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Abstract

A. Connes and W. D. van Suijlekom introduced a theoretical framework to deal with

truncations of spectral triples [14], and made a detailed study of such truncations of the

canonical spectral triple of the circle. Van Suijlekom later showed that the state spaces of

the truncated circle converge as metric spaces in Gromov-Hausdorff sense to the state space

of the whole spectral triple, in the limit of taking larger and larger projections to truncate

with [41]. In this thesis, we continue this work by showing that the Gromov-Hausdorff limit

of the pure state spaces of the truncated circle is also the state space of the whole spectral

triple, and show explicitly that it cannot be the pure state space of the circle. Furthermore,

we observe that work by T. Loring and H. Schulz-Baldes on the spectral localizer [26] can be

applied directly to calculate the index of the Connes-Moscovici index theorem on a spectral

triple using only data from a truncation of the spectral triple, and we give a self-contained

proof of this fact for the canonical spectral triple of the circle.
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Chapter 1

Introduction

In many ways, noncommutative geometry [10] exemplifies the spirit of modern mathematics. At

its heart, it is about the translation of geometric data into algebraic and analytical data, and a

subsequent generalisation that goes beyond geometry. Such projects are mathematics at its best,

combining different fields to create a new perspective on old structures.

In order to be more precise, consider how a locally compact Hausdorff space X can be recovered via

Gelfand duality from its continuous complex-valued functions vanishing at infinity, which forms

a commutative C∗-algebra C0(X). The whole topological structure of X can be read off from

algebraic and analytical properties of C0(X) [42, Chapter 1.11]. Below is a small selection of

examples of this correspondence:

X C0(X)

compact unital

compactification unitization

homeomorphisms ∗-isomorphisms

open subsets closed ideals

connected components projections

Remarkably, any commutative C∗-algebra A in turn gives rise to a locally compact Hausdorff space

Ω(A) such that A = C0(Ω(A)) [31, Chapter 2.1]. This duality between locally compact Hausdorff

spaces and commutative C∗-algebras gives some motivation to call the study of not necessarily

commutative C∗-algebras noncommutative topology. Noncommutative geometry is a project in

the same vein, and as the name suggests, it covers not only topology, but geometry as well. It

is an extension of Gelfand duality that also translates a Riemannian spinc-manifold’s (smooth)

structure, Riemannian metric and spinor bundle into algebraic and analytical data and vice versa.

For compact Riemannian spinc-manifolds M with spinor bundle S → M and Dirac-operator DM

associated to the Levi-Civita connection lifted to the spinor bundle, the data that captures the

whole structure comes in the form of a triple: the canonical spectral triple [11]

(C∞(M), L2(S), DM ).

In general, a spectral triple

(A, H,D)

consists of a typically unital ∗-algebra A of bounded operators on a Hilbert space H, and a self-

adjoint (possibly unbounded) operator D on H with compact resolvent, with the condition that

[D, a] is bounded for each a in A. Like in noncommutative topology, not only does every com-

pact Riemannian spinc-manifold give rise to a spectral triple with commutative A, but we can
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reconstruct the manifold with its entire structure from its canonical spectral triple as well [12].

This proof dates from 2008, although the statement was already formulated in 1996 [11]. Pre-

cisely because of this correspondence, it is justifiable to call the study of (general) spectral triples

noncommutative geometry.

A perspective on this correspondence that may appeal more to the imagination has to do with

the question whether one can ‘hear the shape of a drum’. In 1966, Mark Kac published an article

“Can one hear the shape of a drum?” [24], which sparked a wave of research into geometric

reconstructions using spectral data. Mathematically, the frequencies that a drum produces when

struck can be interpreted as the eigenvalues of the Laplace operator on a domain shaped like the

drum in the Euclidean plane R2. More generally, for a compact Riemannian manifold (M, g), one

can define the spectrum of M as the sequence of eigenvalues of the Laplace-Beltrami operator ∆ on

M . If M has a boundary, one can consider Dirichlet or Neumann boundary conditions, resulting

in a Dirichlet spectrum and a Neumann spectrum. Kac’s question could therefore be formulated

as: given two isospectral domains in the Euclidean plane, i.e. domains with equal Dirichlet or

Neumann spectra, must these domains then be isometric? Or more generally, if two manifolds are

isospectral, does that imply that the manifolds are isometric as well?

The more general question was in fact answered already by the time Kac published his article, as

non-isometric Riemannian manifolds were found with equal spectra by John Milnor in 1964 [30].

In the more specific case concerning domains in the Euclidean plane, a definitive answer took three

decades to find. Also here the answer was negative, published by Gordon, Webb and Wolpert in

1992 [22]. These authors found an example of a pair of simply-connected domains in R2 whose

Neumann spectrum and Dirichlet spectrum both coincide, see Figure 1.1.

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Figure 1.1: Two domains in R2 with equal Neumann spectrum and Dirichlet spectrum [22]. Figure

is in public domain.

So, while a direct reconstruction of a Riemannian manifold (M, g) from the spectrum of the Laplace-

Beltrami operator has been shown to be impossible, the reconstruction theorem in noncommutative

geometry can be interpreted as showing what spectral data is enough to perform a reconstruction

of (M, g). Not the Laplace-Beltrami operator should be considered, but its square root the Dirac

operator (although these spectra are essentially the same), in combination with the ‘coordinate

functions’ C∞(M). Calling C∞(M) the ‘coordinate functions’ in this context is suggestive of how

the reconstruction works, as we need to construct local charts to recover M as a manifold and

we can distill local coordinates from C∞(M). With this extra information, Kac’s question can be

answered positively.
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This approach to geometry is not just of interest to the mathematician with an appetite for abstract

generalisations. To the contrary, noncommutative geometry has enjoyed many interactions with

other fields from its very beginning. Notably, there are intimate connections with physics, from

the quantum Hall effect [10, Chapter 4.6] to particle physics [40]. A noncommutative Standard

Model has been constructed which describes the space-time we live in as a spectral triple, with an

action that gives General Relativity coupled with the Lagrangian of the standard model [11, 40].

In this context of physics, it makes sense to think about the limitations of reality. While for Rie-

mannian spinc-manifolds the whole spectrum of the Dirac operator is needed for the reconstruction

of its structure, in practice we will only be able to do measurements up to a certain energy level.

For a spectral triple (A, H,D) this would mean having a projection P in B(H) projecting onto

a finite part of the spectrum of D, and only being able to access (PAP, PH,PD). A meaningful

question to ask, is what structure and what invariants of (A, H,D) can be recovered in a truncation

(PAP, PH,PD).

A careful study of such truncations can be found in [17], further developed in [14]. This last paper,

by A. Connes and W. van Suijlekom, is the foundation upon which this thesis is built. There, a

theoretical framework is constructed for the truncation of spectral triples, after which the truncated

canonical spectral triple of the circle is studied in detail. In this thesis we will continue this study

of the truncated circle.

There are two new results presented in this thesis. In Chapter 4, it is shown that the pure state

space of the truncated canonical spectral triple of the circle converges to the state space of the

circle in Gromov-Hausdorff sense, when taking the limit of larger and larger projections to truncate

with. At first sight, it is somewhat surprising that these pure state spaces do not converge to the

pure state space of the circle, which we explore in detail. Secondly, in Chapter 5 we observe that

work by H. Schulz-Baldes and T. Loring on the spectral localizer [26, 27] can be directly applied to

compute the index as appearing in the Connes-Moscovici Theorem using only data that is available

in the truncation of a spectral triple. We give a self-contained proof of this fact in the case of the

circle, i.e. a proof that the winding number of a unitary function u ∈ C∞(S1) can be calculated

using only data from the truncated spectral triple of the circle if the truncating projection has a

large enough rank.

In preparation for these topics, we cover some preliminaries on operator theory, noncommutative

geometry and the Gromov-Hausdorff metric in Chapter 2, and treat the general theory of trun-

cating spectral triples, along with a study of this in the context of the spectral triple of the circle,

in Chapter 3.
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Chapter 2

Preliminaries

2.1 Operator Theory

Since this thesis is about noncommutative geometry, a brief recap of some operator theory is in

order. We will assume that the reader is familiar with this subject, however.

In general, in this thesis H will denote a Hilbert space, B(H) the bounded operators on H and

K(H) the compact operators on H. The space B(H) forms the ultimate example of a C∗-algebra,

and an important tool in operator theory is representing a C∗-algebra by mapping it to B(H) for

some Hilbert space H [31, Section 3.4].

Definition 2.1.1. A representation of a C∗-algebra A is a pair (H,ϕ) where H is a Hilbert space

and ϕ : A→ B(H) is a ∗-homomorphism. The representation is called faithful if ϕ is injective.

Any C∗-algebra has a faithful representation via the GNS-construction [31, Theorem 3.4.1]. This

makes it possible to view every C∗-algebra as a C∗-subalgebra of B(H). In an implicit way, this

leads us to the concept of states on a C∗-algebra, as the GNS-construction is based on states.

Definition 2.1.2. Let A be a C∗-algebra. A state τ is a positive linear functional τ : A→ C with

‖τ‖ = 1. The set of states on A is denoted S(A).

In the light of seeing C∗-algebras as noncommutative topology as explained in the introduction,

states are the noncommutative analogue of probability measures. Indeed, in the case that A is a

commutative C∗-algebra – and hence A ∼= C0(X) for some locally compact Hausdorff space X –

S(A) is isomorphic to the space of probability measures on X [15, Example VIII.5.13].

By the Banach-Alaoglu Theorem [15, Theorem V.3.1], the set of states on a C∗-algebra is weak∗-

compact. Hence, by the Krein-Milman Theorem [15, Theorem V.7.4], S(A) is the convex hull of

its extreme points. These extreme points are the pure states on A.

Definition 2.1.3. A state on a C∗-algebra is called pure if it is an extreme point of S(A). The

set of pure states is denoted P(A).

Proposition 2.1.4. Any state on the matrix algebra Mn(C) is of the form T 7→ Tr (ρT ) for a

positive ρ ∈ Mn(C) with Tr ρ = 1. The pure states are all of the form T 7→ 〈v, Tv〉 for some unit

vector v ∈ Cn.

Proof. The first claim is an incarnation of the fact that the trace-class operators are the dual of

the space of compact operators on any Hilbert space [31, Section 4.2]. For the second claim, note

that v is a cyclic vector for the representation (Cn, id), hence by [31, Theorem 5.1.7] the GNS-
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representation corresponding to T 7→ 〈v, Tv〉 is unitarily equivalent to the representation (Cn, id),

which implies that it is a pure state by [31, Theorem 5.1.6].

Some authors prefer to define a pure state in another (equivalent) way, which is put forward in the

upcoming proposition. First recall the following useful property of positive linear functionals on a

C∗-algebra.

Lemma 2.1.5. Let A be a C∗-algebra, and τ : A→ C a positive linear functional. Then

‖τ‖ = lim
λ
τ(uλ)

for all approximate units (uλ)λ∈Λ of A. In particular, if A is unital ‖τ‖ = τ(1).

Proof. See [31, Theorem 3.3.3].

Proposition 2.1.6. Let A be a C∗-algebra, and τ ∈ S(A) a state. Then the following are equiva-

lent:

1. The functional τ is a pure state;

2. Whenever ρ is a positive linear functional such that ρ(a) ≤ τ(a) for all positive a ∈ A, then

there exists a t ∈ [0, 1] such that ρ = tτ ;

3. Whenever ρ is a state such that ρ(a) ≤ τ(a) for all positive a ∈ A, then ρ = τ .

Proof. The proof is an adaptation of [31, Theorem 5.1.8]. Suppose that τ is a pure state, let ρ

be a positive linear functional such that ρ(a) ≤ τ(a) for all positive a ∈ A. Assume that ρ is not

equal to 0 or τ . Then also τ − ρ is a nonzero positive linear functional, and

τ = ρ+ (τ − ρ) = ‖ρ‖ ρ

‖ρ‖
+ ‖τ − ρ‖ τ − ρ

‖τ − ρ‖
.

Note that ρ
‖ρ‖ and τ−ρ

‖τ−ρ‖ are now states, and necessarily ‖ρ‖+ ‖τ − ρ‖ = ‖τ‖ = 1 due to Lemma

2.1.5. Hence τ is the convex combination of ρ
‖ρ‖ and τ−ρ

‖τ−ρ‖ , and since τ is an extreme point this is

a contradiction. This proves 1 implies 2.

To see that 2 implies 1, suppose that 2 holds for the state τ . If there exist positive linear functionals

ρ1, ρ2 such that τ = tρ1 + (1− t)ρ2 for t ∈ (0, 1), then we have in particular that ρ1(a) ≤ τ(a) for

all positive a ∈ A. Hence there exists t′ ∈ [0, 1] such that tρ1 = t′τ . Observe that

1 = ‖τ‖ = t ‖ρ1‖+ (1− t) ‖ρ2‖

according to Lemma 2.1.5, which forces 1 = ‖ρ1‖ = ‖ρ2‖. But since t = ‖tρ1‖ = ‖t′τ‖ = t′, we can

then conclude that ρ1 = τ . We see that indeed τ is an extreme point of S(A).

The equivalence of 2 and 3 is immediate from the observation that S(A) spans the positive linear

functionals on A.

As we will see in Chapter 3, by truncating a spectral triple we will be performing an operation

on a C∗-algebra which results in something that has less structure. The right framework will be

that of operator systems, which do not have an algebra structure and need not be topologically

closed. Similar to how any C∗-algebra can be seen as a C∗-subalgebra of B(H), these operator

systems can be defined in an abstract manner without reference to any ambient space, but also as

a concrete set in B(H). We will take the concrete description as the definition of operator systems.

Definition 2.1.7. An operator system E is a subspace of B(H) for some Hilbert space H, such

that E∗ = E and 1 ∈ E.
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The equivalence of this simple definition and its abstract counterpart is quite spectacular, called

the Choi-Effros Theorem [9]. We will not be needing much more of this theory than this definition,

a review of operator systems and their applications to truncated geometry can be found in [14].

What will be important in this thesis, is that on such operator systems the concept of a (pure)

state space is still perfectly definable.

Definition 2.1.8. The cone of positive elements in E is defined as E+ := E ∩B(H)+.

Definition 2.1.9. Let E be an operator system. A state τ on E is a positive linear functional

τ : E → C such that τ(1) = 1. The set of states on E is denoted S(E). The set of extreme points

of S(E) is likewise referred to as the set of pure states, denoted P(E).

Note that this indeed generalises the definition of a (pure) state on a unital C∗-algebra via Lemma

2.1.5. Furthermore, the Banach-Alaoglu Theorem [15, Theorem V.3.1] still applies, so we also

have that S(E) is the convex hull of P(E) in the setting of operator systems by the Krein-Milman

Theorem [15, Theorem V.7.4].

2.2 Noncommutative Geometry

Today, noncommutative geometry has developed into a diverse mathematical field of its own right.

Since the publication Connes’ landmark book on noncommutative geometry in 1994 [10] the areas of

research in this field have only expanded. One of the central aspects of noncommutative geometry

is the spectral triple, and much (but certainly not all) research in this field focuses on this concept.

Interestingly, the name ‘spectral triple’ does not yet appear in the aforementioned book. Instead,

Connes talks about unbounded K-cycles over involutive algebra. In any case, we will use the

definitions as in [10] but with modern terminology, starting with the main event: spectral triples [10,

Definition 4.2.11].

Definition 2.2.1. A spectral triple (A, H,D) consists of a unital ∗-algebra A of bounded operators

on a Hilbert space H, together with an unbounded self-adjoint operator D such that its resolvent

(D + i)−1 is compact and [D, a] is bounded for each a ∈ A. We will generally use the notation

A = A for what is then a C∗-algebra.

Example 2.2.2. Let M be a Riemannian manifold, with spinor bundle S →M and Dirac operator

DM associated to the Levi-Civita connection, lifted to the spinor bundle. Then the canonical

spectral triple associated to M is the triple [11]

(C∞(M), L2(S), DM ).

For details on how this Dirac operator is defined, see [19, Section 3.4]. What will be the main

subject of interest in this thesis is the canonical spectral triple of the circle,(
C∞(S1), L2(S1),−i d

dx

)
.

With some extra conditions, one can recover a manifold M with its whole smooth structure from

its canonical spectral triple [12]. This reconstruction theorem is quite involved, but one aspect is

of interest to this thesis. By Gelfand duality it is no challenge to recover M as a topological space

from C∞(M) as the space of characters Ω(C(M)) = Ω(C∞(M)). The Riemannian distance on

M ∼= Ω(C(M)) is then encoded in its canonical spectral triple in the following way:

d(x, y) = sup
f∈C∞(M)

{|f(x)− f(y)| : ‖[DM , f ]‖ ≤ 1}.

This observation led Connes to define a distance on the state space S(A) for general spectral triples

(A, H,D) in an analogous manner [10, Chapter 6].
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Definition 2.2.3. Let (A, H,D) be a spectral triple, then the Lipschitz seminorm on A is defined

as ‖[D, a]‖, which we will sometimes denote ‖a‖1 for brevity.

Definition 2.2.4. Let (A, H,D) be a spectral triple. Then the Connes distance between ϕ,ψ ∈
S(A) is defined as

d(ϕ.ψ) = sup
a∈A
{|ϕ(a)− ψ(a)| : ‖a‖1 ≤ 1}.

As noted earlier, in the case that A is a commutative C∗-algebra, the state space S(A) is isomorphic

to a space of probability measures on some locally compact space X. In that situation, the Connes

distance is equal to the Monge-Kantorovich metric [33]. A survey that explores this relation and

more on the topic of metrics in noncommutative geometry has been written by P. Martinetti [29].

As we will focus on the canonical spectral triple of the circle in this thesis, for which A is indeed

commutative, in that context we will refer to this distance formula as the Monge-Kantorovich

metric.

An important class of examples of spectral triples are those for which the Connes distance induces

the same topology as the weak∗-topology. These are called metric spectral triples, following termi-

nology as in [25]. This concept is intimately related to work by M. Rieffel on compact quantum

metric spaces, as a spectral triple (A, H,D) is metric exactly when the pair (A, ‖·‖1) is something

he dubbed a compact quantum metric space [34].

2.3 The Gromov-Hausdorff Metric

Metric spaces are of course ubiquitous in mathematics, and as we saw in the previous section,

the state space on C∗-algebras and operator systems can be turned into metric spaces by the

Connes distance formula. As alluded to in the introduction, we will want to compare these metric

spaces with each other in this thesis. In an amusing twist, it is possible to construct a metric

on a ‘space’ of metric spaces (up to isometry), so the metric spaces themselves form something

resembling a metric space. The quotation marks are vital as this subject should be handled with

care, set theoretical paradoxes are right around the corner. The exposition in this chapter leans

heavily on A Course in Metric Geometry [5] by D. Burago, I. Burago and S. Ivanov. This book is

recommended for the reader who wishes to learn more about metric spaces of metric spaces than

needed for this thesis.

As remarked by these authors, the actual distance between metric spaces does not matter so much.

The real purpose and power of the Gromov-Hausdorff distance is the notion of convergence that

it induces, as this makes it possible to meaningfully talk about convergence of sequences of metric

spaces. Secondly, there are a myriad of different constructions inducing such a topology, and these

will generally be different. There exist concepts of uniform convergence, Lipschitz convergence,

and Gromov-Hausdorff convergence for example. One advantage of the Gromov-Hausdorff metric

is that the distance between two compact metric spaces will always be finite. Furthermore, there

exist many techniques and criteria to determine Gromov-Hausdorff convergence, which makes it a

versatile tool in studying compact metric spaces. An extension to non-compact metric spaces also

exists [5, Chapter 8], but this requires a more delicate approach and will not be needed in this

thesis.

As a very brief synopsis, the starting point for defining the Gromov-Hausdorff metric is the Haus-

dorff metric which compares subsets within a metric space. After embedding two metric spaces

in a third metric space, the Hausdorff distance can be calculated between these embedded metric

spaces – which clearly depends on the embedding and choice of the ambient space. Taking the

infimum of all such possible embeddings then yields the Gromov-Hausdorff metric.
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For a subset S in a metric space, denote the r-neighbourhood of S by Ur(S), i.e.

Ur(S) =
⋃
x∈S

Br(x).

Definition 2.3.1. Let A and B be subsets of a metric space. The Hausdorff distance between A

and B, denoted dH(A,B), is defined as

dH(A,B) = inf{r > 0 : A ⊆ Ur(B) and B ⊆ Ur(A)}.

Definition 2.3.2. Let X and Y be metric spaces. The Gromov-Hausdorff distance between X

and Y , denoted dGH(X,Y ), is defined as the infimum of all r > 0 such that there exists a metric

space Z with subsets X ′, Y ′ ⊆ Z isometric to X and Y respectively with dH(X ′, Y ′) < r.

Note that in this definition, the isometries from X and Y to X ′ and Y ′ must be considered with

respect to the metrics of X ′ and Y ′ taken as the restriction of the metric on Z, not with their

induced intrinsic metrics. For example, if X is a sphere with its standard Riemannian metric, one

cannot take Z = R3 with X ′ = S2, as X and X ′ would then not be isometric.

We would like to state some results about this distance on the collection of compact metric spaces

up to isometry. As noted in the introduction of this section, this collection is not a set. But

following the book [5, Chapter 7], we will abusively refer to this as a space. We are justified in

doing so, as all statements made about this ‘space’ of metric spaces can be reformulated in terms

of its elements – calling it a space is simply a way of shortening formulations.

Perhaps the most pressing question at this point, is if the Gromov-Hausdorff distance actually

defines a (finite) metric on the space of isometryc classes of compact metric spaces. A sketch of a

proof of this will be included at the end of this section, but before we come to that we will need

a few other definitions and results. First of all, it is possible to simplify Definition 2.3.2 so a less

ridiculously large class of ambient spaces Z needs to be considered. See also [5, Remark 7.3.12].

Proposition 2.3.3. Let X and Y be metric spaces. Consider all (pseudo)metrics d on the disjoint

union X t Y such that d|X×X= dX and d|Y×Y = dY . Then

dGH(X,Y ) = inf
d metric on XtY

{dH(X,Y )}

= inf
d pseudometric on XtY

{dH(X,Y )},

considering X,Y subsets of (X t Y, d).

Proof. It is immediate that

dGH(X,Y ) ≤ inf
d metric on XtY

{dH(X,Y )}.

For the other way around, consider an ambient metric space Z and fix isometries f : X → X ′ ⊆ Z
and g : Y → Y ′ ⊆ Z with dH(X ′, Y ′) = r. Then take δ > 0 and define a metric on X t Y by

d|X×X= dX , d|Y×Y = dY , and for x ∈ X, y ∈ Y

d(x, y) = dZ(f(x), g(y)) + δ.

The δ is needed to ensure that d(x, y) = 0 implies that x = y, as it may happen that X ′ ∩Y ′ 6= ∅.

In the ambient space X t Y , we then have dH(X,Y ) ≤ r + δ. Hence

inf
d metric on XtY

{dH(X,Y ) : X,Y ⊆ X t Y } ≤ r.

Taking the infimum over all ambient spaces Z and isometries f and g then yields the inequality

inf
d metric on XtY

{dH(X,Y ) : X,Y ⊆ X t Y } ≤ dGH(X,Y ).
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Let us now think about the infimum over all pseudometrics on X tY . Again one inequality is free,

as

inf
d pseudometric on XtY

{dH(X,Y )} ≤ inf
d metric on XtY

{dH(X,Y )}.

Finally, for any pseudometric d on X t Y we can define the metric space Z = (X t Y )/d. This

can only reduce the Hausdorff distance between X and Y , hence

dGH(X,Y ) ≤ inf
d pseudometric on XtY

{dH(X,Y )}.

This concludes the proof.

Next, there are a number of useful reformulations of the Gromov-Hausdorff metric. Calculating

the infimum over all embeddings of two given metric spaces into ambient spaces is a difficult thing,

even if we can restrict ourselves to X t Y as the base set of the ambient metric space. Instead, we

would want to directly compare X and Y in some manner.

Definition 2.3.4. LetX and Y be two sets. A correspondence betweenX and Y is a set R ⊆ X×Y
such that for every x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ R and similarly for

every y ∈ Y there exists an x ∈ X such that (x, y) ∈ R.

Example 2.3.5. If f : X → Y is a surjective map, then

R = {(x, f(x)) : x ∈ X}

defines a correspondence. However, not all correspondences arise in this way, as it is allowed that

an x ∈ X corresponds with more than one y ∈ Y .

Definition 2.3.6. Let R be a correspondence between metric spaces X and Y . The distortion of

R is defined by

disR = sup{|dX(x, x′)− dY (y, y′)| : (x, y), (x′, y′) ∈ R}.

Comparing X and Y in this direct manner gives an equivalent approach of the Gromov-Hausdorff

distance, namely [5, Theorem 7.3.25].

Theorem 2.3.7. For any two metric spaces X and Y

dGH(X,Y ) =
1

2
inf
R

(disR),

where the infimum is taken over all correspondences R between X and Y .

Proof. The details can be found at [5, Theorem 7.3.25]. In summary, if X and Y are subspaces of

some metric space Z and dH(X,Y ) < r, then

R = {(x, y) ∈ X × Y : dZ(x, y) < r}

defines a correspondence with distortion less than 2r. Likewise, if R is a correspondence with

distortion 2r, then one can define a metric on X t Y by setting d|X×X= dX , d|Y×Y = dY and for

x ∈ X, y ∈ Y
d(x, y) = inf{dX(x, x′) + r + dY (y′, y) : (x′, y′) ∈ R}.

This then implies that dGH(X,Y ) ≤ r.

This theorem has a corollary that will be particularly useful in Chapter 4 of this thesis. Specifically,

it leads to a technique to show convergence in the Gromov-Hausdorff topology.

Definition 2.3.8. Let X be a metric space and ε > 0. A set S ⊆ X is called an ε-net if

dist(x, S) ≤ ε for every x ∈ X.
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Definition 2.3.9. Let X and Y be metric spaces and f : X → Y an arbitrary map. The distortion

of f is defined by

dis f = sup
x1,x2∈X

|dY (f(x1), f(x2))− dX(x1, x2)|.

Definition 2.3.10. Let X and Y be metric spaces and ε > 0. A (possibly non-continuous) map

f : X → Y is called an ε-isometry if dis f ≤ ε and f(X) is an ε-net in Y .

Corollary 2.3.11. Let X and Y be metric spaces and ε > 0. Then

1. If dGH(X,Y ) < ε, then there exists a 2ε-isometry from X to Y .

2. If there exists an ε-isometry from X to Y , then dGH(X,Y ) < 2ε.

Proof. A proof of this corollary can be found at [5, Corollary 7.3.28]. The idea of the proof is that

any correspondence R ⊆ X×Y gives rise to a function f : X → Y by choosing an f(x) ∈ Y for all

x ∈ X such that (x, f(x)) ∈ R. If disR < ε, this function is a 2ε-isometry. In the other direction,

for an ε-isometry one can construct the correspondence

R = {(x, y) ∈ X × Y : d(y, f(x)) ≤ ε},

which then has a distortion less than 3ε, so Theorem 2.3.7 implies dGH(X,Y ) ≤ 3
2ε < 2ε.

Finally, we can now sketch a proof that dGH defines a metric.

Proposition 2.3.12. The Gromov-Hausdorff distance defines a finite metric on the space of isom-

etry classes of compact metric spaces.

Proof. The distance is well-defined on this space of isometry classes as for isometric metric spaces

the Gromov-Hausdorff distance is zero.

• For all compact metric spaces X and Y , dGH(X,Y ) is finite. Indeed, if X and Y are compact,

diam(X) and diam(Y ) are finite. Put a metric d on X t Y by d|X×X= dX , d|Y×Y = dY and

d(x, y) = C. Choosing

C ≥ 1

2
max{diam(X),diam(Y )}

ensures that the triangle inequality holds. If we then consider X and Y as subsets in X t Y ,

clearly dH(X,Y ) = C. Hence,

dGH(X,Y ) ≤ C <∞.

• If dGH(X,Y ) = 0, then X and Y are isometric. The proof of this can be found in [5,

Theorem 7.3.30]. The idea is to use Corollary 2.3.11 and compactness of X and Y to construct

distance preserving functions f : X → Y and g : Y → X. It follows that f ◦ g is a distance

preserving map from Y to Y , which must be surjective due to Y being compact. In particular,

f is then also surjective, which means we have found an isometry f : X → Y .

• Symmetry of dGH follows from the symmetry of dH .

• The triangle inequality is a routine exercise, see [5, Proposition 7.3.16].
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Chapter 3

Truncated Geometry

3.1 General Theory

Given a spectral triple (A, H,D), the most natural way to study truncations is by use of a projection

P onto a finite number of eigenvectors of D. Various aspects of how the metric on the spectral

triple interacts with such a projection have been studied in [17], but the insight that the triple

(PAP, PH,PD) is a natural approach of studying truncations is due to A. Connes and W. van

Suijlekom [14]. This is not obvious, as such a triple is not a spectral triple anymore, PAP is

not even an algebra if P is not an element of A; it is only an operator system. The theoretical

framework for studying such objects is given in their paper, dubbing such not-quite spectral triples

operator system spectral triples.

Definition 3.1.1. An operator system spectral triple is a triple (E , H,D) where E is a dense

subspace of an operator system E in B(H), H is a Hilbert space and D is a self-adjoint operator

in H with compact resolvent, such that [D,T ] is a bounded operator for all T ∈ E .

Note that triples of the form (PAP, PH,PD) are then indeed operator system spectral triples.

It is not always clear what projection P to consider. Recall that for a spectral triple (A, H,D),

the Dirac operator D is self-adjoint and has compact resolvent. In particular, this means that

the spectrum of D is real, discrete, and has no finite accumulation points. Hence if we take a

projection Pρ onto the low-lying spectrum of D, defined by Pρ := χ[−ρ,ρ](D), the Hilbert space

PρH is finite-dimensional. Projections of this type are therefore a natural option. This is far from

the only possibility, as one can also take for example χ[0,ρ](D) as we will do in Chapter 4, and

already for the canonical spectral triple of the torus non-trivial other options exist [3].

Although such operator system spectral triples do not posses an algebra structure and are therefore

more limited than their algebraically better equipped counterparts, the theory of these triples is

still rich. As the concept of a state space is still perfectly well defined for operator systems, we

can define a metric on the state space S(E) of an operator system spectral triple (E , H,D) via the

Connes distance formula

d(ϕ,ψ) = sup
x∈E
{|ϕ(x)− ψ(x)| : ‖[D,x]‖ ≤ 1}.

When the operator system E = A is a ∗-algebra as well, this reduces to the usual Connes distance

formula on the state space of the C∗-algebra A = A [14].

If we are in the situation that we have a spectral triple (A, H,D), we can cook up a sequence

of operator system spectral triples by considering larger and larger projections Pn and employ

this theoretical framework to see what structures on (A, H,D) can be recovered in the limit. A
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useful tool in studying the state spaces of a sequence of operator system spectral triples is put

forward in [41] by W. van Suijlekom. In that paper, he gives a sufficient condition for the Gromov-

Hausdorff convergence of such state spaces, namely the existence of so-called C1-approximate order

isomorphisms.

Definition 3.1.2. Let {(En, Hn, Dn)}n be a sequence of operator system spectral triples and let

(E , H,D) also be an operator system spectral triple. A C1-approximate order isomorphism for this

set of data is given by linear maps Rn : E → En and Sn : En → E such that

1. the maps Rn and Sn are positive, unital maps;

2. there exist sequences γn, γ′n both converging to zero such that

‖Sn ◦Rn(a)− a‖ ≤ γn ‖a‖1 ,
‖Rn ◦ Sn(h)− h‖ ≤ γ′n ‖h‖1 ;

3. the maps Rn and Sn are contractive with respect to both the operator norms and Lipschitz

semi-norms (recall that the Lipschitz seminorm is defined as ‖a‖1 = ‖[D, a]‖).

When such a collection of maps exists, we can pull back states between En and E because Rn and

Sn are all positive unital maps:

R∗n : S(En)→ S(E) S∗n : S(E)→ S(En)

ϕn 7→ ϕn ◦Rn; ϕ 7→ ϕ ◦ Sn.

Even better, these maps directly induce Gromov-Hausdorff convergence of the state spaces S(En)

to S(E) via [41, Proposition 4] and [41, Theorem 5]. To keep this thesis as self-contained as

possible, we have included these below.

Proposition 3.1.3. If (Rn, Sn) is a C1-approximate order isomorphism for {(En, Hn, Dn)}n and

(E , H,D), then

1. For all ϕn, ψn ∈ S(En) we have

dE(R∗nϕn, R
∗
nψn) ≤ dEn(ϕn, ψn) ≤ dE(R∗nϕn, R

∗
nψn) + 2γ′n.

2. For all ϕ,ψ ∈ S(E) we have

dEn(S∗nϕ, S
∗
nψ) ≤ dE(ϕ,ψ) ≤ dEn(S∗nϕ, S

∗
nψ) + 2γn.

Proof. For the proof of this proposition we refer to [41, Proposition 4].

For the theorem below, which is [41, Theorem 5], we do not refer to the proof as it can be found

there because this contains a slight mistake, which we will correct.

Theorem 3.1.4. Suppose {(En, Hn, Dn)}n and (E , H,D) are operator system spectral triples such

that the topologies on S(En) and S(E) defined by the metrics dEn and dE, respectively, agree with

the weak-∗ topologies on them. If (Rn, Sn) is a C1-approximate order isomorphism for this set of

data, then the state spaces (S(En), dEn) converge to (S(E), dE) in Gromov–Hausdorff distance.

Proof. The Gromov-Hausdorff metric in its usual form is only defined for compact spaces. We

therefore have to put some topological requirement on S(En) and S(E) to ensure that these are

compact. In the weak ∗-topology they are compact due to the Banach-Alaoglu Theorem [15,

Theorem V.3.1], so if the weak ∗-topology coincides with the topology induced by the metric for

all these state spaces, we can rightfully consider the Gromov-Hausdorff distance between them.
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We employ the strategy of correspondences to prove Gromov-Hausdorff convergence, via Theorem

2.3.7. Define the correspondences Rn ⊆ S(En)× S(E) by

Rn = {(ϕn, R∗nϕn) : ϕn ∈ S(En)} ∪ {(S∗nϕ,ϕ) : ϕ ∈ S(E)}.

One can now simply calculate

|dn(S∗nϕ, S
∗
nψ)− d(ϕ,ψ)| ≤ 2γn;

|dn(ϕn, ψn)− d(R∗nϕn, R
∗
nψn)| ≤ 2γ′n,

having used Proposition 3.1.3 for both inequalities, and the somewhat more difficult cross terms

|dn(S∗nϕ,ψn)− d(ϕ,R∗n(ψn))| ≤ |dn(S∗nϕ,ψn)− d(R∗n(S∗n(ϕ)), R∗n(ψn))|
+ |d(R∗n(S∗n(ϕ)), R∗n(ψn))− d(ϕ,R∗n(ψn))|

≤ 2γ′n + d(ϕ,R∗n(S∗n(ϕ))

= 2γ′n + sup
x∈E
{|ϕ(x)− ϕ(Sn(Rn(x)))| : ‖x‖1 ≤ 1}

≤ 2γ′n + γn,

which also follows from Proposition 3.1.3 in combination with the definition of C1-approximate

order isomorphisms, Definition 3.1.2. Using this, we can estimate

disRn ≤ 2γn + 2γ′n,

which converges to zero.

3.2 The Truncated Circle

The canonical spectral triple of the circle is a useful toy model to study spectral truncations. Here

we can see what kind of data of the original spectral triple can be recovered from its truncation,

which gives guidance for what to expect in more general cases. The canonical spectral triple of the

circle is of the form (
C∞(S1), L2(S1),−i d

dx

)
,

both the algebra and Hilbert space of this triple are spanned by the eigenvectors {en(t) = eint}n∈Z
which form an orthonormal basis in L2(S1).

We have to consider what projection we will truncate the spectral triple with. Projecting onto

spanC{e−n, . . . , en} is a natural option, which we will use in Chapter 5. However, as we will

explain, it is more general to project onto spanC{e1, · · · , en}, denote this projection Pn. Consider

what the space PnC
∞(S1)Pn looks like. For any function f ∈ C∞(S1) we can write the action of

PnfPn on the finite dimensional Hilbert space spanC{ek}nk=1 as the n× n matrix

PnfPn ∼


f̂(0) f̂(−1) f̂(−2) · · · f̂(−n+ 1)

f̂(1) f̂(0) f̂(−1) · · · f̂(−n+ 2)

f̂(2) f̂(1) f̂(0) · · · f̂(−n+ 3)
...

...
...

. . .
...

f̂(n− 1) f̂(n− 2) f̂(n− 3) · · · f̂(0)

 ,

which is a Toeplitz matrix. The operator system C(S1)(n) := PnC(S1)Pn = PnC
∞(S1)Pn is

called the Toeplitz operator system. If we denote the projection onto spanC{e−n, . . . , en} by Qn
and the projection onto spanC{e1, . . . e2n+1} by Q′n, then we can quickly see that QnC(S1)Qn ∼=
Q′nC(S1)Q′n and also QnL

2(S1) ∼= Q′nL
2(S1). The only difference between defining the truncated

operator system via Qn or Q′n is that Q′nD = QnD + n + 1. Adding such a constant makes very

little difference, as it drops out of every commutator bracket. This argument shows why it is more

general to project onto spanC{e1, · · · , en}, and so we will define Pn as the projection onto this

subspace for the rest of this chapter and Chapter 4.
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3.2.1 State Space

The state space on the truncated circle possesses a very rich structure, which has been studied in-

depth in [14]. Of particular interest to this thesis, W. van Suijlekom proved the Gromov-Hausdorff

convergence of S(C(S1)(n)) to S(C(S1)) [41, Proposition 13] as a direct application of Theorem

3.1.4, using the C1-approximate order isomorphism-paradigm. The existence of such maps will

also be used extensively in dealing with the pure state space in Chapter 4. One half of the pairs

of maps (Rn, Sn) that form this C1-approximate order isomorphism is quite simple.

Lemma 3.2.1. The map

Rn : C(S1)→ C(S1)(n)

f 7→ PnfPn

is positive, unital and contractive with respect to the operator norm and Lipschitz semi-norm.

Proof. Since P commutes with D, we have that

‖[PnD,PnfPn]‖ = ‖PnDPnfPn − PnfPnD‖
= ‖Pn[D, f ]Pn‖
≤ ‖[D, f ]‖

and so Rn is contractive with respect to the Lipschitz semi-norm. All other claims are elementary.

We have to find a counterpart that is ‘close to an inverse’ in order to satisfy Definition 3.1.2. The

right candidate is the following, as demonstrated in [41, Proposition 8 and Lemma 11], reproduced

below.

Proposition 3.2.2. Define the map

Sn : C(S1)(n) → C(S1)

T 7→
(
x 7→ Tr(|ψ〉 〈ψ|αx(T ))

)
,

where αx is the natural action of S1 on C(S1)(n) and |ψ〉 = 1√
n

(e1 + · · ·+ en) ∈ PnL2(S1). Then

Sn is the adjoint of Rn when equipping C(S1) with the L2 norm and C(S1)(n) with the normalised

Hilbert-Schmidt norm, i.e.

〈g, Sn(T )〉L2(S1) =
1

n
Tr ((Rn(g))∗T ) .

Furthermore, Sn is positive, unital and contractive with respect to the operator norm and Lipschitz

semi-norm, and

Sn(Rn(f))(x) =

n−1∑
k=−n+1

(
1− |k|

n

)
f̂(k)eikt = (Fn ∗ f)(x),

where Fn is the Fejér kernel.

Proof. For the proof, we refer to [41].

Proposition 3.2.3. The maps (Rn, Sn) as defined above form a C1-approximate order isomor-

phism for the operator systems {(C(S1)(n), PnL
2(S1), PnD)}n and (C∞(S1), L2(S1), D). Hence

the state spaces {(S(C(S1)(n)), dn)}n converge to (S(C(S1)), d) in Gromov-Hausdorff distance.

Proof. See [41].

An extension of these results to tori can be found in the master’s thesis [3].
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3.2.2 Pure State Space

Chapter 4 of this thesis will focus on what happens to the pure state spaces of the truncated circle

in the limit, taking projections of larger and larger rank. Traditionally, pure states correspond to

‘points’. Indeed, on an algebra of continuous functions on a compact Hausdorff space X, pure states

correspond to points of X, see [15, Example VIII.5.13] and the proof of [15, Theorem VIII.8.1].

Similarly, on an algebra of bounded operators on a Hilbert space H, pure states correspond to rays

in H by [31, Theorem 5.1.6 and Theorem 5.1.7].

The description of the pure states on C(S1)(n) is given in [14], in an elegant manner involving

a duality of the Toeplitz operator system with another operator system those authors dub the

Fejér-Riesz operator system. In this thesis, we will use a more direct approach.

A very useful ingredient for this, is the following decomposition theorem dating from 1911 proven

by C. Caratheodory and L. Fejér [7]. We introduce the notation

fz =
1√
n

(
1 z z2 · · · zn−1

)
∈ Cn,

which is a column of a so-called Vandermonde matrix.

Theorem 3.2.4. Any positive Toeplitz matrix T ∈ C(S1)(n) of rank r ≤ n − 1 can be uniquely

decomposed as T =
∑r
k=1 dk |fλk〉 〈fλk | for d1, . . . , dr > 0 and λ1, . . . , λr ∈ S1. This is called

the Vandermonde decomposition. If the rank of T is n, this decomposition is still possible but not

unique.

We omit the proof and refer to [43]. While we use this classical theorem to classify the pure states

on the Toeplitz operator system, it can also be derived by the aforementioned operator system

duality, see [14, Theorem 4.14].

Proposition 3.2.5. A state on C(S1)(n) is pure if and only if it is a vector state ϕξ : T 7→ 〈ξ, T ξ〉
for the unit vector ξ = (ξ0, ξ1, . . . , ξn−1) ∈ Cn such that the polynomial Pξ(z) :=

∑
k ξkz

n−k−1 has

all its zeroes on S1.

Proof. In order for ϕξ to even define a state, ξ has to be a unit vector. Suppose that ξ ∈ Cn is

a unit vector such that the polynomial Pξ as all its zeroes on S1. To see that the vector state ϕξ
defines a pure state, we claim that it suffices to show that for any ω ∈ Cn with

〈ω, Tω〉 ≤ 〈ξ, T ξ〉 ∀ 0 ≤ T ∈ C(S1)(n)

we have that ω ∈ Cξ. By the Hahn-Banach Theorem [15, Theorem III.6.2], any positive linear

functional on the Toeplitz matrices can be extended to a positive linear functional on Mn(C),

which are spanned by vector states as seen in Proposition 2.1.4. Hence, also all positive linear

functionals on C(S1)(n) are spanned by vector states, so if the above holds we can conclude that

ϕξ is pure due to Proposition 2.1.6.

By the Vandermonde decomposition of Toeplitz matrices, we can write any positive T ∈ C(S1)(n)

in the form
n−1∑
k=1

dk |fλk〉 〈fλk |

with d1, . . . , dn−1 ≥ 0. Observe that on S1, we have λ = λ−1 and so

〈fλ, ω〉 =

n−1∑
k=0

ωkλ
−k = λ−n+1Pω(λ).

Therefore,

〈ω, Tω〉 =

n−1∑
k=1

dk |〈fλk , ω〉|
2

=

n−1∑
k=1

dk |Pω(λk)|2 ,
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and we see that 〈ω, Tω〉 ≤ 〈ξ, T ξ〉 for all positive Toeplitz matrices T if and only if |Pω(λ)|2 ≤
|Pξ(λ)|2 for all λ ∈ S1.

Suppose we have an ω ∈ Cn with |Pω(λ)|2 ≤ |Pξ(λ)|2 for all λ ∈ S1. Immediately we see that

the polynomial Pω has the same roots on S1 as the polynomial Pξ, but also necessarily with the

same multiplicities by considering the asymptotics of Pξ around its roots. Hence Pω has exactly

the same roots with multiplicities as Pξ, from which it follows immediately that Pω ∈ CPξ, and

thus ω ∈ Cξ.

On the other hand, suppose that ξ ∈ Cn is a vector such that the polynomial Pξ has roots

λ1, · · · , λn (counted with multiplicities), of which say λn is not an element of S1. Then |z − λn|
attains a minimum on S1 which is strictly greater than zero, say δ > 0. Choose some λ ∈ S1 that

is not equal to one of λ1, · · ·λn, and note that |z − λ| ≤ 2 on S1. Then

|Pξ(z)|2 =
∣∣c n∏
k=1

(z − λk)
∣∣2

≥ δ2
∣∣c n−1∏
k=1

(z − λk)
∣∣2

≥ δ2

4

∣∣c(z − λ)

n−1∏
k=1

(z − λk)
∣∣2,

so the polynomial δ
2c(z − λ)

∏n−1
k=1(z − λk) = δ

2 (z − λ)Pξ/(z − λn) corresponds to some ω ∈ Cn

with the property that

〈ω, Tω〉 ≤ 〈ξ, T ξ〉

for all positive T ∈ C(S1)(n). Clearly, Pω is not a scalar multiple of Pξ so ω 6∈ Cξ, and hence the

vector state ϕξ is not pure.

Corollary 3.2.6. The pure states of C(S1)(n) are classified by the functions ξ̂∗ ∗ ξ ∈ C(S1) where

ξ ∈ Cn is a unit vector such that the polynomial
∑n−1
k=0 ξkz

n−k−1 has all its zeroes on S1. Con-

cretely, any pure state is of the form PnfPn 7→
∫
S1 f ξ̂∗ ∗ ξ dλ.

Proof. According to Proposition 3.2.5, the pure states on C(S1)(n) are given by T 7→ 〈ξ, T ξ〉, where

the unit vector ξ ∈ Cn is such that the polynomial
∑
k ξkz

n−k−1 has all its roots on S1. A short

calculation gives that

〈ξ, PnfPnξ〉 =
∑
|j|≤n−1

(ξ∗ ∗ ξ)j f̂(−j),

and thus we can use the Plancherel Theorem [37, Theorem 9.13] to conclude that

〈ξ, PnfPnξ〉 =

∫
S1

f ξ̂∗ ∗ ξ dλ.

This corollary essentially characterises the pure states τn of C(S1)(n) by the Radon-Nikodym

derivative of R∗n(τn) as a state (i.e. probability measure, see Section 2.1) on C(S1). This works

since the Fourier basis {en}n∈Z forms an orthonormal basis of C(S1), hence for a function g ∈
spanC{e1, . . . en} there is some ambivalence in considering a state τ : PnfPn 7→

∫
S1 fgdλ on

C(S1)(n) or its pullback R∗nτ : f 7→
∫
S1 fgdλ. We will exploit this, although responsibly in order

to prevent confusion.

Notation. When considering a pure state τn on C(S1)(n), we will somewhat abusively refer to

the Radon-Nikodym derivative of R∗nτn, with respect to the normalised Haar-measure dλ on S1,

as dτn
dλ because this function uniquely defines the pure state τn. In the other way around, if f is a

function of the form such that it defines a pure state on C(S1)(n), we will denote that pure state

τf . In summary,
dτf
dλ = f .
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Proposition 3.2.7. If τn is a pure state on C(S1)(n), then

dτn
dλ

(t) = ξ̂∗ ∗ ξ(t) = c

n−1∏
j=1

(2− 2 cos(t− θj)),

where eiθj are the roots of the polynomial
∑
k ξkz

n−k−1 and c ∈ R is a scaling factor such that dτn
dλ

integrates to 1. Likewise, any function of this form defines a pure state.

Proof. According to Corollary 3.2.6, any pure state τn on C(S1)(n) corresponds to a function of

the form dτn
dλ = ξ̂∗ ∗ ξ. Since the polynomial Pξ(z) =

∑n−1
k=0 ξkz

n−k has all its zeroes on S1, it is of

the form Pξ(z) = c
∏n−1
j=1 (z − eiθj ). Observe that ξ̂∗ ∗ ξ = |ξ̂|2, and ξ̂ is simply the polynomial Pξ

restricted to S1. Hence,

ξ̂∗ ∗ ξ(t) = |ξ̂|2(t)

=
∣∣Pξ(eit)∣∣2

= c

n−1∏
j=1

∣∣eit − eiθj ∣∣2
= c

n−1∏
j=1

(2− 2 cos(t− θj)).

From this calculation we can also see that c
∏n−1
j=1 (2 − 2 cos(t − θj)) must integrate to 1, since

‖ξ̂‖2 = ‖ξ‖ = 1.

For the other way around, the above proves that any polynomial of the form c
∏n−1
j=1 (2−2 cos(t−θj))

that integrates to 1 is equal to ξ̂∗ ∗ ξ(t) for some ξ ∈ Cn such that the polynomial
∑
k ξkz

n−k−1

has all its zeroes on S1 and ‖ξ‖ = 1. According to Corollary 3.2.6, this indeed defines a pure state

on C(S1)(n).

Corollary 3.2.8. If f ∈ C(S1) defines a pure state τf on C(S1)(n), then rotations of this function

also define pure states.

Proof. This follows immediately from the form of f proven in Proposition 3.2.7.
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Chapter 4

Convergence of the Pure State

Space of the Truncated Circle

As we have seen, the state spaces of the truncated circle converge to the state space of the circle

(Proposition 3.2.3), and we know what the pure states on the truncated circle look like. This

might give one the courage to try to prove that the pure state spaces (P(C(S1)(n)), dn) converge

to (P(C(S1)), d) ∼= (S1, d), but this turns out to not be the case.

4.1 No convergence to S1

The strategy we will employ is that we will give a lower bound for the distortion of any map from

P(C(S1)(n)) to S1, which gives a lower bound for the Gromov-Hausdorff distance between these

spaces according to Corollary 2.3.11. This will be achieved by showing that it is inevitable that

there exist τgn , τfn ∈ P(C(S1)(n)) such that they are both mapped to points close to each other in

S1, but with their relative distance dn(τfn , τgn) large.

Lemma 4.1.1. The Fejér-kernel rotated by λ = eiθ

fλn (x) =
∑

|k|≤n−1

(
1− |k|

n

)
eik(θ−x),

defines a pure state on C(S1)(n) in the sense of Corollary 3.2.6.

Proof. Take the polynomial
∑n−1
k=0 z

k. Observe that

(z − 1)

n−1∑
k=0

zk = zn − 1,

and hence the roots of
∑n−1
k=0 z

k are precisely the nth roots of unity with the exception of 1 itself.

The coefficients of this polynomial form the (normalised) vector ξ = 1√
n

(1, ..., 1) ∈ Cn, and ξ̂∗ ∗ ξ
defines a pure state. A simple calculation gives that

ξ∗ ∗ ξ(k) =
∑
j

ξjξj+k = 1− |k|
n
,

hence
∑
|k|≤n−1

(
1− |k|n e

ikx
)

=
∑
|k|≤n−1

(
1− |k|n e

−ikx
)

defines a pure state on C(S1)(n). As

noted in Corollary 3.2.8, rotations of this pure state are then also pure states.
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Compare these pure states τfλn to the states on C(S1) denoted Ψ]
x,N in [17, Section 5.4]. The

relation between these is that R∗n(τfλn ) = Ψ]
λ,n. Note that, as those authors rightfully comment,

the states R∗n(τfλn ) are not pure on C(S1). For the next lemma, note the similarity with [17,

Proposition 5.11]. The difference is that in this thesis we are talking about the intrinsic distance

on the truncated circle, so we have to add a a small step to move between the intrinsic distance

and the distance on the whole spectral triple.

Lemma 4.1.2. Take points λ = eiθ and µ = eiϕ on S1, and states τfλn , τf
µ
n
∈ P(C(S1)(n)) defined

by Fejér kernels like in Lemma 4.1.1. Then

lim
n→∞

dn(τfλn , τf
µ
n

) = d(λ, µ).

Proof. By rotation invariance of S1, we can take θ, ϕ ∈ [0, 2π) such that d(λ, µ) = 1
2π (ϕ− θ) ≤ 1/2

without loss of generality.

The distance dn(τfλn , τf
µ
n

) is hard to calculate, whereas the distance formula on S(C(S1)) is much

better understood. In fact, d(R∗n(τfλn ), R∗n(τfµn )) can be calculated with help of the paper [6]. This

is helpful since the distance formula on S(C(S1)(n)) agrees with the distance formula on S(C(S1))

in the limit (see Proposition 3.2.3). Define

αn :[0, 2π]→ R

t 7→ 1

2π

∫ t

0

fλn (x)dx− 1

2π

∫ t

0

fµn (x)dx

and

aα = sup {t ∈ R : λ({x ∈ [0, 2π] : αn(x) ≥ t}) > 1/2} ,

then d(R∗n(τfλn ), R∗n(τfµn )) = 1
2π

∫ 2π

0
|αn(t)− aα| dt. As n grows to infinity, 1

2π

∫ t
0
fλn (x)dx converges

uniformly to H(t − θ) outside t = θ, where H is the Heaviside step-function. Thus αn converges

uniformly to H(t−θ)−H(t−ϕ) = χ[θ,ϕ](t) outside t = θ and t = ϕ. Hence by elementary analysis

aα converges to 0. An illustration of the function αn can be found in Figure 4.1.

Finally we can calculate that as n grows to infinity,

d(R∗n(τfλn ), R∗n(τfµn )) =
1

2π

∫ 2π

0

|αn(t)− aα| dt

n→∞−−−−→ 1

2π

∫ 2π

0

χ[θ,ϕ](t)dt

=
1

2π
(ϕ− θ).

Therefore

lim
n→∞

d(R∗n(τfλn ), R∗n(τfµn )) = d(λ, µ),

thus according to Proposition 3.2.3 also

lim
n→∞

dn(τfλn , τf
µ
n

) = d(λ, µ).

The lemma above indicates that the distance between pure states τfλn corresponding to these

Fejér kernels asymptotically agrees with the distance between the points they are centered around.

That means that we can recover P(C(S1)) ∼= S1 in the limit with only this type of pure states. In

other words, the truncated circle has enough pure states to recover the whole circle. See also [17,

Proposition 5.12], with again the added subtlety that we are talking about the intrinsic distance

on the truncated circle, although in the limit this is the same as the distance on the whole spectral

triple after a pullback.
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(a) Here the functions fλn and fµn are depicted with

λ = 2π/3 and µ = 4π/3 for n = 10.

(b) A plot of the function

αn(t) = 1
2π

∫ t
0

(fλn (x)− fµn (x))dx.

Figure 4.1: An illustration of the function αn as it appears in the proof of Lemma 4.1.2.

Proposition 4.1.3. Define the subsets Fn ⊂ P(C(S1)(n)) by

Fn := {τfλn : λ ∈ S1}.

Then the sequence of metric spaces (Fn, dn) converges to (S1, d) in Gromov-Hausdorff sense.

Proof. Define the sets

Rn = {(τfλn , λ) : λ ∈ S1} ⊂ Fn × S1.

Because the elements of Fn are labeled by S1, the projections of Rn onto the first and second

coordinate are both surjective, making these sets correspondences (Definition 2.3.4). The functions

S1 × S1 → R≥0

(λ, µ) 7→
∣∣dn(τfλn , τf

µ
n

)− d(λ, µ)
∣∣

are continuous, and monotonically decreasing to 0 according to Lemma 4.1.2. By Dini’s The-

orem [36, Theorem 7.13], this means that they uniformly converge to 0 and hence this gives

immediately that

lim
n→0

distRn = 0.

Therefore we can conclude, using Theorem 2.3.7, that

lim
n→∞

dGH(Fn, S1) = 0.

Note that this result is also comparable to a result proven by L. Glaser and A. Stern [20], which

asserts that the pure state space of any spectral triple is the Gromov-Hausdorff limit of ‘localised’

(not necessarily pure) states on the truncated spectral triple.

However, the pure state space of the truncated circle is too large to converge to just (the pure

states on) the circle. This claim will be made more precise in the form of the next proposition, for

which we will need the following lemma.

Lemma 4.1.4. Let 0 < ε < 1/6, and let f : S1 → S1 be a map with dis f < ε. Then f(S1) is an

ε-net in S1.

Proof. Suppose that f is a map with dis f < ε < 1/6, but that there exists some point y1 ∈ S1

with Bε(y1) ∩ f(S1) = ∅. This can happen only if there also exist points ρ1, ρ2 ∈ S1 such that

one of the two arcs connecting f(ρ1) and f(ρ2) has a length strictly greater than 2ε and does not

intersect f(S1). Without loss of generality, we can assume that y1 is exactly in between f(ρ1) and

f(ρ2). See Figure 4.2 for an illustration.

There are now two cases.
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>2�

f(�1)

f(�2)

Figure 4.2: An illustration of the situation in the proof of Lemma 4.1.4.

1. First there is the pathological situation where d(f(ρ1), f(ρ2)) ≤ 2ε. This means that f(S1) is

contained in the other arc connecting f(ρ1) and f(ρ2), which necessarily has a diameter less

than 2ε. But then there are two points x1, x2 ∈ S1 that are antipodes – with relative distance

1/2 – that are both mapped into a set with diameter less than 2ε. This is a contradiction if

ε < 1/6 because dis f < ε.

2. We are left with the situation d(f(ρ1), f(ρ2)) > 2ε. Consider the (antipodal) points x1, x2 ∈
S1 that lie exactly in between ρ1 and ρ2, i.e. the points such that d(xi, ρ1) = d(xi, ρ2) for

i = 1, 2. Likewise, y1 lies in between f(ρ1) and f(ρ2); denote its antipode by y2. Then since

dis f < ε, the distance of f(x1) to f(ρ1) differs at most 2ε from the distance of f(x1) to f(ρ2).

Because d(f(ρ1), f(ρ2)) > 2ε, the set of points whose distances to f(ρ1) and f(ρ2) differ by

at most 2ε is Bε(y1)∪Bε(y2). Hence f(x1) ∈ Bε(y1)∪Bε(y2), and by the same argument also

f(x2) ∈ Bε(y1) ∪ Bε(y2). But Bε(y1) ∩ f(S1) = ∅, so we see that the antipodes x1 and x2

both have to be mapped into the same set with diameter 2ε. Again, this is a contradiction.

We therefore see that no such points ρ1 and ρ2 can exist, hence f(S1) must form an ε-net in S1.

Proposition 4.1.5. The sequence of metric spaces (P(C(S1)(n)), dn) does not converge to (S1, d)

in the sense of Gromov-Hausdorff convergence.

Proof. Suppose that (P(C(S1)(n)), dn) does converge to (S1, d). According to Corollary 2.3.11, we

should then be able to find γn-isometries

ψn : P(C(S1)(n))→ S1

with limn→∞ γn = 0.

For each n, take the polynomial
∑
k ξkz

n−k−1 = 1√
2
(1 − zn−1), i.e. ξ = 1√

2
(−1, 0, ..., 0, 1). Then

the function

gn(t) := ξ̂∗ ∗ ξ(t) =
1

2
(−e−i(n−1)t + 2− ei(n−1)t) = 1− cos((n− 1)t)

defines a pure state τgn on C(S1)(n) in the manner of Proposition 3.2.5. This pure state will be

mapped to some µn ∈ S1 by the ε-isometry ψn.

Note that the restriction of ψn to the Fejér-kernels Fn is a map from S1 to S1 with distortion less

than γn. Hence due to Lemma 4.1.4, the set ψn(Fn) forms a γn-net in S1. This means that we

can choose a pure (Fejér kernel) state τfλnn ∈ P(C(S1)(n)) such that it is mapped to some ρn ∈ S1
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with d(ρn, µn) < γn. We then have that

dis f ≥
∣∣∣dn(τgn , τfλnn )− d(ρn, µn)

∣∣∣ ≥ dn(τgn , τfλnn )− γn.

However, as we will show now, the distance between τgn and τfλnn converges to 1
4 as n → ∞

regardless of the points λn, which gives a contradiction.

Let us simply carry out the calculation. First of all, the distance formula on the truncated circle

is difficult to compute directly. Since the distance formulas on S(C(S1)) and S(C(S1)(n)) agree in

the limit (Proposition 3.2.3), we can pass to the easier distance formula by noting that

lim
n→∞

dn(τfλnn , τgn) = lim
n→∞

d(R∗n(τfλnn ), R∗n(τgn)).

There is one more complication, as it is hard to calculate limn→∞ d(R∗n(τfλnn ), R∗n(τgn)) directly

since the points λn may not all be the same. However, it is possible to calculate

limn→∞ d(R∗n(τfλn ), R∗n(τgn)) for λ kept constant. Since it turns out these limits are all the same,

limn→∞ d(R∗n(τfλnn ), R∗n(τgn)) then must equal that value as well by compactness of S1 and Dini’s

Theorem [36, Theorem 7.13].

Once more, we will use the paper [6] to calculate the distance d(R∗n(τfλn ), R∗n(τgn)). Recall that

αn :[0, 2π]→ R

t 7→ 1

2π

∫ t

0

fλn (x)dx− 1

2π

∫ t

0

gn(x)dx

and

aα = sup {t ∈ R : λ({x ∈ [0, 2π] : αn(x) ≥ t}) > 1/2} ,

so that d(R∗n(τfλn ), R∗n(τgn)) = 1
2π

∫ 2π

0
|αn(t)− aα| dt. As before, as n grows to infinity,

1
2π

∫ t
0
fλn (x)dx converges uniformly to H(t− θ) outside t = θ. Next,

1

2π

∫ t

0

gn(x)dx =
1

2π

[
1− 1

n− 1
sin((n− 1)x)

]t
0

=
t

2π
− 1

2π(n− 1)
sin((n− 1)t),

which converges uniformly to t
2π as n grows to infinity. Thus limn→∞ αn(t) = H(t− θ)− t

2π . This

also makes it clear that aα = 1
2 −

θ
2π by elementary analysis. An illustration of these functions and

calculations can be found in Figure 4.3.

Finally, the result is a simple computation:

d(R∗n(τfλn ), R∗n(τgn)) =
1

2π

∫ 2π

0

|αn(t)− aα| dt

n→∞−−−−→ 1

2π

∫ 2π

0

∣∣∣∣H(t− θ)− t

2π
−
(

1

2
− θ

2π

)∣∣∣∣ dt
=

1

4
.

In conclusion, we have shown that for any γn-isometry ψn : P(C(S1)(n))→ S1

disψn ≥ dn(τfλnn , τgn)− γn,

while at the same time

lim
n→∞

dn(τfλnn , τgn) =
1

4
.

Hence we can infer that (P(C(S1)(n)), dn) cannot converge to (S1, d) as metric spaces in the sense

of Gromov-Hausdorff convergence.
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(a) Here the functions fλn and gn depicted with

k 2π
m

= π/3 for n = 20.

(b) An indication of how aα is determined.

(c) A plot of |αn − aα|. Three distinct regions can

be distinguished: the interval between 0 and π/3,

between π/3 and 4π/3 and finally between 4π/3 to

2π.

Figure 4.3: An illustration of the calculations performed in Proposition 4.1.5.
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4.2 Convergence to S(C(S1))

Somewhat unexpectedly, P(C(S1)(n)) does not converge to S1 as metric spaces in the Gromov-

Hausdorff sense. The problem seemed to be, in fact, that the spaces P(C(S1)(n)) were too large

to converge to S1. It may seem bold, but we now propose S(C(S1)) as the limit.

Immediately we have a suitable candidate for ε-isometries between these spaces, in order to prove

Gromov-Hausdorff convergence by the strategy of using Corollary 2.3.11. Consider

R∗n : P(C(S1)(n))→ S(C(S1))

by pullback with the compression Pn as introduced in Section 3.2.1. Then disR∗n
n→∞−−−−→ 0 since

the distance formula on S(C(S1)(n)) agrees with the distance formula on S(C(S1)) in the limit,

as we have also used before (Proposition 3.2.3). If we can now establish that R∗n(P(C(S1)(n))) is

an ε-net if we choose n large enough, we will have shown that S(C(S1)) is the Gromov-Hausdorff

limit of P(C(S1)(n)) as metric spaces. First, we will prove that all states on the circle can be

approximated by the pullback of pure states in P(C(S1)(n)). Next, we check that this can be done

uniformly in n.

4.2.1 Approximating states

In this subsection, an elaborate scheme will be carried out to prove that any state on the circle

can be approximated by the pullbacks of pure states on the truncated circle. We will do this in

three steps of increasing difficulty as follows:

A state ψ on C(S1)

A state
∑m
i=1 tievλi on C(S1), which is a convex combination of evaluations

at the m-roots of unity

A state

m∑
i=1

dϕ
dλ (λi)∑m
j=1

dϕ
dλ (λj)

evλj

on C(S1), where λj are the m-roots of unity and ϕ is a pure state on C(S1)(n)

A state R∗nχ on C(S1) where χ is a pure state on C(S1)(n)

Can be approximated by

Can be approximated by

Can be approximated by

Recall that a pure state ϕ on C(S1)(n) is uniquely characterised by the Radon-Nikodym derivative

with respect to the normalised Haar-measure on S1 of R∗nϕ, which is a state (i.e. a probability

measure) on C(S1), and that we denote this Radon-Nikodym derivative dϕ
dλ instead of

dR∗nϕ
dλ to ease

notation. See also Section 3.2.

The first step in the outlined scheme is by far the easiest, as the set{
m∑
i=1

tievλi : m ∈ N, 0 ≤ ti ≤ 1,

m∑
i=1

ti = 1, λmi = 1

}
,
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i.e. convex combinations of evaluations at the roots of unity, is dense in S(C(S1)) with respect to

the weak *-topology. Since S1 is a compact metric space, the weak *-topology on S(C(S1)) agrees

with the topology induced by the Monge-Kantorovich metric [33].

The second step of the scheme can be done in a single lemma.

Lemma 4.2.1. Let λ1, ..., λm be the solutions of λm = 1 (the m-roots of unity), and take any state

of the form
∑m
i=1 tievλi with

∑m
i=1 ti = 1 and ti ≥ 0 for all i. Then for every l ∈ Z≥0 and ε > 0

we can find ϕ ∈ P(C(S1)(m+1+l)) such that on C(S1)

d

 m∑
i=1

tievλi ,

m∑
j=1

dϕ
dλ (λj)∑m
i=1

dϕ
dλ (λi)

evλj

 < ε.

Proof. Let us first prove the case l = 0. Take the pure state ϕN on C(S1)m+1 defined by
dϕN
dλ (t) = c

∏m
j=1(1 − cos(t − λj + εj)), with εi =

√
2ti
N . This indeed corresponds to a pure

state in P(C(S1)(m+1)) according to Proposition 3.2.7. To emphasise, dϕN
dλ indicates the Radon-

Nikodym derivative of R∗(m+1)ϕN as a probability measure on C(S1) with respect to the normalised

Haar-measure dλ on S1, we mean no usual derivative of a function. Consider what happens at the

points λi if we take N large, i.e. εi small.

Note that the derivative of 1− cos(t) is at most 1 everywhere, so we have for all the factors of ϕN
that as N →∞

1− cos(λi − λj + εj) = 1− cos(λi − λj) +O(εi)

= 1− cos(λi − λj) +O
(

1√
N

)

For the factor with λi = λj note that by Taylor expansion 1− cos(εi) expands as

1− cos(εi) =
ε2
i

2
+O(ε3

i )

=
ti
N

+O
(

1

N3/2

)
.

Combined, this gives that

dϕN
dλ

(λi) = c

(
ti
N

+O
(

1

N3/2

))∏
j 6=i

(
(1− cos(λi − λj)) +O

(
1√
N

))
= c

ti
N

∏
j 6=i

(1− cos(λi − λj)) +O
(

1

N3/2

)
.

Notice that c
∏
j 6=i(1− cos(λi − λj)) has the same value for all λi by symmetry. Hence if we pass

these values to the projective space we end up with the ratio[
dϕN
dλ

(λ1) : · · · : dϕN
dλ

(λm)

]
=

[
t1
N

+O
(

1

N3/2

)
: · · · : tm

N
+O

(
1

N3/2

)]
=

[
t1 +O

(
1√
N

)
: · · · : tm +O

(
1√
N

)]
.

As the topology on RPm−1 is the quotient topology induced by the topology on Rm, we see that the

ratio above converges to [t1 : · · · : tm] in RPm−1. This proves that we can find ϕN ∈ P(C(S1)(m+1))

such that
[
dϕN
dλ (λ1) : · · · : dϕNdλ (λm)

]
is arbitrarily close to [t1 : · · · : tm] in the metric that metrizes

the topology of the projective space RPm−1. We can characterise the topological space RPm−1 as
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Ŝm/∼ with Ŝm = {x ∈ Rm : ‖x‖1 = 1} the unit sphere with respect to the L1-norm, inheriting

the subspace topology from Rm, and the equivalence relation ∼ identifying x with −x. Since
1∑m

j=1
dϕN
dλ (λj)

(
dϕN
dλ (λ1), . . . , dϕNdλ (λm)

)
and (t1, . . . , tm) are already living on Ŝm – even in the same

quadrant – the vectors 1∑m
j=1

dϕN
dλ (λj)

(
dϕN
dλ (λ1), . . . , dϕNdλ (λm)

)
then also converge to (t1, . . . , tm) in

Rm as N → ∞. It is immediate that therefore that the states 1∑m
j=1

dϕN
dλ (λj)

∑m
j=1

dϕN
dλ (λj)evλj

converge to
∑m
j=1 tjevλj in the weak∗-topology. Again we can use that the Monge-Kantorovich

metric induces the weak∗-topology to conclude that we can choose N such that

d

 m∑
i=1

tievλi ,

m∑
j=1

dϕN
dλ (λj)∑m

i=1
dϕN
dλ (λi)

evλj

 < ε.

The cases l ≥ 1 follow more or less immediately. If we choose some point µ on the circle that is not

equal to any of the λj , we can guarantee that 1− cos(t− µ) has no roots in the points λ1, . . . , λm.

For any l ∈ N, we can take ϕN ∈ P(C(S1)(m)) such that the ratio [dϕNdλ (λ1) : · · · : dϕN
dλ (λm)] is

arbitrarily close to [
t1

(1− cos(λ1 − µ))l
: · · · : tm

(1− cos(λm − µ))l

]
by the argument for the case l = 0 above. Then dϕN

dλ (1− cos(t− µ))l defines the pure state (up to

scaling) in P(C(S1)(m+1+l)) that satisfies the statement in the lemma.

For the third and final step in our scheme, we need to prove that the states of this type of convex

combination can be approximated by the pullback of some pure state on the truncated circle. To

accomplish that, we will need the following propositions.

Proposition 4.2.2. Let K ⊆ X be some compact subset of Rn and let f ∈ C(K) be a positive

function attaining its maximum in the unique point x0. Then the sequence of linear functionals

(τn)n∈N defined by τn : g 7→
∫
K

fn

‖fn‖1
gdx, converges to evx0

in the weak∗-topology on C(K)∗.

Proof. Denote the maximum of f by M . For every ε > 0, f−1(M−ε,M ] is an open neighbourhood

of x0, denote this by Uε. Outside this neighbourhood fn

‖fn‖1
n→∞−−−−→ 0 uniformly, since

‖fn‖1 ≥
∫
Uε/2

fndx >
∣∣Uε/2∣∣ (M − ε/2)n,

and so for x 6∈ Uε
fn

‖fn‖1
(x) ≤ 1∣∣Uε/2∣∣

(
M − ε
M − ε/2

)n
.

Therefore,

|τn(g)− evx0
(g)| =

∣∣∣∣∫
K

fn

‖fn‖1
gdx− evx0

(g)

∣∣∣∣
=

∣∣∣∣∫
K

fn

‖fn‖1
(g − g(x0))dx

∣∣∣∣
≤
∫
K−Uε

fn

‖fn‖1
|g − g(x0)| dx+

∣∣∣∣∫
Uε

fn

‖fn‖1
(g − g(x0))dx

∣∣∣∣
≤
∫
K−Uε

fn

‖fn‖1
|g − g(x0)| dx︸ ︷︷ ︸

n→∞−−−−→0

+ sup
x∈Uε

|g(x)− g(x0)|︸ ︷︷ ︸
ε→0−−−→0

∫
Uε

fn

‖fn‖1
dx︸ ︷︷ ︸

≤1

.

Since the second term becomes small as ε → 0 independent of n, we see that this converges to 0

indeed.
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Proposition 4.2.3. The convex combinations
∑m
j=1

1
mevλj , where λj are the solutions of λm = 1,

are weak ∗-limits in S(C(S1)) of sequences (R∗n(m+1)τn)n∈N with τn ∈ P(C(S1)(n(m+1))).

Proof. Consider the function gm(t) = 1− cos(mt). We have already seen that this function defines

a pure state τgm on C(S1)(m+1). Likewise, due to Proposition 3.2.7, the function (gm)n

‖(gm)n‖ defines

a pure state τn := τ (gm)n

‖(gm)n‖1
on C(S1)(n(m+1)).

Note that gm reaches its maximum in the m points λj , denote the roots in between by µj . By

symmetry of gm,
∥∥(gmχ[µj ,µj+1])

n
∥∥

1
= 1

m ‖(gm)n‖. Hence

(gm)n

‖(gm)n‖1
=

1

m

m∑
j=1

(gmχ[µj ,µj+1])
n∥∥(gmχ[µj ,µj+1])n
∥∥

1

,

and by applying Proposition 4.2.2 on all these terms we conclude that

R∗n(m+1)τn
w∗−−→

m∑
j=1

1

m
evλj .

Therefore, convex combinations of this type can indeed be approximated by pure states of the

truncated circle. We will now use one more trick, which is to multiply the convergent sequence

of pure states of the proposition above with the Radon-Nikodym derivative of another pure state,

which results in a new sequence of pure states that converges to what we need.

Proposition 4.2.4. Let λ1, ..., λm be the solutions of λm = 1, and take any ϕ ∈ P(C(S1)(k)) such

that dϕ
dλ (λj) 6= 0 for at least one j. Then

m∑
j=1

dϕ
dλ (λj)∑m
i=1

dϕ
dλ (λi)

evλj

is the weak ∗-limit of a sequence (R∗k+n(m+1)χn)n∈N with χn ∈ P(C(S1)(k+n(m+1))).

Proof. Consider the space of linear functionals C(S1)∗. Observe that on C(S1)∗:

1. The map

M∗f : C(S1)∗ → C(S1)∗

τ 7→ τ ◦Mf ,

where Mf indicates multiplication by f , is weak∗-continuous. This is trivial, since if τn
w∗−−→ τ ,

then by definition τn(fg)→ τ(fg) for all g ∈ C(S1) so M∗f τn
w∗−−→M∗f τ .

2. If τn
w∗−−→ τ , then by definition also τn(1)→ τ(1). As scalar multiplication is weak∗-continuous

τn
τn(1)

w∗−−→ τ

τ(1)
,

provided that these scalars are nonzero.

Take ϕ ∈ P(C(S1)(k)). For this proof, we will ease some notation by denoting the linear functional

g 7→
∫
S1 fg dλ on C(S1) simply by f . As seen in the proof of Proposition 4.2.3, if we define

gm(t) = 1− cos(mt) have that

(gm)n

‖(gm)n‖
w∗−−→

m∑
j=1

1

m
evλj .

If we apply observation 1 on this sequence with M∗dϕ
dλ

, we get that

(gm)n dϕdλ
‖(gm)n‖1

w∗−−→
m∑
j=1

dϕ
dλ (λj)

m
evλj .
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When dϕ
dλ (λj) 6= 0 for at least one j, all these are nonzero positive linear functionals on C(S1) so

due to Lemma 2.1.5 evaluating these functionals at 1 gives a nonzero scalar.

By observation 2, we can therefore conclude that

(gm)n dϕdλ∥∥∥(gm)n dϕdλ

∥∥∥
1

w∗−−→
m∑
j=1

dϕ
dλ (λj)∑m
i=1

dϕ
dλ (λi)

evλj .

Finally, the functional f 7→
∫
S1 f

(gm)n dϕdλ
‖(gm)n dϕdλ‖1

dλ is exactly R∗k+(n(m+1))χn for χn the pure state on

C(S1)(k+(n(m+1))), defined via Proposition 3.2.7 by

dχn
dλ

=
(gm)n dϕdλ∥∥∥(gm)n dϕdλ

∥∥∥
1

.

We have completed all the steps that were described in the beginning of this subsection. Combined,

we can prove the following proposition.

Proposition 4.2.5. Given any state ψ ∈ S(C(S1)) and ε > 0, there exists N ∈ N such that for

any n ≥ N we can find a pure state χn ∈ P(C(S1)(n)) with d(ψ,R∗n(χn)) < ε, where d is the

Monge-Kantorovich metric on S(C(S1)).

Proof. The proof of this proposition is nothing but the execution of the steps as in the flowchart

on page 26. Take ψ ∈ S(C(S1)) and ε > 0. The set{
n∑
i=1

tievλi : 0 ≤ ti ≤ 1,

n∑
i=1

ti = 1, λni = 1

}

is dense in S(C(S1)) with respect to the weak *-topology which agrees with the Monge-Kantorovich

metric. Hence, we can find a convex combination τ =
∑m
i=1 tievλi such that d(τ, ψ) < ε.

Using Lemma 4.2.1, we can choose a (non-pure) state on C(S1)

ρ =
m∑
j=1

dϕ
dλ (λj)∑m
i=1

dϕ
dλ (λi)

evλj

with ϕ a pure state in P(C(S1)(m+1)) such that d(ρ, τ) < ε.

According to Lemma 4.2.4 we can find a sequence (χn)n∈N with χn ∈ P(C(S1)(m+n(m+1))) such

that R∗m+n(m+1)(χn) converges to ρ in the Monge-Kantorovich metric. We can thus find M ∈ N
such that for n ≥M we have that d(R∗m+n(m+1)(χn), ρ) < ε and hence

d(ψ,R∗m+n(m+1)(χn)) ≤ d(ψ, τ) + d(τ, ρ) + d(ρ,R∗m+n(m+1)((χn)) < ε+ ε+ ε = 3ε.

However, note that χn ∈ P(C(S1)(m+n(m+1))) and therefore it remains to be proven that in the

intermediate pure state spaces there also exist states that are close to ψ. Recall that by using

Proposition 4.2.1 we can also find ϕ ∈ P(C(S1)(m+1+l)) such that d(ρ, τ) < ε, for l ∈ Z≥0 . The

argument above can then be repeated to find a sequence χ′n ∈ P(C(S1)(l+m+n(m+1))) converging

to ψ. Choosing l = 0, ...,m fills the gaps. As these result in a finite number of interlacing, separate

sequences, we can combine these into a sequence (χn)n∈N with χn ∈ P(C(S1)(n)) so that for each

ε > 0 we can find N ∈ N such that for n ≥ N d(ψ, χn) < ε.
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4.2.2 Uniformity

The result of the previous section means we can approximate all elements in S(C(S1)) by elements

in P(C(S1)(n)). In order to show Gromov-Hausdorff convergence, it remains to be shown that this

approximation can be done uniformly so that P(C(S1)(n)) forms an ε-net in S(C(S1)). A simple

argument suffices, since S(C(S1)) is weak∗ compact.

Proposition 4.2.6. For every ε > 0, there exists N ∈ N such that for n ≥ N , R∗n(P(C(S1)(n)))

forms an ε-net in S(C(S1)).

Proof. By the Banach-Alaoglu Theorem [15, Theorem V.3.1], the unit ball of C(S1)∗ is weak∗-

compact. The set S(C(S1)), as a weak∗-closed subset of the unit ball, is then compact as well.

Hence, given ε > 0, we can find a finite number of ψ1, ..., ψm ∈ S(C(S1)) such that the balls Bε(ψi)

cover S(C(S1)).

According to Proposition 4.2.5, for each ψi we can find Ni ∈ N such that for n ≥ Ni there exists a

pure state ϕi ∈ P(C(S1)(n)) such that d(ψi, R
∗
n(ϕi)) < ε. Thus we have that for any χ ∈ Bε(ψi)

and n ≥ Ni,

dist(χ,R∗n(P(C(S1)(n)))) ≤ d(χ, ψi) + dist(ψi, R
∗
n(P(C(S1)(n)))) < ε+ ε = 2ε.

Now take any χ ∈ S(C(S1)). Because

S(C(S1)) ⊆
m⋃
i=1

Bε(ψi),

χ must be an element of the ball Bε(ψi) for some i. For n ≥ N := maxiNi we have, by the

calculation above, that

dist(χ,R∗n(P(C(S1)(n)))) < ε.

Hence R∗n(P(C(S1)(n))) forms an ε-net in S(C(S1)) for n ≥ N .

This concludes our project of proving the Gromov-Hausdorff convergence of P(C(S1)(n)) to

S(C(S1)) as metric spaces.

Theorem 4.2.7. The metric spaces P(C(S1)(n)) converge to the metric space S(C(S1)) in

Gromov-Hausdorff convergence.

Proof. According to Proposition 4.2.6, for every ε > 0 we can find N ∈ N such that for all n ≥ N ,

R∗n(P(C(S1)(n))) is an ε-net. Moreover,

disR∗n
n→∞−−−−→ 0,

since the distance formula on S(C(S1)(n)) agrees with the distance formula on S(C(S1)) in the

limit (Proposition 3.2.3). Hence for each ε > 0, we can find N ∈ N such that for all n ≥ N the

map R∗n is an ε-isometry.

By using Corollary 2.3.11 we can then conclude that

lim
n→∞

dGH(P(C(S1)(n)),S(C(S1))) = 0,

in other words, the metric spaces P(C(S1)(n)) converge to the metric space S(C(S1)) in the

Gromov-Hausdorff sense.

31



4.2.3 Geometric Interpretation

As remarked in Section 3.2.2, we are interested in the state spaces of the truncated circle, because

these traditionally correspond to ‘points’. This makes it interesting to contemplate the geometric

shape of these spaces and their convergence to S(C(S1)).

As proven in [14, Proposition 4.8], there exists a geometric interpretation of the truncated pure

state spaces of the circle which is the following proposition.

Proposition 4.2.8. The pure state space P(C(S1)(n+1)) ∼= Tn/Sn is the quotient of the n-torus

by the symmetric group on n objects.

Proof. In Proposition 3.2.5 we have already characterised pure states in P(C(S1)(n+1)) as vectors

ξ ∈ Cn+1 such that the polynomial
∑
k ξkz

n−k has all its zeroes on S1. Denote these roots

by λ1, ..., λn (with multiplicities). Using Vieta’s formulas, we can then express ξ in elementary

symmetric polynomials in the λk’s

ξ =


1∑
k λk∑

k<l λkλl
...

λ1 · · ·λn

 .

This gives the identification P(C(S1)(n+1)) ∼= Tn/Sn.

The result in this section therefore gives the Gromov-Hausdorff convergence of the spaces Tn/Sn –

equipped with a metric via the Connes distance formula – to the state space on the circle S(C(S1)).

A visualisation of the spaces Tn/Sn becomes problematic as the dimension rises, but at the very

least we can try to understand the first spaces in the sequence.

The space P(C(S1)(2)) is homeomorphic to T1/S1
∼= S1. Indeed, pure states ϕ correspond with

vectors

ξ =
1√
2

(
1

eix

)
,

with x ∈ S1. The metric on the state space of C(S1)(2) is defined by the formula

d(ϕ,ψ) = sup{|ϕ(A)− ψ(A)| : ‖[D,A]‖ ≤ 1},

where only self-adjoint A need to be considered [14]. Such Toeplitz matrices look like

A =

(
a0 a−1

a−1 a0

)
.

In order to compute the distance, it will suffice to take a0 = 0, since the diagonal automatically

commutes with D and also ϕ(I2) = ψ(I2) = 1, where I2 is the identity for 2x2 matrices. Therefore,

we need only consider Toeplitz matrices of the form

A =

(
0 z

z 0

)
.

Now, the Dirac operator takes the form

D =

(
0 0

0 1

)
,
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so that

[D,A] =

(
0 −z
z 0

)
.

A quick calculation then gives that ‖[D,A]‖ = |z|. Therefore, if we have pure states ϕ, ψ corre-

sponding to vectors

ξ =
1√
2

(
1

eix

)
, ζ =

1√
2

(
1

eiy

)
,

we can first calculate

〈ξ, Aξ〉 =
1

2

(
1

e−ix

)
·

(
0 z

z 0

)(
1

eix

)

=
1

2
(zeix + ze−ix)

= Re(zeix),

so that

d(ϕ,ψ) = sup{|ϕ(A)− ψ(A)| : ‖[D,A]‖ ≤ 1}
= sup{|〈ξ, Aξ〉 − 〈ζ,Aζ〉| : ‖[D,A]‖ ≤ 1}
= sup{

∣∣Re(zeix)− Re(zeiy)
∣∣ : |z| ≤ 1}

= sup{
∣∣Re(zeix)− Re(zeiy)

∣∣ : |z| = 1}
= sup{|cos(x+ t)− cos(y + t)| : t ∈ [0, 2π]}.

We can rewrite

cos(x+ t)− cos(y + t) = −2 sin

(
x− y

2

)
sin

(
t+

x+ y

2

)
,

and therefore

d(ϕ,ψ) = sup{|cos(x+ t)− cos(y + t)| : t ∈ [0, 2π]}

= 2 sin

(
x− y

2

)
.

This is exactly the chord distance between two points on the circle. An obvious visualisation of

the space P(C(S1)(2)) would therefore just be the circle, declaring the distance between two points

to be the chord distance. If we consider the pure states to be ‘points’ of some space, an internal

visualisation of the metric would be more instructive. For that end, see Figure 4.4.
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Figure 4.4: A visualisation of the metric space P(C(S1)(2)). The larger circle indicates the space

without consideration for the metric. The smaller circle gives an indication of the metric space as

‘seen’ from the point 1. The red dots are plotted such that the arc length on the smaller circle

between 1 and a dot is the same as the chord length between 1 and the corresponding dot on the

larger circle.
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Chapter 5

Index Theory

5.1 General Theory

Generations of mathematicians have been captivated by what is fundamentally the question of

how analytical properties of a manifold are determined or related to its topology. When analytical

and topological paths meet, when an analytical calculation and a topological calculation give the

same answer, there must be a deep connection to uncover. Projects in this vein have led to some

of the most deep and beautiful theorems mathematics has to offer. Famously, the Atiyah-Singer

Theorem from 1963 [2] is a milestone in the development of this theory, which generalises previous

theorems of this type [19, Chapter 3.5, Chapter 4.2]: from the Gauss-Bonnet Theorem for surfaces

in R3 proven in 1848 [4], its modern formulation for two-dimensional manifolds from 1888 [16], to

its further generalisation to the Gauss-Bonnet-Chern Theorem for even-dimensional Riemannian

manifolds in 1944 [8], not to mention the Riemann-Roch Theorem for Riemann surfaces (1865) [35].

Even to this day the programme continues. The noncommutative analogue dates from 1995, when

A. Connes and H. Moscovici generalized the Atiyah-Singer Theorem further, broadening its scope

to spectral triples [13].

In the Atiyah-Singer Theorem and Connes-Moscovici Theorem, the analytical data comes in the

form of the Fredholm index of a certain operator. For an operator A : H → H ′ on Hilbert spaces

H and H ′, it is defined as

indA = dim kerA− dim kerA∗

= dim kerA− dim(ranA)⊥.

This is inherently only an interesting number in infinite dimensions, since one finds by the Rank-

Nullity Theorem (see your favourite basic Linear Algebra book) that in finite dimensions for any

such operator A automatically indA = dimH − dimH ′. However, in infinite dimension this

turns out to be an incredibly powerful invariant with respect to compact perturbations, which has

far-reaching applications as indicated by its fundamental use in the aforementioned theorems.

For the definitions of the Fredholm index, we will follow “A Course in Functional Analysis” by J.

Conway [15, Chapter XI].

Definition 5.1.1. Let H be a Hilbert space and let A be a bounded linear operator A : H → H.

The operator A is called a Fredholm operator if its image in the quotient algebra (Calkin algebra)

B(H)/K(H) is invertible. The set of all Fredholm operators on H is denoted F(H) ⊆ B(H).

Theorem 5.1.2. Let H be a Hilbert space. An operator A ∈ B(H) is Fredholm if and only if

ranA is closed and both kerA and kerA∗ are finite-dimensional.
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The proof of this theorem depends on quite a lot of machinery, involving spectral theory of compact

operators and the Fredholm Alternative. A complete proof can be found in [15, Chapter VII,

Chapter XI]. Due to this proposition, we can define the Fredholm index of a Fredholm operator.

Definition 5.1.3. Let H be a Hilbert space and A ∈ B(H) a Fredholm operator. The Fredholm

index of A is defined as

indA = dim kerA− dim kerA∗.

Some basic results for the Fredholm index are the following.

Theorem 5.1.4. Let H be a Hilbert space and A,B ∈ B(H) be a Fredholm operators.

1. indAB = indA+ indB;

2. If K ∈ B(H) is compact, then indA+K = indA;

3. The map ind : F(H)→ Z is continuous;

4. A and B belong to the same connected component of F(H) if and only if indA = indB;

5. F(H) is an open subset of B(H).

Proof. Again, the proof of these statements require results in functional analysis that go beyond

the scope of this thesis, so we refer to [15, Section XI.5].

Note that because F(H) is an open subset of the Banach space B(H), its connected components

are path-connected. In other words, whenever two operators have the same index, there exists a

path with constant index connecting the two. This is tangentially related to the strategy that will

be employed in Section 5.4.

5.2 Index Theory on Truncated Spectral Triples

Let us briefly return to the Connes-Moscovici index formula. There are two such formulae, for

even and odd spectral triples. The even case gives a formula for the index of the twisted Dirac

operator pDp, where p ∈ A is a projection. In the odd case, which is also the case of the circle,

the index that is to be considered is the index of PuP [13] for a unitary u ∈ A. Here P is the

Hardy projection, which is the projection onto the positive spectrum of D, i.e. P = χ(D ≥ 0) or

equivalently P = 1
2 (1 + signD). In this chapter, we will focus on the case of odd spectral triples.

It would be hopeful if we could calculate this index from within a truncation of a spectral triple,

as that would indicate that some of this structure is retained by the truncation. More precisely,

we would need to calculate the index of PuP from within the truncated triple (Aρ, Hρ, Dρ), using

only the finite Toeplitz matrix PρuPρ – where we now take Pρ to be the projection χ[−ρ,ρ](D).

To emphasise, this is a different projection than what we have considered for the circle in the

previous chapters, as we previously took a projection onto spanC{e1, . . . , en}. Using the projection

χ[−ρ,ρ](D), which in the circle would mean a projection onto spanC{e−n, . . . , en}, is more convenient

for this chapter, as we will make extensive use of the sign of eigenvalues and their asymmetry around

0. This only changes things on a superficial level, see the remarks in Section 3.2.

The index of PuP is a number that is only nontrivial when considering PuP as an operator on an

infinite-dimensional Hilbert space, as noted in the opening paragraphs of this chapter. Calculating

it from the finite-dimensional matrix PρuPρ therefore seems like a daunting task. However, in the

articles [26] and [27] by T. Loring and H. Schulz-Baldes, machinery is produced that readily makes

this computation possible. Specifically, they show the index of PuP to be equal to the signature

of a finite-dimensional matrix which they dub the spectral localizer.
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First, let us introduce some notation. Given a spectral triple (A, H,D) and u ∈ A, denote

D′ =

(
D 0

0 −D

)
,

H =

(
0 u

u∗ 0

)
,

which are then considered operators on H⊕H. Furthermore, denote Tρ = PρTPρ for any T ∈ B(H)

for slight ease of notation, and define

D′ρ =

(
Dρ 0

0 −Dρ

)
,

Hρ =

(
0 uρ
u∗ρ 0

)
,

which are operators on PρH⊕PρH. This Hilbert space is finite dimensional because D has compact

resolvent.

Definition 5.2.1. Let (A, H,D) be an odd spectral triple and consider an element u ∈ A. Then

the spectral localizer Lκ,ρ associated to u is a finite-dimensional matrix with κ ≥ 0, n ∈ N, defined

as

Lκ,ρ = κD′ρ +Hρ =

(
κDρ uρ
u∗ρ −κDρ

)
.

Remarkably, by choosing κ and ρ with care, the spectral asymmetry of the spectral localizer

indicates the index of PuP . Specifically, half the signature of Lκ,ρ turns out to equal this index,

where the signature of a self-adjoint invertible matrix means the number of positive eigenvalues of

Lκ,ρ minus the number of negative eigenvalues. This approach to solving the problem might feel as

a deus ex machina, and without explanation this is not illuminating. Let us therefore give a brief

explanation of why the spectrum of the spectral localizer is asymmetric, and why this asymmetry

should be equal to the index of an operator. Of course, for details of the machinations of the

spectral localizer, the best places to look are the original articles [26] and [27]. Furthermore, the

explanation here is inspired by a seminar held by H. Schulz-Baldes on March 24 in the Global

Noncommutative Geometry Seminar [38].

The spectrum of
(
κD λu
λu∗ −κD

)
for λ = 0 is some subset of R consisting of isolated points without

accumulation points. If we ‘dial up’ λ from 0 to 1 we are adding the mass term
(

0 u
u∗ 0

)
. This

causes the spectrum to shift which might generate an asymmetry in the spectrum. Moreover,

we can expect that the only eigenvalues that will have crossed 0 are ‘small’, hence there is some

cutoff ρ so that the spectral asymmetry in
(
κD u
u∗ −κD

)
can in fact already be detected by the finite-

dimensional Lκ,ρ. The last ingredient is that this asymmetry equals twice the index of PuP . The

easiest way to prove this in full generality is via the formula

indPuP = Sf (u∗Du,D),

where Sf (the spectral flow) denotes the number of negative eigenvalues that become positive on

the path from u∗Du to D minus the number of positive eigenvalues that become negative. This

formula dates from the 1970’s due to M.F. Atiyah, V.K. Pathodi, I.M. Singer and G. Lusztig [1,

Section 7].

This is all comes together in [27, Theorem 1].

Theorem 5.2.2. Let (A, H,D) be an odd spectral triple, and let u ∈ A be invertible with gap

g =
∥∥u−1

∥∥−1
> 0. Define

κ0 =
g3

12 ‖u‖ ‖[D,u]‖
.
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Suppose that κ and ρ are such that
2g

κ0
≤ 2g

κ
< ρ.

Then the matrix Lκ,ρ satisfies the bound

(Lκ,ρ)
2 ≥ g2

4
1.

In particular, Lκ,ρ is invertible and therefore has a well-defined signature, which satisfies

indPuP =
1

2
Sig(Lκ,ρ).

Proof. See [27].

This theorem states exactly that if we have an odd spectral triple (A, H,D) and we truncate it

with Pρ to an operator system spectral triple (Aρ, Hρ, Dρ), then we can calculate the index of PuP

for any unitary u ∈ A in the truncated system (Aρ, Hρ, Dρ) if ρ is large enough.

Covering both the proofs of the Connes-Moscovici theorem and the above theorem would blow

up this thesis to monstrous proportions. Instead, staying in the spirit of the previous chapter,

we will produce a self-contained proof of Theorem 5.2.2 in the specific case when (A, H,D) is the

canonical spectral triple of the circle in Section 5.4, but first treat regular index theory on the

circle in Section 5.3.

5.3 Index Theory on the Circle

For the specific case of the circle, we are looking for the index of PuP where u ∈ C∞(S1) is unitary

and P takes the form

Pen =

{
en if n ≥ 0,

0 otherwise

on the orthonormal basis en(t) = eint of L2(S1), which are all eigenfunctions of D. The mul-

tiplication operator PuP on PL2(S1) is also called a Toeplitz operator. The Connes-Moscovici

index theorem for the circle simply gives that the index of the Toeplitz operator PuP is equal to

minus the winding number of u [23], which is an example of how the admittedly quite abstract

concept of a Fredholm index on an infinite-dimensional Hilbert space can have a remarkably simple

geometric rendition. For the sake of keeping this thesis self-contained, we will sketch a proof of

this connection here, using the book “C∗-algebras and Operator Theory” by G. J. Murphy [31,

Chapter 3.5].

Definition 5.3.1. If ϕ is an invertible function in C(S1), then the winding number of ϕ is denoted

and defined as

winϕ =
1

2πi

∮
ϕ

dz

z
,

where
∮
ϕ

should be interpreted as the complex integral over the curve ϕ(S1) ⊆ C. By standard

complex analysis, this is always an integer [18, Chapter 22.5].

For C1 functions, this can be easily rewritten to

winϕ =
1

2πi

∫ 2π

0

ϕ′(t)

ϕ(t)
dt,

or even more concise, for unitary u ∈ C1(S1)

winu =

∫
S1

u∗du.

To get started with the proof that this is connected to the index of PuP , we claim that multiplying

Toeplitz operators can be done naively modulo compact operators.
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Lemma 5.3.2. Let f, g ∈ C(S1), and consider the Toeplitz operators PfP and PgP on H =

PL2(S1). Then (PfP )(PgP ) +K(H) = PfgP +K(H).

Proof. In the special case that f = zn and g = zm it is an easy calculation that (PfP )(PgP ) −
PfgP is a finite-rank operator. By density of the trigonometric polynomials in C(S1) (Stone-

Weierstrass), one can complete the proof [31, Lemma 3.5.9].

Next, it is useful to characterise which Toeplitz operators are Fredholm operators. We do this by

the following proposition, which is an amalgamation of [31, Theorem 3.5.8], [31, Theorem 3.5.11]

and [31, Corollary 3.5.12].

Proposition 5.3.3. Let f ∈ C(S1). Then PfP is a Fredholm operator on H = PL2(S1) if and

only if f vanishes nowhere.

Proof. Consider the C∗-algebra A generated by the Toeplitz operators PfP for f ∈ C(S1). We

claim that the map

ψ : C(S1)→ A/K(H)

f 7→ PfP +K(H)

is a ∗-isomorphism. Linearity and preservation of the involution is clear. Multiplicity follows

from Lemma 5.3.2, hence ψ is a ∗-homomorphism. Surjectivity follows from the definition of A.

Injectivity requires more work.

Suppose that PfP is a compact operator. Consider the operator Pe1P ∈ B(H), which is the

right-shift

Pe1P : H → H

en 7→ en+1;

((Pe1P )∗)
n

(em) =

{
em−n if m ≥ n
0 if m < n,

and therefore it is easy to see that for all finite-rank operators v ∈ B(H), limn→∞ ((Pe1P )∗)
n
v = 0.

It follows that for all compact operators v ∈ K(H) we have limn→∞ ((Pe1P )∗)
n
v = 0. Observe

that for m ≥ 0

(Pe1P )∗(PfP )(Pe1P )em = Pe−1Pfem+1

= Pe−1P

(∑
n

f̂(n)en+m+1

)

= Pe−1

 ∑
n+m+1≥0

f̂(n)en+m+1


= P

 ∑
n+m+1≥0

f̂(n)en+m


=

∑
n+m≥0

f̂(n)en+m

= (PfP )em,

i.e. (Pe1P )∗(PfP )(Pe1P ) = PfP . We can therefore deduce that if PfP is compact,

‖PfP‖ = ‖((Pe1P )∗)
m

(PfP )(Pe1P )m‖ ≤ ‖((Pe1P )∗)
m
PfP‖ m→∞−−−−→ 0,
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so PfP = 0. This can only be the case if f = 0. We see that indeed ψ is a bijective ∗-
homomorphism, i.e. a ∗-isomorphism.

Due to this isomorphism, PfP is invertible modulo compact operators if and only if f is invertible

in C(S1), in other words, PfP is Fredholm if and only if f vanishes nowhere.

To determine the index of PfP it will suffice to know the index of PemP , which is easy to calculate.

Lemma 5.3.4. Given em = eimt ∈ C(S1) for m ∈ Z, the index of PemP as an operator on

H = PL2(S1) is equal to −m.

Proof. With respect to the basis {en : n ≥ 0} of H, multiplying by em is simply a shift by m. Its

adjoint e∗m = e−m is then a shift in the other direction. A quick look at the kernels of PemP and

Pe−mP immediately gives the result.

One final ingredient we will need is that we can rewrite any non-vanishing function on S1 in a

convenient way.

Proposition 5.3.5. If ϕ is an invertible function in C(S1), then there exists a unique integer

n ∈ Z such that ϕ = ene
γ for some γ ∈ C(S1).

Proof. The possibility of writing ϕ = ene
γ can be shown by reducing to the simple case of ϕ = z−λ,

see [31, Lemma 3.5.14] for details. To prove the uniqueness of n, it suffices if we can show that

en = eγ for γ ∈ C(S1) implies that n = 0. So, suppose en = eγ for γ ∈ C(S1). Note that PetγP is

a Fredholm operator on PL2(S1) for all t ∈ [0, 1] according to Proposition 5.3.3. Hence the map

α : [0, 1]→ Z

t 7→ indPetγP

is constant according to Theorem 5.1.4. We then see by using Lemma 5.3.4 that

−n = indPenP = α(1) = α(0) = ind 1 = 0.

The unique integer from Proposition 5.3.5 is actually the winding number. Indeed, if f = ene
γ is

invertible, then

win f =
1

2πi

∮
eneγ

dz

z
=

1

2πi

∮
en

dz

z
= n.

Finally, we can now prove the index theorem for Toeplitz operators. This theorem first appeared in

1957 due to Israel Gohberg and Mark Krein [21], although a less recognisable version was already

proven in 1920 by Fritz Noether [32]. We will follow the proof in [31, Theorem 3.5.15].

Theorem 5.3.6. Let f ∈ C(S1) be invertible, and let H = PL2(S1). Then the Toeplitz operator

PfP on H satisfies

indPfP = −win f.

Proof. Due to Proposition 5.3.5, we know that f = ene
γ for some n ∈ Z and γ ∈ C(S1), where n

is the winding number of f . Using Lemma 5.3.2 and Theorem 5.1.4, it follows that

indPfP = indPeγenP

= ind(PeγP )(PenP )

= ind(PeγP ) + ind(PenP )

= ind(PeγP )− n.
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All that is left to show is that ind(PeγP ) = 0 for all γ ∈ C(S1). In fact, PeγP is always invertible,

which can be established by first considering γ =
∑
|k|≤N γ̂(k)ek and using that such trigonometric

polynomials are dense in C(S1) (for details, see [31, Theorem 3.5.15]). Invertible operators have

index 0, hence ind(PeγP ) = 0 which finishes the proof.

5.4 Index Theory on the Truncated Circle

In the previous section, we have seen that the index of the operator PuP with u ∈ C∞(S1) unitary

is equal to the winding number of u, a formula which depends on the geometric and topological

structure of S1. As demonstrated in Section 5.2, this winding number can then be calculated from

within a truncation of the spectral triple of the circle, using the spectral localizer. Here we will

give a self-contained proof of this fact. Still, we do not claim originality of the ideas behind the

results presented in this section.

Recall that the spectral localizer is defined for u ∈ C∞(S1) as the finite matrix

Lκ,ρ =

(
κDρ uρ
u∗ρ −κDρ

)
.

In the case of the circle, we will choose ρ to be an integer, which makes Lκ,n a (2n+ 1)× (2n+ 1)

matrix. We will prove that the asymmetry of the spectral localizer can detect the index of PuP

by first proving it for the unitary functions em(t) = eimt via an explicit calculation. In the general

case we will then show that any unitary u can be connected via a path to an em with equal winding

number, along which no spectral flow occurs for the spectral localizer. Hence the result follows for

u as well.

Lemma 5.4.1. Given em(t) = eimt, n ≥ |m| and κ < 2
|m| , the spectral localizer Lκ,n satisfies

indPemP =
1

2
Sig(Lκ,n).

Proof. According to Lemma 5.3.4, indPemP = −m. We will now explicitly calculate the eigenval-

ues of Lκ,n. Let us assume that m ≥ 0, so that PnemPn is a lower-triangular (2n+ 1)× (2n+ 1)

matrix of the form

PnemPn =

 0 0

I2n+1−m 0

 ,

then Lκ,n takes the form

Lκ,n =



−κn
. . .

κ(−n+m−1)

0 0 0

0

κ(−n+m)

. . .
κn

I2n+1−m 0

0 I2n+1−m

κn

. . .
κ(−n+m)

0

0 0 0

κ(−n+m−1)

. . .
−κn



.

To find the eigenvalues, let us calculate det(Lκ,n − λI2(2n+1)). As a first step, observe that

det(Lκ,n − λI2(2n+1)) =

 n∏
j=n−m+1

(κj + λ)2

det(M),
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where

M =



κ(−n+m)− λ
. . .

κn− λ
I2n+1−m

I2n+1−m

κn− λ
. . .

κ(−n+m)− λ


.

For block matrices

T =

(
A B

C D

)
such that CD = DC, we have that det(T ) = det(AD−BC) [39]. In our case, C = I2n+1−m which

commutes with anything, and hence

det(M) = det

((
κ(−n+m)−λ

. . .
κn−λ

)(
κn−λ

. . .
κ(−n+m)−λ

)
− I2n+1−m

)

= det

(
(κ(−n+m)−λ)(κn−λ)−1

. . .
(κn−λ)(κ(−n+m)−λ)−1

)

=

n∏
j=−n+m

((κj − λ)(κ(m− j)− λ)− 1).

All in all, the eigenvalues of Lκ,n are exactly the roots of the polynomial

det(Lκ,n − λI2(2n+1)) =

 n∏
j=n−m+1

(κj + λ)2

 n∏
j=−n+m

((κj − λ)(κ(m− j)− λ)− 1)

 .

If n ≥ m, the roots of
∏n
j=n−m+1(κj+λ)2 are all strictly negative. Let us now show that the roots

of the second part of the polynomial come in pairs that are negative and positive, if κ is chosen

small enough. That would mean that 1
2 Sig(Lκ,n) = −m.

The roots of the second term satisfy

0 = (κj − λ)(κ(m− j)− λ)− 1

= λ2 − κmλ+ jκ2m− j2κ2,

i.e.

λ =
κm

2

(
1±

√
1 + 4

(
1

κ2m2
+

j2

m2
− j

m

))
,

for some j = −n + m, . . . , n. These are indeed pairs of positive and negative eigenvalues, as long

as √
1 + 4

(
1

κ2m2
+

j2

m2
− j

m

)
> 1 ∀j ∈ {−n+m, . . . , n}

⇐⇒
1 + κ2(j2 − jm) > 0 ∀j ∈ {−n+m, . . . , n}

⇐⇒

κ <
2

m
.
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In summary, for m ≥ 0, taking n ≥ m and κ < 2
m ensures that

1

2
Sig(Lκ,n) = −m.

For m ≤ 0, the argument above can be replicated with few changes, so indeed for n ≥ |m| and

κ < 2
|m| ,

1

2
Sig(Lκ,n) = −m.

We now want to connect general unitaries u ∈ C∞(S1) to elementary unitaries em without spectral

flow occuring in the spectral localizers along this path. The following two lemmas are essential,

and are inspired by [27], although we take different functions Gn and achieve tighter bound.

Lemma 5.4.2. For every n ≥ 0, there exists a function Gn : R → [0, 1] with support in [−n, n],

such that for u ∈ C∞(S1) unitary and n ≥ 2/κ,

κ2D2 ≥ 1−Gn(D)2; (5.1)

‖[Gn(D), u]‖ ≤ 2√
3

1

n
‖[D,u]‖ ≈ 1.15

n
‖[D,u]‖ . (5.2)

Proof. First note that regardless of how we choose Gn,

[Gn(D), ek]el = Gn(D)ek+l − ekGn(D)el

= (Gn(k + l)−Gn(l))ek+l.

Furthermore, if Gn is Lipschitz, we will have for arbitrary unitary u =
∑
ûkek and ψ =

∑
l ψlel,

‖[Gn(D), u]ψ‖2 =

∥∥∥∥[Gn(D),
∑
k

ûkek
]∑

l

ψlel

∥∥∥∥2

=

∥∥∥∥∑
k

∑
l

ûkψl[Gn(D), ek]el

∥∥∥∥2

=

∥∥∥∥∑
k

∑
l

ûkψl(Gn(k + l)−Gn(l))ek+l

∥∥∥∥2

=

∥∥∥∥∑
k

∑
j

ûkψj−k(Gn(j)−Gn(j − k))ej

∥∥∥∥2

=
∑
j

∣∣∣∣∑
k

ûkψj−k(Gn(j)−Gn(j − k))

∣∣∣∣2
≤ ‖Gn‖2Lip

∑
j

∑
k

|kûkψj−k|2

≤ ‖Gn‖2Lip

∑
j

|ψj |2
(∑

k

|kûk|2
)

≤ ‖Gn‖2Lip ‖[D,u]‖2 ‖ψ‖2 ,

where we have used Young’s convolution inequality. This leads to the estimate

‖[Gn(D), u]‖ ≤ ‖Gn‖Lip ‖[D,u]‖ .

Now the trick is to find Gn : R→ [0, 1] with support in [−n, n] and with minimal slope such that

κ2D2 ≥ 1−Gn(D)2.
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As the right-hand side only depends on n, we impose the relation n ≥ 2/κ. The justification for

this can be found in Lemma 5.4.1. There, we have calculated exactly what κ and n suffice if we

take u = em, and the optimal choices of κ = 2/ |m| and n = |m| results in n ≥ 2/κ. Taking this as

a general restriction ensures that we do not lock ourselves out of an optimal bound for n and κ.

We therefore have to find Gn such that

4

n2
D2 ≥ 1−Gn(D)2.

This is effectively only a restriction for Gn on [−n2 ,
n
2 ], as for greater spectral parameters the

left-hand side already is greater than 1. On this interval, we can rewrite the expression to

Gn(x) ≥
√

1− 4x2

n2
.

It is now a question of elementary analysis to find a function of minimal slope that satisfies this

constraint, see also Figure 5.1.

This variational problem does not uniquely determine Gn, but the following is an example.

Gn(x) =


√

1− 4x2

n2 if |x| ≤ n
4

2√
3

(
1− |x|n

)
if n

4 ≤ |x| ≤ n

0 if n ≤ |x| .

This function satisfies ‖Gn‖Lip = 2√
3

1
n so we can conclude that Gn satisfies the requirements of

this lemma with the bound

‖[Gn(D), u]‖ ≤ 2√
3

1

n
‖[D,u]‖ .

(a) Here the functions Gn(D) and
√

1− n2

4
D2

are depicted with n = 10.

(b) Here the functions 1 − Gn(D)2 and n2

4
D2 are

depicted with n = 10.

Figure 5.1: An illustration of the functions Gn(D) and n2

4 D
2
n and the relations between them as

in the proof of Lemma 5.4.2.

Lemma 5.4.3. For any unitary u ∈ C∞(S1), taking

κ <
2
√

3− 3

‖[D,u]‖
≈ 0.464

‖[D,u]‖

and n ≥ 2/κ ensures that

(Lκ,n)2 > 0.
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Proof. Since Lκ,n = κD′n +Hn, clearly

(Lκ,n) = κ2D′2n +H2
n + κ(D′nHn +HnD

′
n).

The third term is easiest to handle, as

‖D′nHn +HnD
′
n‖ =

∥∥∥∥∥
(

0 [D,u]

[D,u]
∗

0

)∥∥∥∥∥ ≤ ‖[D,u]‖ .

Denote πn = Pn ⊕ Pn. Then, due to Lemma 5.4.2, we can take the function Gn as defined there

so that

κ2D′2n ≤ πn −Gn(D′)2.

For the H2
n term we have to do some work.

H2
n = πnHπnHπn

≥ πnHGn(D′)2Hπn

= πnGn(D′)H2Gn(D′)πn + πn[Gn(D′)H, [Gn(D′), H]]πn

= Gn(D′)2 + πn[Gn(D′)H, [Gn(D′), H]]πn.

Combined, we get that

(Lκ,n)2 ≥ πn + πn[Gn(D′)H, [Gn(D′), H]]πn + κ(D′nHn +HnD
′
n).

To conclude, note that we can now estimate the last two terms by

‖[Gn(D′)H, [Gn(D′), H]] + κ(D′nHn +HnD
′
n)‖ ≤ 2 ‖Gn(D′)‖ ‖H‖ ‖[Gn(D′), H]‖+ κ ‖[D,u]‖

≤
(

4

n
√

3
+ κ

)
‖[D,u]‖

≤
(

1 +
2√
3

)
κ ‖[D,u]‖ .

Therefore, taking

κ <
1(

1 + 2√
3

)
‖[D,u]‖

=
2
√

3− 3

‖[D,u]‖

ensures that (Lκ,n)2 > 0.

With these lemmas in hand it is an easy task to complete the proof of the main result of this

chapter.

Proposition 5.4.4. For a unitary u ∈ C∞(S1) with κ, n satisfying

κ <
2
√

3− 3

‖[D,u]‖
, (5.3)

2

κ
≤ n, (5.4)

the spectral asymmetry of the spectral localizer gives the index of PuP via

1

2
Sig(Lκ,n) = indPuP.

Proof. Any smooth unitary function can be written as u = eiγ(t), with γ : [0, 2π] → R smooth.

Without loss of generality, we can take γ(0) = 0. The winding number m of u is then equal to

γ(2π). Furthermore, ‖[D,u]‖ = ‖γ′(t)‖∞ ≥ m. It is then also clear that we can define a homotopy
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connecting u and em by us = ei(smt+(1−s)γ(t)), so that u0 = u, and u1 = em, and all us in between

are also unitary with winding number m. Then

‖[D,us]‖ =
∥∥∥ei(smt+(1−s)γ(t))

∥∥∥
∞

= ‖sm+ (1− s)γ′(t)‖∞
≤ sm+ (1− s) ‖γ(t)‖∞
≤ ‖γ(t)‖∞
= ‖[D,u]‖ ,

so by continuously assigning a spectral localizer Lκ,n,s to Us for every s, we know that if κ, n are

chosen such that the bounds (5.3) and (5.4) hold, Lemma 5.4.3 holds for every Lκ,n,s. This proves

the existence of a spectral gap around 0 along the whole path, and hence

Sig(Lκ,n,0) = Sig(Lκ,n,1).

Note that we can now use Lemma 5.4.1 as the bounds (5.3) and (5.4) are stronger requirements

than what is needed for that lemma. Indeed, with our choice of κ and n,

κ <
2
√

3− 3

‖[D,u]‖
≤ 2
√

3− 3

|m|
<

2

|m|

n ≥ 2

κ
≥ (4
√

3− 6) |m| > |m| .

We conclude that
1

2
Sig(Lκ,n) = indPuP.
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Chapter 6

Conclusion

The protagonist of this thesis was the circle, which is as simple as spectral triples get. This is a

shaky foundation to build conjectures on for truncations of general spectral triples. Even though

we realise that, we would like to take a moment to look ahead at possible directions for further

research.

6.1 State Spaces

The results in Chapter 4 on the convergence of the pure state spaces of the truncated circle at

the very least show that it is foolhardy to expect a general theorem that asserts the convergence

of the pure state space of a truncated spectral triple to the pure state space of the original triple.

Philosophically, it is interesting to contemplate what this means for the interpretation of pure states

as ‘points’ when dealing with a truncated spectral triple. Already for the circle, this paradigm would

mean that what we would then see as the underlying topological space of the truncated system

converges to the infinite-dimensional geometric object S(C(S1)) instead of the far friendlier one-

dimensional S1. Instead of looking at pure states, for canonical spectral triples L. Glaser and A.

Stern already showed that one can reconstruct the metric structure of a Riemannian manifold by

‘localised’ states on its truncated canonical spectral triple. Their result shows that the state space

of truncated spectral triples is rich enough for such a reconstruction. The case of the circle might

indicate that the pure state spaces are also rich enough for such a reconstruction, but this will

have to be explored.

More generally, before looking into the fate of pure state spaces of truncated triples, one should

first study the whole state space. As we have used for the circle, convergence of the truncated

state spaces to the original state space follows immediately from the existence of C1-approximate

order isomorphisms [41]. The existence of such maps has been shown in the case of tori as well [3],

but in more general spectral triples constructing these seems like the first challenge.

After establishing such maps for a more general class of spectral triples (A, H,D) and their trun-

cations (An, Hn, Dn), it not only follows that S(An)→ S(A), but one would then also be halfway

proving that P(An) → S(A). As we have used in this thesis, we would get for free that the

distortion of the maps R∗n : P(An) → S(A) converges to 0 by definition of a C1-approximate

order isomorphism (Definition 3.1.2). For showing (or refuting) Gromov-Hausdorff convergence of

P(An) to S(A), one should show that every state ψ in S(A) can be approximated by pullbacks

of pure states R∗n(ϕn) for ϕn in P(An). By compactness of S(A) we can then conclude that

R∗n(P(An)) forms an ε-net in S(A) (see Proposition 4.2.6) which would make R∗n ε-isometries and

Gromov-Hausdorff convergence of P(An) to S(A) would follow.
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In summary, the two challenges we foresee for generalising the results of Chapter 4 are showing the

existence of C1-approximate order isomorphisms for a more general class of spectral triples and

their truncations, and subsequently the approximation of any state ψ ∈ S(A) by pullbacks R∗ngn
of pure states gn ∈ P(An).

6.2 Index Theory

The result on index theory discussed in Chapter 5 is already quite general, the strategy of the

spectral localizer as put forward in [27] works for all odd spectral triples. A generalisation to even

spectral triples is an obvious next step, which has already been taken in [28] by the same two

authors, T. Loring and H. Schulz-Baldes. Hence also for even spectral triples, the index in the

Connes-Moscovici index theorem can be computed from a spectral truncation if the truncation has

large enough rank.

What could be improved still are the bounds on κ and ρ that guarantee that the spectral localizer

contains enough information to distill the index. Certainly in the case of the circle we have

provided stronger bounds, but even these do not seem to be optimal as indicated by some numerical

experimentation. For practical purposes it is interesting to search for ways to sharpen these

bounds, preferably in the most general case. Conceptually though, the results of T. Loring and H.

Schulz-Baldes convincingly show that the act of truncating spectral triples in the framework by

A. Connes and W. van Suijlekom conserves essential invariants of the spectral triple, which is a

strong argument in favour of further study of such truncations.
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