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A spectral approach to geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



The disc



Wave numbers on the disc
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The square



Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac’s question is no



Weyl’s estimate

Nevertheless, certain information can be extracted from the spectrum:

N(Λ) = #wave numbers ≤ Λ

∼ ΩdVol(M)

d(2π)d
Λd

For the disc and square this is confirmed by the parabolic shapes (
√

Λ):
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Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz
equation.
• The Dirac operator is a ‘square-root’ of the Laplacian, so that its

spectrum give the wave numbers k .
• First found by Paul Dirac in flat space, but exists on any Riemannian

spin manifold M.
• Let us give some examples.



The circle

• The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

• The Dirac operator on the circle is

DS1 = −i d
dt

with square ∆S1 .



The 2-dimensional torus

• Consider the two-dimensional torus T2 parametrized by two angles
t1, t2 ∈ [0, 2π).

• The Laplacian reads

∆T2 = − ∂2

∂t21
− ∂2

∂t22
.

• At first sight it seems difficult to construct a differential operator
that squares to ∆T2 :(

a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t21
+ 2ab

∂2

∂t1∂t2
+ b2 ∂

2

∂t22



• This puzzle was solved by Dirac who considered the possibility that a
and b be complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −I and ab + ba = 0

• The Dirac operator on the torus is

DT2 =

(
0 ∂

∂t1
+ i ∂∂t2

− ∂
∂t1

+ i ∂∂t2 0

)
,

which satisfies (DT2)2 = (− ∂2

∂t21
− ∂2

∂t22
)I.



The 4-dimensional torus

• The 4-torus T4 can be parametrized by t1, t2, t3, t4 with Laplacian:

∆T4 = − ∂2

∂t21
− ∂2

∂t22
− ∂2

∂t23
− ∂2

∂t24
.

• The search for a differential operator that squares to ∆T4 again
involves matrices, but we also need quaternions:

i2 = j2 = k2 = ijk = −1.

• The Dirac operator on T4 is

DT4 =

(
0 ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4
− ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4
0

)
• The relations ij = −ji , ik = −ki , . . . imply that DT4 squares to ∆T4 .



Noncommutative geometry

If combined with the C∗-algebra C (M), then the
answer to Kac’ question is affirmative.

Connes’ reconstruction theorem [2008]:

(C (M), L2(SM),DM)←→ (M, g)



The “usual” story

Given cpt Riemannian spin manifold (M, g) with spinor bundle SM on M.

• the C∗-algebra C (M)
• the self-adjoint Dirac operator DM

• both acting on Hilbert space L2(SM)

 spectral triple: (C (M), L2(SM),DM)

Reconstruction of distance function [Connes 1994]:

d(x , y) = sup
f∈C(M)

{|f (x)− f (y)| : ‖[DM , f ]‖ ≤ 1}

x y x y

f



Spectral triples

More generally, we consider a triple (A,H,D)
• a C∗-algebra A
• a self-adjoint operator D with compact resolvent and bounded

commutators [D, a] for a ∈ A ⊂ A
• both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:
• States are positive linear functionals φ : A→ C of norm 1
• Pure states are extreme points of state space
• Distance function on state space of A:

d(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}



Spectral data

• The mathematical reformulation of geometry in terms of spectral
data requires the knowledge of all eigenvalues of the Dirac operator.

• From a physical standpoint this is not very realistic: detectors have
limited energy ranges and resolution.

We develop the mathematical formalism for
(noncommutative) geometry with only part of the spectrum
and/or with finite resolution.

This is in line with [D’Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019]
and based on [Connes–vS] (CMP, Szeged)



Towards operator systems..

(I) Given (A,H,D) we project onto part of the spectrum of D:
– H 7→ PH, projection onto closed Hilbert subspace
– D 7→ PDP, still a self-adjoint operator
– A 7→ PAP, this is not an algebra any more (unless P ∈ A)

Instead, PAP is an operator system: (PaP)∗ = Pa∗P.

(II) Another approach would be to consider metric spaces up to a finite
resolution :
– Consider integral operators associated to the tolerance relation

Rε given by d(x , y) < ε

So first, some background on operator systems.



Operator systems

Definition (Choi-Effros 1977)
An operator system is a ∗-closed vector space E of bounded operators.
Unital: it contains the identity operator.

• E is ordered: cone E+ ⊆ E of positive operators, in the sense that
T ∈ E+ iff

〈ψ,Tψ〉 ≥ 0; (ψ ∈ H).

• in fact, E is matrix ordered: cones Mn(E )+ ⊆ Mn(E ) of positive
operators on Hn for any n.

Maps between operator systems E ,F are completely positive maps in the
sense that their extensions Mn(E )→ Mn(F ) are positive for all n.
Isomorphisms are complete order isomorphisms



C ∗-envelope of a unital operator system

Arveson introduced the notion of C∗-envelope for unital operator systems
in 1969, Hamana established existence and uniqueness in 1979.
Non-unital case: [Connes-vS 2020], [Kennedy–Kim–Manor 2021]

A C∗-extension κ : E → A of a unital operator system E is given by a
complete order isomorphism onto κ(E ) ⊆ A such that C∗(κ(E )) = A.
A C∗-envelope of a unital operator system is a C∗-extension κ : E → A
with the following universal property:

E
κ //

λ
��

A
OOOO

∃!ρ

B

Example: operator system Charm(D) of continuous
harmonic functions with C∗-envelope C (S1).



Propagation number of an operator system

One lets E◦n be the norm closure of the linear span of products of ≤ n
elements of E .

Definition
The propagation number prop(E ) of E is defined as the smallest integer
n such that κ(E )◦n ⊆ C∗env(E ) is a C∗-algebra.

Returning to harmonic functions in the disk we have prop(Charm(D)) = 1.

Proposition
The propagation number is invariant under complete order isomorphisms,
as well as under stable=Morita equivalence [EKT, 2019]:

prop(E ) = prop(E ⊗min K)



State spaces of operator systems

• The existence of a cone E+ ⊆ E of positive elements allows to speak
of states on E as positive linear functionals of norm 1.

• In the finite-dimensional case, the dual E d of a unital operator
system is a unital operator system with

E d
+ =

{
φ ∈ E d : φ(T ) ≥ 0,∀T ∈ E+

}
and similarly for the matrix order.

• Also, we have (E d)d+
∼= E+ as cones in (E d)d ∼= E .

• It follows that we have the following useful correspondence:
pure states on E ←→ extreme rays in (E d)+

and the other way around.



Spectral truncation of the circle: Toeplitz matrices

• Eigenvectors of DS1 are Fourier modes ek(t) = e ikt for k ∈ Z
• Orthogonal projection P = Pn onto spanC{e1, e2, . . . , en}
• The space C (S1)(n) := PC (S1)P is an operator system
• Any T = PfP in C (S1)(n) can be written as a Toeplitz matrix

PfP ∼
(
tk−l

)
kl

=


t0 t−1 ··· t−n+2 t−n+1
t1 t0 t−1 t−n+2

... t1 t0
. . .

...

tn−2
. . . . . . t−1

tn−1 tn−2 ··· t1 t0


We have: C∗env(C (S1)(n)) ∼= Mn(C) and prop(C (S1)(n)) = 2 (for any n).



Dual operator system: Fejér–Riesz

We introduce the Fejér–Riesz operator system C∗(Z)(n):
• functions on S1 with a finite number of non-zero Fourier coefficients:

a = (. . . , 0, a−n+1, a−n+2, . . . , a−1, a0, a1, . . . , an−2, an−1, 0, . . .)

• an element a is positive iff
∑

k ake
ikx is a positive function on S1.

• The C∗-envelope of C∗(Z)(n) is given by C∗(Z).
Proposition
1. The extreme rays in (C∗(Z)(n))+ are given by the elements a = (ak)

for which the Laurent series
∑

k akz
k has all its zeroes on S1.

2. The pure states of C∗(Z)(n) are given by a 7→
∑

k akλ
k (λ ∈ S1).



Pure states on the Toeplitz matrices

Duality of C (S1)(n) and C∗(Z)(n) [Connes–vS 2020] and [Farenick 2021]:

C (S1)(n) × C∗(Z)(n) → C

(T = (tk−l)k,l , a = (ak)) 7→
∑
k

akt−k

Proposition
1. The extreme rays in C (S1)

(n)
+ are γ(λ) = |fλ〉〈fλ| for any λ ∈ S1.

2. The pure state space P(C (S1)(n+1)) ∼= Tn/Sn.



Curiosities on Toeplitz matrices

Theorem (Carathéodory)
Let T be an n × n Toeplitz matrix. Then T ≥ 0 iff T = V∆V ∗ with

∆ =


d1

d2
. . .

dn

 ; V =
1√
n


1 1 · · · 1
λ1 λ2 · · · λn
...

...
λn−1

1 λn−1
2 · · · λn−1

n

 ,

for some d1, . . . , dn ≥ 0 and λ1, . . . , λn ∈ S1.
Farenick continues to exploit the duality by showing:
• every positive linear map of the n× n complex matrices is completely

positive when restricted to the Toeplitz operator system.
• every unital isometry of the n × n Toeplitz matrices into the algebra

of n × n complex matrices is a unitary similarity transformation.



Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

T =

t0 t−1 t−2
t1 t0 t−1
t2 t1 t0


The pure state space is T2/S2, given by vector states |ξ〉〈ξ| with

ξ ∝

 1
e ix + e iy

e i(x+y)


This is a Möbius strip!



Finite Fourier transform and duality

• Fourier transform on the cyclic group maps l∞(Z/mZ) to C[Z/mZ]
and vice versa, exchanging pointwise and convolution product.

• This can be phrased in terms of a duality:

C[Z/mZ]× l∞(Z/mZ)→ C

〈c , g〉 7→
∑
k,l

clg(k)e2πikl/m

compatibly with positivity.
• Thus we may consider the above duality for Toeplitz matrices as

some sort of generalization of Fourier theory to operator systems.
• However, note that for finite Fourier theory the symmetries are

reduced from S1 to Z/mZ.



Convergence to the circle

[vS 2021] and [Hekkelman, 2021] study the Gromov–Hausdorff
convergence of the state spaces S(C (S1)(n)) with the distance function
dn to the circle.

• The map Rn : C (S1)→ C (S1)(n) given by compression with Pn

allows to pull-back states from C (S1)(n) to the circle
• There is a C 1-approximate order inverse Sn : C (S1)(n) → C (S1):

Rn(Sn(T )) = Tn � T ; Sn(Rn(f )) = Fn ∗ f

in terms of a Schur product with a matrix Tn and the convolution
with the Fejér kernel Fn:



• The fact that Sn is a C 1-approximate inverse of Rn allows one to
prove

dS1(φ, ψ)− 2γn ≤ dn(φ ◦ Sn, ψ ◦ Sn) ≤ dS1(φ, ψ)

where γn → 0 as n→∞.
• Some (basic) Python simulations for point evaluation on S1:



Gromov–Hausdorff convergence

Recall Gromov–Hausdorff distance between two metric spaces:

dGH(X ,Y ) = inf{dH(f (X ), g(Y )) | f : X → Z , g : Y → Z isometric}

and

dH(X ,Y ) = inf{ε ≥ 0;X ⊆ Yε,Y ⊆ Xε}

• Using the maps Rn,Sn we can equip S(C (S1))q S(C (S1)(n)) with a
distance function that bridges the given distance functions on
S(C (S1)) and S(C (S1)(n)) within ε for large n.

Proposition (vS21, Hekkelman 2021)
The sequence of state spaces {(S(C (S1)(n)), dn)} converges to
(S(C (S1)), dS1) in Gromov–Hausdorff distance.



· · · · · ·



Operator systems associated to tolerance relations

• Suppose that X is a set and consider a relation R ⊆ X × X on X
that is reflexive, symmetric but not necessarily transitive.

• Key motivating example: a metric space (X , d) with the relation

Rε := {(x , y) ∈ X × X : d(x , y) < ε}

• If (X , µ) is a measure space and R ⊆ X × X an open subset we
obtain the operator system E (R) as the closure of integral operator
with support in R. Note that E (R) ⊆ K(L2(X ))



Tolerance relations on finite sets [Gielen–vS, 2022]

Let X be a finite set and R ⊆ X × X a symmetric reflexive relation on X
and suppose that R generates the full equivalence class X × X (i.e. the
graph corresponding to R is connected). Then
1. the C∗-envelope of E (R) is K(`2(X )) ∼= M|X |(C) and

prop(E (R)) = diam(R).
2. If R is a chordal graph, then E (R)d ∼= E (R) as a vector space, but

with order structure given by being partially positive.
3. the pure states of E (R) are given by vector states |v〉〈v | for which

the support of v ∈ `2(X ) is R-connected.
Example
The operator systems of p × p band matrices with band width N.
1. The propagation number of Ep,N ⊆ Mp(C) is equal to dp/Ne.
2. The dual operator system consists of band matrices (with order

given by partially positive).



Spaces at finite resolution

Consider now a path metric measure space X with a measure of full
support, and the following tolerance relation:

Rε := {(x , y) ∈ X × X : d(x , y) < ε}

It gives rise to the operator system E (Rε) ⊆ K(L2(X )).
Proposition
If X is a complete and locally compact path metric measure space X
with a measure of full support, then
1. C∗env(E (Rε)) = K(L2(X )) and prop(E (Rε)) = ddiam(X )/εe
2. The pure states of E (Rε) are given by vector states |ψ〉〈ψ| where

the essential support of ψ ∈ L2(X ) is ε-connected.



Outlook

• Spectral truncations: tori, compact Lie groups, etc.
• Bonds in groupoids: approximate order unit, duality, etc.
• Metric structure on state spaces for spaces at finite resolution
• Gromov–Hausdorff convergence, entropy
• General theory of spectral triples for operator systems
• ...


