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Dear Rector, dear colleagues, dear family, friends and others present

You have just been musically welcomed —literally drummed up— by drumming
group RADAC, as it was common in the 17th century to call people together in villages
and towns. You have been able to hear, and perhaps even feel, the different sounds that
drums of different sizes can produce. This will be the common thread of my story today:
the spectrum of vibrational frequencies of some object —like a drum— clearly says some-
thing about its geometric shape. But does it also say everything? The math behind this is
highly interesting, and that is what I would like to show you this afternoon, and let you
hear. The second message I want to give you this afternoon is that mathematics is above
all human work, and simply would not exist without the fruitful interaction between
mathematicians.

Spectra and geometric shapes

Let us start with the word spectrum. In the mathematical literature, the term spectrum
appears early in David Hilbert’s work in 1906 to denote a collection of frequencies.10

Over twenty years later, John von Neumann adopted the concept within the mathematical
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edifice of quantum mechanics.21 Thanks to their work, we can now talk in the same way
about, say, the auditory spectrum, consisting of vibrational frequencies of some object, or
the visual spectrum, consisting of radiation frequencies of light.

However, it was my countryman Hendrik Lorentz who, as a physicist, posed the cru-
cial mathematical question for the emergence of what we now call spectral geometry. I
personally think this is a wonderful illustration of how research at the interface of math-
ematics and physics works, so I would like to take you back to the early 20th century.

By then, Lorentz was already a celebrated and highly respected physicist. He had re-
ceived the Nobel Prize in 1902 and had been a professor at Leiden University for 25 years.
Meanwhile, he was frequently invited for lectures and talks abroad: he went by steamer
to the United States to give lectures there, and was thus away from home for months;
he gave a lecture at the 1908 International Mathematics Congress in Rome, meanwhile
enjoying Italian life —something I personally can understand very well. In October 1910,
he was a visiting professor in Göttingen where he gave the so-called Wolfskehl lectures.
These were no less than 6 lectures in 5 days, on varying topics.14

In his third lecture in Göttingen, Lorentz stated that the electromagnetic radiation
spectrum of a 3-dimensional object would behave for high frequencies independently
of the precise shape of that object, and is a multiple of its volume:

Hierbei entseht das mathematische Problem, zu beweisen, dass die Anzahl der genügend
hohen Obertöne zwischen n und n + dn unabhängig von der Gestalt der Hülle und
nur ihrem Volumen proportional ist.

[Here arises the mathematical problem to prove that the number of sufficiently high
harmonics between n and n + dn is independent of the shape of the envelope and only
proportional to its volume.]

Just a few months later, in late February 2011, the young mathematician Hermann
Weyl answered the question in the affirmative, and of course with mathematical preci-
sion.22 He was also working in Göttingen, and in response to Lorentz’s question gave
a clear proof, applicable even in higher dimensions. In fact, the foundation was then
laid for spectral geometry: the discipline in mathematics that deals with the question of
whether shapes are completely determined by their vibrational spectrum.

In the physics literature of the time, there is no trace of this answer, or, for example,
any reference to Weyl’s work. Lorentz does write about it a year later, this time no longer
as a question but in affirmative form, ánd this time in French:

on démontre que le nombre des modes de vibrations possibles est proportionnel à V et
indépendant de la forme du corps15

[we show that the number of possible modes of vibration is proportional to V and
independent on the shape of the body]

This quote is from the fifth and last of his Michonis lectures given at the prestigious
Collège de France in Paris in late November 1912. I must admit that in preparation for
this lecture earlier this year I was red-eared reading the letter correspondence between

2



Figure 1: Announcement of Lorentz’s Michonis lectures at the Collège de France in
November 2012 [source: archives du Collège de France].

Lorentz and the institute —again, in beautiful French. Notice immediately, by the way,
what a linguistic prodigy Lorentz is; something that had previously made him the ideal
president of the famous Solvay Congress, with such participants as Albert Einstein, Marie
Curie, Max Planck, Henri Poincar et cetera.

During that congress, in addition to his excellent scientific overview, Lorentz was able
to put his language skills to use. After all, not all French participants spoke German, nor
did the German participants speak English. 1

Because of the political unrest at the time, Lorentz does not return to Germany after
this, and Göttingen also ceases to exist as the epicenter of mathematics. We must therefore
wait some 50 years for further development of spectral geometry. In 1966, mathematician
Mark Kac published a paper called “Can one hear the shape of a drum”.11 You can un-
derstand that this title strikes a chord with me not only as a mathematician, but also as
a percussionist. We imagine the drum as a surface and consider all possible vibrational
waves of this surface equal to zero at the edge. This is our vibrating drum: the sheet
vibrates but the edge of the drum is fixed. The question now is: if we know all the vibra-
tional frequencies of the surface, can we figure out the shape of the surface?

In fact, Kac’s work provided a refinement of Lorentz’s question, and Weyl’s answer.
For with it, from the vibrational spectrum at least the volume, or, in the case of the drum,
the surface area could be ascertained. Note, by the way, that this is consistent with your
intuition: large musical instruments (such as a double bass) generally make a lower sound

1Much of this background is drawn from the two extensive recently published bibliographies of
Lorentz.2, 12
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than small instruments (such as a violin).
Let me give an example: for the following two drums

the first 25 vibrational frequencies are plotted in Figure 2a. Indeed, the small drum has
higher frequencies than the large one, so it can be deduced from the sound which drum
is being hit.

But Kac’s question goes a step further and also looks at different shapes, such as a
round and a square drum, in this case of equal surface area:

Again, the question is whether it is possible to hear the difference in shape between these
two drums, regardless of their exact dimensions and thus only their shape. If we look
at the first 25 vibrational frequencies (Figure 2b) we see that they differ from each other
so the answer is again in the affirmative. What is also striking about this figure is that
the frequencies for both drums roughly follow the same parabolic shape: this is a good
illustration of Weyl’s law: for sufficiently high overtones, they depend only on the volume
—or in this case surface area—of the drum.

Let us make it a little more complicated and listen to a square and a triangular drum:
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The first 25 vibrational frequencies are shown in Figure 2c and show that these drums
make different sounds.

Finally, two drums with a somewhat more exotic shape, of equal area and circumfer-
ence:

The first 25 vibrational frequencies are indicated in Figure 2d and the amazing result is
that they have identical vibrational spectrum. So these two drums have different shapes
but sound exactly the same.

So our conclusion is that there is still one piece of the puzzle missing if we want to
describe shapes completely using spectra. I will hint at that later, but first I want to gather
further evidence for the use of spectra in describing shapes, and that is in physics. These
two perspectives of mathematics and physics complement each other well, and is also a
typical feature of my own research.

Spectra in physics

Of course, it was known well before Lorentz that spectra played a crucial role in the
observation of composition and shape.

For the visual spectrum, we need to go back to Isaac Newton. Indeed, the term spec-
trum is introduced in physics by him to indicate how white light is composed of light of
different frequencies, something he demonstrates as early as the 17th century using the
prism.

But, how can we now measure shapes using spectra? Let me start close to home:
in fact, we often no longer measure distances ourselves with a classical tape measure.
Instead, we use the spectrum of laser light:
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(a) The first 25 vibrational frequencies
of two round drums of different cross-
sections.

(b) The first 25 vibrational frequencies
of a round and a square drum of equal
area.

(c) The first 25 vibrational frequen-
cies of a square and a triangular drum
(isosceles and rectangular) of equal
area.

(d) The first 25 identical vibrational fre-
quencies of two different drums.

Figure 2: Comparison of the first 25 vibrational frequencies for different drums.
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And maybe not in your living room, but then in a lab, we analyze the X-ray spectrum
in an electron microscope, for example, and if we zoom in even further, observations in
a particle accelerator such as at CERN are also based on resonance spectra. All with the
goal of spectrally determining the composition, shape and possible velocity of an object
or particle.

In astronomy, spectra also play a crucial role, simply because measurements can never
be made in situ in distant galaxies. However, by looking closely at the visual spectrum of,
say, a star or cluster, and in particular at the location of so-called absorption lines —small
dark lines in the spectrum— we can determine the chemical composition of distant stars
or clusters, and, for example, calculate their velocity (Figure 3). Through such observa-
tions, we determine the shape and curvature of the universe by spectrally observing the
objects moving through it. Such observations have even led to the startling conclusion
that the universe itself is expanding!

Figure 3: The absorption lines
of the Sun (top) are redshifted
in front of supercluster BAS11
(bottom), moving at 7% of the
speed of light.

But we need not limit ourselves to the visual spec-
trum; the same is also true for observations using ra-
dio telescopes or with infrared telescopes. In the radio
spectrum, we currently take pictures that map the sur-
roundings of a black hole (Figure 5), and in the infrared
spectrum, very recently the James Webb Telescope has
captured the curvature of spacetime very insightfully
in an image (Figure 4).

And to that can be added gravitational waves: rip-
ples in the spacetime around us. The vibrational spec-
trum produced by those waves tells us something
about the shape of black holes or neutron stars spiral-
ing around each other as they merge into one (Figure
4).

In short, actually all measurements in physics are spectral in nature, so that therefore
basically all knowledge of the physical world is determined by the analysis of spectra.
This makes it even more crucial to have a mathematical theory that tells how spectra can
be used in geometry.
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Figure 4: Gravitational lensing as observed by the James Webb Telescope (zoom of clus-
ter SMACS 0723) next to similarly distorted clocks in Salvador Dali’s La persistència de la
memòria (1931) which, by the way, the painter himself claimed was not inspired by Ein-
stein’s theory of relativity.

Figure 5: M87* seen by the Event Horizon Telescope (EHT); the lines show the polariza-
tion of light in the vicinity of the event horizon.9

Figure 6: Gravitational waves as measured by LIGO (GW150914): a ripple of spacetime
itself caused by the merging of two black holes.1
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Historical prelude to noncommutative geometry

OK, so we know that all information about the shape of the universe, on small and large
scales comes to us in the form of spectra. But how does that work mathematically? Is there
a mathematical formalism to do geometry using spectra only? Especially if we consider
that there are different objects that nevertheless have the same frequencies of vibration,
like that last pair of drums considered before. The answer, of course, is yes —or else I
would not be standing here—but for that we must first go back to the early 20th century.
A little warning in advance is that the next part may be slightly more technical than the
rest of my story. But no worries, with about ten minutes to go I promise there will be the
necessary enlightenment.

Figure 7: Choice of a gauge: centimeter ver-
sus inch.

In 1918, Hermann Weyl introduced the
concept of gauge symmetry.17–19, 23, 27 A
good example of gauge is the choice be-
tween inches or centimeters, see Figure 7.
Weyl’s premise was that laws of nature
would remain unchanged after adjusting
the scale, in other words, after choosing a
gauge. This hypothesis made it possible
to give a geometric description of electro-
magnetism, and to use the symmetry for
a derivation of the law of conservation of

charge. Einstein, however, disagreed with Weyl and reacted sharply in an addendum
to the article. Einstein’s objection was that such a gauge symmetry could not be a good
physical assumption because it would have the effect of making the location of, say, the
absorption lines in the spectrum of an element depend on the origin of that atom. That is
clearly not the case in nature!

Figure 8: A phase shift leaves the vibra-
tional frequency of a wave unchanged.

Weyl still tried to refute it in a response,
but without conviction. However, just un-
der a decade later, his idea found fertile
ground in quantum physics.8, 13 The gauge
symmetry of Weyl was to be replaced by a
phase symmetry. Mathematically a small ad-
justment —a factor i—but with great con-
sequences. Especially when we think back
to our spectral approach to geometry us-
ing vibrational frequencies, we realize that
a phase shift of a vibration leaves the fre-
quency unchanged (Figure 8). And since we
base our geometry on that spectrum, gauge
symmetry thus takes on a new meaning that
no doubt Einstein too would have agreed with. Weyl embraced this idea in 192924 and
wrote about it himself25 :
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... durch die Quantentheorie, glaube ich, können wir mit großer Bestimtheit den Fin-
ger auf den Punkt legen, in welchem meine Theorie irrte: die Eichinvarianz verbindet
die electromagnetische Potentiale nicht mit den gi j der Gravitation, sondern mit den
ψq der Materiefeldes. Das konnte ich freilich 1918 nicht wissen! Damals waren diese
ψ nog völlig unbekant.

[ ... by the quantum theory, I believe, with great certainty we can put the finger on
the point, in which my theory was wrong: the gauge invariance connects the electro-
magnetic potentials not with the gi j of gravity, but with the ψq of the matter field.
Of course, I could not know that in 1918! At that time these ψ were still completely
unknown.]

Incidentally, Weyl’s derivation of the law of conservation of charge is still valid, and
actually an application of Noether’s second Theorem.3 Interestingly, Emmy Noether also
published her work on this in 1918,16 as did Weyl’s first article. In it, she proves that there
is a one-to-one relationship between symmetry and conserved quantities. When applied
to Weyl’s gauge symmetry, this gives the well-known law of charge conservation. Today,
her Theorems are central to theoretical and mathematical physics, but at the time this
recognition was far from that: not because of her qualities but because of her gender.
Thus, her first attempt at Habilitation was rejected simply because she was not a male
candidate. There is a well-known anecdote that Hilbert thereupon protested that he did
not see why the gender of the candidate should matter; “after all, this was a university,
not a bathhouse!” With no immediate result, and so from then on Noether lectured under
Hilbert’s name.26

A big step in the development of the principle of gauge symmetry is taken in the
early 1950s. By Yang and Mills,28 and independently by Utiyama,20 electromagnetism
was generalized, with so-called non-abelian gauge fields generalizing the electromagnetic
field.17 At first this seemed to be a theoretical exercise, but soon these theorems turned out
to become the building blocks of particle physics. The nonabelian gauge fields turned out
to be the force carriers of the weak and strong nuclear forces, just as the electromagnetic
field can be seen as a carrier of the electromagnetic force. Well, instead of a single phase
as in Weyl’s work, nonabelian gauge fields give rise to a more general idea of phase.27 I
myself have always found it incredibly intriguing that abstract mathematics has so much
to say about how nature behaves at the scale of elementary particles. Indeed, it attracted
me to the interface between mathematics and physics.

And we can even take another step, and this brings us to the core of my field of re-
search. Indeed, the combination of the nonabelian gauge principle —and thus particle
physics–with the spectral approach to geometry inevitably leads to noncommutative ge-
ometry. Indeed, Yang and Mills’ gauge symmetry turns out to be realizable as symmetry
of the vibrational spectrum of a noncommutative space: that is, a vibrating noncommuta-
tive drum. Thus we manage to describe geometrically not only gravity —with Einstein a
consequence of the curvature of spacetime— but also the electromagnetic forces and the
nuclear forces.
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Figure 9: Alain Connes (r) next to Foucault’s Pendulum in the Huygens Building, Rad-
boud University [picture Bert Beelen, 2016].

Time to return to mathematics, because although I have now motivated it from a
physics perspective, noncommutative geometry is a field deeply rooted in mathemat-
ics, as evidenced by this chair. The founder of this field is French mathematician Alain
Connes. He won the Field’s Medal in 1982 for his classification of von Neumann algebras
—a concept that indeed goes back to the early days of quantum mechanics. He became a
professor at the Collège de France soon after, more than 60 years after Lorentz’s Michonis
lectures there. In the 1980s and 1990s, he combined spectral geometry with spectra of
possibly noncommuting coherences. It was precisely this combination that allowed him
to answer Kac’s old question in the affirmative: by “locally” listening to a drum, you can
fully determine its shape.4, 5 It is like walking along the edge of the drums while listening
to the sound, thus unraveling the global shape of the drum.

And so this spectral approach is not only applicable to drums of different shapes,
or higher-dimensional geometric objects, it also applies to so-called non-commutative
spaces. As mentioned, this provides applications in particle physics, but just to make
sure you do not go home without having a small idea of what is noncommutative then,
an example.

If you multiply numbers like 2 and 3 together, the order doesn’t matter: 2× 3 is the
same as 3 × 2. My children already learn this commutative algebra in primary school,
and of course there is nothing wrong with it at all. We could summarize this in a diagram
as follows:
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At the intersection, the numbers 2 and 3 are multiplied by each other, with the order first
reversed in the diagram on the right. Since both diagrams are the same —the rotation on
the right can easily be undone without changing the diagram— this illustrates commuta-
tive multiplication.

In the geometry I am concerned with, other rules of computation apply, so multiplica-
tion is not necessarily commutative. A diagrammatic representation of not-commuting is
using strips of colored paper, as shown here:

The left clearly gives a different result than the right, and so this operation is not commu-
tative. If the connoisseur recognizes matrix multiplication in this, it is perfectly correct
because that is exactly what I am trying to illustrate here. In summary, then, our coordi-
nates X and Y are not commutative:

XY 6= YX
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Physically, by the way, the strips of paper represent a space of internal degrees of freedom
—precisely the gauge degrees of freedom mentioned earlier. For example, red represents
an electron, while blue is a neutrino, and the strip represents all their possible superposi-
tions. If we choose coordinates that satisfy such computational rules, it is possible to ‘bake
in’ the internal degrees of freedom in geometry. In line with Einstein’s theory of relativity,
curvature of such noncommutative space then gives rise to a geometric description of all
four fundamental forces of nature: gravity, the electromagnetic force and the weak and
strong nuclear forces.

Looking ahead to the next few years, I want to work toward an understanding of
spectral geometry when only part of the spectrum is known. The current formalism of
noncommutative geometry assumes knowledge of the full spectrum consisting of all vi-
brational frequencies. However, this is not very realistic: physically, it is clear that a com-
plete vibrational spectrum is never available. A detector always has a certain bandwidth
and resolution. And yet we think that with our spectroscopy we form a complete picture
of reality, including curvature and distances in our own universe. Apparently, with our
limited knowledge of the spectrum, we still approximate continuous reality. Think back
to the drum again: even with our limited hearing, we manage just fine to determine the
difference in size of the drums. Even if the range of hearing has diminished somewhat
with advancing age.

I want to investigate the mathematics behind this: can we prove that with the knowl-
edge of part of the spectrum we can converge to the original geometric form? To what
extent is geometry in this way an emergent phenomenon, arising from a finite number of
vibrations? Can we speak of geometry seen at a certain scale, or measured at a certain
resolution?

Such scale-dependent geometry is at the same time a crucial preparation for formu-
lating much-needed quantum theory in the mathematical edifice of noncommutative ge-
ometry. Indeed, at smaller scales, quantum effects will play a role in the propagation of
elementary particles, and thus in the geometric formulation of particle physics. In fact,
this can be seen as the holy grail of this field of application, and my field of research in
particular.

I explained much of my research this afternoon using drums and with examples from
physics. However, these are only metaphors for my research and my field. My day-to-
day work does look a bit different, and without taking you far into it, I thought it would
be good to give you a cursory glimpse of this: well-stocked chalkboards or just using
(digital) pen and paper (Figure 10 and 11).

Mathematics as human work

Looking ahead to how I would like to do mathematics, I would like to bring the people
behind it to the forefront. Above I have tried to emphasize the people behind all that
mathematics and physics, and how important interaction with others was. I think this
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Figure 10: Two random pages from one of my (digital) notebooks.

Figure 11: Two well-stocked chalkboards (at IH’ES and in Kyoto).
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cohesion is an essential feature of science and especially mathematics. It creates a sus-
tainable network of scientists, each of whom interacts with each other and, if possible or
useful, between disciplines as well. And then there will also always be researchers who
are closer to society to draw on the all-important more unbound research there for their
applications. Recent developments in terms of such impact at NWO are positive, and I
will continue to make a strong case for it in the coming years, also as a member of the
Mathematics Round Table.

Something that has become painfully clear from my story, by the way, is that this
seems to be primarily a male issue. This is of course completely unjustified but means
that there is still a big battle to be fought. Again, math is people’s work, not men’s work!
Fortunately, the situation at university among students has improved tremendously now,
but with each subsequent step in the scientific career, more women drop out than men.
And in doing so, we must also make sure that our policies are not being caught up by
reality and should be inclusive in a broader sense.

But then, how do I envision my research group? I would like to compare it to climbing
a mountain. There is of course a great risk here of falling into clichés, but from a Dutch
perspective it is not so strange to dream of mountains when there are simply none nearby.
In my research, I see myself walking on a mountain ridge, enjoying the view and all
the beauty to be discovered while walking. Young people with different qualities and
backgrounds join the journey; others leave to find a new path to another mountain peak.
This is how I would like to see my research group continue to flourish in the coming
years, in the longer-term pursuit of reaching the view from the summit.

So for me, interaction with other mathematicians and physicists takes center stage.
Of course, it’s great to have a mathematical insight, or to be able to capture a physical
phenomenon in a formula. But sharing insight with a colleague or a student is surely
what makes it really worthwhile.

This also brings me immediately to another point of a more philosophical nature,
which is about how I see mathematics. For even though formulas, theorems, proofs et
cetera constitute the language by which mathematicians understand each other, the core,
as far as I am concerned, is sharing the underlying intuitive thinking. I see it as follows:
on the one hand, the mathematician uses his logic as a basic tool; on the other hand, there
is an immaterial reality of mathematical objects. Indeed, a mathematics based entirely
on axioms and deduction —as Hilbert would have liked it to be–is doomed to fail, and
this is because Gödel’s Theorem proves the existence of assertions that are true but not
provable. Such an assertion would then be an object in that immaterial reality, and is thus
disconnected from the logic leading to the apparent paradox. Alain Connes articulates
the unraveling of this immaterial beauty as follows6, 7

Cette réalité dont je parle, du fait qu’elle n’est localisable ni dans l’espace ni dans le
temps, donne, lorsqu’on a la chance d’en dévoiler une infime partie, une sensation de
jouissance extraordinaire par le sentiment d’intemporalité qui s’en dégage.

[This reality of which I speak, of the fact that it is localizable neither in space nor
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Figure 12: Violin concert by Benjamin Britten; duet between percussion and violin, end of
first movement.

in time, gives, when one has the chance to reveal a tiny part of it, a sensation of
extraordinary enjoyment by the feeling of timelyness which emerges from it.]

To make this somewhat understandable to non-mathematicians, I will try to explain it us-
ing musical experience. In Figure 12 you see the sheet music of a passage from Benjamin
Britten’s Violin Concerto, at the end of the first movement. It is a beautiful interplay
between violin and percussion, a piece that I had the opportunity to play myself some
twenty years ago as a percussionist in the VU Orchestra, nota bene with Janine Jansen
as soloist. The musical notation, tempo indications et cetera in music I would compare to
formulas and proofs in mathematics. It makes musicians understand each other, but ulti-
mately it is inferior to the underlying, more intuitive beauty that can be shared through
that language. The beauty of mathematics has much in common with that musical beauty,
and the way it is shared with each other during, say, an orchestral performance.

With my story this afternoon, I hope to have shown you at least a small piece of the
beauty of my mathematics. I hope that, like a listener of a piece of music who may not
know the complete notation, without knowledge of formulas or proofs, you have still
been able to enjoy this spectral symphony of geometry.
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