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Abstract
We introduce and analyse a general notion of fundamental group for noncommutative
spaces, described by differential graded algebras. For this we consider connections on
finitely generated projective bimodules over differential graded algebras and show that the
category of flat connections on such modules forms a Tannakian category. As such this
category can be realised as the category of representations of an affine group scheme G,
which in the classical case is (the pro-algebraic completion of) the usual fundamental group.
This motivates us to define G to be the fundamental group of the noncommutative space
under consideration. The needed assumptions on the differential graded algebra are rather
mild and completely natural in the context of noncommutative differential geometry. We
establish the appropriate functorial properties, homotopy and Morita invariance of this fun-
damental group. As an example we find that the fundamental group of the noncommutative
torus can be described as the algebraic hull of the topological group (Z + θZ)2.

Keywords Noncommutative differential geometry · Algebraic topology ·
Tannakian categories
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1 Introduction

The fundamental group is one of the first tools used in algebraic topology to collect infor-
mation about the shape of a topological space or of a manifold. Given the simplicity of its
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definition, it is quite surprising that no analogue of this group has been found yet for non-
commutative spaces, especially in the context of noncommutative differential geometry [5].
This is in contrast to other structures on topological spaces that have found their counter-
parts in terms of noncommutative (C∗)-algebras, such as de Rham cohomology (in terms of
cyclic homology), topological K-theory (as K-theory for C∗-algebras), Riemannian metrics
(as spectral triples [5, Ch. VI]) and measures (as von Neumann algebras [5, Ch.V]).

This paper aims to give a definition of the fundamental group of a noncommutative
space. Of course, in view of Gelfand duality one could try to dualise based loops in terms
of ∗-homomorphisms from a C∗-algebra A to C([0, 1]). However, such a homomorphism ϕ

would send any commutator ab − ba to 0, which for many noncommutative spaces already
means that ϕ is trivial. Instead, in the spirit of [14, 15] we adopt a Tannakian approach to our
definition of a fundamental group. In fact, in the case of a differentiable manifold without
boundary this becomes very concrete given the classical result that there is an equivalence
between the category of representations of the fundamental group and the category of flat
connections on vector bundles over that manifold (see for instance [19, Proposition I.2.5]).
One may then reconstruct (the pro-algebraic completion of) the fundamental group of that
manifold as the automorphism group of the corresponding Tannakian category (cf. [30] and
[9]).

The noncommutative generalisation of the fundamental group that we propose here is
based on the construction in Section 2 of a category of finitely generated projective bimod-
ules over a differential graded algebra (dga) together with a connection. The difference with
previous approaches to connections on bimodules (such as for instance [11]) is that we
demand compatibility of the bimodule connection with all elements in the dga, which also
solves the apparent incompatibility recorded in [18, Example 2.13].

Our main result (Section 3) is then that under some analytical assumptions on the dga
the subcategory where the connections are flat is a Tannakian category. These assumptions
are completely natural in the context of noncommutative differential geometry and are for
instance fulfilled for quantum metric spaces in the sense of Rieffel [29]. It leads us to define
the fundamental group π1 of the dga as the group corresponding to this Tannakian category.
We establish the appropriate (contravariant) functorial properties of the fundamental group,
as well as homotopy and Morita invariance in Section 4. Note that an alternative way to
arrive at a fundamental group for noncommutative spaces would be to develop a theory of
noncommutative covering spaces and consider the corresponding automorphisms. This is
for instance the approach taken in [3, 16, 33], and it is an interesting problem to confront
and compare their results with ours.

In Section 5 we then illustrate our construction by considering examples, including all
noncommutative tori and, more generally, we consider toric noncommutative manifolds.

1.0.1 Notation

Algebras (assumed to be unital and over C): A,B, etc.;
C∗-algebras: A;
Graded algebras: A = k≥0

kA with 0A ≡ A and |α| the degree of α ∈ A;
Differential graded algebras ( A, d);
Graded modules over graded algebras: E, F , G, , etc..
Graded centre: Zg( A), Zg(A) ≡ Zg( A)0, Zg(E), etc..
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2 Categories of Connections

In this section we will define connections over a noncommutative space. These noncom-
mutative spaces are described by differential graded algebras and, in fact, the results in this
section apply to any (noncommutative) dga. We consider the category of all connections on
finitely generated modules for a dga ( A, d), and we will prove that it is a rigid tensor cat-
egory. Of course, the same then holds for the subcategory of flat connections. We also show
that the category only depends on the (graded commutative) centre of the dga.

Some words on notation: in this paper we will write a dga as ( A, d). Even though this
might be considered unnatural as dga’s are usually written simply as (A, d), we use this
notation to stress that it furnishes a differential geometric structure on the noncommutative
space described by A (and a C∗-algebra A). This becomes even more apparent in Section 3
where we impose some analytical conditions on A. For the same reason, we will write
( E, ∇) for a graded bimodule with a connection, which in the flat case is then of course
nothing but a differential graded bimodule.

2.1 Connections and Bimodules Over a dga

There are multiple ways to generalise vector bundles to a noncommutative space. By the
Serre–Swan Theorem the vector bundles over a manifold correspond to finitely generated
projective modules over the algebra C∞(M) of smooth functions. Over a noncommutative
algebra we can look at right modules, but there is no suitable tensor product of right mod-
ules. We can look at bimodules, but here we have to remember that over a commutative
space, only very special bimodules are allowed: the multiplication on the left is the same as
on the right. We can look at bimodules that satisfy this condition for the centre of the alge-
bra. Instead we look at a more restrictive class of bimodules, namely those that are a direct
summand of a free finite bimodule ([12] defines diagonal bimodules as modules that are a
summand of a free module).

This is very natural when one considers bimodule connections. Namely, connections are
usually defined as maps E → E ⊗ 1A that satisfy the appropriate Leibniz rules. However
to satisfy the left Leibniz rule the image should actually be 1A⊗ E . This is solved in [11]
by using an isomorphism σ : E ⊗ 1A → 1A⊗ E . However, then the tensor product
of two flat connections is not necessarily flat. Instead if one considers graded bimodules
E = k≥0

kE over a graded algebra A = k≥0
kA that are a summand of a

free finite module, we automatically get isomorphisms 1E ∼= E ⊗ 1A ∼= 1A⊗ E
(see Lemma 2.4). Moreover, now the tensor product of flat connections is always flat (see
Lemma 2.18).

Let us now proceed and describe the precise algebraic setup.

Definition 2.1 A differential graded algebra or dga is a graded algebra A together with
a C-linear map d : A → A of degree +1 satisfying the Leibniz rule

d(ων) = dω · ν + (−1)|ω|ωdν

for ω, ν ∈ A, and d2 = 0.

Notation 2.2 Let E be a graded A-bimodule. We define the graded commutator
[·, ·] : A × E → E as [α, ε] = αε − (−1)|α|·|ε|εα for α ∈ A, ε ∈ E and C-
bilinearly extended to non-homogeneous elements. We use the same notation for the graded
commutator [·, ·] : A × A → A defined similarly.
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Definition 2.3 Let A be any dga. We call a graded A-bimodule E finitely generated
projective (fgp) if there is another graded A-bimodule F satisfying E⊕ F = A⊕n

for some integer n, as graded A-bimodules.

In what follows we will also write An := A⊕n, which is not to be confused with the
form degree.

The following lemma shows why it is convenient to work with these graded fgp A-
bimodules instead of just fgp bimodules over A.

Lemma 2.4 Let E be a graded fgp A-bimodule. Write 0A = A and 0E = E . Then
for all k ≥ 0 the multiplication induces isomorphisms

E ⊗A
kA ∼−→ kE, kA⊗A E ∼−→ kE .

Proof Let F be another graded A-bimodule satisfying E ⊕ F ∼= An. Then we
have the following commuting diagram:

E ⊗A kA ⊕ F ⊗A kA kE ⊕ kF

(E ⊕ F)⊗A kA An ⊗A kA ( kA)n.

∼ ∼
∼ ∼

Here the top arrow is the direct sum of the maps E ⊗A kA → kE and F ⊗A kA →
kF . All the other maps are isomorphisms, so these maps are isomorphisms as well. This

shows that the first map in the lemma is an isomorphism and the second one follows
analogously.

From this we see that if A is graded commutative, then E is completely determined
by just E : it is the module A⊗A E .

Definition 2.5 Let E be a graded fgp A-bimodule. A connection on E is a C-linear
map

∇ : E → E
of degree +1 satisfying the following equations for ε ∈ E, α ∈ A:

∇(εα) = ∇(ε)α + (−1)|ε|εdα, (1)

∇(αε) = dα · ε + (−1)|α|α∇(ε). (2)

Remark 2.6 The equations in this definition are called the right Leibniz rule and the
left Leibniz rule, respectively. They are meaningful because the elements of E can be
multiplied with elements of A both on the left and the right.

Definition 2.7 Let E be a graded fgp A-bimodule with a connection ∇. The curvature
of ∇ is the map ∇2 : E → E of degree +2.

Remark 2.8 The curvature is an A-bilinear map: for ε ∈ E and α ∈ A we have

∇2(εα) = ∇(∇(ε)α + (−1)|ε|εdα)

= ∇2(ε)α + (−1)|ε|+1∇(ε)dα + (−1)|ε|∇(ε)dα + εd2α

= ∇2(ε)α
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and

∇2(αε) = ∇(dα · ε + (−1)|α|α∇(ε))

= d2α · ε + (−1)|α|+1dα∇(ε) + (−1)|α|dα∇(ε) + α∇2(ε)

= α∇2(ε).

Definition 2.9 A connection ∇ is called flat if the curvature ∇2 is zero.

Now we can define the category of flat connections.

Definition 2.10 We define C( A) to be the category whose objects are graded fgp
A-bimodules with a connection, and whose morphisms are graded fgp A-bimodule

morphisms of degree 0 which commute with the connections. Let Cflat( A) be the full
subcategory where the connections are required to be flat.

Example 2.11 Let M be a manifold without boundary. The corresponding dga is the de
Rham differential graded algebra of the manifold A = M . Any fgp A-bimodule
E is determined by the fgp A-bimodule E by E = A⊗A E . This corresponds to a

vector bundle over M by the Serre–Swan Theorem. A flat connection on E corresponds to
a (usual) flat connection on this vector bundle. So C( M) is equivalent to the category of
vector bundles over M with a flat connection, which in turn is equivalent to the category of
representations of π1(M) by [19, Proposition I.2.5].

2.2 Connections Over the Graded Centre

We will now show that each graded fgp A-bimodule is determined by a graded fgp
bimodule over a graded commutative subalgebra. For this we need the following definitions:

Definition 2.12 Let A be a dga. We define the graded commutative centre Zg( A) as

Zg( A) = {α ∈ A | [α, ν] = 0 for all ν ∈ A}.
If E is an fgp A-bimodule we define Zg( E) as

Zg( E) = {ε ∈ E | [ε, ν] = 0 for all ν ∈ A}.

Lemma 2.13 With notations as in the previous definition we have the following, part of
which is shown in [11]:

(i) The graded commutative centre of the algebra Zg( A) is a dga.
(ii) The graded commutative centre of the module Zg( E) is a graded fgp bimodule over

Zg( A).

(iii) Multiplication gives an isomorphism of graded bimodules Zg( E) ⊗Zg( A) A ∼−→
E .

Proof (i) An easy calculation shows that Zg( A) is a subalgebra of A, using that
[αβ, ν] = α[β, ν] + (−1)|β|·|ν|[α, ν]β for α, β, ν ∈ A. It is closed under d because
[dα, ν] = d[α, ν] − (−1)|α|[α, dν] for α, ν ∈ A.

(ii) An easy calculation shows that Zg( E) is a graded bimodule over Zg( A), using
[αε, ν] = α[ε, ν]+ (−1)|ε|·|ν|[α, ν]ε for α, ν ∈ A, ε ∈ E . If E ⊕ F = An it
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follows directly that Zg( E) ⊕ Zg( F) = (Zg( A))n, so Zg( E) is a graded fgp
Zg( A)-bimodule.

(iii) Let F be another graded fgp A-bimodule satisfying E ⊕ F = An. Then we
have the following commuting diagram:

Zg( E)⊗Zg( A) A ⊕ Zg( F)⊗Zg( A) A E ⊕ F

(Zg( E) ⊕ Zg( F))⊗Zg( A) A An

Zg( E ⊕ F) ⊗Zg( A) A Zg( An) ⊗Zg( A) A.

∼ ∼

∼
∼

∼

Here the top arrow is the direct sum of the maps Zg( E) ⊗Zg( A) A → E and
Zg( F) ⊗Zg( A) A → F induced by multiplication. All other arrows in the
diagram are isomorphisms, so these maps are isomorphisms as well.

So all graded fgp A-bimodules are determined by a graded fgp Zg( A)-bimodule.
This is in turn determined by an fgp Zg( A)-module. Note that Zg(A) may be smaller
than the centre of the algebra A.

Theorem 2.14 We have an equivalence of categories:

C( A)
∼−→ C(Zg( A)),

sending an object ( E, ∇) to Zg( E) with the restriction of ∇. This equivalence restricts

to an equivalence Cflat( A)
∼−→ Cflat(Zg( A)).

Proof Let ( E,∇) be an object of C( A). For ε ∈ Zg( E) and α ∈ A we have

∇(εα) = ∇(ε)α + (−1)|ε|εdα

but also

∇(εα) = (−1)|ε|·|α|∇(αε)

= (−1)(|ε|+1)|α|α∇(ε) + (−1)|ε|·|α|dα · ε

= (−1)(|ε|+1)|α|α∇(ε) + (−1)|ε|εdα.

So we get
∇(ε)α = (−1)(|ε|+1)|α|α∇(ε).

Since this holds for all α ∈ A we conclude that ∇(ε) ∈ Zg( E). So ∇ restricts to a
morphism Zg( E) → Zg( E). Then (Zg( E), ∇|Zg( E)) is an object of C(Zg( A)). It
is easy to see that this is a functorial construction.

Conversely, let ( F ,∇) be an object of C(Zg( A)). Then we can define the graded fgp
A-bimodule F ⊗Zg( A) A, and the connection ∇ given by

∇(ζ ⊗ α) = ∇(ζ ) ⊗α + (−1)|ζ |ζ ⊗ d(α)

for ζ ∈ F , α ∈ A. This gives an object of C( A). It is then easy to show that this
construction is also functorial, and that the two functors thus defined are inverse to each
other.

Finally, we observe that the functor and its inverse preserve flatness.
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Remark 2.15 For a graded commutative dga A we have a different way to describe the
category C( A). Remember that for a graded fgp bimodule E we have the isomorphisms
E = E ⊗A A. The restriction of ∇ to E is then a map ∇0 : E → E ⊗A 1A, satisfying

∇0(ea) = ∇0(e)a + e ⊗ da. Conversely each such ∇0 may be extended to ∇ : E → E
by setting ∇(e ⊗ ω) = ∇0(e)ω + e ⊗ dω for e ∈ E, ω ∈ A. So we can describe C( A)

as the category with objects fgp A-modules E with a connection ∇0 : E → E ⊗A 1A.

Example 2.16 We consider the dga corresponding to the noncommutative space of two
points at finite distance (see [8] or [22, pp 116–118]). If is given by

2kA = α 0
0 δ

∈ M2(C) ; 2k+1A = 0 β

γ 0
∈ M2(C)

for all k ≥ 0. The differential is given by

d : 2kA → 2k+1A
α 0
0 δ

→ 0 δ − α

α − δ 0

,

d : 2k+1A → 2k+2A
0 β

γ 0
→ β + γ 0

0 β + γ
.

We have Zg(
2kA) = C and Zg(

2k+1A) = 0 so that in view of Remark 2.15 the fgp
bimodules over Zg( A) are simply determined by a vector space over C. We conclude that
C( A) ∼= C(Zg( A)) is equivalent to the category of vector spaces.

2.3 Tensor Products

In this subsection we will construct the tensor product for the category C( A).

Proposition 2.17 Let ( E,∇E ) and ( F ,∇F ) be objects of C( A). Then G =
E ⊗ A F has the structure of an fgp graded bimodule over A, and we can construct

a connection ∇G satisfying

∇G(ε ⊗ ζ ) = ∇E (ε)⊗ ζ + (−1)|ε|ε ⊗∇F (ζ ) (3)

for ε ∈ E, ζ ∈ F .

Proof The left action of A on E and the right action of A on F make G into a
A-bimodule. A grading on the tensor product is given as follows: for any r ≥ 0 the degree

r subspace rG is the linear span of elements ε ⊗ ζ , with ε ∈ kE, ζ ∈ lF , k + l = r .
To show that G is fgp, suppose that E ⊕ E ∼= Am and F ⊕ F ∼= An. Then

G ⊕ E ⊗ A F ⊕ ( F )m ∼= ( F)m ⊕ ( F )m ∼= ( A)mn.

So G is a graded fgp A-bimodule.
We can then define the connection ∇G by Eq. 3 on pure tensors, and extend C-linearly.
To show that it is well-defined, let α ∈ A. Then by the above definition we have

∇G(εα ⊗ ζ ) = ∇E (εα)⊗ ζ + (−1)|ε|+|α|εα ⊗ ∇F (ζ )

= ∇E (ε)α ⊗ ζ + (−1)|ε|εdα ⊗ ζ + (−1)|ε|+|α|εα ⊗∇F (ζ )

while

∇G(ε ⊗αζ) = ∇E (ε)⊗ αζ + (−1)|ε|ε ⊗ ∇F (αζ )

= ∇E (ε)⊗ αζ + (−1)|ε|ε ⊗ dα · ζ + (−1)|ε|+|α|ε ⊗α∇F (ζ ).

Since these are the same, ∇G is well-defined.
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Lastly, ∇G satisfies the Leibniz rules: for ε ∈ E, ζ ∈ F , α ∈ A we have

∇G(αε ⊗ ζ ) = ∇E (αε)⊗ ζ + (−1)|ε|+|α|αε ⊗ ∇F (ζ )

= dα · ε ⊗ ζ + (−1)|α|α∇E (ε)⊗ ζ + (−1)|ε|+|α|αε ⊗ ∇F (ζ )

= dα · ε ⊗ ζ + (−1)|α|α∇G(ε ⊗ ζ )

and

∇G(ε ⊗ ζα) = ∇E (ε)⊗ ζα + (−1)|ε|ε ⊗ ∇G(ζα)

= ∇E (ε)⊗ ζα + (−1)|ε|ε ⊗ ∇G(ζ )α + (−1)|ε|+|ζ |ε ⊗ ζdα

= ∇G(ε ⊗ ζ )α + (−1)|ε|+|ζ |ε ⊗ ζdα.

The curvature on the tensor product is easily calculated:

Lemma 2.18 In the notation of the previous lemma, we have

(∇G)2 = (∇E )2 ⊗ F ⊕ E ⊗(∇F )2.

In particular, the tensor product of flat connections is again flat.

Proof For ε ∈ E, ζ ∈ F we have

(∇G)2(ε ⊗ ζ ) = ∇G(∇E (ε)⊗ ζ + (−1)|ζ |ε ⊗∇F (ζ ))

= (∇E )2(ε)⊗ ζ + (−1)|ζ |+1∇E (ε)⊗∇F (ζ )

+(−1)|ζ |∇E (ε)⊗ ∇F (ζ ) + ε ⊗(∇F )2(ζ )

= (∇E )2(ε)⊗ ζ + ε ⊗(∇F )2(ζ ).

Remark 2.19 The above lemma does not apply for some other definitions of connections
on bimodules, see for instance [18, Example 2.13].

It is easy to see that this tensor product is associative. The tensor product commutes
with the equivalence of categories C( A) → C(Zg( A)) from Theorem 2.14. In the com-
mutative case it is easy to see that the tensor product is also commutative; so we have a
commutativity constraint in the general case as well.

There is a unit in C( A): it is the bimodule A with the connection d . It is easy to see
that the isomorphism E → E ⊗ A A intertwines the connection ∇E with the tensor
product connection on E ⊗ A A.

This makes (C( A),⊗) into a tensor category, and the same applies to the subcategory
(Cflat( A),⊗).

2.4 Duals

We will now construct dual objects in the category C( A).

Proposition 2.20 Let ( E,∇) be an object of C( A). Then the dual module E∨ =
Hom A( E, A) of right- A-linear maps from E to A is an fgp A-bimodule.
Moreover, there is a connection on E∨ satisfying

∇∨(θ), ε = d θ, ε − (−1)|θ | θ, ∇ε (4)
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for θ ∈ E∨, ε ∈ E . Here the angled brackets denote the pairing between E∨ and E .

Proof The bimodule structure is given by θα, ε = θ, αε and αθ, ε = α θ, ε for
θ ∈ E∨, α ∈ A, ε ∈ E . There is a natural grading on E∨ where in degree k we
find the homogeneous maps of degree k. If E ⊕ F ∼= An we get E∨ ⊕ F∨ =
( E ⊕ F)∨ ∼= An. So E∨ is a graded fgp A-bimodule.

We can define the connection ∇∨ on E∨ by Eq. 4.
This is well-defined because ∇∨(θ),− is indeed a right-linear map with this definition:

for θ ∈ E∨, ε ∈ E, α ∈ A:

∇∨(θ), εα = d θ, εα − (−1)|θ | θ, ∇(εα)

= d( θ, ε α) − (−1)|θ | θ, ∇(ε)α + (−1)|θ |εdα

= d θ, ε α + (−1)|θ |+|ε| θ, ε dα − (−1)|θ | θ, ∇(ε) α − (−1)|θ |+|ε| θ, ε dα

= ∇∨(θ), ε α.

This satisfies the Leibniz rules: for θ ∈ E∨, ε ∈ E, α ∈ A we have

∇∨(θα), ε = d θα, ε − (−1)|θ |+|α| θα, ∇(ε)

= d θ, αε − (−1)|θ |+|α| θ, α∇(ε)

= d θ, αε − (−1)|θ |+|α| θ, ∇(αε) + (−1)|θ | θ, dα · ε

= ∇∨(θ), αε + (−1)|θ | θdα, ε

= ∇∨(θ)α + (−1)|θ |θdα, ε

and

∇∨(αθ), ε = d αθ, ε − (−1)|θ |+|α| αθ, ∇(ε)

= dα θ, ε + (−1)|α|αd θ, ε − (−1)|θ |+|α|α θ, ∇(ε)

= dα · θ + (−1)|α|α∇∨(θ), ε .

We can compute the curvature of the dual connection:

Lemma 2.21 In the notation of the previous lemma, the curvature of ∇∨ is minus the dual
of the curvature of ∇, that is, for θ ∈ E∨, ε ∈ E we have

(∇∨)2(θ), ε = − θ, ∇2(ε) .

In particular, the dual of a flat connection is again flat.

Proof We have for θ ∈ E∨, ε ∈ E :

((∇∨)2(θ), ε = d ∇∨(θ), ε − (−1)|θ |+1 ∇∨(θ),∇(ε)

= d(d θ, ε − (−1)|θ | θ, ∇(ε) ) − (−1)|θ |+1d θ, ∇(ε) − θ, ∇2(ε)

= − θ, ∇2(ε) .

Writing E = Zg( E) ⊗Zg( A) A we have

E∨ = Hom A(Zg( E) ⊗Zg( A) A, A) = Zg( E)∨ ⊗Zg( A) A.
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So the equivalence of categories C( A) → C(Zg( A)) commutes with the taking of duals.
In particular this shows that the dual E∨ = Hom A( E, A) is naturally isomorphic to
the space of left-linear functions A Hom( E, A).

Since E is an fgp bimodule, we have for each graded fgp bimodule F an isomorphism
Hom( F ⊗ E, A) = Hom( F , E∨ ⊗ A). An easy calculation shows that this iso-
morphism continues to hold for morphisms that commute with connections, if connections
on E and F are given. So ( E∨,∇∨) is a dual object to ( E, ∇). The morphism
E → ( E∨)∨ is an isomorphism because E is fgp. So every object is reflexive and we

arrive at the following result.

Corollary 2.22 (C( A),⊗) is a rigid tensor category, and the subcategory (Cflat( A),⊗)

is also a rigid tensor category.

3 A Tannakian Category and the Fundamental Group

In this section we will show that under some analytical conditions on the dga the category
Cflat( A) constructed above is actually a neutral Tannakian category. In particular, if the
algebra A = 0A is a dense ∗-subalgebra of a quantum metric space in the sense of Rieffel
[29] these conditions are met, so that our results apply to a broad class of noncommutative
differential spaces. We then define the fundamental group of the pertinent noncommutative
space as the automorphism group of the fiber functor in this Tannakian category (we refer
to [9] for more details).

3.1 Abelianness of the Category

In this subsection we will study when the category C( A) is abelian. Using Theorem 2.14
we can always reduce to a graded commutative dga and this allows for the description of
C( A) simply as the category of fgp A-modules equipped with a connection (cf. Remark
2.15). We will assume that A is a unital ∗-algebra that is dense in a unital C∗-algebra A.
This will be necessary for some of the constructions below. Moreover we also need the star
operation on A.

Definition 3.1 A ∗-dga is a dga A with a linear involution ∗, satisfying (αβ)∗ = β∗α∗
and d(α∗) = d(α)∗.

We also assume that the elements in A that are invertible in A are also invertible in A,
so A∩ A× = A×. This is in particular the case if A is stable under holomorphic functional
calculus (see [13, p.134]).

The category C( A) is always an additive category: given two objects ( E,∇E ) and
( F ,∇F ) the morphisms from E to F form an additive group, and there is an object
E ⊕ F where the connection is simply given by ∇E⊕F = ∇E ⊕∇F . In general, C( A)

is not an abelian category. For example, if kA = 0 for all k ≥ 1, then C( A) is simply the
category of fgp modules over A, which is generally not an abelian category. In fact we can
easily prove a necessary condition on a graded commutative dga A if C( A) is abelian.
We will call a differential graded commutative algebra A connected if A is connected
(i.e. contains no non-trivial projections).
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Lemma 3.2 Let A be a connected graded commutative dga and suppose that C( A) is
abelian. Let a ∈ A and suppose that da = aω for some ω ∈ 1A. Then a is either 0 or
invertible.

Proof Consider the two objects (A, d + ω) and (A, d) of C( A). Since da = aω we have
a commuting diagram

A A

1A 1A

a

d+ω d

a

where a denotes the multiplication by a. So multiplication by a is a morphism between
these objects. We then get a short exact sequence 0 → ker(a) → A a−→ im(a) → 0. This
is a short exact sequence of A-modules, and since im(a) is an fgp A-module, it is split, and
we get A ∼= ker(a) ⊕ im(a). Since A is connected this means that either im(a) = 0, which
means that a = 0, or im(a) = A, which means that a is invertible.

We will now define a slightly stronger condition on A, and we will show later that this
is a sufficient condition for the category C( A) to be abelian.

Definition 3.3 Let A be a ∗-dga with A ⊆ A, densely. We say that A satisfies property
Q if it satisfies the following condition:

for all a ∈ A with a ≥ 0 and all a1, . . . , as ∈ A with all |ai | ≤ a, and all ω1, . . . , ωs ∈
1A: if da = s

i=1 aiωi , then either a = 0 or a is invertible.

If A is graded commutative, this easily implies the conclusion in Lemma 3.2: if da =
aω, we have a∗a ≥ 0 and d(a∗a) = d(a)∗a + a∗da = aa∗(ω + ω∗), so aa∗ is 0 or
invertible, hence a is 0 or invertible. It also implies that A is connected, in the sense that
there are no non-trivial projections: if p ∈ A is a projection, then dp = d(p2) = 2pdp, so
(1 − 2p)dp = 0 and multiplying by 1 − 2p gives dp = 0. Then p should be 0 or invertible,
so any projection is 0 or 1.

3.1.1 Quantummetric differential graded algebras

We will now show that property Q holds for quantum metric differential graded algebras.
First we recall the notion of a compact quantum metric space, introduced by Rieffel [29].
Let A be a C∗-algebra and let L be a seminorm on A that takes finite values on a dense
subalgebra A. We think of L as a Lipschitz norm. This defines a metric on the state space
S(A) by Connes’ distance formula [5, Ch. VI.1]: for χ,ψ ∈ S(A) we have

dL(χ,ψ) = sup{|χ(a) − ψ(a)|, a ∈ A, L(a) ≤ 1}.
This metric then defines a topology on the state space. We already had the weak-∗ topology,
so it is natural to make the following definition:

Definition 3.4 Let A be a unital C∗-algebra and let L be a seminorm on A taking finite
values on a dense subalgebra. Then A is called a compact quantum metric space if the
topology on S(A) induced by the metric dL coincides with the weak-∗ topology.

Now we go back to the case that we have a ∗-dga A and A is a dense subset of a
unital C∗-algebra A. Suppose that a norm · is given on 1A, satisfying the inequality
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aω ≤ a · ω for a ∈ A, ω ∈ 1A. This defines a seminorm L on A by L(a) = da .
The space A is called a quantum metric dga if A is a compact quantum metric space with
this seminorm.

Remark 3.5 Note that any compact quantum metric space gives rise to a quantum metric
dga. Indeed, it was realised in [29] that the Lipschitz norm can be obtained as L(a) =
[D, a] for a suitable operator D on a Hilbert space. The space of Connes’ differential

forms [5, Ch. VI] is then a quantum metric dga.

Also note that if A is a quantum metric dga, the same holds for Zg( A), by [29,
Proposition 2.3].

Lemma 3.6 Let A be a graded commutative quantum metric dga and suppose that A ∩
A× = A×. Then A satisfies property Q.

Proof Let a ∈ A with a ≥ 0, and let a1, . . . , as ∈ A with all |ai | ≤ a, and ω1, . . . , ωs ∈
1A satisfying da = s

i=1 aiωi . By scaling we may assume that 0 ≤ a ≤ 1. Define
the polynomial pn(x) = n

k=1
1
k
(1 − x)k , which is the truncation of the power series of

− log(x). Then we have

dpn(a) = pn(a)da = −
s

i=1

aiωi

n

k=1

(1 − a)k−1.

For each 1 ≤ i ≤ s we have

ai

n

k=1

(1 − a)k−1 ≤ a

n

k=1

(1 − a)k−1 = |1 − (1 − a)n| ≤ 1.

So we get

dpn(a) ≤
s

i=1

ωi ,

in particular the norm of dpn(a) is bounded as n → ∞.
If a is neither 0 nor invertible in A, there are points χ,ψ in the Gelfand spectrum of A

satisfying χ(a) = 0 and ψ(a) = t > 0. Then χ(pn(a)) = n
i=1

1
k

→ ∞ as n → ∞, while
ψ(pn(a)) = n

i=1
1
k
(1 − t)k → − log(t) as n → ∞. We get

d(χ,ψ) ≥ |χ(pn(a)) − ψ(pn(a))|
dpn(a)

→ ∞
so d(χ,ψ) = ∞. But the metric d should give the weak-∗ topology on the spectrum, and
the spectrum is connected, so this is a contradiction. So either a = 0 or a ∈ A×, and in the
second case a ∈ A ∩ A× = A×.

3.1.2 Proof of abelianness

In the rest of this section, we will show that if a graded commutative dga A satisfies
property Q, then C( A) is an abelian category. Suppose we have a morphism ϕ : E → F in
the category C( A). We have to show that ker(ϕ), im(ϕ), coker(ϕ) are also in the category,
and that the natural morphism coim(ϕ) → im(ϕ) is an isomorphism. The most difficult part
is to show that these are finitely generated projective modules.
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Lemma 3.7 Let ϕ : E → F be a morphism between fgp A-modules. Then the following
are equivalent:

• TheA-modules ker(ϕ), im(ϕ), coker(ϕ) are fgp.
• There is anA-module homomorphism ϕ+ : F → E satisfying ϕϕ+ϕ = ϕ.

Proof Suppose that ker(ϕ), im(ϕ), coker(ϕ) are fgp. Then the short exact sequence 0 →
ker(ϕ) → E → im(ϕ) → 0 is split, so E ∼= ker(ϕ) ⊕ im(ϕ). The short exact sequence
0 → im(ϕ) → F → coker(ϕ) → 0 is also split, so F ∼= im(ϕ) ⊕ coker(ϕ). The map ϕ

then corresponds to the map ker(ϕ) ⊕ im(ϕ) → im(ϕ) ⊕ coker(ϕ) sending (a, b) to (b, 0).
We can then choose the map ϕ+ : im(ϕ) ⊕ coker(ϕ) → ker(ϕ) ⊕ im(ϕ) sending (c, d) to
(0, c). It is then easy to check that ϕϕ+ϕ = ϕ (and also ϕ+ϕϕ+ = ϕ+).

Now suppose there is an A-linear map ϕ+ : F → E satisfying ϕϕ+ϕ = ϕ. The surjec-
tion F → coker(ϕ) admits a splitting, sending the equivalence class [f ] to f − ϕϕ+(f ).
This is well-defined because ϕϕ+ϕ = ϕ. So the short exact sequence 0 → im(ϕ) →
F → coker(ϕ) → 0 is split, giving F ∼= im(ϕ) ⊕ coker(ϕ). So im(ϕ) and coker(ϕ) are
fgp. Then the short exact sequence 0 → ker(ϕ) → E → im(ϕ) → 0 is also split, giving
E ∼= ker(ϕ) ⊕ im(ϕ). So ker(ϕ) is also fgp.

Remark 3.8 If ϕ : C
n → C

n and ϕ+ : C
n → C

n satisfy ϕϕ+ϕ = ϕ and ϕ+ϕϕ+ =
ϕ+, and ϕϕ+ and ϕ+ϕ are self-adjoint then ϕ+ is uniquely determined, and is called the
Moore-Penrose pseudoinverse [2].

In the case that ker(ϕ), im(ϕ), coker(ϕ) are finitely generated projective it is easy to
construct connections on these modules.

Lemma 3.9 Let ϕ : E → F be a morphism in C( A) and suppose that ker(ϕ),
im(ϕ) and coker(ϕ) are finitely generated projective. Then there are natural induced con-
nections on ker(ϕ) and coker(ϕ). There are then also natural induced connections on
coim(ϕ) = coker(ker(ϕ)) and im(ϕ) = ker(coker(ϕ)) and these are compatible with the
natural isomorphism of A-bimodules coim(ϕ)

∼−→ im(ϕ).

Proof We have the isomorphisms E ∼= ker(ϕ) ⊕ im(ϕ) and F ∼= im(ϕ) ⊕ coker(ϕ) as in
the proof of Lemma 3.7. This makes the commuting diagram

ker(ϕ) E F

ker(ϕ) ⊕ im(ϕ) im(ϕ) ⊕ coker(ϕ).

ϕ

∼ ∼

The lower horizontal map sends an element (a, b) to (b, 0). Tensoring this diagram with
1A gives

ker(ϕ) ⊗ 1A E ⊗ 1A F ⊗ 1A

ker(ϕ) ⊗ 1A ⊕ im(ϕ) ⊗ 1A im(ϕ) ⊗ 1A ⊕ coker(ϕ) ⊗ 1A.

ϕ ⊗ 1A

∼ ∼
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Now we see that ker(ϕ) ⊗ 1A is the kernel of the lower horizontal map, so it is also the
kernel of ϕ ⊗ 1A. We also know that coker(ϕ) ⊗ 1A is the cokernel of the map ϕ ⊗ 1A
because tensoring with 1A is right exact. Now consider the diagram

ker(ϕ) E F coker(ϕ)

ker(ϕ)⊗ 1A E ⊗ 1A F ⊗ 1A coker(ϕ) ⊗ 1A.

∇E

ϕ

∇F

ϕ ⊗ 1A

We see that ∇E induces a map ∇ker(ϕ) : ker(ϕ) → ker(ϕ) ⊗ 1A and that ∇F induces
a map ∇coker(ϕ) : coker(ϕ) → coker(ϕ)⊗ 1A. It is easy to check that these satisfy the
Leibniz rules. These are the connections we want.

Now consider the diagram

E coim(ϕ) im(ϕ) F

E ⊗ 1A coim(ϕ)⊗ 1A im(ϕ)⊗ 1A F ⊗ 1A.

∇E

∼

∇coim(ϕ) ∇ im(ϕ) ∇F

∼

The connections ∇coim(ϕ) and ∇ im(ϕ) are constructed as above as connections on the cok-
ernel of the morphism ker(ϕ) → E and the kernel of the morphism F → coker(ϕ),
respectively. We know that the left and the right square of the diagram commute and sim-
ple diagram chasing shows that the middle square commutes as well. So the isomorphism
coim(ϕ)

∼−→ im(ϕ) becomes an isomorphism in C( A).

Let M ∈ Mn(A) be a matrix with coefficients in a commutative algebra A. Let χM ∈
A[x] be the characteristic polynomial, with coefficients (−1)mDm(M), so

χM(x) = xn − Dn−1(M)xn−1 + Dn−2(M)xn−2 − . . . + (−1)nD0(M).

Note that D0(M) = (−1)n det(M) and Dn−1 = Tr(M). In general, Dm(M) is the sum
of the determinants of m × m square submatrices.

We need the inequality below involving Dm. Its proof is an easy calculation after diago-
nalising M∗M , and not very interesting. Its proof can be found in the Appendix. The term
2 Re(M∗[M,K]) will appear in the proof of Theorem 3.12.

Lemma 3.10 For M,K ∈ Mn(C) we have

d

dt |t=0
Dm(M∗M + t · 2 Re(M∗[M, K])) ≤ 4n K HSDm(M∗M).

Here 2 Re(M∗[M, K]) = M∗[M, K] + (M∗[M, K])∗ and K HS denotes the Hilbert–
Schmidt norm of K .

Proof See Lemma B.1 in the Appendix.

Remark 3.11 Both sides of this inequality are continuous functions of the entries of M and
K . The inequality then still holds for M,K ∈ Mn(A), since it can be checked at any point

in the spectrum (the Hilbert–Schmidt norm is then K HS = Tr(K∗K)
1
2 ).
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We are now ready to prove that C( A) is an abelian category. We need to show that any
ϕ : E → F has a finitely generated projective kernel, image and cokernel. In the first part
of the proof we reduce to the case ϕ : An → An. In the second part we prove that each
term in the characteristic polynomial of ϕ∗ϕ is either zero or invertible. Lastly we use this
to prove that ϕ has a pseudo-inverse (as in Lemma 3.7).

Theorem 3.12 Let A be a graded commutative ∗-dga satisfying property Q. Then the
category C( A) is abelian.

Proof Let ϕ : E → F be a morphism in C( A). We will show that ker(ϕ), im(ϕ), coker(ϕ)

are finitely generated projective A-modules, and then we are done by Lemma 3.9.
There is a projective module G with E ⊕ F ⊕ G ∼= An. We can write G ∼= pAn for

a projection p ∈ EndA(An). Then we can define a connection ∇G : pAn → p( 1A)n

by ∇G(g) = pdg. It is easy to check that this defines a connection on G (it is called the
Grassmannian connection). This makes (G, ∇G) an object of C( A) and it also defines a
connection on the direct sum module E ⊕ F ⊕ G.

Now the map
⎛

⎝
0 0 0
ϕ 0 0
0 0 0

⎞

⎠ : E ⊕ F ⊕ G → E ⊕ F ⊕ G

is a morphism in C( A). Its kernel is ker(ϕ) ⊕ F ⊕ G, its image is 0 ⊕ im(ϕ) ⊕ 0 and
its cokernel is E ⊕ coker(ϕ) ⊕ G. So it is enough to show that these are finitely generated
projective. Therefore it is enough to prove: for a connection ∇ : An → ( 1A)n and a
morphism ϕ : An → An that commutes with ∇, the kernel, image and cokernel of ϕ are
fgp modules.

The connection ∇ : An → ( 1A)n can be written as ∇ = d + κ , where κ : An →
( 1A)n is an A-linear function. We can view κ as an n×n matrix with coefficients in 1A.
The induced connection on HomA(An,An), which we still call ∇, satisfies

∇( f, e ) = ∇(f ), e + f, ∇(e)

for f ∈ HomA(An,An) and e ∈ An. So

d( f, e ) + κ f, e = ∇(f ), e + f, de + f, κe

and this gives

∇(f ) = df + [κ, f ].

Since ϕ : An → An commutes with the connection, we know that ∇(ϕ) = 0 so we
conclude that

dϕ = [ϕ, κ]

where ϕ is viewed as an element of Mn(A). We get

d(ϕ∗ϕ) = ϕ∗d(ϕ) + d(ϕ)∗ϕ = 2 Re(ϕ∗[ϕ, κ]).
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Now let am = Dm(ϕ∗ϕ) ∈ A be the m-th term of the characteristic polynomial of ϕ∗ϕ (up
to sign). Write κ = s

i=1 Kiωi with Ki ∈ Mn(A) and ωi ∈ 1A. We get

dam = dDm(ϕ∗ϕ)

= d

dt |t=0
Dm(ϕ∗ϕ + td(ϕ∗ϕ))

= d

dt |t=0
Dm(ϕ∗ϕ + t · 2 Re(ϕ∗[ϕ, κ]))

=
s

i=1

d

dt |t=0
Dm(ϕ∗ϕ + t · 2 Re(ϕ∗[ϕ, Ki]))ωi

=
s

i=1

aiωi

where

ai = d

dt |t=0
Dm(ϕ∗ϕ + t · 2 Re(ϕ∗[ϕ,Ki])).

By Lemma 3.10 and Remark 3.11 we get |ai | ≤ 4 Ki HSam. We can now apply property
Q (if we put the factor 4 Ki HS in the ωi) to conclude that am is either 0 or invertible.

Now consider the smallest m for which am = 0 (note an = 1 so this m exists). Then
am is invertible. The characteristic polynomial of ϕ∗ϕ is now χϕ∗ϕ(x) = xn − an−1x

n−1 +
. . . + (−1)n−mamxm. Let p(x) = x−mχϕ∗ϕ = xn−m − an−1x

n−m−1 + . . . + (−1)n−mam.
By Cayley–Hamilton we know χϕ∗ϕ(ϕ∗ϕ) = 0, so ϕ∗ϕp(ϕ∗ϕ) is nilpotent, and also
self-adjoint, so ϕ∗ϕp(ϕ∗ϕ) = 0. Then (ϕp(ϕ∗ϕ)) · (ϕp(ϕ∗ϕ))∗ = 0, so in fact already

ϕp(ϕ∗ϕ) = 0. Let q(x) = 1+(−1)n−m−1a−1
m p(x)

x
∈ A[x] and set ϕ+ = q(ϕ∗ϕ)ϕ∗. Then we

have

ϕϕ+ϕ = ϕq(ϕ∗ϕ)ϕ∗ϕ = ϕ(1 + (−1)n−m−1a−1
m p(ϕ∗ϕ)) = ϕ.

By Lemma 3.7 it follows that the kernel, image and cokernel of ϕ are finitely generated
projective. This concludes the proof of the theorem.

Corollary 3.13 With the same conditions as in the theorem, the category Cflat( A) is also
abelian.

Proof The category Cflat( A) is a full subcategory of C( A). The kernel, image and coker-
nel of a morphism in Cflat( A) are again in Cflat( A) because the connections constructed
in Lemma 3.9 are flat if ∇E and ∇F are flat.

Corollary 3.14 Let A be a ∗-dga such that the graded centre Zg( A) satisfies property
Q. Then both categories C( A) and Cflat( A) are abelian.

Proof This follows directly from Theorem 3.12 and the equivalence between C( A) and
C(Zg( A)) proved in Theorem 2.14.

3.2 Definition of the fundamental group

In this section we will define the fundamental group of a dga satisfying suitable analytical
conditions. We will first complete the proof that Cflat( A) is a Tannakian category, after
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which the fundamental group is defined as the group of automorphisms of the fibre functor.
Since we have already proven that Cflat( A) is a rigid tensor category, and under some con-
ditions on A, that it is abelian, what is left to show is that End( A) = C and constructing a
fiber functor ω : Cflat( A) → Vec, where Vec is the category of finite-dimensional vector
spaces over C.

Lemma 3.15 Let A be a graded commutative dga satisfying property Q. Then the algebra
of endomorphisms is End( A) = C.

Proof Let θ : A → A be an isomorphism. Since θ is bilinear, for all α ∈ A we
have θ(α) = αθ(1). So θ is determined by a = θ(1) ∈ A. Since θ has to commute with
the connection we get da = d(θ(1)) = θ(d(1)) = 0. Let λ be a complex number in the
spectrum of a. Then we have d(a − λ) = 0, but a − λ is not invertible. Since A satisfies
property Q it follows that a = λ ∈ C.

For the fibre functor, pick a point p in the Gelfand spectrum A of a commutative A

(that contains A densely). Then our fibre functor is given by sending a bimodule E to the
localisation of its centre at p. This is defined as E ⊗A C, where the A-module structure on
C is given by p. Note that this depends on a choice of a point in the Gelfand spectrum. This
point plays a similar role as the base point of the usual fundamental group.

Lemma 3.16 Let A be a graded commutative dga that satisfies property Q and let p ∈ A.
There is a faithful exact fibre functor ω : Cflat( A) → Vec sending E to Ep.

Proof Let (E,∇E ) and (F ,∇F ) be objects of Cflat( A) and let ϕ : E → F be a mor-
phism commuting with the connections. Since ϕ is A-linear, this induces a map Ep → Fp ,
showing that ω is functorial.

To show that ω is faithful, suppose that ϕp = 0. Since Cflat( A) is abelian we know
that im(ϕ) is an fgp module. Now look at im(ϕ) ⊗A A. This is an fgp module over the C∗-
algebra A, which corresponds to a vector bundle on A. It is zero at p, and the rank is locally
constant, and A is connected, so im(ϕ)⊗A A = 0. Since im(ϕ) is projective it is flat, and
im(ϕ) → im(ϕ) ⊗A A is an injection, so also im(ϕ) = 0. We conclude that ϕ = 0.

The fibre functor is exact because a localisation is always exact.

Theorem 3.17 Let A be a ∗-dga such that Zg( A) satisfies property Q. Then the
category Cflat( A) can be equipped with the structure of a neutral Tannakian category.

Proof We already know that the category Cflat( A) is an abelian rigid tensor category.
The reduction to the graded commutative case (Theorem 2.14) then allows us to apply the
previous two Lemma’s to complete the proof.

The fibre functor ω : Cflat( A) → Vec is then of course given as the composition of the
functor defined in Theorem 2.14 and the fibre functor in Lemma 3.16.

We thus derive from eg. [10, Theorem 2.11] that the category Cflat( A) is equivalent
to the category of representations of an affine group scheme, which allows us to make the
following definition.

Definition 3.18 Let A be a dga such that Zg( A) satisfies property Q. Let p ∈ Zg(A).
Then we define π1( A, p) to be the group scheme of automorphisms of the fibre functor
ω : Cflat( A) → Vec at p.
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Note that in practice we will simply recognise the category Cflat( A) as being equiv-
alent to the category of representations of some (topological) group whose pro-algebraic
completion is the fundamental group.

Example 3.19 We have seen in Example 2.11 that for a connected manifold M with-
out boundary we have Cflat( M) ∼= Rep(π1(M)). Hence π1( M) is the pro-algebraic
completion of π1(M).

Example 3.20 Consider the graded commutative ∗-dga [0, 1], where 0[0, 1] =
C∞[0, 1] and 1[0, 1] = C∞[0, 1]dx, i[0, 1] = 0 for i ≥ 2. Each fgp module over
C∞[0, 1] is a free module. We will show explicitly that each flat connection on a free mod-
ule is isomorphic to the trivial connection d, thereby showing that Cflat( [0, 1]) is equivalent
to the category of vector spaces and π1( [0, 1]) is trivial as we would expect.

Let W ⊗ C∞[0, 1] be a module over C∞[0, 1] where W is a vector space, and let
∇ : W ⊗C∞[0, 1] be a connection. Write ∇ = d + ω, where ω : W ⊗C∞[0, 1] →
W ⊗ 1[0, 1] is a linear map. Let α : W ⊗ C∞[0, 1] → W ⊗C∞[0, 1] be an isomorphism.
Then the diagram

W ⊗ C∞[0, 1] W ⊗ 1[0, 1]

W ⊗ C∞[0, 1] W ⊗ 1[0, 1]

∇

α α

d

commutes if and only if ∇ = α−1 ◦ d ◦ α. If we see α as an element of End(W)⊗ C∞[0, 1]
we can take the derivative of it, which satisfies d(α) = d ◦α−α ◦d ∈ End(W)⊗ C∞[0, 1].
So the diagram above commutes when ∇ = α−1 ◦ (d(α) + α ◦ d) = d + α−1d(α).

Hence we are looking for an invertible element α ∈ End(W)⊗C∞[0, 1] satisfying
d(α) = αω. The solution of this equation is given by a path-ordered exponential, namely, we
set α = ∞

n=0 αn where α0 = 1 and where recursively αn+1(t) = t

0 αnω for n ≥ 0. It fol-

lows easily by induction that αn(t) ≤ tn ω n

n! , so the series converges. Since dαn+1 = αnω

we get dα = αω. In a similar way we can construct α satisfying dα = −ωα , and it is
easy to see that this is the inverse of α.

So (W ⊗C∞[0, 1],∇) is isomorphic to (W ⊗C∞[0, 1], d) and we conclude that
π1( [0, 1]) = 0.

Example 3.21 Let kA = M2(C) for all k. Let d be given by taking the graded commuta-
tor with the matrix D = 1 0

0 −1 . Explicitly, d is given in even degrees by a b
c d → 0 −2b

2c 0
and in odd degrees by a b

c d → 2a 0
0 −2d . This is the noncommutative space corresponding

to the set of two points that are identified.
The graded centre of this dga is just Zg( A) = C ⊕ 0 ⊕ C ⊕ 0 ⊕ · · · where C is

embedded diagonally in M2(C). Then Cflat(Zg( A)) is just equivalent to the category of
vector spaces. The fundamental group is trivial.

Example 3.22 Consider the following graded commutative dga: let 0B = C, 1B = C

and nB = 0 for n ≥ 2, with d = 0. Note that there is a unique point in B. An fgp
B-bimodule is simply a finite-dimensional vector space V and a connection is a C-linear

map ∇ : V → V , and it is always flat. So the category Cflat( B) is equivalent to the
category of vector spaces with an endomorphism. This is in turn equivalent to the category of
continuous representations of R: the vector space V with the endomorphism α corresponds
to the representation π : R → End(V ), π(t) = exp(tα). All continuous representations
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of R are of this form by Lemma A.1 in the Appendix. Since the category of all continuous
representations of a topological group R is equivalent to the category of representations of
the algebraic hull of R (cf. [10, Ex. 2.33]), the fundamental group of B is then the algebraic
hull of R.

Example 3.23 Let B be the dga from the previous example and let A be any graded
commutative dga satisfying property Q, and let p ∈ A. Consider the graded tensor product
A = A⊗ B. This is a dga, its modules are given by ( 0A ) = A and nA =
nA ⊕ n−1A for n ≥ 1. Let E be an fgp A-bimodule. A connection over ( A ) is given

by a map ∇ : E → E ⊗ 1A ⊕ E . Write ∇ = ∇A ⊕ ∇B, where ∇A : E → E ⊗ 1A
is a connection over A and ∇B : E → E is an A-linear map. The curvature of the
connection ∇2 : E → E ⊗ 2A ⊕ E ⊗ 1A is then given by ∇2

A ⊕ [∇B,∇A]. So ∇ is
flat if and only if ∇A is flat and commutes with the endomorphism ∇B. We get a series of
equivalences

Cflat( A ) {objects of Cflat( A) with an endomorphism}
{objects of Rep(π1( A)) with an endomorphism}
Rep(π1( A) × R).

Hence the fundamental group of A = A⊗ B at p is (the algebraic hull of)
π1( A, p) × R.

This leads to the following useful general result.

Proposition 3.24 Let V be an n-dimensional vector space and consider the graded algebra
V with differential d = 0. Then π1( V ) is the algebraic hull of Rn. More generally,

if A is any graded commutative dga which satisfies property Q and p ∈ A, then the
fundamental group of A⊗ V at p is the algebraic hull of π1( A, p) × R

n.

Proof The dga V is isomorphic to the n-fold tensor product of the dga in Example 3.22,
so by Example 3.23 we see that π1( V ) is the algebraic hull of Rn. Similar reasoning
leads to the second statement.

4 Some Properties of the Fundamental Group

In this section we will establish some of the crucial properties that one would like a fun-
damental group to possess. This includes base point invariance, functoriality, homotopy
invariance and Morita invariance.

4.1 Base Point Invariance

As one might expect, different base points give rise to isomorphic fundamental groups, at
least provided that they are joined by a smooth path. In this case we will also simply write
π1( A), omitting the base point from the notation.

Proposition 4.1 Let A be a ∗-dga such that Zg( A) satisfies property Q. Let p, q ∈
Zg(A) be base points. Suppose we have a ∗-homomorphism γ : Zg( A) → [0, 1]
satisfying ev0 ◦γ = p, ev1 ◦γ = q where evt denotes evaluation at t . Then there exists an
isomorphism π1( A, p) ∼= π1( A, q).
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Proof We may assume without loss of generality that A is graded commutative. Consider
the following diagram:

Cflat( A) Cflat( [0, 1])

Vec

γ

p q
v0

v1

Here the horizontal map γ denotes, by abuse of notation, the functor that sends E to
E ⊗γ C∞[0, 1], and similar for the maps p and q. The functor v0 sends E to E0 and sim-
ilar for v1. Let n : Cflat( [0, 1]) → Vec be the functor sending (E,∇) to the vector
space ker(∇). By Example 3.20, we have ker(∇)⊗ C∞[0, 1] ∼−→ E . Therefore the map
ker(∇) → E0 given by localisation at 0 is an isomorphism. This gives a natural isomorphism
between n and v0. Similarly we have a natural isomorphism from n to v1. So the functors v0
and v1 are naturally isomorphic, and it follows that the fibre functors from p and q are also
naturally isomorphic. Then their group schemes of automorphisms are isomorphic as well,
giving the isomorphism π1( A, p) ∼= π1( A, q).

It is not known whether base point invariance holds without the additional assumption in
Proposition 4.1

4.2 Functoriality of the fundamental group

For graded commutative spaces there is a good notion of functoriality for the fundamental
group. In this section we will address the question for which maps between dga’s there is
an induced map between the fundamental groups.

We start by observing that the fundamental group π1( A, p) is defined in terms of the
dga A and a character p on the center Zg( A), interpreted as the base point. Now, if
ϕ : A → B is a map of dga’s one can only expect functoriality on the corresponding
fundamental groups to have any meaning at all if base points are mapped to base points. In
other words, characters of the center should be mapped to characters of the center. In other
words, it is crucial to demand that the map ϕ maps the center to the center. Under such
conditions, we can establish the following functorial property of the fundamental group of
dga’s.

Proposition 4.2 Let A and B be ∗-dga’s such that their graded centers satisfy property
Q. Let ϕ : A → B be a degree 0 algebra morphism satisfying ϕ(dα) = d(ϕ(α)) for all

α ∈ A and that ϕ(Zg( A)) ⊆ Zg( B). Let q ∈ Zg(B) and p = ϕ∗(q) ∈ Zg(A). Then
ϕ induces a map π1ϕ : π1( B, q) → π1( A, p).

Proof Since C( A) is equivalent to C(Zg( A)) (and the same for B instead of A)
and ϕ induces a map of dga’s from Zg( A) → Zg( B) we may assume without loss
of generality that our dga’s are graded commutative. Hence, if E is an fgp A-module then
E ⊗A B is an fgp B-module. A flat connection ∇ : E → E ⊗ 1A gives a flat connection
∇ : E ⊗A B → E ⊗A 1B, given by ∇(e ⊗ b) = ∇(e)b + e ⊗ db. So we get a map
C( A) → C( B). It is easy to see that it is functorial and also that it commutes with
the fibre functors. Then every automorphism of the fibre functor C( B) → Vec can be
pulled back to an automorphism of the fibre functor C( A) → Vec. So we get a map
π1ϕ : π1( B, q) → π1( A, p).
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4.3 Homotopy invariance

In this subsection we will show that homotopic maps ϕ0, ϕ1 : ( B, p) → ( A, q) give
rise to the same map π1ϕ0 = π1ϕ1 : π1( A, q) → π1( B, p).

Lemma 4.3 Let E ⊗C∞[0, 1] be an fgp module over A⊗C∞[0, 1], where E is an fpg
module over A. Let ∇ : E ⊗ C∞[0, 1] → E ⊗ 1[0, 1] be a connection over [0, 1]
that is A-linear. Then there is an A⊗C∞[0, 1]-linear isomorphism α : E ⊗C∞[0, 1] →
E ⊗C∞[0, 1] such that α ◦ ∇ = d ◦ α.

Proof The proof is essentially the same as that of Example 3.20. Write ∇ = d + ω with
ω : E ⊗C∞[0, 1] → E ⊗ 1[0, 1] an A⊗C∞[0, 1]-linear map. We want to construct α

such that dα = αω, viewing α as an element of EndA E ⊗C∞[0, 1]. Let α0 = 1, and
define recursively αn+1(t) = t

0 αnω. Then α = ∞
n=0 αn is well-defined and invertible as

in Example 3.20 and it satisfies dα = αω.

Lemma 4.4 Let E be an fgp module over A⊗C∞[0, 1] with a connection ∇2 : E →
E ⊗ 1[0, 1] over [0, 1] that is A-linear. Then ker(∇2) is an fgp A-submodule of E and
we have a natural isomorphism ker(∇2) ⊗C∞[0, 1] ∼−→ E given by multiplication.

Proof Let F be another fgp module over A⊗C∞[0, 1] such that E ⊕ F is free. We can
choose a (Grassmannian) connection ∇F : F → F ⊗ 1[0, 1] over [0, 1] that is A-
linear. Now the free module E ⊕ F has the connection ∇2 ⊕ ∇F . By lemma 4.3 we may
identify E⊕F with W ⊗A⊗C∞[0, 1] for some vector space W with the connection given
by d : W ⊗A⊗C∞[0, 1] → W ⊗A⊗ 1[0, 1]. Now note that ker(d) = W ⊗A and the
map ker(d)⊗C∞[0, 1] → E ⊕F is an isomorphism. It follows that ker(∇2) = ker(d) ∩ E
is an fgp A-module and the map ker(∇2) ⊗C∞[0, 1] → E is an isomorphism.

We can use this lemma to prove a version of homotopy invariance for π1. First we give
the definition of homotopy for morphisms of dga’s.

Definition 4.5 Let A and B be ∗-dga’s whose graded centres satisfy property Q and

let p ∈ Zg(A), q ∈ Zg(B) be base points. Two maps ϕ0, ϕ1 : ( B, q) → ( A, p) are
called homotopic if there exists a map

H : B → A⊗ [0, 1]
that satisfies the following conditions:

• the map H sends graded centre to graded centre;
• it satisfies evt ◦H = ϕt for t = 0, 1, where evt : [0, 1] → C denotes evaluation at t ;
• the diagram

Zg( B) Zg( A) ⊗ [0, 1]]

C [0, 1]

H

q p ⊗ [0,1]
z→constz

commutes.

Remark 4.6 Considering the diagram above in degree 0, we see that it means that H pulls

back the point p × t ∈ Zg(A) × [0, 1] to the point q for all t ∈ [0, 1]. If Zg(
1B) is

generated by elements of the form b0 db1, this is an equivalent condition.
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Theorem 4.7 Let A and B be ∗-dga’s whose graded centres satisfy property Q and let

p ∈ Zg(A), q ∈ Zg(B) be base points. Let ϕ0, ϕ1 : ( B, q) → ( A, p) be homotopic
maps. Then π1ϕ0 = π1ϕ1 : π1( A, p) → π1( B, q).

Proof Let H : B → A⊗ [0, 1] be as in Definition 4.5. We may assume without
loss of generality that A and B are graded commutative. Let E be an fgp module over
A⊗ C∞[0, 1] with a flat connection ∇. We can write ∇ = ∇1 ⊕ ∇2 : E → E ⊗ 1A ⊕
E ⊗ 1[0, 1] where ∇1 : E → E ⊗ 1A is a connection over A that is C∞[0, 1] linear
while ∇2 : E → E ⊗ 1[0, 1] is a connection over [0, 1] that is A-linear. By Lemma
4.4 we know that ker(∇2) is an fgp A-module, and it is easy to check that ∇1|ker(∇2) is a
connection on this module. So we can consider the functor

n : Cflat( A⊗ [0, 1]) → Cflat( A)

given by n(E,∇) = (ker(∇2), ∇1|ker(∇2)). Consider also the functor

v0 : Cflat( A⊗ [0, 1]) → Cflat( A)

given by v0(E,∇) = (Eev0 ,∇ev0) where ev0 : A⊗ [0, 1] → A denotes evaluation at
0. By Lemma 4.4 we have a natural isomorphism η : n → v0, sending ker(∇2) to Eev0 by
the composition ker(∇2) → E → Eev0 .

Taking A = C in the above we get similar maps n , v0 : Cflat( [0, 1]) → Vec, and a
natural isomorphism η : n → v0. Now consider the diagram

Cflat( A⊗ [0, 1]) v0 Cflat( A)

Cflat( [0, 1]) v0 Vec

p ⊗ [0,1]

n

p

n

η

η

Here p ⊗ [0, 1] denotes by abuse of notation the functor sending E to
E ⊗p ⊗ [0,1] [0, 1], and similar for p. It is easy to see that p ◦ n = n ◦ (p ⊗ [0, 1]) and
p ◦ v0 = v0 ◦ (p ⊗ [0, 1]). Moreover, we have (p ⊗ [0, 1])∗η = p∗η. Now consider
the diagram

Cflat( B) Cflat( A⊗ [0, 1])

Vec Cflat( [0, 1]).

H

q p ⊗ [0,1]
F

Here we used similar abuse of notation as in the diagram above, and F is the functor sending
a vector space W to (W ⊗C∞[0, 1], d). This diagram commutes because H is a homotopy.
So we have p∗H ∗η = H ∗(p ⊗ [0, 1])∗η = q∗F ∗η . Now F ∗η is a natural isomorphism
between n ◦F = id : Vec → Vec and v0 ◦F = id : Vec → Vec, and it is in fact the identity.
So H ∗η is a natural isomorphism from n ◦ H to ϕ0, and p∗H ∗η : q → q is the identity.
Of course we get a similar natural isomorphism for evaluation at 1 instead of evaluation
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at 0, and composing these we get a natural isomorphism μ : ϕ0 → ϕ1 satisfying p∗μ =
id : q → q. Then the maps ϕ0, ϕ1 induce the same map π1ϕ0 = π1ϕ1 = π1( A, p) →
π1( B, q).

It follows directly that π1 is an invariant for homotopy equivalence:

Corollary 4.8 Let A and B be ∗-dga’s whose graded centres satisfy property Q and let

p ∈ Zg(A), q ∈ Zg(B) be base points. Let ϕ : ( A, p) → ( B, q) and ψ : ( B, q) →
( A, p) be morphisms such that ϕ ◦ψ and ψ ◦ϕ are homotopic to the identity on B and
A respectively. Then π1( A, p) is isomorphic to π1( B, q).

Proof It follows from the theorem that π1(ϕ) and π1(ψ) are inverse to each other.

4.4 Invariance Under Morita Equivalence

We now address the question whether π1 is invariant under Morita equivalence of the under-
lying dga’s. Since we work with differential graded algebras as well as with C∗-algebras,
for both of which there exist notions of Morita equivalence, let us make more precise what
we mean.

Let (R, d) be a differential graded ring. We denote by Moddg
R the category of all differ-

ential graded right R-modules (M, d) and with morphisms all graded module morphisms,
not only those of degree 0. We write d instead of ∇ here to distinguish these differentials
from the flat bimodule connections considered before. They satisfy the right Leibniz rule
(cf. Eq. 1):

d(mr) = d(m)r + (−1)|m|mdr; (m ∈ M, r ∈ R).
It then follows that the morphisms Hom((M, d), (N, d)) become differential graded
modules (over the differential graded ring End((M, d))), with

df (m) = d(f (m)) − (−1)|f |f (dm); (m ∈ M). (5)

Thus, the category Moddg
R is a so-called differential graded category, or dg-category.

Definition 4.9 Two differential graded rings R and S are called dg-Morita equivalent if the
categories Moddg

R and Moddg
S are equivalent.

It is a classical result in Morita theory that Morita equivalent rings have isomorphic cen-
ters (see for instance [21, Remark 18.43]). We prove an analogue for dg-Morita equivalent
differential graded rings. Recall that the graded center of an additive category is given by all
graded natural transformations η from the identity functor to itself (cf. [24, Section 4] and
references therein), i.e. for all dg-modules M, N and f ∈ Hom((M, d), (N, d)) there is a
(graded) commuting diagram

M N

M N

f

ηM ηN

f

in the sense that f ◦ ηN = (−1)|η||f |ηM ◦ f .

Proposition 4.10 The center of the category Moddg
R is a (graded commutative) differential

graded ring which is isomorphic to the graded center Zg(R) of R.
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Proof Since ηM ∈ Hom((M, d), (M, d)) we can define (dη)M = d(ηM) using Eq. 5. This
turns the graded center C(Moddg

R ) of Moddg
R into a dg ring. Let us then show that C(Moddg

R )

is isomorphic to Zg(R).
As in [21, Remark 18.43] we define a map

ρ : Zg(R) → C(Moddg
R )

r → η(r)

where η(r) is given by right multiplication by r , that is to say, η
(r)
M (m) = (−1)|m||r|mr for

all m ∈ M . The map ρ is a map of dg rings since |η(r)| = |r| and

(dη(r))M(m) = d(η
(r)
M (m)) − (−1)|r|η(r)

M (dm)

= (−1)|m||r|d(mr) − (−1)(|m|+2)|r|(dm)r

= (−1)|m|(|r|+1)m(dr) = η
(dr)
M (m).

It is also clearly injective. To prove that ρ is surjective take any η ∈ C(Moddg
R ) and consider

first ηR : R → R. This map satisfies ηR(s) = ηR(1)s = rs where we have set r :=
ηR(1) ∈ R. On the other hand, multiplication on the left on R by an element in R is a
morphism in Moddg

R so that by graded naturality we also have ηR(s) = (−1)|s||η|sηR(1) =
(−1)|r||s|sr . Hence r ∈ Zg(R) and ηR = η

(r)
R . For an arbitrary module M in Moddg

R consider
the following (graded) commuting diagram:

R M

R M

f

ηR ηM

f

where for m ∈ M we have defined f (r) = mr , a morphism of graded right R-modules of
degree |f | = |m|. Then

ηM(m) = ηM(f (1)) = (−1)|η||f |f (ηR(1)) = (−1)|r||m|f (r) = (−1)|m||r|mr

so that we may conclude that ηM = η
(r)
M for all dg-modules M and hence that ρ is surjective.

Theorem 4.11 Suppose that A and B are two dg-Morita equivalent dga’s whose
graded centers satisfy property Q.

Then

a) There is an isomorphism of dga’s ϕ : Zg( A) → Zg( B),
b) The induced map π1ϕ : π1( B, q) → π1( A, p) is an isomorphism where p =

ϕ∗(q) ∈ Zg( A) for q ∈ Zg( B).

Proof From the proof of the previous proposition we find that Zg( A) ∼= C(Moddg
A)

and also Zg(Moddg
B) ∼= C(Moddg

B). Since the categories Moddg
B and Moddg

B are equiv-
alent, their graded centers are isomorphic, which proves a). Functoriality of π1 as proved
in Proposition 4.2 in combination with the fact that π1( A, p) ∼= π1(Zg( A), p) and
π1( B, q) ∼= π1(Zg( B), q) (cf. Theorem 2.14) then proves b).

Remark 4.12 It is an interesting question to see whether π1 is invariant under derived
Morita equivalence as well. For instance, in [25, Prop. 9.2] or [20, Prop. 6.3.2] it is shown
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that the center of a ring is invariant under derived Morita equivalence. For the generalization
to differential graded rings we refer to the notes [17, 32], see also [24, Remark 5.6].

5 Examples: Toric Noncommutative Manifolds

5.1 Noncommutative Tori

In this section we will consider the noncommutative torus, also called the rotation algebra.
Let Aθ be the rotation algebra, as studied by Rieffel [26] and Connes [4], and described in
[13, Ch.12]. For any real number θ we define it to be the following ∗-algebra

Aθ :=
m,n

amnu
mvn : (amn) ∈ S(Z2)

where u, v are unitaries that satisfy uv = λvu where λ = e2πiθ . Note that the algebra Aθ

has a natural Z2-grading where umvn has degree (m, n). In fact, this degree is related to
the action α of a 2-dimensional torus T

2 by automorphisms on Aθ given by αt (u
mvn) =

eimt1+nt2umvn.
Let us now introduce the dga for the noncommutative torus, given by noncommutative

differential forms Aθ . The elements of 1(Aθ ) are of the form adu + bdv with a, b ∈
Aθ and they satisfy udu = du · u, udv = λdv · u, vdu = λdu · v, vdv = dv · v and
du · dv = −λdv · du. The elements of 2Aθ are of the form adudv with a ∈ Aθ (see
[13, Sect. 12.2]). The action α extends to the dga as a graded automorphism by demanding
that it commutes with the differential.

Note that an integer value of θ gives back the algebra C∞(T2) of the usual torus. The
noncommutative torus looks rather differently for θ irrational and θ rational. In both cases
we will compute the graded centre of Aθ and from there the fundamental group.

Proposition 5.1 Let θ be irrational. Then the center of Aθ is trivial and the fundamental
group of Aθ is isomorphic to (the algebraic hull of) R2.

Proof It is well-known that Z(Aθ ) is trivial, see for instance [13, Corl. 12.12]). In fact,
this result extends to the differential forms for which we have Zg( Aθ ) = ( Aθ )

T
2
, the

subalgebra of invariant vectors for the action α of T2. We see that Zg(
1Aθ) = u−1du ·

C ⊕ v−1dv · C and Zg(
2Aθ ) = u−1du · v−1dv · C. We conclude that the dga Zg( A)

is isomorphic to the dga V where V is the two-dimensional vector space u−1du · C ⊕
v−1dv · C. From Proposition 3.24 we then conclude that the fundamental group of Aθ is
isomorphic to (the algebraic hull of) R2.

It turns out that the flat connections on fgp Aθ -bimodules correspond to continu-
ous representations of R

2. We can give the correspondence explicitly. Any continuous
representation of R

2 on a vector space W is given by (t1, t2) → exp(t1α + t2β) with
α, β ∈ End(W) commuting endomorphisms of the vector space. The corresponding module
is E = W ⊗ Aθ , and the connection is given by

∇ : W ⊗ Aθ → W ⊗ Aθ

∇(w ⊗ a) = w ⊗ da + α(w)⊗ u−1du · a + β(w)⊗ v−1dv · a.

Note that all fgp Aθ -bimodules are free by Lemma 2.13, as Zg(Aθ ) = C.
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Remark 5.2 This should be compared to [23], which considered the irrational rotation
algebra with a holomorphic structure as a noncommutative elliptic curve, with resulting
fundamental group equal to (the algebraic hull of) Z.

Proposition 5.3 Let θ be rational. Then the fundamental group of Aθ coincides with that
of the classical manifold T

2, i.e. it is (the algebraic hull of) Z2.

Proof We write θ = p
q

with p, q coprime integers. Then the centre of Aθ is given by
power series in the commuting unitaries uq and vq with coefficients of rapid decay, and
thus isomorphic to the algebra C∞(T2) (see also [13, Corl. 12.3]). Furthermore, we have
Zg(

1Aθ ) = Zg(Aθ ) · u−1du ⊕ Zg(Aθ ) · v−1dv. This is also generated by uq and vq

and their derivations, as u−qduq = q · u−1du and v−qdvq = q · v−1dv. So Zg(
1Aθ ) ∼=

1
T

2. Similarly, Zg(
2Aθ ) ∼= 2

T
2. We see that Zg( Aθ ) ∼= T

2 and hence that the
fundamental group of Aθ is the same as that of the classical manifold T

2.

Remark 5.4 For any θ we have an inclusion map Zg( Aθ ) → A0. This gives a map
π1( A0) → π1(Zg( Aθ )) = π1( Aθ ). In the case that θ is irrational, this comes from

the inclusion Z
2 → R

2. In the case that θ = p
q

it comes from the multiplication Z
2 ·q−→ Z

2.
With this map we can distinguish the rational rotation algebras for different values of q.

For any θ the flat connections over Aθ correspond to the continuous representations
of the group (Z + θZ)2: for irrational θ , this is a dense subgroup of R

2 which has the
same continuous representations as R2 (see Lemma A.2 in the Appendix), and for rational
θ we have (Z + θZ)2 ∼= Z

2. The map π1( A0) → π1( Aθ ) is then always given by the
inclusion Z

2 → (Z + θZ)2.

5.2 Higher-dimensional Noncommutative Tori

The irrational tori can be generalised to higher dimensions, as in [27]. Let be a skew-
symmetric n × n matrix with coefficients in R. We use the notation of [13, Sect. 12.2]. The
algebra A is generated by unitaries u1, . . . , un satisfying ukul = e2πi kl uluk . We can also
write this as ukul = τ(ek, el)

2uluk where τ : (Zn)2 → C is the two-cocycle defined by
τ(r, s) = exp(πirt s) and ek ∈ Z

n denotes the k-th unit vector. A general term in A is
a power series expansion in the uk with coefficients in the Schwartz space S(Zn). It is the
noncommutative interpretation of the quotient of Rn by Z

n + Z
n, which is simply R

n/Zn

if = 0. Note that we get the two-dimensional noncommutative torus back by taking n = 2
and the matrix = 0 θ−θ 0 .

For any r ∈ Z we define the Weyl element

ur = exp

⎛

⎝πi

j<k

rj jkrk

⎞

⎠ u
r1
1 · · · urn

n .

These are linearly independent and generate the algebra A , and they satisfy

urus = τ(r, s)ur+s .

The one-form module 1A is free with generators {u−1
k duk}. We use these generators

because they are in the centre of 1A . The two-form module 2A is free with generators
{u−1

k duk · u−1
l dul, k < l}, et cetera.
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Proposition 5.5 The fundamental group π1( A ) of the n-dimensional noncommutative
torus is the algebraic hull of Zn + Z

n.

Proof Define the lattice

= {r ∈ Z
n | r ∈ Z

n} (6)

(it is reciprocal to the lattice used in [13, Sect. 12.2]). Let r1, . . . , rm be a basis of and
let rm+1, . . . , rn be elements of Zn such that r1, r2, . . . , rn are linearly independent. Then
Zg(A ) is generated by the m independent unitaries urk , so it is isomorphic to C∞(Tm),
the algebra of smooth functions on the (commutative) m-torus.

Let V ⊆ 1A be the m-dimensional vector space spanned by u−rk durk , 1 ≤ k ≤ m.
Then T

m is isomorphic to the sub-dga Zg(A )⊗ V of A . Also, let W ⊆ 1 A
be the (n − m)-dimensional vector space spanned by u−rk durk ,m + 1 ≤ k ≤ n. Thus

A = A ⊗ (V ⊕ W).

Since all basis elements of V and W are in the graded centre we get

Zg( A ) = Zg( A )⊗ (V ⊕ W) ∼= T
m ⊗ W .

With this we can compute the fundamental group of A . The fundamental group of the
torus Tm is Zm. Then we see from Proposition 3.24 that the fundamental group of A is
the algebraic hull of Zm × R

n−m. The subgroup Z
n + Z

n ⊆ R
n is dense in {u ∈ R

n |
rtu ∈ Z for all r ∈ }, and this is isomorphic to Z

m ×R
n−m. So for any the fundamental

group of A equals the algebraic hull of Zn + Z
n.

Remark 5.6 If G is a (discrete) group that acts freely and properly on R
n, then R

n → R
n/G

is the universal cover of Rn/G and it is a G-principal bundle. In the example above we show
that the fundamental group corresponding to the noncommutative realisation of the quotient
of Rn by Z

n + Z
n can be identified with Z

n + Z
n, which is exactly as we would expect.

Of course, since we get the fundamental group from its representations we cannot actually
distinguish between Z

n + Z
n and Z

m × R
n−m as fundamental group of A .

5.3 Toric Noncommutative Manifolds

It is possible to deform any manifold M that carries an action of a torus in a similar manner
to the deformation of the tori described above. This is described in full detail in [6, 7], and
the differential graded algebra that we use is described in [6, Sect. 12].

Let M be a manifold and let σ : Tn → Aut(M) be a smooth effective action of the n-
dimensional torus. This defines an action of Tn on M , still denoted by σ . The deformation
of C∞(M) is conveniently described as the following fixed-point subalgebra:

C∞(M ) := (C∞(M)⊗A )σ⊗α−1 = T ∈ C∞(M)⊗A : (σt ⊗ α−1
t )(T ) = T , for all t ∈ T

n

where ⊗ denotes the (projective) tensor product of Fréchet algebras and α is the action of
T

n on A given by αt (u
r) = eirtur . Similarly, a dga is defined by

M := ( (M)⊗Aθ )
σ⊗α−1

The differential in M is given by d ⊗ 1.
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In fact, we may write any element ω ∈ M as a series expansion in the Weyl elements
ur ∈ A :

ω =
r∈Zn

ωr ⊗ ur

in terms of homogeneous elements ωr ∈ M for the torus action, i.e. σt (ωr) = eirtωr . This
series expansion is convergent with respect to the Fréchet topology on M (see [28, Ch.
2]). Similar to [1] we introduce the following subgroup of Tn dual to the lattice ⊂ Z

n

defined by Eq. 6:

= {t ∈ T
n | t · r = 0 mod Z for all r ∈ }

Proposition 5.7 The graded center of M is given by

Zg( M ) ∼= ( M)

Consequently, the fundamental group is π1( M ) = π1(( M) ).

Proof The graded center of M is given by elements of the form ω = r∈ ωr ⊗ ur as
for r ∈ we have τ(r, s) = 1 for any s ∈ Z

n. We can use the subgroup < T
n to select

these vectors by setting σt (ω) = ω for all t ∈ .

Example 5.8 Let M = T
n and let the torus Tn act on itself by addition. The algebra C(M )

is then the same as the noncommutative torus A , and according to the above result we
have π1( M ) = π1( (Tn) ). Let us compare this with Proposition 5.5. We may write

(Tn) = C∞(Tn) ⊗ (V ⊕ W)

where V,W are defined as in the proof of Proposition 5.5 (but with = 0). But then

(Tn) = (C∞(Tm) ⊗ V ) ⊗ W ∼= (Tm) ⊗ W .

Accordingly, we have π1( (Tn) ) = Z
m × R

n−m, as desired.

Example 5.9 Consider the three-sphere S3. It is parametrised by two complex numbers α, β

with |α|2 + |β2| = 1. The torus acts on this by (t, s) · (α, β) = (exp(2πit)α, exp(2πis)β).
Suppose that θ = p

q
where p and q have no common factors. Then = qZ2 and =

( 1
q
Z

2)/Z2 ⊂ T
2. We get that π1( S

3
θ ) = π1(( S

3)(Z/qZ)2
).

In the case that θ is irrational we can actually completely calculate the fundamental group
of the toric noncommutative 3-sphere.

Proposition 5.10 Let θ be irrational. Then the fundamental group π1( S
3
θ ) is the algebraic

hull of R2.

Proof We will compute the fundamental group of the deformed 3-sphere S
3
θ using homo-

topy invariance. Let 0 < ε < 1
2 and let γ : [0, 1] → [0, 1] be a smooth function that is

0 on [0, ε] and 1 on [1 − ε, 1]. This gives a map T
2 × γ : T

2 × [0, 1] → T
2 × [0, 1],

which is T2-equivariant, using the natural action of T2 on T
2 × [0, 1]. This induces a map

(T2×γ )∗ : (T2×[0, 1]) → (T2×[0, 1]), which restricts to a map (T2×[0, 1])T2 →
(T2 × [0, 1])T2

. The functions in the image are constant in a neighbourhood of the edges,
and the forms in the image are zero on this neighbourhood. Now consider the map ϕ : T2 ×
[0, 1] → S

3, sending ((u, v), t) to (u sin( π
2 t), v cos( π

2 t)) for u, v ∈ S
1 and t ∈ [0, 1]. This
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is a smooth map so it induces ϕ∗ : S
3 → (T2 × [0, 1]). Since ϕ is T2-equivariant, this

restricts to ϕ∗ : (S3)T
2 → (T2 × [0, 1])T2

. The image certainly contains all functions
that are constant on a neighbourhood of the edges, and forms that are zero on a neighbour-

hood of the edges. In particular there is a factorisation (T2 × [0, 1]) α−→ (S3)T
2 ϕ∗

−→
(T2×[0, 1]), where α is the map (T2×γ )∗ with restricted codomain. Now let γ : S3 → S

3

be the function given by γ (u sin( π
2 t), v cos( π

2 t)) = (u sin( π
2 γ (t)), v cos( π

2 γ (t))). This is
a smooth map: this is clear in the domain t ∈ (0, 1) and at t = 0, 1 it follows because γ is
constant at the edges. This then induces γ ∗ : S

3 → S
3, and since γ is T2-invariant this

also restricts to (S3)T
2 → (S3)T

2
. Note that γ ◦ϕ = ϕ ◦ (T2 ×γ ). We get the following

commutative diagram:

(T2 × [0, 1])T2
(T2 × [0, 1])T2

(S3)T
2

(S3)T
2
.

(T2×γ )∗

α
ϕ∗

γ ∗

ϕ∗

Both the maps (T2 × γ )∗ and γ are homotopic to the identity. This implies by Theo-
rem 4.7 that they induce the identity map on the fundamental groups. So π1( S

3
θ ) =

π1( (S3)T
2
) = π1( (T2 × [0, 1])T2

). Now clearly T
2 × [0, 1] is homotopy equivalent

to T
2 using maps that are T

2-equivariant, and it follows that π1( (T2 × [0, 1]))T2
) =

π1( (T2)T
2
). As in the previous subsection, this fundamental group is the algebraic hull of

R
2. So for irrational θ the fundamental group of S3

θ is the algebraic hull of R2.

6 Conclusion and Outlook

We have defined a notion of connections on finitely generated projective bimodules over a
differential graded algebra A. We have defined the category Cflat( A) of these bimodules
with flat connections, and shown that it is equal to the category of flat connections over the
graded centre Zg( A). We have constructed a tensor product in this category and shown
that it admits dual objects. The category is also abelian for a large class of noncommutative
spaces. This was used to define an affine algebraic group scheme, which we called the
fundamental group π1( A) of the dga. After having established some crucial properties for
π1, we computed the fundamental group for noncommutative tori, where we realised that it
depends on the deformation parameter.

The structure we introduced suggests the following some natural, still open problems:

a) Does the fundamental group respect products: is it true that π1( A⊗ B, p ⊗ q) =
π1( A, p) × π1( B, q)?

b) Is the fundamental group π1 a derived Morita invariant?

The second problem is especially interesting as it turns out that in algebraic geometry the
fundamental group of a smooth projective variety is not a derived invariant [31].
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Appendix A: Representations of dense subgroups ofR

We have exploited Tannaka duality to reconstruct a group from the category of its repre-
sentations, however, this only gives access to the pro-algebraic completion of the group. In
other words, via this procedure many groups give rise to the same algebraic group. We will
illustrate this phenomenon for dense subgroups of R.

We consider representations of R and of dense subgroups. Let V be a finite-dimensional
vector space and α ∈ End(V ), and view R as additive topological group. There is a contin-
uous representation π : R → GL(V ) given by π(t) = exp(tα). In fact every continuous
representation has this form.

Lemma A.1 Let V be a finite-dimensional vector space and π : R → GL(V ) a continuous
representation. Then there is a unique α ∈ End(V ) such that π(t) = exp(tα) for all t ∈ R.

Proof Since π is continuous there is a δ > 0 such that for all t ∈ R with |t | < δ

we have π(t) − 1 < 1. Let 0 < t < δ. The formal power series log(x + 1) has
radius of convergence 1, so α = 1

t
log(π(t)) is well-defined. Then π(t) = exp(tα).

Also α = 2
t

log(π(t/2)) is well-defined. Since log(x2) = 2 log(x) whenever |x − 1| <

1 and |x2 − 1| < 1, we get α = α. So π(t/2) = exp(t/2α). By induction we
get π(t2−n) = exp(t2−nα) for positive integers n. For integers m it also follows that
π(tm2−n) = π(t2−n)m = exp(tm2−nα). Since the set {tm2−n | m, n ∈ Z} is already dense
in R it follows that π(x) = exp(xα) for all x ∈ R.

This result also holds for continuous representations of dense subgroups of R. This is
used in the computation of the fundamental group for noncommutative tori in section 4.

Lemma A.2 Let G ⊆ R be a dense subgroup of R. Let V be a finite-dimensional vector
space. Each continuous representation π : G → GL(V ) extends to a representation of R,
and is therefore of the form π(t) = exp(tα) for some α ∈ End(V ).

Proof Since the representation is continuous there is a δ > 0 such that for t ∈ [−δ, δ] ∩ G

we have π(t) − 1 ≤ 1, so π(t) ≤ 2. For all positive integers n we have π(nt) = π(t)n,
and it follows that π is bounded on bounded intervals.

Now we show from this that π is uniformly continuous on bounded intervals. Let ε > 0.
There is δ > 0 such that for all t ∈ G∩ (−δ, δ) we have π(t) − 1 < ε. Let M > 0 and let
x, y ∈ G∩[−M, M] with |x −y| < δ. Then π(x) − π(y) ≤ π(x) · 1 − π(y − x) ≤
π(x) · ε. Since π is bounded on G ∩ [−M, M] we see that π is uniformly continuous

on bounded intervals. Then it can be extended uniquely to a function R → End(V ), and it
follows easily that this is still a representation.

Appendix B: Proof of Lemma 3.10

We have put here the proof of Lemma 3.10 that is a bit technical and would otherwise have
disrupted the flow of the argument.

Lemma B.1 For M,K ∈ Mn(C) we have

d

dt |t=0
Dm(M∗M + t · 2Re(M∗[M, K])) ≤ 4n K HSDm(M∗M).
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Here 2Re(M∗[M, K]) = M∗[M, K] + (M∗[M,K])∗ and K HS denotes the Hilbert-
Schmidt norm of K .

Proof The inequality is invariant under a unitary change of basis of M , and M∗M is
self-adjoint so we may choose a basis in which M∗M is diagonal, with eigenvalues
λ1, λ2, . . . , λn ∈ C. Now

Dm(M∗M) =
|S|=m i∈S

λi,

where S runs over the m-element subsets of {1, 2, . . . , n}. Let

M(t) = M∗M + t · M∗[M,K].
The t-coefficient in the polynomial P(t) = Dm(M(t)) ∈ C[t] is d

dt |t=0Dm(M(t)). The
matrix M(t) only has multiples of t outside the diagonal. The determinant of an m × m

submatrix is then modulo t2 equal to the product of the values on its diagonal. So

Pm(t) =
S=|m| i∈S

M(t)ii mod t2.

We have

M(t)ii = λi + t

⎛

⎝λiKii −
n

j,l=1

(M∗)ijKjlMli

⎞

⎠ .

The t-coefficient in Pm(t) is then

d

dt |t=0
Dm(M(t)) =

|S|=m i∈S

⎛

⎝λiKii −
n

j,l=1

(M∗)ijKjlMli

⎞

⎠

s∈S\{i}
λs .

For all i, j, l we have (M∗)ijMli ≤ 1
2 (|Mji |2 + |Mli |2) ≤ n

k=1 |Mki |2 = λi . So we get

d

dt |t=0
Dm(M(t)) =

|S|=m i∈S

⎛

⎝λiKii −
n

j,l=1

(M∗)ijKjlMli

⎞

⎠

s∈S\{i}
λs

≤
|S|=m i∈S

λiKii −
n

j,l=1

(M∗)ijKjlMli

s∈S\{i}
λs

≤
|S|=m

⎛

⎝λi |Kii | +
n

j,l=1

λi |Kjl |
⎞

⎠

s∈S\{i}
λs

≤
⎛

⎝
n

i=1

|Kii | +
n

j,l=1

|Kjl |
⎞

⎠

|S|=m s∈S

λs

≤ 2n K HSDm(M∗M).

Now we conclude
d

dt |t=0
Dm(M∗M + t · 2Re(M∗[M,K])) =

2Re
d

dt |t=0
Dm(M(t)) ≤ 4n KHSDm(M∗M).
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