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Abstract. We present an intelligible review of recent results concerning cyclic
cocycles in the spectral action and one-loop quantization. We show that the
spectral action, when perturbed by a gauge potential, can be written as a series
of Chern–Simons actions and Yang–Mills actions of all orders. In the odd
orders, generalized Chern–Simons forms are integrated against an odd (b, B)-
cocycle, whereas, in the even orders, powers of the curvature are integrated
against (b, B)-cocycles that are Hochschild cocycles as well. In both cases,
the Hochschild cochains are derived from the Taylor series expansion of the
spectral action Tr(f(D + V )) in powers of V = πD(A), but unlike the Taylor

expansion we expand in increasing order of the forms in A. We then analyze the
perturbative quantization of the spectral action in noncommutative geometry
and establish its one-loop renormalizability as a gauge theory. We show that
the one-loop counterterms are of the same Chern–Simons–Yang–Mills form so
that they can be safely subtracted from the spectral action. A crucial role
will be played by the appropriate Ward identities, allowing for a fully spectral
formulation of the quantum theory at one loop.
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1. Introduction

The spectral action [5,6] is one of the key instruments in the applications of
noncommutative geometry to particle physics. With inner fluctuations [12] of a
noncommutative manifold playing the role of gauge potentials, the spectral action
principle yields the corresponding Lagrangians. Indeed, the asymptotic behavior
of the spectral action for small momenta leads to experimentally testable field the-
ories, by interpreting the spectral action as a classical action and applying the
usual renormalization group techniques. In particular, this provides the simplest
way known to geometrically explain the dynamics and interactions of the gauge
bosons and the Higgs boson in the Standard Model Lagrangian as an effective
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field theory [7] (see also the textbooks [13, 34]). More general noncommutative
manifolds (spectral triples) can also be captured by the spectral action principle,
leading to models beyond the standard model as well. As shown in [15], if one
restricts to the scale-invariant part, one may naturally identify a Yang–Mills term
and a Chern–Simons term to elegantly appear in the spectral action. From the
perspective of quantum field theory, the appearance of these field-theoretic action
functionals sparks hope that we might find a way to go beyond the classical frame-
work provided by the spectral action principle. It is thus a natural question whether
we can also field-theoretically describe the full spectral action, without resorting to
the scale-invariant part.

Motivated by this, we study the spectral action when it is expanded in terms
of inner fluctuations associated to an arbitrary noncommutative manifold, without
resorting to heat-kernel techniques. Indeed, the latter are not always available and
an understanding of the full spectral action could provide deeper insight into how
gauge theories originate from noncommutative geometry. Let us now give a more
precise description of our setup.

We let (A,H, D) be an finitely summable spectral triple. If f : R → C is a
suitably nice function we may define the spectral action [6]:

Tr(f(D)).

An inner fluctuation, as explained in [12], is given by a Hermitian universal one-
form

A =

n∑
j=1

ajdbj ∈ Ω1(A),(1)

for elements aj , bj ∈ A. The terminology ‘fluctuation’ comes from representing A
on H as

V := πD(A) =
n∑

j=1

aj [D, bj ] ∈ B(H)sa,(2)

and fluctuating D to D + V in the spectral action. The variation of the spectral
action under the inner fluctuation is then given by

Tr(f(D + V ))− Tr(f(D)).(3)

As spectral triples can be understood as noncommutative spinc manifolds (see [14])
encoding the gauge fields as an inner structure, one could hope that perturbations
of the spectral action could be understood in terms of noncommutative versions of
geometrical, gauge theoretical concepts. Hence we would like to express (3) in terms
of universal forms constructed from A. To express an action functional in terms of
universal forms, one is naturally led to cyclic cohomology. As it turns out, hidden
inside the spectral action we will identify an odd (b, B)-cocycle (ψ̃1, ψ̃3, . . .) and an
even (b, B)-cocycle (φ2, φ4, . . .) for which bφ2k = Bφ2k = 0, i.e., each Hochschild
cochain φ2k forms its own (b, B)-cocycle (0, . . . , 0, φ2k, 0, . . .). On the other hand,

the odd (b, B)-cocycle (ψ̃2k+1) is truly infinite (in the sense of [11]).
The key result is that for suitable f : R → C we may expand

Tr(f(D + V )− f(D)) =

∞∑
k=1

(∫
ψ2k−1

cs2k−1(A) +
1

2k

∫
φ2k

F k

)
,(4)
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in which the series converges absolutely. Here ψ2k−1 is a scalar multiple of ψ̃2k−1,

Ft = tdA+t2A2, so that F = F1 is the curvature of A, and cs2k−1(A) =
∫ 1

0
AF k−1

t dt
is a generalized noncommutative Chern–Simons form.

As already mentioned, a similar result was shown earlier to hold for the scale-
invariant part ζD(0) of the spectral action. Indeed, Connes and Chamseddine [15]
expressed the variation of the scale-invariant part in dimension ≤ 4 as

ζD+V (0)− ζD(0) = −1

4

∫
τ0

(dA+A2) +
1

2

∫
ψ

(
AdA+

2

3
A3

)
,

for a certain Hochschild 4-cocycle τ0 and cyclic 3-cocycle ψ.
It became clear in [28] that an extension of this result to the full spectral action

is best done by using multiple operator integrals [32] instead of residues. It allows
for stronger analytical results, and in particular allows to go beyond dimension 4.
Moreover, for our analysis of the cocycle structure that appears in the full spectral
action we take the Taylor series expansion as a starting point, and for working
with such expansions multiple operator integrals provide the ideal tools, as shown
by the strong results in [1,8,31,33]. In [28] we pushed these results further still,
by proving estimates and continuity properties for the multiple operator integral
when the self-adjoint operator has an s-summable resolvent, thereby supplying the
discussion here with a strong functional analytic foundation. This article will start
with a review of the results of [28] without involving multiple operator integration
techniques. Through the use of abstract brackets, we will investigate the interesting
cyclic structure that exists within the spectral action, with all analytical details
taking place under the hood.

We work out two interesting possibilities for application of our main result and
the techniques used to obtain it. The first application is to index theory. One can
show that the (b, B)-cocycles φ and ψ are entire in the sense of [10]. This makes
it meaningful to analyze their pairing with K-theory, which we find to be trivial in
Section 3.5.

The second application is to quantization. In Section 4, though evading ana-
lytical difficulties, we will take a first step towards the quantization of the spectral
action within the framework of spectral triples. Using the asymptotic expansion
proved in Theorem 3.9, and some basic quantum field theoretic techniques, we will
propose a one-loop quantum effective spectral action and show that it satisfies a
similar expansion formula, featuring in particular a new pair of (b, B)-cocycles.

Although the main aim of this paper is to give a simple review of the results
of [28] and [29], some essential novelty is also provided. In order to connect to the
quantization results of [29], the results of [28] are slightly generalized as well as put
into context. Moreover, this paper gives a mathematically precise underpinning of
the results presented in [29], which was geared towards a physics audience. We
hope that the discussion presented here is clear to mathematicians with or without
affinity to physics.

2. Taylor expansion of the spectral action

Consider a finitely summable spectral triple (A,H, D) (in the sense that for
some s the operator (i−D)−s is trace-class). Given the fluctuations of D to D+V
as explained in the introduction, we are interested in a Taylor expansion of the
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spectral action:

Tr(f(D + V )− f(D)) =

∞∑
n=1

1

n!

dn

dtn
Tr(f(D + tV ))

∣∣
t=0

=

∞∑
n=1

1

n
〈V, . . . , V 〉,(5)

where 〈V, . . . , V 〉 is a notation for (1/(n−1)! times) the nth derivative of the spectral
action, defined below, and dependent on f and D. Such an expansion exist under
varying assumptions on f , D, and V , see for instance [22,27,28,31,33]. When we
are interested in the inner fluctuations of the form V = πD(A) as in Equation (2),
a convenient function class in which f should lie is given as in [28] by

Eγ
s :=

{
f ∈ C∞

∣∣∣∣∣ there exists Cf ≥ 1 s.t. ‖ ̂(fum)(n)‖1 ≤ (Cf )
n+1n!γ

for all m = 0, . . . , s and n ∈ N0

}
,(6)

for γ ∈ (0, 1] a number, and s the summability of the pertinent spectral triple. In-
deed, as shown in [28] if f ∈ Eγ

s we have good control over the expansion appearing
on the right-hand side of (5).

For our present expository purposes, however, it is sufficient to assume that f ′

is compactly supported and analytic in a region of C containing a rectifiable curve
Γ which surrounds the spectrum of D, and that V1, . . . , Vn are, say, trace class. In
this case we have

〈V1, . . . , Vn〉 =
1

2πi

∮
Γ

f ′(z) Tr

⎛⎝ n∏
j=1

Vj(z −D)−1

⎞⎠ .(7)

A concrete expression can be also obtained in terms of divided differences of f . In-
deed, for a self-adjoint operator D in H with compact resolvent, we let ϕ1, ϕ2, . . . be
an orthonormal basis of eigenvectors ofD, with corresponding eigenvalues λ1, λ2, . . ..
Recall Cauchy’s integral formula for divided differences [16, Chapter I.1]:

g[x0, . . . xn] =
1

2πi

∮
g(z)

(z − x0) · · · (z − xn)
dz,

with the contour enclosing the points xi. This then yields

〈V, . . . , V 〉 = 1

n

∑
i1,...,in∈N

f ′[λi1 , . . . , λin ]Vi1i2 · · ·Vin−1inVini1 .(8)

where Vkl := 〈ϕk, V ϕl〉 denote the matrix elements of V . This formula appears in
[22, Corollary 3.6] and, in higher generality, in [33, Theorem 18]. The formula (8)
gives a very concrete way to calculate derivatives of the spectral action, as well as
to calculate the Taylor series of a perturbation of the spectral action.

For our algebraic results we only need two simple properties of the bracket 〈·〉,
stated in the following lemma.

Lemma 2.1. For V1, . . . , Vn ∈ B(H) and a ∈ A we have

(I) 〈V1, . . . , Vn〉 = 〈Vn, V1, . . . , Vn−1〉,
(II) 〈aV1, V2, . . . , Vn〉 − 〈V1, . . . , Vn−1, Vna〉 = 〈V1, . . . , Vn, [D, a]〉.
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Proof. We will omit all analytical details and give a proof for finite-dimensio-
nal Hilbert spaces only. The full proof involving multiple operator integrals can be
found in [28] (as Lemma 14).

In finite-dimensions we may use formula (7) for the bracket. Clearly (I) then
follows directly from the tracial property. Note that the left-hand side of equality
(II) comes down to the commutator of a with the resolvent (z − D)−1, for which
we have the equality

(z −D)−1a− a(z −D)−1 = (z −D)−1[D, a](z −D)−1

This readily leads to the right-hand side in (II). �

3. Cyclic cocycles in the spectral action

We now generalize a little and consider a collection of functions ≺ ·�: B(H)×n

→ R, n ∈ N, satisfing

(I) ≺V1, . . . , Vn� = ≺Vn, V1, . . . , Vn−1�,
(II) ≺aV1, V2, . . . , Vn� − ≺V1, . . . , Vn−1, Vna� = ≺V1, . . . , Vn, [D, a]�

In view of Lemma 2.1 above, the brackets 〈·〉 that appear in the Taylor expansion
of the spectral action form a special case of these generalized brackets ≺ ·� —and
of course form the key motivation for introducing them. However, such structures
pop up in other places as well, for instance [21,26], cf. [24, Proposition 3.2 and
Remark 3.2]. In Section 4, we will introduce yet another instance of ≺ ·�, in order
to obtain one-loop corrections.

Therefore, in contrast to [28], the following discussion will involve the abstract
bracket ≺ ·� instead of the explicit 〈·〉.

3.1. Hochschild and cyclic cocycles. When the above brackets ≺ ·� are
evaluated at one-forms a[D, b] associated to a spectral triple, the relations (I) and
(II) can be translated nicely in terms of the coboundary operators appearing in
cyclic cohomology. This is very similar to the structure appearing in the context of
index theory, see for instance [18,23].

Let us start by recalling the definition of Hochschild cochains and the boundary
operators b and B from [9].

Definition 3.1. If A is an algebra, and n ∈ N0, we define the space of
Hochschild n-cochains, denoted by Cn(A), as the space of (n+1)-linear functionals
φ on A with the property that if aj = 1 for some j ≥ 1, then φ(a0, . . . , an) = 0.

For such cochains we may use, as in [11], an integral notation on universal
differential forms that is defined by linear extension of∫

φ

a0da1 · · · dan := φ(a0, a1, . . . , an).
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Definition 3.2. Define operators b : Cn(A) → Cn+1(A) and B : Cn+1(A) →
Cn(A) by

bφ(a0, a1, . . . , an+1) :=

n∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , an+1)

+ (−1)n+1φ(an+1a0, a1, . . . , an),

Bφ(a0, a1, . . . , an) :=
n∑

j=0

(−1)njφ(1, aj , aj+1, . . . , aj−1).

Note that B = AB0 in terms of the operator A of cyclic anti-symmetrization
and the operator defined by B0φ(a0, a1, . . . , an) = φ(1, a0, a1, . . . , an). Note that in
integral notation we simply have∫

B0φ

a0da1 · · · dan =

∫
φ

da0da1 · · · dan.

One may check that the pair (b, B) defines a double complex, i.e. b2 = 0, B2 = 0,
and bB + Bb = 0. Hochschild cohomology now arises as the cohomology of the
complex (Cn(A), b). In contrast, we will be using periodic cyclic cohomology, which
is defined as the cohomology of the totalization of the (b, B)-complex. That is to
say,

Cev(A) =
⊕
k

C2k(A); Codd(A) =
⊕
k

C2k+1(A),

form a complex with differential b+B and the cohomology of this complex is called
periodic cyclic cohomology. We will also refer to a periodic cyclic cocycle as a
cyclic cocycle or a (b, B)-cocycle. Explicitly, an odd (b, B)-cocycle is thus given by
a sequence

(φ1, φ3, φ5, . . .),

where φ2k+1 ∈ C2k+1(A) and

bφ2k+1 +Bφ2k+3 = 0,

for all k ≥ 0, and also Bφ1 = 0. An analogous statement holds for even (b, B)-
cocycles.

3.2. Cyclic cocycles associated to the brackets. In terms of the generic
bracket ≺ ·� satisfying (I) and (II), we define the following Hochschild n-cochain:

φn(a0, . . . , an) :=≺a0[D, a1], [D, a2], . . . , [D, an]� (a0, . . . , an ∈ A).(9)

We easily see that B0φn is invariant under cyclic permutations, so that Bφn =
nB0φn for odd n and Bφn = 0 for even n. Also, φn(a0, . . . , an) = 0 when aj = 1
for some j ≥ 1. We put φ0 := 0.

Lemma 3.3. We have bφn = φn+1 for odd n and we have bφn = 0 for even n.

Proof. We only consider the case n = 1 while referring to [28, Lemma 17]
for the proof of the general case. We combine the definition of the b-operator with
Leibniz’ rule for [D, ·] to obtain:∫

bφ1

a0da1da2 =≺a0a1[D, a2]� − ≺a0[D, a1a2]� + ≺a2a0[D, a1]�

= − ≺a0[D, a1]a2� + ≺a2a0[D, a1]�=≺a0[D, a1], [D, a2]�
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where we used (II) for the last equality. �

Lemma 3.4. Let n be even. We have bB0φn = 2φn −B0φn+1.

Proof. Again we only consider the first case n = 2 while referring to [28,
Lemma 17] for the proof of the general case∫

bB0φ2

a0da1da2 =

∫
B0φ2

a0a1da2 −
∫
B0φ2

a0d(a1a2) +

∫
B0φ2

a2a0da1

=≺ [D, a0a1], [D, a2]� − ≺ [D, a0], [D, a1a2]� + ≺ [D, a2a0], [D, a1]�
= · · · = 2 ≺a0[D, a1], [D, a2]� − ≺ [D, a0], [D, a1], [D, a2]�,

combining Leibniz’ rule with (I) and (II). �

Motivated by these results we define

(10) ψ2k−1 := φ2k−1 − 1
2B0φ2k,

so that

Bψ2k+1 = 2(2k + 1)bψ2k−1.

We can rephrase this property in terms of the (b, B)-complex as follows.

Proposition 3.5. Let φn and ψ2k−1 be as defined above and set

ψ̃2k−1 := (−1)k−1 (k − 1)!

(2k − 1)!
ψ2k−1 .

(i) The sequence (φ2k) is a (b, B)-cocycle and each φ2k defines an even Hochs-
child cocycle: bφ2k = 0.

(ii) The sequence (ψ̃2k−1) is an odd (b, B)-cocycle.

3.3. The brackets as noncommutative integrals. We will now describe
how brackets ≺V, . . . , V � can be written as noncommutative integrals of certain
universal differential forms defined in terms of A =

∑
ajdbj ∈ Ω1(A), using only

property (I) and (II).
At first order not much exciting happens and we simply have

≺V �=
∑
j

≺aj [D, bj ]�=
∑
j

∫
φ1

ajdbj =

∫
φ1

A.

More interestingly, at second order we find using property (II) of the bracket that

≺V, V � =
∑
j,k

≺aj [D, bj ], ak[D, bk]�

=
∑
j,k

≺aj [D, bj ]ak, [D, bk]� +
∑
j,k

≺aj [D, bj ], [D, ak], [D, bk]�

=

∫
φ2

A2 +

∫
φ3

AdA.

Continuing like this, while only using property (II) of the bracket we find

≺V, V, V � =

∫
φ3

A3 +

∫
φ4

AdAA+

∫
φ5

AdAdA,

≺V, V, V, V � =

∫
φ4

A4 +

∫
φ5

(A3dA+AdAA2) +

∫
φ6

AdAdAA+

∫
φ7

AdAdAdA.
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This implies that, at least when the infinite sum on the left-hand side makes sense:∑
n

1

n
≺V, . . . , V �=

∫
φ1

A+
1

2

∫
φ2

A2 +

∫
φ3

(1
2
AdA+

1

3
A3

)
+

∫
φ4

(1
3
AdAA+

1

4
A4

)
+ . . . ,

where the dots indicate terms of degree 5 and higher. Using φ2k−1 = ψ2k−1 +
1
2B0φ2k, this becomes∑

n

1

n
≺V, . . . , V �=

∫
ψ1

A+
1

2

∫
φ2

(A2 + dA) +

∫
ψ3

(1
2
AdA+

1

3
A3

)
+

1

4

∫
φ4

(
dAdA+

2

3
(dAA2 +AdAA+A2dA) +A4

)
+ . . . .

Notice that, if φ4 would be tracial, we would be able to identify the terms dAA2,
AdAA and A2dA, and thus obtain the Yang–Mills form F 2 = (dA+A2)2, under the
fourth integral. In the general case, however, cyclic permutations under

∫
φ
produce

correction terms, of which one needs to keep track. Indeed, using [28, Corollary
24] we may re-order the integrands to yield∑

n

1

n
≺V, . . . , V�=

∫
ψ1

A+

∫
φ2

1
2 (dA+ A2)+

∫
ψ3

( 12dAA+ 1
3A

3)+ 1
4

∫
φ4

(dA+A2)2

+

∫
ψ5

( 13 (dA)2A+ 1
2dAA3 + 1

5A
5) + 1

6

∫
φ6

(dA+A2)3 + . . .

where the dots indicate terms of degree 7 and higher. Writing F = dA + A2 and
cs1(A) := A, cs3(A) := 1

2dAA+ 1
3A

3, etc., we can already discern our desired result
in low orders.

As a preparation for the general result, we briefly recall from [30] the definition
of Chern–Simons forms of arbitrary degree.

Definition 3.6. The (universal) Chern–Simons form of degree 2k − 1 is
given for A ∈ Ω1(A) by

(11) cs2k−1(A) :=

∫ 1

0

A(Ft)
k−1 dt,

where Ft = tdA + t2A2 is the curvature two-form of the (connection) one-form
At = tA.

Example 3.7. For the first three Chern–Simons forms one easily derives the
following explicit expressions:

cs1(A) = A; cs3(A) =
1

2

(
AdA+

2

3
A3

)
;

cs5(A) =
1

3

(
A(dA)2 +

3

4
AdAA2 +

3

4
A3dA+

3

5
A5

)
.
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3.4. Cyclic cocycles in the Taylor expansion of the spectral action.
We now apply the above results to the brackets appearing in the Taylor expansion
of the spectral action:

Tr(f(D + V )− f(D)) =

∞∑
n=1

1

n
〈V, · · · , V 〉.

In order to control the full Taylor expansion of the spectral action we naturally need
a growth condition on the derivatives of the function f , and this is accomplished
by considering the class Eγ

s defined in (6). The following result is [28, Theorem 27].

Theorem 3.8. Let (A,H, D) be an s-summable spectral triple, and let f ∈ Eγ
s

for γ ∈ (0, 1). There exist entire cyclic cocycles φ2k and ψ̃2k−1 = (−1)k−1(k −
1)!/(2k−1)!ψ2k−1 such that the spectral action fluctuated by V = πD(A) ∈ Ω1

D(A)sa
can be written as

Tr(f(D + V )− f(D)) =

∞∑
k=1

(∫
ψ2k−1

cs2k−1(A) +
1

2k

∫
φ2k

F k

)
,

where the series converges absolutely.

Under less restrictive conditions on the function f we also have the following
asymptotic version of this result [28, Proposition 28]

Theorem 3.9. Let (A,H, D) be a spectral triple, and let ≺ ·� satisfy (I) and

(II), with associated cyclic cocycles φ and ψ̃. For A ∈ Ω1(A) and V = πD(A), we
asymptotically have∑

n

1

n
≺V, . . . , V �∼

∞∑
k=1

(∫
ψ2k−1

cs2k−1(A) +
1

2k

∫
φ2k

F k

)
,

by which we mean that, for every K ∈ N, there exist forms ωl ∈ Ωl(A) for l =
K + 1, . . . , 2K + 1 such that

K∑
n=1

1

n
≺V, . . . , V �−

K∑
k=1

(∫
ψ2k−1

cs2k−1(A) +
1

2k

∫
φ2k

F k

)
=

2K+1∑
l=K+1

∫
φl

ωl.

In particular, by taking ≺ ·�= 〈·〉, we obtain the following corollary.

Corollary 3.10. For f ∈ C∞, and V = πD(A) ∈ Ω1
D(A)sa such that the

Taylor expansion of the spectral action converges, we asymptotically have

Tr(f(D + V )− f(D)) =

∞∑
n=1

1

n!

dn

dtn
Tr(f(D + tV ))

∣∣∣
t=0

∼
∞∑
k=1

(∫
ψ2k−1

cs2k−1(A) +
1

2k

∫
φ2k

F k

)
.

3.5. Gauge invariance and the pairing with K-theory. Since the spec-
tral action is a spectral invariant, it is in particular invariant under conjugation of
D by a unitary U ∈ A. More generally, in the presence of an inner fluctuation we
find that the spectral action is invariant under the transformation

D + V 
→ U(D + V )U∗ = D + V U ; V U = U [D,U∗] + UV U∗.
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This transformation also holds at the level of the universal forms, with a gauge
transformation of the form A 
→ AU = UdU∗+UAU∗. Let us analyze the behavior
of the Chern–Simons and Yang–Mills terms appearing in Theorem 3.8 under this
gauge transformation, and derive an interesting consequence for the pairing between
the odd (b, B)-cocycle ψ̃ with the odd K-theory group of A. As an easy consequence
of the fact that φ2k is a Hochschild cocycle, we have

Lemma 3.11. The Yang–Mills terms
∫
φ2k

F k with F = dA + A2 are invariant

under the gauge transformation A 
→ AU for every k ≥ 1.

We are thus led to the conclusion that the sum of Chern–Simons forms is gauge
invariant as well. Indeed, arguing as in [15], since both Tr(f(D+V )) and the Yang–
Mills terms are invariant under V 
→ V U , we find that, under the assumptions stated
in Theorem 3.8:

∞∑
k=0

∫
ψ2k+1

cs2k+1(A
U ) =

∞∑
k=0

∫
ψ2k+1

cs2k+1(A).

Each individual Chern–Simons form behaves non-trivially under a gauge transfor-
mation. Nevertheless, it turns out that we can conclude, just as in [15], that the
pairing of the whole (b, B)-cocycle with K-theory is trivial. Since the (b, B)-cocycle

ψ̃ is given as an infinite sequence, we should first carefully study the analytical
behavior of ψ̃. In fact, we should show that it is an entire cyclic cocycle in the
sense of [10] (see also [11, Section IV.7.α]). It turns out [28, Lemma 36] that our
assumptions on the growth of the derivatives of f ensure that the brackets define
entire cyclic cocycles.

Lemma 3.12. Fix f ∈ Eγ
s for γ < 1 and equip A with the norm ‖a‖1 = ‖a‖ +

‖[D, a]‖. Then, for any bounded subset Σ ⊂ A there exists CΣ such that∣∣∣ψ̃2k+1(a0, . . . , a2k+1)
∣∣∣ ≤ CΣ

k!
,

for all aj ∈ Σ. Hence, φ and ψ̃ are entire cyclic cocycles.

We thus have the following interesting consequence of Theorem 3.8.

Theorem 3.13. Let f ∈ Eγ
s for γ < 1. Then the pairing of the odd entire cyclic

cocycle ψ̃ with K1(A) is trivial, i.e.

〈U, ψ̃〉 = (2πi)−1/2
∞∑
k=0

(−1)kk!ψ̃2k+1(U
∗, U, . . . , U∗, U) = 0

for all unitary U ∈ A.

4. One-loop corrections to the spectral action

We now formulate a quantum version of the spectral action. To do this, we
must first interpret the spectral action, expanded in terms of generalized Chern–
Simons and Yang–Mills actions by Theorem 3.8, as a classical action, which leads
us naturally to a noncommutative geometric notion of a vertex. Enhanced with
a spectral gauge propagator derived from the formalism of random matrices (and
in particular, random finite noncommutative geometries) this gives us a concept
of one-loop counterterms and a proposal for a one-loop quantum effective spectral
action, without leaving the spectral framework. We will show here that, at least
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in a finite-dimensional setting, these counterterms can again be written as Chern–
Simons and Yang–Mills forms integrated over (quantum corrected) cyclic cocycles.
We therefore discern a renormalization flow in the space of cyclic cocycles.

4.1. Conventions. We let ϕ1, ϕ2, . . . be an orthonormal basis of eigenvectors
of D, with corresponding eigenvalues λ1, λ2, . . .. For any N ∈ N, we define

HN := (MN )sa, MN := span {|ϕi〉 〈ϕj | : i, j ∈ {1, . . . , N}} ,

and endow HN with the Lebesgue measure on the coordinates Q 
→ Re(Qij) (i ≤
j) and Q 
→ Im(Qij) (i < j). Here and in the following, Qij := 〈ϕi, Qϕj〉 are
the matrix elements of Q. For simplicity, we will assume that the perturbations
V1, . . . , Vn are in ∪KHK .

For us, a Feynman diagram is a finite multigraph with a number of marked
vertices of degree 1 called external vertices, all other vertices being called internal
vertices or, by abuse of terminology, vertices. An edge, sometimes called a propa-
gator, is called external if it connects to an external vertex, and internal otherwise.
The external vertices are simply places for the external edges to attach to, and
are often left out of the discussion. An n-point diagram is a Feynman diagram
with n external edges. A Feynman diagram is called one-particle-irreducible if any
multigraph obtained by removing one of the internal edges is connected.

4.2. Diagrammatic expansion of the spectral action. Viewing the spec-
tral action as a classical action, and following the background field method, the
vertices of degree n in the corresponding quantum theory should correspond to
nth-order functional derivatives of the spectral action. However, in the paradigm
of noncommutative geometry, a base manifold is absent, and functional derivatives
do not exist in the local sense. Therefore, a more abstract notion of a vertex
is needed. The brackets 〈·〉 from (8) that power the expansion of the spectral
action in Theorems 3.8 and 3.9 are by construction cyclic and multilinear exten-
sions of the derivatives of the spectral action, and as such provide an appropri-
ate notion of noncommutative vertices. We define a noncommutative vertex with
V1, . . . , Vn ∈ ∪KHK on the external edges by

fV1

V2 V3

V4

Vn

:= 〈V1, . . . , Vn〉.(12)

In contrast to a normal vertex of a Feynman diagram, a noncommutative vertex
is decorated with a cyclic order on the edges incident to it. By convention, the edges
are attached clockwise with respect to this cyclic order. As such, with perturbations
V1, . . . , Vn decorating the external edges, the diagram (12) reflects the cyclicity of
the bracket: 〈V1, . . . , Vn〉 = 〈Vn, V1, . . . , Vn−1〉, the first property of Lemma 2.1. In
order to diagramatically represent the second property of Lemma 2.1 as well, we
introduce the following notation. Wherever a gauge edge meets a noncommutative
vertex we can insert a dashed line decorated with an element a ∈ A before or after
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the gauge edge, with the following meaning:

a V
:=

aV
,

aV
:=

V a

.

With this notation, the equation

〈aV1, . . . , Vn〉 − 〈V1, . . . , Vna〉 = 〈V1, . . . , Vn, [D, a]〉,(13)

is represented as

a

−

a

=

[D, a]

,(14)

and is as such referred to as the Ward identity.
To illustrate, let us give the relevant lower order computations. The cyclic

cocycles are expressed in terms of diagrams as

∫
φn

a0da1 · · · dan =
fa0[D, a1]

[D, a2] [D, a3]

[D, a4]

[D, an]

.(15)

For one external edge we find, writing A =
∑

j ajdbj and suppressing summation
over j,

〈V 〉 = 〈aj [D, bj ]〉 = f
aj[D, bj]

=

∫
φ1

A.(16)

For two external edges, we apply the Ward identity (14) and derive

〈V, V 〉 = faj[D, bj] [D, bj′]

aj′

= faj[D, bj] [D, bj′]

aj′

+ faj[D, bj] [D, bj′]

[D, aj′]

=

∫
φ2

A2 +

∫
φ3

AdA.

4.2.1. The propagator. An important part of the quantization process intro-
duced here is to find a mathematical formulation for the propagator. In other
words, we need to introduce more general diagrams than the one-vertex diagram
in (12), and assign each an amplitude. As usual in quantum field theory, the am-
plitudes depend on a cutoff N and are possibly divergent as N → ∞.

What we will call a noncommutative Feynman diagram (or, for brevity, a dia-
gram) is a Feynman diagram in which every internal vertex v is decorated with a
cyclic order on the edges incident to v. These decorated vertices are what we call
the noncommutative vertices, and are denoted as in (12). The edges of a diagram
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are always drawn as wavy lines. They are sometimes called gauge edges to distin-
guish them from any dashed lines in the diagram, which do not represent physical
particles, but are simply notation. The loop order is defined to be L := 1− V +E,
where V is the amount of (noncommutative) vertices and E is the amount of in-
ternal edges. We also say the noncommutative Feynman diagram is L-loop, e.g.,
the noncommutative Feynman diagram in (12) is zero-loop. When the respective
multigraph is planar, L corresponds to the number of internal faces. Following
physics terminology, these faces are referred to as loops. As usual for Feynman
diagrams, the external edges are marked, say by the numbers 1, . . . , n.

Note that, by our definition, a noncommutative Feynman diagram is almost
the same as a ribbon graph, the sole difference being that ribbons are sensitive to
twisting, whereas our edges are not.

Each nontrivial noncommutative Feynman diagram will be assigned an ampli-
tude, as follows. Here nontrivial means that every connected component contains
at least one vertex with nonzero degree.

Definition 4.1. Let N ∈ N and let f ∈ C∞ satisfy f ′[λi, λj ] > 0 for i, j ≤ N .
Given a nontrivial n-point noncommutative Feynman diagram G with external
vertices marked by 1, . . . , n, its amplitude at level N ∈ N on the gauge fields
V1, . . . , Vn ∈ ∪KHK is denoted ΓG

N (V1, . . . , Vn), and is defined recursively as follows.
When G has precisely one vertex and the markings 1, . . . , n respect its cyclic order,
we set ΓG

N (V1, . . . , Vn) := 〈V1, . . . , Vn〉. Suppose the amplitudes of diagrams G1 and
G2 with external edges 1, . . . , n and n+ 1, . . . ,m are defined. Then to the disjoint
union G of the diagrams we assign the amplitude

ΓG
N (V1, . . . , Vm) := ΓG1

N (V1, . . . , Vn)Γ
G2

N (Vn+1, . . . , Vm).

Suppose the amplitude of a diagram G is defined. Then, for any two distinct
numbers i, j ∈ {1, . . . , n}, let G′ be the diagram obtained from G by connecting
the two external edges i and j by a gauge edge (a propagator). We then define the
amplitude of G′ as

ΓG′

N (V1, . . . , V̂i, . . . , V̂j , . . . , Vn) := −
∫
HN

ΓG
N (V1, . . . ,

i

Q, . . . ,
j

Q, . . . , Vn)e
−1

2 〈Q,Q〉dQ∫
HN

e−
1
2 〈Q,Q〉dQ

.

Well-definedness is a straightforward consequence of Fubini’s theorem. Note
that, in general, ΓG

N is not cyclic in its arguments, as was the case in (12).

Vn

V1

QG1

Vn+1

Vm

Q G2

Figure 1. Constructing the propagator.

The assumption that f ′[λi, λj ] > 0 for i, j ≤ N can be accomplished by allowing
f to be unbounded, and replacing the spectral action

Tr(f(D))
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with the regularized version

Tr(fN (D))

where fN := fΦN for a sequence of bump functions ΦN (N ∈ N) that are 1 on
{λk : k ≤ N}. As quantization takes place on the finite level (for a finite N), it is
natural to also regularize the classical action before we quantize. Because we can
now easily require

f ′
N [λk, λl] = f ′[λk, λl] > 0,

for all k, l ≤ N , Definition 4.1 makes sense and can be studied by Gaussian inte-
gration as in [4, Section 2].

4.3. Loop corrections to the spectral action. To obtain the propagator,
we have chosen the approach of random noncommutative geometries (as done in
[2,25], see [3,19] for computer simulations) in the sense that the integrated space
in Definition 4.1 is the whole of HN . Other approaches are conceivable by replacing
HN by a subspace of gauge fields particular to the gauge theory under consideration
(like Ω1

D(A)sa for a finite spectral triple (A,H, D)) but this should also take into
account gauge fixing, and will quickly become very involved. We expect to require
sophisticated machinery to perform such an integration, similar to the machinery
in [17].

In our case, the propagator becomes quite simple, and can be explicitly ex-
pressed by the following result.

Lemma 4.2. Let f ∈ C∞ satisfy f ′[λk, λl] > 0 for k, l ≤ N . For k, l,m, n ∈
{1, . . . , N}, we have ∫

HN
QklQmne

− 1
2 〈Q,Q〉dQ∫

HN
e−

1
2 〈Q,Q〉dQ

= δknδlmGkl,

in terms of Gkl :=
1

f ′[λk,λl]
.

Proof. By (8) we have the finite sum

〈Q,Q〉 =
∑
k,l

f ′[λk, λl]
(
(Re(Qkl))

2 + (Im(Qkl))
2
)
,

for all Q ∈ HN . Moreover, we have∫
HN

QklQmne
− 1

2 〈Q,Q〉dQ

=

∫
HN

(Re(Qkl)Re(Qmn)− Im(Qkl)Im(Qmn))e
− 1

2 〈Q,Q〉dQ

+ i

∫
HN

(Re(Qkl)Im(Qmn) + Im(Qkl)Re(Qmn))e
− 1

2 〈Q,Q〉dQ.

The second integral on the right-hand side vanishes because its integrand is an odd
function in at least one of the coordinates of HN . The same holds for the first
integral whenever {k, l} �= {m,n}. Otherwise, we use that Re(Qlk) = Re(Qkl) and
Im(Qlk) = −Im(Qkl) and see that the two terms of the first integral cancel when
k = m and l = n. When k = n �= l = m, we instead find that these terms give
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the same result when integrated. By using symmetry of the divided difference (i.e.,
f ′[x, y] = f ′[y, x]) and integrating out all trivial coordinates, we obtain∫

HN
QklQmne

− 1
2 〈Q,Q〉dQ∫

HN
e−

1
2 〈Q,Q〉dQ

=δknδlm
2
∫
R
(Re(Qkl))

2e−f ′[λk,λl](Re(Qkl))
2

dRe(Qkl)∫
R
e−f ′[λk,λl](Re(Qkl))2dRe(Qkl)

,

a Gaussian integral that gives theGkl required by the lemma. When k = l = n = m,
the result follows similarly. �

The above lemma allows us to leave out all integrals from the subsequent com-
putations. In place of those integrals, we use the following notation.

Definition 4.3. We define, with slight abuse of notation,

Qkl Qmn := δknδlmGkl,

and refer to Gkl as the propagator.

As an example and to fix terminology, we will now compute the amplitudes of
the three most basic one-loop diagrams with two external edges. These are given
in Figure 2. Using Lemma 4.2 and Definition 4.3, we find the amplitude for the
first diagram to be

f fV1 V2
=

∑
i,j,k,l,
m,n≤N

f ′[λi, λj , λk](V1)ijQjkQkif
′[λl, λm, λn](V2)lmQmnQnl

=
∑

i,k≤N

f ′[λi, λi, λk]f
′[λi, λk, λk](V1)ii(V2)kk(Gik)

2.(17)

As V1 and V2 are assumed of finite rank, the above expression converges as N → ∞.
To see this explicitly, let K be such that V1, V2 ∈ HK , and let G be the diagram
on the left-hand side of (17). We then obtain

lim
N→∞

ΓG
N (V1, V2) =

∑
i,k≤K

f ′[λi, λi, λk]f
′[λi, λk, λk](V1)ii(V2)kk(Gik)

2,(18)

a finite number. In general we can say that if all summed indices of an amplitude
occur in a matrix element of any of the perturbations (e.g., (V1)ii and (V2)kk) then
the amplitude remains finite even when the size N of the random matrices Q is
sent to ∞. In physics terminology, the first diagram in Figure 2 is irrelevant, and
can be disregarded for renormalization purposes.

We then turn to the second diagram in Figure 2, and compute

f fV1 V2 =
∑

i,j,k,l,
m,n≤N

f ′[λi, λj , λk](V1)ijQjkQkif
′[λl, λm, λn](V2)lmQmnQnl

=
∑

i,j,k≤N

(f ′[λi, λj , λk])
2(V1)ij(V2)jiGikGkj .(19)

This diagram is planar, and the indices i, j, k correspond to regions in the plane,
assuming the external edges are regarded to stretch out to infinity. The index k
corresponds to the region within the loop, and is called a running loop index. As
the index k is not restricted by V1 and V2 as in (17), we find that in general the
amplitude (19) diverges as N → ∞. In physical terms, this is a relevant diagram.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

528 TEUN D.H. VAN NULAND AND WALTER D. VAN SUIJLEKOM

f f f f
f

Figure 2. Two-point diagrams with one loop. The first one is
irrelevant, the second and third are relevant.

The amplitude of the final diagram becomes

f

V1 V2

= −
∑

i,j,k,l≤N

f ′[λi, λj , λk, λl](V1)ijQjkQkl(V2)li

= −
∑

i,j,k≤N

f ′[λi, λj , λj , λk](V1)ij(V2)jiGjk.(20)

Again, this amplitude contains a running loop index and is therefore potentially
divergent in the limit N → ∞.

4.3.1. One-loop counterterms to the spectral action. Because we are interested
in the behavior of the one-loop quantum effective spectral action as N → ∞, we
wish to consider only one-loop noncommutative Feynman diagrams whose ampli-
tudes involve a running loop index. For example, the final two diagrams in Figure
2, but not the first.

As dictated by the background field method, in order to obtain a quantum
effective action we should further restrict to one-particle-irreducible diagrams whose
vertices have degree ≥ 3.

Let us fix a one-loop one-particle-irreducible diagram G in which all vertices
have degree ≥ 3, and investigate whether the amplitude of G contains a running
loop index. Fix a noncommutative vertex v in G. The vertex v will have precisely
two incident edges that belong to the loop of the diagram, and at least one external
edge. Each index associated with v is associated specifically with two incident edges
of v. If one of these edges is external, the index will not run, because it will be fixed
by the gauge field attached. A running index can only occur if the two incident
loop edges of v succeed one another, and the index is placed in between them. The
latter of these two loop edges will attach to another noncommutative vertex, w, and
the possibly running index will also be associated with the succeeding edge in w,
which also has to be a loop edge if the index is to run. This process may continue
throughout the loop until we end up at the original vertex v. By this argument,
the amplitude of G will contain a running loop index if and only if G can be drawn
in the plane with all noncommutative vertices oriented clockwise and all external
edges extending outside the loop.

The wonderful conclusion is that the external edges of the relevant diagrams
obtain a natural cyclic order. This presents us with a natural one-loop quantization
of the bracket 〈·〉, and thus with a natural proposal for the one-loop quantization
of the spectral action.
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Definition 4.4. Let N ∈ N and let f ∈ C∞ satisfy f ′[λi, λj ] > 0 for i, j ≤ N .
We define

〈〈V1, . . . , Vn〉〉1LN :=
∑
G

ΓG
N (V1, . . . , Vn),

where the sum is over all planar one-loop one-particle-irreducible n-point noncom-
mutative Feynman diagrams G with clockwise vertices of degree ≥ 3 and external
edges outside the loop and marked cyclically. The one-loop quantum effective
spectral action is defined to be the formal series

∞∑
n=1

1

n
〈〈V, . . . , V 〉〉1LN .

Directly from the definition of 〈〈·〉〉1LN , we see that

〈〈V2, . . . , Vn, V1〉〉1LN = 〈〈V1, . . . , Vn〉〉1LN .

In other words, the property (I) holds for the bracket ≺ ·�= 〈〈·〉〉1LN . In the next
subsection we will show that (II) holds as well.

4.3.2. Ward identity for the gauge propagator. In addition to the Ward identity
(14) for the noncommutative vertex, we claim that we also have the following Ward
identity for the gauge edge:

a

−

a

=
f

[D, a]

(21)

Indeed, the left-hand side yields terms∑
m≤N

(
QikQlmamn − aimQmkQln

)
=

∑
m≤N

(
Gikδimδklamn −Glnδmnδklaim

)
= (Gik −Gnk)δklain,

for arbitrary values of i, k, l, and n determined by the rest of the diagram. The
right-hand side, by the defining property of the divided difference, and because
every internal edge adds a minus sign, yields the terms

−
∑

p,q,r≤N

Qikf
′[λp, λq, λr]Qpq[D, a]qrQrpQln

= −
∑

p,q,r≤N

f ′[λp, λq, λr](λq − λr)aqrGikδiqδkpGrpδrnδpl

= (f ′[λk, λn]− f ′[λi, λk])GikGnkδklain.

Because Gkl = 1/f ′[λk, λl] (see Lemma 4.2) the two expressions coincide for every
value of i, k, l, and n, thereby allowing us to apply the rule (21) whenever it comes
up as part of a diagram. For example, by combining (21) with (14), we have
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f
f f

f f

f
f

f

f

f

Figure 3. Relevant one-loop n-point functions with increasing
number of vertices.

f fV1 V2

a

− f fV1 V2

a

=
f fV1 V2

[D, a]

+

f

f

fV1 V2

[D, a]

+
f fV1 V2

[D, a].

The Ward identity for the gauge propagator, in combination with the Ward identity
for the fermion propagator (14) allows us to derive the so-called quantum Ward
identity:

〈〈aV1, . . . , Vn〉〉1LN − 〈〈V1, . . . , Vna〉〉1LN = 〈〈[D, a], V1, . . . , Vn〉〉1LN .

We derived this identity diagrammatically in [29] for low orders; below we give a
general derivation. The quantum Ward identity, in combination with the obvious

cyclicity, shows that 〈〈·〉〉1LN is a special case of the generic bracket ≺ ·� satisfying
property (I) and (II) on page 517, and hence allows us to apply Proposition 3.5
and Theorem 3.9. We thus obtain our final result: an expansion of the one-loop
quantum effective action in terms of cyclic cocycles.

Theorem 4.5. There exist (b, B)-cocycles φN and ψ̃N (namely, those defined

by taking ≺ ·�= 〈〈·〉〉1LN in (9) and (10)) for which the one-loop quantum effective
spectral action can be expanded as

∞∑
n=1

1

n
〈〈V, . . . , V 〉〉1LN ∼

∞∑
k=1

(∫
ψN

2k−1

cs2k−1(A) +
1

2k

∫
φN
2k

F k

)
.

As before, ψ̃N
2k−1 = (−1)k−1 (k−1)!

(2k−1)!ψ
N
2k−1.

Proof. Applying Definition 4.4, and combining two sums, we obtain

〈〈aV1, . . . , Vn〉〉1LN − 〈〈V1, . . . , Vna〉〉1LN =
∑
G

(
ΓG
N (aV1, . . . , Vn)− ΓG

N (V1, . . . , Vna)
)
,

where the sum is over all relevant diagrams G, by which we mean the planar one-
loop one-particle-irreducible n-point noncommutative Feynman diagrams G with
clockwise vertices of degree ≥ 3 and external edges outside the loop and marked
cyclically. Let G be a relevant diagram marked 1, . . . , n. We let I(G) denote the set
of diagrams one can obtain from G by inserting a single gauge edge at any of the
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places one visits when walking along the outside of the diagram from the external
edge n to the external edge 1. To be precise, if the edges n and 1 attach to the
same noncommutative vertex v, we set

I(G) := {G′},
where G′ is the diagram obtained from G by inserting an external edge marked n+1
at v between the edges marked n and 1. If the edges n and 1 attach to different
vertices v and w, respectively, then the edge e succeeding the edge marked n on v
necessarily attaches to w, preceding the edge marked 1. In this case, we set

I(G) := {Gn, Ge, G1},
where Gn is obtained from G by inserting an external edge marked n + 1 at v
between n and e, Ge is obtained from G by inserting a noncommutative vertex v0
along e and inserting an external edge marked n + 1 along the outside of v0, and
G1 is obtained from G by inserting an external edge marked n+ 1 at w between e
and 1. By construction of I(G), we find

〈〈aV1, . . . , Vn〉〉1LN − 〈〈V1, . . . , Vna〉〉1LN =
∑
G

∑
G′∈I(G)

ΓG′

N (V1, . . . , Vn, [D, a]).

The sum over G and G′ yields all relevant n+1-point diagrams, and, moreover, any
relevant n + 1-point diagram with labels V1, . . . , Vn, [D, a] is obtained in a unique
manner from an insertion of an external edge in an n-point diagram, as described
above. We are therefore left precisely with

〈〈aV1, . . . , Vn〉〉1LN − 〈〈V1, . . . , Vna〉〉1LN = 〈〈V1, . . . , Vn, [D, a]〉〉1LN .

In combination with cyclicity, 〈〈V1, . . . , Vn〉〉1LN = 〈〈Vn, V1, . . . , Vn−1〉〉1LN , this iden-
tity allows us to apply Proposition 3.5 and Theorem 3.9. We thus arrive at the
conclusion of the theorem. �

We conclude that the passage to the one-loop renormalized spectral action can
be realized by a transformation in the space of cyclic cocycles, sending φ 
→ φ+φN

and ψ 
→ ψ + ψN . One could say the theory is therefore one-loop renormalizable
in a generalized sense, allowing for infinitely many counterterms, as in [20]. Most
notably, we have stayed within the spectral paradigm of noncommutative geometry.
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