we consider a triple (A, H, D)

- a C*-algebra A
- a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for a ∈ A ⊂ A
- both acting (boundedly, resp. unboundedly) on Hilbert space ${\mathcal H}$

Generalized distance function:

- States are positive linear functionals $\phi: A \to \mathbb{C}$ of norm 1
- Pure states are extreme points of state space
- Distance function on state space of A:

$$d(\phi,\psi) = \sup_{\boldsymbol{a}\in\mathcal{A}} \left\{ |\phi(\boldsymbol{a}) - \psi(\boldsymbol{a})| : \|[D,\boldsymbol{a}]\| \le 1 \right\}$$

Spectral data

- The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based on [Connes–vS] (CMP, Szeged)

Towards operator systems..

- (I) Given (A, H, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto \mathcal{PH}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, *PAP* is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x, y) < \epsilon$

So first, some background on operator systems.

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators. Unital: it contains the identity operator.

• *E* is ordered: cone $E_+ \subseteq E$ of positive operators, in the sense that $T \in E_+$ iff

 $\langle \psi, T\psi \rangle \ge 0;$ $(\psi \in \mathcal{H}).$

in fact, E is matrix ordered: cones M_n(E)₊ ⊆ M_n(E) of positive operators on Hⁿ for any n.

Maps between operator systems E, F are completely positive maps in the sense that their extensions $M_n(E) \rightarrow M_n(F)$ are positive for all n. Isomorphisms are complete order isomorphisms

C*-envelope of a unital operator system

Arveson introduced the notion of *C**-envelope for unital operator systems in 1969, Hamana established existence and uniqueness in 1979. Non-unital case: [Connes-vS 2020], [Kennedy–Kim–Manor 2021]

A *C**-extension $\kappa : E \to A$ of a unital operator system *E* is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$. A *C**-envelope of a unital operator system is a *C**-extension $\kappa : E \to A$ with the following universal property:

Example: operator system $C_{harm}(\overline{\mathbb{D}})$ of continuous harmonic functions with C^* -envelope $C(S^1)$.

Propagation number of an operator system

One lets $E^{\circ n}$ be the norm closure of the linear span of products of $\leq n$ elements of E.

Definition

The propagation number prop(E) of E is defined as the smallest integer n such that $\kappa(E)^{\circ n} \subseteq C^*_{env}(E)$ is a C^* -algebra.

Returning to harmonic functions in the disk we have $prop(C_{harm}(\overline{\mathbb{D}})) = 1$.

Proposition

The propagation number is invariant under complete order isomorphisms, as well as under stable=Morita equivalence [EKT, 2019]:

$$prop(E) = prop(E \otimes_{min} \mathcal{K})$$

State spaces of operator systems

- The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- In the finite-dimensional case, the dual E^d of a unital operator system is a unital operator system with

$$E^d_+ = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the matrix order.

- Also, we have $(E^d)^d_+ \cong E_+$ as cones in $(E^d)^d \cong E$.
- It follows that we have the following useful correspondence: pure states on *E* ↔ extreme rays in (*E^d*)₊
 and the other way around.

Spectral truncation of the circle: Toeplitz matrices

- Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$
- Orthogonal projection $P = P_n$ onto $\text{span}_{\mathbb{C}}\{e_1, e_2, \dots, e_n\}$
- The space $C(S^1)^{(n)} := PC(S^1)P$ is an operator system
- Any T = PfP in $C(S^1)^{(n)}$ can be written as a Toeplitz matrix

$$PfP \sim (t_{k-l})_{kl} = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_1 & t_0 & t_{-1} & & t_{-n+2} \end{pmatrix}$$

$$\vdots & t_1 & t_0 & \ddots & \vdots \\ t_{n-2} & \ddots & \ddots & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{pmatrix}$$

We have: $C^*_{env}(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$ and $prop(C(S^1)^{(n)}) = 2$ (for any n).

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

• functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\dots, 0, a_{-n+1}, a_{-n+2}, \dots, a_{-1}, a_0, a_1, \dots, a_{n-2}, a_{n-1}, 0, \dots)$$

- an element *a* is positive iff $\sum_{k} a_{k}e^{ikx}$ is a positive function on S^{1} .
- The C^{*}-envelope of $C^*(\mathbb{Z})_{(n)}$ is given by $C^*(\mathbb{Z})$.

Proposition

- The extreme rays in (C*(Z)_(n))₊ are given by the elements a = (a_k) for which the Laurent series ∑_k a_kz^k has all its zeroes on S¹.
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k \ (\lambda \in S^1)$.

Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes-vS 2020] and [Farenick 2021]: $C(S^1)^{(n)} \times C^*(\mathbb{Z})_{(n)} \to \mathbb{C}$ $(T = (t_{k-l})_{k,l}, a = (a_k)) \mapsto \sum_k a_k t_{-k}$

Proposition

- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_{\lambda}\rangle\langle f_{\lambda}|$ for any $\lambda \in S^1$.
- 2. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/S_n$.

Curiosities on Toeplitz matrices

Theorem (Carathéodory)

Let T be an $n \times n$ Toeplitz matrix. Then $T \ge 0$ iff $T = V \Delta V^*$ with

$$\Delta = \begin{pmatrix} d_1 & & \\ & d_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & d_n \end{pmatrix}; \qquad V = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix},$$

for some $d_1, \ldots, d_n \ge 0$ and $\lambda_1, \ldots, \lambda_n \in S^1$.

Farenick continues to exploit the duality by showing:

- every positive linear map of the $n \times n$ complex matrices is completely positive when restricted to the Toeplitz operator system.
- every unital isometry of the $n \times n$ Toeplitz matrices into the algebra of $n \times n$ complex matrices is a unitary similarity transformation.

Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$T = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

The pure state space is \mathbb{T}^2/S_2 , given by vector states $|\xi\rangle\langle\xi|$ with

Finite Fourier transform and duality

- Fourier transform on the cyclic group maps I[∞](ℤ/mℤ) to ℂ[ℤ/mℤ] and vice versa, exchanging pointwise and convolution product.
- This can be phrased in terms of a duality:

$$\mathbb{C}[\mathbb{Z}/m\mathbb{Z}] \times l^{\infty}(\mathbb{Z}/m\mathbb{Z}) \to \mathbb{C}$$
$$\langle c, g \rangle \mapsto \sum_{k,l} c_l g(k) e^{2\pi i k l/m}$$

compatibly with positivity.

- Thus we may consider the above duality for Toeplitz matrices as some sort of generalization of Fourier theory to operator systems.
- However, note that for finite Fourier theory the symmetries are reduced from S¹ to Z/mZ.

Convergence to the circle

[vS 2021] and [Hekkelman, 2021] study the Gromov–Hausdorff convergence of the state spaces $S(C(S^1)^{(n)})$ with the distance function d_n to the circle.

- The map $R_n: C(S^1) \to C(S^1)^{(n)}$ given by compression with P_n allows to pull-back states from $C(S^1)^{(n)}$ to the circle
- There is a C^1 -approximate order inverse $S_n : C(S^1)^{(n)} \to C(S^1)$:

$$R_n(S_n(T)) = T_n \odot T; \qquad S_n(R_n(f)) = F_n * f$$

in terms of a Schur product with a matrix T_n and the convolution with the Fejér kernel F_n :

• The fact that S_n is a C^1 -approximate inverse of R_n allows one to prove

$$d_{S^1}(\phi,\psi) - 2\gamma_n \leq d_n(\phi \circ S_n,\psi \circ S_n) \leq d_{S^1}(\phi,\psi)$$

where $\gamma_n \to 0$ as $n \to \infty$.

• Some (basic) Python simulations for point evaluation on S¹:

Gromov–Hausdorff convergence

Recall Gromov-Hausdorff distance between two metric spaces:

 $d_{\mathrm{GH}}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f: X \to Z, g: Y \to Z \text{ isometric}\}$

and

$$d_{H}(X, Y) = \inf\{\epsilon \ge 0; X \subseteq Y_{\epsilon}, Y \subseteq X_{\epsilon}\}$$

Using the maps R_n, S_n we can equip S(C(S¹)) II S(C(S¹)⁽ⁿ⁾) with a distance function that bridges the given distance functions on S(C(S¹)) and S(C(S¹)⁽ⁿ⁾) within ε for large n.

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces $\{(\mathcal{S}(C(S^1)^{(n)}), d_n)\}$ converges to $(\mathcal{S}(C(S^1)), d_{S^1})$ in Gromov–Hausdorff distance.

Operator systems associated to tolerance relations

- Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.
- Key motivating example: a metric space (X, d) with the relation

$$\mathcal{R}_{\epsilon} := \{(x, y) \in X \times X : d(x, y) < \epsilon\}$$

If (X, μ) is a measure space and R ⊆ X × X an open subset we obtain the operator system E(R) as the closure of integral operator with support in R. Note that E(R) ⊆ K(L²(X))

Tolerance relations on finite sets [Gielen-vS, 2022]

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X and suppose that \mathcal{R} generates the full equivalence class $X \times X$ (*i.e.* the graph corresponding to \mathcal{R} is connected). Then

- 1. the C*-envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X)) \cong M_{|X|}(\mathbb{C})$ and prop $(E(\mathcal{R})) = \operatorname{diam}(\mathcal{R})$.
- 2. If \mathcal{R} is a chordal graph, then $E(\mathcal{R})^d \cong E(\mathcal{R})$ as a vector space, but with order structure given by being partially positive.
- 3. the pure states of $E(\mathcal{R})$ are given by vector states $|v\rangle\langle v|$ for which the support of $v \in \ell^2(X)$ is \mathcal{R} -connected.

Example

The operator systems of $p \times p$ band matrices with band width N.

- 1. The propagation number of $\mathcal{E}_{p,N} \subseteq M_p(\mathbb{C})$ is equal to $\lceil p/N \rceil$.
- 2. The dual operator system consists of band matrices (with order given by partially positive).

Spaces at finite resolution

Consider now a path metric measure space X with a measure of full support, and the following tolerance relation:

$$\mathcal{R}_{\epsilon} := \{(x, y) \in X \times X : d(x, y) < \epsilon\}$$

It gives rise to the operator system $E(\mathcal{R}_{\epsilon}) \subseteq \mathcal{K}(L^{2}(X))$. **Proposition**

If X is a complete and locally compact path metric measure space X with a measure of full support, then

- 1. $C^*_{env}(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X))$ and $\operatorname{prop}(E(\mathcal{R}_{\epsilon})) = \lceil \operatorname{diam}(X)/\epsilon \rceil$
- 2. The pure states of $E(\mathcal{R}_{\epsilon})$ are given by vector states $|\psi\rangle\langle\psi|$ where the essential support of $\psi \in L^{2}(X)$ is ϵ -connected.

Outlook

- Spectral truncations: tori, compact Lie groups, etc.
- Bonds in groupoids: approximate order unit, duality, etc.
- Metric structure on state spaces for spaces at finite resolution
- Gromov–Hausdorff convergence, entropy
- General theory of spectral triples for operator systems

• .

Thanks:

