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Preface to the second edition

After the appearance of the first edition of this book there have been nu-
merous developments in the field that urged me to update the book. At the
mathematical side, new concepts, techniques and results have been found
during the last few years, and which are now included in our treatment.
This includes the perturbation semigroup and cyclic cocycles in the Taylor
expansion of the spectral action. On the particle physics side, the step to
go Beyond the Standard Model with Pati-Salam unification now forms a
prominent part of our book, while first attempts towards quantization of
the theory are included in the final Chapter.

I have also revised the more introductory part I, aiming for a more com-
plete treatment of noncommutative differential geometry. There are more
details on the analytical properties of the Dirac operator on a compact Rie-
mannian spin® manifold, and also more noncommutative examples to bet-
ter illustrate the concept of a spectral triple. For example, the noncom-
mutative torus that formed one of the first examples of a noncommutative
Riemannian spin manifold now makes its appearance in Section[5.3.1} It re-
appears for illustrative examples of even and odd cyclic cocycles in Section

I would like to further thank Calum Beck, Rui Dong, Eva-Maria Hekkel-
man, Teije Kuijper, Malte Leimbach, Teun van Nuland, Leo Polak, Berend
Visser for sending me numerous typo’s in the first edition, and in a draft
version of the second edition.

I thank Leonora, Joris, Daniél and Mathilde for their continuing pa-
tience and love.

Walter van Suijlekom
December 2023



iii 0.0. PREFACE TO THE FIRST EDITION

Preface to the first edition

The seeds of this book have been planted in the far east, where I wrote
lecture notes for international schools in Tianjin, China in 2007 and in Bangkok,
Thailand in 2011. I then realized that an up-to-date text for beginning non-
commutative geometers on the applications of this rather new mathemati-
cal field to particle physics was missing in the literature.

This made me decide to transform my notes into the form of a book.
Besides the given challenge inherent in such a project, this was not made
easy because of recent, rapid developments in the field, making it difficult
to choose what to include and to decide where to stop in my treatment.
The current state of affairs is at least touched upon in the final chapter of
this book, where I discuss the latest particle physics models in noncom-
mutative geometry, and compare them to the latest experimental findings.
With this, I hope to have provided a path that starts with the basic princi-
ples of noncommutative geometry and leads to the forefront of research in
noncommutative geometry and particle physics.

The intended audience consists of mathematicians with some knowl-
edge of particle physics, and of theoretical physicists with some mathe-
matical background. Concerning the level of this textbook, for mathemati-
cians I assume prerequisites on gauge theories at the level of e.g. [38, 22],
and recommend to first read the book [93] to really appreciate the last few
chapters of this book on particle physics/the Standard Model. For physi-
cists, I assume knowledge of some basic algebra, Hilbert space and opera-
tor theory (e.g. [236, Chapter 2]), and Riemannian geometry (e.g. [149,197]).
This makes the book particularly suitable for a starting PhD student, after
a master degree in mathematical/theoretical physics including the above
background.

I would like to thank the organizers and participants of the aforemen-
tioned schools for their involvement and their feedback. This also applies
to the MRI-Masterclass in Utrecht in 2010 and the Conference on index the-
ory in Bogotd in 2008, where Chapter [f] finds its roots. Much feedback on
previous drafts was gratefully received from students in my class on non-
commutative geometry in Nijmegen: Bas Jordans, Joey van der Leer and
Sander Uijlen. I thank my students and co-authors Jord Boeijink, Thijs van
den Broek and Koen van den Dungen for allowing me to transcribe part of
our results in the present book form. Simon Brain, Alan Carey and Adam
Rennie are gratefully acknowledged for their feedback and suggested cor-
rections. Strong motivation to writing this book was given to me by my co-
author Matilde Marcolli. I thank Gerard Bauerle, Gianni Landi and Klaas
Landsman for having been my main tutors in writing, and Klaas in particu-
lar for a careful final proofreading. I also thank Aldo Rampioni at Springer
for his help and guidance. I thank Alain Connes for his inspiration and en-
thousiasm for the field, without whose work this book could of course not
have been written.

I am thankful to my family and friends for their continuous love and
support. My deepest gratitude goes to Mathilde for being my companion
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in life, and to Daniél for making sure that the final stages of writing were
frequently, and happily, interrupted.

Walter van Suijlekom
April 2014
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CHAPTER 1

Introduction

Ever since the early days of noncommutative geometry it has become
clear that this field of mathematics has close ties with physics, and with
gauge theories in particular. In fact, non-abelian gauge theories, and even
more prominently, the Standard Model of particle physics, were a guiding
principle in the formulation of noncommutative manifolds in [81)} 82].

For one thing, noncommuting operators appear naturally in quantum
mechanics. As a matter of fact, there is a rather direct path from experimen-
tally measured atomic spectra to Heisenberg’s matrix mechanics which is
one of the motivating examples of noncommutative geometry [79, Section
L1].

In the other direction, it turns out that the main technical device in non-
commutative geometry, a spectral triple, naturally gives rise to a gauge the-
ory. This holds in full generality, but the great potential of the noncommu-
tative approach, at least in particle physics, becomes really visible when
specific examples are considered that in fact correspond to familiar gauge
theories arising in physics. This is crowned by the derivation [65] of the
full Standard Model of particle physics together with all its subtleties, in-
cluding the Higgs field, the spontaneous symmetry breaking mechanism,
neutrino mixing, see-saw mechanism, et cetera.

It is the goal of this book to explore this path, and, starting with the ba-
sics, to work towards applications in particle physics, notably to the Stan-
dard Model of elementary particles.

The first ingredient of a spectral triple is an involutive or x-algebra A of
operators in a Hilbert space H, with the involution given by the hermitian
adjoint of an operator. This immediately gives rise to a gauge group & deter-
mined by the unitary elements in A. In general, if A is noncommutative,
then this group is non-abelian.

The gauge fields arise from a second, purely spectral data, in the guise of
a self-adjoint operator D in H, satisfying suitable conditions (cf. Definition[5.9]
below). The operator D is modeled on the Dirac operator on a Riemannian
spin manifold M, an elliptic first-order differential operator whose square
coincides, up to a scalar term, with the Laplacian.

A key role will be played by the spectrum of D, assumed discrete; we
will list its eigenvalues (with multiplicities) as {A, },ez. The gauge group
& acts on D by conjugation with a unitary operator, D — UDU*. Unitarity
guarantees invariance of the spectrum under such a gauge transformation.

1



2 CHAPTER 1. INTRODUCTION

Hence a spectral invariant is in particular gauge invariant, and it is natural
to define the so-called spectral action as [59,60]

An
(%)
nez
Here the function f is a suitable cutoff function that makes the outcome of
the sum finite, and A is a real cutoff parameter. The spectral action is inter-
preted as an action functional that describes the dynamics and interactions
of the gauge fields constituting D.

The fermionic fields that are associated to a spectral triple are simply vec-
tors 1 in the given Hilbert space, and their natural invariant is the fermionic
action:

(¢, D).

The previous paragraphs sketch the derivation of a generalized gauge
theory from any spectral triple. When one restrict to a particular class of
spectral triples, this leads to ordinary gauge theory defined on a manifold
M in terms of vector bundles and connections. The idea is very simple,
essentially dating back to [78]: one considers the noncommutative space
M x F given by the product of M with a finite, noncommutative space F.
The space F gives rise to the internal, gauge degrees of freedom. In fact, it is
described by a finite-dimensional algebra of matrices, for which the gauge
group becomes a matrix Lie group, such as SU(N). The self-adjoint oper-
ator Dr is given by a hermitian matrix. Combined with the background
manifold M, these objects are turned into global ones: A consists of the
sections of a bundle of matrix algebras, and D is a combination of Dr and
the Dirac operator on M (assumed to be a Riemannian spin manifold). The
operator D is found to be parametrized by gauge fields and scalar fields in
suitable representations of the gauge group &. The fermionic fields ¢ are
sections of a spinor bundle on which D acts as a linear differential operator,
minimally coupled to the gauge fields.

As we already said, the spectral action is manifestly gauge invariant,
and for this latter class of examples it describes a scalar gauge theory for
the group &. As a bonus, it is minimally coupled to (Euclidean) gravity, in
that the gravitational degrees of freedom are present as a background field
in the Dirac operator on M. Moreover, the fermionic action then gives the
usual coupling of the fermionic fields to the gauge, scalar and gravitational
fields.

In this respect, one of the great achievements of noncommutative ge-
ometry is the derivation of the full Standard Model of particle physics
from a noncommutative space M x Fsy [65]. In fact, from this geomet-
ric Ansatz one obtains the Standard Model gauge fields, the scalar Higgs
field, and the full fermionic content of the Standard Model. Moreover, the
spectral and fermionic action on M x Fgy, give the full Lagrangian of the
Standard Model, including (amongst other benefits) both the Higgs spon-
taneous symmetry breaking mechanism and minimal coupling to gravity.
In addition, the spectral action introduces relations between the coupling
constants and the masses of the Standard Model. This allows one to derive
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physical predictions such as the Higgs mass, and also indicates how to go
beyond the Standard Model, finally bringing us back to experiment.

This book is divided into two parts. Part 1 presents the mathematical
basics of noncommutative geometry and discusses the local index formula
as a mathematical application. As a stand alone, it may be used as a first
introduction to noncommutative geometry.

The second part starts in the same mathematical style, where in the first
two chapters we analyze the structure of a gauge theory associated to any
spectral triple. Comparable to a kaleidoscope, we then focus on a specific
class of examples, and within this class select the physically relevant mod-
els. In the last two chapters this culminates in the derivation of the full
Standard Model of particle physics. All these examples heavily exploit the
results from Part 1. Hence the reader who is already somewhat familiar
with noncommutative geometry, but is interested in the gauge-theoretical
aspects, may want to skip Part 1 and jump immediately to the second part.

Let us quickly go through the contents of each of the chapters. Chapter
and 3| present a ‘light” version of noncommutative geometry, restricting
ourselves to finite noncommutative spaces. In other words, we here only
consider finite-dimensional spectral triples and avoid technical complica-
tions that arise in the general case. Besides the pedagogical advantage,
these finite spaces will in fact turn out to be crucial to the physical applica-
tions of the later chapters, where they describe the aforementioned internal
space F.

Thus, in Chapter 2| we start with finite discrete topological spaces and
replace them by matrix algebras. The question whether this procedure can
be reversed leads naturally to the notion of Morita equivalence between
matrix algebras. The next step is the translation of a metric structure into
a symmetric matrix, motivating the definition of a finite spectral triple. We
discuss Morita equivalence for spectral triples and conclude with a dia-
grammatic classification of finite spectral triples.

In Chapter 3| we enrich finite spectral triples with a real structure and
discuss Morita equivalences in this context. We give a classification of finite
real spectral triples based on Krajewski diagrams [164] and relate this to the
classification of irreducible geometries in [62].

Chapter [ starts with a concise background on Riemannian spin geom-
etry, leading to a treatment of the Dirac operator, including its analytical
aspects.

Chapter[5|then introduces noncommutative Riemannian spin manifolds
(aka spectral triples) in full generality, exemplified by toric noncommuta-
tive manifolds.

As a first application of spectral triples, we present a proof of the lo-
cal index formula of Connes and Moscovici [87] in Chapter [6, following
Higson’s proof [139].

In the second part of this book we start to build gauge theories from
(real) spectral triples. Chapter [7] takes a very general approach and asso-
ciates a gauge group and a semigroup of gauge fields to any real spectral
triple. An intriguing localization result can be formulated (Chapter [8) in
terms of a bundle of C*-algebras on a background topological space. The

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




4 CHAPTER 1. INTRODUCTION

gauge group acts fiberwise on this bundle and the gauge fields appear as
sections thereof.

Maintaining the same level of generality, we introduce gauge invariant
quantities in Chapter 9} to wit the spectral action, the topological spectral
action (which is closely related to the above index), and the fermionic action
[59,60]. We discuss two possible ways to expand the spectral action, either
asymptotically in terms of the cutoff A, or perturbatively in terms of the
gauge fields parametrizing D.

In Chapter |10|we introduce the important class of examples alluded to
before, i.e. noncommutative spaces of the form M x F with F finite. Here,
Chapters 2] and [3| prove their value in the description of F. Following [107]
we analyze the structure of the gauge group & for this class of examples,
and determine the gauge fields and scalar fields as well as the correspond-
ing gauge transformations. Using heat kernel methods, we obtain an as-
ymptotic expansion for the spectral action on M x F in terms of local for-
mulas (on M). We conclude that the spectral action describes the dynamics
and interactions of a scalar gauge theory for the group &r, minimally cou-
pled to gravity. This general form of the spectral action on M x F will be
heavily used in the remainder of this book.

As a first simple example we treat abelian gauge theory in Chapter
for which the gauge group &p ~ U(1). Following [108] we describe how
to obtain the Lagrangian of electrodynamics from the spectral action.

The next step is the derivation of non-abelian Yang-Mills gauge the-
ory from noncommutative geometry, which we discuss in Chapter (12 We
obtain topologically non-trivial gauge configurations by working with al-
gebra bundles, essentially replacing the above direct product M x F by a
fibered product [41].

Chapter (13| contains the derivation of the Standard Model of particle
physics from a noncommutative manifold M x F,,, first obtained in [65].
We apply our results from Chapter|10|to obtain the Standard Model gauge
group and gauge fields, and the scalar Higgs field. Moreover, the compu-
tation of the spectral action can be applied to this example and yields the
full Lagrangian of the Standard Model, including Higgs spontaneous sym-
metry breaking and minimally coupled to gravity. We also give a detailed
discussion on the fermionic action.

The phenomenology of the noncommutative Standard Model is dis-
cussed in Chapter 14, Indeed, the spectral action yields relations between
the coupling constants and masses of the Standard Model, from which
physical predictions can be derived. Here, we adopt the well-known renor-
malization group equations of the Standard Model to run the couplings to
the relevant energy scale. This gives the notorious prediction for the Higgs
mass at the order of 170 GeV. As this is at odds with the experiments at
the Large Hadron Collider at CERN, we give a careful analysis of the hy-
potheses used in the derivation of the Standard Model Lagrangian from
noncommutative geometry.

In Chapter (15 we use these observations to go beyond the Standard
Model with noncommutative geometry. In particular, we will discuss a
Pati-Salam model [64] 69 68| [70] that enlarges the particle content of the
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Standard Model. We show that this noncommutative model is compatible
with the experimentally measured Higgs mass.

We end this book in Chapter 16| with an overview of recent and ongo-
ing work searching for a quantum theory for noncommutative geometry.
Indeed, as we realize the applications of conventional quantum field the-
ory methods to the noncommutative models of Chapter |14/ and (15 cannot
be the end of the story. Indeed, a more intrinsically defined quantum the-
ory should be developed, and we indicate the first steps in this direction.

In order not to interrupt the text too much, I have chosen to collect
background information and references to the literature as ‘Notes” at the
end of each Chapter.
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Part 1

Noncommutative geometric spaces






CHAPTER 2

Finite noncommutative spaces

In this chapter (and the next) we consider finite discrete topological
spaces. However, we will stretch their usual definition, which is perhaps
geometrically not so interesting, to include the more intriguing finite non-
commutative spaces. Intuitively, this means that each point has some in-
ternal structure, described by a particular noncommutative algebra. With
such a notion of finite noncommutative spaces, we search for the appropri-
ate notion of maps between, and (geo)metric structure on such spaces, and
arrive at a diagrammatic classification of such finite noncommutative geo-
metric spaces. Our exposition of the finite case already gives a good first
impression of what noncommutative geometry has in store, whilst hav-
ing the advantage that it avoids technical complications that might obscure
such a first tour through noncommutative geometry. The general case is
subsequently treated in Chapter

2.1. Finite spaces and matrix algebras

Consider a finite topological space X consisting of N points (equipped
with the discrete topology):

1. 2. ...... N.

The first step towards a noncommutative geometrical description is to trade
spaces for their corresponding function algebras.

DEFINITION 2.1. A (complex, unital) algebra is a vector space A (over C)
with a bilinear associative product A x A — A denoted by (a,b) — ab (and a
unit 1 satisfying la = al = a forall a € A).

A x-algebra (or, involutive algebra) is an algebra A together with a conjugate-
linear map (the involution) % : A — A such that (ab)* = b*a* and (a*)* = a
foralla,b e A.

In this book, we restrict to unital algebras, and simply refer to them as
algebras.

In the present case, we consider the *-algebra C(X) of C-valued func-
tions on the above finite space X. It is equipped with a pointwise linear
structure,

(f+&)(x) = f(x) +g(x),  (Af)(x) = A(f(x)),

for any f,¢ € C(X),A € C and for any point x € X, and with pointwise
multiplication



10 CHAPTER 2. FINITE NONCOMMUTATIVE SPACES

There is an involution given by complex conjugation at each point:

fH(x) = f(x).

The C in C(X) stands for continuous and, indeed, any C-valued function
on a finite space X with the discrete topology is automatically continuous.

The x-algebra C(X) has a rather simple structure: it is isomorphic to
the x-algebra CN with each complex entry labeling the value the function
takes at the corresponding point, with the involution given by complex
conjugation of each entry. A convenient way to encode the algebra C(X) =~
CY is in terms of diagonal N x N matrices, representing a function f : X —

C as
f() o 0
0 2 0
| f<§> o
0 0 ... f(N)

Hence, pointwise multiplication then simply becomes matrix multiplica-
tion, and the involution is given by hermitian conjugation.

If ¢ : X1 — X is a map of finite discrete spaces, then there is a corre-
sponding map from C(X,) — C(X3) given by pullback:

¢ f=fopeClX);, (feC(X))
Note that the pullback ¢* is a *-homomorphism (or, *-algebra map)
under the pointwise product, in that

¢ (fe) =¢"(flg"(g),  ¢° () =¢(f), ¢ (Af+8) = A¢"(f) +¢"(g)-
For example, let X; be the space consisting of three points, and X, the space
consisting of two points. If a map ¢ : X; — Xj is defined according to the
following diagram,

X1 : L] [ []
X2 . [ ] [}
then
¢* 1 C? ~ C(Xp) — C ~C(Xy)
is given by

(A1, A2) = (A1, A, Ap).

EXERCISE 2.1. Show that ¢ : X; — Xp is an injective (surjective) map of
finite spaces if and only if ¢* : C(Xa2) — C(Xq) is surjective (injective).

DEFINITION 2.2. A (complex) matrix algebra A is a direct sum

N
A =P M, (C),
i=1
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11 2.1. FINITE SPACES AND MATRIX ALGEBRAS

for some positive integers n; and N. The involution on A is given by hermit-
ian conjugation, and we simply refer to the x-algebra A with this involution as a
matrix algebra.

Hence, we have associated a matrix algebra C(X) to the finite space X,
which behaves naturally with respect to maps between topological spaces
and *-algebras. A natural question is whether this procedure can be in-
verted. In other words, given a matrix algebra A, can we obtain a finite
discrete space X such that A ~ C(X)? Since C(X) is always commutative
but matrix algebras need not be, we quickly arrive at the conclusion that
the answer is negative. This can be resolved in two ways:

(1) Restrict to commutative matrix algebras.
(2) Allow for more morphisms (and consequently, more isomorphisms)
between matrix algebras, e.g. by generalizing *-homomorphisms.

Before explaining each of these options, let us introduce some use-
ful definitions concerning representations of finite-dimensional *-algebras
(which are not necessarily commutative) which moreover extend in a straight-
forward manner to the infinite-dimensional case (cf. Definitions and
B.6). We first need the prototypical example of a *-algebra.

EXAMPLE 2.3. Let H be an (finite-dimensional) inner product space, with
inner product (-,-) — C. We denote by L(H) the x-algebra of operators on
H with product given by composition and the involution is given by mapping an
operator T to its adjoint T*.

Note that L(H) is a normed vector space: for T € L(H) we set

| T||> = sup{(Th, Th) : (h,h) < 1}.
heH

Equivalently, ||T|| is given by the square root of the largest eigenvalue of T*T.

DEFINITION 2.4. A representation of a finite-dimensional x-algebra A is a
pair (H, 7t) where H is a (finite-dimensional, complex) inner product space and 7t
is a x-algebra map

m:A— L(H).

A representation (H, 1) is called irreducible if H # 0 and the only subspaces in
H that are left invariant under the action of A are {0} or H.

We will also refer to a finite-dimensional inner product space as a finite-
dimensional Hilbert space.

EXAMPLE 2.5. Consider A = M,,(C). The defining representation is given
by H = C" on which A acts by left matrix multiplication; hence it is irreducible.
An example of a reducible representation is H = C" & C", with a € M,(C)
acting in block-form:

a 0

a€ M,(C)— (0 .

) € L(C" & C") ~ My (C)

which therefore decomposes as the direct sum of two copies of the defining repre-
sentation. See also Lemma below.

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom
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EXERCISE 2.2. Given a representation (H, 71) of a x-algebra A, the commu-
tant 71(A)’ of t(A) is defined as

n(A) ={T € L(H) : n(a)T = Tr(a) foralla € A}.

(1) Show that 1t(A)’ is also a x-algebra.
(2) Show that a representation (H, 7v) of A is irreducible if and only if the
commutant 7t(A)" of (A) consists of multiples of the identity.

DEFINITION 2.6. Two representations (Hy, 711) and (Hp, 712) of a x-algebra
A are unitarily equivalent if there exists a unitary map U : Hy — Hp such that

m(a) = U mp(a)U.

DEFINITION 2.7. The structure space A of A is the set of all unitary equio-
alence classes of irreducible representations of A.

We end this subsection with an illustrative exercise on passing from
representations of a *-algebra to matrices over that *-algebra.

EXERCISE 2.3. (1) If Ais a unital x-algebra, show that the n X n-matrices
M, (A) with entries in A form a unital x-algebra.
(2) Let t : A — L(H) be a representation of a x-algebra A and set H" =
H® ---® H (n copies). Show that the following defines a representation
7T: My(A) = L(H") of M, (A):

T ((ai) = (m(ay));  ((a;) € Mu(A)).

(3) Let T : M, (A) — L(H") be a representation of the x-algebra M, (A).
Show that the following defines a representation 7t : A — L(H") of the
x-algebra A:

nt(a) = 7t (aly)
where 1, is the identity in M, (A).

2.1.1. Commutative matrix algebras. We now explain how option (1)
on page|11jabove resolves the question raised by constructing a space from
a commutative matrix algebra A. A natural candidate for such a space is,
of course, the structure space ﬁ, which we now determine. Note that any
commutative matrix algebra is of the form A ~ CN, for which by Exercise
2.2(2) any irreducible representation is given by a map of the form

i (A, AN) €ECN s A €C

forsomei=1,...,N. We conclude that A~ {1,...,N}.

We conclude that there is a duality between finite spaces and commu-
tative matrix algebras. This is nothing but a finite-dimensional version of
Gelfand duality (see Theorem [5.7|below) between compact Hausdorff topo-
logical spaces and unital commutative C*-algebras. In fact, we will see later
(Proposition[5.4) that any finite-dimensional C*-algebra is a matrix algebra,
which reduces Gelfand duality to the present finite-dimensional duality.
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13 2.1. FINITE SPACES AND MATRIX ALGEBRAS

2.1.2. Finite spaces and matrix algebras. The above trade of finite dis-
crete spaces for finite-dimensional commutative *-algebras does not really
make them any more interesting, for the x-algebra is always of the form
CN. A more interesting perspective is given by the noncommutative alter-
native, viz. option (2) on page|11] We thus aim for a duality between finite
spaces and equivalence classes of matrix algebras. These equivalence classes
are described by a generalized notion of isomorphisms between matrix al-
gebras, also known as Morita equivalence.

Let us first recall the notion of an algebra (bi)module.

DEFINITION 2.8. Let A, B be algebras (not necessarily matrix algebras). A
left A-module is a vector space E that carries a left representation of A, i.e. there
is a bilinear map A x E > (a,e) — a-e € E such that

(a1a2) -e =ay - (az-e); (a1,a0 € A,e € E).

Similarly, a right B-module is a vector space F that carries a right representation
of B, i.e. there is a bilinear map F x B> (f,b) — f -b € F such that

f(blbz):(fbl)bz, (bl,bQGB,fEF).
Finally, an A — B-bimodule E is both a left A-module and a right B-module, with
mutually commuting actions:

a-(e-b)=1(a-e)-b; (a€ AbeB,ecE).

When no confusion can arise, we will also write ae instead of a - ¢ to
denote the left module action, and similarly for the right action.

There is a natural notion of (left) A-module homomorphism as a linear
map ¢ : E — F that respect the representation of A:

pla-e) =a-¢(e); (a€ AecE).

Similarly for right modules and bimodules.
We introduce the following notation:

e ,E for aleft A-module E;
e Fp for a right B-module F;
e ,Eg for an A — B-bimodule E.

EXERCISE 2.4. Check that a representation 7t : A — L(H) of a *-algebra A
(cf. Defn. turns H into a left A-module oH.

EXERCISE 2.5. Show that A is itself an A — A-bimodule oA 4, with left and
right actions given by the product in A.

If E is a right A-module, and F is a left A-module, we can form the
balanced tensor product:

E®AF::E®P/{Eeiai@)ﬁ—ei@aiﬁ: aiEA,eiEE,fiEF}.
i

In other words, the quotient imposes A-linearity of the tensor product, i.e.
in E®4 F we have

ea@af =e®@apaf; (acAecE, feF).
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom
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DEFINITION 2.9. Let A, B be matrix algebras. A Hilbert bimodule for the
pair (A, B) is given by an A — B-bimodule E together with a B-valued inner prod-
uct (-,-)g : E x E — B satisfying

(er,a-e2)p = (a"-e1,e2)p;  (e1,e2 € E,a € A),
(e1,e2-b)E = (e1,e2)Eb;  (e1,e2)p = (e2,e1)E;  (e1,e2 € E,b € B),
(e,e)r > 0 with equality if and only if e = 0; (e € E).
The set of Hilbert bimodules for (A, B) will be denoted by KK¢(A, B).

In the following, we will also write (-, -) instead of (-, -) g, unless confu-
sion might arise.

EXERCISE 2.6. Check that a representation 7t : A — L(H) (cf. Defn. 2.4 and
Exc. of a matrix algebra A turns H into a Hilbert bimodule for (A,C).

EXERCISE 2.7. Show that the A — A-bimodule given by A itself (cf. Exc.
is an element in KK (A, A) by establishing that the following formula defines an
A-valued inner product (-, )4 : A x A — A:

(a,a'y o = a*d; (a,a' € A).

EXAMPLE 2.10. More generally, let ¢ : A — B be a x-algebra homomorphism
between matrix algebras A and B. From it, we can construct a Hilbert bimodule
Ep in KK¢(A, B) as follows. Let Eg be B as a vector space with the natural right
B-module structure and inner product (cf. Exc.[2.7), but with A acting on the left
via the homomorphism ¢:

a-b=¢(a)b; (a€ AbeckEy).

DEFINITION 2.11. The Kasparov product F o E between Hilbert bimodules
E € KK¢(A, B) and F € KKf(B, C) is given by the balanced tensor product

FoE:=E®pF; (E € KKf(A,B), F € KK¢(B,C)),
so that F o E € KK¢(A,C), with C-valued inner product given on elementary
tensors by
(2.1.1) (e1® f1,e2® f2)Ewyr = (f1, (€1, €2)Ef2)F,
and extended linearly to all of E® F.
Note that this product is associative up to isomorphism.
EXERCISE 2.8. Show that the association ¢ ~ Ey from Example is nat-
ural in the sense that
(1) EidA ~ A c€ KKf(A,A),
(2) for x-algebra homomorphisms ¢ : A — B and ¢ : B — C we have an
isomorphism
El/J o E¢ = E¢ KB El/J ~ El/lO(,b S KKf(A,C),
that is, as A — C-bimodules.

EXERCISE 2.9. . In the above definition:

(1) Check that E ®p F is an A — C-bimodule.
(2) Check that (-, -)pe,r defines a C-valued inner product.

(3) Check that <a*(€1 ®f1),82 X f2>E®BF = <€1 & fl,a(ez &® f2)>E®3F'
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom
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Conclude that F o E is indeed an element of KK¢(A, C).

Let us consider the Kasparov product with the Hilbert bimodule for
(A, A) given by A itself (cf. Exercise[2.7). Then, since for E € KK¢(A, B) we
have Eo A = A®4 E ~ E, the bimodule 4 A4 is the identity element with
respect to the Kasparov product (up to isomorphism). This motivates the
following definition.

DEFINITION 2.12. Two matrix algebras A and B are called Morita equiva-
lent if there exist elements E € KK¢(A, B) and F € KK¢(B, A) such that

E®QgF ~ A, F®sE~B,
where ~ denotes isomorphism as Hilbert bimodules.

If A and B are Morita equivalent, then the representation theories of
both matrix algebras are equivalent. More precisely, if A and B are Morita
equivalent, then a right A-module is sent to a right B-module by tensoring
with _ ®4 E for an invertible element E in KK((A, B).

EXAMPLE 2.13. As seen in Exercises [2.4 and 2.6} the vector space E = C"
is an M, (C) — C-bimodule; with the standard C-valued inner product it be-
comes a Hilbert module for (M, (C),C). Similarly, the vector space F = C" is
a C — M, (C)-bimodule by right matrix multiplication. An M, (C)-valued inner
product is given by

<01, Uz> = 51?]5 € Mn(C)
We determine the Kasparov products of these Hilbert bimodules as
E@CFZMH(C),‘ F®Mn(C)E2C'

In other words, E € KK¢(M,(C),C) and F € KK¢(C, M,,(C)) are each other’s
inverse with respect to the Kasparov product. We conclude that M,,(C) and C are
Morita equivalent.

This observation leads us to our first little result.

THEOREM 2.14. Two matrix algebras are Morita equivalent if and only if
their structure spaces are isomorphic as finite discrete spaces, i.e. have the same
cardinality.

PROOF. Let A and B be Morita equivalent. Thus there exists Hilbert
bimodules 4Eg and gF4 such that
EQpF ~ A, F®aE ~ B.
If (73, H)] € B then we can define a representation 774 by setting
(2.1.2) ta:A— LE®pH);, ma(a)le®v)=ae®ov.

Vice versa, we construct 73 : B — L(F ®4 W) from [(714, W)] € A by setting
mp(b)(f ® w) = bf ® w and these two maps are one another’s inverse.
Thus, A ~ B (see Exercisebelow).

For the converse, we start with a basic result on irreducible representa-
tions of M, (C).

LEMMA 2.15. The matrix algebra M, (C) has a unique irreducible represen-
tation (up to isomorphism) given by the defining representation on C".
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PROOF. It is clear from Exercise [2.2] that C" is an irreducible represen-
tation of A = M,,(C). Suppose H is irreducible and of dimension K, and
define a linear map

K

p:AD--- DA H;  ¢ay,...,ax) > el oal +-- +efoak

K copies
in terms of a basis {e!,...eX} of the dual vector space H*. Here v o a de-
notes pre-composition of v € H* with a € A, acting on H. This is a
morphism of M, (C)-modules, provided a matrix a acts on the dual vec-
tor space H* by sending v — v o a’. It is also surjective, so that the dual
map ¢* : H — (AX)* is injective. Upon identifying (AX)* with AX as A-
modules, and noting that A = M, (C) ~ &"C" as A-modules, it follows
that H is a submodule of AX ~ @"XC". By irreducibility H ~ C". O

Now, if A, B are matrix algebras of the following form
N M
A= @Mni(C), B = @Mm/.(C),
i=1 j=1
then A ~ B implies that N = M. Then, define

N
E:=pCoC™,
i=1
with A acting by block-diagonal matrices on the first tensor and B acting in

a similar way by right matrix multiplication on the second leg of the tensor
product. Also, set

N
F=Pcmech,
i=1

with B now acting on the left and A on the right. Then, as above,

N
E®pF ~ P(C"@C") @y, () (C" @ C")
i=1

N
~ @ C"® (Cmi ®Mmi(C) Cm’) ®C"
i=1

N
~PCHCh ~ A,
i=1

and similarly we obtain F ® 4 E ~ B, as required. O

EXERCISE 2.10. Fill in the gaps in the above proof:
(a) Show that the representation 7t4 defined by (2.1.2)) is irreducible if and
only if 7tp is.
(b) Show that the association of the class [ma] to [rtg] through [2.1.2) is
independent of the choice of representatives 74 and 7tp.
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We conclude that there is a duality between finite spaces and Morita
equivalence classes of matrix algebras. By replacing *-homomorphisms
A — B by Hilbert bimodules for (A, B), we introduce a much richer struc-
ture at the level of morphisms between matrix algebras. For example, any
finite-dimensional inner product space defines an element in KK((C,C),
whereas there is only one map from the corresponding structure space con-
sisting of one point to itself. When combined with Exercise we con-
clude that Hilbert bimodules form a proper extension of the *-morphisms
between matrix algebras.

2.2. Noncommutative geometric finite spaces

Consider again a finite space X, described as the structure space of a
matrix algebra A. We would like to introduce some geometry on X and, in
particular, a notion of a metric on X.

Thus, the question we want to address is how we can (algebraically)
describe distances between the points in X, say, as embedded in a metric
space. Recall that a metric on a finite discrete space X is given by an array
{dij}i,je x of real non-negative entries, indexed by a pair of elements in X
and requiring that d;; = dj;, dij < dj + dyj, and d;; = 0 if and only if i = :

d
lg 13 o3
)

EXAMPLE 2.16. If X is embedded in a metric space (e.g. Euclidean space), it
can be equipped with the induced metric.

EXAMPLE 2.17. The discrete metric on the discrete space X is given by:
Vi
g 0ifi =j.

In the commutative case, we have the following remarkable result, which
completely characterizes the metric on X in terms of linear algebraic data.
It is the key result towards a spectral description of finite geometric spaces.

THEOREM 2.18. Let d;; be a metric on the space X of N points, and set

A = CN with elements a = (a(i))N,, so that A ~ X. Then there exists a repre-
sentation 7t of A on a finite-dimensional inner product space H and a symmetric
operator D on H such that

(2.2.1) dij = sup {[a(i) —a(j)| : [I[D, m(a)]]| <1},

acA

PROOF. We claim that this would follow from the equality

1
8 11D, (@) | = max { o lak) = a(D) |
Indeed, if this holds, then
sup {la(i) — )| : | (D, <1} < di
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The reverse inequality follows by taking a € A for fixed i, j to be a(k) = dj.
Then, we find [a(i) — a(j)| = d;j, while ||[D, 7r(a)]|| < 1 for this a follows
from the reverse triangle inequality for d;;:
1 1
7 latk) —a(l)| = —=dix — di| < 1.
ki

We prove (#) by induction on N. If N = 2, then on H = C? we define a
representation 77 : A — L(H) and a hermitian matrix D by

=" an) 2= (Y )

It follows that ||[D, a]|| = (d12) ~|a(1) —a(2)].

Suppose then that (%) holds for N, with representation 7ty of CN on an
inner product space Hy and symmetric operator Dy; we will show that it
also holds for N + 1. We define

N
Hn41 = Hy @ €D Hy
i=1

with Hf\, = C2. Imitating the above construction in the case N = 2, we
define the representation 7ty 41 by

in+1(a(l),...,a(N+1)) = nn(a(1),...,a(N))

@ (a(ol) a(N0+ 1)) G @ <a((l)\]) a(NO—I— 1)>'

and define the operator Dy by

0 (dl(N+1))1>
DNni1 = DN ® -
e ((dl(NH)) ' 0
0 (dN(N+1))1>
@D _ .
((dN(N—i-l)) ! 0
It follows by the induction hypothesis that (x) holds for N + 1. O

EXERCISE 2.11. Make the above proof explicit for the case N = 3. In other
words, compute the metric of (2.2.1) on the space of three points from the set of
data A = C3, H = (C?)®3 with representation 7w : A — L(H) given by

o a@a@) = (5 1) (" ae) e (" )

and hermitian matrix

. 0 X1 0 X2 0 X3
o=(n 3ol §)ela B)
with x1,x2,x3 € R.

EXERCISE 2.12. Compute the metric on the space of three points given by
formula R-20) for the set of data A = C3 acting in the defining representation on

H = C3, and
0 dl o
D=1|d' 0 0],
0 0O 0
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for some non-zero d € R.

Even though the above translation of the metric on X into algebraic data
assumes commutativity of A, the distance formula itself can be extended
to the case of a noncommutative matrix algebra A. In fact, suppose we are
given a x-algebra representation of A on an inner product space, together
with a symmetric operator D on H. Then we can define a metric on the
structure space A by
(222) 4 = sup{| Tra(i) — Tra(j)| : |[D,a]]| < 1},

acA
where i labels the matrix algebra M,, (C) in the decomposition of A. This
distance formula is a special case of Connes’ distance formula (see Note
on Page|73) on the structure space of A.

EXERCISE 2.13. Show that the d;j in (2.2.2) is a metric (actually, an ex-

tended metric, taking values in [0, 00]) on A by establishing that
dl']‘ =0 < i = j, dl']‘ = d]'i, d‘j <dy+ dkj-

This suggests that the above structure consisting of a matrix algebra
A, a finite-dimensional representation space H, and a hermitian matrix D
provides the data needed to capture a metric structure on the finite space
X = A. In fact, in the case that A is commutative, the above argument
combined with our finite-dimensional Gelfand duality of Section is a
reconstruction theorem. Indeed, we reconstruct a given metric space (X, d)
from the data (A, H, D) associated to it.

We arrive at the following definition, adapted to our finite-dimensional
setting.

DEFINITION 2.19. A finite spectral triple is a triple (A, H, D) consisting
of a unital x-algebra A represented faithfully on a finite-dimensional Hilbert space
H, together with a symmetric operator D : H — H.

We do not demand that A is a matrix algebra, since this turns out to be
automatic:

LEMMA 2.20. If A is a unital x-algebra that acts faithfully on a finite-dimensional
Hilbert space, then A is a matrix algebra of the form

N
A=~ @ M,,(C).
i=1

PROOF. Since A acts faithfully on a Hilbert space it is a *-subalgebra
of a matrix algebra L(H) = Mgimm)(C); the only such subalgebras are
themselves matrix algebras. O

Unless we want to distinguish different representations of A on H, the
above representation will usually be implicitly assumed, thus considering
elements a € A as operators on H.

EXAMPLE 2.21. Let A = M, (C) act on H = C" by matrix multiplication,
with the standard inner product. A symmetric operator on H is represented by a
hermitian n x n matrix.
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We will loosely refer to D as a finite Dirac operator, as its infinite-
dimensional analogue on Riemannian spin manifolds is the usual Dirac
operator (see Chapter [5). In the present case, we can use it to introduce a
‘differential geometric structure” on the finite space X that is related to the
notion of divided difference. The latter is given, for each pair of points

i,j € X, by
ai) —a(j)

Indeed, these divided differences appear precisely as the entries of the com-
mutator [D, a] for the operator D as in Theorem2.18|

EXERCISE 2.14. Use the explicit form of D in Theorem to confirm that
the commutator of D with a € C(X) is expressed in terms of the above divided
differences.

We will see later that in the continuum case, the commutator [D, -] cor-
responds to taking derivatives of functions on a manifold.

DEFINITION 2.22. Let (A, H, D) be a finite spectral triple. The A-bimodule
of Connes’ differential one-forms is given by

OL(A) = {Zak[D,bk] s ag, by € A} :
k

Consequently, thereisamap d : A — QL(A), givenby d(-) = [D, -].
EXERCISE 2.15. Verify that d is a derivation of a x-algebra, in that:
d(ab) = d(a)b + ad(b); d(a*) = —d(a)".
EXERCISE 2.16. Verify that QL(A) is an A-bimodule by rewriting the oper-
ator Y a(ax[D, br])b (a,b,ar, by € A) as Y a;[D, by] for some a;, by, € A.

As a first little result —though with an actual application to matrix
models in physics— we compute Connes’ differential one-forms for the

above Example

LEMMA 2.23. Let (A, H,D) = (M,(C),C", D) be the finite spectral triple
of Example 2.21)with D a hermitian n x n matrix. If D is not a multiple of the
identity, then QL (A) ~ M,(C).

PROOF. We may assume that D is a diagonal matrix: D = ) ; Aje;; in

terms of real numbers A; (not all equal) and the standard basis {e;;} of
M,,(C). For fixed i, j choose k such that A, # Aj. Then

1

(Meik) [D, ex;] = eij.

Hence, since ej, e,; € M, (C), any basis vector ¢;; € O (A). Since also

OL(A) C L(C") ~ M,(C), the result follows. a
EXERCISE 2.17. Consider the following finite spectral triple:

2 2~ (0 A
(A—C,H—C,D—<A o))

with A # 0. Show that the corresponding space of differential one-forms Q5 (A)
is isomorphic to the vector space of all off-diagonal 2 x 2 matrices.
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2.2.1. Morphisms between finite spectral triples. In a spectral triple
(A, H, D) both the x-algebra A and a finite Dirac operator D act on the inner
product space H. Hence, the most natural notion of equivalence between
spectral triples is that of unitary equivalence.

DEFINITION 2.24. Two finite spectral triples (A1, H1, D7) and (Az, Ha, D)
are called unitarily equivalent if A; = Ajp and if there exists a unitary operator
U : Hy — H» such that

U (a)U* = ma(a); (a € Ay),
UD;U* = D,.

EXERCISE 2.18. Show that unitary equivalence of spectral triples is an equiv-
alence relation.

REMARK 2.25. A special type of unitary equivalence is given by the unitaries
in the matrix algebra A itself. Indeed, for any such unitary element u the spectral
triples (A, H, D) and (A, H,uDu*) are unitarily equivalent. Another way of
writing uDu* is D + u[D, u*], so that this type of unitary equivalence effectively
adds a differential one-form to D.

Following the spirit of our extended notion of morphisms between al-
gebras, we might also deduce a notion of “equivalence” coming from Morita
equivalence of the corresponding matrix algebras. Namely, given a Hilbert
bimodule E in KK (B, A), we can try to construct a finite spectral triple on
B starting from a finite spectral triple on A. This transfer of metric structure
is accomplished as follows. Let (A, H, D) be a spectral triple; we construct
a new spectral triple (B, H’, D). First, we define a vector space

H =E®aH,

which inherits a left action of B from the B-module structure of E. Also, it
is an inner product space, with C-valued inner product given as in (2.1.1).

The naive choice of a symmetric operator D’ givenby D'(e ® &) = e ®
D¢ will not do, because it does not respect the ideal defining the balanced
tensor product over A, being generated by elements of the form

ea®¢—e®ag; (e€c E,ac A € H).

A better definition is

(2.2.3) D'(e®¢) =e® DZ + V(e)¢,
where V : E — E ®4 O} (A) is some map that satisfies the Leibniz rule
(2.2.4) V(ea) =V(e)a+e® [D,al; (e€ E,ac A).

Indeed, this is precisely the property that is needed to make D’ a well-
defined operator on the balanced tensor product E ® 4 H:

D'(ea®&—e®al) =ea® D+ V(ea)l —e® D(ag) — V(e)al = 0.

Amap V : E = E®4 QL (A) that satisfies Equation (2.2.4) is called a
connection on the right A-module E associated to the derivationd : a
[D,a] (a € A).
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THEOREM 2.26. If (A, H, D) is a finite spectral triple and E € KK¢(B, A),
then (in the above notation) (B,E ® 4 H, D) is a finite spectral triple, provided
that V satisfies the compatibility condition
(2.2.5) (e1,Ver)p — (Ver, e2)p = d(er,e2)p;  (e1,e2 € E).

PROOF. We only need to show that D’ is a symmetric operator. Indeed,
forej,e; € E and ¢1, G2 € H we compute

(e1®8&1,D'(e2®&2)) ko, = (C1, (€1, Vea)£Ca)u + (C1, (e1,€2)EDE2) 1
= (C1,(Vey, e2)£Co)r + (81, d(e1,e2)EC2)
+ (D¢1, (e1,e2)eC2)r — (81, [D, (e1,e2)El¢2) n
=(D'(e1®&1),2 @ &2)Ew 1 H,

using the stated compatibility condition and the fact that D is symmetric.
O

Theorem is our finite-dimensional analogue of Theorem to be
obtained below.

EXERCISE 2.19. Let V and V' be two connections on a right A-module E.
Show that their difference V — V' is a right A-linear map E — E ®4 QL (A).

EXERCISE 2.20. In this exercise, we consider the case that B = A and also
E = A. Let (A, H, D) be a spectral triple, we determine (A, H', D").
(1) Show that the derivation d(-) = [D, ] : A = A®4 QL(A) = QL(A)
is a connection on A considered a right A-module.
(2) Upon identifying A ® 4 H ~ H, what is the operator D’ of Equation
(2.2.3) when the connection V on A is given by d as in (1)?
(3) Use (1) and (2) of this exercise to show that any connection V : A —
A®4 QL (A) is given by
V=d+w,
with w € QL(A).
(4) Upon identifying A @ 4 H ~ H, what is the operator D' of Equation
(2.2.3) with the connection on A given as V. = d + w.

If we combine the above Exercise 2.20| with Lemma we see that
V = d — D is an example of a connection on My(C) (as a module over
itself and with w = —D), since O} (A) ~ My(C). Hence, for this choice of
connection the new finite spectral triple as constructed in Theorem is
given by (Mn(C),CN, D’ = 0). So, Morita equivalence of algebras does not
carry over to an equivalence relation on spectral triples. Indeed, we now
have O}, (My(C)) = 0, so that no non-zero D can be generated from this
spectral triple and the symmetry of this relation fails.

2.3. Classification of finite spectral triples

Here we classify finite spectral triples on A modulo unitary equiva-
lence, in terms of so-called decorated graphs.

DEFINITION 2.27. A graph is an ordered pair (T(®), T(V)) consisting of a set
T of vertices and a set T of pairs of vertices (called edges).
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nl e nl . e 1‘1] “ e nN
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FIGURE 2.1. A node at n; indicates the presence of the sum-
mand C"; the double node at n; indicates the presence of
the summand C" & C" in H.

We allow edges of the form e = (v, v) for any vertex v, that is, we allow
loops at any vertex.

Consider then a finite spectral triple (A, H,D); let us determine the
structure of all three ingredients and construct a graph from it.
The algebra: We have already seen in Lemma that

N
A~ @ M, (C),
i=1

for some ny,...,ny. The structure space of A is givenby A ~ {1,...,N}
with each integer i € A corresponding to the equivalence classes of the
representation of A on C". If we label the latter equivalence class by n; we
can also identify A ~ {ny,...,ny}.

The Hilbert space: Any finite-dimensional faithful representation H of
such a matrix algebra A is completely reducible (i.e. a direct sum of ir-
reducible representations).

EXERCISE 2.21. Prove this result for any x-algebra by establishing that the
complement W of an A-submodule W C H is also an A-submodule of H.

Combining this with the proof of Lemma we conclude that the
finite-dimensional Hilbert space representation H of A has a decomposi-
tion into irreducible representations, which we write as

N
H~ @ cC"®V,
i=1
with each V; a vector space; we will refer to the dimension of V; as the
multiplicity of the representation labeled by n; and to V; itself as the mul-
tiplicity space. The above isomorphism is given by a unitary map.
To begin the construction of our decorated graph, we indicate the pres-
ence of a summand n; in H by drawing a node at position n; € A in a

diagram based on the structure space A of the matrix algebra A (see Figure
for an example). Multiple nodes at the same position represent multi-
plicities of the representations in H.

The finite Dirac operator: Corresponding to the above decomposition of
H we can write D as a sum of matrices

Dl']' :CMi ® Vz — C" & V';
restricted to these subspaces. The condition that D is symmetric implies
that Dj; = Dj;. In terms of the above diagrammatic representation of H, we
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nl e nl . e 1‘1] “ e nN

o) o—0 O

FIGURE 2.2. The edges between the nodes n; and nj, and n;
and ny represent non-zero operators D;; : C" — C" ® C?
(multiplicity 2) and D;y : C" — C"N, respectively. Their
adjoints give the operators Dj; and Dy;.

express a non-zero D;; and Dj; as a (multiple) edge between the nodes n;
and n; (see Figure2.2|for an example).
Another way of putting this is as follows, in terms of decorated graphs.

DEFINITION 2.28. A A-decorated graph is given by an ordered pair (T, A)
of a finite graph T and a finite set A of positive integers, with a labeling:

e of the vertices v € T(O) by elements n(v) € A;
e of the edges e = (v1,v3) € TV by operators D, : C"®) — C"(%2) and
its conjugate-transpose D} : C"(®2) — C"(®1)

so that n(T©)) = A,

The operators D, between vertices that are labeled by n; and n;, respec-
tively, add up to the above D;;. Explicitly,

Dij= )Y D,

e=(v1,02)

n(v1)=n;

n(vz):n/
so that also Dj; = Dj;. Thus we have proved the following result.

THEOREM 2.29. There is a one-to-one correspondence between finite spectral

triples modulo unitary equivalence and A-decorated graphs, given by associating
a finite spectral triple (A, H, D) to a A-decorated graph (T, \) in the following
way:

A=PM,(C), H=Ec®, D=Y D.+Dj.

neA ver(0) ecr(1)
EXAMPLE 2.30. The following A-decorated graph

n

O

D.
corresponds to the spectral triple (M, (C),C", D = D, + D}) of Example

EXERCISE 2.22. Draw the A-decorated graph corresponding to the spectral

triple
0 A0
A=CH=C,D=|A 0 0]]; (A#0).
000
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EXERCISE 2.23. Use A-decorated graphs to classify all finite spectral triples
(modulo unitary equivalence) on the matrix algebra A = C & M;(C).

EXERCISE 2.24. Suppose that (A1, H1, D1) and (A, Hp, Dy) are two finite
spectral triples. We consider their direct sum and tensor product and give the
corresponding A-decorated graphs.

(1) Show that (A1 & Az, Hi @ Hy, (D1, Dy)) is a finite spectral triple.

(2) Describe the A-decorated graph of this direct sum spectral triple in
terms of the A-decorated graphs of the original spectral triples.

(3) Show that (A1 ® Ay, H1 @ Hp,D1 ® 14+ 1® D) is a finite spectral
triple.

(4) Describe the A-decorated graph of this tensor product spectral triple
in terms of the A-decorated graphs of the original spectral triples.

Notes

Section 2.1. Finite spaces and matrix algebras

1. The notation KK in Definition 2.9is chosen to suggest a close connection to Kasparov’s
bivariant KK-theory [158], here restricted to the finite-dimensional case. In fact, in the case
of matrix algebras the notion of a Kasparov module for a pair of C*-algebras (A, B) (cf. [36]
Section 17.1] for a definition) coincides (up to homotopy) with that of a Hilbert bimodule
for (A, B) (cf. [171] Section IV.2.1] for a definition).

2. Definition [2.T2]agrees with the notion of equivalence between arbitrary rings introduced
by Morita [195]. Moreover, it is a special case of strong Morita equivalence between C*-
algebras as introduced by Rieffel [215].

3. Theorem [2.14]is a special case of a more general result on the structure spaces of Morita
equivalent C*-algebras (see e.g. [211} Section 3.3]).

Section 2.2. Noncommutative geometric finite spaces

4. Theorem 2.18|can be found in [143].

5. The reconstruction theorem mentioned in the text before Deﬁnition is a special case,
to wit the finite-dimensional case, of a result by Connes [90] on a reconstruction of Rie-
mannian (spin) manifolds from so-called spectral triples (cf. Definition [5.9and Note [6|on
Page[73below).

6. A complete proof of Lemma 2.20]can be found in [116, Theorem 3.5.4].

7. For a complete exposition on differential algebras, connections on modules, et cetera, we
refer to [168, Chapter 8] and [4] and references therein.

8. The failure of Morita equivalence to induce an equivalence between spectral triples was
noted in [86, Remark 1.143] (see also [244, Remark 5.1.2]). This suggests that it is better
to consider Hilbert bimodules as correspondences rather than equivalences, as was already
suggested by Connes and Skandalis in [88] and also appeared in the applications of non-
commutative geometry to number theory (cf. [86, Chapter 4.3]) and quantization [172]. This
forms the starting point for a categorical description of (finite) spectral triples themselves.
As objects the category has finite spectral triples (A, H, D), and as morphisms it has pairs
(E, V) as above. This category is the topic of for instance [189} 190, 152, 153} 191} 239],
working in the more general setting of spectral triples, hence requiring much more analysis
as compared to our finite-dimensional case. The category of finite spectral triples plays a
crucial role in the noncommutative generalization of spin networks in [184].
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CHAPTER 3

Finite real noncommutative spaces

In this chapter, we will enrich the finite noncommutative spaces as ana-
lyzed in the previous chapter with a real structure. For one thing, this makes
the definition of a finite spectral triple more symmetric by demanding the
inner product space H be an A — A-bimodule, rather than just a left A-
module. The implementation of this bimodule structure by an anti-unitary
operator has close ties with the Tomita—Takesaki theory of Von Neumann
algebras, as well as with physics through charge conjugation, as will be-
come clear in the applications in the later chapters of this book. Our ex-
position includes a diagrammatic classification of finite real spectral triples
for all so-called KO-dimensions, and also identifies the irreducible finite
geometries among them.

3.1. Finite real spectral triples

First, the structure of a finite spectral triple can be enriched by intro-
ducing a Z,-grading y on H, i.e. v* =7, Y =1, demanding that A is even
and D is odd with respect to this grading:

vD = —Dv, va = avy; (a € A).

Next, there is a more symmetric refinement of the notion of finite spectral
triple in which H is an A — A-bimodule, rather than just a left A-module.
Recall that an anti-unitary operator is an invertible operator | : H — H
that satisfies (1, [&) = (&2, &) forall &, & € H.

DEFINITION 3.1. A finite real spectral triple is given by a finite spectral
triple (A, H, D) and an anti-unitary operator | : H — H called real structure,
such that a°® := Ja* ]~ is a right representation of A on H, i.e. (ab)° = b°a°. We
also require that

(3.1.1) [0,b°)=0, [[D,a],b°] =0,

forall a,b € A. Moreover, we demand that |, D and (in the even case) <y satisfy
the commutation relations:

J?=¢ JD=¢D], Jy=¢€"q].

for numbers ¢,€',¢’ € {—1,1}. These signs determine the KO-dimension k
(modulo 8) of the finite real spectral triple (A, H,D;],vy) defined according to
Table[3.1)

The signs in Table 3.1 are motivated by the classification of Clifford al-
gebras, see Section 4.1/ below. The two conditions in (3.1.1) are called the
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(k]J0o 1 2 3 4 5 6 7]
e[l 1 -1 -1 -1 -1 11
11 -1 1 1 1 -1 11
¢ 1 -1 1 -1

TABLE 3.1. The KO-dimension k of a real spectral triple is
determined by the signs {¢, €’,€” } appearing in ]2 = ¢, ]D =
¢DJand Jy = ¢"].

commutant property, and the first-order or order one condition, respec-
tively. They imply that the left action of an element in A and Q}(A) com-
mutes with the right action of A. This is equivalent to the commutation
between the right action of A and Q}(A) with the left action of A.

REMARK 3.2. The so-called opposite algebra A° is defined to be equal to A
as a vector space but with opposite product o:
aob:=ba.
Thus, a® = Ja*]~! defines a left representation of A° on H: (a o b)° = a°b°.
EXAMPLE 3.3. Consider the matrix algebra My (C), acting on the inner prod-

uct space H = My (C) by left matrix multiplication, and with inner product given
by the Hilbert—Schmidt inner product:

(a,b) = Tra*b.
Define
v(a)=a,  J(a)=a%;  (acH).
Since D must be odd with respect to the grading vy, it vanishes identically.

EXERCISE 3.1. In the previous example, show that the right action of M (C)
on H = Mn(C) as defined by a — a° is given by right matrix multiplication.

The following exercises are inspired by Tomita—Takesaki theory of Von
Neumann algebras.

EXERCISE 3.2. Let A = @; My, (C) be a matrix algebra, which is represented
on a vector space H = @; C" @ C™i, i.e. is such that the irreducible representation
n; has multiplicity m;.

(1) Show that the commutant A’ of A is isomorphic to @; My, (C). As
a consequence, the double commutant coincides with A, that is to say
A ~ A.
We say that { € H is a cyclic vector for A if

A¢:={al:ac A} =H.
We call { € H a separating vector for A if
al=0 = a=0; (acA).

(2) Show that if ¢ is a separating vector for the action of A, it is cyclic for the
action of A’. (Hint: Assume ¢ is not cyclic for the action of A’ and try to
derive a contradiction).
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EXERCISE 3.3. Suppose that (A, H,D = 0) is a finite spectral triple such
that H possesses a cyclic and separating vector ¢ for A.
(1) Show that the formula S(al) = a*( defines an anti-linear operator S :
H — H.
(2) Show that S is invertible.
(3) Let | : H — H be the operator appearing in the polar decomposition
S = JAY? of S with A = S*S. Show that | is an anti-unitary operator.
Conclude that (A, H,D = 0;]) is a finite real spectral triple. Can you find such
an operator | in the case of Exercise|3.2]?

3.1.1. Morphisms between finite real spectral triples. We are now go-
ing to extend the notion of unitary equivalence (cf. Definition|2.24) to finite
real spectral triples.

DEFINITION 3.4. We call two finite real spectral triples (A1, H1, D1; J1,71)
and (Az, Hy, Dy; J2,72) unitarily equivalent if Ay = A and if there exists a
unitary operator U : Hy — Hp such that

Um (a)U* = m(a);  (a € Ay),
UD1U* = Dy, Uy U* = 7y, unpu* =J.

Building on our discussion in Section we can also extend Morita
equivalence to finite real spectral triples. Namely, given a Hilbert bimodule
E for (B, A), we will construct a finite real spectral triple (B, H',D’;]',v/)
on B, starting from a finite real spectral triple (A, H, D; ],y) on A.

DEFINITION 3.5. Let E be a B — A-bimodule. The conjugate module E° is
given by the A — B-bimodule

E°={e:ecE},
witha-e-b="b*-e-a* foranya € A,b € B.
This implies for any A € C that Ae = A¢, which explains the suggestive
notation e for the elements of E°. The bimodule E° is not quite a Hilbert bi-

module for (A, B), since we do not have a natural B-valued inner product.
However, there is a A-valued inner product on the left A-module E° given

by
(e1,e2) = (e2,e1);  (er,e2 € E).
As opposed to the inner product in Definition [2.9} this inner product is left
A-linear: (e1,ae;) = a(ey,e,) foralla € A, as can be easily checked.
EXERCISE 3.4. Show that E° is a Hilbert bimodule for (B°, A°).

Let us then start the construction of a finite real spectral triple on B by
setting

H’ =E®XsH®a E°.

There is a (C-valued) inner product on H' given by combining the A-valued
inner products on E, E° with the C-valued inner product on H, much as in
(2.1.1). The action of B on H' is given by

(3.1.2) ble1@E®e) = (be1) ®ER ey,
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using just the B — A-bimodule structure of E. In addition, there is a right
action of B on H' defined by acting on the right on the component E°. In
fact, it is implemented by the following anti-unitary,

J(e1®i®e)=a®]fe,

ie. b° = J'b*(J') ! with b* € B acting on H' according to (3.1.2).

Moreover, there is a finite Dirac operator given in terms of the connec-
tion V : E — E®4 QL(A) asin Section First, we need the result of
the following exercise.

EXERCISE 3.5. Let V : E — E ®4 QL(A) be a right connection on E and
consider the following anti-linear map

T:E®4QL(A) — QL(A) ®4 E;
eRQuw— —w' e.
Show that the map V : E° — QL(A) @ E° defined by V(€) = toV(e)isa
left connection, i.e. show that it satisfies the left Leibniz rule:
V(ae) = [D,a] @ e+ aV ().
The connections V and V give rise to a Dirac operatoron E® 4 H ® 4 E°:
D'(ey®&®e) = (Ve))f®er+e1 @ DERer + e ®E(Vey).

The right action of w € QL (A) on ¢ € H is then defined by & — €'Jw*]1¢.
Finally, for even spectral triples one defines a gradingon E®4 H ® 4 E°
byyY =10y®1.

THEOREM 3.6. Suppose (A, H,D; ], v) is a finite real spectral triple of KO-
dimension k, and let V : E — E ®4 QL(A) be a compatible connection (cf.
Equation (2.2.5)). Then (B,H',D';]',v') is a finite real spectral triple of KO-
dimension k.

PROOF. The only non-trivial thing to check is that the KO-dimension
is preserved. In fact, one readily checks that (J')? = 1® J?®1 = € and
]/,y/ — 6”’)//]/. AISO,

JI'D'(ey®e®e) =] ((Ver)i®@e+e1 @ DERer + e ®@E(TVer))

=eD'(ee]iwe) =D (aolxe),
where we have used J'(e; ® Jw] 1€ ®e) = e @ w]E ®ey. O
3.2. Classification of finite real spectral triples

In this section, we classify all finite real spectral triples (A, H,D; ], y)
modulo unitary equivalence using Krajewski diagrams. These play a sim-
ilar role for finite real spectral triples as Dynkin diagrams do for simple Lie
algebras. Moreover, they extend our A-decorated graphs of the previous
chapter to the case of real spectral triples.

The algebra: First, we already know from our classification of finite spec-
tral triples in Section [2.3|that

N
A~ EB M,,(C),
i=1
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for some 711, ..., ny. Thus, the structure space of A is again given by A =
{ny,...,ny} where n; denotes the irreducible representation of A on C":.

The Hilbert space: As before, the irreducible, faithful representations of
A = @Y, M, (C) are given by corresponding direct sums:

N
D
i=1

on which A acts by left block-diagonal matrix multiplication.

Now, besides the representation of A, there should also be a represen-
tation of A° on H which commutes with that of A. In other words, we
are looking for the irreducible representations of A ® A°. If we denote the
unique irreducible representation of M, (C)° by C"°, this implies that any
irreducible representation of A ® A° is given by a summand in

N
EB Cni ® Cni°,
ij=1
Consequently, any finite-dimensional Hilbert space representation of A has
a decomposition into irreducible representations
N
H=@C"C"" oV;
ij=1
with Vj; a vector space; we will refer to the dimension of V;; as the multi-
plicity of the representation C" & C"/°.
The integers n; and n? form the grid of a diagram (cf. Figure 3.1{for an
example). Whenever there is a node at the coordinates (n;, n}-’), the repre-

sentation C" ® C"/° is present in the direct sum decomposition of H. Mul-
tiplicities are indicated by multiple nodes.

EXAMPLE 3.7. Consider the algebra A = C & M(C). The irreducible rep-
resentations of A are given by 1 and 2. The two diagrams

1 2 1 2
1° O 1° O O
2° ) b3

correspond to Hy = C & My(C) and Hy = C & C?, respectively. We have used
the fact that C*> @ C** ~ M;(C). The left action of A on Hy is given by the matrix

A O
(o %)
with a € My(C) acting on M(C) C Hy by left matrix multiplication. The
right action of A on Hy corresponds to the same matrix acting by right matrix
multiplication.
On Hy, the left action of A is given by matrix multiplication by the above

matrix on vectors in C & C2. However, the right action of (A,a) € A is given by
scalar multiplication with A on all of Hy.
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n ce n; ce nj co.ony
nj o
n; e
n (e} O
ny, o

FIGURE 3.1. A node at (nj, n?) indicates the presence of the

summand C" ® C"° in H; the double node indicates the
presence of (C" @ C"°) @ (C" ® C"°) in H.

The real structure: Before turning to the finite Dirac operator D, we exploit
the presence of a real structure | : H — H in the diagrammatic approach
started above.

EXERCISE 3.6. Let | be an anti-unitary operator on a finite-dimensional Hilbert
space. Show that J? is a unitary operator.

LEMMA 3.8. Let | be an anti-unitary operator on a finite-dimensional Hilbert
space H with J* = +1.
(1) If J* = 1 then there is an orthonormal basis {ex } of H such that Je; = ey.

(2) If J* = —1 then there is an orthonormal basis {ey, fc} of H such that
Jex = fi (and, consequently, | fr = —ex).

PROOF. (1) Take any v € H and set
- c(v+]Jv) if Jo# —v
= v if Jo = —v,

with ¢ a normalization constant. Then [(v + Jv) = Jo + J?v = v + Jv and
J(iv) = —iJv = iv in the two respective cases, so that Je; = e;.
Next, take a vector v’ that is orthogonal to e;. Then
(ell ]U,) = (]Zv,/ ]€1) = (U,/ ]€1) = (U// el) = O/

so that also Jv' L eq. As before, we set

o c(v 4+ Jo') if Jo £ -0

27 i if Jo/ = -7/,

which by the above is orthogonal to ;. Continuing in this way gives a basis
{ex} for H with Je, = e.
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(2) Take any v € H and set e; = cv with ¢ a normalization constant. Then
f1 = Jey is orthogonal to e;, since

(fi,e1) = (Jer,e1) = —(Je1, JPer) = —(Jer, e1) = —(f1,e1).

Next, take another v' L ey, f; and set e; = ¢'v'. As before, fr := Je, is
orthogonal to e, and also to e; and f:

(e1, f2) = (e1, Je2) = —(J%e1, Jea) = —(ez, Jer) = —(ea, f1) =0,
(fi, f2) = (Jer, Je2) = (e2,€1) = 0.
Continuing in this way gives a basis {e, f¢} for H with Je, = f;. O

We will now apply these results to the anti-unitary operator given by
a real structure on a spectral triple. Recall that in this case, | : H — H
implements a right action of A on H, via

a° = Ja*] !
satisfying [, b°] = 0. Together with the block-form of A, this implies that
J@ai @---@ay) = (a1 @ --- ©ay)].

We conclude that the Krajewski diagram for a real spectral triple must be
symmetric along the diagonal, ] mapping each subspace C" @ C"° ® V;;
bijectively to C" @ C"° ® Vj;.

n; ce n; ce n; .o.ony
nJ )
n; @ o
n;? o o)
ny, o @)

FIGURE 3.2. The presence of the real structure | implies a
symmetry in the diagram along the diagonal.

PROPOSITION 3.9. Let | be a real structure on a finite real spectral triple
(A, H,D;J).
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(1) If J? = 1 (KO-dimension 0,1,6,7) then there is an orthonormal basis
(M ,j=1,...,Nk=1,...,dim V) with e’ € C" ® C"° ®
Vij such that

Jelh = e (i,j=1,...,N;k=1,...,dim Vj;).
(2) If J?> = —1 (KO-dimension 2,3,4,5) then there is an orthonormal basis
(M fIYy i< j=1,...,Nk=1,...,dimVy) with ¢{’) € C" ®
C"° ® Vij,f,f]l) € C" ® C"° ® Vj; and such that
el = U0, (i<j=1,...,N;k=1,...,dim V).
PROOF. We imitate the proof Lemma
(1) Ifi # j, take v € C" ®C"° @ V;; and set egl]) = cv. Then, by the
above observation, egj i = J egl] ) is an element in C" ® C"° ® Vﬁ . Next, take
v € C"®@C"° ® V; withv' L vand apply the same procedure to obtain
egl] ) and eéj 9, Continuing in this way gives an orthonormal basis {e,((l] )} for
C" ® C"° ® Vjj, and an orthonormal basis {elgﬂ)} for C" ® C"° @ Vj; which
satisfy ]e,(;] ) = e,E]l).
If i = j, then Lemma [3.§(1) applies directly to the anti-unitary operator
given by | restricted to C" @ C"° @ V;.
(2) can be proved along the same lines. (]

Note that this result implies that in the case of KO-dimension 2, 3,4 and
5, the diagonal C" ® C"° ® V;; needs to have even multiplicity.

The finite Dirac operator: Corresponding to the above decomposition of
H we can write D as a sum of matrices

Dij : C" @ C° @ V;j = C* @ C"° @ Vg,

restricted to these subspaces. The condition D* = D implies that Dy, ;; =
Djj i+ In terms of the above diagrammatic representation of H, we express
]O) and (ng, ny). Instead
of drawing directed lines, we draw a single undirected line, capturing both

Djjq and its adjoint Dy ;.

a non-zero D;;y as a line between the nodes (n;,n

LEMMA 3.10. The condition |D = +D] and the order one condition given by
[[D,a], b°] = 0 forces the lines in the diagram to run only vertically or horizontally
(or between the same node), thereby maintaining the diagonal symmetry between
the nodes in the diagram.

PROOF. The condition [D = +D]J easily translates into a commuting
diagram:

Cl’l,‘ ® Ci’ljo ® ‘/1] 5 Cﬂk ® Cnlo ® Vkl

| |

Cl’lj ® Cnio ® ‘/]Z Cnl ® ano ® ‘/lk

+D
thus relating Dj; i to Dj; jx, maintaining the diagonal symmetry.
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If we write the order one condition [[D, a], b°] = 0 for diagonal elements
a =ML, & - ®ANL,, € Aand b = ull,, @ --- O unlly, € A with
Ai, ui € €, we compute

Dijja(Ai = M) (1 — 1) =0,
forall A;, uj € C. As a consequence, Djj; = 0 wheneveri # korj#1. [

n; nj

FIGURE 3.3. The lines between two nodes represent a non-
zero Dj;ji + C" @ C" — C" ®C", as well as its adjoint
Djiji : CV ® C"% — C" ® C". The non-zero components
Dj;;j and Dj;;; are related to +D;; ;; and +Dj; ;;, respectively,
according to J[D = £D].

Grading: Finally, if there is a grading v : H — H, then each node in the
diagram gets labeled by a plus or minus sign. The rules are that:

e D connects nodes with different signs;
e If the node (n;, n?) has sign =+, then the node (nj, n?) has sign +¢”,
] J7
according to Jy = €"]J.

Finally, we arrive at a diagrammatic classification of finite real spectral
triples of any KO-dimension.

DEFINITION 3.11. A Krajewski diagram of KO-dimension k is given by an
ordered pair (I', A) of a finite graph T and a finite set A of positive integers with a
labeling:

o of the vertices v € T by elements 1(v) = (n(v),m(v)) € A x A,
where the existence of an edge from v to v' implies that either n(v) =
n(v"), m(v) = m(v'), or both;

e of the edges e = (v1,v2) € TN by non-zero operators:

D, : ") — () if  m(v1) =m(v2);
D, : C"() _ ¢m(2) if  n(vr) =n(v2),
and their adjoints D,
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together with an involutive graph automorphism j : I — T so that the following
conditions hold:

(1) every row or column in A X A has non-empty intersection with 1(T');

(2) for each vertex v we have (n(j(v)) = m(v);

(3) for each edge e we have D, = e’D]-(e);

(4) if the KO-dimension k is even, then the vertices are additionally labeled
by £1 and the edges only connect opposite signs. The signs at v and j(v)
differ by a factor €, according to the table of Definition

(5) if the KO-dimension is 2,3,4,5 then the inverse image under 1 of the diag-
onal elements in A x A contains an even number of vertices of I'.

Note that this definition allows for different vertices of I' to be labeled
by the same element in A x A; this accounts for the multiplicities appearing
in Vj; that we have encountered before.

This indeed gives rise to a diagram of the above type, by putting a node
at position (n;, n;)) for each vertex carrying the label (n;, n;) € A x A. The
notation ny instead of n; is just for a convenient diagrammatic exposition.
The operators D, between vertices that are labeled by (n;, n;) and (ng, n;),
respectively, add up to the above D;; 1. Explicitly,

Dijju = Y. D.,
e=(v1,02)€r'®

(n, n])

(ngmy)

()
{(02)

so that indeed D;‘j i = Driij. Moreover, the only non-zero entries D;; 5 will
appear when i = k, or j = I, or both. Thus, we have shown

THEOREM 3.12. There is a one-to-one correspondence between finite real spec-
tral triples of KO-dimension k modulo unitary equivalence and Krajewski dia-
grams of KO-dimension k. Specifically, one associates a real spectral triple (A, H, D; ], 7y)
to a Krajewski diagram in the following way:

neA

H= &P C"®) g cm©)
ver(0)

D= ) D.+D;j.
ecr(M

Moreover, the real structure | : H — H is given as in Proposition with the
basis dictated by the graph automorphism j : T — I. Finally, a grading -y on H is

defined by setting «y to be +1 on C"?) @ C™(®)° C H according to the labeling by
£1 of the vertex v.

EXAMPLE 3.13. Consider the case A = C @& C. There are ten possible Kra-
jewski diagrams in KO-dimension 0 with multiplicities less than or equal to 1: in

terms ofﬁ = {13, 12}, we have
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




37 3.2. CLASSIFICATION OF FINITE REAL SPECTRAL TRIPLES
Hoole 4 oo
o o o
o o i o o o
o o o o o
where the diagonal vertices are labeled with a plus sign, and the off-diagonal ver-
tices with a minus sign.

Let us consider the last diagram in the top row in more detail and give the
corresponding spectral triple:

1, 1,
1y
5
First, the inner product space is H = C3, where we choose the middle copy of C to
correspond to the node on the diagonal. The edges indicate that there are non-zero

components of D that map between the first two copies of C in H and between the
second and third copy of C. In other words,

0O A O
D=(A 0 pu
0 7 0

for some A,y € Hom(C,C) =~ C that are the given labels on the two edges. In
this basis,

Finally, ] is given by the matrix K composed with complex conjugation on H,
where

From this it is clear that we indeed have
Dy = —vD; D] =]D; Jy=1].

EXERCISE 3.7. Use the ten Krajewski diagrams of the previous example to
show that on A = C @ C a finite real spectral triple of KO-dimension 6 with
dim H < 4 must have vanishing finite Dirac operator.

EXAMPLE 3.14. Consider A = M,(C) so that A = {n}. We then have a
Krajewski diagram

n

n° O
The node can be labeled only by either plus or minus one, the choice being irrele-
vant. This means that H = C" ® C"° ~ M,,(C) with -y the trivial grading. The
operator | is a combination of complex conjugation and the flip on n @ n°: this
translates to M,,(C) as taking the matrix adjoint. Moreover, since the single node
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has label £1, there are no non-zero Dirac operators. Hence, the finite real spectral
triple of this diagram corresponds to

(A =M,(C), H=My(C),D=0;]=()"r=1),
and was encountered already in Exercise[3.3]

3.3. Real algebras and Krajewski diagrams

Thus far, we have considered finite spectral triples on complex algebras.
In practice, it is useful to allow real x-algebras in Definition as well.

DEFINITION 3.15. A real algebra is a vector space A over R with a bilinear
associative product A x A — A denoted by (a,b) — ab and a unit 1 satisfying
la=al =aforalla € A.

A real x-algebra (or, involutive algebra) is a real algebra A together with
a real linear map (the involution) * : A — A such that (ab)* = b*a* and
(a*)* =aforalla,b e A.

EXAMPLE 3.16. A particularly interesting example in this context is given
by H, the real x-algebra of quaternions, defined as a real subalgebra of M, (C):

(¢ ) mace)

This is indeed closed under multiplication. As a matter of fact, H consists of those
matrices in Mp(C) that commute with the operator I defined by

I (”1> = (_”2> .
(%) (%5}
The involution is inherited from M, (C) and is given by hermitian conjugation.

EXERCISE 3.8. (1) Show that H is a real x-algebra which contains a real
subalgebra isomorphic to C.
(2) Show that H @R C ~ M (C) as complex x-algebras.
(3) Show that My(H) is a real x-algebra for any integer k.
(4) Show that My(H) @R C ~ My (C) as complex *-algebras.

When considering Hilbert space representations of a real *-algebra, one
must be careful, because the Hilbert space will be assumed to be a complex
space.

DEFINITION 3.17. A representation of a finite-dimensional real x-algebra A
is a pair (H, 7v) where H is a (finite-dimensional, complex) Hilbert space and 7t is
a real-linear x-algebra map

m:A— L(H).

Also, although there is a great deal of similarity, we stress that the def-
inition of the real structure J in Definition is not related to the algebra
A being real or complex.

EXERCISE 3.9. Show that there is a one-to-one correspondence between Hilbert
space representations of a real x-algebra A and complex representations of its com-
plexification A @R C. Conclude that the unique irreducible (Hilbert space) repre-
sentation of My (H) is given by C2*.
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LEMMA 3.18. Suppose that a real x-algebra A is represented faithfully on a
finite-dimensional Hilbert space H through a real-linear x-algebra map 1w : A —
L(H). Then A is a matrix algebra:

where F; = R, C or H, depending on i.

PROOF. The representation 7 allows to consider A as a real *-subalgebra
of Mgimy(C), hence A + iA can be considered a complex *-subalgebra of
Mgim g (C). Thus A + iA is a matrix algebra, and we may restrict to the case
A+iA = M(C) for some k > 1. Note that A NiA is a two-sided *-ideal in
M (C). As such, it must be either the whole of My (C), or zero. In the first
case, A+iA = ANiAsothat A = Mi(C). If ANiA = {0}, then we can
uniquely write any element in My (C) as a + ib with a,b € A. Moreover, A
is the fixed point algebra of the anti-linear automorphism « of M (C) given
by a(a+ib) =a—ib(a,b € A). We can implement « by an anti-linear isom-
etry I on C* such that a(x) = IxI~! for all x € M;(C). Since 4> = 1, the
operator I? commutes with M(C) and is therefore proportional to a com-
plex scalar. Together with I? being an isometry, this implies that I> = +1
and that A is precisely the commutant of I. We now once again use Lemma
B.8to conclude that

e If [> = 1, then there is a basis {¢;} of C¥ such that Ie; = ¢;. Since a
matrix in My (C) that commutes with I must have real entries, this
gives

A = M (R).
e If I> = —1, then there is a basis {e;, f;} of C* such that Ie; = f;

(and thus k is even). Since a matrix in M (C) that commutes with
I mustbe a k/2 x k/2-matrix with quaternionic entries, we obtain

A = Myp(H). u

We now reconsider the diagrammatic classification of finite spectral
triples, with real x-algebras represented faithfully on a Hilbert space. In
fact, as far as the decomposition of H into irreducible representations is
concerned, we can replace A by the complex *-algebra

N
A+iA =@ M,,(C).
i=1

Thus, the Krajewski diagrams in Definition classify such finite real
spectral triples as well as long as we take the IF; for each i into account.
That is, we enhance the set A to be

A= {nﬂFl, .. .,anFN},

reducing to the previously defined A when all IF; = C.
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3.4. Classification of irreducible geometries

We now classify irreducible finite real spectral triples of KO-dimension
6. This leads to a remarkably concise list of spectral triples, based on the
matrix algebras My (C) & My(C) for some N.

DEFINITION 3.19. A finite real spectral triple (A, H, D; ], ) is called irre-
ducible if the triple (A, H, ]) is irreducible. More precisely, we demand that:

(1) The representations of A and ] in H are irreducible;
(2) The action of A on H has a separating vector (cf. Exercise([3.2).

THEOREM 3.20. Let (A, H, D; ], ) be an irreducible finite real spectral triple
of KO-dimension 6. Then there exists a positive integer N such that A ~ My(C) &
Mn(C).

PROOF. Let (A, H, D; ], ) be an arbitrary finite real spectral triple, cor-
responding to e.g. the Krajewski diagram of Figure Thus, as in Section
we have

N N
A =P M, (C), H=& C"eC oV

i=1 ij=1
with Vj; corresponding to the multiplicities as before. Now each C" @ C"
is an irreducible representation of A, but in order for H to support a real
structure | : H — H we need both C" ® C"/ and C" @ C" to be present in
H. Moreover, Lemma 3.8 with ]2 = 1 assures that already with multiplici-
ties dim V;; = 1 there exists such a real structure. Hence, the irreducibility
condition (1) above yields

H=C'"C'"aCixC",
forsomei,j € {1,...,N}. Or, as a Krajewski diagram:
n; II]‘

n O

i
n;? O
Then, let us consider condition (2) on the existence of a separating vec-
tor. Note first that the representation of A in H is faithful only if A =
My, (C) & My;(C). Second, the stronger condition of a separating vector
¢ then implies n; = nj, as it is equivalent to A’ = H for the commu-
tant A’ of A in H (see Exercise . Namely, since A" = My, (C) & M,,(C)
with dim A" = n? + n]Z, and dim H = 2n;n; we find the desired equality
n; = le. Il

With the complex finite-dimensional algebras A given by My(C) &
Mp(C), the additional demand that H carries a symplectic structure I> =
—1 yields real algebras of which A is the complexification (as in the proof
of Lemma [3.18). In view of Exercise [3.8(4) we see that this requires N = 2k
so that one naturally considers triples (A, H, J) for which A = My(H) &
My (C) and H = C*2¥’, The case k = 2 will come back in the final Chap-
ter (13| as the relevant one to consider in particle physics applications that
go beyond the Standard Model.
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Notes

Section 3.1. Finite real spectral triples

1. The operator D in Definition [3.1]is a first-order differential operator on the bimodule H
in the sense of [106].

2. Exercises and develop Tomita-Takesaki theory for matrix algebras, considered
as finite-dimensional Von Neumann algebras. For a complete treatment of this theory for
general Von Neumann algebras, we refer to e.g. [235].

Section 3.2. Classification of finite real spectral triples

3. Krajewski’s work on the classification of all finite real spectral triples (A, H, D; ], y) mod-
ulo unitary equivalence (based on a suggestion in [82]) is published in [164]. Similar results
were obtained independently in [204]. We have extended Krajewski’s work —which is in
KO-dimension 0— to any KO-dimension. The classification of finite real spectral triples
(but without Krajewski diagrams) is also the subject of [50]. The KO-dimension 6 case —
which is of direct physical interest as we will see below in Chapter [I3}— was also handled
in [I51].

4. Lemma 3.8]is based on [249], where Wigner showed that anti-unitary operators on finite-
dimensional Hilbert spaces can be written in a normal form. His crucial observation is that
J? is unitary, allowing for a systematic study of a normal form of ] for each of the eigen-
values of J? (these eigenvalues form a discrete subset of the complex numbers of modulus
one). In our case of interest, | is a real structure on a spectral triple (as in Definition , )
that J2 = +1.

5. In the labelling of the nodes in a Krajewski diagram with +-signs, it is important whether
or not we adopt the so-called orientation axiom [82]. In the finite-dimensional case, this
axiom demands that the grading 7 can be implemented by elements x;,y; € A as v =
Y.i x;y; . Hence, this is completely dictated by the operator | and the representation of A. In
terms of our diagrams, this translates to the fact that the grading of a node only depends
on the label (n;, n]°) In this book, we will not assume the orientation axiom.

Section 3.4. Classification of irreducible geometries

6. Finite irreducible geometries have been classified by Chamseddine and Connes in [62],
using different methods. We here confront their result with the above approach to finite
spectral triples using Krajewski diagrams and find that they are compatible.

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom






CHAPTER 4

Riemannian spin manifolds

We now extend our treatment of noncommutative geometric spaces
from the finite case to the continuum. This generalizes spin manifolds to
the noncommutative world. The resulting spectral triples (Chapter[5) form
the key technical device in noncommutative geometry, and in the physical
applications of Part[2|of this book in particular.

We start with a treatment of Clifford algebras, as a preparation for the
definition of a spin structure on a Riemannian manifold, and end with the
analytical aspects of the Dirac operator.

4.1. Clifford algebras

Let V be a vector space over a field F (= R, C or H), equipped with a
quadratic form Q : V — F, i.e.

Q(Av) = A’Q(v); (A€F,veV),
Qv+ w)+ Qv—w) =2Q(v) +2Q(w); (v,we V).

DEFINITION 4.1. For a quadratic form Q on V, the Clifford algebra C1(V, Q)
is the algebra generated (over IF) by the vectors v € V and with unit 1 subject to
the relation

(4.1.1) v* = Q(v)1.

Note that the Clifford algebra C1(V, Q) is Z,-graded, with grading x
given by
x(o1-- ) = (=1)fvp - -y,

which is indeed compatible with relation (4.1.1). Accordingly, we decom-
pose

Cl(V,Q) =: CI’(V,Q) & C1'(V, Q)
into an even and odd part.
EXERCISE 4.1. Show that in C1(V, Q) we have
vw +wo = 2g0 (v, w),

where g is the pairing V- x V — ¥ associated to Q, given by

(Qv+w) — Q(v) — Q(w)) .

43

gq(v,w) =

N +—
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We also introduce the following convenient notation for the Clifford
algebras for the vector spaces R" and C" equipped with the standard qua-

dratic form Q,(x1,...,%n) = x5 + - - x2%:
ClL; := CI(R", Qn);
Cl, := CI(R", —Qp);

Cl, := CI(C", Qy).
Both Cl and Cl,, are algebras over R generated by ey, . .., e, with relations
(4.1.2) ejej +ejej = iZcSZ-]-,

for alli,j = 1,...,n. Moreover, the even part (CI:¥)? of CI consists of
products of an even number of ¢;’s, and the odd part (CI;")" of products of
an odd number of ¢;’s.

The Clifford algebra Cl, is the complexification of both CL and CI,,
and is therefore generated over C by the same ey, . . ., e, satisfying (4.1.2).

EXERCISE 4.2. (1) Check that Equation indeed corresponds to
the defining relations in CL:.
(2) Show that the elements e; - --¢; with1 < iy <ip < --- < i, < nform
a basis for CI.
(3) Conclude that dimp CI,T = 2" and, accordingly, dim¢ Cl,, = 2"
(4) Find an isomorphism C1(C", Q) ~ Cl(C", —Qy,) as Clifford algebras.

PROPOSITION 4.2. The even part (Cl,,,)° of Cl, ; is isomorphic to Cl,,.

PROOF. We construct amap ¥ : Cl, — (Cl,;)° given on generators
by
(4.1.3) Y(e;) = eyi1e;
Indeed, fori,j =1,...,n we have
Y(e)¥(ej) +Y(ej)¥(ei) = eiej +eje; = —26;; = ¥Y(—20;),

using e;e,+1 = —epq16; and e,1e,11 = —1. Thus, ¥ extends to a homo-
morphism Cl,; — (CL,.;)°. Moreover, since ¥ sends basis vectors in Cl,;
to basis vectors in (Cl, H)O and the dimensions of Cl,; and (Cl,, +1)0 coin-
cide, it is an isomorphism.

EXERCISE 4.3. Show that the same expression (4.1.3) induces an isomorphism
from CL,; to the even part (CL', ;)° and conclude that (CL, ;)° ~ (Cl,_)°.

Next, we compute the Clifford algebras CliE and Cl,,. We start with a
recursion relation:

PROPOSITION 4.3. For any k > 1 we have
ClL ®rCl, =~ Cl,,,
Cly ®rCly ~Cl,.
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PROOF. The map ¥ : Cl,, — Cl ®r Cl; given on generators by

N 1®e; 1=1,2
¥ (er) _{ ei_ro®eep 1=23,...,n

extends to the desired isomorphism. O
Let us compute some of the Clifford algebras in lowest dimensions.
PROPOSITION 4.4.

Cli ~RaR, Cly ~C,
Cly ~ M(R), Cl, ~H.
PROOF. The Clifford algebra Cl{ is generated (over R) by 1 and e; with
relation €2 = 1. We map Cl; linearly to the algebra R & R by sending
1+—(1,1), er — (1,-1).

A dimension count shows that this map is a bijection.
The Clifford algebra Cl; is generated by 1, e1, e; with relations

et =1, e5 =1, e16p = —eney.

A bijective map Cl; = M;(RR) is given on generators by

L (10 (10 (01
0 1), ©° 0o —1)’ 1 0/

We leave the remaining Cl; and Cl; as an illustrative exercise to the reader.
4

EXERCISE 4.4. Show that Cl; ~ Cand Cl, ~ H.

Combining the above two Propositions, we derive Table[4.Tfor the Clif-
ford algebras Cl,f and Cl,, forn =1, ..., 8. For instance,

Cli ~ Cl; ®r Cli ~C QR Mp (]R) ~ Mz(C)
and
Cl; ~Cl, ®rCly ~ H®R Ma(R) ~ M,(H)
and so on. In particular, we have
Clf®Clf ~Cl ,
and
Cli g ~Clf ®Clg .

With Cly ~ Mi6(RR) we conclude that CL, ¢ is Morita equivalent to CL{ (cf.
Theorem . Similarly, Cl,_ 48 18 Morita equivalent to CL. Thus, in this
sense Table4.1|has periodicity eight and we have determined CL for all 7.
For the complex Clifford algebras, there is a periodicity of two:
Cl, ®c Cly ~ Cl,4o,

so that with Cl, ~ M;(C) we find that Cl,, is Morita equivalent to Cl,».
The (semi)simple structure of Cl, is further clarified by
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[n] Cly \ Cl, \ Cl, |
1 R@&R C CaC
2 M>(R) H M(C)
3 M,(C) HoH M;(C) & My(C)
4 M(H) M(H) M4(C)
5| Mx(H) & M (H) M4(C) M4(C) ® My(C)
6 M4(H) Ms(RR) Ms(C)
7 M;g(C) Ms(R) & Ms(R) | Ms(C) & Ms(C)
8§ Mp(R) Mye(R) Mye(C)

TABLE 4.1. Clifford algebras Cl and their complexifica-
tions Cl,, forn =1,...,8.

DEFINITION 4.5. The chirality operator 7,11 in Cl, is defined as the ele-
ment

Y1 = (—i)"e1- - -eq,
where n = 2m or n = 2m + 1, depending on whether n is even or odd.
EXERCISE 4.5. Show that
(1) if n = 2m is even, then v, 1 generates the center of CI = Cl,_1,

(2) if n = 2m + 1 is odd, then 7,41 lies in the odd part Cl%mﬂ, and the
center of Cl, is spanned by 1 and 7y, 1.

4.1.1. Representation theory of Clifford algebras. We determine the
irreducible representations of the Clifford algebras CIF and Cl,. Let us
start with the complex Clifford algebras.

PROPOSITION 4.6. The irreducible representations of Cl,, are given as
c%; (n =2m),
c*, c?; (n=2m+1).

PROOF. Since the Cl,, are matrix algebras we can invoke Lemma to
conclude that in the even-dimensional case the irreducible representation
of Cly,; =~ My (C) is given by the defining representation C2". In the odd-
dimensional case we have

ClZerl ~ Mzm(C) @ Mzm(C),

so that the irreducible representations are given by two copies of C?", cor-
responding to the two summands in this matrix algebra. O

For the real Clifford algebras Cl;> we would like to obtain the irre-
ducible representations from those just obtained for the complexification
Cl, ~ CI; ®RC. As Cl; are matrix algebras over R and H, this leads us to
the following possibilities:

(1) Restrict an (irreducible) representation of Cl, to a real subspace,
stable under CL;

(2) Extend an (irreducible) representation of Cl,, to a quaternionic space,
carrying a representation of CIF.
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This is very similar to our approach to real algebras in Section 3.3 In fact,
we will use an anti-linear map J;© on the representatlon space furnishing
it with a real ((J;7)?> = 1) or quaternionic structure ((J;5)?> = —1) to select
the real subalgebra CI; C Cl,. For the even-dimensional case we search
for operators fzim such that on the irreducible Cl,,,-representations C?" we
have

(4.1.4) Cly,, ~ {a € Cloy : [J5,,,a] =0} .

The odd case is slightly more subtle, as only the even part (CLY)? of CLF
can be recovered in this way:

(4.1.5) (CLE, )0 ~ {a €Cyiy: UL, 10 = o}.

PROPOSITION 4.7. For any m > 1 there exist anti-linear operators .,
C*" — C* and J;,, ., : C*" — C*" such that the Equations @&1.4) and @1.5)
hold.

PROOF. From Proposmonnand Exercise 4.3 .we see that (Cl3;, 11)0
Cl,,, and (Cly,,41)° ~ Clp,, so that the odd case follows from the even case.

By periodicity we can further restrict to construct only J5, for m =
1,2,3,4. For m = 1 we select the real form Cl; ~ M,(R) in Cl, ~ M(C)
as the commutant of J,” with

i 1 C* = C%

(@)~ (&)

U (%)

Instead, as in Example Cl, ~ H can be identified as a real subalgebra
Cl, ~ M,(C) with the commutant of ], , where

Iy . C? —>C2,'

(@) (),
(%] (%}
For m = 2 the sought-for operator J;” = J, on C*is givenby |, @ J, .
For m = 3 weset | = (], )® to select Cl; ~ M,(IH) inside Cls, and
Jo = (J57)®* to select Cl; ~ Ms(R).

Finally, for m = 4 the operator J{7 = J; = (J;7)®® selects the two
isomorphic real forms Cl3 C Cls. O

The signs for the squares (J;")? are listed in Table[4.2] The isomorphisms
between the odd- and even-dimensional cases are illustrated by the fact
that

<]2im+1)2 = (]Em)z
with periodicity eight. We also indicated the commutation between J¥ and
odd elements in CliE and between J;F and the chirality operator 7y, 41. For

the derivation of the former note that for n even J;; commutes with all
elements in CL;f, whereas for 1 odd we follow the proof of Proposition
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| n | 1[2[3[4[5][6][7[8]
(JH?=+1 1 |-1|-1|-1|-1|1]1
(J7)? = +£1 1 |-1|-1|-1|-1 1
J;x=(x1)x],, xodd|-1| 1 1 1 [—-1]1 (1|1
Ju Y1 = (ED)Ynia )y -1 1 -1 1

TABLE 4.2. The real and quaternionic structures on the irre-
ducible representations of Cl, that select CI; via for
n even and (CI;;)° via for n odd. For later reference,
we also indicated the commutation or anti-commutation of
] with the chirality operator 7,11 defined in Definition
and odd elements in (CLI})! ¢ CI.

e n = 1: J| is equal to J;, which is given by J;(z) = zforz € C,
and selects (Cl; ) ~ R in Cl] ~ C. Thus, the remaining
part (Cl;)! ~ iR so that odd elements x € (Cl; )! anti-commute
with [,

e n = 3: J; is equal to ], , which is given by the standard quater-
nionic structure on C2. It then follows that all of Cl; ~ H & H
commutes with ;.

e n = 5: in this case J5 is equal to J,, which is two copies of J, .
This selects (Cl5)? ~ My(H) in Cl; ~ M4(C). Again, the re-
maining part (Cl5 )! ~ iM,(H) so that odd elements x € (Cl5 )°
anti-commute with J5 .

e n =7: ], isequal to ], , which is given by component-wise com-
plex conjugation of vectors in C8. It follows that all of Cl; =~
M;g(R) @ Mg(RR) commutes with J, .

Finally, in the even case n = 2m the (anti)-commutation between the chiral-
ity operator 7,11 and the anti-linear operator J,, depends only on the power
of the factor i”". Indeed, the even product of e;’s in Definition 4.5|already
commutes with ], so that the signs (—1)™ for n = 2m follow from

J 1" = (=", -

The last three rows of Table[4.2]give precisely the sign table that appears for
real spectral triples below, where 7 is the corresponding KO-dimension,
and hence coincide with Table [3.1] of Definition We will now slowly
move to the spin manifold case, tracing KO-dimension back to its historical
roots.

4.2. Riemannian spin geometry

We here give a concise introduction to Riemannian spin manifolds and
work towards a Dirac operator. For convenience, we restrict to compact
manifolds.

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




49 4.2. RIEMANNIAN SPIN GEOMETRY

4.2.1. Spin manifolds. The definition of Clifford algebras can be ex-
tended to Riemannian manifolds, as we will now explain. First, for com-
pleteness we recall the definition of a Riemannian metric on a manifold.

DEFINITION 4.8. A Riemannian metric on a manifold M is a symmetric
bilinear form on (smooth) vector fields T (T M)

g:T®(TM) xIT*(TM) — C*(M)
such that

(1) ¢(X,Y) is a real function if X and Y are real vector fields;
(2) gis C®°(M)-bilinear:

X Y) =g(X, fY) = fe(X,Y);  (f € C*(M));

(3) g(X,X) > 0 for all real vector fields X and ¢(X, X) = 0 if and only if
X=0.

The non-degeneracy condition (3) allows us to identify I'*(TM) with
QL (M) =T®(T*M).

A Riemannian metric g on M gives rise to a distance function on M,
given as an infimum of path lengths

20 dyley) =int{ [ VS0, 30N 10) = x1(1) =y}

Moreover, the inner product that ¢ defines on the fibers TyM of the
tangent bundle allows us to define Clifford algebras at each point in M as
follows. With the inner product at x € M given explicitly by gx (X, Yy) :=
2(X,Y)|x we consider the quadratic form on T, M defined by

Qg(Xx) = 8x(Xx/ Xy).

We can then apply the construction of the Clifford algebra of the previous
section to each fiber of the tangent bundle. At each point x € M this gives
rise to C1(TxM, Q) and its complexification CI(TyM, Q,). When x varies,
these Clifford algebras combine to give a bundle of algebras.

DEFINITION 4.9. The Clifford algebra bundle C1"(TM) is the bundle of
algebras C1(TxM, Qg ), with the transition functions inherited from TM. Namely,
transition functions on the tangent bundle are given for open U,V C M by tyyv :
UNV — SO(n) where n = dim M. Their action on each fiber TxM can be
extended to C1(TyM, Q) by

0102+ + - U tUV(Ul) v tUV(Uk)} (Ul, .o, 0 € TxM).

The algebra of smooth real-valued sections of C1" (T M) will be denoted by Cliff* (M) =
= (CI*(TM)).

Similarly, replacing Qq by —Qy, we define Cliff~ (M) as the space of sections
of CI” (TM).

Finally, we define the complexified algebra

Cliff(M) := Cliff" (M) ®g C,

consisting of smooth sections of the bundle of complexified algebras C1(T M), which
is defined in a similar manner.
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Let us determine local expressions for the algebra Cliff* (M). If {x" }]'1:1

are local coordinates on a chart U of M, the algebra of sections of Cliff* (M) |y
is generated by v, with relations

(422) YuYv + YvYu = Zg;u//

with ¢, = g(9y,9y). After choosing an orthonormal frame for I'°(TM) |y
with respect to the metric g, at a point of U this relation reduces precisely
to the relation (4.1.2).

Let us see if we can import more of the structure for Clifford algebras
explored so far to the setting of a Riemannian manifold. First, recall that

Cly,, & Mom (C), Clgm—i-l = Mom (C)

Another way of phrasing this is to say that the (even parts of the) Clifford
algebras Cl, are endomorphism algebras End(C?"). The natural question
that arises in the setting of Riemannian manifolds is whether or not this
holds for all fibers of the Clifford algebra bundle, in which case it would
extend to a global isomorphism of algebra bundles.

DEFINITION 4.10. A Riemannian manifold is called spin® if there exists a
vector bundle S — M such that there is an algebra bundle isomorphism
CI(TM) ~ End(S) (M even-dimensional),
CI(TM)° ~ End(S) (M odd-dimensional).
The pair (M, S) is called a spin® structure on M.
If a spin® structure (M, S) exists we refer to S as the spinor bundle

and the sections in I'°(S) as spinors. Using the metric and the action of
Cliff" (M) by endomorphisms on I'°(S) we introduce the following notion.

DEFINITION 4.11. Let (M, S) be a spin® structure on M. Clifford multipli-
cation is defined by the linear map

c: QL (M) xT®(S) = T*(S);
(W, ¢) = &* -y,

where w* is the vector field in T®(TM) corresponding to the one-form w €
QL. (M) via the metric g. This vector field acts as an endomorphism on T®(S)
via the embedding T®(TM) — Cliff" (M) C T* End(S).

In local coordinates on U C M, we can write w|y = wudxﬂ with w, €
C*(U) so that Clifford multiplication can be written as

c(W)plu = c(w, P)lu = wu(YP)lu; (Y €TZ(S)),
with y* = ¢"v, and 7, as in (4.2.2) but now represented as endomor-
phisms on the fibers of S. The appearance of 7" comes from the identi-
fication of the basis covector dx* € QI (M)|y with the basis vector 9, €

[ (TM)|y using the metric, which is then embedded in Cliff" (M). That
is, we have

dxy = g(du,)p
as (non-degenerate) maps from T, M to C with p € U C M.
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Recall that if M is compact, then any vector bundle carries a smoothly
varying inner product on its fibers,

() : T®(S) x T(8) — C®(M).

EXERCISE 4.6. Use a partition of unity arqument to show that any vector
bundle on a compact manifold M admits a smoothly varying inner product on its
fibers.

DEFINITION 4.12. The Hilbert space of square-integrable spinors L2(S)
is defined as the completion of T (S) in the norm corresponding to the inner prod-
uct

(1, 92) = /M<¢1,¢z>(x)\/@dx,
where \/@dx is the Riemannian volume form.

Recall that in the previous subsection we selected the real Clifford al-
gebras CI as subalgebras in Cl, that commute with a certain anti-linear
operator J;-. We now try to select Cliff~(M) C Cliff(M), considered as en-
domorphisms on I'®(S), through a globally-defined operator Jj; : T®°(S) —
I'*(S), so that

Jm) (x) = I (p(x)),

for any section ¢ € I'°(S), where n = dim M. Such a global operator does
not always exist: this gives rise to the notion of a spin manifold. It is con-
ventional to work with J,; to select Cliff~ (M) C Cliff(M), making our sign
Table 4.2l fit with the usual definition of KO-dimension in noncommutative
geometry.

DEFINITION 4.13. A Riemannian spin® manifold is called spin if there exists
an anti-unitary operator Jpy : T®(S) — I'°(S) such that:

(1) Jm commutes with the action of real-valued smooth functions on T®(S);
(2) Jap commutes with Cliff~ (M) (or with Cliff~ (M) in the odd case).

We call the pair (S, Jp) a spin structure on M and refer to the operator ]y as the
charge conjugation.

If the manifold M is even dimensional, we can define a grading

(rm) (%) = 1ana(P(x));  (p €TZ(S)).

Then, the sign rules of Tablefor the square of J,; and the (anti)-commutation
of J,; with 7,41 and odd elements in Cl,; hold in each fiber of T*®(S). Hence,
we find that also globally

Ju=e€  Jux=éexlm; (x € (Clff (M), Jmym = €"vmlm,

with €,€’,€” € {11} being the signs in Table with n = dim M modulo
eight. This will be crucial for our definition of a real spectral triple in the
next section, where these signs determine the KO-dimension of a noncom-
mutative Riemannian spin manifold.
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4.2.2. Clifford connections, spin connections and the Dirac operator.
The presence of a spin structure on a Riemannian manifold allows for the
construction of a first-order differential operator that up to a scalar term
squares to the Laplacian associated to g. This is the same operator that
Dirac searched for (with success) in his attempt to replace the Schrédinger
equation by a more general covariant differential equation in Minkowski
space. The Dirac operator that we will describe below is the analogue for
Riemannian spin manifolds of Dirac’s operator on flat Minkowski space.

DEFINITION 4.14. A connection on a vector bundle E — M is given by a
C-linear map on the space of smooth sections:

V : I°(E) = Qi (M) @coo(my T(E)
that satisfies the Leibniz rule
Vi) = V) +dfen (f € CT(M),n € I%(E)).
The curvature QF of V is defined by the C*(M)-linear map
OF := V2: T®(E) = Q*(M) ®cw(um) T(E).

Finally, if (-,-) is a smoothly varying (ie. C®(M)-valued) inner product on
I'°(E), a connection is said to be hermitian, or compatible if

—~(Vu, "y + V') =d,y");, (1, € T2(E)).

Equivalently, when evaluated on a vector field X € T*°(TM) a connec-
tion gives rise to a map

Vx :T®(E) = T*(E).
More precisely, the relation with the above definition is given by

V() == V(1)(X),

for all X € I*(TM) and 5 € T*(E). The corresponding curvature then
becomes

(4.2.3) QF(X,Y) = [Vx, Vy] = Vixy); (X,Y € T®(TM)),
i.e. it is a measure of the defect of V to be a Lie algebra map.

EXAMPLE 4.15. Consider the tangent bundle TM — M on a Riemannian
manifold (M, g). A classical result is that there is a unique connection on TM
that is compatible with the inner product g on T(TM), i.e.

(VxY,Z)+(Y,VxZ) =X({Y,Z))
and that is torsion-free, i.e.
VxY = VyX=[XY];, (X, YeT®(TM)).

This connection is called the Levi—Civita connection and can be written in local
coordinates {xP‘}Z:1 onachart U C Mas V(dy) = I}, dx" ® 9y, or

Va, () = ', 0.

The C*(U)-valued coefficients I, are the so-called Christoffel symbols and
torsion-freeness corresponds to the symmetry Iy, =TT,
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Recall also the definition of the Riemannian curvature tensor on (M, g) as
the curvature of the Levi—Civita connection, i.e.

R(X,Y) = [Vx, Vy] = Vixy| € T(End TM),
which is indeed a C®°(M)-linear map. Locally, we have for its components
Ruvkr = g(9,, R(9x,0,)0y).
The contraction Ry := g" R,k is called the Ricci tensor, and the subsequent

contraction s := g"*R,y € C*(M) is the scalar curvature.
Similar results hold for the cotangent bundle, with the unique, compatible,
torsion-free connection thereon related to the above via the metric g.

DEFINITION 4.16. If VE is a connection on a vector bundle E, the Laplacian
associated to V'E is the second order differential operator on E defined by

AF = —Tr (Ve 1+1® VE) o VE T®(E) = T™(E),
where
Ve1l+1® VE: QL (M) ®cs T™(E)
— Ol (M) @co(pr) Qi (M) @coo (1) T (E)

is the combination of the Levi—Civita connection on the cotangent bundle with
the connection V¥ and Try is the trace associated to g mapping QL (M) Qce (M)

QiR(M) — C®(M).
Locally, we find
AP = —g"(VEVy =T, Vi),
If M is a Riemannian spin® manifold, then the above Levi-Civita connection

can be lifted to the spinor bundle. First, choose a local orthonormal frame
for TM|:

{El,...,En}forF(TM)\u . g(Ea/Eb) :(SHb.

The corresponding dual orthonormal frame of T*M|; is denoted by 6%. We
can then write the Christoffel symbols in this basis, namely by

VE, =: T} dx" ® E,
on vector fields, and on one-forms by

V6’ = —T,dxt ©6°.
The compabitility of V with the inner product g implies the skew-symmetry
of F;ﬁa under the exchange of 2 and b.

Also note that the local orthonormal frame for TM]|; allows us to write
Clifford relations for (globally) fixed matrices *:

(4.2.4) Yot 4 by =25, (a,b=1,...,n).

We now come to lift this structure from the tangent bundle to the spinor
bundle. More precisely, one requires the following compatibility between
the Levi—Civita connection, Clifford multiplication, and the connection on
the spinor bundle.
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DEFINITION 4.17. Let M be a spin® manifold. A Clifford connection V°

on the spinor bundle S — M is a hermitian connection V° on the spinor bundle
S — M such that

(4.2.5) Vile(w)p) = c(Vx(w))y + c(@) Vi ();
forany X € X(M),w € QL (M), € T®(S). Here V is the Levi-Civita con-
nection on the cotangent bundle.

We also have the following concrete formula.

LEMMA 4.18. Let M be a spin® manifold. Then the following local formula
defines a Clifford connection on the spinor bundle:

1~
Vipes) = (2 T ) 90

Any other Clifford connection on S is of the form V° + a where & = —a* is a
purely imaginary one-form.

PROOF. Take X = 9, in local coordinates {x"} on U and take w = 6°
with respect to an orthonormal frame {6} for T*M]|;. Then ¢(w) = 9¢ and
we find for any ¢ € I'®(S) that

1~ 1-
0 (YY) = Vo = =T 1y + ZFZWW”MJ
1~
= —fw'r VY YP +1 1 T, (26%y, — 2057 + " 17°) ¢

1 1
= 2 ]IC 2 ya’)/ ll)
_rcu’)/ ll]
using the relations (4.2.4) and skew-symmetry of F . under the exchange
of b and c. By def1n1t1on of the Christoffel symbols I’ we also have that
c(Va, ()9 = —TI5,7"¢ so t}iat the compatibility (4.2.5) is satisfied. The
skew-symmetric property of FZC combines with hermiticity of 7* to yield
hermiticity of V° and this completes the proof of the first statement.

If V is another connection on $ we can always write V = V + & where
a € Endce(p) (T2(S)) @co(am) Qix(M). For this connection to be Clifford
we need (d,) € Endew(p) (I(S)) to commute with all ¢(w). Since M is
spin® we have Endcw () (T(S)) = Cliff(M)©). From this we derive that at
each point x € M the linear map «(9,,), should be a scalar multiple of the
identity. Hermiticity of V then implies that a(9,) € C®(M, iR). O

We will call the above Clifford connection V° on S the spin connection.

PROPOSITION 4.19. If M is a spin manifold and Jp; is the corresponding
anti-unitary operator on T'(S), then the spin connection V° is the unique Clifford
connection that commutes with Jp;.

PROOF. Observe that the product 79" = —(iy*)(i9?) is in the even
part of the Clifford algebra Cl,;, since

(i7" (i7?) + (iv?) (in") = —26.
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Since by definition the operator ], commutes with the even elements in
Cl, acting fiberwise on the spinor bundle, it follows that V° commutes
with ] M-

Since any other Clifford connection differs from V° by the addition of a
purely imaginary one-form a, commutation with Js implies thata = 0. O

All of the above structure culminates in the following definition

DEFINITION 4.20. Let M be a spin manifold, with spin structure (S, Jp). The
Dirac operator Dy, is the composition of the spin connection on S with Clifford
multiplication of Definition [4.11}

S —i .
Dt : T®(S) 5 QL (M) @y TZ(S) =5 T(S).

In local coordinates, we have
) 1~
Dup(x) = ~in* (B~ {Thr"m ) p(x)

4.2.3. Lichnerowicz formula. Let us come back to the original motiva-
tion of Dirac, which was to find an operator whose square is the Laplacian.
Up to a scalar this continues to hold for the Dirac operator on a Riemannian
spin manifold, a result that will turn out to be very useful later on in our
physical applications. For this reason we include it here with proof.

THEOREM 4.21. Let (M, g) be a Riemannian spin manifold with Dirac oper-
ator Dyy. Then

1
Dy =A%+ 7,
in terms of the Laplacian A° associated to the spin connection VS and the scalar
curvature s.

PROOF. We exploit the local expressions for Dy, A® and s, as the above
formula is supposed to hold in each chart that trivializes S. With Dy; =
—iy" V3, we compute

Dy = ="V Vi = ="' ViV — ye(V,dx") Ve
=~y (VaV, — T3, V3).
We then use the Clifford relations (.2.2) to write 77" = 1[y*,7"] + g,
and combine this with torsion freedom I}, = I}, to obtain

1 1
Dhy = g™ (V5VE ~ T3, V5) — S [1" 7' IVEVE = &5 = Jq'yR(3,,90),

in terms of the Laplacian for V° on S and the curvature R° thereof. The
latter is given by — ;R0 7*7", as one can easily compute from the explicit
local form of V* in Definition Thus,

1
DZ = AS - gRyVKA’Yy'YV'YK,YA~

Using the cyclic symmetry of the Riemann curvature tensor in the last three

indices, and the Clifford relations (4.2.2) we find that the second term on the

right-hand side is equal to {R,1g"* = 1s, in terms of the scalar curvature

defined in Example [21.15[ O
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4.3. The Dirac operator: analytical aspects

In this section we will establish a series of key results that forms the
starting point for an operator-algebraic formulation of noncommutative
Riemannian spin manifolds.

THEOREM 4.22. Let M be a compact Riemannian spin manifold (without
boundary). The Dirac operator D)y is essentially self-adjoint on T®(S) C L?(S)

with compact resolvent (i + Dyy) 1, and has bounded commutators with elements
in C®°(M). In fact
[Dm, f] = —ic(df),
so that ||[D, f]|| = || fl|Lip is the Lipschitz (semi)-norm of f:
f(x) = fy) }
ip =SUP{ — 2 .

We divide the proof of this Theorem into three parts which we treat in
the subsequent subsections: bounded commutators, essential self-adjointness,
and compact resolvent.

4.3.1. Bounded commutators.

PROPOSITION 4.23. The commutator [Dyy, f| defined on T*(S) extends to
a bounded operator on L?(S). More precisely, we have [Dyy, f] = —ic(df) and

ITDa, A= 11 £ lluip-

PROOF. It follows from the Leibniz rule that
(D, f](§) = —ic(dx!) [V}, flp = —ic(dx*)(3uf) - ¢ = —ic(df)y

where we have assumed that supp () is contained in a chart that trivializes
the spinor bundle S — M so we can use the local formula for Dj,.
For the norm of the commutator we compute

IDa, [1? = lle(df*)e(df)] = sup 871 (df*,df) (x).

We may write this as ||gradf||%, := sup,.,, l|g(grad, f*, grad, f)| in terms
of the gradient vector field defined by gradf := (df)!. We claim that

lgradflleo = | flLip-
First, consider a smooth path «y : [0,1] — M such that v(0) = x,y(1) =

y. Then
1

Fx) = flo) = [ Sfroa
N /o1 (d“r(t)f) (7(t)) dt.

1
By Cauchy-Schwartz inequality we then have

f(x) = fW)] < llgradfl[el(7)
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in terms of the Riemannian length [(-y) of the path 7. If we take an infimum
over all such paths y we find that | f(x) — f(y)| < ||gradf||edg(x,y) so that
Ifllup < llgradf
For the other inequality, suppose instead that there exists x € M so
that ||grad, f|| > ||f|lLip + € for some € > 0. Consider again a smooth path
7 : [0,1] — M such that 7(0) = x. Then there exists § > 0 such that for all
0 <t <Jdwehave
1 :
() = F0) ~ gi(grad £ 3(0) | <

which implies that

N ™

1 , €
+ (FON0) = F(r(0)))| > Ig+(grad, £, 7(0))] — 5
Now take a normalized §(0) = % and parametrize y naturally so that

I(7(0) — (t)) = t. Then the above inequality yields
Fr(#) = F(1(0))] > (llgrad,f1| - 5 )
> (Ifllup + 5 ) 10r(0) = ¥(8))
> (Iflhip + 5 ) dg(v(0),7(8))
But this implies that || f||Lip > || f||lLip + 5 Which is a contradiction. O

4.3.2. Essential self-adjointness. We first show that D) is a symmet-
ric operator on I'°(S) and then apply a general result on essential self-
adjointness for symmetric differential operators on compact manifolds with-
out boundary.

PROPOSITION 4.24. For all i1, 1> € I'*°(S) we have
(Dm(¥1), ¢2) = (1, Dm(¢2)) -

PROOF. First, an application of the hermiticity of the spinor connection
yields

(Daa(1),92) = +i [ () V5(91), o) /etg - dx' Ao ndx”
= (¢1, Dm(y2)) — i/M<l/11zC(W(dx”))llfz>\/@'fix1 A Adx"
—|—i/M O ({1, c(dx)yo)) \/detg -dx* A+ Adx"

An argument based on integration by parts shows that it is now sufficient
to establish the following expression

(4.3.1) Viu(dx")\/detg = —9,(/det g)dx"

For the right-hand side we use the det/log relationship:

dyu(v/detg) = %Tr ((aug)g‘l) V/detg
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which follows from basic linear algebra and the chain rule. We compute for
the left-hand side of (4.3.1) that

where the Christoffel symbols are given locally by

K 1 K
r‘uv = 58 A (aygv)x + avgyA - a/\gyv) .

In other words, we have

1 1 _
The = 58" 0x(gun) = 5Tr(g70xg),
from which it follows that
1 -1
Vu(dxt) = —ETr(g 0,8)dx"
so that validity of Equation (4.3.1) follows. O

We proceed with the following well-known result (see Note [/|on Page
[61] below), which is valid for any closable operator T on a Hilbert space
(and so in particular to the symmetric operator D).

LEMMA 4.25. Let T be a closable operator on a Hilbert space H. Then u € ‘H
belongs to the domain of the closure T of T if and only if there exists a sequence
{u;j} in the domain of T such that u; — u and || Tu;|| is bounded.

PROOF. Let ¢ € Dom(T*). Then
0, T°9)] = lim [(1, T°8)| = lim |(Tit, €)] < lim [T 1.

using Cauchy-Schwartz inequality. Since || Tu,|| is bounded, it follows that
¢ — (u, T*¢) is a bounded functional on Dom(T*). O

We now apply this to symmetric first-order differential operators on
compact manifolds without boundary. Recall that a first-order differential
operator D on a vector bundle E — M has the following local expression:

0
D=) A*(x)=— +B
L A5 + B
where A¥(x), B(x) : Ex — Ey are endomorphisms acting on the fibers of E.
We will always act with D on smooth sections I'°(E) of the bundle E — M
and we furthermore fix an inner product on I'*°(E).

PROPOSITION 4.26. Every symmetric first-order differential operator D on
a vector bundle E over a compact manifold without boundary is essentially self-
adjoint.

PROOF. The proof uses so-called Friedrichs” mollifiers on M. For all suf-
ficiently small t > 0 there exist (cf. Exercise below) self-adjoint operators
F;: L*(E) — L*(E) such that

M B <1;
(ii) for each u € L*(E), Fru — uin L?>(E) ast — 0;

(iii) for each u € L?(E), Fu is smooth;
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(iv) the commutator [D, F;] extends to a bounded operator on L?(E),
whose norm is bounded independent of t.

Then, let u € Dom(D*). In order to conclude that D is essentially self-

adjoint we will show that # € Dom(D). Note that Fu is smooth and tends
to u ast — 0. Moreover,

D(Ftu) = FtD*l/l + [D*,Ft]u
On Dom(D*) we have [D*, F;| = [F;, D]*, which is the adjoint of a bounded

operator (with norm bound independent of t). Thus, D(Fu) is uniformly
bounded so that u € Dom(D) by the previous Lemma. O

COROLLARY 4.27. The Dirac operator D s on a compact Riemannian spin®
manifold without boundary is essentially self-adjoint.

EXERCISE 4.7. Let ¢ : R" — R be a smooth, positive function with compact
support and with total mass 1. Define an operator F; on L>(R") by

) = [ o (SFY) vy

Show that {F;} is a family of Friedrichs’ mollifiers on L*(R"), i.e. a family satis-
fying (i)-(iv) in the Proof of Proposition [4.26). Using local coordinates and parti-
tions of unity, graft this family onto an arbitrary compact manifold M to construct
a family of Friedrichs” mollifiers on M.

4.3.3. Compact resolvent. Here we will rely on a crucial embedding
result on Sobolev spaces, namely the Rellich Lemma, which we state with-
out proof.

To start, recall the definition of the first Sobolev space H!(RR") on Eu-
clidean space R": it is the completion of the compactly supported smooth
functions CZ(IR") in the norm coming from the inner product

o f) e = (o f)ie + Y @ufuduf)i (i fo € C2(RY)).

u=1

More generally, for a compact manifold M we can use partition of unity to
extend this definition to give H 1 (M). So, let x4 be a partition of unity sub-
ordinate to an atlas (U,, ¢,) of M. We define H!(M) to be the completion
of C*(M) with respect to the inner product

(o f2)man = 3((ta - 1) 0 b, (Xa - f2) © b ) i (o)

o
This definition turns out to be independent of the choice of an atlas (see
Note [9] on Page [61] below). Moreover, by using trivializing charts it can
easily be extended to give rise to the Sobolev spaces H!(M, E) of sections
of abundle E — M.

LEMMA 4.28 (Rellich). Let M be a compact manifold. Then the inclusion
map H'(M, E) into L>(M, E) is a compact map.

We will not prove it in full generality here (see Note (10| on Page
below), but give a proof for the case of the circle in Exercise 4.8 below.

This result can be used to show the compact resolvent property for the
Dirac operator Dy, in the following way. First of all, the norm coming from
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the inner product on H'(M, E) is equivalent to the graph norm of D, (see
Note [0 on Page [61] below), so that Rellich Lemma then implies that the
inclusion map
1: Dom(Dy;) — L2(S)

is a compact map.

PROPOSITION 4.29. The adjoint 1* : L?(S) — Dom(Dy) C L2(S) is given
byt = (1 + D) L.

PROOF. For 1 € L?(S) and ¢, € Dom(Dy;) we have in terms of the
inner product on the graph G(D)y) of D

=2\—1 . —2\-1
(@+D) M) w2) o = (14D3) )
[RE— 72 _ —_
+ (DM<1 + Dy )My, DM1P2> L
= (Y1, ¥2) 2 = (Y1,1($2)) 12 - O

COROLLARY 4.30. The resolvent (i + Dy;) ! of the Dirac operator on a com-
pact Riemannian spin® manifold without boundary is a compact operator.

PROOF. We start by writing
(i+Dy) "' = ((i+Dm) '(1+Dy")/2(1+ Dpr”) V2

The operator (i + Dag) ' (1 + mz)l/ 2 is a bounded operator. In fact, using
the functional calculus on self-adjoint operators we find that

e - V1+t2
(i + D) 1(1—|—DM )1/2H <sup —07p p = L.
teR i+t

Also, observe that (1 + Dp;")~1/2 is a square root of the positive operator

(1+ DiMZ)*l. When we consider the latter as an operator on L?(S) it is
compact by the above Proposition. This is enough to conclude that (i +
Dy) ! is compact. O

In the following exercise we consider Rellich Lemma on the circle.

EXERCISE 4.8. Write a function f € L?(S') as a Fourier series:

f= anen

nez

where e, (t) = ™™ and the sequence { f,,} is in 12(Z.). The Sobolev space H'(S')
consists of those L?-functions for which

f1IFn = Y A+ )| ful?

nez
is finite.
(1) Establish the following estimate

1/2 1/2
Y. fueu| < ( )y \fn|2(1+n2)> ( ) Hlnz)

[n|<N [n|<N |n|<N
and derive from this that H'(S') C C(S1).
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(2) Show that the inclusion H'(S') — L2(S') is given by the norm limit
of the sequence Py of finite-rank operators that send a function f to the

N'th partial sum
PNf: Z fnen

In|<N

In some cases one can derive the above analytical properties (such as
essential self-adjointness and compact resolvent) from the knowledge of
the spectrum of eigenvalues, as the following exercise shows.

EXERCISE 4.9. Let {A,}nez be a sequence of real numbers, possibly with
degeneracies but ordered such that A, < A,+1. Furthermore, assume that oo are
the only accumulation points and that Ay, — £oo as n — oo. We define a dense
subspace in 12(Z) by

Dom(D) = spang{e, :n € Z}
and introduce an unbounded linear operator D on Dom(D) C I12(Z) by setting
DeH — Anen.

(1) Show that D is an essentially self-adjoint operator.
(2) Show that the resolvent (i + D)1 is a compact operator on 12(Z).

Notes

Section 4.1. Clifford algebras

1. In our treatment of Clifford algebras, we stay close to the seminal paper by Atiyah, Bott
and Shapiro [10], but also refer to the standard textbook [174] and the book [128| Chapter
5]. We also take inspiration from the lecture notes [242]] and [173].

2. The definition of a quadratic form given here is equivalent with the usual definition,
which states that Q is a quadratic form if Q(v) = S(v, v) for some symmetric bilinear form
S (cf. Exercise . This is shown by Jordan and von Neumann in [148].

3. The periodicity eight encountered for the real Clifford algebras Clki is closely related to
the eightfold periodicity of KO-theory [8]. The periodicity two encountered for the complex
Clifford algebras Cl,, is closely related to Bott periodicity in K-theory [16].

Section 4.2. Riemannian spin geometry

4. A standard textbook on Riemannian geometry is [149]. For a complete treatment of
Riemannian spin manifolds we refer to e.g. [174} [32]. The noncommutative approach to
(commutative) spin geometry that we adopt here can also be found in [128, Chapter 9] or
(241, 242].

5. In Definition [4.10|a Riemannian manifold is said to be spin® if CI(TM) ~ End(S) (even
case). Glancing back at Chapter 2] we see that Cl,, is Morita equivalent to C (1 even). With
Definition of the next Chapter, we conclude that a manifold is spin® precisely if (the
C*-completion of) Cliff(M) is Morita equivalent to C(M). This is the algebraic approach to
spin® manifolds laid out in [128] Section 9.2].

6. A first reference to Theorem [4.22)is [79) Section VI.1].

7. Lemma [£.25]can be found as [140, Lemma 1.8.1])

8. The proof of Proposition [4.26]is based on [140, Lemma 10.2.5]

9. The fact that the definition of the inner product for H' (M) is independent of the choice
of an atlas is shown in for instance [125} Sect. 1.3.4]. The relation of this inner product to
the graph norm of Dy, is a deep result which is a consequence of ellipticity of the Dirac
operator, see for instance [125, Lemma 1.3.6].
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10. A proof of the Rellich Lemma can be found in [237, Corollary II.1.2] and in [138}
Lemma 1.7].
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CHAPTER 5

Noncommutative Riemannian spin manifolds

This Chapter introduces the main technical device —spectral triples—
that generalizes Riemannian spin geometry to the noncommutative world.
We exemplify this by means of toric noncommutative manifolds; this in-
cludes the noncommutative torus.

5.1. Gelfand duality

The first step towards noncommutative manifolds is to arrive at an
algebraic characterization of topological spaces. This is accomplished by
Gelfand duality, giving a one-to-one correspondence between compact
Hausdorff topological spaces and commutative C*-algebras. Let us recall
some definitions.

DEFINITION 5.1. A C*-algebra A is a (complex) x-algebra (Definition
that is complete with respect to a multiplicative norm (i.e. ||ab|| < ||a||||b]| for all
a,b € A) that satisfies the C*-property:

la*al] = ||al.

EXAMPLE 5.2. The key example of a commutative C*-algebra is the algebra
C(X) for a compact topological space X. Indeed, uniform continuity is captured
by the norm

£l = sup{|f(x)[ : x € X}

and involution defined by f*(x) = f(x). This indeed satisfies ||f* f|| = || f||*.

EXAMPLE 5.3. Another key example where A is noncommutative is given by
the x-algebra of bounded operators B(H) on a Hilbert space H, equipped with the
operator norm.

The following result connects with the matrix algebras of Chapter

PROPOSITION 5.4. If A is a finite-dimensional C*-algebra, then it is isomor-
phic to a matrix algebra:

N
A~ P M, (C).
i=1

PROOF. See Note[2|on Page O

In Chapter 2l we defined the structure space of a *-algebra A to consist
of (equivalence classes of) irreducible representations of A. Let us extend
this definition to C*-algebras.

63
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DEFINITION 5.5. A representation of a C*-algebra A is a pair (H, 7r) where
*H is a Hilbert space and 7t is a x-algebra map

m:A— B(H).

A representation (M, 7r) is irreducible if H # 0 and the only closed subspaces in
H that are left invariant under the action of A are {0} and H.

Two representations (Hq, 1) and (Hy, m2) of a C*-algebra A are unitarily
equivalent if there exists a unitary map U : H1 — Ho such that

m(a) = U mp(a)U.

DEFINITION 5.6. The structure space A of a C*-algebra A is the set of all
unitary equivalence classes of irreducible representations of A.

In Chapterwe considered the commutative matrix algebra CN whose
structure space was the finite topological space consisting of N points. Let
us sketch the generalization to compact Hausdorff topological spaces, build-
ing towards Gelfand duality. As a motivating example, we consider the
C*-algebra C(X) for a compact Hausdorff topological space X (cf. Example
. As this C*-algebra is commutative, a standard argument shows that
any irreducible representation 7t of C(X) is one-dimensional. In fact, any
such 77 is equivalent to the evaluation map ev, at some point x of X, given
by

evy: C(X) = C;

fr f(x),

Being a one-dimensional representation, ev, is automatically an irreducible
representation. It follows that the structure space of C(X) is given by the
set of points of X. But more is true, as the topology of X is also captured by
the structure space. Namely, since in the commutative case the irreducible
representations are one-dimensional 77 : A — C the structure space can be
equipped with the weak *-topology. That is to say, for a sequence {7, },
in A, 7, converges weakly to 7t if 71,,(a) — 7(a) foralla € A.

We state the main result, generalizing our finite-dimensional version of
Section to the infinite-dimensional setting.

THEOREM 5.7 (Gelfand duality). The structure space A of a commutative

-~

unital C*-algebra A is a compact Hausdorff topological space, and A ~ C(A) via
the Gelfand transform

neA—adc A a(m) = nt(a).

Moreover, for any compact Hausdorff topological space X we have

—

C(X) ~ X.
PROOF. See Note[3|on Page O

5.2. Spectral triples

The next milestone which we need to reach noncommutative Riemann-
ian spin geometry is the translation of the Riemannian distance (4.2.1) on a
compact Riemannian spin manifold into functional analytic data. Indeed,
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o
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FIGURE 5.1. The translation of the distance between points
x,yin M to a formulation in terms of functions of slope < 1.

we will give an alternative formula as a supremum over functions in C®(M).
The translation from points in M to functions on M is accomplished by im-
posing that the gradient of the functions is less than 1 (see Figure5.T). This
is the continuum analogue of Theorem [2.18]

PROPOSITION 5.8. Let M be a Riemannian spin®-manifold with Dirac oper-
ator Dyy. The following formula defines a distance between points in C(M) ~ M:

d(x,y) = sup ){!f(x) —fW)]: I[Dm, fIll <1}

feC*(M

Moreover, this distance function d coincides with the Riemannian distance func-
tion d,.
8

PROOF. First, note that the relation || f||Lip = ||[Dum, f]l| < 1 (cf. The-
orem 4.20) already ensures that d(x,y) < d¢(x,y). For the opposite in-
equality we fix y € M and consider the function f;,(z) = d¢(z,y). Then
Hfg,yHLip <Tland

d(x,y) = |fey(x) = foy(y)| = dg(x,y),

as required. O

Thus, we have reconstructed the Riemannian distance on M from the
algebra C*(M) of functions on M and the Dirac operator D), both act-
ing in the Hilbert space L?(S) of square-integrable operators. Note that the
triple (C*(M), L%(S), Dy) consists of mere functional analytical, or ‘spec-
tral” objects, instead of geometrical. Upon allowing for noncommutative
algebras as well, we arrive at the following spectral data required to de-
scribe a noncommutative Riemannian spin manifold.

DEFINITION 5.9. A spectral triple (A, H, D) is given by a unital x-algebra
A represented as bounded operators on a Hilbert space H and a self-adjoint oper-
ator D in ‘H such that the resolvent (i + D)~ is a compact operator and [D, a]
extends to a bounded operator for each a € A.

A spectral triple is even if the Hilbert space ‘H is endowed with a Z,-grading
v such that ya = ay and yD = —D-y.
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(n]0 1 2 3 4 5 6 7]
e[l 1 -1 -1 -1 -1 11
11 -1 1 1 1 -1 11
¢ 1 -1 1 -1

TABLE 5.1. The KO-dimension n of a real spectral triple is
determined by the signs {¢, €’,€” } appearing in ]2 = ¢, ]D =
¢DJand Jy = ¢"].

A real structure of KO-dimension n € Z./8Z on a spectral triple is an anti-
linear isometry | : H — H such that

J? =5, JD = €¢D]J, Jvy =¢"y] (even case),

where the numbers ¢,¢' e’ € {—1,1} are given as a function of n modulo 8, as
they appear in Table

Moreover, with b° = Jb*]~! we impose the commutant property and the
order one condition:

(5.2.1) [a,0°] =0, [[D,a],t°]=0; (a,bc A).
A spectral triple with a real structure is called a real spectral triple.

REMARK 5.10. The notation (A, H, D) is chosen to distinguish a general
spectral triple from the finite spectral triples considered in Chapter [2)and 3| which
were denoted as (A, H, D).

The basic example of a spectral triple is the canonical triple associated
to a compact Riemannian spin manifold:
e A = C®(M), the algebra of smooth functions on M;
e H = L2(S), the Hilbert space of square integrable sections of a
spinor bundle S — M;
e D = Dy, the Dirac operator associated to the Levi—Civita connec-
tion lifted to the spinor bundle.
The real structure | is given by the charge conjugation ] of Definition[4.13]
If the manifold is even dimensional then there is a grading on #, defined
just below Definition Since the signs in the above table coincide with
those in Table the KO-dimension of the canonical triple coincides with
the dimension of M.

EXAMPLE 5.11. The tangent bundle of the circle S is trivial and has one-
dimensional fibers, so that spinors are given by ordinary functions on S'. More-
over, the Dirac operator Dg is given by —id/dt where t € [0,27), acting on
C*®(S) (which is a core for Dg1). The eigenfunction of De are the exponential
function e with eigenvalues n € Z. As such, (i + Dg1) ™! is a compact operator.
Moreover [Dq, f] = —idf/dt is bounded. Summarizing, we have the following

spectral triple:

<C°°(sl),L2(sl), —ii) .

Note that the supremum norm of a function f € C*(S') coincides with the oper-
ator norm of f considered as multiplication operator on L>(S'). A real structure
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is given by complex conjugation on L?(S'), making the above a real spectral triple
of KO-dimension 1.

EXAMPLE 5.12. Since the tangent bundle of the torus T? is trivial, we have
Cliff(T?) ~ C(T?) ® Clo. As a consequence, the spinor bundle is trivial, S =
T? x C?, and L*(S) = L*(T?) ® C2. The generators y* and > are given by

(e » (01

which satisfy (4.2.4). The chirality operator is then given by

. -1 0
T2 = =iyl = ( 0 1) ,

and the real structure Jy2 that selects Cl, C Cly is

() (3)

Finally, the Dirac operator on T? is

| 0 —0,—id
D2 = —in"0 = <31 S0 2) :

The eigenspinors of Dy are given by the vectors

1 ei(n1t1+n2t2)
Py (P 12) 1= —= | L initny Litmb+mb) | 5 (n,ny € Z),
" V2 \F e

with eigenvalues & /n3 + n3. Again, this ensures that (i + D2) "' is a compact
operator. For the commutator with a function f € C®(T?) we compute

0 —uf —id
[DTz,f]:<alf_iazf 1f0 2f>,

which is bounded because 01 f and 9, f are bounded. The signs in the commutation
between |12, D2 and g2 makes the following a spectral triple of KO-dimension
2:

(C®(T?), L*(T?) ® C%, Dy2; J12, 712) -

Other examples are given by finite spectral triples, discussed at length
—and classified— in Chapter 2| Indeed, the compact resolvent condition
is automatic in finite-dimensional Hilbert spaces; similarly, any operator
such as [D, a] is bounded as in this case also D is a bounded operator. More
serious noncommutative examples are presented below in Section

Corresponding to the direct product of manifolds, one can take the
product of spectral triples as follows (see also Exercise 2.24). Suppose that
(A1, H1,D1;71, 1) and (Az, Ha, Da; 72, J2) are even real spectral triples, then
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we define the product spectral triple by

A=A ® Ay;

H =H1 Q@ Hy;
D=D1®1+ 7 ®Dy;
Y=7 @72
J=1® ]

If (Az, Ha, Dy; J2) is odd, then we can still form the product when we leave
out . Note that D? = D% ® 14 1® D?, since the cross-terms vanish due to
the fact that y1D1 = —D171.

EXAMPLE 5.13. In the physical applications later in this book (Chapter[I0jand
afterwards) we are mainly interested in almost-commutative manifolds which
are defined as products of a Riemannian spin manifold M with a finite noncom-
mutative space F. More precisely, we will consider

M x F := (C®°(M), L*(S), Das; Jm, Ym) @ (A, He, Dr; JE, YF),
with (Ar, Hr, Dr; Jr, ) as in Definition Note that this can be identified
with:
M x F = (C®(M, Ap), L*(S® (M x Hf)), Dy @ 14 m @ D; M © Jr, Ym @ VE),
in terms of the trivial vector bundle M x Hp on M.

Returning to the general case, Definition encountered before in the
context of finite spectral triples can be translated verbatim to the general
case:

DEFINITION 5.14. Two spectral triples (A1, H1, D1) and (A, Ha, D>) are
called unitarily equivalent if Ay = A, and if there exists a unitary operator
U : Hi — Ho such that

Ur(a)U* = ma(a); (a € Ay),
UDU* = D»,
where we have explicitly indicated the representations rt; of Ajon H; (i =1,2).

Moreover, any spectral triple gives rise to a differential calculus. This
generalizes our previous Definition for the finite-dimensional case.
Again, we focus only on differential one-forms, as this is sufficient for our
applications to gauge theory later on.

DEFINITION 5.15. The A-bimodule of Connes’ differential one-forms is given
by

QlD(A) = {Zak[D,bk] sag, by € .A} ,
k

and the corresponding derivation d : A — QY(A) is given by d = [D, -].

EXERCISE 5.1. (1) In the case of a Riemannian spin manifold M, verify
that we can identify Qf (C®(M)) =~ Ql(M), the usual De Rham
differential one-forms.
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(2) In the case of an almost-commutative manifold M x F, verify that we
have

Qb1 4y (C7 (M, Ap)) = Qg (M, Ap) & C*(M, Qp, (AF)).

5.3. Examples of noncommutative manifolds

5.3.1. The noncommutative torus. We now give a detailed exposition
of a noncommutative example of a real spectral triple, namely, we describe
the noncommutative torus. Let us start with the noncommutative topologi-
cal, i.e. the C*-algebraic aspects.

DEFINITION 5.16. Let 6 be a real number. We define the noncommutative
torus C*-algebra Ag to be the unital C*-algebra generated by u,v subject to the
relations

uu = uu* = ]_,' v = vt = ]_,' U = /\MU; (A — 827‘[1'9)
The smooth noncommutative torus algebra is then given by

Ag:={a= Zarsurvs :(ays) € S(Z%)}

where the space of Schwartz sequences is defined as

S(Z?) = {(ays) : sup (1+ 1+ s2)¥|ays|* < oo for any k > 0}

r,s€Z
Note that for the *-algebra structure in .4y we have for a,b € Ay:
(5.3.1) ab = Z ANy mbps—mtt 0°; at = Z)\’su_r,_survs.
r,s,n,m r,s

Also, if 8 = 0 we may identify u, v with multiplication operators by z1,z; €
S, so that Ay = C®(T?) identifying the series Y., s arstt’v° as a Fourier series
in two variables. This should explain the terminology noncommutative
torus whenever 6 # 0.

Next, consider the normalized faithful trace 7 : Ag — C given by

T(a) = ago,
so that T(a*a) = ¥, |ars|*> > 0 fora # 0. Also 7(1) = 1 and 7(ab) = 1(ba)
as follows readily from Equation (5.3.1).
LEMMA 5.17. The trace T extends to a continuous trace T : Ay — C and in
fact [T(a)| < |al|.

PROOF. Continuity of T : Ay — C follows since we may write on poly-
nomials a € C(u,v):

T(a) 1= /11"2 a1, (a)dt
where a;, 1, (u'0°) = €!"175%) defines an action of T? on Aj. It thus follows
that |t(a)| < |la]|. O

Using this faithful trace we may apply the GNS-construction. This
gives a Hilbert space

HT = LZ(AQ, T)
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which —since 7 is faithful—is given by the closure of Ag with respect to the
Hilbert space norm ||a||» = /T (a*a). The representaton 7t : Ag — B(H+)
is given by

mic(a)b = ab.

As in Exercise 3.2 there is a Tomita involution with respect to the cyclic and
separating vector 1 € H.. It is given explicitly by

J:(a) = a*.
This anti-unitary operator can be used to define a right representation of
Ag on H, by setting 712(a) = J.w(a*)J7 L. In fact, we then have
3 (a)b = Jra*b* = ba
forall a,b € Ay. It then follows that [7r3(a), t(b)] = 0, so that H, becomes

a Ap-bimodule.
We now prepare for spinors by doubling our Hilbert space:

H:HT@HT-

The algebra representation of Ag on H is the diagonal representation 7w =

71 @ 7T while we set
_ (0 —J). _(1 0
=0 ) 6

As such, we have J> = —1 and |y = —7J, suggesting the KO-dimension to
be 2 as can be read off from Table5.1

The final step in the description of the noncommutative torus in terms
of a real spectral triple is the introduction of a noncommutative analogue of
a Dirac operator. For this, we first consider the basic derivations J; : Ay —
Ay given by

(5.3.2) 4 (Zarsurvs> = Zimrsurvs; 02 <Zarsurvs> = Zisarsurvs.
17,8 r,s r,s r,s

Indeed, it follows from Equation (5.3.1)) that
(533) 5](1119) = 5](a)b + IZ(SJ(b), ((5]11)* = (5]12*

One should consider the derivations 61, as the noncommutative ana-
logues of the partial derivatives 9/9t; on Ay = C*(T?). Also note that

there is a noncommutative “Stokes’ Theorem” in the sense that 7(d;(a)) =
0.

LEMMA 5.18. The map a — d;a for a € Ay extends to a closed (unbounded)
skew-adjoint operator on the Hilbert space H.

PROOF. For this it is sufficient to note that
T((d;a)*b) = 1(0;(a*b)) — T(a*0;(b)) = —T(a*6;(D)). O

This result allows us to give the following definition, which is inspired
of course by the commutative case of Example[5.12
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DEFINITION 5.19. The Dirac operator on the noncommutative torus is
the symmetric operator D 4, : Ag @ C* — H defined by

(0 =6 —id
DAH_((sl—i(sz 0 >

One computes (as in Example 5.12) that an orthonormal eigenbasis of
D 4, is given by

—_— 1 ‘ur’vs .
Prs = ﬁ + z:;;sszurvs ; (7’/5 S Z)/
with eigenvalues ++v/72 + s2. Since this coincides with the classical spec-
trum of D2 on L2(T?) ® C? we may conclude that the resolvent of D 4, is
compact. Note that this would also follow from Exercise Finally, we
compute for any a € Ay that

0 —o1(a) —idr(a
[Da,, 7t(a)] = (n(gl(a)—iéz(a)) Tt e ))>

which extends to a bounded operator on H. We have thus proven the fol-
lowing result.

PROPOSITION 5.20. The data (Ag, H, D 4,; ], y) defined above is a real spec-
tral triple of KO-dimension 2.

5.3.2. Generalization to toric manifolds. Let M be an m dimensional
compact Riemannian manifold equipped with an isometric smooth action
of an n-torus T", n > 2. We denote by ¢ the corresponding action of T"
by automorphisms — obtained by pull-backs — on the algebra C*(M) of
smooth functions on M.

The algebra C®(M) may be decomposed into spectral subspaces which
are indexed by the dual group Z" = T". Now, with s = (s1,---,s,) € T",
each r € Z" yields a character of T", s — e2™rs with the scalar product
r-s:= 1151 + - - - + r;5,. The r-th spectral subspace for the action ¢ of T"
on C®(M) consists of those smooth functions f, for which

(5.3.4) os(fr) = e f,,

and each f € C®(M) is the sum of a unique series f = Y ,cz» fr, which
is rapidly convergent in the Fréchet topology of C®(M) (see reference in
Note[12]below for more details).

Let now 6 = (0jx = —0;;) be a real antisymmetric n x n matrix. The -
deformation of C*(M) may be defined by replacing the ordinary product
by a deformed product, given on spectral subspaces by

(5.3.5) fr Xo g = fr ‘T%r-o(gr’) = €”ir'9'f/frgr’f

where 7 - 0 is the element in R" with components (r - 0); = Y78 for k =
1,...,n. The product in (5.3.5) is then extended linearly to all functions
in C®(M). We denote the space C®(M) endowed with the product x, by
C*®(Mgy). The action ¢ of T" on C®(M) extends to an action on C*(My)
given again by on the homogeneous elements.
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Next, let us take M to be a spin manifold with L?(S) the Hilbert space
of spinors and D) the usual Dirac operator of the metric of M. Smooth
functions act on spinors by pointwise multiplication thus giving a repre-
sentation 77 : C*(M) — B(L?(S)).

We assume that there is a double cover ¢ : T" — T" and a representa-
tion of T" on L?(S) by unitary operators U(s),s € T", so that

(5.3.6) U(s)DyU(s) ™! = Dy,

since the torus action is assumed to be isometric, and such that for all f €
C*(M),

(5:3.7) U(s)m(f)U(s) ™ = m(os) (f))-

We say that an element T € B(L?(S)) is called smooth for the action of T”
if the map
T" 55+ ae(T) := U(s)TU(s) "},

is smooth for the norm topology. From its very definition, a; coincides on
m(C®(M)) C B(L?*(S)) with the automorphism ¢, ;). Moreover, much as it
was done before for the smooth functions, we shall use the torus action to
give a spectral decomposition of smooth elements of B(L?(S)). Any such a
smooth element T is written as a (rapidly convergent) series T = }_ T, with
r € Z" and each T, is homogeneous of degree r under the action of T", i.e.

(5.3.8) ws(Ty) = e2™5T,, VseT"

Let (P, Py, ..., P,) be the infinitesimal generators of the action of T" so that
we can write U(s) = exp 27tis - P. Now, with 6 a real n x n anti-symmetric
matrix as above, one defines a twisted representation of the smooth ele-
ments of B(L%(S)) on L?(S) by

(5.3.9) Lo(T) :=) T,U(3r-6) =) _ Trexp {mir0yP},

Taking smooth functions on M as elements of B(L%(S)), via the representa-
tion 77, the previous definition gives an algebra Ly(C*(M)) which we may
think of as a representation of the algebra C®(Mjy). Indeed, by the very
definition of the product x4 in one establishes that

(5.3.10) Lo(f x98) = Lo(f)Lo(g),

proving that the algebra C®(Mjy) (i.e. C®(M) equipped with the product
X ) is isomorphic to the algebra Ly(C®(M)).

THEOREM 5.21. The datum (C*®(My), L(S), Dp1) is a spectral triple.

PROOF. The resolvent of Dy is compact by assumption. The bound-
edness of the commutators [Dyy, Lo(f)] for f € C®(M) follows from the
relation [Dag, Lo(f)] = Lo([Dwm, f]), Dum being of degree 0 since T" acts by
isometries, so that each P, commutes with Dj;. See also Note [13|on Page

74

This noncommutative Riemannian spin manifold is a so-called isospec-
tral deformation of the classical Riemannian geometry of M, in that the
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spectrum of the operator Dy coincides with that of the classical Dirac op-
erator on M. Moreover, if M is even and spin then there is a grading 7y and
operator ] that make (C®(Mg), L%(S), Dpm; Jm, Yum) @ real spectral triple.

Notes

Section 5.1. Gelfand duality

1. A complete treatment of C*-algebras, their representation theory and Gelfand duality can
be found in [37, Section I1.2.2] or [234] Section 1.4].

2. A proof of Lemma|5.4]can be found in [234, Theorem 11.2].
3. A proof of Theoremcan be found in e.g. [37 Theorem I1.2.2.4] or [234] Theorem 3.11].

4. Spectral triples were introduced by Connes in the early 1980s. See [79, Section IV.2.6]
(where they were called unbounded K-cycles) and [81].

5. The distance formula appearing in Proposition as well as the proof of this Proposition
can be found in [79} Sect. VI.1]. Moreover, it extends to a distance formula on the state space
S(A) of a C*-algebra A as follows. Recall that a linear functional w : A — C is a state if it
is positive w(a*a) > 0 for all non-zero a € A, and such that w(1) = 1. One then defines a
distance function on S(A) by [81]
d(wy,wz) = sup {|wy(a) — wz(a)] : [|[D,a]|| <1}.
ac A

It is noted in [216} [95] that this distance formula, in the case of locally compact complete
manifolds, is in fact a reformulation of the Wasserstein distance in the theory of optimal
transport. We also refer to [96} 186 187].

6. Propositionestablishes that from the canonical triple on a Riemannian spin manifold
M one can reconstruct the Riemannian distance on M. As a matter of fact, there is a re-
construction theorem for the smooth manifold structure of M as well [90]. It states that
if (A,H,D;],v) is a real spectral triple with A commutative, then under suitable condi-
tions [82] there is a Riemannian spin manifold (M, g) with spin structure (S, Jj1) such that
(A, H,D;],v) is given by (C*(M), L%(S), Das; Jm, Ym) (see also the discussion in [128} Sec-
tion 11.4]).

7. Real spectral triples as defined in Definition [5.9| are noncommutative generalization of
Riemannian spin manifolds. An immediate question that arises is whether noncommu-
tative generalizations of Riemannian spin® manifolds, or even just Riemannian manifolds
can be defined. In fact, building on the algebraic approach to defining spin® manifolds as in
[128] (as also adopted above) the authors [179] introduce such noncommutative analogues.
For earlier attempts, refer to [119].

8. Products of spectral triples are described in detail in [240], and generalized to include the
odd case as well in [94].

9. The differential calculi that are associated to any spectral triple are explained in [79} Sec-
tion VIL.1] (see also [168, Chapter 7]).

Section 5.3. Examples of noncommutative manifolds

10. The noncommutative torus formed the guiding example for noncommutative manifolds
in the early days of noncommutative geometry, and already appears in [76]. The deforma-
tion quantization aspects of the noncommutative torus were analyzed early on as well, by
Rieffel in [212].

The C*-algebra Ay is also called the rotation algebra. This is because of the following
realization as operators on L2(S!). We consider for ¢ € L?(S!):

Up(z) = z9(2);  Vi(2) = p(A2).
Thus, U generated the C*-algebras C(S!) and conjugation by V gives an automorphism a
of C(S!) by rotation with the angle 8. The association u — U, v — V is a representation of
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the C*-algebra Ay on L?(S!), which in fact implements an isomorphism Ay = C(S!) x, Z
with a crossed product algebra associated to the rotation «.

11. The Gelfand-Naimark-Segal (or, GNS) construction is a general procedure that con-
structs a Hilbert space representation of a C*-algebra, starting with a given state on it. More
details can be found e.g. in [37, Section II.6.4].

12. It is shown in [214] that there is a natural completion of the algebra C*(M,) to a C*-
algebra C(My) whose smooth subalgebra — under the extended action of T" - is precisely
C*(Mgp). Thus, we can understand Ly as a quantization map from

(5.3.11) Lo : C*(M) — C=(My),

which provides a strict deformation quantization in the sense of Rieffel. More generally, he
considers a (not necessarily commutative) C*-algebra A carrying an action of R”. For an
anti-symmetric 1 X n matrix 6, one defines a star product Xy between elements in A much
as we did before. The algebra A equipped with the product x ¢ gives rise to a C*-algebra de-
noted by Ag. Then the collection {Apg }4¢[0,1] is a continuous family of C*-algebras provid-
ing a strict deformation quantization in the direction of the Poisson structure on A defined
by the matrix 6.

13. Theorem [5.21| was obtained in [85]; see also [84].
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CHAPTER 6

The local index formula in noncommutative geometry

In this chapter we present a proof of the Connes-Moscovici index for-
mula, expressing the index of a (twisted) operator D in a spectral triple
(A, H, D) by alocal formula. First, we illustrate the contents of this chap-
ter in the context of two examples in the odd and even case: the index on
the circle and on the torus.

6.1. Local index formula on the circle and on the torus

6.1.1. The winding number on the circle. Consider the canonical triple
on the circle (Example [5.11):

<C°°(sl),L2(51),D51 - —ijt> .

The eigenfunctions of Dg: are given for any n € Z by e,(t) = ™, where
t € [0,27). Indeed, Dgie, = ne, and {e, } ,cz forms an orthonormal basis
for L2(S'). We denote the projection onto the non-negative eigenspace of

Dsl by P, ie.
_J e, ifn>0
Pen = { 0 otherwise

int

This is equivalent to defining P = (1+ F)/2, where F = Dgi|Dgi| ™! (de-
fined to be +1 on ker Dg1). Concretely, F is the Hilbert transform:

F (Z ‘/’nen(t)> == Z Pnen + Z Pnen,

nez n<0 n>0

with complex coefficients ¢, (n € Z).

Let u be a unitary in C*(S!), say u = e,, for some m € Z. The index we
are interested in is given by the difference between the dimensions of the
kernel and cokernel of PuP : PL?(S') — PL?(S!):

index PuP = dim ker PuP — dim ker Pu*P.

Indeed, Im T+ = ker T* for any bounded operator. We wish to write this
index as a local, integral expression. First, we check that the index is well
defined by noting that PuP has finite-dimensional kernel and cokernel. In
fact, the kernel of PuP (with u = ey,) consists of = }_,~o Pnen € PL2(Sh)

such that
P 2 l/]nem+n =0.
n>0
In other words, the kernel of PuP consists of linear combinations of the
vectors e, ...,e_,—1 for m < 0. We conclude that dimker PuP = —m if

m < 0. If m > 0 then this dimension is zero, but in that case dim ker Pu*P =

75



76 CHAPTER 6. LOCAL INDEX FORMULA

FIGURE 6.1. The map ey, : t € [0,27) — ™ winds m times
around the circle; this winding number is (minus) the index
of the operator Pe,, P.

m. In both cases, and also in the remaining case m = 0, for u = e,, we find
that
index PuP = —m.

EXERCISE 6.1. In this exercise we show that index PuP is well defined for
any unitary u € C*(S).

(1) Show that [F,ey,] is a compact operator for any m € Z.

(2) Show that [F, f] is a compact operator for any function f =Y, fuen €
C*(S!) (convergence is in sup-norm).

(3) Atkinson’s Theorem states that an operator is Fredholm (i.e. has finite
kernel and cokernel) if it is invertible modulo compact operators. Use this
to show that PuP is a Fredholm operator.

On the other hand, we can compute the following zeta function given
by the trace (taken for simplicity over the complement of ker Dg:):

Tr (u*[Dsl,u] D1 1*2“) = mTr |Da |27 = 2mg(1 + 2z2),

since [Dg1, 1] = mu for u = e,,. Here {(s) is the well-known Riemann zeta
function. Since {(s) has a pole at s = 1, we conclude that

index PuP = —res;— Tr (”*[Dsl,MHDsl ’72271) .

This is a manifestation of the noncommutative index formula in the simple
case of the circle, expressing the winding number m (cf. Figure of the
unitary u = e, as a ‘local” expression. In fact,

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




B71. LOCAL INDEX FORMULA ON THE CIRCLE AND ON THE TORUS

1
res;—o Ir (u*[Dgl, ul |D51|’2Z*1> =5 /Sl u*du,

as one can easily check. The right-hand side is indeed a local integral ex-
pression for the (global) index of PuP.

In this chapter, we generalize this formula to any (odd) spectral triple,
translating this locality to the appropriate algebraic notion, namely, in terms
of cyclic cocycles.

EXERCISE 6.2. Prove the following index formula, for a unitary u = ey, say,
with m < 0:

1
index PuP = ~1 Tr F[F, u*][F, u].

6.1.2. The winding number on the torus. The same winding number
—now in one of the two circle directions— can also be obtained as an index
on the two-dimensional torus, as we will now explain.

Consider the even canonical triple on the 2-dimensional torus (Example
5.12)):

oo 2N 7272 2 _ 0 —d1 — 10,
<c (T),L(T)@C,DW—(al_iaz . ))

The eigenspinors of Dy are given by the vectors

gi(”1t1+ﬂ2t2)

1
Doy (B, 1) := —= | L imtmy imty4maty) | (n1,n2 € Z),
1 2

with eigenvalues & /1% + n3.

Instead of unitaries, we now consider orthogonal projections p € C®(T?)
or rather, projections in matrix algebras with entries in C*(T?). Indeed,
there are no non-trivial projections p in C(T?): a continuous function with
the property p?> = p is automatically 0 or 1. Thus, we consider the following
class of orthogonal projections in M, (C®(T?)):

_ f g+ hur
(6.1.1) p—<g+hu 1—f)'

where f, g, h are real-valued (periodic) functions of the first variable f;, and
U is a unitary depending only on the second variable t;, say U(t2) = e (t2).
The projection property p> = p translates into the two conditions

gh=0, g+h=f—f.
A possible solution of these relations is given by
0<f<1 suchthat f(0)=1, f(m)=0,

and then ¢ = X0, ./ f — f2and h = X[V f — f?, Where xx is the indi-
cator function for the set X (see Figure

The Fredholm operator we would like to compute the index of is p(D2 &
I,)p, acting on the doubled spinor Hilbert space L?(S) ® C? ~ L*(T?) ®
C? ® C?. This doubling is due to the fact that we take a 2 x 2 matricial pro-
jection. To avoid notation cluttery, we will simply write D2 for D2 ® II.
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0.4 0.4-

0.3, 0.3

0.2 0.2

0.1 0.1

n 2n n 2n

FIGURE 6.2. Functions f, g, h that ensure that p in (6.1.1) is
a projection.

The local index formula which we would like to illustrate on the torus
is
index pDyzp = —ves;—o Tr (7 (p — 3) [Dr2, pl[Dr2, p]| Dy2| 7)),

where the trace is both over the matrix indices of p and over the spinor
indices.

PROPOSITION 6.1. With U(t2) = ey (t2) and p of the above form, we have
res;—o Tr (7 (p — %) [Dr2, p)[Dy2, p)|Dy2| > %) = m.
PROOF. We use the following formula from Exercise [6.3] which holds
for any F € C*(T?):
6.1.2) Tr F|Dya| % = gE(S)/ F,
o Jr

where the trace is over spinor indices, and where (¢ is the Epstein zeta
function, defined by

Ce(s) = ), (nj+mnj)™.

71],1’1262

Since (g has a pole at s = 1 with residue 7r, we conclude that

res,_oTrF|D|>%* = | F.
T2
Returning to the claimed equality, we compute the trace over spinor in-
dices:
. 2
1 2 1 0 —01p —idp

= 2i(p — 3) (91p02p — Aapdp).
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FIGURE 6.3. Winding twice around one of the circle di-
rections on the torus. Let the range of the projection p
be v(t;, tp)s with s € C and v(t;,t;) € C? varies with
(t1,t2) € T2 We have drawn the real and imaginary parts
of the first component v1(t; = 37/4,t2)s with 0 < f, < 27
and —1 < s < 1. The other component v;(t; = 37/4,tp) is
constant.

Since g and 4 in (6.1.1) have disjoint support, ¢'h = 0, we have

) —hk' f'hUu*
01pdap = —02pd1p = —im (f’hu fhh’ >

Hence, taking the remaining trace over the indices of the projection, we
find

Tr2i(p — 1) (91pd2p — 02p01p) = 4m (—2fhh' + hi' + 2f'h?) .

Inserting this back in (6.1.2)) we see that we have to integrate the right-hand
side over the circle. A series of partial integrations yields

i _ ! l 11,2 __ 1/ 11,2
27r/ 2+ b+ 21 = o [ 3f'0.
Inserting the explicit expression of 11, we easily determine
27 1
[ =" =f = [ (x—atdx =
T 0

Combining all coefficients, including the residue of Epstein
we finally find

N =

~

s zeta function,

3
res.—o Tr (v (p — %) [Dy2, p]z\DTzFZ’Zz) = 4m—n—7'c =m,
as required. O

Thus, we recover the winding number of the unitary U, winding m
times around one of the circle directions in T?, just as in the previous sub-
section. The case m = 2 is depicted in Figure it shows the winding of
the range of p in C? at t; = 371/4 and with t, varying from 0 to 27t.

The fact that the index of pDy2p is also equal to (minus) this winding
number is highly non-trivial and much more difficult to prove. Therefore,
already this simple example illustrates the power of the Connes-Moscovici
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index formula, expressing the index by a local formula. We will now pro-
ceed and give a proof of the local index formula for any spectral triple.

EXERCISE 6.3. Prove Equation (6.1.2), i.e. show that for any function F &
C*(T?) we have

S
Tr F|Dy2| ™% = 5’575 ) L

6.2. Hochschild and cyclic cohomology

We introduce cyclic cohomology, which can be seen as a noncommuta-
tive generalization of De Rham homology.

DEFINITION 6.2. If A is an algebra, we define the space of n-cochains, de-
noted by C"(A), as the space of (n + 1)-linear functionals on A with the prop-
erty that if a/ = 1 for some j > 1, then ¢(a°,...,a") = 0. Define operators
b:C"(A) = C"(A)and B: C"1(A) — C"(A) by

(=1)¢p(a°,...,alal "L, ... a"tY)

I
™=

bp(a®,at, ..., a" )

j=0
+ (=1)" tp(a" a0, al, ..., a"),
n . . . .
Bp(a®,al,...,a") := E(—l)”]qb(l,a],a]“,...,a]_l).

~.
Il
o

EXERCISE 6.4. Show that b> = 0, B2 = 0, and bB + Bb = 0.

This means that a cochain which is in the image of b is also in the kernel
of b, and similarly for B. We say that b and B define complexes of cochains

o) B ol A) L

--<—BC”(A)<—BC”+1(A)<B—--'

4

where the maps have the (complex) defining property that composing them
gives zero: bob = 0 = B o B. This property of b and B being a differential
is a crucial ingredient in cohomology, where so-called cohomology groups are
defined as the quotients of the kernel by the image of the differential. In
our case, we have

DEFINITION 6.3. The Hochschild cohomology of A is given by the quo-
tients
_ kerb:C"(A) - C"T1(A)
~ Imb:Cr1(A) = C(A)’
Elements in kerb : C"(A) — C""1(A) are called Hochschild n-cocycles, and
elements in Imb : C"~1(A) — C"(A) are called Hochschild n-coboundaries.

EXERCISE 6.5. (1) Characterize the cohomology group HH(A) for any
algebra A.
(2) Compute HH"(C) for any n > 0.
(3) Establish the following functorial property of HH": if p : A — Bis an
algebra map, then there is a homomorphism of groups p* : HH"(B) —
HH"(A).
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EXAMPLE 6.4. Let M be a compact n-dimensional manifold without bound-
ary. The following expression defines an n-cochain on A = C*(M):

PUfofiree s fi) = [ fodfye--df

In fact, one can compute that b = 0 so that this is an n-cocycle which defines a
class in the Hochschild cohomology group HH" (C®(M)).

EXERCISE 6.6. Check that b¢ = 0 in the above example.

Next, we turn our attention to the differential B, and its compatibility
with b. Namely, b and B define a so-called double complex:

b b bT bT
s —5- CO(A) —2= CH(A) = CH(A) —2= CO(A)
b b bT

s —B- CHA) 2= CH(A) - CO(A)

b b
--—B>C1(A)—B>C0(A)
b

= CO(A)

The totalization of this double complex by definition consists of the even

and odd cochains:
C¥(A) = @ CZk(A
k
COdd(.A) _ @CZkJrl (.A)
and these also form a complex, now with differential b + B:
b+B CeV(A) b+B COdd(A) b+B CeV(A) b+B
DEFINITION 6.5. The periodic cyclic cohomology of A is the cohomology

of the totalization of this complex. That is, the even and odd cyclic cohomology
groups are given by

o _kerb+ B :C(A) — Cod(A)
HCP™(A) = 1+ B codd(A )—>C6V(A)’
. odd ev

Imb+B: CeV(A) — COdd(A) ’

Elements in ker b + B are called (even or odd) (b, B)-cocycles, and elements in
Im b + B are called (even or odd) (b, B)-coboundaries.
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Explicitly, an even (b, B)-cocycle is given by a sequence

(o, 2, Pa, - ),
where ¢o € C?*(A), and

bk + Bpori2 =0,
for all k > 0. Note that only finitely many ¢, are non-zero.
Similarly, an odd (b, B)-cocycle is given by a sequence
(4)1/ 4)3/ <P5/ .. ')/
where ¢y 1 € C*H1(A) and

b¢or1 + Bporiz =0,

for all k > 0, and also B¢; = 0. Again, only finitely many ¢y, are non-
Zero.

The following result allows us to evaluate an even (odd) (b, B)-cocycle
on a projection (unitary) in a given *-algebra A.

PROPOSITION 6.6. Let A be a unital x-algebra.

o Ifp = (¢p1,¢3,...) isan odd (b, B)-cocycle for A, and u is an unitary in
A, then the quantity

[ee]

<(P M> Z( 1)k+1k!¢2k+1(u*,u,...,M*,M)

Ti>o

only depends on the class of ¢ in HCP°dd(A).
o Ifp = (¢o, ¢, ...) isaneven (b, B)-cocycle for A, and p is an projection
in A, then the quantity

)!
(¢ p) : +Z (P = 3,P,P---P)
only depends on the class of ¢ in HCP¥(\A).

PROOF. We show that ((b+ B)©, u) = 0 for any even cochain (©, ®, . . .)
and that ((b+ B)®,e) = 0 for any odd cochain (01, @3, ...).
The former equation would follow from

(=) k6@ (u*, u, ..., u*, u) + (—1)%(k — 1)!BOx (u*,u,. .., u*,u) =0,
for any k > 0. Using the definition of b and B, we compute that indeed:
(—1)F 1kt [®2k(1, whu, . utu) + (=D Oy (1, u,ut, .. u, u*)]
+ (=) (k = D! kO (1, u*,u, ..., u*, u) — kO (1,u,u*, ..., u,u*)] = 0.

The second claim would follow from

o (2k+2)!
T

for any k > 1, and indeed

—2b@1(p — 3,p,p) + BO1(p) = 0.
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom

2k
(k,) BOsy1(p—3,p,---,P) =0,

b®2k+1(P - %/ p,-- IP) + (_1)




83 6.2. HOCHSCHILD AND CYCLIC COHOMOLOGY

Let us start with the latter, for which we compute

—2[201(p—1p,p) —Oi(p— %, p)] +©1(Lp) =
—201(p,p) +201(p, p) —O1(1,p) +O1(1,p) = 0.

The same trick applies also to the first expression, for any k > 1:

2k + 2)!
(—1)”1((,{“))! 2021(p = 20,/ P) = O2a(p = 3,1, )]

2k)!
+ (—1)k ( k'> [(Zk —+ 1)®2k+1(1r P,y p)] = 0,
which follows directly from the identity
1(2k+2)! (2k)!
A ES (2k+1)"5- =0. O

EXERCISE 6.7. Let ¢ € CK(A) be a b-cocycle (i.e. by = 0) that also satisfies
the following condition of being cyclic:
¢(a,at,...d%) = (=1)*¢(dr,a%al,...a" ),

foralla®,a!,. .. ak € A. Show that (0,...,0, $,0,.. ) (with ¢ at the k'th position)
is a (b, B)-cocycle.

EXERCISE 6.8. In the example of the circle, show that the odd cochain (¢*,0,...)
on C®(S') with (cf. Exc. (6:2))

O (f° fH) =T FIF fIIE f1; (f° f1 e C™(8)),
is an odd (b, B)-cocycle.

6.2.1. Cyclic cocycles for the noncommutative torus. We will illus-
trate the above periodic cyclic cohomology and the evaluation on projec-
tions and unitaries with the noncommutative torus. Recall its structure
from Section

In view of Exercise[6.5(1) it is immediate that T defines a Hochschild co-
cycle: bt = 0. In other words, T defines an element in H HO(AQ). In fact, it
also defines an element in HCP®V(Ay), to wit, (7,0, ...). Let us check that it
does not represent the zero class by exploiting the evaluation from Propo-
sition[6.6 on the trivial projection p = 1. Indeed, since (7,1) = 7(1) = 1
and since the evaluation does not depend on the representative of T (as is
shown in Proposition[6.6), we find that T cannot be cohomologous to zero.

In order to construct odd cyclic cocycles we need the derivations 61, 6, :
Ay — Ay from Equation (5.3.2). We then define two 1-cochains 9, ¢ €
Cl(Ap) by

Pa(aa) = T(@6,(a"); pa(a”,at) = T(a%(a))).
Let us check that they are Hochschild cocycles:
by (a®,at,a?) = ¢1(a’al,a®) — 91 (a®,a'a®) + ¢y (a*a, al)
= 7(a%"6, (a? )) — 1(a%; (a'a®)) + t(a*a%51(a')) = 0,

by using the Leibniz property (5.3.3) for ;. The same argument also shows
that b¢2 =0.
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)

€ 26 2n0 + € € 2n0  2nf+e€

FIGURE 6.4. Functions f and ¢ = h* that ensure that p de-
fined in (6.2.1) is a projection in Aj.

Using Stokes theorem we may also show that

By (a®) = 7(61(a%)) =0, By, (a®) = 0.
Hence, (0,91,0,...) and (0,4>,0,...) are odd (b, B)-cocycles and define
class in odd periodic cyclic cohomology HCP®44(Ag). Again by exploiting
the evaluation on unitaries we may check that ¢; and ¢, define non-trivial
and different classes in HCP°d4( Ay). Indeed,

(i1, 11) = —jﬂl(u*,m —— =0

while
(fou) =0;  (p2,0) = -
Finally, there is a two-cochain defined by

¢(a’,a',a%) = T(a’(81(a')32(a®) — &2(a")01 (a*)))
EXERCISE 6.9. Show that b¢ = 0 and that B¢ = 0.

Bk

We conclude that ¢ defines a class in even periodic cyclic cohomology
HCP*®'(Ap). Since the evaluation of ¢ on the projection 1 vanishes, we al-
ready know that ¢ defines a different class in HCP®"(.Ay) than 7. Moreover,
one may evaluate ¢ non-trivially on a projection p. This will be worked out
in Exercise below (cf. Note[I0]on Page [96).

It turns out that the above four (b, B)-cocycles fully describe the peri-
odic cyclic cohomology of Ay in the sense that

HCP® (Ag) = Cl[t] ®Clp];  HCP*(Ay) = C[p1] © C[ya).

This should be considered as the noncommutative analogue of the cell de-
composition of the torus: one 0-cell (a point), two 1-cells (two circles) and
one 2-cell (the torus).

EXERCISE 6.10. We consider the pairing between the (b, B)-cocycle ¢ and a
class of projections on the noncommutative torus. Consider the following element

pE.Ag.’

(6.2.1) p= (Z a,w”) u—+ (Z b,ﬂ)") +u* (Z c,m”)
nez nez nez
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for some Schwartz sequences (ay), (bn), (cn) (cf. Definition[5.16). We also write
g, f, h for the corresponding functions on S':
g(t) =Y ane™; f(t) =Y bpe™; ht) =Y cpe™.
nez nez nezZ
(1) Show that p is an orthogonal projection, i.e. p*> = p = p* if and only if
h = ¢* while f and g satisfy (Vt € S):
o o(H)g(t—2m0) =0;
o (f(t)+f(t —270))g(t) = g(b);
o f(t) = £(12) = lg(t)? +|g(t + 270) ]
(2) Verify that a class of examples of functions f, g that satisfy the above three
conditions can be given as follows. Take any e such that ¢ < 276 and
210 +¢ < 1. On [0, €] let f be any smooth function with values between
0 and 1 such that f(0) = 0and f(e) = 1. On 278,270 + €] define
f(t) =1— f(t —2n0), while on [, 2710] and [2710 + ¢, 27| let f take
values 1 and 0, respectively. Finally, let ¢ be defined on [2716,270 + ¢
by g(t) = /f(t)(1 — f(t)) and equal to zero elsewhere on [0,271] (see

Figure[6.4).
(3) Returning to the general case of functions f, g satisfying the conditions

in (1), show that T(p) = 5= [q, f(t)dt.
(4) Compute 61pdap, d2pd1p and show that

©(pdipdap — poapdip) = 237; o |SOF (F/(—2m0) — £1(1)) dt

(56) Show that for the explicit choice of f, g from (2) this reduces to
w(porpoap — popoip) = o [ (1~ F)(-2f (D)t = 5
porpozp = poparp) = 5 | = o

HINT: Here one may want to take inspiration from the proof of Proposi-
tion

(6) Deduce from this that the evaluation (¢, p) = —i/ 7 for these projec-
tions.

6.3. Abstract differential calculus

We return to the general case. Starting with a spectral triple, we now
introduce a differential calculus. In the case of the canonical triple of a spin
manifold M, this will agree with the usual differential calculus on M.

Let (A, H, D) be a spectral triple; we assume that D is invertible. We
introduce Sobolev spaces H° as follows:

‘H® := Dom |D|*; (s € R).
These spaces are naturally normed by
112 = IIDIE I,

and are complete in this norm. Moreover, for s > t the inclusion H® — H!
is continuous.

EXERCISE 6.11. Prove this last statement.
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




86 CHAPTER 6. LOCAL INDEX FORMULA

Obviously H" = H, while at the other extreme we have the intersection

H® = (1.
s>0
DEFINITION 6.7. For each r € R we define operators of analytic order < r
to be operators in H* that extend to bounded operators from H® to H*~" for all
s € R. We denote the space of such operators by op’.

In order to find interesting differential operators coming from our spec-
tral triple, we introduce some smoothness conditions. The first is that the
spectral triple is finitely summable, i.e. there exists p so that |[D| 7 is a trace
class operator.

DEFINITION 6.8. A spectral triple (A, H,D) is called regular if A and
[D,A] = {[D,a] : a € A} belong to the smooth domain of 6(-) = [|D],"].
That is, for each k > 0 the operators 5*(a) and 5¥([D, a]) are bounded.

We will denote by B the algebra generated by 5*(a), 5*([D, a]) foralla € A
and k > 0.

DEFINITION 6.9. Let (A, H, D) be a finitely-summable reqular spectral triple.
The dimension spectrum Sd is the subset of {z € C : R(z) > 0} of singularities
of the analytic functions

{p(z) = Trb|D| 7% (b € B).

We say the the dimension spectrum is simple when the functions {;, have at most
simple poles.

In our treatment we restrict to finitely-summable, regular spectral triples
with simple dimension spectrum and for which there is a finite number of
poles in Sd.

LEMMA 6.10. The algebra B maps H®™ to itself.
PROOEF. This follows by induction from the identity
T¢Iz = T2 )1 + [1IDITE
= 720202 + (WD P8zl + 1D TiDle])
for any operator T in the smooth domain of § and any s > 0. O

We will regard the elements in B as pseudodifferential operators of or-
der 0, according to the following definition.

DEFINITION 6.11. A pseudodifferential operator of order k € Z associ-
ated to a regular spectral triple (A, H, D) is given by a finite sum:

b DI + b4 DI - -
where by, by_1,--- € B. We denote the space of pseudodifferential operators of
order k by (A, H, D), or simply Y*(A).

LEMMA 6.12. The subspaces Y*(A) (k € Z) furnish a Zfiltration on the
algebra ¥ (A) of pseudodifferential operators.
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PROOF. This follows directly from the expression:

k1 ) )
b1|D|" - by| DI =} (l;1>b15](b2)|D|kl+k2‘f. O
j=0
On this algebra, the map 6(-) = [|D|, -] acts as a derivation, preserv-

ing the filtration. For any operator T in H we also define the following
(iterated) derivation,

V(T) = [D*T);, T® .= VKT).
EXERCISE 6.12. Prove that for any P € ¥ (.A) we have
V(P) = 25(P)|D| + 6*(P).
Conclude that V : Y¥(A) — ¥F1(A).

PROPOSITION 6.13. Let P € YX(A). Then P : H5+* — M is a continuous
map. Hence, such a P has analytic order < k and we have ‘I’k(A) - opk.

Using this abstract pseudodifferential calculus, we now introduce the
functionals of relevance for the index formula.

DEFINITION 6.14. Let (A, H, D;y) be a regular spectral triple. For pseudo-
differential operators X9, X1,... XP € ¥(A) and R(z) > 0 define

(X0, x4,...,XP), =
(-1

2711
Let us show that this expression is well defined, i.e. that the integral is
actually trace class. We first practice with this expression in a special case.

Tr (/ A3 XO(A — D3 IXY(A = D?) 1. XP(A - Dz)ldA> .

EXERCISE 6.13. Assume that X/ € W% (A) commutes with D for all j =
0,...,p.
(1) Use Cauchy’s integral formula to show that

r
<XO,X1,. . "XP>Z = <Zp—|—’p)TI'(’)/XO .. Xp’D|_ZZ_2p),

(2) Show that this expression extends to a meromorphic function on C.
This exercise suggests that, in the general case, we move all terms (A —

D?)~1in (X%, X1,..., XP), to the right. This we will do in the remainder of
this section. First, we need the following result.

LEMMA 6.15. Let X € Y9(.A) and let n > 0. Then for any positive integer
k, we have

(A —D?)""X = X(A — D?)"" + nXW (A — D?)~(n+1)
nn+1)
2

N n(n+ 1)k! (n+k)
where the remainder Ry is of analytic order g — 2n — k — 1 or less.
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PROOF. This follows by repeatedly applying the formula
(A-D>)'X=X(A-D*)""+[(A-D*)"!,X]
= X(A-D?»)"'4+ (A -D?)7YD? X](A - D* L.
This yields an asymptotic expansion
()\ . DZ)—1X ~ Z X(l) (/\ _ DZ)—l—i’
i>0
so that for each m < 0 every sufficiently large finite partial sum agrees with
the left-hand side up to an operator of analytic order m or less. Indeed,
truncating the above sum at i = k, we find that the remainder is
(/\ _ D2)71X(k+1) ()\ _ DZ)flfk/

which is of analytic order -2+ (7 +k+1) —2(k+1) =g —k —3 or less.
More generally for any positive integer 1 one has:

P2y kTN (k) y . y2y-n—k
(A=D%)""X k;;)( 1) ( P )X (A —=D7%) .
Estimates similar to those above show that the remainder has the claimed
analytic order. O

We now arrive at the final result of this section which will form the main
ingredient in the next section, where we will introduce the (b, B)-cocycles
relevant for the index formula.

PROPOSITION 6.16. The expression (X°, ..., XP), in Definition seen as
a function of z extends meromorphically to C.

PROOF. We use Lemma to bring all (A — D?)7! to the right. We
tirst introduce the combinatorial quantities:

(ky + -+ kj+)!
kale e kil(ky +1) - (kn + - kj+j)
for non-negative integers ki, . . ., k;. These satisfy
(kg +--+kjig+j) (ke - +ki+j—1)
k! ’
]

C(kl,...,kj) =

C(kl,...,k]') = C(kl,. ..,k]',l)

while c(k1) = 1 for all k.
From Lemma we know that there is the following asymptotic ex-
pansion:

()\ _ D2>_1X1 ~ E C(kl)Xl(kl)()\ o DZ)—kl.
k>0
Then, in the subsequent step we find

(A= D) IXI(A - D) 1X2 ~ Y (k) X1 (A — D)~ (a2 x2
k120

~ ) C(klrkz)xl(kl)XZ(kz)(A—Dz)‘(k1+k2+2),
klrkZZO
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and finally

(A=D¥)'X' - (A—D?)1xP ~ ¥ c(k)xt ¥ xplke) () — p2)=(Ki+p),
k>0
where k = (ky,...,kp) is a multi-index and |k| = ki +... + k.
Multiplying this with ¢ Xy and integrating as in Definition this
yields

(—1) 2m /A 2 XO(A — D?)1X! .- (A — D?)"1XP(A — D?)"ldA
~ Y ek JyxOx1 ) xpl p)(_1>pr(z) A2(A — D)~ (K+pDgy
k>0 ,)/ 27ti

_Z 'yXOXl )---XP(kP)(—l)FT( )< >]D| 2(z+kl+p)
k>0 k| +

where we have used the integral formula, valid for real Ag:

1 ATE _ 72\, -(N+2)
6.3.1) 27Ti/(/\—)\o)N“d/\ - <N>AO .

Finally, using the functional equation for the gamma function,

—z T(z+p+|k|)
<‘”pr”<\k\+p> S

we obtain an asymptotic expansion

N ik EE+p+ k)
(6.3.2) (Xo,...,Xp)2 kg(:)( 1) ([k[+ p)!

x Tr (ryXOXl( v .Xp(kp),DIfZ(szHp)) '

c(k)

As |k| becomes large the remainder in the truncated expansion on the right-
hand side becomes trace class. U

EXERCISE 6.14. Use Cauchy’s integral formula to prove Equation (6.3.1).

6.4. Residues and the local (b, B)-cocycle

In this section we derive even and odd (b, B)-cocycles on a given alge-
bra A from the functionals (X°, X!,..., X*), defined in the previous sec-
tion. First, we derive some useful relations between them. We denote the
Z,-grading of an operator X by (—1)%, according to the grading y on H.
Moreover, for such an operator X we denote the graded commutator by
[D, X] = DX — (—1)XXD. Note that with these conventions we have

[D,[D,T]] = [D? T] = V(T),

for any even operator T.
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LEMMA 6.17. The meromorphic functions (X°,..., XP), satisfy the follow-
ing functional equations:

@  (X%...,XxP),=(-1)X(xP,X°.. ., xP 1,

4 . ;
b) (X0, XP) =Y (X0 XL X, LX)
j=0

@  (X°...,[D%X),...,XP), = (X°,..., XI7'XI,... XF),
— (X, XIXITY, . XP),;

4 , ,
d Y ()XY X0, D, X, XP), =0,
i=0
PROOF. (a) follows directly from the property of the tracein (X, ..., X?).,

taking into account the commutation of X? with the grading -y. For (b), note
that the integral of the following expression vanishes:

d —zvy0 2\—1 r 2\—1
a(A XO(A — D?)"1... XP(A — D?) )
= —zA*1X0A - D)7t XP(A - D?) 7!

P .
Y A=X'(A-D*)"' - (A=D*)'X/(A=D*) 1. XP(A—=D*) L.
j=0

Equation (c) follows from
(A—=D?) D%, XA -D*) ' = (A -D* "X — X/(A - D?)"L.

Finally, (d) is equivalent to
Try [D,/A‘ZXO(/\ —~ D)7 1. XP(A-D*ldA| =0,

which is the supertrace of a (graded) commutator. O

DEFINITION 6.18. For any p > 0, define a (p + 1)-linear functional on A
with values in the meromorphic functions on C by

‘I’p(ao,...,a’”) = <tZO, [D/al]/“'/ [D/ast—%'

PROPOSITION 6.19. The even (b, B)-cochain ¥ = (Yo, ¥2,...) is an (im-
proper) even (b, B)-cocycle in the sense that

b‘fzk + BIFZk+2 =0.

Similarly, the odd (b, B)-cochain ¥ = (¥1,¥s,...) is an (improper) odd (b, B)-
cocycle.
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PROOF. It follows from the definition of B and a subsequent application
of (a) and (b) of Lemma that

2k+1 , . _
BYoi2(a’,...,a* ) = Y (=1)/(1,[D,d),..., [D,d])s_ ki)
j=0
2k+1 . .
=Y ([D,a",...,[D,@ ], 1,[D,d],...[D,a*™])s_11)
j=0

= ([D,d",...,[D,a®* "), 4.
Also, from the definition of b and the Leibniz rule
[D,ala*Y] = al[D,a*!] + [D, a/]a/ !
it follows that
B (a®, ..., a% ) = (2%, [D,a?), ...[D,a¥ ]y, 4

—(a°,a'[D,a?,...[D,a®™ " ])s¢
—(a°,[D,a')a?,...[D,a®™])s_y
+(a°,[D,a'],a [D a],...[D,a* )5y
<ﬂ°,[ a'],[D, a*|a’ ,---[D,ﬂz"“Ds—k

- <a2k“a°, [D,a'],...[D,a*])s—,
which, by Lemma c), becomes

2k+1 . .

Z (—1)]_1<a0, [D,tzl], ey, [DZ, a],...,[D, a2k+1]>s_k.
Combining these expressions for B¥y,, and b%¥y; and writing X° = 4°,
and X/ = [D,d/] for j > 1, we obtain

BYoio(a®, ..., a% ) £ 0¥y (al, ..., a% )
2k+1 o i ,
= Y ()X X0, DX, X,
j=0
which vanishes because of Lemma d).
In the odd case, a similar argument shows that b%¥»_1 + BY2+1 = 0.
U

The above cocycles have been termed improper because all ¥, might be
non-zero, on top of which (rather than in C) they take values in the field of
meromorphic functions on C. By taking residues of the meromorphic func-
tions ¥, we obtain a proper even or odd (b, B)-cocycle. This is the residue
cocycle that was introduced by Connes and Moscovici.

THEOREM 6.20. Forany p > Oandalld®,...,a" € Athe following formulas
define an even or odd (b, B)-cocycle:

resszo‘Yo(aO) =Tr 'ya0|D\’25|s:0,
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and
resszo‘{’p(ao, ...,ab)
=) cpiress—oTr (’yaO[D/gl](kl) .- [D,aP) k) ‘D‘*P*ZW*ZS) ,
k>0

for p > 1, where the constants c,, y are given in terms of the (non-negative) multi-
indices (ky, ..., kp) by

(e r(K +4)
PROOF. We use the asymptotic expansion (6.3.2). Indeed, setting z =

s — § in that expression and taking residues at s = 0 gives the desired

expansion, with the coefficients ¢, » appearing because

_ py_clk)
cpr = ()M (k| + E)m-

6.5. The local index formula

Let (A, H, D) be a regular spectral triple, as above. The local index
formula expresses the index of twisted Dirac operators in terms of cocycles
in the (b, B) bicomplex, which are easier to compute. We are interested in
the indices of the following two Fredholm operators.

Suppose that (A, H,D) is even. If p € A is a projection, then D, =
pDp is a Fredholm operator on the Hilbert space H. This follows from the
fact that D, is essentially a finite-dimensional extension of the Fredholm
operator D. We are interested in the index of this so-called twisted Dirac
operator D.

In case that (A, H, D) is an odd spectral triple, we take a unitary u € A
and define D,, = PuP, where P = %(1 + Sign D). Again, D, is a Fredholm
operator on H and we are interested in the index of D,,.

THEOREM 6.21. Let (A, H,D) be a regular spectral triple with simple and
finite dimension spectrum Sd and let ress—o¥ be the (even or odd) (b, B)-cocycle
derived previously.

o If (A, H,D) is even and p is a projection in A, then
indexD, = (ress—¥, p).
o If (A, H,D) is odd and u is a unitary in A, then
index D, = (ress—o¥, u).
REMARK 6.22. Sometimes a projection or a unitary is given in My (A) in-
stead of A. The above result can be extended easily to this case, namely by con-
structing a spectral triple on My (.A) and doing the index computation there. In-

deed, it would follow from Theorem that if (A, H, D) is a spectral triple, then
sois (MnN(A), H®@CN,D ®1Iy).

PROOF OF THEOREM[6.2]] We will prove the even case in two steps
(for the odd case see Note [15 on Page 97),
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(1) the Atiyah-Bott formula for the index:
index D, = res;_oI'(s) Tt y|D,| .
(2) Change the representative of the class res;—o¥ in HCP*V(\A) to re-
duce to the case that D commutes with p, so that
(ress—o¥, p) = ress—ol'(s) Tryp|D|~%.
For (1) let us first prove another well-known formula.
LEMMA 6.23 (McKean-Singer formula). Let (A, H, D) be an even spectral
triple. Then
indexD = Tr ’ye_tDz.
PROOF. Since D is odd with respect to 1, its spectrum lies symmetri-
cally around 0 in R, including multiplicities. If we denote the A-eigenspace

in H by H, we therefore have dim H) = dim H_, for any non-zero eigen-
value A. Including also the kernel of D, we have

Tr 'ye*tDz = Z (dimH) —dim#H_,) e 4 Try, ¥ = TrkerD 7,
A>0
which is nothing but the index of D. O

Note that the McKean-Singer formula tells us in particular that Tr ye P ’
does not depend on t. Using the integral formula of the gamma function,
we can write:

1 b 2
65.1 Teq|D| > = o [ Tege P
We analyze the behaviour of the right-hand side as s — 0. For this, we use
1
m ~'S, S — O

Thus, only the pole part of the above integral contributes to the zeta func-
tion evaluated at s = 0. This is given by

/ Trye Pt 1dt = gmdex D,
0

where we have used the McKean-Singer formula. The remaining integral
from 1 to oo gives an entire function of s, because by finite summability the
eigenvalues of D grow as j!/? for some p > 0. In other words,

indexD = Tr 7|D|’25\5:0,
which proves (1).
Let us then continue with (2). Consider the family of operators
Di =D +t[p,[D,pll;  (t€][0,1]).

We have Dy = D and D; = pDp+ (1 — p)D(1 — p) so that [Dy,p] = 0.
Moreover, index Dy depends continuously on ¢, and (being an integer) it is
therefore constant in ¢.

Next, we consider a family of improper cocycles ¥ which are defined
by replacing D by D; in Definition[6.1§].
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LEMMA 6.24. The derivative of ¥ is an (improper) even cyclic coboundary,
i.e. there exists a cochain ©' such that

d t t
E‘Yp + B@ +1 + b®p_1 = O,

which is explicitly given by

O)(a®,...,a") = Y (~ 1)U, .. [D, a1}, D, D, ™. [D,a7]), s,
j=0 ’
with D = dt = [p,[D,p]]-

PROOF. Imitating the proof of Proposition one can show the fol-
lowing identity (see also Note[I7]on Page[97).

BOY (a’, 0 2k> + 0O 4 (a°,...,a%)

= Z ..[D,d],[D,D],...,[D,a*))s_x

- 2 .. [D,],,...,[D,a*])s.

The fact that %‘Ft coincides with the right-hand side follows from

d

dt(/\ D}t = (A —D?)"' (DD +DD) (A — D)L -

Continuing the proof of the theorem, we integrate the resulting cobound-
ary to obtain

-1 1
0 0

In other words, ress_o¥? and res,_o¥! define the same class in even cyclic
cohomology HCP®'(.A). So, with the help of Proposition we can com-
pute (res;_o¥, p) using ¥! instead of Y° = ¥, with the advantage that D,
commutes with p. Indeed, this implies that

Yulp—3.p,...,p) =0,
forall k > 1, so that

(ress_o¥!, p) = resszo‘I’O )+ Z
k>1

— res._o¥)(p)

= ress—ol'(s) Tryp|Dy| .

This completes the proof of Theorem as by the Atiyah-Bott formula
the latter expression is the index of D. O

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




95 6.6. NOTES

6.6. The local index formula for toric noncommutative manifolds

We here illustrate the local index formula for the class of toric noncom-
mutative manifolds My that were described in Section 5.3.2] It turns out
that the index formula simplifies drastically in this case.

THEOREM 6.25. For a projection p € My (C®(My)), we have

. . 1 .
index D = Tr yp|D|*|s=0 + ) cress— Tr <7(P —5)[D,p*|D] 2(“5))
k>1

where ¢ = (k—1)!/(2k)!.

_PROOF. First of all, note that the twist Ly commutes with the action a;
of T" on an operator T. Indeed, if T is homogeneous of degree , then Ly(T)
is of degree r,

ws(Lo(T)) = U(s) TU(r") U(s)"t = U(s) T U(s)'U(r") = ™1 Ly(T).

with 7/, = r,0,, so that 7’ € T".
We write the cocycles res;—o ¥ appearing in the local index formula in
terms of the twist Lg as

(6.6.1) resszo‘sz(Lg(fO),Le(fl)/---/LG(ka)) =
res,_o Tr (,ng(fO X g [DM/fl](uq) X+ Xg [DM,ka](oczk))|DM|—2(|D¢\+k+s)> )

where we extended the xg-product to C®(Mjy) U[Dpm, C®(Mg)] which can

be done unambiguously since D, is of degree 0. Suppose now that f?,. .., % €
C®(M) are homogeneous of degree 0, ..., respectively, under the ac-
tion of T", so that the operator f° xg [Dyy, f'] g -+ - X [Du, f2¥] is a ho-
mogeneous element of degree r (a simple expression in terms of the r'). By
working out the x g-product one finds a multiple of fO[Dy,, f] - - - [Da, £,
with a factor which is a power of the deformation parameter A. Forgetting
about this factor we obtain from that

Lo(f[Dam, f] -+ [Dat, f*]) = fOIDu, f1] -+ D, fIU(rubp, - - 1Bpn)-

After applying a Mellin transform (6.5.1) one finds that each term in the
local index formula for (C®(My), H, D) then takes the form

(6.6.2) tess—oTr (7fO[Da, f1]@) - - - [Dag, 2020 | Dy~ k9011 (5))
=T(|af +k) }irr(;t""'”‘ Tr (vf°[Du, f1)) - [Dg, f2]02)e Pl (s)),
—

for every s € T". It turns out that this limit vanishes when |a| # 0 (see
Note 20]below) and this completes the proof. O

Notes

1. The local index formula was obtained by Connes and Moscovici in [87]. In our proof of
the local index formula, we closely follow Higson [139]. More general proofs have been
obtained in [56} 57, 58], see Noteof this Chapter.

Section 6.1. Local index formula on the circle and on the torus
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2. The Theorem of Atkinson that appears in Exercise can be found in [206, Proposition
3.3.11].

3. The index formula on the circle of Exerciseis a special case of [77, Theorem 5].

4. In Section we follow [180], where a class of projections on the torus was constructed,
much inspired by the so-called Powers-Rieffel projections on the noncommutative torus
[212].

5. The zeta function {f that appears in (6.1.2) is a special case of an Epstein zeta function,

introduced and analyzed in [113]]. It turns out that ¢ has a pole at s = 1 with residue 7.
That (6.1.2) holds also follows from the general result [87, Theorem 1.2].

Section 6.2. Hochschild and cyclic cohomology

6. In [77] Connes introduced cyclic cohomology as a noncommutative generalization of
De Rham homology, and showed that for the algebra C*°(M) cyclic cohomology indeed
reduces to De Rham homology. Besides the original article there are many texts in which
this is worked out in full detail (e.g. [79, 128,160, 178]).

7. Example |6.4]is a special case of the fact that HH*(C®(M)) ~ (M), the space of De
Rham k-currents. The latter are by definition continuous linear forms on the space of De
Rham differential k-forms QX, (M). This isomorphism is proved in [77].

8. Proposition 6.6l was established in [79]. The statement can be slightly enhanced. Namely,
the quantities in Proposition[6.6|also only depend on the classes of u and p in the (odd and
even) K-theory of A. We refer to [79) Section IV.1.7] for more details.

9. Originally, Connes introduced cyclic cohomology by means of cocycles satisfying such a
cyclic condition, explaining the terminology. It turns out that this is equivalent to taking an
even/odd cocycle in the (b, B)-bicomplex. For more details we refer to [77, Theorem I1.40]
(or [79, Theorem II1.1.29]).

10. The non-trivial evaluation of ¢ on a projection in the noncommutative torus algebra
plays a crucial role in the noncommutative geometric description of the integer quantum
Hall effect. More details can be found in [28] and [79, Section IV.6.7]. Exercise gives
an alternative way to show that ¢ is non-trivial, and is very close to the computation that
led to Proposition dealing with the commutative case. It is based on the Powers—Rieffel
projections introduced in [212].

Section 6.3. Abstract differential calculus

11. In our development of an abstract differential calculus we closely follow Connes and
Moscovici [87]. In the case of the canonical triple of a spin manifold M, this will reproduce
(part of) the usual differential calculus on M. We refer to [139] for a more detailed treatment.
Note that the hypothesis that D is invertible can be removed, as described in [139} Section
6.1].

12. The Sobolev spaces H® have appeared in the literature (including the first edition of
this book) with a defining norm ||¢||? + ||| D|*¢||?, while then operators of analytic order
< r were defined as operators that extend to bounded maps from #°® to H*~" for all s >
0. However, then one runs into the problem that |D| itself does not extend to a bounded
operator from H% — 7{~1. This has been corrected in the current version, according to
[238] A35].

13. The notion of finite summability for spectral triples was introduced in [79} Section IV.2.y]
(see also [128] Definition 10.8]).

14. Even though we restrict to finitely-summable, regular spectral triples with simple di-
mension spectrum and for which there is a finite number of poles in Sd, the index for-
mula can be proved in the presence of essential and infinitely many singularities as well
(56,57, [58].

Section 6.5. The local index formula
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15. In our proof of Theorem we follow Higson [139]]. For the odd case, we refer to the
original paper by Connes and Moscovici [87] (see also the more general [56]).

16. The McKean-Singer formula is due to [188].

17. For more details on the ‘transgression formula’ that is essential in the proof of Lemma
[-24) we refer to the discussion resulting in [128, Eq. 10.40].

18. It is noted in [87) Remark IL.1] that if (A, H, D) is the canonical triple associated to a Rie-
mannian spin manifold M, then the local index formula of Connes and Moscovici reduces to
the celebrated Atiyah—Singer index theorem for the Dirac operator [14,[15]. Namely, the op-
erator Dy, is then the Dirac operator with coefficients in a vector bundle E — M. The latter is
defined as a subbundle of the trivial bundle M x CN using the projection p € My (C(M)):
one sets the fiber to be Ex = p(x)CN at each point x € M. We then have

index D, = (zm)*%/ A(R) A ch(E),
JM

where A(R) is the A-form of the Riemannian curvature of M and ch(E) is the Chern char-
acter of the vector bundle E (cf. [32]). The proof exploits Getzler’s symbol calculus [122}
123)[124], as in [39]. See also [208].

Section 6.6. The local index formula for toric noncommutative manifolds

19. Section [6.6]is based on [169, 170].

20. The appearance of U(s) in the proof of Theorem|[6.25]is a consequence of the close rela-
tion with the index formula for a T"-equivariant Dirac spectral triple on M. In [73] Chern
and Hu considered an even dimensional compact spin manifold M on which a (connected
compact) Lie group G acts by isometries. The equivariant Chern character was defined as
an equivariant version of the JLO-cocycle, the latter being an element in equivariant en-
tire cyclic cohomology. The essential point is that they obtained an explicit formula for the
above residues. Moreover, the vanishing of the term in Equation for |a| # 0is [73]
Theorem 2].

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom






Part 2

Noncommutative geometry and
gauge theories






CHAPTER 7

Gauge theories from noncommutative manifolds

In this Chapter we demonstrate how every noncommutative (Riemann-
ian spin) manifold, viz. every spectral triple, gives rise to a gauge theory
in a generalized sense. We derive so-called inner fluctuations via Morita
equivalences and interpret these as generalized gauge fields. This is quite
similar to the construction in the finite case in Chapters|2|and

7.1. ‘Inner’ unitary equivalences as the gauge group

In Chapter [2 we already noticed the special role played by the unitary
elements in the matrix algebras, and how they give rise to equivalences of
finite noncommutative spaces (cf. Remark 2.25). We now extend this to
general real spectral triples (A, H, D; ], ).

DEFINITION 7.1. A *-automorphism of a x-algebra A is a linear invertible
map o : A — A that satisfies

a(ab) = a(a)a(b), a(a*) = wa(a)*.

We denote the group of automorphisms of the x-algebra A by Aut(.A).
An automorphism « is called inner if it is of the form a(a) = uau™ for some
element u € U(.A) where

UA) ={uec A:uu* =u*u=1}

is the group of unitary elements in A. The group of inner automorphisms is de-
noted by Inn(.A).
The group of outer automorphisms of A is defined by the quotient

Out(A) := Aut(A)/ Inn(A).
Note that Inn(.A) is indeed a normal subgroup of Aut(.4) since

Bomyopt(a) =p(up~ (a)u*) = p(u)ap(u)" = ap(a),

for any g € Aut(A).

An inner automorphism «, is completely determined by the unitary
element u € U(.A), but not in a unique manner. In other words, the map
¢: U(A) — Inn(A) given by u — w, is surjective, but not injective. The
kernel is given by ker(¢) = {u € U(A) | uau* = a, a € A}. In other
words, ker ¢ = U(Z(.A)) where Z(.A) is the center of A. We conclude that
the group of inner automorphisms is given by the quotient

(7.1.1) Inn(A) ~ U(A)/U(Z(A)).

101
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This can be summarized by the following exact sequences:

1— Inn(A) —— Aut(A) — Out(A) —=1,

1——U(Z(A)) —= U(A) —= Inn(A) — 1.

EXAMPLE 7.2. If A is a commutative x-algebra, then there are no non-trivial
inner automorphisms since Z(A) = A. Moreover, if A = C®(X) with X a
smooth compact manifold, then Aut(.A) ~ Diff(X), the group of diffeomorphisms
of X. Explicitly, a diffeomorphism ¢ : X — X yields an automorphisms by pull-
back of a function f:

¢ (f)(x) = flp(x));  (x € X).

Compare this with the discussion in the case of finite discrete topological spaces in
Section More generally, there is a continuous version of the above group iso-
morphism, relating Aut(C (X)) one-to-one to homeomorphisms of X. This follows
from functoriality of Gelfand duality. Namely, the Gelfand transform in Theo-
rem naturally extends to homomorphisms between commutative unital C*-
algebras, mapping these to homeomorphism between the corresponding structure
spaces.

The fact that all automorphisms of C®(X) come from a diffeomorphism of X
can be seen as follows. Consider a smooth family {at},c(q1) of automorphisms of
C®(X) from ay—g = id to ay—1 = . The derivative at t = 0 of this family,
& = da/dt|s—o, isa x-algebra derivation, since

d(fifs) = Salfifo)lmo = Salfmlf)hmo = (fi)fo + il fo).

As such, i corresponds to a smooth vector field on X and the end point ¢y—q of the
flow ¢y of this vector field is the sought-for diffeomorphism of X. Its pullback ¢;_,
on smooth functions coincides with the automorphism a;—1 = .

EXAMPLE 7.3. At the other extreme, we consider an example where all au-
tomorphisms are inner. Let A = My(C) and let u be an element in the uni-
tary group U(N). Then u acts as an automorphism on a € My(C) by sending
a — uau*. If u = Ally is a multiple of the identity with A € U(1), this action
is trivial, hence the group of automorphisms of A is the projective unitary group
PU(N) =U(N)/U(1), in concordance with (7.1.T).

The fact that all automorphisms are inner follows from the following observa-
tion. First, any x-algebra map « : M (C) — Mn(C) can be considered a repre-
sentation of A on CN. As the unique irreducible representation space of My(C)
is given by the defining representation (Lemma we conclude that the repre-
sentation a is unitarily equivalent to the defining representation on CN. Hence,
a(a) = uau* with u € U(N).

EXERCISE 7.1. Show that Aut(My(C) & My(C)) ~ (PU(N) x PU(N)) %
Sy with the symmetric group Sy acting by permutation on the two copies of PU(N).

Inner automorphisms &, not only act on the *-algebra A, via the rep-
resentation 77 : A — B(#H) they also act on the Hilbert space H present in
the spectral triple. In fact, with U = 7t(u)J7t(u)] !, the unitary u induces a
unitary equivalence of real spectral triples in the sense of Definition as
the following exercise shows.
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EXERCISE 7.2. Use Definition |5.9| to establish the following transformation
rules for a unitary U = 7t(u)Je(u)] " withu € U(A):

(7.1.2) Un(a)U* = moay(a);
Uy =~U;
uju* =J.

We conclude that an inner automorphism «, of A induces a unitary
equivalent spectral triple (A, H,UDU*;], ), where the action of the *-
algebra is given by 7 o a;,. Note that the grading and the real structure
are left unchanged under these ‘inner” unitary equivalences; only the oper-
ator D is affected by the unitary transformation. For the latter, we compute,

using (5.2.1),
(7.1.3) D +— UDU* = D + u[D,u*] + €'Ju[D,u*]] !,

where as before we have suppressed the representation 7r. We recognize
the extra terms as pure gauge fields udu* in the space of Connes’ differential
one-forms QL (A) of Definition This motivates the following defini-
tion

DEFINITION 7.4. The gauge group & (A, H; ]) of the spectral triple is
S(AH; ) = {Ll =ufu] '|uc LI(A)}.

Recall (from Section the construction of a complex subalgebra A;
in the center of A from a real spectral triple (A, H, D; J), given by

Ap:={ae A:a] =]a"}.
PROPOSITION 7.5. There is a short exact sequence of groups
1—=-U(A) - UA) = B(AH;T) = 1.
Moreover, there is a surjective map & (A, H;]) — Inn(A).

PROOF. Consider the map Ad: U(A) — &(A,H;]) given by u —
uJuJ~!. This map Ad is a group homomorphism, since the commutation
relation [u, Ju] 7] = 0 of (5.2.1) implies that

Ad(v) Ad(u) = vJo] tuJu] ! = vuJou] ' = Ad(vu).

By definition Ad is surjective, and ker(Ad) = {u € U(A) | uJu] ! = 1}.
The relation uJuJ~! = 1 is equivalent to u] = Ju* which is the defining
relation of the commutative subalgebra A;. This proves that ker(Ad) =
U(Aj). The map &(A,H;]) — Inn(A) is given by (7.1.2), from which
surjectivity readily follows. O

COROLLARY 7.6. IfU(Aj) =U(Z(A)), then (A, H;]) ~ Inn(A).

PROOF. This is immediate from the above Proposition and (7.1.1). O
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We summarize this by the following sequence, which is exact in the
horizontal direction:

1——=U(A)) U(A) B(AH;]) —1
1—— Z/I(Zi(A)) U(A) InnJ/(A) —1

7.1.1. The gauge algebra. A completely analogous discussion applies
to the definition of a gauge Lie algebra, where instead of automorphisms
we now take (inner and outer) derivations of A. The following definition
essentially gives the infinitesimal version of &(.A, H; ).

DEFINITION 7.7. The gauge Lie algebra g(.A, H; ]) of the spectral triple is
(A H]) = {T=X+]x]" | X euA)},

where u(A) consists of the skew-hermitian elements in A.

One easily checks using the commutant property,

[T, T = [X, X+ J[X, X,

so that g(A, H;]) is indeed a Lie algebra.

PROPOSITION 7.8. There is a short exact sequence of Lie algebras

0—u(Aj) = u(A) = g(AH;]) —0.

There are also inner derivations of A that are of the form a — [X,a];
these form a Lie subalgebra Derpn (A) of the Lie algebra of all derivations

Der(A). If u(Aj) = u(Z(A)) then
g(A, H;]) ~ Derpn(A),
which essentially is the infinitesimal version of Corollary
EXERCISE 7.3. Show that Der(My(C)) ~ su(N) as Lie algebras.

7.2. Morita self-equivalences as gauge fields

We have seen that a non-abelian gauge group appears naturally when
the unital *-algebra A in a real spectral triple is noncommutative. More-
over, noncommutative algebras allow for a more general — and in fact more
natural —notion of equivalence than automorphic equivalence, namely Morita
equivalence. We have already seen this in Chapter 2} Indeed, let us imitate
the construction in Theorem and Theorem [B.6] and see if we can lift
Morita equivalence to the level of spectral triples in this more general set-
ting.

Let us first recall some of the basic definitions. We keep working in the
setting of unital algebras, which greatly simplifies matters (See Note 4] on

Page|119).

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




105 7.2. MORITA SELF-EQUIVALENCES AS GAUGE FIELDS

7.2.1. Morita equivalence. Recall Definition of algebra modules.
For two right A-modules £ and F we denote the space of right A-module
homomorphisms by Homy (€, F), i.e.

(7.2.1)
Homy (&, F) :={¢p: & = F :p(na) = ¢(y)aforally € E,a € A}.

We also write End 4(£) := Hom 4 (&, £) for the algebra of right .A-module
endomorphisms of €.

DEFINITION 7.9. Two unital algebras A and B are called Morita equivalent
if there exists a B — A-bimodule € and an A — B-bimodule F such that

ERQQF > B, FopE~A,
as B and A-bimodules, respectively.

EXERCISE 7.4. Taking inspiration from Exercise[2.9) show that Morita equiv-
alence is an equivalence relation.

EXERCISE 7.5. Define AN = A® --- @ A (N copies) as an A — My(A)-
bimodule.
(1) Show that AN @ 4 AN ~ Mn(A), as My(A) — Mn(A)-bimodules.
(2) Show that AN @, 4y AN =~ A, so that My (A) is Morita equivalent
to A.

A convenient characterisation of Morita equivalent algebras is given
by the concept of endomorphism algebras of so-called finitely generated
projective modules, as we now explain.

DEFINITION 7.10. A right A-module is called finitely generated projective
(or, briefly, finite projective) if there is an idempotent p = p? in My (A) for some
N such that € ~ pAN.

LEMMA 7.11. A right A-module is finitely generated projective if and only if
End4(€) ~ £ ® 4Homy(&, A).

PROOF. First note that the right-hand side can be considered to be a
two-sided ideal in End 4(£). Namely, we consider an element 7 ® 4 ¢ in
E ® 4Hom 4(&, A) as an element in End 4(€) by mapping

o),  (Teé).

That this map is injective and that its image forms an ideal in End 4(€) is
readily checked. Hence, the above isomorphism is equivalent to the exis-
tence of an element in £ ® 4 Hom 4 (&, A) that acts as the identity map id¢
on&.

Suppose that £ is finite projective, £ ~ p AN for some idempotent p €
Mn (A). We identify two maps

A:E— AN,
p: AN — €,
which are injective and surjective, respectively. These maps are related to

the identification of £ with a direct summand of A", via the obvious direct
sum decomposition AN = p AN & (1 — p).AN. Namely, A identifies £ with
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pAN C AN, whereas p projects AN onto the direct summand p.AN and then
identifies it with £. Let us write A for the k’th component of A mapping
Eto AN; thus, Ay : € — Ais right A-linear for any k = 1,...,N. We
write px := p(ex) € &, where {e;}Y | is the standard basis of AN. The

composition Y ; px ® A then acts as the identity operator on £.
Conversely, suppose id¢ can be written as a finite sum

N
(7.2.2) Zpk®)\k € E®4Homy (€, A).
k=1

Reversing the construction in the previous paragraph, we are now going
to define an idempotent p € My(.A) such that & ~ pAN. Thus, we define
maps
A€ — AN, ne (M), An(r),
p:AN—>g; (al,...,aN)>—>p1a1—|—---+pNaN.

From their very definition, these maps satisfy po A = idg, sothat p = Aop
is the sought-for idempotent in My /(.A). O

EXERCISE 7.6. In this exercise we are going to analyze the ambiguity due to
the balanced tensor product that appears in the decomposition (7.2.2) of id¢.
(1) If€ = Athenide =1®1 C € ® 4 Homy (€, A) but also

ide =1014+a01+1® (—a),

for any a € A. Show that the projection corresponding to the latter
decomposition of id¢ is

1 1 -—a
p=|a a —a? ).
1 1 -—a

(2) Show that there is a similarity transformation S such that

100
SpSt=10 0 0].
000

Therefore, the projection corresponding to ide = 1 ® 1 appears as the
first diagonal entry, and we can conclude that both decompositions give
isomorphic projective modules p A3 ~ A.

(3) Extend this argument to any finite projective £ to show that the con-
struction of a projection p from is well defined.

PROPOSITION 7.12. Two unital algebras A and B are Morita equivalent if
and only if B ~ End 4(€), with £ a finite projective A-module.

PROOF. If B ~ End 4(&) for some finite projective £, then F = Homy4 (€, A)
is the required A — B-bimodule implementing the desired Morita equiva-
lence, with bimodule structure given by
(72.3) (@-¢-b)(y) =ap(-y); (¢ € Homu(E, A)).
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The property £ ® 4 F ~ B follows from Lemma and the isomorphism
F ®@p £ ~ Aisimplemented by the evaluation map, that is,

(pn) € Homy (€, A) @€ — ¢(y) € A.

Conversely, suppose A and B are Morita equivalent. If B ~ £ ® 4 F, then
B ~ Endp(B) ~ Endp(€ ® 4 F), and there is an algebra map

EndA(g) — Endlg(g @A ./T"),'
(P — (P ®1 7.
On the other hand, End 4 (B ®p £) ~ End 4(£), and there is an algebra map
Endg(B) — End4(B®gE);
¢ — ¢ @ 1.
Identifying £ ® 4 F ~ B and F ®5 & ~ A, one readily checks that these
two maps are each other’s inverses. This shows that B ~ End 4(&).
Finally, the fact that the right A-module £ is finitely generated and pro-
jective follows mutatis mutandis from the proof of Lemma after realiz-

ing that the isomorphism F ®p £ ~ A associates an element in Hom 4 (€, A)
to any element in F. O

EXERCISE 7.7. Show that (7.2.3)) is a well-defined A — B-bimodule structure
on Hom 4 (&, A), i.e. show that it respects the right A-linearity of the map ¢ :
E— A

We conclude this subsection by specializing from algebras to *-algebras.
The above results on Morita equivalence still hold, with the additional re-
quirement that in the definition of finite projectivity the idempotent p €
My (C) needs to be self-adjoint: p* = p. That is to say, p is an orthogonal
projection.

As in Definition we define the conjugate module £° to a right A-
module & as

Eo={g:¢e&},
equipped with a left A action defined by a¢ = ¢a* forany a € A.

PROPOSITION 7.13. If A is a x-algebra and & is a finite projective right A-
module, then we can identify Hom 4 (&, A) as a left A-module with the conjugate
module £°,

PROOF. If £ ~ p AN then End4(€) ~ pMn(A)p, as one can easily
show using the maps A and p from the first part of the proof of Lemma
Hence £ ® 4 Hom4(€, A) ~ pMy(A)p. But also pAN @4 ANp ~
pMn (A)p (cf. Exercise[7.5), so Hom 4(€, A) ~ ANp as left A-modules. We
now show that £° ~ ANp as well.

For that, write ¢ € £ ~ pAN as a column vector:

Ly pajaj
= I

L1 PN
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The corresponding element ¢ in £° is identified with
(Zjlil aipp - i a]?*ij> ,

written as a row vector in ANp. Note that the relation between & and this
row vector is essentially given by the involution on AN, exploiting the self-
adjointness of p, that is, pj; = pjj. Consequently, the element af = Za* is
mapped to

(S e D),
as required. O

PROPOSITION 7.14. Let A be a x-algebra and & a finite projective right A-
module. Then there exists a hermitian structure on &, that is to say, there is a
pairing (-,-)e : € x € — Aon & that satisfies (as in Definition[2.9)

(m,m-a)e = (e, (mme€acA),
(nm)e = (nym)e; (e é),
(n,1m)e > 0, with equality if and only if 1 = 0; (neé).

PROOF. On AN we have a hermitian structure given by
N
<77/ €> = Z 77]*6]1
j=1

which satisfies the above properties. By restriction to p.AN we then obtain
a hermitian structure on & ~ pAN. g

7.2.2. Morita equivalence and spectral triples. For a given spectral
triple (A, H, D) and for a given finite projective right A-module £, we try
to construct another spectral triple (B, H’, D') where B = End 4(&). This
generalizes the finite-dimensional constructions of Chapters [2|and [3] Nat-
urally,

H:=ER1H
carries an action of ¢ € B:
prey) =9y,  (nelypcH)
Moreover, by finite projectivity of £, H' is a Hilbert space. Indeed, we have
H ~ pAN @ H ~ pHY,

and since p is an orthogonal projection it has closed range.

However, the naive choice of an operator D’ by D'(y ® ¥) = n ® Dy
will not do, because it does not respect the ideal defining the tensor product
over A, which is generated by elements of the form

naQyP—nayp; (ne&acAypcH).
A better definition is

(1®v D) @¢) =@ DY+ V(n)y.
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where V : £ = £ ® 4 QL (A) is a connection associated to the derivation
d:aw— [D,a] (a € A). This means that V is a linear map that satisfies the
Leibniz rule:

V(na) = (Vn)a+n®4da; (me&acA.

EXERCISE 7.8. (1) Let V and V' be two connections on a right A-
module £. Show that their difference V — V' is a right A-linear map
E—=E24QL(A).

(2) Show that the following map defines a connection on & = p AN:
V =pod,

with d acting on each copy of A as the commutator [D, -]. This connec-
tion is referred to as the Grassmann connection on £.

THEOREM 7.15. If (A, H, D) is a spectral triple and ¥V is a connection on
a finite projective right A-module £, then (B,H',1 @y D) is a spectral triple,
provided that V is a hermitian connection, i.e. provided that

(7.2.4) (1, Via)e — (Vi m2)e = d{m, m2)e; (m,m €&).

PROOF. Suppose £ = pAYN, so that B = End4(€) ~ pMy(A)p and
E®gMH ~ pHN. The boundedness of the action of B on £ ® 4 H then
follows directly from the boundedness of the action of A on H. Similarly,
for ¢ € B the commutator [D, ¢] can be regarded as a matrix with entries
of the form [D, a] with a € A. These commutators are all bounded, so that
[D, ¢] is bounded. Let us prove compactness of the resolvent. By Exercise
any connection can be written as V = p o [D, -] + w for a right A-linear
map w : & — € ® 4 QL (A). Hence, after making the above identifications
we see that the operator V ® 1 +1® D coincides with pDp + w. The action
of w is as a bounded operator, which by is self-adjoint. Moreover, it
is given by a matrix acting on pH" with entries in O} (A). Since for any
self-adjoint operator T we have

(i+T+@) = +T)" (1-wi+T+w) ),

with (1 — w(i+ T+ w) 1) bounded, compactness of the resolvent of pDp +
w would follow from compactness of (ip + pDp) ! (note that p is the iden-
tity on the Hilbert space pHN). The required compactness property is a
consequence of the identity

(ip+pDp)p(i+D)~'p = pli+ D, pl(i+D)"'p+p.
Indeed, when multiplied on the left with (ip + pDp)~! we find that on
pHN:
(ip+pDp)~" = p(i+D)~'p = (ip+ pDp)~'p[D, pl(i+ D) "'p,

which is compact since (i + D)~! is compact by definition of a spectral
triple. O

Analogously, for a given real spectral triple (A, H, D, ) we define an-
other real spectral triple (B, H', D' = (1 ®y D) ®¢ 1;]') by setting

H = EQuHRAE".
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Then, ¢ € B acts on H' by
Pyl =) eypad,
and the operator D’ may be defined to be (1 ®y D) ®¢ 1, i.e.

Doy =(Vipoi+n@DypeE+n (Vi)

while for ' we set

Jhoypel) =i 7.

Finally, for even spectral triples one defines a grading 7/ on E @ 4 H ® 4 £°
by 7' =1 ® v ® 1. We have therefore proved:

THEOREM 7.16. If (A, H,D; ], 7y) is a real spectral triple and V is a hermit-
ian connection, then (B, H',D’;]',v') is a real spectral triple.

We now focus on Morita self-equivalences, for which B = Aand £ =

A so that End 4(£) ~ A. Let us look at connections
V:A—= Qh(A).

Clearly, by the Leibniz rule we must have V = d + w (see also Exercise[7.8),
where w = V(1) = ¥;4[D, bj] is a generic element in O} (A) acting as a
bounded operator on H. Similarly, yVa = (€'JdaJ ! + € Jwa] 1)4p. Since
‘H' ~ H, under this identification we have,
D'(p) =D'(1o¢p@l) = V(1)p + V(1) + Dp = Dy + wy + €'Jw] '¢.

In other words, D is ‘innerly perturbed’ by the given Morita self-equivalence
to

(7.2.5) D,:=D+w+¢€Jw] ™},

where w* = w € OL(A) is called a gauge field, alternatively called an
inner fluctuation of the operator D, since it is the algebra A that —through
Morita self-equivalences— generates the field w.

PROPOSITION 7.17. A unitary equivalence of a real spectral triple (A, H, D; ])
as implemented by U = uJu] ! with u € U(.A) (discussed before Deﬁnition
is a special case of a Morita self-equivalence, arising by taking w = u[D, u*].

PROOF. This follows upon inserting w = u[D, u*| in the above formula
for D,,, yielding (7.1.3). O

In the same way there is an action of the unitary group U (.A) on the new
spectral triple (A, H, D,,) by unitary equivalences. Recall that U = ufuj=1
acts on D, by conjugation:

(7.2.6) D, — UD,U*.
This is equivalent to
w — uwu* +u[D,u*],
which is the usual rule for a gauge transformation on a gauge field.
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7.3. Inner fluctuations without the first-order condition

We now generalize inner fluctuations to real spectral triples that fail on
the first-order condition. This will be used in the applications to particle
physics Beyond the Standard Model in Chapter

Let us start with the following general result on Morita equivalence
for spectral triples (A, H, D; J) that possibly do not satisfy the first-order
condition. It turns out to be necessary to work with the A-bimodule of
universal differential one-forms Q!(A), instead of the Connes’ differential
one-forms QL (A), see Note |2] on Page for a quick review on universal
differential forms.

Just as in Theorem of the previous section we now consider the
operators induced on £ ® 4 H by the operator D on H and a (universal)
connection V on &. We still exploit the same notation 1 ®y D:

(1ov D)(n®y) = (Vn)p+n& Dy,

with the universal one-form in the first term on the right-hand side acting
via the representation éa — da = [D,a] on H.

PROPOSITION 7.18. Let (A, H,D;J) be a real spectral triple, possibly not
fulfilling the first-order condition. Let & be a finitely generated projective right
A-module, equipped with a universal connection V : € — € @ 4 Q1 (A). Then

(7.3.1) (1®y D) @g1=18y (Dog1)

Moreover, the triple (End4(€),E @4 H @4 E,D';]') is a real spectral triple
where D" = (1 ®vy D) @ 1 and the real structure is given by

J(@fen)=(00]ien), (unnclcH).
PROOF. See Note[8|on Page[119 O

COROLLARY 7.19. If (A, H,D; ]) satisfies the first-order condition, then so
does (End 4 (£),E @4 H®4E,D’;]") and in that case the above inner fluctuation
reduces to the usual one, given in terms of a connection V : £ — € @ 4 QL (A)
(i.e. representing all universal connections using 6 — [D, -]).

7.3.1. Special case £ = A and inner fluctuations. As a special case we
take £ = Aand V = 6 + A where A € Q!(A) is a self-adjoint, universal
one-form

(7.3.2) A=Y ais(by);  (a;bj € A).
i

Under the respective identifications H = A®4H and H = H ®4 A, we
have

1®yD ~D +Zaj[D,bj],
i

Degl~D+Y 4D,b).
i
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This then gives rise to the following Dirac operator

D= D+ L[] + (D] + Kyl b)
(7.3.3) _.D+w(1) <1>+w(2>

where we have defined

w 1) = ZHJ[D,b]],

W) = )_ajlwa), b
]
= Eﬁ]’ak[[D, bk], ?7]]
ik
The commutant property (5.2.1) shows that

Zﬁ][CAJ( Za]ak D bk Zaka] D b] bk] Zak[cﬁ(l),bk]
J

k
which checks (7:3.1). Note that, with € = 41 such that JD]~! = €D one has
@y =€Jwny] !, woy =eJwp ]!

which follows from the commutant property (5.2.1).

It is clear from these formulas that w(2) vanishes if (A, H, D; ]) satisfies
the first-order condition, thus reducing to formula above. We will
interpret the terms w,) as non-linear corrections to the first-order, linear in-
ner fluctuations w(1) of (A, H,D;]). Itis clear that the first order condition
is equivalent to the linearity of the map from 1-forms to fluctuations. Let us
check that the gauge transformations operate in the correct manner thanks
to the quadratic correction term w ;). We shall understand this direct com-
putation in a more conceptual manner in Section[7.3.2}

LEMMA 7.20. Let A € Q'(A) be a universal one form as in (7.3.2), and
D' = D(A) be given by (7.33). Let u € U(A) and U = uJu] 1. Then one has

(7.34)  UD(A)U* = D(74(A)), vu(A) = ud(u*) +uAu* € QL(A)
PROOF. Let A = Y1 a;6(bj) € Q'(A), one has
Yu(A) = u( 211] u*)+ ):uajé(bju*) = ):a;é(b’)
1
where a; = u(1 — Y} a;b;) and by = u*, while u] = ua; and b’ = bju* for

j > 0. What matters is the followmg, Vahd for any inclusion .A C B and
TeB

(7.3.5) ia}[T, bj] = u[T,u*] +u (ia]-[T, b]-]> u
0 1
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We use the notation T = JT]~! for any operator T in , so that
w(l) = Za]'[D, b]],
J

W) = Y ajlwq), by
]

= Zﬁj[ak[D, bk], lAJ]]
ik

We now apply these formulas using 7. (A) = ¥ 4;6(b;) and obtain using
(7.3.5),

(7.3.6) wEl) =u[D,u*]+u <Z a;[D, ly]) u* = u[D,u"] + uwqyu*
1
and

(7.3.7) Wiy = Y8 w(y), b = ey, 1] + 4 (Zaj[wgl),éj]) 0
]
So, using (7.3.6), we get (assuming to simplify that e = 1so D = D)
Zﬁ][wél), l;]] = Zﬁ][u[D, M*],B]] + Zﬁ][uw(l)u*,ﬁ]]
and the com]mutation of the]ﬁ with the y, for x,y] € Agives

Zﬁj[uw(l)u*,@j] =Uu (Zﬁ][Q)(l),B]]> u* = uw(z u*
j j
and using u[D, u*| = uDu* — D,

LDl b = (Zaf[D' Bj]) u =) 4[D, b} = u@yu” — @)
] ] ]
so that we get:

~

(738) il (Zﬁ][wzl),fﬂ]]> n* = ﬁuw(l)u*ﬁ* — ﬁ(f)(l)ﬁ* + ﬁuw(z)u*ﬁ*
j

Next one has

so that, using (7.3.7) we obtain
(7.3.9)
wb) = ﬁ[u[D, u*], ﬁ*] + Uw(l)u* — uw(l)u* + LIcD(l)LI* — LAl(,fJ(l)MA* + UC(J(Z) u*

We then obtain
Wiyy + @y + Wiy = u[D,u”] +a[D,a*] + a[u[D,u"], 0]
+Uwqy)U* + UoqyU* + Uw iy U*
and the result follows using
UDU* = D +u[D,u*] +4[D,a*] + @[u[D,u*], *]. O
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7.3.2. The semi-group of inner perturbations. We show that inner fluc-
tuations come from the action on operators in Hilbert space of a semi-group
Pert(.A) of inner perturbations which only depends on the involutive algebra
A and extends the unitary group of 4. This covers both cases of ordinary
spectral triples and real spectral triples (i.e. those which are equipped with
the operator ). In the latter case one simply uses the natural homomor-
phism of semi-groups y : Pert(A) — Pert(A® A) givenby u(A) = A® A.
This implies in particular that inner fluctuations of inner fluctuations are
still inner fluctuations and that the corresponding algebraic rules are un-
changed by passing from ordinary spectral triples to real spectral triples.

We first show that the formulas of the previous sections can be greatly
simplified by representing the universal 1-forms as follows, where A° de-
notes the opposite algebra of A and x +— x° the canonical anti-isomorphism

A= A2,
LEMMA 7.21. (i) The following map 1 is a surjection
n:{) a0b € A A° | Y ab; =1} — QY (A), n(}a;00b7) =Y a;6(b)).

(ii) One has .
n <Zb]* ®a]’f°> = (17 (Za]- ®b]c~’)>

(iii) One has, for any unitary u € A,

1 (Luaj@ (b)) =vu (1 (L0 57))
where 7y, is the gauge transformation of potentials.

PROOF. (i) Let us start from an element w = ¥ x;5(y;) € Q' (A). Then
since 6(1) = 0 it is the same as

(1= Y xyi)o(1) + ) xid(yi)
and one checks that the normalization condition is now fulfilled.
(ii) The normalization condition is fulfilled by ) b? ®a;° since y bia; =
(Xa;b;)*. Thus one gets the equality using 6(x)* = —d(x*) and

Yobjo(a;) = = (Y 8(ab;)" = (Lajo(by)”
(iii) The normalization condition is fulfilled by Y- ua; ® (bju*)*° since
Y ua;bju* = 1. Moreover one has, using d(bju*) = 6(b;)u* + b;jé(u*)
Y uais(bju*) =u () a;jé(b;)) u* 4 ud(u*)
U
PROPOSITION 7.22. (i) Let A = Y a; ® b} € A® A° normalized by the

condition Y- a;b; = 1. Then the operator D' = D(n(A)) is equal to the inner
fluctuation of D with respect to the algebra A ® A and the 1-form (A ® A), that
is

D/ =D+ Zalﬁ]‘[D, blz\)]]
(ii) An inner fluctuation of an inner fluctuation of D is still an inner fluctuation
of D, and more precisely one has, with A and A’ normalized elements of A @ A°

as above,
(D(n(A))) (1(A")) = D(5(A'A))
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where the product A’ A is taken in the tensor product algebra A @ A°.
PROOF. (i) One has, in Q' (A ® A)
[6(b), bj] = 6(biby) — ;6 (by) — b;i(by)

and thus, using the normalization condition and the commutation of A

with A,

Y aid[5( =Y aiajé( bb — Y ais(b;) —Zﬁjé(faj)
Applying this with the derivation [D, .| instead of ¢ one sees that, in the
formula for D’, the terms in w(;) and @) combine with w,) to give the
required result.

(if) Welet A = Y a; ® b7 and A" =Y x; ® y2, both being normalized.
We let
aij = aiﬁj/ bl] - bibj/ Xst = XsXt, Yst = ysyAt
and we have
D' =D(y(A)) = D+ a;j[D, by]
and similarly

D" =D'(n(A") = (D(y(A))) (1(A")) = D(1(A)) + }_xxt[D(1(A)), yst]
which gives
D" =D+ a;[D,bij] + Y xat[D,yse] + Y Y xst[aij[D, bij], yst]
Now one has
Xst[aif[D, bij], yst] = xst (aii[D, bijlyst — yseais[ D, bij] )

and the terms on the right sum up to

— Y. ) Xaysai[D, by] = — ) a;[D, by
Moreover one has

xstij[D, bijlyst = Xstai;[D, bijyst] — xstai;bij[D, ysi]

and the terms on the right sum up to

=2 ) Xattiib[D, yet] = — ) xt[D, yt]
Thus we have shown that

D" =D+ Y xqa;;[D, bijyst]

which gives the required result using

o —

Xstlij = XsX4a;8; = Xsa; %4 = xsai(xta]-)
bijyst = bibjysi: = biysbiir = biys(bjy:)

(Lx @) (Lai®by) =) xai® (biys)°

taking place in the algebra A ® A°. O
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom

and




CHAPTER 7. GAUGE THEORIES FROM NONCOMMUTATIVE
116 MANIFOLDS

Note that the normalization and self-adjointness conditions are pre-
served by the product of normalized elements in A ® A°, since

szaibi]/s = szys =1

and moreover the following operation is an antilinear automorphism of

A® A°

Y a0 =) bia®
while the self-adjointness condition means to be in the fixed points of this
automorphism. It is thus natural to introduce the following semi-group:

PROPOSITION 7.23. (i) The self-adjoint normalized elements of A ® A° form
a semi-group Pert(.A) under multiplication.

(ii) The transitivity of inner fluctuations (i.e. the fact that inner fluctuations
of inner fluctuations are inner fluctuations) corresponds to the semi-group law in
the semi-group Pert(.A).

(iii) The semi-group Pert(A) acts on real spectral triples through the homo-
morphism y : Pert(A) — Pert(A® A) given by

(7.3.10) ACcAQA = pu(A)=AvAc (A A) e (Ao A)’

PROOF. We have shown above that Pert(.A) is a semi-group. Using its
action on operators in H by T + Y a;Tbh; one gets (ii). Proposition |7.22
gives (iii). One checks the multiplicativity of the map u as follows. Let
A=Yai®b7, A" =Y x ®y¢, aij = ailj, bij = bibj, xst = Xs%p, Yst = Y
so that

u(A) =) a;@0b;, u(A") =) xa@yq
Then one has A’A = ¥ x;a; ® (biys)° and

A A) = Yo xai(xia) @ (bys (b)) = Y xaay @ (biysr)® = p(A)u(A)
which completes the proof of (iii). O

Note that as a subset of A ® A° the subset Pert(.A) is stable under affine
combinations «A + BA’ for «, p € R and a + f = 1. The map y is quadratic.

To summarize the above discussion we see that the inner fluctuations
come from the action of the semi-group Pert(.A) in a way which parallels
the action of inner automorphisms and which, for real spectral triples, com-
bines A with A. Passing from the ordinary formalism of inner fluctuations
for spectral triples to the case of real spectral triples is given by the ho-
momorphism y : Pert(A) — Pert(A ® A) on the semi-groups of inner
perturbations. The unitary group U (.A) maps to the semi-group Pert(.A)
by the homomorphism u € U(A) — u ® (u*)° € Pert(A), and this homo-
morphism is compatible with y.

We end this section by determining the perturbation semi-group of the
direct sum of *-algebras.

PROPOSITION 7.24. Let A, BB be x-algebras, then
(7.3.11) Pert(A @ B) = Pert(A) x Pert(B) x (A® B°® B® A°)®
where sa stands for self-adjoint elements, i.e. those of the form }_a; ® b7 + bj ®

*0
Ell .
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PROOF. We start with the following isomorphism of *-algebras:
(ADB)@(ADB)’=2ARA ©CBRIB DARB ©B® A%

Imposing the normalization and self-adjointness condition to obtain Pert(.A &
B) on the left-hand side translates on the right-hand side to give Pert(.A) x
Pert(B) x (A® B° & B ® A°)%. Indeed, normalization only affects the first
two terms A ® A° @ B ® B° where, together with the self-adjointness con-
dition it gives rise to Pert(.A) x Pert(B). The self-adjointness condition on
A® B° ® B® A° gives rise to elements of the form stated above. O

7.3.2.1. Examples of the perturbation semi-group. For commutative matrix
algebras we have

PROPOSITION 7.25. Forany N > 1 we have
Pert(CV) = CNIN=-1)/2
with the semi-group structure given by componentwise multiplication.
PROOF. Since Pert(C) = {1}, Proposition[7.24/implies that
Pert(CY) = Pert(CN 1) x CN 71,
from which the proof follows. 0

As a next example we determine the perturbation semi-group of M,(C).
Note that we have four basis elements for which the normalization con-
dition becomes

(C11,11 + Ci221)e11 + (Cii12 + Ciz2)erz
+ (Co1,11 + C21)e21 + (Cor,12 + Con22)exn = 11 + €.

This amounts to the conditions

Ciin+Con=1 Cun+Cpxn=1

Ci112+Ci222 =0, Co111+ Cop21 =0.
The self-adjointness condition reads Cjj; = Tk}z

Using the transpose map we may identify
M2(C) X Mz(C)O — M4(C), eij ® 6;1 = ejj @ ek,

The normalization and self-adjointness conditions on C;; y; translate to 4 x
4-matrices to arrive at the following general form for an element A € Pert(M;(C)):

X1 Z3 Z3 1-— X1
Z1 22 2z —Z71
Z1 25 22 —Z1
Xy Z4 Z4 1-— X2

(7.3.12) A= , z1,...25 € C, x1,x2 € R.

The semi-group law ensures that the product of two such matrices again
has this general form, something which is not immediately clear. Let us
make this point more transparent and establish conditions on 4 x 4 matrices
that give rise to the above form.

For an element A € M,4(C) to be of the form is equivalent to

demanding that
Ah+fi) = (h+fs)
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in terms of the standard basis {f;} for C*. Equivalently, the matrix Q) can
be rewritten as a block matrix

-
A — (€11 e _ [eq €pp
Q (612 ezz) <€21 322) Ze” © ¢ji-
Especially the last identity is useful, since we see that the eigenvectors of ()
are given by e; ® e1 + e, ® ey, with eigenvalue 1, and e; ® e; £ e, ® e, with
eigenvalue 1 and —1 depending on the + or — sign. Hence, upon changing
to the basis

(7.3.13)
{e1®@e1+eaRey, e Qe —exRep,e1Rep+ep ey, e1 Rep —ep eq)

of eigenvectors we will get

I 0
(7.3.14) Q= <03 _1>.

Moreover, the vector f; + f4 which is left invariant by A is given by e; ®
e1+e ey € C2® C2, which is also an eigenvector of Q. Hence with
respect to the basis we arrive at the following characterization of
Pert(M;(C)):

PROPOSITION 7.26.
Pert(M,(C)) = {A € My(C) | Aw = w, QA = AQ},

(L 0
o=z 5)

This analysis extends to arbitrary matrix algebras, see Note [ on Page

119

—_

with

SO O

Notes

Section 7.1. ‘Inner’ unitary equivalences as the gauge group

1. The interpretation of the inner automorphism group as the gauge group is presented in
[82].

2. For a precise proof of the isomorphism between Aut(C(X)) and the group of homeomor-
phisms of X, we refer to [37, Theorem I1.2.2.6]. For a more detailed treatment of the smooth
analogue, we refer to [128} Section 1.3].

3. The gauge group &(A, #; ]) introduced in Definition|[7.4](following [82, 86, 107]) is a nat-
ural lift of the group of inner automorphisms of the algebra A, as is proved in Proposition
Another approach to lifting Inn(.A) to be represented on H is by central extensions; this
is described in [175].

Section 7.2. Morita self-equivalences as gauge fields
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4. For unital algebras algebraic Morita equivalence [195] coincides with Rieffel’s notion of
strong Morita equivalence for C*-algebras [215]. This is proved in [27] and explains why we
can safely work with algebraic tensor products. We also refer for a more general treatment
to e.g. [128] Section 4.5] and [168} Section A.3 and A .4].

5. Besides Morita equivalence, also the more general notion of KK-equivalence can be lifted
to spectral triples, but this requires much more analysis [19} 166} 190].

6. Theorem and Theorem [7.16|are due to Connes in [82].

Section 7.3. Inner fluctuations without the first-order condition

7. Universal differential forms are defined in terms of the graded differential algebra Q°(.A)
that is freely generated by a and b for any a,b € A. In other words, a universal differential
n-form 7 is given by an expression of the form

n= Zaééaé . -(511{1,
j

and its differential is o ‘
on = 2(5{16(511]1 - bal,.
j

There will be no commutation relations imposed between the a¢, dag and the da;’s, but we
do have the Leibniz rule stating that

d(ab) = 6(a)b + adb
for any a,b € A. For an overview on universal differential forms, we refer to [168, Section
7.1].
8. Section[7.3]is based on [69]. That paper also contains a proof of Proposition [7.18}

9. Section [7.3.2.1]is based on [199]. This contains a description of the perturbation semi-
group for all (real and complex) matrix algebras.
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CHAPTER 8

Localization of gauge theories from noncommutative
geometry

We ‘localize’ the generalized gauge theory derived from any spectral
triple by constructing a C*-bundle on which the gauge group acts by ver-
tical automorphisms. This will be exemplified for toric noncommutative
manifolds.

8.1. Commutative subalgebra and C*-bundles

Given a real spectral triple (A, H, D; J) we can construct a spectral triple
on some commutative subalgebra of A, derived from this data. Indeed, set

Aj:={acA:a] =]a"}.
As we will see shortly, this is a complex subalgebra, contained in the center
of A (and hence commutative). Later, in Chapter this subalgebra will

turn out to be very useful in the description of the gauge group associated
to any real spectral triple.

PROPOSITION 8.1. Let (A, H, D; ]) be a real spectral triple. Then
(1) Aj defines an involutive commutative complex subalgebra of the center
of A.
(2) (Aj,H,D;]) is a real spectral triple.
(3) Anya € Aj commutes with the algebra generated by the sums Y a;[D, bj| €
Qb (A) with a;,bj € A.

PROOF. (1)Ifa € Ajthenalso Ja*]~! = (JaJ~1)* = a, since ] is isomet-
ric. Hence, Aj is involutive. Moreover, for alla € A; and b € A we have
[a,b] = [Ja*]~1,b] = 0 by the commutant property (5.2.1). Thus, A; is in
the center of A.

(2) Since A is a subalgebra of A, all conditions for a spectral triple are
automatically satisfied.

(3) This follows from the order-one condition (5.2.1):

[a,[D, b} = [Ja*] ", [D, bl] = 0,
fora € Ajand b € A. O

EXAMPLE 8.2. In the case of a Riemannian spin manifold M with real struc-
ture [y given by charge conjugation, one checks that
C®(M)y,, = C(M, R).
More generally, under suitable conditions on the triple (A, H, D; J) the

spectral triple (A;, H, D) is a so-called commutative spin geometry. Then,
Connes’ Reconstruction Theorem (cf. Note [6| on Page [73) establishes the
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existence of a compact Riemannian spin manifold M such that there is an
isomorphism (A;, H,D) ~ (C®(M),L*(S® E), Dg). The spinor bundle
S — M is twisted by a vector bundle E — M and the twisted Dirac operator
is of the form Dg = Dy + p with p € I**(End(S® E)).

In any case, as Aj is commutative, Gelfand duality (Theorem en-
sures the existence of a compact Hausdorff space such that A; C C(X) asa
dense *-subalgebra. Indeed, the C*-completion of A; in B(#) is commuta-
tive and hence isomorphic to such a C(X). We consider this space X to be
the ‘background space” on which (A, H, D; ], ) describes a gauge theory,
as we now work out in detail.

Heuristically speaking, the gauge group &(.A, H; J) introduced in Defi-
nition 7.4/ considers only transformations that are “vertical’, or “purely non-
commutative” with respect to X, quotienting out the unitary transforma-
tions of the commutative subalgebra A;. In this chapter we will make this
more precise by identifying a bundle 8 — X of C*-algebras such that:

e the space of continuous sections I'(X, B) forms a C*-algebra iso-
morphic to A = A, the C*-completion of A;
e the gauge group acts as bundle automorphisms covering the iden-
tity.
Moreover, we search for a bundle of C*-algebras of which the gauge fields
w € QL (A) are sections and on which the gauge group again acts by bun-
dle automorphisms.

We avoid technical complications that might arise from working with
dense subalgebras of C*-algebras, and work with the C*-algebras A; and
A themselves, as completions of A] and A, respectively. First, note that
there is an inclusion map C(X) ~ A; — A. This means that A is a so-
called C(X)-algebra, which by definition is a C*-algebra A with a map from
C(X) to the center of A. Indeed, it follows from Proposition [8.1| that A; is
contained in the center of A.

In such a case A is the C*-algebra of continuous sections of an upper
semi-continuous C*-bundle over X. We will briefly sketch the setup (see
Note 3 on Page [129). Recall that a function f : A — C is upper semi-
continuous at ag € A if limsup, ., [|f(a)| < [/f(a0)]-

DEFINITION 8.3. An upper semi-continuous C*-bundle over a compact
topological space X is a continuous, open, surjection 7t : B — X together with
operations and norms that turn each fiber B, = 7t~ 1(x) into a C*-algebra, such
that (1) the map a — ||al|| is upper semi-continuous, (2) all algebraic operations
are continuous on B, (3) if {a;} is a net in B such that ||a;|| — 0 and 7t(a;) — x
in X, then a; — 0., where Oy is the zero element in B,.

A (continuous) section of ‘B is a (continuous) map s : X — ‘B such that

nt(s(x)) = x.

A base for the topology on 9B is given by the following collection of
open sets:

(8.1.1) W(s, O,€) :={beB:m(b) € Oand ||b—s(m(b))| <€},

indexed by continuous sections s € I'(X,9B), open subsets O C X and
€ > 0.
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PROPOSITION 8.4. The space T'(X,B) of continuous sections forms a C*-
algebra when it is equipped with the norm

s == sup [|s(x) |5,
xeX
PROOF. See Note [3/on Page[129 O

In our case, after identifying C(X) with Aj, we can define a closed two-
sided ideal in A by

(8.1.2) ILy:={fa:ac A feCX),f(x)=0}.

We think of the quotient C*-algebra B, := A/I, as the fiber of A over x
and set

(8.1.3) B:=[] B

xeX

with an obvious surjective map 77 : B — X. Ifa € A, then we write a(x) for
the image a + I of a in B, and we think of 4 as a section of B. The fact that
all these sections are continuous and that elements in A can be obtained in
this way is guaranteed by the following result.

THEOREM 8.5. The above map 7t : B — X with B as in (8.1.3)) defines
an upper semi-continuous C*-bundle over X. Moreover, there is a C(X)-linear
isomorphism of A onto T'(X,B).

PROOF. See Note[3|on Page O

Having obtained the C*-algebra A as the space of sections of a C*-
bundle, we are ready to analyze the action of the gauge group on A. Staying
at the C*-algebraic level, we consider the continuous gauge group

UA)
uay)
This contains the gauge group & (A, #;J) of Definition[7.4as a dense sub-

group in the topology induced by the C*-norm on A. The next result real-
izes the gauge group as a group of vertical bundle automorphisms of B.

(A M;]) ~

PROPOSITION 8.6. The action « of &(A,H;]) on A by inner C*-algebra
automorphisms induces an action & of &(A,H;]) on B by continuous bundle
automorphisms that cover the identity. In other words, for ¢ € B(A,H;]) we
have

m(ag(b)) = m(b); (b €B).
Moreover, under the identification of Theorem[8.5]the induced action &* on T(X, B)

given by
3 (s) (x) = Ag(s(x))
coincides with the action « on A.

PROOF. Theactiona inducesanactionon A/I, = 7t !(x), since ag(Ly) C
I, for all g € (A, H;]). We denote the corresponding action of &(A, H; J)
on ‘B by g, so that, indeed,
m(ag(b)) = 7t (b); (b€ m1(x)).
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Let us also check continuity of this action. In terms of the base W(s, O, €)

of (8.1.1), we find that
ag(W(s, O,€)) = W(ag(s), O,e),

mapping open subsets one-to-one and onto open subsets.

For the second claim, it is enough to check that the action a* on the
section s : x — a+ I, € By, defined by an element a € A, corresponds to
the action « on that a. In fact,

A”Z;(S)(x) = wg(s(x)) = ag(a+ L) = ag(a) + Ly,
which completes the proof. O

At the infinitesimal level, the derivations in the gauge algebra g(A, 7; ])
also act vertically on the C*-bundle B defined in (8.1.3), and the induced
action on the sections I'(X, 98) agrees with the action of g(\A, H; J) on A.

8.2. Localization of the gauge group

We now investigate whether or when &(.A, #;]) can be considered
as the group of continuous sections of a group bundle on the same base
space X. Set-theoretically, one expects the group bundle that corresponds
to I'(X, B) to be given by

U(B,)
UC)

Q5B:z]_[

xeX

We define a topology on &5 as follows. First, the group bundle
UB:= ] U(Bx)

xeX
is equipped with the induced topology from B. Since each 9B, is a complex
unital algebra, we have U (C) C U(By) so that we have a group subbundle
[iexU(C) C UB. We write UC for this group subbundle. The topology of
& B is then the quotient topology of the bundle U/ B by the fiberwise action
of the group bundle U/C.
Before stating our main result on the structure of the gauge group, we

consider the spaces of continuous sections of the group bundles ¢/C and
UB.

PROPOSITION 8.7. We have the following group isomorphisms:
I['(X,UC) =U(Aj),
T(X,UB) = U(A).
PROOF. Firstly, a continuous map from X to U(C) is simply given by
a unitary continuous function on X. Secondly, since I'(X, B) = A, unitar-
ity translates from the product in A to the fiberwise product in B, hence
proving the result. O
We also need the following well-known result on covering spaces:
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PROPOSITION 8.8. Suppose given a covering space p : (Y, 7o) — (Y, vo)
and a map f : (X,x0) — (Y,yo) with X path-connected and locally path-

connected. Thenalift f : (X, x0) — (Y, o) of f exists if and only if f. (111(X, x9)) C
p«(m1(Y, 9o))-

THEOREM 8.9. If X is simply connected and if there exists a subbundle BB C
UB that is a covering space of & (via the quotient map UB — &B), then there
is the following short exact sequence of groups

(8.2.1) 1—T(X,UC) —T(X,UB) —=T(X,868) —1.

Consequently, in this case the gauge group is given as the space of continuous
sections of the group bundle B, i.e.

G(A,H;]) 2T (X, 68).

PROOF. Exactness of is clear from the very definition of the group
bundle &, except perhaps for the claim of surjectivity of the map I'(X,UB) —
I'(X, ®B). This follows from Proposition applied to a continuous sec-
tion ¢ € T'(X, 8B). Indeed, since 711 (X) is trivial, there always exists a lift

g: X — ®B C UB, thus proving surjectivity.

For the second statement, exactness of the sequence implies that
(X, UB) ., U(A)
I(X,UC) — U(Aj)

using Proposition[8.7} But this is precisely the definition of the group & (A, H; ).
(]

I(X,68)

This result allows for the following refinement of Proposition [8.6]

COROLLARY 8.10. Under the same conditions as in Theorem the action
of the gauge group &(A,H;]) on A is induced by the action of the fibers &By :=
U(By)/U(C) on the fibers B of B by inner automorphisms.

PROOF. Let ¢ € &(A,H;]) with pre-image u € U(A), ie. so that
tg(a) = uau*. Then g, u and a can be considered as continuous sections
of bundles &B,UB and B on X, respectively. At a point x € X we have
g(x) € 8By = U(By)/U(C) with pre-image u(x) € U(By) and we com-
pute as sections of B — X:

(ag(a)) (x) = u(x)a(x)u(x)",
thus establishing the result. O
Note that Theorem also gives a bundle description of Inn(A) if
Z(A) = Aj. Indeed, in combination with Corollary we find that then

Inn(A) = T'(X, &B), realizing the group of inner automorphisms of A as
the space of continuous sections of a group bundle.

8.3. Localization of gauge fields

Also the gauge fields w that enter as inner fluctuations of D can be
parametrized by sections of some bundle of C*-algebras. In order for this
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to be compatible with the vertical action of the gauge group found above,
we will write any connection in the form,

V=d+wy+w,

whered = [D, -] and wy, w € QL (.A). The action of a gauge transformation
on V then induces the following transformation:

wo — uwou™ +ulD,u*|; w — uwu*.

The C*-algebra generated by A and [D, A] is a C(X)-algebra, since
C(X) ~ Aj, which according to Proposition 8.1 commutes with both A
and [D, A]. Thus, a similar construction as in the previous subsection es-
tablishes the existence of an upper semi-continuous C*-bundle B, over X,
explicitly given by

Bo=]]C(A[D A)/L,
xeX
where C*(A, [D, A)) is the C*-algebra generated by a and [D, b] fora, b € A,
and I} is the two-sided ideal in C*(\A, [D, A]) generated by I, that has been
defined before (see Equation (8.1.2))). Again, one can show that I'(X,Bq) is
isomorphic to this C*-algebra and establish the following result.

PROPOSITION 8.11. Let 71 : B — X be as above.

(1) The gauge field w defines a continuous section of ‘Bq,.
(2) The gauge group &(A,H;]) acts fiberwise on this bundle, and the in-
duced action on T'(X, Bq) agrees with the action on C*(A, [D, A)).

Consequently, if we regard w € Q1 (A) as a continuous section w(x) of B, an
element uJu]=' € & (A, H;]) acts as

w(x) = (uwu™)(x) = uw(x)u*.

8.4. Localization of toric noncommutative manifolds

In Chapter (12| we will see a concrete example of the above localization
for Yang-Mills gauge theories, phrased in the language of principal bun-
dles. We will here give another illustrative example, given by toric non-
commutative manifolds introduced in[5.3.2

Thus, we consider an arbitrary compact Riemannian spin manifold M
that carries a (smooth) action of a 2-torus by isometries. We then have a
real spectral triple (C*(My), H, Das; Jm) so let us determine the gauge the-
ory corresponding to it. We distinguish two cases corresponding to 6 being
rational or irrational. These two cases require completely different tech-
niques and yield entirely different results.

For 6 rational we have the following result. If p,q are coprime and
0=p/q wesetl'y =2/q7.

THEOREM 8.12. We have the following equivalence of spectral triples:
(C*(My),L*(M,S),D) = T°(M/Ty,B), L>(M/Ty, 1.8 ® B), .D)

in terms of the projection map 7w : M — M/Tg and a x-algebra bundle B :=
M xt, My (C) with base space M /T, for a suitable action of T'g on My(C)

PROOF. See Note[7|on Page[129] O
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Let us relate this to our gauge theory description using the commuta-
tive subalgebra C(Mp);,, in C(M).

PROPOSITION 8.13. For the real spectral triple (C*®(My), H, D; Jm) we have
for 6 rational that
C(Mp)j, = Z(C(Mp)).
Moreover, in this case C(My)j,, = C(M/Ty).

PROOF. First, C(My)j,, C Z(C(Ms)) by Proposition 8.1} The converse
inclusion is obtained as follows. We have Z(C(Mjy)) = C(M/Ty) because
Z(M,4(C)) = C for all fibers. Moreover, C(M/Ty) = C(M)' is a sub-
algebra of C(M), all of whose elements satisfy the commutation relation

aJy = Jma* (cf. Example[8.2). O

Hence, the bundle B = M xr, M;(C) — M/Ty is the sought-for C*-
bundle on which to define our gauge theory. Theorem tells us that
the C*-algebra C(Myp) is isomorphic to the space of continuous sections of
B —in concordance with our Theorem and for the gauge group we
actually have the following result:

&(C(My), H; Jm) = T(M/To, M xr1, PU(q)),

if M /Ty is simply connected. In other words, we are considering a PU(q)-
gauge theory, in the usual sense. This Lie group acts on the fiber M,;(C) of
B in the adjoint representation.

Let us now proceed with the case that 6 is irrational.

PROPOSITION 8.14. For the real spectral triple (C®(Mg), H, D; Jm) we have
for 6 irrational

C(Mo)y = Z(C(Mp)).
Moreover, in this case C(My);,, = C(M/T?).

PROOF. First note that Z(C(Mjy)) = C(My)T’, essentially because the
center of Ay is trivial if 6 is irrational (see Note [0 below). Moreover, since
C(M)jr2 is unchanged under the deformation, as well as J)1, we find that

C(My)™ = C(M)™ is contained in C(Mp) 7 Which also proves the second
statement. O

This allows us to conclude with Theorem [8.5[that C(Mpy) is isomorphic
to the C*-algebra I'(M /T2, BM¢) of continuous sections of an upper semi-
continuous C*-bundle M — M/T? and that &(C(My), H; Jm) acts by
vertical automorphisms on BM¢.  In fact, even more can be said in this
case.

THEOREM 8.15. The above C*-bundle BM — M/T? is a continuous C*-
bundle. Moreover, its fibers are given by the following C*-algebras:

BMe >~ C(T2/T2, AT,
for x € M/T? having isotropy group T2 C T2,
PROOF. See Note[IT|on Page[129 O
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Hence, the spectral triple (C(Mg), H, D; Jm) yields a gauge theory de-
fined in terms of a C*-bundle B — M /T?. The gauge group &(C(Mg), H; Jm)
is parametrized by unitaries in C(Mp) and acts vertically on the bundle
$BMs. We now determine the bundle structure of the gauge group, thereby
making use of Theorem [8.9)above.

P

PROPOSITION 8.16. There exists a subbundle 8BMe C UBMe that is a cov-
ering space of ®BMe for the quotient map UBMe — &BMe. Consequently, if
M /T2 is simply connected we have

&(C(Mp), H; Jm) = T(M/T?, &BY),
where the fibers of ®BM¢ are given by
UC(T/TS, A)™).
Uc) '

PROOF. From Theorem it follows that the fibers I/ BJICVI" of UBMs are

given by the topological groups U (C(T?/T?2, Ag)T). We define a subbun-

dle of U BM¢ using the unique tracial state T on Ay. First, consider the phase
map ¢ : Ag — U(1) given by
(a)
a) = ——=; ae€ Ap).
QD( ) |T( El) ’ ( 9)
It induces a phase map on the fibers of BM by composition:
§: C(T2/T2, A9)T) — U(),
frorgof.

We then define a subbundle &BMe  1/BMs by giving its fibers:

& BMe =~ (x € M/T?).

BBM:, = {u e UBM ; () = 1}.

For 8BMs to be a covering space of &B8M¢, we determine the kernel of the

P

quotient map UBMe — &BMs, intersected with & BMs. In fact, being in the
kernel amounts to u € U(C) so that ¢(u) = 1 implies that then u = 1.

Hence, &BMs is a one-fold covering of &BMo
If M/T? is simply connected, then Theorem [8.9) and combine to
prove the second statement. (]

The above result allows for the following explicit bundle description of
the group of inner automorphisms of C(Mjy). Note that M/T? is simply
connected when M is (see Note[12]below).

COROLLARY 8.17. If M/ T? is simply connected, then
Inn(C(Mp)) = T(M/T?, &BM).
PROOE. In Proposition we have already established that Z(C(Mjy)) =
C(Msy)j,,- Hence Corollary [7.6{ applies and gives the group isomorphism

Inn(C(Mp)) = &(C(Mp),H;]m). Combining this with Proposition [3.16]
yields the desired result. O
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Notes
1. Chapter|[8]is based on [232].

Section 8.1. Commutative subalgebra and C*-bundles

2. The definition of the commutative subalgebra A; in Section [8.1]is quite similar to the
definition of a subalgebra of A defined in [65, Prop. 3.3] (cf. [86, Prop. 1.125]), which is the
real commutative subalgebra in the center of A consisting of elements for which a] = Ja.
Following [107] we propose a similar but different definition, since this subalgebra will turn
out to be very useful for the description of the gauge group associated to any real spectral
triple.

3. The notion of C(X)-algebra was introduced by Kasparov in [159]. Proposition [8.4]and
Theorem are proved in [161} 200] (see also Appendix C in [203]). Note that the bundles
are in general only upper semi-continuous, and not necessarily continuous. For a discus-
sion of this point, see [200].

Section 8.2. Localization of the gauge group

4. For a proof of Proposition [8.8|see [134, Proposition 1.33].

5. Theorem generalizes a result of [40] on Lie group bundles to the general setting of
group bundles.

Section 8.3. Localization of gauge fields

6. Later, in Chapters [10] to [13| we will work towards physical applications in which the
above C*-bundle is a locally trivial (or, even a globally trivial) -algebra bundle with finite-
dimensional fiber. The above generalized gauge theories then become ordinary gauge the-
ories, defined in terms of vector bundles and connections. It would be interesting to study
the gauge theories corresponding to the intermediate cases, such as continuous trace C*-
algebras (cf. [211] for a definition), or the more general KK-fibrations that were introduced
in [109].

Section 8.4. Localization of toric noncommutative manifolds

7. Theorem is due to Caci¢ in [49) Theorem 4.28]

8. The fact that the spectral triple (C®°(My), H, D; Jp) for 0 is an example of an almost-
commutative spectral triple in the sense of [41) 47, 40] was already noticed in [49].

9. A proof of the fact that the center of Ay is trivial if 0 is irrational can be found in e.g. [84}
Proposition 3].

10. The fact that for 6 irrational the C*-algebra C(My) is isomorphic to the C*-algebra
T'(M/T?,8Ms) of continuous sections of an upper semi-continuous C*-bundle B —
M /T?. This also follows from the more general results of [29] showing that torus-covariant
C(X)-algebras are deformed to torus-covariant C(X)-algebras. Here a torus-covariant alge-
bra is a C(X)-algebra which carries an action of T? that commutes with C(X). In particular,
this applies to the C(M/T?)-algebra C(M), deforming to the C(M/T?)-algebra C(Mp).
11. For the proof of Theorem we may argue as follows: in addition to upper semi-
continuity, in [29, Proposition 5.1] lower semi-continuity is shown to hold under some ad-
ditional conditions. In fact, since the T2-orbit space of M is Hausdorff, Corollary 5.3 in
loc. cit. implies that the Rieffel deformation C(My) of C(M) can be expressed as a continu-
ous field of C*-algebras over this orbit space. In other words, it is the C*-algebra of sections
of a continuous C*-bundle over M/T2. The second claim follows from [29, Corollary 6.2].

12. A proof of the fact that M/T? is simply connected when M is can be found in [44]
Corollary 6.3].
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13. Even though we have restricted the discussion in Section [8.4]to an action of a 2-torus
on a manifold, this can be generalized in a straightforward manner to actions of higher-
dimensional tori. The appropriate notion of irrationality for the higher-dimensional non-
commutative tori has been discussed in [213].

14. In addition to the topological factorization of toric noncommutative manifolds in a
horizontal and vertical part obtained in Section 8.4} also the factorization of the geometric
structure has been studied in [42} 155|154, [51]]. These works involve the unbounded external
Kasparov product, allowing for a tensor-sum decomposition of the Dirac operator on M,
(cf. Section[5.3.2) into a vertical operator and a Dirac operator on M/T".
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CHAPTER 9

Spectral invariants

In the previous chapter we have identified the gauge group canonically
associated to any spectral triple and have derived the generalized gauge
fields that carry an action of that gauge group. In this chapter we take the
next step and search for gauge invariants of these gauge fields, to wit, the
spectral action, the topological spectral action and the fermionic action. We
derive (asymptotic) expansions of the spectral action.

9.1. Spectral action functional

The simplest spectral invariant associated to a spectral triple (A, H, D)
is given by the trace of some function of D. We also allow for inner fluctu-
ations, and more generally consider the operators D, = D + w + €' Jw] !
with w = w* € QL(A).

DEFINITION 9.1. Let f be a suitable positive and even function from R to R.
The spectral action is defined by

(9.1.1) Sp[w] :=Tr f(Dw/A),

where A is a real cutoff parameter. The minimal condition on the function f is
that it makes f (D, /) a traceclass operator, requiring sufficiently rapid decay at
Foo.

The subscript b refers to bosonic since in the later physical applications
w will describe bosonic fields.
There is also a topological spectral action, which is defined in terms of the

grading 7y by
(9.1.2) Stoplw] = Tryf(Dw/A).

The term “topological” will be justified below. First, we prove gauge invari-
ance of these functionals.

THEOREM 9.2. The spectral action and the topological spectral action are
gauge invariant functionals of the gauge field w € QL (A), assumed to trans-
form under Adu = uJu] ' € &(A, H;J]) as

w — uwu* 4+ u[D,u*].

PROOF. By (7.2.6) this is equivalent to D,, — UD,U* withU = uJuJ'.

Since the eigenvalues of UD,U* coincide with those of D,, and the (topo-

logical) spectral action is defined on the spectrum of D,,, the result fol-
lows. O

Another gauge invariant one can naturally associate to a spectral triple
is of a fermionic nature, as opposed to the above bosonic spectral action
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132 CHAPTER 9. SPECTRAL INVARIANTS

functional. This invariant is given by combining the operator D,, with a
Grassmann vector in the Hilbert space (cf. Appendix , as follows.

DEFINITION 9.3. The fermionic action is defined by

Stlw, 9] = (J§, Duth)
with € M where
Hi={¢:9peH}
is the set of Grassmann variables in ‘H in the 4-1-eigenspace of the grading y.

THEOREM 9.4. The fermionic action is a gauge invariant functional of the
gauge field w and the fermion field , the latter transforming under Adu <
&(A,H;J)as

Y uJu 'y,
Moreover, if the KO-dimension of (A, H,D;y,]) is 2 modulo 8, then (y,¢') —
(JW, Do) defines a skew-symmetric form on the +1-eigenspace of 7y in H.

PROOF. Again, D, — UD,U* with U = uJuJ~', whilst ¢ — Uy. The
claim then follows from the observation U] = JU.
Skew-symmetry follows from a small computation:

(Jp,Dy') = —(Jy, ?Dy') = —(JDY', ) = —(DJ§', ) = —(J¢', Dyp).
where we used Table4.2{for D] = |D in KO-dimension 2 modulo 8. (]

The above skew-symmetry is in concordance with the Grassmann na-
ture of fermionic fields ¢, guaranteeing that S as defined above is in fact
non-zero.

9.2. Asymptotic expansion of the spectral action

The first type of expansion of the spectral action is an asymptotic series
in powers of A; the perturbative expansion in powers of the gauge field w
will be considered in the next section.

We assume that f is given by a Laplace-Stieltjes transform:

f = [ e ),

with y a suitable measure on R™. This assumption allows us to find the
following expression for the topological spectral action.

PROPOSITION 9.5. Suppose f is of the above form. Then,
Stop[w] = f(0) index D,.

PROOF. This follows from the McKean-Singer formula (Lemma [6.23):
indexD,, = Tr 'ye’tDﬁi/Az.

Since this expression is independent of A and ¢, an integration over t yields

|, dutt) = £(0). 0
£>0
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The asymptotic expansion of S can be derived from the existence of a
heat kernel expansion of the form

(9.2.1) Tre " = Y e,
14

as t — 0. Note that this is written down here for the unperturbed operator
D, but similar expressions hold for any bounded perturbation of D, such
as D,,.

LEMMA 9.6. If (A, H, D) is a regular spectral triple with simple dimension
spectrum (see Definition [6.9) [6.9), then the heat kernel expansion (9.2.1) is valid as an
asymptotic expansion as t — 0. Moreover, for x < 0 we have

2¢,
I'(—a)’

res;—_2,01(z) =
with {(z) = Trb|D| 2.
PROOF. This follows from the Mellin transform:

1 ®© 2
922 D| % = / —tD%yz/2-1 gy

or, after inserting the heat kernel expansion,

1 o
Tr ’D’fz — T/ZZ/ Catﬂt+z/271 dt

= (Z/2 Z/ cut* 2271 dt + holomorphic

= hol hic.
Z T(z/2) 0c—|—z/2)+ olomorphic

Taking residues at z = —2a on both sides gives the desired result. O

Using the Laplace-Stieltjes transform, we now derive an asymptotic
expansion of the spectral action in terms of the heat coefficients c,.

PROPOSITION 9.7. Under the above conditions, the spectral action is given
asymptotically (as A — o) by

9.2.3 Tr f(D/A) =

where fg := [ f(v)vP~ dv and Sd is the dimension spectrum of (A, H, D).

1,0 )eo+ O(A™),

PROOF. This follows directly after inserting the heat expansion in the
Laplace-Stieltjes transform:

9.2.4) Te f(D/A) =Y /t BN dp(t)

The terms with « > 0 are of order A~ 1; if & < 0, then
1
= / e o1 dy,
r(_“) v>0
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Applying this to the integral (9.2.4) gives
A%¢, / £ du(t) e / / o dodu(t)
Jt>0 t>0 Jou>0

= 2A "¢, /t>0 /v>0 eyl dodu(t)

= 2A_2”‘ca/ f(v)v_Z”‘_l dv = ZA_Z"‘caf_z,x,
>0
substituting v — ©? in going to the second line. Since ¢, = 0 unless —2a €
Sd, we substitute = —2a to obtain (9.2.3). O
COROLLARY 9.8. For the perturbed operator D, we have
Splw] = Y fpAPres,_ g Tr|Dy| * + f(0) Tr |Deo| 77|, + O(A™).
pesd
9.3. Perturbative expansion in the gauge field

Another approach to analyze S, is given by expanding as a Taylor series
in powers of w, rather than in A. We first take a closer look at the heat

operator e~'P* and its perturbations.

LEMMA 9.9. Let w be a bounded operator and denote D, = D + w. Then
1
e~t(Dw)? — o=tD* _ t/ ds e_St(D“')zP(w)e_(l_s)wz,
0
with P(w) = Dw + wD + w?.

PROOF. Note that e~*P% is the unique solution of the Cauchy problem
(dt + Dw) M(t) =0
u(0) =1,

with d; = d/dt. Using the fundamental theorem of calculus, we find
dy [e_tDz = /tdt’e_(t_t/)Dg)P(w)e_t/Dz]
0

_ ( /dte (=)D p( )‘*"y),

showing that the bounded operator e " — [ dt'e~(=*)D% P(w)e~'P* also
solves the above Cauchy problem. O

In what follows, we will repeatedly apply this Lemma to obtain a per-
turbative expansion for e~tDw)? in powers of w in terms of multiple inte-
grals of heat operators. We introduce the following convenient notation,

valid for operators Xy, ... X:
(Xoy. .., X}y, i= " Tt / Xoe 0D Xpe511D% . X, e sntD? g,
’ A

Here, the standard n-simplex A, is the set of all n-tuples (#,...,t,) satis-
fying 0 < t; < ... < t, < 1. Equivalently, A, can be given as the set of
n + 1-tuples (so,s1,...,54) such thatsp+ ... +s, = land 0 < s; < 1 for
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anyi=0,...,n. Indeed, we havesy = ty,s; = t;y; —t;ands, =1—t, and,
vice versa, ty = sg+ 51+ - - Sk_1-
We recall the notion of Gateaux derivatives.

DEFINITION 9.10. The Gateaux derivative of a map F : X — Y (between
locally convex topological vector spaces) at x € X is defined for h € X by

F(x)(h) = ng% F(x—i—ul;) —F(x).

In general, the map F’(x)(-) is not linear, in contrast with the Fréchet de-
rivative. However, if X and Y are Fréchet spaces, then the Gateaux deriva-
tives actually defines a linear map F/(x)(-) for any x € X. In this case,
higher order derivatives are denoted as F,F", et cetera, or more conve-
niently as F (®) for the k’th order derivative. The latter will be understood
as a bounded operator from X x - - - x X (k4 1 copies) to Y, which is linear
in the k last variables.

THEOREM 9.11 (Taylor’s formula with integral remainder). For a Giteaux
k + 1-differentiable map F : X — Y between Fréchet spaces X and Y,

1'F”( Y(x—a,x—a)+---

F(x) = F(a)+ F'(a)(x —a) + 5

1
+ EF(k)(a)(x—a,...,x—a) + Ri(x),

or x,a € X, with remainder given b
8 Y
1
Ri(x) = ;/ FE) (a4 t(x — a)) (1= )by ..., (1 — D), B)dt.
''Jo

In view of this Theorem, we have the following asymptotic Taylor ex-
pansion (around 0) in w € QL (A) for the spectral action S;[w]:

p(A
i 1
(9.3.1) Z ; w,...,w),

provided we make the following

ASSUMPTION 1. Foralla > 0, > 0,7 > 0and 0 < € < 1, there exist
constants Cypye such that

/ Te | D|Pe D) |du(t)| < Cupe.
t>0

PROPOSITION 9.12. Ifn = 0,1,...and w € QL (A), then Sz(;n) 0)(w,...,w)
exists, and

5(0)(w, ..., w) = n! f(—nk Y. (1, (1—e){D,w} +e10?,

k=0 €1,k
(1 —ex){D, w} +exw?) i dp(t),
where the sum is over multi-indices (e1,...,ex) € {0,1}% such that ¥¥_ (1 +
) =n.
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PROOF. We prove this by induction on 7, the case n = 0 being trivial.
By definition of the Gateaux derivative and using Lemma

S (0)(w, - .. —n'z Z Z DR, (1— €1){D, w} + e10?,

=0E&1,..e/ =1
..,{D,(U},. . 1(1 —8k){D,CU} +€kw2>t,k+1

+ i(—l)k<1, (1—e){D,w} +e1?,...,2(1 — &;)w?,

(L= e){D,w} + exw?®) i | dp(t).

The first sum corresponds to a multi-index €’ = (e1,...,€-1,0,¢;,..., &),
the second corresponds to €' = (ey,...,& +1,...,¢) if & = 0, counted
with a factor of 2. In both cases, we compute that };(1 +¢;) = n+1. In
other words, the induction step from n to n + 1 corresponds to inserting in
a sequence of 0’s and 1’s (of, say, length k) either a zero at any of the k + 1
places, or replacing a 0 by a 1 (with the latter counted twice). In order to
arrive at the right combinatorial coefficient (1 + 1)!, we have to show that
any €' satisfying ) ;(1 + €;) = n + 1 appears in precisely n + 1 ways from
€ that satisfy Y ;(1 +¢;) = n. If €’ has length k, it contains n + 1 — k times
1 as an entry and, consequently, 2k — n — 1 a 0. This gives (with the double
counting for the 1’s) for the number of possible &

2(n+1—k)+2k—n—-1=n+1,
as claimed. This completes the proof. O

EXAMPLE 9.13.
sY(0)w) = [ (= (L (D,whin ) dut)
570ww) =2 [ (= (e + 11D, (D.whra ) dutr),
7 (0)(w,w,@) =3t [ (167 {D,whna+ (1 {D,w) 0z

- <1,{D,w},{D,w},{D,w}»,g) au(t).

9.3.1. Taylor expansion of the spectral action. We fix a complete set
of eigenvectors {1;}; of D with eigenvalues A; € R, respectively, forming
an orthonormal basis for H. We also write wj; := (¢;, wip;) for the matrix
coefficients of w with respect to this orthonormal basis. Recall from Ap-
pendix the notion of divided difference f|[xo,x1,...,x,] of a function
f:R—=R
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THEOREM 9.14. If f satisfies Assumption[l|and w € Qb (A), then
Slgn)(O) (w, e ,w) = n! Z winilwiliz s win—linf[/\lp’/\ll’ e ,)\in].

i],...,ln

PROOF. Proposition gives us an expression for Sén) in terms of the
brackets (- - - ). For these we compute:

(—1)F(1, (1 —e){D,w} +e10?%,..., (1 — &) {D, w} + exw?) ;i du(t)
- k Z /Ak ( 1 B Sj)(/\i/*1 B /\i/)w - Sjwz)ijlij>

— 2 ... 2
< e (Sot/\i0+ -‘rSkt)Lik)dde‘u(t)

k
= Z (H ((1 —Sj)(/\i];1 _/\z’]-)QJ—f—E]'wz) ) ) g[/\zzo, . ,)\lzk]

i0=lk,i1,--dk \j=1 ij1i;
Glancing back at Proposition we are finished if we establish a one-to-

one relation between the order index sets [ = {0 =ip < i1 < --- < iy = n}
such thati; 1 —i; <2forall 1 < j < k and the multi-indices (e1,...,€) €

{0,1}* such that Y%_,(1 +¢;) = n. If I is such an index set, we define a

multi-index
e — 0 if{ij—l,i]'}CI,
/71 1 otherwise.
Indeed, i; = ij_1 + 1+ ¢j, so that
k k

Z(l—i—si) = i0+2(1+€i> =i =n.

i=1 i=1
It is now clear that, vice-versa, if € is as above, we define

I:{0:i0<i1<---<ik:n}
by ij = i;_1 + 1+ ¢;, and starting with iy = 0. O
COROLLARY 9.15. Ifn > 0 and w € QL (A), then

Sé”)(O)(w,...,w (n—1)! 2 Wiiy ++ Wiiy f [ Adyy oy A
Consequently,

w] =S5 [0 + Z Z Wiyiy * winilf/[/\il" . ")Lin]'

.....

An interesting consequence is the following.

COROLLARY 9.16. Ifn > 0 and w € QL (.A) and if f' has compact support,
then

SIE")(O)(w,. W) = (nz_m,l)!Tr]{f’(z)w(z -D) ' w(z—-D),

where the contour integral encloses the intersection of the spectrum of D with
suppf’.
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PROOF. This follows directly from Cauchy’s formula for divided dif-
ferences (see Note|16|on Page|146):

_ 1 8(z)
e

with the contour enclosing the points x;. O

9.3.2. Cyclic cocycles underlying the spectral action. We now come to
analyze in more details the structure of the terms in the Taylor expansion

(9.3.1). We will write it as
1
(9.3.2) Splw] = Sp[0] =) =(w,...,w)¢

N N—~—
n
where we have introduced brackets (-) ¢ as the following multilinear func-

tionals (-) ¢ : (QF,(A))*" — C:
(933) <CU1, . .,wn>f = Z (wl)i]iZ s (wn)ini]f/[/\i], . .,)\in]

11,0ee/dn
For our algebraic results we only need two simple properties of the bracket
(-) , stated in the following lemma. After proving this lemma, all analytical
subtleties are taken care of, and we can focus on the algebra that ensues
from these simple rules.

LEMMA 9.17. For wy,...,w, € Q' (A) and a € A we have
1)) <w1,...,wn>f = (wn,wl,...,wn_1>f,
(IT) (Wi,..., 0w} ..., wn)f — (W1, ..., Wj_18,...,Wy)f
= (wy,...,wj_q, [D,a],w]-,...,wn>f

where it is understood that for the edge case j = 1 we need to substitute n for j — 1
on the left-hand side.

PROOF. Property I follows immediately from definition (9.3.3) and it
also reduces II to the edge case j = 1. For that case we compute

(awy, ..., wn) s — (W1, ..., waa)¢
= 2 aigir (@)iiy  + (@n)igiy (F [igs Aigr - Aiy = f/ iy Ay, A )

10, -/in

= 2 Aipiy (/\io - Ail)(wl)iliz T (wﬂ)iniof, [/\ioi/\ili/\iz’ . "/\in]
.y

= ([D,a], wy,wa, ..., wn)¢

where in the second equality we used the recursive definition of the di-
vided difference (see Definition below). O

9.3.2.1. Hochschild and cyclic cocycles. When the above brackets (-) ¢ are
evaluated at one-forms a[D, b] associated to a spectral triple, the relations
found in Lemma can be translated nicely in terms of the coboundary
operators b and B appearing in the definition of periodic cyclic cohomology
(cf. Section[6.2). Let us write B = ABj where A is the operator of full anti-
symmetrization while By : C"(A) — C""1(A) is defined as

Bo4>(a0,a1,...,a”) = ¢(1,a0,...,a”)
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We define the following n-cochain:

(9.3.4) ¢u(ao, ..., an) := (ao[D,a1],[D,az},...,[D,an])¢

We easily see that By¢, is invariant under cyclic permutations, so that B¢, =
nBy¢, for odd n and B¢, = 0 for even n. Also, ¢, (ay,...,a,) = 0 when
aj = 1 for some j > 1. We put ¢ := 0.

LEMMA 9.18. We have b, = ¢y,1-1 for odd n and bg,, = 0O for even n.

PROOF. As b¢y = 0 by definition, and b? = 0, we need only check the
case in which n is odd.

We find, by splitting up the sum, and shifting the second appearing
sum by one, that
b‘Pn(”OI ceey ai’l+l)

= (aoa1[D, a1],[D, a2}, ..., [D,ans1]) f — (a0a1[D, a1, [D,az], ..., [D,ans1])

+ 2 Ll() D 611] [D,az], .o .,aj[D,[lj+1], ey [D,Eln+1]>f
n+1
— Z Hag|D, aq], [D,a2],...,[D,aj-1]aj,...,[D,an1])y

+ <an+1ﬂ0[D/ 111], [D/ aZ]/ ceey [DI an]>f

=Y (=1{ao[D, a1}, [D,a2],..., [D,ani1])y
2

—(ao[D,a1],[D,a3],...,[D,anlani1) f + (any1a0(D, a1, ..., [D,an]) s
= ([D,ans1],a0[D,a1],[D, a2], ..., [D,anl)s
= ¢Pni1(a0, ..., any1),
by []and [ of Lemma [9.17} O

LEMMA 9.19. Let n be even. We have bBy¢p,, = 2¢,, — BoPp11.

PROOF. Splitting the sum in two, and shifting the index of the second
sum, we find

bBogbn(ao, .., 4a )

= Z ([D, ao], j[D,ﬂjH]/---/[D/“n])f

n

— Z(—l)]<[D, ﬂo], ey [D,a]-_l]a]-, ey [D, an]>f + <[D, anﬂlo], ey [D,ﬂn,1]>f
j=1
-1
= (ao[D,a1],[D, a2}, ..., [D,an]) ¢ + Z ([D,ao],...,[D,an])s
=
- <[D/a0]/ ceey [D/an—Z]/ [D/anfl]an>f + <[D/ana0]/ ey [D/an71]>f
= ¢n(ao,...,an) —([D,a0),...,[D,an]) s +([D,an],[D,ac],...,[D,a,1])s
+ <[D/an]a0/ [D/al]/ cecy [Dlai’lfl]>f
= 2¢,(ag,...,a,) — Bopns1(ao, ..., an),
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by using both properties of the bracket (-) s in the last step. O
Motivated by this we define

(9.3.5) Pok—1 := Pak—1 — 3Bodor,

so that

Bipok 1 = 2(2k + 1) bipoy 1.
We can rephrase this property in terms of the (b, B)-complex as follows.

PROPOSITION 9.20. Let ¢y, and o1 be as defined above and set 1,52;(_1 =
(1) S,
(2k—1)!
(1) The sequence (¢ ) is a (b, B)-cocycle and each ¢y defines an even Hochschild
cocycle: by = 0.
(2) The sequence (¥y_1) is an odd (b, B)-cocycle.

We use an noncommutative integral notation that is defined by linear
extension of

/ apday - - - 0a, 1= / apday - - - 0ay, := ¢(ap,aq,...,a,),
¢ "

and similarly for 1. The expression agday - - - éa, is a so-called universal dif-
ferential n-form in (3" (A), see Note [7]on Page[119|for more details.

9.3.3. Brackets and noncommutative integrals over universal forms.
In this section we will express the derivatives of the fluctuated spectral
action (occurring in the Taylor series (9.3.1)) in terms of universal forms
that are integrated along ¢. We thus make the jump from an expression in
terms of w = 71p(A) € QL(A)sa to an expression in terms of A € Q(A).
As w decomposes as a finite sum w = Y 4;[D, b;], our task is to express
(a;,[D,b;],...,a;,[D,bj])¢ in terms of universal forms agday - - - da, inte-
grated along ¢. This will turn out to be possible by just using |lll and the
Leibniz rule [D,a1a;] = a1[D, a3] + [D, a1]ap. To find the exact expression
we need to work in the algebra M (0O}, (A)) = Mp(C) ® O} (A).

PROPOSITION 9.21. Let n € IN. Foray,...,a,,b1,...,b, € A, denoting
Aj:= ajob;, we have

(m1[D,b1), ..., 44D, by)) s = /4> (A1 0) :2 <A; (; fAj :2‘;) (é)

PROOF. If we combine, for every n € Ny, the n-multilinear function
(-) ¢ from (9.3.3), we obtain a linear function

()f: TQp(A) = C

on the tensor algebra TQL (A). For any u,v € TQL(A), a straightforward
calculation using the commutation rule |l from Lemma shows that
(9.3.6)

(n@aj[D,bja] @ (aj ab)v)p = (ue (a1 aj-1bji1) Mj@v)y,
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where M; € My(TQ'(A)) is defined by

(9.3.7)

M; = <[bej—1ﬂj]t%g:2]—1]®[Dzﬂj] D, bj-1abj] [z[éjul])fy ]1] [Dfﬂjbj]>.

Repeating (9.3.6), and subsequently using (9.3.4), it follows that

(@1[D,b1],..., 84D, bu)) s = (0D, b1] @ ... @ ay_1[D, by 1] @ (@ anby) <[D,Obn]>>f

o (1) (20

=t e (£19) (%)

where from (9.3.7) we obtain

Nj _ <(5(b]'1ﬂ]‘) + (Sb]‘,1511j (5(bj,1ajbj) + (Sbjl(S((Z]‘bj))

—(Saj —5(61]19])
. (517]‘,1 bj,1 aj + (561]' a]-b]- + 551]'17]' + El]'5b]'
o 0 —1 561]' 551]‘17]' + ﬂjéb]’ )
By also writing <5(b)”> = (58’1 E”1> <(1)> , we find that
<611[D,b1],... [ ]>f

/ albl < 0 —1) (11 < (Slx‘l] (Sll]b] -+ ﬂ](Sb] 0 -1 0
/ A —|-(5A —A]' 1
- ,_2 'sa; - —a)) o)

which concludes the proof. O

COROLLARY 9.22. Ifn € N, A € QY(A) and w := np(A) € QL(A),
then

93.8) <w,...,w>f:/¢(A 0) (A;A‘SA :g)nl (é)

Using (9.3.8), we obtain in particular

w)s = A,
s 91
<w,w>f:/ A%+ | ASA,
2 ¢3
(W, w, @) = / A+ [ AsaA+ [ AsAsa,
¢3 [on ¢5
(W, w,w,w)f = / At 4 [ (ASSA+ ASAA?) + / ASASAA+ | ASASASA.

4 ¢s 6 ¢7
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With (9.3.2) this implies that
1 1 1 1
Slw] —Sy[0] = [ A+~ [ a2 SASA+ AP / -
ole) o[ 1 +2 $2 " $3 <2 +3 )+ 4<3

where the dots indicate terms of form degree 5 and higher. Using ¢pr_1 =
Por—1+ %Boqbk, this becomes

1 4
A(SAA+ZA)+...,

Sl =0l = [ A+x [ (sA+A2)+ (1A§A + 1A?')
17[]1 2 ¢2 1/73 2 3
1 (6404 + 2(5AA 4 ASAA + A2A) + A+
4 Jg, 3

Notice that, if ¢4 would be tracial, we would be able to identify the terms
SAA%, ASAA and A%6 A, and thus obtain the Yang-Mills form F?2 = (6A +
A?%)2, under the fourth integral. In the general case, however, cyclic permu-
tations under | p produce correction terms, of which we will need to keep
track. Even though the corresponding analysis is rather involved, it is only
based on the properties[[land [l of the bracket (¢f. Lemma ; see Note
on Page We then have the following

THEOREM 9.23. The spectral action fluctuated by w = mip(A) € QL (A)s
with corresponding A € Q' (A) and F = §A + A% € O%(A) can be expanded as

a 1
Sylcw] — S,[0] ~ </ csor_1(A) + — Fk>.
[ ] [ ] }(;1 Pok—1 2 1( ) 2k Jg,,
where the Chern—Simons forms of degree 2k — 1 are defined by
1
9.3.9) cso1(A) == / A(E)dt,
0

where F; = t6A + t2A? is the curvature two-form of the (connection) one-form
A =tA.

PROOF. See Note[13|on Page O

EXAMPLE 9.24. For the first three Chern—Simons forms one easily derives the
following explicit expressions:

1 2
cs1(A) = A; cs3(A) =3 <A5A + 3A3> ;

1
cs5(A) = = (A((SA)2 + ZA(SAAZ + ZA%SA + §A5) :

(€8]

9.A. Divided differences

We recall the definition of and some basic results on divided differ-
ences.

DEFINITION 9.25. Let f : R — R and let xo, x1, . . . X, be distinct points in
R. The divided difference of order n is defined by the recursive relations

flxol = f(x0),

f[XOr X1,--- xn] = f[x1' e x”] ;1](_[3(;)(;)('1, ‘e xn—l] .
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On coinciding points we extend this definition as the usual derivative:

flxo, ..., xo.,x . x,) = lm flxo, ..., x+u..., x...x].
u—0

Finally, as a shorthand notation, for an index set I = {iy, ..., i, } we write
flad = flxiy, %]
Also note the following useful representation:

PROPOSITION 9.26. For any xq,...,xy € R,
flxo, x1,...,xn] = /A f(”) (Sox0 4 S1x1 + + - - + Spxp) d”s.

PROOF. See Note[I5/on Page O
EXERCISE 9.1. Prove Proposition and show that it implies

n
Zf[xo,...,xi,xi,...,xn] = f'[x0, %1, ..., Xn].

PROPOSITION 9.27. For any x1,...%, € R for f(x) = g(x?) we have,

f[xo,---,xn]zz< I (xi“‘xi—l—l))g[x%]/

I \{i-1i}cI

where the sum is over all ordered index sets I = {0 =iy < iy < ... < iy = n}
such that i; —i; 1 < 2 forall 1 < j < k (i.e. there are no gaps in I of length
greater than 1).

PROOF. This follows from the chain rule for divided differences (see

Note[I6]on Page[146): if f = g o ¢, then
k=1
flxo, - .- E Y. glp(xig), - (i) T T plxiys - xi ]

=10=ip<i1 <...<iy=n =0

—.

For ¢(x) = x*> we have ¢[x,y] = x +y, ¢[x,y,z] = 1 and all higher divided
differences are zero. Thus, if ij;1 —i; > 2 then ¢[x;,...,x;,,] = 0. In the
remaining cases one has

Xi. + X;. if ij,—1i;=1
Xi, oo, X | = i e 7
(P[ 1j 1]+1] { 1 if lj+1 _ Z]' — 2/
and in the above summation this selects precisely the index sets I. O

EXAMPLE 9.28. For the first few terms, we have

flxo, 1] = (x0 + x1)g[x5, x5,
flxo, x1,x2] = (x0 +x1) (21 + x2)8[x5, 23, 3] + g [x5, 3],
flxo,x1, 22, ] = (30 + x1) (31 + x2) (%2 + x3)g[x5, 7, 23, 23]
+ (%2 + x3)g[xg, 33, 3] + (x0 + x1)g[xg, 11, x3).
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Notes

Section 9.1. Spectral action functional

1. The spectral action principle was introduced by Chamseddine and Connes in [59} [60].

2. The spectral action has also been computed for spectral triples that are not the product of
M with a finite space F, and which are further off the ‘commutative shore’. These include
the noncommutative torus [114], the Moyal plane [120, A31], the quantum group SU,(2)
[141] and the Podles sphere S% [111]. We also refer to the book [110].

3. Note that we have put two restrictions on the fermions in the fermionic action S ;i of
Definition The first is that we restrict ourselves to even vectors in %', instead of con-
sidering all vectors in . The second restriction is that we do not consider the inner product
(J§', Do) for two independent vectors i and ¢/, but instead use the same vector ¢ on both
sides of the inner product. Each of these restrictions reduces the number of degrees of free-
dom in the fermionic action by a factor of 2, yielding a factor of 4 in total. It is precisely
this approach that solves the problem of fermion doubling pointed out in [177] (see also the
discussion in [86] Ch. 1, Sect. 16.3]). We shall discuss this in more detail in Chapterand
Chapter |13} where we calculate the fermionic action for electrodynamics and the Standard
Model, respectively.

Section 9.2. Asymptotic expansion of the spectral action

4. For a complete treatment of the Laplace—Stieltjes transform, see [248].
5. Lemma(J.6|appeared as [86, Lemma 1.144].

6. Corollaryis [86, Theorem 1.145]. An analysis of the term Tr |D,,|~* ‘Z:O therein, in-
cluding a perturbative expansion in powers of w has been obtained in [91].

Section 9.3. Perturbative expansion in the gauge field

7. Section[9.3]is based on [227] and [201].
8. The notation (Xj, ..., X, )t should not be confused with the zeta functions (X, ..., Xu)z

introduced in Chapter[6} However, they are related through the formula

—1)? :
(X0, Xn)in = % Tr/ e M Xo(A = D?)71X; - - A"(A — D?)"ldA.

Multiplying this expression by #*~! and integrating over t eventually yields (X, ..., X, )z.
For details, we refer to [139, Appendix A].
9. For more details on Gateaux derivatives, we refer to [132]]. For instance, that the Gateaux

derivative of a linear map F between Fréchet spaces is a linear map F’(x)(-) for any x € X
is shown in [132, Theorem 3.2.5].

10. The expansion in Equation is asymptotic in the sense that the partial sums Y 1S Z(,n) 0)(w,...,w)
can be estimated to differ from S, [w] by O(||w|N*1). This is made precise in [227] and fur-
ther improved upon in [221} 201].

11. Theorem was proved in [227]. A similar result was obtained in finite dimensions
in [133] and in a different setting in [221]. Corollary was obtained at first order for
bounded operators [126].

12. There is a close connection between the spectral action, the Krein spectral shift function
[176,165], as well as the spectral flow of Atiyah and Lusztig [11}12,[13]]. One way to see this
is from Theorem where we can control the asymptotic expansion of the spectral action
using the remainder terms Ry. In [221] these terms are analyzed and related to a spectral
shift formula [176}[165] (see also the book [251]] and the review [35], and references therein).
In fact, under the assumption that f has compact support, the first rest term Sj[w] — S éo) (0)
becomes

Tf(D+w) =T f(D) = [ Fd(TrEpso(®) = [ F)d(TrEp(x)),
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where Epy,, and Ep are the spectral projections of D + w and D, respectively. After a
partial integration, we then obtain [221, Theorem 3.9]

) T f(D+@) =T f(D) = [ f()2)ax
where
¢(x) = Tr (Eptw(¥) — Ep(x))
is the so-called spectral shift function. Moreover, it turns out that the higher-order rest terms
are related to higher-order spectral shift functions [163}209].

Let us also briefly describe the intriguing connection between the spectral shift function
and the local index formula of Chapter[6} In fact, [54] (using a result from [207, Appendix
B]) relates the index of PuP which appears in the odd local index formula (Theorem [6.21)
to the spectral flow st({D;}) of the family Dy = (1 —t)D + tuDu* = D + tu[D,u*] for
0 <t < 1. Roughly speaking, the spectral flow of such a family of operators is given by the
net number of eigenvalues of D; that pass through 0 in the positive direction when ¢ runs
from 0 to 1. One then has

index PuP = sf({D}4c[o1])-

The connection between spectral flow and the spectral shift function was first hinted at
in [196] and has been worked out in [18, [17]. Essentially, these latter papers build on the
observation that the spectral flow from Dy — x to Dy — x for any real number x is equal
to the spectral shift function &(x) defined above in terms of the spectral projections of Dy
and Dj. Note that for a path connecting D and the unitarily equivalent operator uDu* the
spectral shift function is a constant. In fact, since D and uDu* have identical spectrum, the
left-hand side of () vanishes. Integration by parts on the right-hand side then ensures that
¢ is constant (and in fact equal to the above index).

Eventually, a careful analysis of the spectral flow [56] (and [57] for the even case) allows
one to prove the local index formula in the much more general setting of semi-finite spectral
triples [54, 30, 52} [55].

Another encounter of spectral shift and spectral flow is in the computation of the index
of the operator d/dt + A(t) with A(t) a suitable family of perturbations (¢ € R). In fact,
they were the operators studied by Atiyah, Patodi and Singer in [11} 12} [13]. The index of
d/dt 4+ A(t) can be expressed in terms of the spectral flow of A(t) under the assumptions
that A(£o0) is boundedly invertible, and that A(t) has discrete spectrum for all t € R. We
refer to [121] for a careful historical account, and the extension of this result to relatively
trace class perturbations A(t).

13. For full details on the proof of Theorem including its convergence aspects, we refer
to the original work [201].
14. The Chern-Simons terms defined in Theorem have been studied in [210] and
also appear in the physics literature, see [75, p.391ff] and [74] w bis 10]. Usually, they are
evaluated using a trace on (2°, which is defined as a continuous degree zero map from Q°
to a complex w such that 6T = 76 and T vanishes on graded commutators (adX)(Y) =
XY — (—1)°ddMyx,

Given a connection one-form A with curvature F = §A + A2 we may define the Chern
character form as

chy, = t(F").
By the Bianchi identity (6 +adA)F = 6F + [A, F] = 0 we have:
St(F") = t(6F") = t(—[A,F"]) =0,

and one may wonder whether we can write chy,, as an exact form. This is where the Chern-
Simons form enters, since one may derive the following transgression formula:

(r(san1(4))) = L T(F")

It follows directly by integrating the homotopy formula for a family of connection one-
forms Ay = tA:

) Cau(e(E)) = (x4 )
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Let us for completeness prove Equation () for a family of connection one-forms A; with
curvature F; = 0A; + A%. Since

at(Ft) = 5At + AtAt + AtAt = ((5 + adAt)(A't),
we find indeed that

() = T(5 +ad A (A )
=7((0 +adA;) (AFY)) (Bianchi identity)
= T(6(AFY)) (trace on commutator)

= 5T(At1:tn_1).

Section 9.A. Divided differences

15. Proposition is due to Hermite [136]].
16. The chain rule for divided differences is proved in [117]. For Cauchy’s formula for
divided differences, we refer to [101, Ch. I.1].
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CHAPTER 10

Almost-commutative manifolds and gauge theories

In this chapter we analyze the gauge theories corresponding (in the
sense of Chapter|7) to a special class of noncommutative manifolds, to wit
almost-commutative, or AC manifolds. We will see that this class leads to
the usual gauge theories in physics. After identifying the gauge group, the
gauge fields and the scalar fields, we compute the spectral action that yields
the Lagrangian of physical interest.

10.1. Gauge symmetries of AC manifolds

We consider almost-commutative manifolds M x F that are the prod-
ucts of a Riemannian spin manifold M with a finite noncommutative space
F.

As such, these are reminiscent of the original Kaluza-Klein theories
where one considers the product M x S'. The crucial difference is that the
space F is finite so that no extra dimensions appear, while it can have non-
trivial (noncommutative) structure.

DEFINITION 10.1. Let M be a Riemannian spin manifold with canonical
triple (C®(M), L*(S), Das; Jm, Ym), and let (Ar, He, DF; Jr, vF) be a finite real
spectral triple. The almost-commutative manifold M x F is given by the real
spectral triple:

MxF = (C®(M, Ap),L*(S® (M x Hp)), Dy @1+ 9m ® DE; JM @ Jr, Ym @ YE)-

Recall the definition of the gauge group of a real spectral triple (cf. Def-
inition [7.4). In the case of AC manifolds, it is given by

B(M x F) = {u]url ‘U € C“(M,M(Ap))},
with | = Jy ® Jr. Here we have identified U (C®(M, Ar)) = C®(M,U(AF)).
For the Lie algebra of the gauge group we have
g(M x F) := {X+]X]—1 X € C”(M,u(AP))} .

In the same way, we also obtain the groups (M) and &(F). For the
canonical triple on the spin manifold M, we have seen in Example 8.2 that
C®(M)j,, = C®(M), which means that the group & (M) is just the trivial
group. For the finite space F, we obtain the local gauge group &(F). Let us
have a closer look at the structure of this local gauge group. We define two
subsets of Ar by

(10.1.1a) H(F) == U((AF)};),
(10.1.1b) b(F) := u((AF)j;)-

147
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Note that the group $(F) is the counterpart for the finite space F of the
group U (Aj) in Proposition[7.5) and b(F) is its Lie algebra.

PROPOSITION 10.2. Let M be simply connected. Then the gauge group
&(M x F) of an almost-commutative manifold is given by C*°(M, &(F)), where
&(F) = U(AF)/9H(F) is the gauge group of the finite space. Consequently, the
gauge Lie algebra g(M x F) is given by C*° (M, g(F)), where g(F) = u(Ar)/H(F).

PROOE. This follows from Propositions[7.5and [7.8] combined with the
fact that for the algebra A = C®(M, Ar) we have U(A) ~ C®(M,U(AF)),
while U(Aj) = C®(M,$H(F)). The quotient of the latter two groups is
isomorphic to C®(M, &(F)) if the following homomorphism

C*®(M,U(AF)) = C®(M,U(AF)/$H(F))

is surjective. This happens when M is simply connected, as in that case
there exists a global lift from U(Ar)/$H(F) to U(Ar) (see Note 4 on Page
163). (]

This is in concordance with the picture derived in Chapter |8, where
the gauge group acts fiberwise on a C*-bundle. Namely, in the case of an
almost-commutative manifold we have a globally trivial C*-bundle M x
Ar for which A are the (smooth) sections. Since (M x F) ~ C*(M, &(F)),
the gauge group is given by sections of the group bundle M x &(F), which
then naturally acts fiberwise on the C*-bundle M x Ar.

Combined with the outer automorphisms on C®(M), we arrive at the
full symmetry group of an almost-commutative manifold M x F as a semi-
direct product, where the ‘internal symmetries’” are given by the gauge
group &(M x F). Furthermore, we also still have invariance under the
group of diffeomorphisms Diff(M), as in Example[7.2] There exists a group
homomorphism 6: Diff(M) — Aut (6(M x F)) given by

0(p)U :=Uog¢?,

for ¢ € Diff(M) and U € &(M x F). Hence, we can describe the full sym-
metry group by the semi-direct product

& (M x F) x Diff(M).

10.1.1. Unimodularity. Suppose that Ar is a complex unital *-algebra,
conform Definition This algebra has a unit 1, and by complex linearity
we see that C1 C (Afr)j,. Restricting to unitary elements, we then find that
U(1) is a subgroup of $(F). Because $(F) is commutative, U(1) is then
automatically a normal subgroup of $(F).

If, on the other hand, Ar is a real algebra, we can only say that R1 C
(AfF)j;. Restricting to unitary (i.e. in this case orthogonal) elements, we
then only obtain the insight that {1, —1} is a normal subgroup of $(F).

PROPOSITION 10.3. If Ar is a complex algebra, the gauge group is isomorphic
to

&(F) ~ SU(AF)/SH(F),
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where

SU(AF) == {g € U(AF) | dets,g =1},
SH(F) := SU(AF) N H(F).
In this case the gauge algebra is
g(F) = su(Ar)/sh(F),
with

Su(Ap) = {X S u(Ap) | Ter X = 0},
sh(F) := su(Af) Nhg.

PROOF. Elements of the quotient &(F) = U (Ar)/$(F) are given by the
equivalence classes [u] for u € U(AF), subject to the equivalence relation
[u] = [uh] for all h € $H(F). Similarly, the quotient SU(Ar)/S$H(F) consists
of classes [v] for v € SU(AF), with the equivalence relation [v] = [vg] for
all g € SH(F). We first show that this quotient is well defined, i.e. that
S$(F) is a normal subgroup of SU(Ar). For this we need to check that
vgu—! € SH(F) for all v € SU(Ar) and g € SH(F). We already know that
vgu! € H(F), because $H(F) is a normal subgroup of U (Ar). We then also
see that dety, (vgv ') = dety, ¢ = 1, s0 vgo~! € SH(F), and the quotient
SU(AF)/SH(F) is indeed well defined.

As to for the claimed isomorphism, consider the map ¢ : U(Af) —
SU(AFr)/SH(F) given by

(u) = [Au"u],

where A, € U(1) is an element in U(1) such that AN = detu, where N is
the dimension of the finite-dimensional Hilbert space H.

Since U(1) is a subgroup of U (Ar) (because we assume Ar to be a com-
plex algebra), we see that indeed A, ~'u € SU(AF). Let us also check that ¢
does not depend on the choice of the N'th root A,, of det u we take. Suppose
A! is such that A’ N = detu. We then must have A, '/, € uy, where py is
the multiplicative group of the N’th roots of unity. Since U(1) is a subgroup
of §(F), we see that jy is a subgroup of $$(F), so [A, 'u] = [A, 'u], and
hence the image of ¢ is indeed independent of the choice of A,,.

Next, since SU(Ar) C U(AF), the homomorphism ¢ is clearly surjec-
tive. We determine its kernel:

ker ¢ = {u EU(AF) : Ajlu e f)(F)} ~ {u e U(AF) 1 u € H(F)} = H(F),
since A, € H(F). O

The significance of Proposition is that in the case of a complex al-
gebra with a complex representation, equivalence classes of the quotient
&(F) = U(AFr)/$H(F) can always be represented (though not uniquely) by

elements of SU(Ar). In that sense, all elements ¢ € &(F) naturally satisfy
the so-called unimodularity condition, i.e. they satisfy

detp.g = 1.
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In the case of an algebra with a real representation, this is not true and it is
natural to impose the unimodularity condition for such representations by
hand. We will see later in Chapter 13/ how this works in the derivation of
the Standard Model from noncommutative geometry.

EXAMPLE 10.4. Define the so-called Yang-Mills finite spectral triple (cf.

Example|(3.14
Fou = (MN(C), MN(C),D = 0; Jr = ()", 7r = 1)

One easily checks that the commutative subalgebra (Ar);, is given by Clly. The
group $(F) of unitary elements of this subalgebra is then equal to the group
U(1)Iy. Note that in this case $)(F) is equal to the subgroup U(Z(Ar)) of U(N)
that commutes with the algebra My (C). We thus obtain that the gauge group is
given by the quotient &(F,y) = U(N)/U(1) =: PU(N), which by Example
is equal to the group of inner automorphisms of Mn(C). As in Proposition
this group can also be written as SU(N) / pn, where the multiplicative group pun
of N'th roots of unity is the center of SU(N). The Lie algebra g(Fyy) consists of
the traceless anti-hermitian matrices, i.e. it is su(N).

The almost-commutative manifold M x Fyy, will be referred to as the Yang—
Mills manifold. By Proposition in the simply connected case the global
gauge group &(M x Fyy,) is given by maps C®°(M, PU(N)), or, equivalently, by
the space of smooth sections of the trivial group bundle M x PU(N).

EXERCISE 10.1. In the context of the above example, check that indeed:

(1) the commutative subalgebra My (C)j, ~ Cly,
(2) SH(F) = un, the multiplicative group of N'th roots of unity.

Explain the difference with the case of My (R).

10.2. Gauge fields and scalar fields

Let us apply the discussion in Section[7.2lon Morita self-equivalences to
the almost-commutative manifold M x F and see what the corresponding
gauge fields look like. For convenience, we restrict ourselves to simply con-
nected manifolds M of dimension dim M = 4 and F of even KO-dimension
so that €z = 1 in Table this is sufficient for the physical applications
later on.

Thus, we determine O} (A) for almost-commutative manifolds, much
as in Exercise The Dirac operator D = Dj; ® 1 + vy ® Dr consists of
two terms, and hence we can also split the inner fluctuation w = a[D, b]
into two terms. The first term is given by

(10.2.1) alDy®1,b] = =iyt ®adyb =y @ Ay,
where A, := —iad,b € i A must be hermitianﬂ The second term yields
(1022) ﬂ[')’M@DF,b] :'}’M®Q[DF,b] ::IYM(X)(P/

for hermitian ¢ := a[Dp, b]. Thus, the inner fluctuations of an even almost-
commutative manifold M x F take the form

INote that iA = A for complex algebras only.
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for certain hermitian operators A, € iA and ¢ € I'(End(V)), where V is
the trivial vector bundle V = M x Hp.

The ‘fluctuated” Dirac operator is given by D, = D 4+ w + €'Jw] ! (cf.
Section[7.2.2)above), for which we calculate

(1024) Y QA+ @A P =" ® (Ay— JrALJEY) =1 9y" ® By,

which defines B, € T'(End(V)), and where we have used that [y;7" ], =
—~* in dimension 4. Note that if V£ denotes the twisted connection on the
tensor product bundle E:=S® V, ie.

Vi=V,®1+il®B,
we see that we can rewrite
Dy ®1+9"® B, = —iy'V.

For the remainder of the fluctuated Dirac operator, we define ® € I'( End(E))
by

(10.2.5) ®:=Dr+ ¢+ JrpJr .

The fluctuated Dirac operator of a real even AC-manifold then takes the
form

(1026) Dy=Dy®1+9" @B, +ymM@® = —iy"VEi + 7y @ @.

In Section[10.1}we obtained the local gauge group & (F) with Lie algebra
g(F). For consistency we should now check that the gauge field A, arising
from the inner fluctuation indeed corresponds to this same gauge group.

The requirement that A, is hermitian is equivalent to (iA,)* = —iA,.
Since A is of the form —iad,b for a,b € A (see (10.2.1)), we see that iA,, is
an element of the algebra A (also if A is only a real algebra). Thus we have
Ay(x) € iu(Ar).

The only way in which A, appears in D,, is through the action of A;, —
JeAuJg " Ifwetake A}, = Ay, —ay, forsomea, € ih(F) = iu((Af)};) (which
commutes with Jr), we see that A}, — ]FA;J]F’l = A, - ]FAyffl. Therefore
we may without any loss of generality assume that A, (x) is an element of
the quotient ig(F) = i(u(Ag)/h(F))). Since g(F) is the Lie algebra of the
gauge group &(F), we have therefore confirmed that

(10.2.7) A, € C®(M,ig(F))

is indeed a gauge field for the local gauge group &(F). For the field B,
found in (10.2.6), we can also write

B, =ad(Ay) == Ay — JrALJ:

So, we conclude that By, is given by the adjoint action of a gauge field A,
for the gauge group &(F) with Lie algebra g(F).

If the finite noncommutative space F has a grading <yr, the field ¢ sat-
isfies ¢pyr = —yr¢ and the field @ satisties Pyr = —yr® and ®Jr = Jrd.
These relations follow directly from the definitions of ¢ and ® and the com-
mutation relations for D according to Definition
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Using the cyclic property of the trace, it is easy to see that the traces of
the fields B, ¢ and ® over the finite-dimensional Hilbert space Hf vanish
identically: for B, we find

Trn, (Bu) = Trn, (Ap — JrAWJE') = Ten, (A — Al 'Jr) =0,

whereas for the field ¢ we find

Try, (¢) = Trpy (a[Dr, b]) = Ty, ([b,a]Dr).
Since the grading commutes with the elements in the algebra and anti-
commutes with the Dirac operator, it follows that this latter trace also van-

ishes. It then automatically follows that ® = Dr + ¢ + Jr¢J !is traceless
too.

EXAMPLE 10.5. For the Yang—Mills manifold M x Fyy of Example the
inner fluctuations take the form w = " ® A, for some traceless hermitian field

Ay = Aj € C®(M,isu(N)). Since JrALJE 'm = mA, for m € My(C), we see
that for the field B, = A, — JrAyu ]! we obtain the action

m— Bym = Aym —mA, = [Ay,m| = (ad A,)m.
Thus Ay is a PU(N) gauge field which acts on the fermions in L?(S) ® My(C)
in the adjoint representation.

10.2.1. Gauge transformations. Recall from Section[7.2)that an element
U € &(A,H;]) acts on the inner fluctuations as a gauge transformation. In
fact, the rule D, — UD,U* with U = uJuJ~! can be implemented by

(10.2.8) u:w— W' =uwu* +ulD,u*],

so that UD,U* = Du. In physics, the resulting transformation on the
inner fluctuation w — w" will be interpreted as a gauge transformation of
the gauge field.

Note that for an element U = uJuJ~! in the gauge group &(M x F),
there is an ambiguity in the corresponding transformation of w. Namely,
foru € U(A) and h € U(A;), we can also write U = uhJuh] . Replacing
u with uh using we then obtain

W' = uwu* 4+ u[D,u*] + h[D, h*].

However, when considering the total inner fluctuation W' 4+ w71 the
extra term h[D, h*| cancels out:

h[D,h*] + Jh[D,h*]] ' = h[D,h*] + [D, h]h* = [D, hh*] = 0.

Hence the transformation of D, = D + w + Jw] ! is well defined.

For an AC-manifold M x F, by (10.2.3) wehavew = "* @ Ay + ym ®@ ¢
and D = —i'yP‘Vfl ® 14 ym ® Dp, and, using [Vfl,u*] = d,u*, we thus
obtain

Ay — uAyu* —iud,u’,
(10.2.9) ¢ — upu® + u[Dp,u’].
The first equation is precisely the gauge transformation for a gauge field
A, € C®(M,ig(F)), as desired. However, the transformation property of
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the field ¢ is a bit surprising. In the Standard Model, the Higgs field is in
the defining representation of the gauge group. The transformation for ¢
derived above, on the other hand, is in the adjoint representation. From
the framework of noncommutative geometry this is no surprise, since both
bosonic fields A, and ¢ are obtained from the inner fluctuations of the
Dirac operator, and are thereby expected to transform in a similar manner.
Fortunately, for particular choices of the finite space F, the adjoint trans-
formation property of ¢ reduces to that of the defining representation. The
key example of this will be discussed in Chapter 13| where we present the
derivation of the Standard Model from an almost-commutative manifold.

10.3. The heat expansion of the spectral action

In the remainder of this chapter we shall derive an explicit formula for
the bosonic Lagrangian of an almost-commutative manifold M x F from
the spectral action of Definition We start by calculating a generalized
Lichnerowicz formula for the square of the fluctuated Dirac operator. Sub-
sequently, we show how we can use this formula to obtain an asymptotic
expansion of the spectral action in the form of (9.2.1). We explicitly calcu-
late the coefficients in this heat kernel expansion, allowing for a derivation
of the general form of the Lagrangian for an almost-commutative manifold.

10.3.1. A generalized Lichnerowicz formula. Suppose we have a vec-
tor bundle E — M. We say that a second-order differential operator H is a
generalized Laplacian if it is of the form H = AF — F, where AF is a Laplacian
in the sense of Definition[4.16|and F € T'(End(E)).

Our first task is to show that the fluctuated Dirac operator D, on an
almost-commutative manifold squares to a generalized Laplacian, D?, =
AE — F, and then determine F. Before we prove this, let us first have a closer
look at some explicit formulas for the fluctuated Dirac operator. Recall from

(10.2.6) that we can write
Dy =—if"Vi+ym®@®
for the connection Vf; = Vg ®1+1® (9, +iBy) on E = S® V, and the

scalar field ® € T(End(E)). Let us evaluate the relations between the con-
nection, its curvature and their adjoint actions. We define the operator D,

as the adjoint action of the connection Vf;, ie. D, = ad (Vﬁ) In other
words, we have

(10.3.1) D,® = [V, ®] = 0, +i[B,, D).
We define the curvature F,, of the gauge field B, as usual by

(10.3.2) FHV = aHBV - a]/B’,[ + i[BH, BV]‘
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Recall the curvature of the connection V¥ from (#.2.3). Since in local
coordinates we have [9,,9,] = 0, we find

Q, =V, Vi -ViV,
= (V3 ®1+il®B,)(Vi®1+il®B,)
—(V; ®1+i1®B,)(V; ®1+il®B,)
=0, ®1+i1®0,B, —i1®0,B, —1®[B,, B,].
Inserting (10.3.2), we obtain the formula
(10.3.3) Qp, = [V, Vi) =05, @ 1+i1© Fy,.

Next, let us have a look at the commutator [DV, D,,] . Using the defini-
tion of D, and the Jacobi identity, we obtain

[Dy, D)]® = ad (V) ad (V})® —ad (V7)) ad (V)P
= [V [V, @] - [V, [V, @]
= [[VL, Vi, @]] = [Of,, @] = ad (Q,) .
Since in commutes with ®, we obtain the relation
[D,,Dy] = iad (Fu).

Note that this relation simply reflects the fact that ad : g — End(g) is a Lie
algebra homomorphism.
In local coordinates, the Laplacian is given by

AE = —giv (vﬁvf - rpwvg) .
We can then calculate the explicit formula
=AS®1 —gf”(z'(vi ®1)(1®B,) +i(1® B,)(VS®1)
~1@ BB, — il @ By )
= A ®@1-2i(1®B")(V,®1)—ig"(120,B,)
(10.3.4) +1® B,B" +ig"'T*",, @ B,.

We are now ready to prove that the fluctuated Dirac operator D, of an
almost-commutative manifold satisfies the following generalized Lichnerow-
icz formula or Weitzenbock formula. First, for the canonical Dirac operator
Dy on a compact Riemannian spin manifold M, recall the Lichnerowicz
formula of Theorem

(10.3.5) D3, = AS + 315,

where A® is the Laplacian of the spin connection V°, and s is the scalar
curvature of M.
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PROPOSITION 10.6. The square of the fluctuated Dirac operator on an almost-
commutative manifold is a generalized Laplacian of the form

D,>=AF—TF,

where the endomorphism F is given by

1 1, .
(10.3.6) F=-1s01-1g % + 57" ® Fu — iymy" ® D@,

in which Dy, and F,, are defined in (10.3.1) and (10.3.2), respectively.

PROOF. Rewriting the formula for D,,, we have
D.* = (DM®1+7”®BH+7M®<I>)2
=D ®1+9"Y" ®B,B, +1®®* + (Dyy" ®1)(1® B,)
+(1®B,)(v"Du®1) + (DM@ 1) (M ® @) + (Ym ® P)(Dm ® 1)
+ (7 ®@Bu)(rm @ @) + (ym @ @) (7" ® By).

For the first term we use the Lichnerowicz formula of (10.3.5). We rewrite
the second term into

1
77" ®ByBy = 59" ® (BuBy + ByB, + [By, B,])

1
=1® BMBV + 5’)”4')/1/ ® [B‘u/ Bv]/

where we have used the Clifford relation (4.2.2) to obtain the second equal-
ity. For the fourth and fifth terms we use the local formula Dy; = —iy'V3
to obtain

(DmY" ®1)(1®By) + (1®By)(v"Du ® 1)
= —(i7"Vyy" ®1)(1® B,) — (1@ B,) (v"in"' V5 ®@ 1).

Using the identity [V3,c(«)] = ¢(V,a) for the spin connection, we find
(V5@ 1, (v* ®1)(1® By)] = ¢(Vy(dx* @ B,)). We thus obtain

(Dmy" ©1)(1® By) + (1@ By) (v"Dm © 1)
= —i(7' ®1)c(V,(dx* @ By))
—i(7"y" ®1)(1@ By)(V; ®1) —i(1@ By) (v'"'V; © 1)
= —i(7" ®@1)c(dx" ® (3,B,) — I*,udx" ® B,) — 2i(1® B')(Vy ® 1)
= —i(y' " ®1) (1 © 3By — T\ @ Bp) —2i(1®B')(VS®1)
= —i(y"y* ®1)(1® ,By,) +ig"T",, @ B, —2i(1® B") (V) ®1).
The sixth and seventh terms are rewritten into
DM (mMR@®)+ (TMOP) (DM ®1) = —(M®1)[Dy®1,1Q P
= (Mm@ 1) (i7" ® 9,P) = iymy" ® 0, P.
The eighth and ninth terms are rewritten as
(7" @ Bu)(ym @ @) + (vm @ @) (7" @ By) = —ym7" @ [By, @],
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Summing all these terms then yields the formula

1 1
D,? = (A° + 1s) ®1+ (1® B,B") + E’y”‘y“ ® By, By|
+1®d* —i(y'y" ®1)(1®9,B,) +ig"T’,, ® B,
—2i(1®B")(V; ® 1) + iymy" ® 0,® — ymr" @ [By, D).
Inserting the formula for AE from (T10.3.4), we obtain
1 1
D' = A"+ 25@14 29"7" ® [By, B
+10®* —i(y'7" ®1)(1®0,B,) +ig" (1®0,B,)
+iymy" ® 9@ — My ® [By, PJ.
Using (10.3.2), we rewrite
—i(YY"e1)(1e 8VB,4) +ig"(1® 8,4BV)

. 1.
= —i(y"y" ®1)(1®9,By,) + S+ 1Y) @ (9,By)

1. 1,

1. 1
— —Ezfy’*'y" ® Fyy — E'y”'yv ® [By, By).
Using (10.3.1)), we finally obtain
1 1. .
D.,? = AF + S01+1® 2 — Ez'y”'yv ® Fu +iymy" © D@,

from which we can read off formula (10.3.6)) for F. O

10.3.2. The heat expansion. Below, we present two important theo-
rems (without proof) which we will need to calculate the spectral action of
almost-commutative manifolds. The first of these theorems states that there
exists a heat expansion for a generalized Laplacian. The second theorem
gives explicit formulas for the first three non-zero coefficients of this ex-
pansion. Next, we will show how these theorems can be applied to obtain

a perturbative expansion of the spectral action for an almost-commutative
manifold, just as in Proposition[9.7]

THEOREM 10.7. For a generalized Laplacian H = A — F on E we have the
following asymptotic expansion as t — 0, known as the heat expansion:

(10.3.7) Tr (e—fH> ~ Y 7 a(H),
k>0

where n is the dimension of the manifold, the trace is taken over the Hilbert space
L%(E) and the coefficients of the expansion are given by

(10.3.8) ax(H) := /M ay(x, H)/gd*x,

where /gd*x denotes the Riemannian volume form. The coefficients ax(x, H) are
called the Seeley-DeWitt coefficients.

PROOF. See Note[6|on Page 164, O
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THEOREM 10.8. For a generalized Laplacian H = A* — F (as in Theorem
[10.7), the Seeley-DeWitt coefficients are given by

ao(x, H) = (471)72 Tr(id),
ay(x,H) = (41) "2 Tr (% + P) ,

n 1
as(x, H) = (47r) "2 2T (1245 + 55> — 2Ry R" + 2Rype R
+ 60sF + 180F% — 60AF + 3002, (QF)"),

where this time the traces are taken over the fibre Ey. Here s is the scalar curvature
of the Levi-Civita connection V, A is the scalar Laplacian, and QF is the curvature
of the connection VE corresponding to AE. All ay(x, H) with odd k vanish.

PROOF. See Note[6|on Page 164} O

We saw in Proposition that the square of the fluctuated Dirac op-
erator of an almost-commutative manifold is a generalized Laplacian. Ap-
plying Theorem to D,,? in dimension n = 4 then yields the heat expan-
sion:

(10.3.9) Tr <e—wa2> ~ Y 7 a (D),

k>0
where the Seeley-DeWitt coefficients are given by Theorem In the
following proposition, we use this heat expansion for D,,? to obtain an ex-
pansion of the spectral action.

PROPOSITION 10.9. For an almost-commutative manifold M x F with M of
dimension 4, the spectral action given by (9.1.1) can be expanded asymptotically
(as A — o0) as

D, _ 1
Tr <f(A)> ~ ﬂ4(Dwz)f(0)+20§;<4f4—kA4 *ar(De?) e
k even

where fj = [~ f(v)v/~'dv are the moments of the function f, j > 0.

+0O(A™TY),

PROOF. Our proof is based on Proposition Let g be the function
¢(u?) = f(u), so that its Laplace-Stieltjes transform

§(0) = [ e du(s).

We can then formally write

2 ® —stD,?
g(tDw") = /0 e e du(s).
We now take the trace and use the heat expansion of D,,? to obtain

Tr (g(tDWZ)) = /Ooo Tr (e’StD“’z)dy(s) ~ /oo Z(st)k%}ak(Dwz)dy(s)

U )

(103.10) :ZtkEJak(Dwz)/ s"2 du(s).
k>0 0
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The parameter t is considered to be a formal expansion parameter. From
here on, we will drop the terms with k > 4. The term with k = 4 equals

2(D?) [ Lduts) = as(D2)g(0).

We can rewrite the terms with k < 4 using the definition of the I'-function
as the analytic continuation of

(103.11) I(z) = / e rdr,
0

for z € C with ®(z) > 0, and by inserting r = sv, we see that (for k < 4) we

have
4—k e° ik g ack [P 4k g g
F(—):/ (sv) 2 e d(sv):SZ/ v2 e dv.
2 0 0

From this, we obtain an expression for s z , which we insert into equation

(10.3.10), and then we perform the integration over s to obtain
Tr (8(tDw?)) ~ as(Du?)f(0)

+ Y PR (D) [0 g0+ 0(a).
0<k<4 L(*77) Jo

Now we choose the function g such that g(u?) = f(u). We rewrite the
integration over v by substituting v = u? and obtain

/OOO vg;k_lg(v)dv = /Ooo 2o (u?)d(u?) = 2/0Oo w1 (u)du,

-2

which by definition equals 2f4_. Upon writing t = A%, we have modulo

A—l

Tr <f([/)\“’)> = Tr (g(A™*Do?))

1

~ag(D?)f(0) +2 Y fa A Far(Do?) — 5= + O(ATY).
0<k<4 F(T)
Using a;(D,,?) = 0 for odd k, the claim follows. O

10.4. The spectral action on AC manifolds

In the previous section we obtained a perturbative expansion of the
spectral action for an almost-commutative manifold. We now explicitly cal-
culate the coefficients in this expansion, first for the canonical triple (yield-
ing the (Euclidean) Einstein—Hilbert action of General Relativity) for a four-
dimensional Riemannian spin manifold M and then for a general almost-
commutative manifold M x F.

By Proposition[I0.9|we have an asymptotic expansion as A — co:
(10.4.1)

T (£(52)) ~ 28t (D.) + 20%0(D,2) + FOm(DF) + O(A),
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PROPOSITION 10.10. For the canonical triple (C®(M), L?(S), Da), the spec-
tral action is given by:

Dy _
(10.4.2) Tr <f(A)> ~ /M La(gm) V3dx +0(A™Y),
where the Lagrangian is defined by
._ f4A4 _ fZAZ f(O) 1 1 pvpo 4 £ * Pk
Emlgw) =% = 242 T 1o (30A I TV )

Here the Weyl tensor C,p is given by the traceless part of the Riemann curvature
tensor, so that

1
(104.3) Chupr " = Ry R = 2R,aRY + 5%,
and R* is related to the Pontryagin class:
(10.4.4) R*R* = 5% — 4R R" + Ryypo RMP7.

PROOFE. We have n = 4, and Tr(id) = dim Sx = 4 where S, is the fiber
of S at some x € M. Inserting this into Theorem [10.8 gives

2
(D 47.[2 / \/g x.
From the Lichnerowicz formula (10.3.5) we see that F = — %s id, so

1
2 _ 4
az(DM) - 48772 /MS\/gd x.
Moreover,
5
5s%id + 60sE + 180F% = 1szid.

Inserting this into a4(D3,) gives

5,
2 e v
as(Dy) = o2 360/ Tr ( 3As1d+4s id — 2R, R*id
+ 2Ryupe RMP7id 4 30005, Q") /g x.

The curvature Q° of the spin connection is defined as in (#2.3), and its
components are QS = (9, 9y). The spin curvature Q° is related to the
Riemannian curvature tensor by (see Note 8| on Page|164),

1
(10.4.5) 3, = 1 Rywpo ™7

We use this as well as the trace identity
Tr(y"y"7P0") = 4(g"g" — g"*g™ +g"8™)
to calculate the last term of a4(D?,):

1

uv

Te(Q5, Q%) = - Ryupe R Te(1P977 ")
1 1

= Rupr R ) (8778 — 87187 +87°8") = —7 Ryupo RM¥7,
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where the first term in the second line vanishes because of the antisymme-
try of R;p0 in p and o, and the other two terms contribute equally. We thus
obtain

(10.4.7)
1 1
2 2 4
a4(D}) = 1o 550 /M (12 4 552 — 8R,y R™ — 7R 000 RM*7) \ /gd .

We rewrite this into a more convenient form, using (10.4.3) and (10.4.4),
which together yield:

1 11
L pupor | 7 pEpRE
1 1 1,
= —ERyvpaRw/pa + ERVURVU - @S
11 44 11
il » Ryvpa N o] RVO' 2
T 360 Hvee 360 N T 360°
1

B %( - 7R;u/p(7R}wpa — 8RV(7RVU + 552) .

Therefore, we may rewrite (10.4.7) so as to obtain

1 1 1 11
2y - _ - . = nvpo 1 papxk 4
a(D3) = 7 /M (30As o CrupaC7 + = L R'R >\/§d x.

Inserting the obtained formulas for ag(D?,), a2(D3,) and a4(D3,) into (10-4.1)
proves the proposition. U

REMARK 10.11. In general, an expression of the form
LZSZ + bRngVU + CR‘uvpaRm/pU,
for certain constants a,b,c € R, can always be rewritten in the form as* +

BCuprCHP7 4+ yR*R*, for new constants , B,y € R. One should note here
that the term s? is not present in the spectral action of the canonical triple as cal-
culated in Proposition The only higher-order gravitational term that arises
is the conformal gravity term C;pe CHP7.

Note that alternatively, using only (10.4.4), we could also have written

11 7
2\ _ 2 * Dk 4
a5(D3;) = @%/M (85 +5% = BRuWR" — SR'R") /gd'x.

The integral over As only yields a boundary term, so if the manifold M is com-
pact without boundary, we can discard the term with As. Furthermore, for a 4-
dimensional compact orientable manifold M without boundary, we have the for-
mula

/ R*R*\/gdx = 872x(M),
M

where x(M) is Euler characteristic. Hence the term with R*R* only yields a
topological contribution to the action, which we will also disregard. From here on,
we will therefore consider the Lagrangian

faN*  faA? £(0)
(10.4.8) Lum(gw) =55 = 535 = 350,72 Cuvee
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or, which is the same,

— f4A4 o f2A2 f(O) 2 uv
(10.4.9) EM(g‘m/) = o 247T25 + 480772 (S 3R‘uvR )

PROPOSITION 10.12. The spectral action of the fluctuated Dirac operator of
an almost-commutative manifold with dim M = 4 is given by

DUJ 4 -1
Te (f(A)> ], £(gus B ®) B+ O(AT,
where
L(guv, By, ®) := NLyM(Suv) + L(By) + Lp(§uvs By, @).

Here Lai(guv) is defined in Proposition |10.10, N is the dimension of the finite-
dimensional Hilbert space Hr, and Lp gives the kinetic term of the gauge field
as

Lp(By) := ;457(_)[)2 Tr(F, F*),

and Ly gives a scalar-field Lagrangian including its interactions plus a boundary
term as

(10.4.10)
2
Ly (v, By, @) = _2122 Tr(d?) + {;(722) Tr(d*) + QST)ZA(Tr(CDZ))
f(0) f(0)
+ 487T25Tr(<132) +ga I ((D,®)(D"®)).

PROOF. The proof is very similar to Proposition {10.10, but we now use
the formula for D,,? given by Proposition [10.6| The trace over the Hilbert
space Hr yields an overall factor N := Tr(1y, ), so we have

a0(Dw?) = Nag(D3).

The square of the Dirac operator now contains three extra terms. The trace
of ymY" vanishes, which follows from cyclicity of the trace and the fact
that ypry" = —9"ym. Since Tr(y#9") = 4g"" and F,, is anti-symmetric, the
trace of "7V F,, also vanishes. Thus we find that

1
12(Du?) = Naa(DYy) = 4 /M Te(®?) /gd*x.

Furthermore we obtain several new terms from the formula for a4(D,?).
First, we calculate

1 1 )
360 Tr(60sF) = —s (Ns+4Tr(P%)) .

The next contribution arises from the trace over F2, which equals

1 1
F? = Es2 R1+10d* - ny*ywpy" ® FyyFoo

1
+ 97" @ (D @) (DyP) + 58 ® ®% + traceless terms.
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Taking the trace then yields
1 N
360 Tr(180F?) = §52 +2Tr(®*) + Tr(FuW F)
+27Tr ((Du®)(D'®)) + s Tr(D?).
Another contribution arises from —AF. Again, we can simply ignore the
traceless terms and obtain

1 1 )
360 TH(—60AF) = A (Ns +47Tr(97)).

The final contribution comes from the term QﬁVQEV " where the curvature
OF is given by (10.3.3); we obtain
wv uv .
Qf O =03, 0°" @110 F, F" +2iQ5, ® FI*.
Using (10.4.5), by the anti-symmetry of R, we find
1
4

so the trace over the cross-terms in QEVQE” " vanishes. From (10.4.6) we
then obtain

1
Tr(Qf”,) = ERPUVV Tr(y°97) Rprng™” =0,

1 1/ N
360 Tr(300%, Q") = B (—ZRWWRV"P" — 4Tr(FWF"V)> .

Gathering all terms, we obtain

1 1
ay(x, Do?) = (4707 360 < — 48NAs + 20Ns* — 8NR,, R"
+ 8NRype RP7 — 60s (Ns + 4 Tr($?))
+ 360 (gjsz +2Tr(®*) + Tr(Fu F*)
+2Tr ((D,®)(D'P)) + sTr((Dz))
+ 60A (Ns + 4 Tr(d?))
30 ( MR o REP7 4 4Te (F FY
U 5 Ruvpo + 4Te(F, F)
_ L1 (12NAs 4+ 5N — 8NR R
(471)2 360 e

— 7NRyypoR*P7 + 1205 Tr(D?)

+ 360 <2 Tr(®*) +2Tr ((Dycb)(D”CP)))

+ 240A (Tr(D?)) + 240 Tr(FWFVV)> :

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom



163 10.4. NOTES

Comparing the first line of the second equality to (10.4.7), we see that

1 1 1
a4(x, D?) = Nay(x, D3;) + 2 (125 Tr(®%) + 5 Tr(d*)

+ %Tr ((D,®@)(D'®)) + %A (Te(®?)) + éTr(FWFW)> .

Inserting these Seeley-DeWitt coefficients into (10.4.1) proves the proposi-
tion. U

Note that the above Lagrangian is indeed gauge invariant. This is of
course a consequence of the manifest gauge invariance of the spectral ac-
tion, which follows from the invariance of the spectrum under unitary
transformations.

EXAMPLE 10.13. Let us return to the Yang—Mills manifold M x Fynm of
Examples and We have already seen that the inner fluctuations are
parametrized by a PU(N) gauge field A, which acts in the adjoint representation
B, = ad A, on the fermions. There is no scalar field ¢ and ® = Dp = 0. We can
insert these fields into the result of Proposition The dimension of the Hilbert
space Hr = My/(C) is N2. We then find that the Lagrangian of the Yang—Mills
manifold is given by

£(0)

‘C<g,1ﬂ// B}l) = NZ'CM(gyv) + mﬁYM<BV)'

Here Ly is the Yang—Mills Lagrangian given by
Lym(By) := Te(E F'),

where F,, denotes the curvature of By,.

Notes

Section 10.1. Gauge symmetries of AC manifolds

1. Kaluza—Klein theories date back to [156}162].

2. The name almost-commutative manifolds was coined in [145], suggesting that the non-
commutativity is mild since it is simply given by the matrix product in Ar, pointwise on
M. Almost-commutative manifolds essentially already appeared in [78], and somewhat
later in the work of Connes and Lott [92]. Around the same time, a similar structure ap-
peared in a series of papers by Dubois-Violette, Kerner and Madore [102}103}105}104], who
studied the noncommutative differential geometry for the algebra of functions tensored
with a matrix algebra, and its relevance to the description of gauge and scalar Higgs fields.
Almost-commutative manifolds were later used by Chamseddine and Connes [59,60], and
by Chamseddine, Connes and Marcolli in [65] to geometrically describe Yang-Mills theo-
ries and the Standard Model of elementary particles, as we will see in the next chapters. We
here base our treatment on [107].

3. We can regard C®(M, Af) as the space of smooth sections of a globally trivial x-algebra
bundle M x Af. The natural question whether the above definition can be extended to the
topologically non-trivial case is addressed in [47, 48, !40]. The special case of topologically
non-trivial Yang-Mills theories is treated in [41] and in the next Chapter.

4. In the proof of Proposition [10.2]we have exploited a lift of group bundles, which exists if
the manifold is simply connected. We refer to [40] for a careful discussion on this point.
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Section 10.3. The heat expansion of the spectral action

5. For more details on generalized Laplacians we refer to [32, Sect. 2.1].

6. Theorem [10.7]is proved by Gilkey in [125, Sect. 1.7]. Theorem [10.8|can be found as [125)
Theorem 4.8.16]. For a more physicist-friendly approach, we refer to [243]. Note that the
conventions used by Gilkey for the Riemannian curvature R are such that gH°g"" Ryyps is
negative for a sphere, in contrast to our own conventions. Therefore we have replaced
s=—R.

Section 10.4. The spectral action on AC manifolds

7. The bosonic Lagrangian derived from the spectral action for AC manifolds was inter-
preted in [59] a la Wilson [250] as the bare Lagrangian at the cutoff scale A. A perturbative
expansion of the full spectral action was obtained in [142} 144, [167], leading to unexpected
and an intriguing behaviour for the propagation of particles at energies larger than the cut-
off A. Alternatively, the interpretation of A as a regularization parameter has been worked
out in [228, 230, 231} 229], including the derivation of renormalizability conditions on the
Krajewski diagrams.

8. The relation is derived in [128| p.395].

9. The derivation of Yang-Mills gauge theory from a noncommutative spin manifold as in
Example|[10.13|is due to Chamseddine and Connes in [59}[60].
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CHAPTER 11

The noncommutative geometry of electrodynamics

In the previous chapters we have described the general framework for
the description of gauge theories in terms of noncommutative manifolds.
The present chapter serves two purposes. First, we describe abelian gauge
theories within the framework of noncommutative geometry, which at first
sight appears to be a contradictio in terminis. Second, in Section we
show how this example can be modified to provide a description of one of
the simplest examples of a field theory in physics, namely electrodynam-
ics. Because of its simplicity, it helps in gaining an understanding of the
formulation of gauge theories in terms of almost-commutative manifolds,
and as such it provides a first stepping stone towards the derivation of the
Standard Model from noncommutative geometry in Chapter

11.1. The two-point space

In this section we discuss one of the simplest finite noncommutative
spaces, namely the two-point space X = {x,y}. Recall from Chapters
and 3| that such a space can be described by an even finite real spectral
triple:

(11.1.1) Fy:= (C(X) = C? Hg, Dg; Jr, vE) -

As we require the action of C(X) on the finite-dimensional Hilbert space
Hr to be faithful, Hr must at least be 2-dimensional. For now we restrict
ourselves to the simplest case, taking Hr = C2. We use the Z>-grading
vk to decompose Hr = Hf @ Hr = C @ C into the two eigenspaces
Hf = {¢ € Hr | v, = +¢}. The action of C(X) on Hf respects this
decomposition, whereas D interchanges the two subspaces Hz, say

0t
DF - <t0> Vi
for some t € C.

PROPOSITION 11.1. The finite space Fx of (11.1.1)) can only have a real struc-
ture Jr if Dr = 0. In that case, its KO-dimension is 0,2 or 6.

PROOF. The diagonal representation of the algebra C & C on C & C
gives rise to one of the following two Krajewski diagrams (¢f. Example
3.13):

1° o 1° o
1° o 1° o
165
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As a Dirac operator Dr that fulfills the first-order condition [3.1.T] (for arbi-
trary Jr) should connect nodes either vertically or horizontally, we find that
Dr = 0.

The diagram on the left corresponds to KO-dimension 2 and 6, while
the diagram on the right corresponds to KO-dimension 0 and 4. KO-dimension
4 is ruled out because of Lemma 3.8, combined with the fact that dim Hx =
1, which does not allow for a Jp with J2 = —1. O

11.1.1. The product space. Let M be a compact 4-dimensional Riemann-
ian spin manifold. We now consider the almost-commutative manifold
M x Fy given by the product of M with the even finite space Fy corre-
sponding to the two-point space (11.1.1). Thus we consider the almost-
commutative manifold given by the data

M x Fei= (C*(M,€%),L(S) ® C%, Du © L Ju @ Jr, T © 7 ),

where we still need to make a choice for Jr. The algebra of this almost-
commutative manifold is given by C®(M,C?) ~ C*(M) & C*(M). By
Gelfand duality (Theorem 5.7) this algebra corresponds to the space

N =MxX~MUM,

which consists of the disjoint union of two copies of the space M, so we
can write C®°(N) = C*®(M) & C®(M). We can also decompose the total
Hilbert space as H = L?(S) @ L?(S). For a,b € C®(M) and ¢,¢ € L%(S),
an element (a,b) € C*(N) then simply acts on (¢, ¢) € H as (a,b)(p, ¢) =
(ayp, be).

REMARK 11.2. Let us consider Connes’ distance formula (cf. Note[5|on Page
on M x Fx. First, as in @.2.2), on the structure space X of Ap we may write
a metric by:

dp, (x,y) = sup {|a(x) —a(y)|: a € Ap, [|[Dr,all| <1}

Note that now we only have two distinct points x and y in the space X, and we are
going calculate the distance between these points. An element a € C> = C(X)
is specified by two complex numbers a(x) and a(y), so a small computation of the
commutator with D gives

Dr.a] = (aty) ~ () ( %)

The norm of this commutator is given by |a(y) — a(x)| |t|, so ||[Dg,a]|| < 1
implies |a(y) —a(x)| < ﬁ We therefore obtain that the distance between the two
points x and y is given by

1
o, (o) = 7.

If there is a real structure Jr, we have t = 0 by Proposition so in that case the
distance between the two points becomes infinite.

Let p be a point in M, and write (p,x) and (p,y) for the two corresponding
points in N = M x X. A function a € C®(N) is then determined by two func-
tions ay,a, € C*(M), given by ax(p) := a(p,x) and ay(p) := a(p,y). Now the
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distance function on N is given by
dpye1(m,n2) = sup{la(m) —a(ny)|: a € A, [[[Dy®1,a]l| <1}.

If ny and ny are points in the same copy of M, for instance, if n1 = (p, x) and ny =
(g, x) for points p,q € M, then their distance is determined by |ax(p) — ax(q)|,
for functions a, € C®(M) for which ||[Da, ax]|| < 1. Therefore, in this case we
recover the geodesic distance on M, i.e.

dDM®1(7’11/n2) = dg(l’r‘i)-

However, if ny and ny lie in different copies of M, for instance if, n; = (p, x)
and ny = (q,y), then their distance is determined by |a(p) — ay,(q)| for two
functions ay,a, € C*(M), such that ||[[Dm,ay]|| < 1and ||[Dp,ay]l| < 1.
However, these requirements yield no restriction on |ax(p) — ay(q)|, so in this
case the distance between ny and ny is infinite. We find that the space N is given
by two disjoint copies of M that are separated by an infinite distance.

It should be noted that the only way in which the distance between the two
copies of M could have been finite, is when the commutator [Dg,a] would be
nonzero. This same commutator generates the scalar field ¢ of (10.2.2), hence
finiteness of the distance is related to the existence of scalar fields.

11.1.2. U(1) gauge theory. We determine the gauge theory that cor-
responds to the almost-commutative manifold M x Fy. The gauge group
& (A, H;]) from Definition [7.4]is given by the quotient U (A) /U(A;), so if
we wish to obtain a nontrivial gauge group, we need to choose | such that
U(Aj) # U(A). Or, which in view of Example 8.2|is the same, we need
to choose Jr so that U((Ar)j,) # U(Af). Looking at the form of Jr for
the different (even) KO-dimensions (see the proof of Proposition , we
conclude that we need KO-dimension 2 or 6. As we will see in the non-
commutative description of the Standard Model in Chapter (13} the correct
signature for the internal space is KO-dimension 6. Therefore, we choose
to work in KO-dimension 6 as well. The almost-commutative manifold
M x Fy then has KO-dimension 6 +4 mod 8 = 2. This also means that we
can use Definition [9.3]to calculate the fermionic action.

Summarizing, we will consider the finite space Fy given by the data

00 0cC 10
FX = (CZICZIDF - (00)/]1: - <C O) ,YE = <0 _1>> 7

with C denoting complex conjugation, defining a real even finite space of
KO-dimension 6. In the classification of irreducible geometries of Theorem
this space corresponds to the first case.

PROPOSITION 11.3. The gauge group &(F) of the two-point space is given
by U(1).

PROOF. First, note that U(Ar) = U(1) x U(1). We now show that
U((AF)j;) = U(Ap) N (Af)j, =~ U(1) so that the quotient &(F) ~ U(1)
as claimed. Indeed, for a € C? to be in (Af) J; it has to satisfy [ra*Jr = a.

Since
]a*],l_ 0C 510 0C . 1/'[20
FEJr = \co)\om)\co) \om)’
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this is the case if and only if a; = a. Thus, (Ar)j, ~ C, whose unitary
elements form the group U(1), contained in U (AF) as the diagonal sub-
group. U

In Proposition [10.12] we calculated the spectral action of an almost-
commutative manifold. Before we can apply this to the two-point space,
we need to find the exact form of the field B,. Since we have (Af);. ~ C,

we find h(F) = u((Ar)j;) ~ iR. From Proposition and (10.2.7) we
then see that the gauge field

Ay(x) € igr = i(u(AF)/(iR)) = isu(Ar) ~ R

becomes traceless.

Let us also explicitly derive this U(1) gauge field. An arbitrary hermit-
ian field of the form A, = —iad, b would be given by two U(1) gauge fields
X;ll, Xi € C®(M,R). However, because A, only appears in the combina-

tion A; — ]pA;,]F_l, we obtain

X: 0 X2 0 Y, 0

where we have defined the U(1) gauge field
Y, = X, — X;; € C*(M,R) = C*(M,iu(1)).

Thus, the fact that we only have the combination A, — JpA,J¢ 1 effectively
identifies the U(1) gauge fields on the two copies of M, so that A, is de-
termined by only one U(1) gauge field. This ensures that we can take the
quotient of the Lie algebra u(Ar) with h(F). We can then write

_1/v, 0 _1
A =3 <o —Yy> =@ E
which yields the same result:
(11.1.2) By=A,— JrA ;' =24, =Y, ®F.
We summarize:

PROPOSITION 11.4. The inner fluctuations of the almost-commutative man-
ifold M x Fx described above are parametrized by a U(1)-gauge field Y, as
D— D' =D+ 'Y, ® yr.
The action of the gauge group &(M x Fx) ~ C*(M,U(1)) on D', as in (10.2.8),
is implemented by
Yy = Yy —iud,u’; (u e &(M x Fx)).

11.2. Electrodynamics

Inspired by the previous section, which shows that one can use the
framework of noncommutative geometry to describe a gauge theory with
abelian gauge group U(1), we proceed and try to describe the full theory of
electrodynamics by an almost-commutative manifold. Our approach pro-
vides a unified description of gravity and electromagnetism, albeit at the
classical level.

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




169 11.2. ELECTRODYNAMICS

We have seen that the almost-commutative manifold M x Fy describes
a gauge theory with local gauge group U(1), where the inner fluctuations
of the Dirac operator provide the U(1) gauge field Y. There appear to be
two problems if one wishes to use this model for a description of (classical)
electrodynamics. First, by Proposition the finite Dirac operator Dr
must vanish. However, we want our electrons to be massive, and for this
purpose we need a finite Dirac operator that is non-zero.

Second, the Euclidean action for a free Dirac field is of the form

(11.2.1) s:—/@mwwqmw%,

where the fields ¥ and ¥ must be considered independent variables. Thus,
we require that the fermionic action Sy should also yield two independent
Dirac spinors. Let us write {¢, e} for the set of orthonormal basis vectors of
Hpr, where ¢ is the basis element of H;f and e of H, . Note that on this basis,
we have Jre = ¢, Jre = ¢, yre = e and yre = —e. The total Hilbert space
H is given by L?(S) ® Hp. Since by means of ) we can also decompose
L%(S) = L?(S)* @ L%(S)~, we obtain that the positive eigenspace H* of
Y = vm ® r is given by

HT =1*S)" @ Hf @ L*(S)” ® Hy.
Consequently, an arbitrary vector { € H™ can uniquely be written as
C=yYr®e+yYPr®e,

for two Weyl spinors ;. € L?(S)" and g € L2(S)~. One should note here
that ¢ is completely determined by only one Dirac spinor ¢ := 1 + g,
instead of the required two independent spinors. Thus, the restrictions that
are incorporated into the fermionic action of Definition 9.3|in fact constrain
the finite space Fx too much.

11.2.1. The finite space. It turns out that both problems sketched above
can be simply solved by doubling our finite-dimensional Hilbert space.
Essentially, we introduce multiplicities in the Krajewski diagram that ap-
peared in the proof of Proposition[11.1}

Thus, we start with the same algebra C*(M, C?) that corresponds to
the space N = M x X ~ M U M. The finite-dimensional Hilbert space will
now be used to describe four particles, namely both the left-handed and the
right-handed electrons and positrons. We choose the orthonormal basis
{er,er,er, e} for Hr = C*, with respect to the standard inner product.
The subscript L denotes left-handed particles, and the subscript R denotes
right-handed particles, and we have yre; = ey and yrer = —er.

We choose Jr such that it interchanges particles with their antiparticles,
so Jregr = er and Jre; = er. We again choose the real structure such that it
has KO-dimension 6, so we have ]12; = 1and [Jryr = —7rJr. This last rela-
tion implies that the element ey is left-handed, whereas e;. is right-handed.

The grading ¢ decomposes the Hilbert space Hr into Hf & Hy, where
the bases of Hf and Hj are given by {e;,ex} and {eg,eL}, respectively.
Alternatively, we can decompose the Hilbert space into H, © Hg, where H,
contains the electrons {eg, e }, and H; contains the positrons {eg, er }.
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The elements 2 € Ar = C2 now act as the following matrix with respect
to the basis {er, e1,er, €L }:

a0 0 0

(m 0a; 00

(11.2.2) 0= <a2> =1 00a0
000 a

Note that this action commutes with the grading, as it should. We can also
easily check that [a,b°] = 0 for b° := Jrb*J; !, since both the left and the
right action are given by diagonal matrices. For now, we still take Dr = 0,
and hence the order one condition is trivially satisfied. We have therefore
obtained the following result:

PROPOSITION 11.5. The data

00 0C 10
(- (- (26) - ()

define a real even spectral triple of KO-dimension 6.
This can be summarized by the following Krajewski diagram, with two
nodes (of opposite grading) of multiplicity two:
1 1
1° O
1° O
11.2.2. A non-trivial finite Dirac operator. Let us now consider the
possibilities for adding a non-zero Dirac operator to the finite space Fyp.
From the above Krajewski diagram, it can be easily seen that the only pos-

sible edges exist between the multiple vertices. That is, the only possible
Dirac operator depends on one complex parameter and is given by

QdOO

d00o

000d

0040

From here on, we will consider the finite space F;; given by
FED = (CZI C4/ DF/ ]F/ ,)/F)

11.2.3. The almost-commutative manifold. Taking the product with
the canonical triple, the almost-commutative manifold M x F;, (of KO-
dimension 2) under consideration is given by the spectral triple

(1124) M x Fyp :=
(C=(M,€),I2(S) © €4, Dy @ 1+ w1 @ Dy I @ Jr, Tu © 77 ) -
As in Section[I1.1} the algebra decomposes as
C®(M,C?) = C®(M) & C*(M),

(11.2.3) Dr =

and we now decompose the Hilbert space as
H = (L*(S) @ He) & (L*(S) ® Hy).
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




171 11.2. ELECTRODYNAMICS

The action of the algebra on #, given by (11.2.2), is then such that one
component of the algebra acts on the electron fields L?>(S) ® H,, and the
other component acts on the positron fields L?(S) ® Hs.

The derivation of the gauge group for F, is exactly the same as in
Proposition so again we have the finite gauge group &(F) ~ U(1).
The field B, := A, — ]pA,JF’1 now takes the form

(11.2.5) B, = for Y, (x) € R.

o oo
coXNo

0 0
0 0
~Y, 0
0 —Y,

Thus, we again obtain a single U(1) gauge field Y, carrying an action of
the gauge group &(M x Fyp) ~ C®(M, U(1)) (as in Proposition[11.4).

As mentioned before, our space N consists of two copies of M and if
Dr = 0 the distance between these two copies is infinite (see Remark[11.2).
This time we have introduced a non-zero Dirac operator, but it commutes
with the algebra, i.e. [Dp,a] = 0 for all a € A. Therefore, the distance
between the two copies of M is still infinite.

To summarize, the U(1) gauge theory arises from the geometric space
N = M UM as follows. On one copy of M, we have the vector bundle
S® (M x H,), and on the other copy we have the vector bundle S ® (M x
Hz). The gauge fields on each copy of M are identified with each other. The
electrons e and positrons ¢ are then both coupled to the same gauge field,
and as such the gauge field provides an interaction between electrons and
positrons. For comparison with Kaluza—Klein theories, note the different
role that is played by the internal space.

11.2.4. The spectral action. We are now ready to explicitly calculate
the Lagrangian that corresponds to the almost-commutative manifold M x
Frp, and we will show that this yields the usual Lagrangian for electro-
dynamics (on a curved background manifold), as well as a purely gravi-
tational Lagrangian. It consists of the spectral action S; of Definition
and the fermionic action S¢ of Definition which we calculate separately
(here and in the next section).

The spectral action for an almost-commutative manifold has been cal-
culated in Proposition[10.12} and we only need to insert the fields B, (given
by (11.2.5)) and ® = Dr. We obtain the following result:

PROPOSITION 11.6. The spectral action of the almost-commutative manifold
M x Fpp defined in (11.2.4) is given by

T <f<[j\w)) h /M ﬁ(gW'Yu)\/gdéLx +0(A™),

with Lagrangian

L(guv, Yy) = 4Lm(guv) + Ly (Yu) + Lo (gpv, ).
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Here L (guv) is defined in Proposition |10.10; the term Ly gives the kinetic term
of the U (1) gauge field Y, as

£(0) v
where the curvature Y, of the field Y, is given by
Yy =0, Yy — 9,y

The scalar potential Ly (ignoring the boundary term) gives two constant terms
which add to the cosmological constant, plus an extra contribution to the Einstein—
Hilbert action:
— 2% o f0), 4 f(O) 2
Lo(gu) = — L 1dP + L 1d + L slap,

where the constant d originates from (11.2.3)).

PROOF. The trace over the Hilbert space C* yields an overall factor N =
4. The field By, is given by (11.2.5), and we obtain Tr(F,, F"") = 4Y,, Y*".
Inserting this into Proposition [10.12| provides the Lagrangian Ly. In addi-

tion, we have ®* = Df? = |d|?, and the scalar-field Lagrangian Ly only
yields extra numerical contributions to the cosmological constant and the
Einstein—Hilbert action. O

11.2.5. The fermionic action. We have written the set of basis vectors
of Hr as {eg,er,er,eL}, and the subspaces Hf and Hy are spanned by
{er,er} and {er,er}, respectively. The total Hilbert space # is given by
L%(S) ® Hg. Since we can also decompose

L2(S) = LA(S)" & L*(S)~
by means of 1, we obtain for the +1-eigenspace of Yy ® yr:
HT =1*S)" ® Hf ® L*(S)” @ Hy.

A spinor ¢ € L%(S) can be decomposed as i = ¥ + Pr. Each subspace
HE is now spanned by two basis vectors. A generic element of the tensor
product of two spaces consists of sums of tensor products, so an arbitrary
vector ¢ € H™ can be uniquely written as

(11.2.6) E=xrRQer+ XL ®eL+ P QR + Pr DL,

for Weyl spinors xr, ¢ € L?(S)* and xg,¥r € L?*(S)~. Note that this
vector { € H™ is now completely determined by two Dirac spinors x :=
XL+ xrand ¢ := P + Pr.

PROPOSITION 11.7. The fermionic action of the almost-commutative mani-
fold M x Fgp, defined in (11.2.4), is given by

Sy = =i(mx 2" (Vi = Y)) + (mXe A1) = (JmXr, dfr).
PROOF. The fluctuated Dirac operator is given by
Dy =Dy ®@1+9"® B, + vm @ Dr.
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An arbitrary ¢ € H™ has the form of (11.2.6), from which we obtain the
following expressions:

J¢ = JMxR ®er + JmxL ®eL + JMyPL @ er + JMPr Ry,
(Dm®1)§ = Dmxr ® er + Dumxr @ e + Dy ® eg + Dmipr @@L,
(7" ®Bu)¢ = v xR @ Yuer + 7' x1L ® Yyer — Y @ Yyer — Y pr @ Yyer,
(Ym @ Dp)& = ymxL @ deg + ymxr @ der + ymyr @ deg + ymypr @ der.

We decompose the fermionic action into the three terms

SUE D) = 308 (D @ 1VF) + 3, (4% © B + 3 F, (v © D)),

and then continue to calculate each term separately. The first term is given

by

(J&, (Dm ®1)E) = %(]M)?R,DM@L) + %(]M)?L,DM@R)

N —

+ %(]M&L/ DmXRr) + %(]MIPR/ DmXL)-

Using the facts that Dj; changes the chirality of a Weyl spinor, and that the
subspaces L2(S)™ and L?(S)~ are orthogonal, we can rewrite this term as

1 - I U U
5US (DM @1)¢) = 5 (JuX, Dmyp) + 5 (Jm$, DmX)-
Using the symmetry of the form (X, D), we obtain
1, =~ ~ ~ ~ L ~
E(]‘:r(DM ®1)¢) = (JuX, Dm) = —i(Jmx, v Vi)

Note that the factor 1 has now disappeared from the result, which is the
reason why this factor had to be included in the definition of the fermionic
action. The second term is given by

1, ~ ~ 1 - ~ 1 _ -
5(]5/ (7" ®@Bu)¢) = —EUMXR,’Y”YMUL) — E(IMXL,’Y”YWPR)
1 ~ ~ 1 ~ ~
+ Q(]MII’L,’Y”Y;LXR) + E(]M#’R: YYuXL)-
In a similar manner, we obtain
1, ~ ~ " -
S US (0" @ Bu)S) = = (JmX, v Yup),

where we have used the anti-symmetry of the form (Jux, 7Y, ). The
third term is given by

1, ~ ~ 1 - ~ 1 -~
E(ICI (yM® Dr)¢) = E(]MXR, dymyr) + E(]MXL: dymyr)
+ %(]M%EL,EVMXVL) + %UM@RJ’YMXR)-

The bilinear form (JyX, Ym¥) is again symmetric in the Grassmann vari-
ables x and 1, but we now face the extra complication that two terms con-
tain the parameter d, while the other two terms contain d. Therefore we are
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left with two distinct terms:
1, ~ ~ I L
Q(IC, (ym ® Dr)¢) = (JmXr, 4¢r) — (JmXr, dPr). O

REMARK 11.8. It is interesting to note that the fermions acquire mass terms
without being coupled to a scalar field. However, it seems that we obtain a complex
mass parameter d, where we would desire a real parameter m. Simply requiring
that our result should reproduce (11.2.1), we will therefore choose d := —im, so
that

(ImXe d9r) — (Jmxr, dgr) = i(JmxX, my).
The results obtained in this section can now be summarized into the

following theorem.

THEOREM 11.9. The full Lagrangian of the almost-commutative manifold
M x Fyp, as defined in Equation (11.2.4)), can be written as the sum of a purely
gravitational Lagrangian,

Loio(uv) = 4L (guv) + Lo (uv),
and a Lagrangian for electrodynamics,
S~ . ~ 0
Lep = —1<]M)(, ('yV(Vfl —iYy,) — m)lp> J;(7_[2>YWYW.
PROOF. The spectral action Sj, and the fermionic action Sy are given by

Propositions|I1.6 and This immediately yields L,..,. To obtain Lgp, we
need to rewrite the fermionic action S¢ as the integral over a Lagrangian.

The inner product (-, -) on the Hilbert space L?(S) is given by

@)= [ ©vvads

where the hermitian pairing (-, -) is given by the pointwise inner product
on the fibres. Choosing d = —im as in Remark we can then rewrite
the fermionic action into

Sf=- /Mi<IMX, (Y4(V5 = iY,) = m)§ ) y/Rd*x. 0

11.2.6. Fermionic degrees of freedom. To conclude this chapter, let us
make a final remark on the fermionic degrees of freedom in the Lagrangian
derived above. We refer the reader to Appendix for a short introduc-
tion to Grassmann variables and Grassmann integration.

As mentioned in Note[3|on Page the number of degrees of freedom
of the fermion fields in the fermionic action is related to the restrictions that
are incorporated into the definition of the fermionic action. These restric-
tions make sure that in this case we obtain two independent Dirac spinors
in the fermionic action.

In fact, in quantum field theory one would consider the functional inte-
gral of ¢° over the fields. We hence consider the case that 2 is the antisym-
metric bilinear form on H " given by

A(E,¢) := (J¢, Dwl), for g, 0 e 1T,
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and 2’ is the bilinear form on L?(S) given by

W () = =i (Jux, (V' (V5 = i¥y) = m)y),  forx,y € LX(S).

We have shown in Proposition [I1.7)that for { = x; ® ef + Xr ® er + Pr ®
er + 1, ® eg, where we can define two Dirac spinors by x := xr + xr and
¢ := P + PR, we obtain

SAED) =2 (0 )

Using the Grassmann integrals of (11.A.1) and (11.A.2), we then obtain for
the bilinear forms 2 and 2 the equality

PF(2A) = / 32EDD[E] = / X XD, 7] = det(2A),

11.A. Grassmann variables, Grassmann integration and Pfaffians

We will give a short introduction to Grassmann variables, and use those
to find the relation between the Pfaffian and the determinant of an antisym-
metric matrix.

For a set of anti-commuting Grassmann variables 6;, we have 0;0; =

—0,0;, and in particular, 91-2 = 0. On these Grassmann variables 6;, we define

an integral by
[ 1d8; =0, [ oo = 1.

If we have a Grassmann vector 6 consisting of N components, we define
the integral over D[] as the integral over df; - - -dfy. Suppose we have
two Grassmann vectors # and 6 of N components. We then define the inte-
gration element as D[y, 0] = dy1d6; - - - dyndOy.

Consider the Grassmann integral over a function of the form " for
Grassmann vectors  and 1 of N components. The N x N-matrix 2 can
be considered as a bilinear form on these Grassmann vectors. In the case
where 6 and 7 are independent variables, we find

(11.A.1) / "Dy 6] = det2,
where the determinant of 2 is given by the formula
1
det(2) = NI Yo (=D ) e
to,TESN

in which Sy denotes the set of all permutations of {1,2,..., N}. Now let us
assume that 2 is an antisymmetric N x N-matrix 2 for N = 2I. If we then
take 0 = 77, we find

(11.A.2) / 21" MD[y] = PE(A),
where the Pfaffian of 2 is given by

—1)! -
Pf(A) = (2,”) Y (D)1, 13002 - Ao 1)021)-

TESy
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Finally, using these Grassmann integrals, one can show that the determi-
nant of a 2] x 2] skew-symmetric matrix 2 is the square of the Pfaffian:

det2A = Pf(2A)2.
So, by simply considering one instead of two independent Grassmann vari-

ables in the Grassmann integral of ¢ W we are in effect taking the square
root of a determinant.

Notes

Section 11.1. The two-point space

1. The two-point space was first studied in [78}[92].

2. The need for KO-dimension 6 for the noncommutative description of the Standard Model
has been observed independently by Barrett [23] and Connes [83].

3. In [168| Chapter 9] a proof is given for the claim that the inner fluctuation w + Jw] -1
vanishes for commutative algebras. The proof is based on the assumption that the left
and right action can be identified, i.e. a = a°, for a commutative algebra. Though this
holds in the case of the canonical triple describing a spin manifold, it need not be true
for arbitrary commutative algebras. Indeed, the almost-commutative manifold M x Fx
provides a counter-example.

What we can say about a commutative algebra, is that there exist no non-trivial inner
automorphisms. Thus, it is an important insight that the gauge group &(.A, 7; J) from Def-
inition[7.4]is larger than the group of inner automorphisms, so that a commutative algebra
may still lead to a non-trivial (necessarily abelian) gauge group.

4. It is shown in [34] that one can also obtain abelian gauge theories from a one-point space
when one works with real algebras (cf. Section3.3).

Section 11.2. Electrodynamics

5. Earlier attempts at a unified description of gravity and electromagnetism originate from
the work of Kaluza [156] and Klein [162] in the 1920’s. In their approach, a new (compact)
fifth dimension is added to the 4-dimensional spacetime M. The additional components in
the 5-dimensional metric tensor are then identified with the electromagnetic gauge poten-
tial. Subsequently, it can be shown that the Einstein equations of the 5-dimensional space-
time can be reduced to the Einstein equations plus the Maxwell equations on 4-dimensional
spacetime.

6. An interesting question that appears in the context of this Chapter is whether it is possible
to describe the abelian Higgs mechanism (see e.g. [157, Section 8.3]) by an almost-commutative
manifold. As already noticed, for M x Fyp no scalar fields ® are generated since Ar com-
mutes with Dr. In terms of the Krajewski diagram for M x Fp,

1 1
1° @)
1° O
it follows that a component that runs counterdiagonally fails on the first-order condition
(¢f. Lemma3.10). One is therefore tempted to look at the generalization of inner fluctua-
tions to real spectral triples that do not necessarily satisfy the first-order condition, as was
proposed in [69]. This generalization is crucial in the applications to Pati-Salam unification
(see Chapterbelow) but also in the present case one can show that non-zero off-diagonal

components in (11.2.3) then generate a scalar field for which the spectral action yields a
spontaneous breaking of the abelian gauge symmetry.

Section 11.A. Grassmann variables, Grassmann integration and Pfaffians

7. For more details we refer the reader to [31].
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CHAPTER 12

The noncommutative geometry of Yang-Mills fields

In this Chapter we generalize the noncommutative description of Yang—
Mills theory to topologically non-trivial gauge configurations.

12.1. Spectral triple obtained from an algebra bundle

Recall from Examples and that topologically trivial Yang-Mills
gauge theory can be described by the almost-commutative manifold

MxFy=
(C®(M) ® Mn(C), L*(S) @ MN(C), D ® L Jm @ (1), ym @ 1) .

In fact, the tensor product of C*(M) with the matrix algebra My(C) ap-
pearing here is equivalent to restricting the gauge theory to be defined on
a trivial vector bundle. Indeed, C®(M) ® My(C) is the algebra of smooth
sections of the trivial algebra bundle M x My (C) on M. For the topologi-
cally non-trivial case, this suggests considering an arbitrary *-algebra bun-
dle with fiber My(C). We work in a slightly more general setting more
general x-algebras are allowed.

Thus, let B be some locally trivial *-algebra bundle whose fibers are
copies of a fixed (finite-dimensional) x-algebra A. Furthermore, we require
that for each x the fiber 8, is endowed with a faithful tracial state t, such
that for each s € I'°(8) the function x — Tys(x) is smooth. The corre-
sponding Hilbert-Schmidt inner product in the fiber 5, that is induced by
Ty is denoted by (-, -)s,. Consequently, the C*(M)-valued form

(o )p 1 T7(B) X I(B) = CT(M); (s, t)(x) = (s(x),H(x)),
is a hermitian structure on the C®(M)-module I'*(8), satisfying the con-
ditions of Proposition[7.14]

As in the previous chapters, we assume that M is a compact Riemann-
ian spin manifold on which S — M is a spinor bundle and Dj; = —ic o V°
is the Dirac operator. Combining the inner product on spinors with the

above hermitian structure naturally induces the following inner product
onT®(B®S):

121D @)= [ (@@ 0aE)ses (@8 (BoS),

turning it into a pre-Hilbert space. Its completion with respect to the norm
induced by this inner product consists of all square-integrable sections of
B ® S, and is denoted by L?(B ® S).

REMARK 12.1. Note that we can identify T**(B) @ce(py [*(S) with T (B ®
S) as C®(M)-modules. In what follows, we will use this identification without
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further notice. The above inner product (12.1.1) can then be written as

(51 ® 91,52 @ ¢2) = (Y1, (s1,52)8¢2),
where (s1,52)s € C®(M) acts on T(S) by pointwise multiplication.

THEOREM 12.2. In the above notation, let V'® be a hermitian connection
(with respect to the Hilbert—Schmidt inner product) on the x-algebra bundle B
and let Dy = —i’y"(V? ®1+1® Vfl) be the twisted Dirac operator on B ® S.
Then

(r*(8), L*(B ®$), D)

is a spectral triple.

PROOF. First, it is obvious that fiberwise multiplication of 2 € T'°(B)
on (B ® S) extends to a bounded operator on L?(8 ® S), since

las@yl? = [ (), (@(x)s(x), ax)s()a, $(x))  dx
< sup{la(x) [}y

Here || - ||x denotes the fiberwise operator C*-norm. Since M is a compact
manifold, the compactness of the resolvent follows from ellipticity of the
twisted Dirac operator Dy. Moreover, the commutator [Ds, 4] is bounded
fora € T°(B) since Dy is a first-order differential operator. More precisely,
in local coordinates one computes

Dy, a)(s @ ) = —i (3 + [}, a] ) s @ 4",

where V7 = 9, + w;;’. This operator is bounded on L*(B ® S), provided a

is differentiable and w? is smooth. O

Next, we would like to extend our construction to arrive at a real spec-
tral triple. For this, we introduce an anti-linear operator on L?(8 ® S) of
the form

J(s®¢Y) =s"® Imyp,
with i charge conjugation on M as in Definition For this operator to
be a real structure on our spectral triple (I'*(8), L*(*B ® S), Dy ), we need
some extra conditions on the connection V* on 8.

DEFINITION 12.3. Let ‘B be a *-algebra bundle over a manifold M. A x-
algebra connection V on B is a connection on B that satisfies
V(st) = sVt + (Vs)t, (Vs)" = Vs¥; (s,t € T™(B)).
If B is a hermitian x-algebra bundle and V is also a hermitian connection, then V
is called a hermitian *-algebra connection.

LEMMA 12.4. Every locally trivial hermitian x-algebra bundle *B defined over
a compact space M admits a hermitian x-algebra connection.

PROOF. Let {U;} be a finite open covering of M such that B is trivial-
ized over U; for each i. Then on each U; there exists a hermitian *-algebra
connection V;, for instance the trivial connection d on U;. Now, let { f;} be
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a partition of unity subordinate to the open covering {U;} (note that all f;
are real-valued). Then the linear map V defined by

(Vs)(x) = Y fi(x)(Vis)(x);  (x €M)

is a hermitian *-algebra connection on I'*(B). O

REMARK 12.5. The fact that locally, i.e. on some trivializing neighborhood,
the exterior derivative d is a hermitian x-algebra connection shows that on such a
local chart every hermitian x-algebra connection is of the form

d+w®,

where w® is a real connection one-form with values in the real Lie algebra of -
derivations of the fiber that are anti-hermitian with respect to the inner product on
the fiber. For instance, when the fiber is the x-algebra My (C) endowed with the
Hilbert-Schmidt inner product, this Lie algebra is precisely ad(u(N)) = su(N).

THEOREM 12.6. In addition to the conditions of Theorem suppose that
V® is a hermitian x-algebra connection and set y = 1 ® vy as a self-adjoint
operator on L2(B ® S). Then

(T®(8),L*(B ®S), Ds; ], )

is a real and even spectral triple whose KO-dimension is equal to the dimension of
M.

PROOF. First of all, we check that | is anti-unitary:
U@ ) I(t@n) = U, (") o) = (T, I (5", )
= (5 FInp) = (s m.9) = (t@n,s ),

where we used in the second step that Jyf = f]u for every f € C®(M),
in the third step that Jj; is anti-unitary, and in the fourth step that (s, ) =
(t*,s*) (by definition of the hermitian structure as a fiberwise trace). More-
over, if ]12\/1 = ¢ it follows that J? = e.

We next establish D] = €D by a local calculation:

(JD—€D))s@¢) =] (Vs @ (—iv"$) +5© Du) — ' Dy (s* @ Ju)
= (V32s)* @iJmy"p + 5" @ JuDmy
—€'VPs* @ (—iv"Jmy) — €'s* @ DyJmyp
=i ((VPs) = Vi) @ Jup =0,
since Jy7* = —€’y"Jp, and the last step follows from the definition of a
x-algebra connection, i.e. (Vs)* = Vs* forall s € IT°(B).
The commutant property follows easily:
[, ') (s @ y) = aJb* ] (s @) — Jb*] Ta(s @ ¢)
= a](b"s™ @ Jyy) — Jb™(s"a” @ [y )
=ashb@yp —asbxyPp =0,
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where 4,b € T®(B) and s @ p € T°(B) Qcw(pr) IP(S). Since [a,b°] =
0 on I'*(B) @ceo(py [7(S) = I(B ®S), it is zero on the entire Hilbert
space L2(B ® S). It remains to check the order one condition for the Dirac
operator. First note that

[[D,a],b)(s @ ) = =iv"([[Vy,al, ) (s @ ¢));  (a,b,5 € T(B)).
This is zero because [[V, a], b°] (s @ @) is zero:

([Vyalsh) @ = Jb'] ([ als @ ¢)
= Vy(ash) @ —aV,(sb) @ — V,(as)b @ ¢+ a(V,us)b @ ¢
= ((Vua)sb+a(Vus)b+as(Vub) —a(Vys)b
— as(Vb) — (Vyua)sb —a(Vyus)b+ a(Vys)b) @ ¢,
=0

using the defining property for V¥ to be a x-algebra connection. Thus, |
fulfills all of the necessary conditions for a real structure on the spectral
triple (T°(B), L2("B ® S), D). The conditions on 7 to be a grading opera-
tor for this spectral triple are easily checked too. O

12.2. Yang-Mills theory as a noncommutative manifold

The real spectral triple (T*°(%8), L>( ® S), Ds; ], v) that we obtained in
Theorem[12.6|will turn out to be the correct triple to describe a topologically
non-trivial PU(N)-gauge theory on the spin manifold M if the fibers of B
are taken to be isomorphic to the x-algebra My(C). Moreover, this triple
not only describes a non-trivial PU(N)-gauge theory: every PU(N)-gauge
theory on M is described by such a triple. In this section we prove these
claims by first showing how a principal PU(N)-bundle can be constructed
from this spectral triple. As in the topologically trivial case (cf. Remark
the spectral action applied to this triple will give the Einstein—Yang—
Mills action, but now the gauge potential can be interpreted as a connection
one-form on the PU(N)-bundle P. In fact, the original algebra bundle B
will turn out to be an associated bundle of the principal bundle P. From
now on, then, the fibers of %6 are assumed to be My (C).

12.2.1. From algebra bundles to principal bundles. In order to con-
struct a principal PU(N)-bundle P out of B, first of all note that since all
x-automorphisms of My (C) are obtained by conjugation with a unitary el-
ement u € My(C) (see Example[7.3), the transition functions of the bundle
I'°(B) take their values in

Ad U(N) = U(N)/Z(U(N)) = PU(N).

Thus the bundle 9B provides us with an open covering {U; } of M as well as

transition functions {g;;} with values in PU(N). Using the reconstruction

theorem for principal bundles, we can then construct a principal PU(N)-

bundle. By construction, the bundle ‘B is an associated bundle to P.
Furthermore, for the real spectral triple

(C(B), L*(B ® ), D; ], 7)
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of Theorem the hermitian connection V® on the bundle 9B can lo-
cally be written as V® = d + w®, where w? is a su(N)-valued one-form,
(cf. Remark . Moreover, the transformation rule for w® is w? =
g;ldgij +8ij 1w].% gij, with g;; the PU(N)-valued transition function of 5.
Comparing this expression with the usual transformation property of a
connection one-form, one concludes that the hermitian *-algebra connec-
tion V¥ on B induces a connection one-form on the principal bundle P
constructed in the previous paragraph.

Conversely, given a PU(N )-gauge theory (P, w") on some compact Rie-
mannian spin manifold, we can construct the locally trivial hermitian *-
algebra bundle B := P xpy ) Mn(C), where PU(N) acts on My(C) in
the usual way. Moreover, the connection w? on P induces a hermitian *-
algebra connection on 8. Following the steps described in the previous
paragraph, it is not difficult to see that the principal bundle and connection
obtained from the ensuing spectral triple,

(I°(B), LA(B @ S), iy (VE@1+10 V5);1,7),
coincide with (P, w").

PROPOSITION 12.7. Let (T*(8),L2(B ® S), Dw; ], v) be as before with M
simply connected and B a locally trivial x-algebra bundle with fiber My (C) and
a faithful smoothly-varying tracial state. Then:

(1) there exists a principal PU(N)-bundle P such that *B is an associated
bundle of P, as well as a connection one-form w? on P corresponding to
VE;

(2) the gauge group &(I™(B),L*(B ® S); ]) of this spectral triple (as in
Definition is isomorphic to the space of smooth sections of the asso-
ciated group bundle Ad P := P X py ) PU(N).

Every PU(N)-gauge theory (P, w") on M is determined by such a spectral triple.

PROOF. The only statement left to prove is (2). If B = P X py(n) Mn(C),
then U(I'(B)) = T'*°(P X py(ny U(N)). As a consequence,

&(I°(B), L2 (B®S);]) ~ {uJu] ' :u € T°(P xpyn) UN)}
~ FOO(P XPL[(N) PU(N)),

where we argue as in the proof of Proposition (see also Note 4 on Page
163). (]

12.2.2. Inner fluctuations and spectral action. In this section, we cal-
culate the spectral action for the real spectral triple of Theorem in the
case that dim M = 4. We show that the spectral action applied to the spec-
tral triple (T*°(8),L%(B ® S), Dy; J,y) produces the Einstein—Yang-Mills
action for a connection one-form on the PU(N)-bundle P. If 98 is a trivial
algebra bundle, this reduces to Example In fact, most of these local
computations can be adopted in this case as well, since locally the bundle
B is trivial. Nevertheless, for completeness we include the computations
in the case at hand.

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




CHAPTER 12. THE NONCOMMUTATIVE GEOMETRY OF
182 YANG-MILLS FIELDS

First of all, in Remark we noticed that locally, i.e. on some local
trivialization U, the connection V® is expressed as d + w®, where w® is an
su(N)-valued one-form that acts in the adjoint representation on I'°(‘B).
Therefore, w® already induces a connection one-form on P. To get the full
gauge potential we need to take the fluctuations of the Dirac operator into
account as well.

Recall from Section [7.2] that inner fluctuations of the Dirac operator are
given by a perturbation term of the form

(12.2.1) w =Y aj[D,bj]; (aj,b; € T(B)),
j

with the additional condition that }_; a;[D, b;] is a self-adjoint operator. Ex-

plicitly, we have
w = Z—i’y” o (aj[Vy, b]] & 1)

]
Locally, on some trivializing neighborhood U, the expression in (12.2.1) can
be written as

w="A,,
where A, are the components of the one-form }; a;[V, b;] with values in
I'°(B). Since w is self-adjoint, the one-form A, can be considered a real
one-form taking values in the hermitian elements of I'°(8).
Similarly, the expression w + Jw] ! is locally written as

A=Y TAT

since in 4 dimensions ¥ anti-commutes with J. Writing out the second
term gives:

(YA @ y) =sA @'y (s@yp eTV(B®S)),
so that on this local patch, w + Jw] ! can be written as
YadAy.
Consequently, w + Jw]~! eliminates the iu(1)-part of w, so that w effec-
tively satisfies the unimodularity condition
Trw =0.

Thus, iad A, is a one-form on M with values in I'*°(ad P) where ad P =
p xPu(N) SM(N).
The expression for D + w + Jw] ! on a local chart U is then given by

D, =—i"(Vy ®14+1®V;, +iad A, ®1),

where the connection V® can be expressed on U as d + w® for some unique
su(N)-valued one-form w® on U. Thus, on U the fluctuated Dirac operator
can be rewritten as

D, = —iv" (1@ Vy + (9, + wy +iad A,) ®1).

We interpret (w;; 4 iad Ay) as the full gauge potential on U, acting in the
adjoint representation on the spinors. The natural action of an element g in
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the group & (T*(8), L2(B ® S); ]) ~ I'°(Ad P) by conjugation on D,, then
induces the familiar gauge transformation:

wp +iad Ay (g7 wig + 87 (dg)) + ¢ (iad Ay)g,

where the first two terms on the right-hand side are the transformation of
w® under a change of local trivialization, and the last term is the transfor-
mationofiad A - Therefore, since B is an associated bundle of P, it follows

that w;’? +iad A, induces a su(N)-valued connection one-form on the prin-

cipal PU(N)-bundle P that acts on I'°*(8) in the adjoint representation.
Let us summarize what we have obtained so far.

PROPOSITION 12.8. Let (T°(3),L*(B ® S), Dws; J, ) and let P be as be-
fore, so that P x pyyny MN(C) =~ B. Then, the inner fluctuations of Dy are
parametrized by sections of IT°(T*M © ad P) where ad P = P X pyn) su(N).
Moreover, the action of & (T (B),L?(B ® S); ] ) on the inner fluctuations of Dy
by conjugation coincides with the adjoint action of T°(Ad P) on I'°(ad P).

Let us now proceed to compute the spectral action for these inner fluc-
tuations. We apply the results of Section using the following result.

LEMMA 12.9. For the spectral triple (T® (), L>(B ® S), Dws; ], Y), the square
of the fluctuated Dirac operator is a generalized Laplacian of the form AF — F, with
E =B ® S (notation as in Theorem m, and we have the following local expres-

sions for the corresponding curvature )y, and the bundle endomorphism F:

1 1.
F= - @ Iy + Ez'y"'yv ® Fuy;
Q= O, @Iy +illy @ Fyy,
where F,, is the curvature of the connection Vf +iad Ay,

As before, this result allows us to compute the bosonic spectral action
for the fluctuated Dirac operator D,,, essentially reducing the computation
in terms of a local trivialization to the trivial case (cf. Example[10.13), with
the following result.

THEOREM 12.10. For the spectral triple (T (8),L?>(B ® S), Dw; ], ), the
spectral action yields the Yang—Mills action for V® + iad A, minimally coupled
to gravity:

Tr (f(Dew/A)) ~ ;4(2)2 /M Tt Fy P, /gdx + N2 /M La(guw)v/3dx,

asymptotically as A — oo and up to terms &< A=2. The Lagrangian L1(g"") is

given by (10.4.8).

12.2.3. Topological spectral action. A natural invariant in this topo-
logically non-trivial context is the topological spectral action, given in Equa-
tion (9.1.2). With Proposition 9.5 we find that, in general,

Stop[w] = f(0) index D,,.
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Hence, in the setting of Theorem [12.10, using the Atiyah-Singer index the-
orem (cf. Note[I8|on Page[07), we find an extra contribution of the form

Stop[w] = (2']7(_51())1)1/2 /MA(M) Ch(%),

in terms of the A-form of M and the Chern character of the algebra bundle
B.

Notes

1. For an exposition of Yang-Mills theory in terms of principal bundle and connections, we
refer to [9, Section 2,3] and [38].

2. This Chapter extends the noncommutative description of Yang-Mills gauge theory of
[59)60] to the topologically non-trivial case; it is based on [41]. For a more general treatment
of topologically non-trivial almost-commutative geometries we refer to [47, 48, 40].

Section 12.1. Spectral triple obtained from an algebra bundle

3. Our approach to locally trivial *-algebra bundles gains in substance with the Serre-
Swan Theorem, establishing a duality between vector bundles over a topological space X
and finite projective modules over C(X) [218,233]. A smooth version was obtained in [80]
(see also [168, Proposition 4.2.1] or [128} Section 2.3]). The fiberwise inner product gives rise
to the hermitian structure found in Proposition A version of the Serre-Swan Theorem
for x-algebra bundles has been obtained in [41].

Section 12.2. Yang-Mills theory as a noncommutative manifold

4. A special case of Proposition[I2.7 occurs when 9B is an endomorphism bundle. It follows
from a result by Dixmier and Douady in [99] (c¢f. [211]) that a bundle B with continu-
ously varying trace is an endomorphism bundle if and only if the Dixmier-Douady class
5(T(B)) € H3(Z) of the C*-algebra of continuous sections I'(B) of this bundle is equal to
zero. Because the Dixmier-Douady class of the bundle B8 vanishes one can lift the PU(N)-
valued transition functions g;; to U(N)-valued functions y;; such that ¢;; = Ad p;;, and
Hijijk = Mik (see for instance [211], Theorem 4.85). One may therefore construct a principal
U(N)-bundle instead of a PU(N)-bundle, to which B is associated if and only if 9B is an
endomorphism bundle.
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CHAPTER 13

The noncommutative geometry of the Standard Model

One of the major applications of noncommutative geometry to physics
has been the derivation of the Standard Model of particle physics from a
suitable almost-commutative manifold. In this Chapter we present this
derivation, using the results of Chapter

13.1. The finite space

Our starting point is the classification of irreducible finite geometries of
KO-dimension 6 from Section based on the matrix algebra My (C) &
MnN(C) for N > 1. We have already seen in Chapter [11| that N = 1 is
the finite geometry corresponding to electrodynamics. We now proceed
and aim for the full Standard Model of particle physics. Let us make the
following two additional requirements on the irreducible finite geometry

(A, HE, DE; Je, vF):
(1) The finite-dimensional Hilbert space Hr carries a symplectic struc-
ture 2 = —1;
(2) the grading r induces a non-trivial grading on A, by mapping
a = YFAYF,

and selects an even subalgebra A®Y C A consisting of elements
that commute with ~yr.

We have already seen in Section[3.4|that the first demand sets A = M;(H) &
My (C), represented on the Hilbert space C2(2)*, The second requirement
sets k > 2; we will take the simplest k = 2 so that Hr = C32. Indeed, this
allows for a yr such that

A® =Hr @ Hp & My(C),
where Hy and H are two copies (referred to as right and left) of the quater-
nions; they are the diagonal of M,(IH) C A. The Hilbert space can then be
decomposed according to the defining representations of A<,

(13.1.1) Hr= (C2oC)aC*aCte (C¥ o CP).

According to this direct sum decomposition, we write

(13.1.2) Dy = @ 2)

185
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FIGURE 13.1. The Krajewski diagram for the finite real
spectral triple (A®Y = Hgr & Hy & M4(C), Hr, Dr; Jr, YF)-
The dashed line corresponds to an ‘off-diagonal” component
of the Dirac operator, thus failing on the first-order condi-
tion. The labels + and — represent the value of the grading
7r on the corresponding summands of Hr.

where
S: (CRaChH®C* — (CRaCi)®C™,
T:(Ck@Ci)®C* —» ' (CR & CD).
This gives rise to the Krajewski diagram of Figure We now make an

additional assumption,
(3) The off-diagonal components T and T* of the Dirac operator in

(13.1.2) are non-zero.

In Figure such an off-diagonal component corresponds to the dashed
line. As this line runs neither vertically, horizontally, or between the same
vertex, it follows from Lemma that the corresponding component of
Dr breaks the first-order condition.

PROPOSITION 13.1. Up to x-automorphisms of A, there is a unique *-
subalgebra Ar C A®Y of maximal dimension that allows T # 0 in (13.1.2). It is
given by

AF = {(6]/\,6], (g 1’?1)) A€ C,q S ]HL,m S M3(C)} C HR@HL@M4(C),

where A — q, is the embedding of C — H, with

A0
n=\o 1)
Consequently, Ap ~ C & H & M3(C).

PROOF. We give a diagrammatic proof. From Figure[13.T} we see that in
order to fulfill the first-order condition, we should bring the dashed line to
run horizontally or vertically, or to begin and start at the same node on the
diagonal. We do so by considering the Krajewski diagrams for subalgebras
Ap C A® which are induced by Figure If T is of rank 1, the only
possibility is to bring the dashed line to the diagonal. In other words, the
subalgebra we are looking for should have a component that is embedded
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diagonally in Hg and M4(C). Such a component can only be C, and the
resulting subalgebra is embedded as

C & M3(C) — Hg b My(C);

A0 A0
= ((o5)(6 m))
This breaks the Krajewski diagram to the diagram of Figure where
the dashed line now connects the two vertices labeled by (1,1°). The other
edges of Figure are now torn apart to the resulting edges in Figure

If T has rank greater than 1, then a similar argument shows that one
obtains a subalgebra of smaller dimension than Ar. O

3° 0 0—o

FIGURE 13.2. The Krajewski diagram of the space F;, de-
scribing the Standard Model.

In order to connect to the physics of the Standard Model, let us intro-
duce an orthonormal basis for Hr that can be recognized as the fermionic
particle content of the Standard Model, and subsequently write the repre-
sentation of Ar in terms of this basis. Starting with the Krajewski diagram
of Figure we let the first three nodes in the top row be represented by
basis vectors {vg,er, (vL,er)} of the so-called lepton space H;, while the
three nodes in the bottom row represent the basis vectors {ug, dg, (ur,dr)}
of the quark space H;. Their reflections with respect to the diagonal rep-
resent are the anti-lepton space H; and the anti-quark space Hz, spanned
by {vr,er, (vL,er)} and {ug,dg, (ur,dL)}, respectively. The three colors of
the quarks are given by a tensor factor C> and when we take into account
three generations of fermions and anti-fermions by tripling the above finite-
dimensional Hilbert space we obtain

Hr := (H; ® H;® H, ® Hy) .

Note that H; = C#, Hy; = C*®C3, H; = C*%, and Hz = C*® C3. An element
a = (A,q,m) € Ar acts on the space of leptons H; as g, @ g, and acts on the
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space of quarks H, as (g) @ q) ® I3. That is,

A0 0O
H, OA 00
a=(Aq,m) = 00 a B |
00-Bw
A0 0O
H, 0OA 00
a=(Agq,m) —> 00 a B ® Is.
00-Bw

For the action of 4 on an anti-lepton | € H; we have al = Allyl, and on an
anti-quark 7 € Hy we have ag = (I3 ® m)g.

The Z,-grading ~yr is such that left-handed particles have eigenvalue
+1 and right-handed particles have eigenvalue —1. The anti-linear op-
erator Jr interchanges particles with their anti-particles, so Jrf = f and
Jrf = f, with f a lepton or quark.

Finally, we write the Dirac operator of in terms of the decom-
position of Hr in particle (HIEB3 @ H§B3) and anti-particles (HT83 S3) ng‘o’). The
operator S will be chosen to be

Sl = S‘H]% =

Sq®l[3 = S‘Hgge»: ® 13,

where Y,, Ye, Y, and Y, are 3 x 3 Yukawa mass matrices acting on the three
generations, and I3 acting on the three colors of the quarks. The symmetric
operator T only acts on the right-handed (anti)neutrinos, so it is given by
Tvr = YRUR, for a certain 3 x 3 symmetric Majorana mass matrix Yy, and
Tf = 0O for all other fermions f # vr. Note that vg here stands for a vector
with 3 components for the number of generations.

Let us summarize what we have obtained so far.

PROPOSITION 13.2. The data
Fsv == (Ar, Hr, DF; JE, 7F)

as given above define a finite real even spectral triple of KO-dimension 6.

13.2. The gauge theory

13.2.1. The gauge group. We shall now describe the gauge theory cor-
responding to the almost-commutative manifold M X Fsy,. In order to de-
termine the gauge group &(Fs,,) of Definition[7.4} let us start by examining
the subalgebra (Ar)j, of the algebra Ar of Proposition as defined in
Section For an element a = (A,q,m) € C®H & M3(C), the relation
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aJr = Jra* now yields A = A =a=aand B = 0, as well as m = All3. So,
a € (Ar)j; if and only if a = (x, x, x) for x € R. Hence we find

(AF>]F ~ R.
Next, let us consider the Lie algebra h(F) = u((Ar),) of ({0.1.1b). Since

u(Ag) consists of the anti-hermitian elements of Ar, we obtain that the
h(F) = u((Ar)};) is given by the trivial subalgebra {0}.

PROPOSITION 13.3. The local gauge group & (Fsy) of the finite space Fsy is
given by

& (Fa) ~ (U(1) x SU(2) x U(3)) /{1, -1},
where {1, —1} is the diagonal normal subgroup in U(1) x SU(2) x U(3).

PROOF. The unitary elements of the algebra form the group U (Af) ~
U(1l) x U(H) x U(3). Now, a quaternion g = qoll + iq101 + iq202 + iq303
is unitary if and only if |g|> = qo> + 12 + 92% + 3> = 1. Using the em-
bedding of H in M,(C), we find |q|*> = det(q) = 1, and this yields the
isomorphism U (H) ~ SU(2). Hence, the unitary group U (AF) is given by
U(1) x SU(2) x U(3). By Proposition[10.2} the gauge group is given by the
quotient of the unitary group with the subgroup $(F) = U ((Ar)}; ), which
is the diagonal normal subgroup

{ﬂ:(l,][z,l[y,)} C U(l) X SU(2) X U(3) U

The gauge group that we obtain here is not the gauge group of the
Standard Model, because (even ignoring the quotient with the finite group
{1, —1}) we have a factor U(3) instead of SU(3). As mentioned in Propo-
sition the unimodularity condition is only satisfied for complex alge-
bras, but in our case, the algebra C & H & M3(C) is only a real algebra.
Therefore, the unimodularity condition is not automatically satisfied. In-
stead, we shall require that the unimodularity condition is satisfied, so for
u=(A,q,m) e U(l) x SU(2) x U(3) we impose

detl, (1) =1 = (Adetm)?=1.

For u € U(1) x SU(2) x U(3), we denote the corresponding element in
& (Fsy) by U = uJuJ . We shall then consider the subgroup

S& (Foy) = {u = uJu] ™ € 8(Foy) | u = (A,q,m), (Adetm)'"” = 1}.

The effect of the unimodularity condition is that the determinant of m €
U(3) is identified (modulo the multiplicative group 12 of 12’th roots of
unity) with A. In other words, imposing the unimodularity condition pro-
vides us, modulo some finite abelian group, with the gauge group U(1) x
SU(2) x SU(3). This agrees with the Standard Model, as even the group
U(1) x SU(2) x SU(3) is actually not the true gauge group of the Stan-
dard Model. Indeed, it contains a finite abelian subgroup (isomorphic
to) ue which acts trivially on all bosonic and fermionic particles in the
Standard Model. The group g is embedded in U(1) x SU(2) x SU(3) by
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A+ (A,A3,A2). The true gauge group of the Standard Model is therefore
given by

Gy i=U(1) x SU(2) x SU(3)/ pte.
PROPOSITION 13.4. The unimodular gauge group S&(Fs),) is isomorphic to

PROOE. Proposition shows that S&(F;) ~ SU(AF)/ua, so we de-
termine SU(AFr). We do so in two steps:

) SU(AF) ~ G x SU(2) x SU(3)/ 3,

where G = {(A, ) € U(1) x U(1) : (Ap?)'? = 1}, containing 3 as the sub-
group {e} X usz, and
(I0) G~ up x U(1).
For (I), consider the map
(A, u,q,m) € GxSU(2) x SU(3) — (A, g, um) € SU(AF).
We claim that this map is surjective and has kernel u3. If (A, q, m) € SU(AF),
then there exists 4 € U(1) such that 4*> = detm € U(1). Since (Ap?)!2 =
(Adetm)'? = 1, the element (A, 11, g, m) lies in the pre-image of (A,q,m).
The kernel of the above map consists of pairs (A, u,q,m) € G x SU(2) x
SU(3) such that A = 1, = 1 and m = u~'l3. Since m € SU(3), this u
satisfies 113 = 1. So we have established (I).
For (IT) we show that the following sequence is split-exact:
1-U(l) > G—up—1,

where the group homomorphisms are givenby A € U(1) — (A3,A71) € G
and (A, u) € G — Au® € u,. Exactness can be easily checked, and the
splitting map is given by A € ujp — (A, 1) € G. In this abelian case, the
corresponding action of yip on U(1) is trivial so that the resulting semi-
direct product is

G~ U(1) x ppp =~ U(1) X up. O
A similar argument shows that the gauge algebra of Definition[7.4)is
g(Fsu) = u(1) ©su(2) S u(3),
and the restriction to traceless matrices gives the gauge algebra of the Stan-

dard Model:
sg(Fsm) >~ u(1) ®su(2) & su(3).
13.2.2. The gauge and scalar fields. As we have seen in more general-

ity in (10.2.7), the gauge field corresponding to F;), takes values in g(Fsy).
We here confirm this result and derive the precise form of the gauge field

A, of (10.2.1)), and also of the scalar field ¢ of (10.2.2).

Take two elements a = (A, g,m) and b = (A, q’,m’) of the algebra A =
C®(CeHa® M3(C)). According to the representation of Ar on Hp, the
inner fluctuations A, = —iad, b decompose as

Ay = —iAdu N
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on Vg,

A = —iAd, A
on eg,

Qu = —iqouq’
on (v, er), and

Vy i= —imd,m'’

acting on Hg; on all other components of Hr the gauge field A, acts as zero.
Imposing the hermiticity A, = A;j implies A, € R, and also automatically
yields A; = —A,. Furthermore, Q, = Qy, implies that Q, is a real-linear
combination of the Pauli matrices, which span isu(2). Finally, the condi-
tion that V; be hermitian yields V,, € iu(3), so V is a U(3) gauge field.
As mentioned above, we need to impose the unimodularity condition to
obtain an SU(3) gauge field. Hence, we require that the trace of the gauge
field A, over Hf vanishes, and we obtain

Trly, (Auls) + Trlpy, (L@ V) =0 = Te(Vy) = —Ay

Therefore, we can define a traceless SU(3) gauge field V,, by V,, := V-
3A,. The gauge field A, is given by

Ay 0 Ay 0O
Auly, =1 0 _AVQ , Auly, = 0 _APQ ® 1,
Z "

— 1
AH‘H7 = Nylly, AV‘Hﬁ =-Le,+ gAy)'

for some U(1) gauge field A, an SU(2) gauge field Q, and an SU(3) gauge

field V),. The action of the field B, = A, — JrA,Jr ! on the fermions is then
given by

0 0
BV»}HZ = 027y ’
Qy - Ay]IZ

(13.2.1)
N4V 0
Byly, = 0 —30ds + Vy ) :
(Qu+ ML)+ ®V,

Note that the coefficients in front of A, in the above formulas are precisely
the well-known hypercharges of the corresponding particles, as given by
the following table:

Particle ‘I/R €RrR VL e, UR dR ur, dL
Hypercharge | 0 -2 -1 -1 § —-% 3 3
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Next, let us turn to the scalar field ¢, which is given by

0Y” 0 X*
(13.2.2) (P‘H, = <Y 0>/ ¢’Hq = (X 0> ®Is, (P‘HT =0, qb‘Hﬁ =0,
where we now have, for complex fields ¢y, ¢»,
Y = <YV¢1 —chp2> X — (Yu4’1 _Yd‘l’z)
YV(PZ Ye(,bl ’ YM(PZ Yd(Pl '
The scalar field @ is then given by

S *
(13.2.3) ©:DP+<§8>+]F<%)3>];:( Jiggb(LSfL(i’))

PROPOSITION 13.5. The action of the gauge group S&(M X Fsy) on the
fluctuated Dirac operator
Dy =Dy@I++" @B, +ym®@P
is implemented by

Ay Ny —iAd, A, Q= qQuq* —igdug*, Vv mV,m* —imd,m*,

p+1\ = (pr+1
<1¢z >H”<l¢z >
for A € C*(M,U(1)), g € C*(M,SU(2)) and m € C=(M, SU(3)).

PROOF. We simply insert the formulas for the fields obtained in (13.2.1)
into the transformations given by (10.2.9). Let us write

u=(A,q,m) € C®(M,U(1) x SU(2) x SU(3)).

The term uwu* replaces Q, by 9Q,q*, and V,, by mV,m*, respectively. We
also see that the term —iud,u* is given by —iAa,,X on vg, ugr and Hj, by
the expression —iXay)\ = i)tayX on eg and dg, by —igd,q* on (vg,er) and
(ur,dr), and, finally, by —imd,m* on Hz. We thus obtain the desired trans-
formation rules for A, Q,, and Vy.

For the transformation of ¢, we separately calculate u¢u* and u[Dp, u*].

Since ¢ = 0 on H; and Hj, we may restrict our calculation of u¢u* to H; and
Hy. On H; we find

« _(gr0 0oY* q}iO o 0 qAY*q*
upu _(Oq)<Y0><0q* S \gYqgy 0 )7

which is still hermitian. We then calculate

A —Bua) \Yvp2 Yo, 0A
_ <AYV(D((P1 + ,sz) /\Ye(é§1 _‘X(Pz)) ]
AYy(—Br + xp2) AYe(ay + Bpy)
A similar computation on H, gives the same transformation for the ¢; and

$2.

Next, let us calculate the second term u[Dp, u*]. The operator T in Dp
only acts on vg, and therefore commutes with the algebra. Upon restricting
to Hy and Hj, the operator S commutes with the algebra. Hence, once again
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we may restrict our calculation to H; and Hy. The term u[S, u*] is uSu* — S
and we compute

* 0 9AY5q"
uSu <L]Yoq/\ 0 ,

where Yy = (% }95) on Hyand Yy = ( 0 19 ) on H,. We find that on Hj,

mai = (558) (52) (39) = (Mo 18

and a similar expression holds on Hj after replacing Y, and Y, by Y, and
Yy, respectively.

Combining the two contributions to the transformation, we find that
the transformation u¢u™ + u[S, u*| maps

o vapl _Ye$ ! YV(P/ _Yeal
B (qubz qul»lz) oY= (ngbi qu;;Z)’

where we defined

¢r = Aapr+ B +a) =1, ¢y := A(—Pp1 + T — B).

Rewriting this in terms of 4 completes the proof. O

Summarizing, the gauge fields derived from F;, take values in the Lie
algebra u(1) @ su(2) @ su(3) and transform according to the usual Stan-
dard Model gauge transformations. The scalar field ¢ transforms as the
Standard Model Higgs field in the defining representation of SU(2), with
hypercharge —1.

13.3. The spectral action

In this section we calculate the spectral action for the almost-commutative
manifold M x Fsy and derive the bosonic part of the Lagrangian of the
Standard Model. The general form of this Lagrangian has already been
calculated for almost-commutative manifolds in Section so we only
need to insert the expressions (13.2.1) and (13.2.3) for the fields ® and B,,.
We start with a few lemmas that capture the rather tedious calculations that
are needed to obtain the traces of F,, F'Y, ®?, ®* and (D, ®)(D'®).

We denote the curvatures of the U(1), SU(2) and SU(3) gauge fields by

Ay = 9y — A,

(13.3.1) Quv = 0,Qy — 3,Qy +i[Qu, Qul,
Vi i = 9, Vy — 8V, + [V, V4.

LEMMA 13.6. The trace of the square of the curvature of B, is given by

10
Try, (FuF") = 24( 3 A A+ Tr(Qu Q™) + Te(Vi VW))
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PROOF. Let us first consider the trace over the lepton sector. Using
(13.2.1), we find that the curvature F,, of B, can be written as

0 O
Pyy — 0 _2A‘HV ,
Hi
va - A],n/]IZ
0 0
Fu| = [02Am ,

! A;WIIZ - (Q) uv

where (Q) v is the curvature of QH' The square of the curvature therefore
becomes

F F*

0 0
— 0 4A][|/A‘uv
Hi QVVQVV + A//WA”VHZ - ZA;WQW

4

Fu F*

0 0
— | 04A,A" e
fr (@) (Q)M + Ay AT, — 2A,, (Q)M

Since Q) is traceless, the cross-term —2A,, Q" drops out after taking the
trace. Note that since Q, is hermitian we have Qﬂ = QZ, and this also holds
for Q,,,. This implies that

Tr ((Q;W)<QW)) =Tr ((va)T(QW)T) =Tr (vaQw)-
Thus, with three generations we obtain
Tryon, (FuwF") = 36 A, A" + 6 Tr(Q,n QM).
For the quark sector, on H,, we obtain the curvature
%/\Wﬂg + Vi 0

Fuly, = 0 — 305 + Vi '
(Qyu + %AvaZ) @I+ 1 ® V;u/

where we have defined the curvature of the SU(3) gauge field by
Vyy = ayVV — a]/Vy + i[VV’ Vv].

A similar expression can be derived on Hj.
If we calculate the trace of the square of the curvature F,,, the cross-
terms again vanish, so we obtain

16 4 1 1
+3Tr(QuQ") +4Tr(V,, V).
We multiply this by a factor of 2 to include the trace over the anti-quarks,
and by a factor of 3 for the number of generations. Adding the result to the
trace over the lepton sector, we finally obtain
Tr(F F") = 80A,y AP + 24 Tr(Q,, Q") + 24 T (V,,, V). O
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LEMMA 13.7. The traces of ®* and ®* are given by
Tr (®?) = 4a|H|* + 2c,
Tr (%) = 4b|H|* + 8e|H|* + 24,
where H denotes the complex doublet (¢1 + 1, ¢2) and
a=Tr (Y, Y, + Y, Y. +3Y, Y, +3Y;Y,),
b=Tr ((Y%)? + (o) 4+ 3(YY,)? +3(Y)Y0)%),
(13.3.2) c=Tr(YzYR),
d=Tr ((YzYr)?),
e=Tr (YRYRY;Y)).
PROOEF. The field ® is given by (13.2.3), and its square equals
o ( (S+@)2+T*T (S+¢)T* + T*(S+4>)) .
TS+¢)+(S+¢)T  (S+¢) +TT

The square of the off-diagonal part yields T*T = TT* = |Yz|? on vg and
VR, and zero on [ # vg,Vg. On the lepton sector of the Hilbert space, the
component S + ¢ is given by

0 Y +Y
S‘L‘P’Hl:(lmryo 0 O)'

We then calculate

2
Xi= (Y40 (Y +Yo) = |HP (0 0,
0 |Yl

where we defined the complex doublet H := (¢1 + 1,¢2). Similarly, we
define X’ := (Y + Y0)(Y + Yp)*, and note that Tr(X) = Tr(X’) by the cyclic
property of the trace. Since X = X* and Tr(X) = Tr(XT), we also have

Tr(X) = Tr(X). Thus, on the lepton sector we obtain
Trp,eH; (@) =Tr(X+ X' + X4+X) +2|Yr?
= 4Tr(X) +2|Yr[* = 4% + [Ye ) [HI* + 2| Yr .
On the quark sector we similarly find
Tenyen, (©7) = 4-3(1Vu* + Ye) | HP?,

leading to the stated formula for Tr(CIDZ).
In order to find the trace of ®*, we calculate

(X +T"T)? = |HJ* <|Y(v)|4 ‘Y(:|4> +2[HP? <’YR‘20|YV‘2 8) n (|Yg|4 8> ‘
We hence obtain
Tryon, (OF) = Tr (4%% +4XT*T +2(T*T)%) + 4/ H[*| Y [*|Y, |?
= 4/ H* (Yo [* + [Yel*) + 8[HP? YR PV * + 2| YR [*

On the quark sector, we obtain a similar result with Y, replaced by Y}, and
Y, by Yj, leaving out the Yg, and including a factor of 3 for the trace in
colour space. O
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LEMMA 13.8. The trace of (D, ®)(D"®) is given by
Tr (D,®)(D"®)) = 4a|D,H|?,

where H denotes the complex doublet (¢p1 4+ 1,¢2), and the covariant derivative
D, on H is defined as

DyH = 8,H +iQ%0"H — iA,H.

PROOF. We need to calculate the commutator [B,,, ®]. We note that B,
commutes with the off-diagonal part of Dr. It is therefore sufficient to cal-
culate the commutator [By, S 4 ¢] on H;. We shall write Q, = Qo' +
Qf, o>+ Q*;’, 0 as a linear combination of Pauli matrices with real coefficients
Q;ﬁ. By direct calculation on the lepton sector, we then obtain

0 0 —Yux; —YuXs

0 0 —Yex2 Yexa
Yox1 Yex 0 0 ’
Yuxo —Yex; O 0

By, S+ lln, =

where we defined the new doublet x = (x1, x2) by

X1 = (@1 +1)(Qp — Ap) +¢2(Q, — Q7).
x2:= (1 +1)(Q) +iQ%) + ¢2(—Q5 — Ap).
We then obtain

Dy(S+¢)|m = 9p¢ +i[By, S + ¢

0 0 Yl(a;l‘l)l - 171) XV(ay‘Pz - i%z)

— 0 9 _Ye(a‘u(PZ + iXZ) Ye(ay(Pl + in)
Yy (aﬂ‘l’l +ix1) _Yff(a&‘l’z - i%z) 0 0
Yy (0up2 +ixa) Ye(9upy —ix;) 0 0

As ¢ commutes with the gauge field V), the corresponding formula for
D, (S + ¢) on the quark sector is identical (after having tensored with I3 in
colour space).

Since we want to calculate the trace of the square of D, ®, it is sufficient
to determine only the terms on the diagonal of (D, ®)(D#®). We find

Trigen, (Du(S+9))(D(S+9))) = 2a(13up1 +ixa P + 13492 + ixal?),
where we have used

as in (13.3.2). The column vector H is given by the complex doublet (¢; +
1, ¢2). We then note that 9 u¢ + ix is equal to the covariant derivative D, H,
so that

Triyon, ((Du(S+9))(D*(S+9))) = 2a|D,HP

The trace over H; & Hj yields exactly the same contribution, so we need to
multiply this by 2, which gives the desired result. O
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PROPOSITION 13.9. The spectral action of the almost-commutative manifold
M x Fsy is given by

Tr Q(%’)) ~ [ LG A Quo Vi H) B+ O(AT),

for the Lagrangian

ﬁ(g‘uv/ Ay/ Qy/ V]u H) = 96£M (g],n/) + ﬁA (Ayr Qy/ Vy) + EH(gyv/ A],t/ Q]u H)/

where L () is defined in Proposition |10.10, L 4 gives the kinetic terms of the
gauge fields as

Ealt Quh) =12 (3

and the Higgs potential Ly (ignoring the boundary term) equals

AWAW + Tr(vaQw) + Tr(Vw/Vy ))

2
ﬁH(g;sz;u Q;MH) = bf( )|H|4 ZHfZATC ef(0) |H|2
2
_Cf;é\ +d4{7§2)+€f;<2 ’H‘Z Czj;(;)z)s Llf( )|D H’2

PROOF. We use the general form of the spectral action of an almost-
commutative manifold as calculated in Proposition and combine it
with the previous Lemmas. The gravitational Lagrangian £y, obtains a
factor 96 from the trace over Hr. From Lemma we immediately find
the term £,4. Combining the formulas of Tr (®?) and Tr (®*) obtained in
Lemma we find the Higgs potential

0)

fzﬂ T(q>2)+J;(7T2Tr(q>4)
_bf(0) —2af, A% +ef(0) cforN?> df(0)
= G W' = P =S

The coupling of the Higgs field to the scalar curvature s is given by

& TI‘(CDZ) af( ) |H|2 f(O)

4872° 1272 2472
where the second term yields a contribution to the Einstein-Hilbert term
J;ZA s of L. Finally, the kinetic term of the Higgs field 1nc1ud1ng minimal
coupling to the gauge fields is obtained from Lemma as
£(0) af(0) 2
WTr ((Du@)(DF®)) = = |D,HI". O

13.3.1. Coupling constants and unification. In Proposition[13.9we cal-
culated the bosonic Lagrangian from the spectral action. We now rescale
the Higgs and gauge fields A, Q,, V), in such a way that their kinetic terms
are properly normalized.

We start with the Higgs field, and require that its kinetic term is nor-
malized as usual, i.e.,

1
/M SIDH /gd*.
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This normalization is evidently achieved by rescaling the Higgs field as

7-[2
(13.3.3) H s /mH.

Next, write the non-abelian gauge fields as Qy, = Q0" and V), = V]i)xi, for
the Gell-Mann matrices A’ and real coefficients V;;. We introduce coupling
constants g1, g» and g3 into the model by rescaling the gauge fields as

1 1 N
Ay = Ele ’ Q;l, = Eng”, V;, = 583(3;-
Using the relations Tr(c%c?) = 26% and Tr(A'A) = 26, we now find
that the Lagrangian £ 4 of Proposition can be written as

(0) (5
LaYy Wy, Gy) = J;nz <§g12YwY’” + g Wi WH + g32GWGV”).
It is natural to require that these kinetic terms are properly normalized, and
this imposes the relations

(13.3.4) fQ o fO > 5/0) 2 1

2m2e% T 22t T em o1 T 4
The coupling constants are then related by

5
(13.3.5) 932 =% = gglz,

which is precisely the relation between the coupling constants at unifica-
tion, common to grand unified theories (GUT). We shall further discuss
this in Section [14.2]

In terms of the rescaled fields, we obtain the following result:

THEOREM 13.10. The spectral action (ignoring topological and boundary
terms) of the almost-commutative manifold M x Fs), is given by

5y — /M (48f4A4 _ chiN? L A0 <Cf(0) _ 4sz2> s 30 (Cuvpo)?

712 72 472 2472 72 10712
1 1 1 ; br?
ZY. YR L WA WHYA L ZGE GV H 4
Hgl g e gt +2:12f(0)| |
_ 2afoaA* — ef(0)

1 1
2, 1 2, 1 2 4

where the covariant derivative D, H is given by
1, 1.
(13.3.6) D,H = d,H + EngWﬁU“H - Elle;,H.

13.3.2. The Higgs mechanism. Writing down a gauge theory with mas-
sive gauge bosons, one encounters the notorious difficulty that the mass
terms of these gauge bosons are not gauge invariant. The Higgs field plays
a central role in obtaining these mass terms within a gauge theory. The
celebrated Higgs mechanism provides a spontaneous breaking of the gauge
symmetry and thus generates mass terms. In this section we describe how
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the Higgs mechanism breaks the U(1) x SU(2) symmetry and introduces
mass terms for some of the gauge bosons of the Standard Model.

In Theorem we obtained the Higgs Lagrangian Ly. If we drop
all the terms that are independent of the Higgs field H, and also ignore the
coupling of the Higgs to the gravitational field, we obtain the Lagrangian

(13.3.7)
br? 2af,A* — ef (0)
Y, W8, H) i= ————|H|* -
E(gw/, Hs W}l’ ) 2a2f(0) ‘ | af(O)
We wish to find the value of H for which this Lagrangian obtains its mini-
mum value.
Hence, we consider the Higgs potential
br? 2af, A% —ef (0)
13.3.8 Lpot(H) 1= s —|H[* —
(1338 P = 520 1 T a0
If 2af,A?> < ef(0), the minimum of this potential is obtained at H = 0,
and in this case there will be no symmetry breaking. Indeed, the minimum
H = 0 is symmetric under the full symmetry group U(1) x SU(2).
We now assume that 2af,A%> > ef(0), so that the potential has the
form depicted in Figure The minimum of the Higgs potential is then
reached if the field H satisfies

1
[HP + 5D, HP.

.

202 f,A* — aef (0)
br? ’

and none such minimum is invariant any more under U(1) x SU(2). The
fields that satisfy this relation are called the vacuum states of the Higgs field.
We choose a vacuum state (v,0), where the vacuum expectation value v is a
real parameter such that v? is given by the right-hand side of (13.3.9). From
the transformation rule of Proposition we see that the vacuum state
(v,0) is still invariant under a subgroup of U(1) x SU(2). This subgroup is
isomorphic to U(1) and is given by

{(Mn _ (g g)) A€ u(1)} C U(1) x SU(2).

Let us simplify the expression for the Higgs potential. First, we note
that the potential only depends on the absolute value |H|. A transfor-
mation of the doublet H by an element (A,q) € U(1) x SU(2) is written
as H — uH with u = Aq a unitary matrix. Since a unitary transforma-
tion preserves absolute values, we see that Lyot(uH) = Lyot(H) for any
u € U(1) x SU(2). We can use this gauge freedom to transform the Higgs
field into a simpler form. Consider elements of SU(2) of the form

5%)

such that |«|? + |82 = 1. The doublet H can in general be written as (/7, hy),
for some hy, hy € C. We then see that we may write

()= G ) (5) = P
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FIGURE 13.3. The potential L,,(H) of (13.3.8) with
2af, A% > ef (0)

which means that we may always use the gauge freedom to write the dou-
blet H in terms of one real parameter. Let us define a new real-valued field
h by setting h(x) := |H(x)| — v. We then obtain

(13.3.10) H = u(x) <v +g(")> , o ulx) = (;(x) _ﬁ(")> .

(x) a(x)

Inserting this transformed Higgs field into the Higgs potential, we obtain
the following expression in terms of the real parameter v and the real field
h(x):

_bf(0)
2772
= 2;;;[?0)(}14 + 4oh® + 60*h* + 4vPh + v*)
 2afy A —ef(0)
af(0)

Using (13.3.9), the value of v? is given by

2 2a%f,A? — aef(0)
br?

We then see that in Lpo the terms linear in / cancel out. This is of course
no surprise, since the change of variables |H(x)| — v + h(x) means that
at h(x) = 0 we are at the minimum of the potential, where the first order
derivative of the potential with respect to & must vanish. We thus obtain
the simplified expression

4 2afrA* — ef (0)

- (v 4 h)?

(v+h)

(h? + 20h + v?).

(13.3.11) Loot(h) = b (h4 t 4ok® 4 40?2 — v4)
oJe pot Zazf(o) .
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We now observe that the field /(x) has acquired a mass term and has two
self-interactions given by h3 and h*. We also have another contribution to

the cosmological constant, given by —v*.

13.3.2.1. Massive gauge bosons. Next, let us consider what this proce-
dure entails for the remainder of the Higgs Lagrangian Ly. We first con-
sider the kinetic term of H, including its minimal coupling to the gauge
fields, given by

1
Loin (Y, Wy, H) := §|DVH|2.

The transformation of is a gauge transformation, and to make sure
that L min is invariant under this transformation, we also need to transform
the gauge fields. The field Y}, is unaffected by the local SU(2)-transformation
u(x). The transformation of W), = Wjc” is obtained from Propositionm
and is given by

0
Wy — uWu* — —luayu*.
by

One then easily checks that we obtain the transformation D, H — uD, H, so
that |D,,H|? is invariant under such transformations. So we can just insert
the doublet (v + h,0) into (13.3.6) and obtain

v+h 1. v+h 1. v+h
D,H =9, < 0 ) + EngWﬁa” < 0 ) — Ezley ( 0 >
_ h 1. 4( 0 1. - » 0
= dy <0> + Ezgzwy <v—|—h> + Ezgzwy (i(v+h))
1. s(v+h 1. v+h
+§zg2Wy < 0 ) - Elle” < 0 )
We can then calculate its square as
|DyH|* = (D"H)" (D, H)
1
= (0"h)(0,h) + ng(v + h)2(WHIW, + WEZ2IWE + WIS
1 ' 1 /
+ Eglz(v +h)*B MY, — Eglgz(v +h)*B “Ws.

Note that the last term yields a mixing of the gauge fields Y;, and WE,’,
parametrized by the electroweak mixing angle 0, defined by

82 81
Va2 + g V&1 + §2°
Note that the relation g»> = 3g;2 for the coupling constants implies that we

obtain the values cos? 6, = % and sin? 6, = % at the electroweak unification
scale Agy. Let us now define new gauge fields by

Cw = CcOS Oy, = Sw = sinf, =

1

— 1 1 TAT2 * . 1 -
W, = ﬁ(wy +iW2), W = T@(Wﬂ —iW3),
(13.3.12) Zy = coW3 — 53y, Al = s, Wo + e Yy,

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom



CHAPTER 13. THE NONCOMMUTATIVE GEOMETRY OF THE
202 STANDARD MODEL

where we have added a prime to A, to distinguish the (photon) field from
the general form of the inner fluctuations in Equation (10.2.I). We now
show that the new fields Z, and Aj, become mass eigenstates. The fields
W}l and Wﬁ were already mass eigenstates, but the fields W, and W are
chosen so that they obtain a definite charge. We can write

1 . , i
VA .

1 *
W) = (Wa — W3),

- SwZ],{,
and inserting this into the expression for | D, H|? yields
(13.3.13)

1 1 1
jDﬂﬂZ:E@Moww)+1@%v+hfwwmg+§giw+h)yzy
Thus, we see that the fields W, W; and Z, acquire a mass term (where Z,
has a larger mass than W, W) and that the fields Aj, are massless. The

(tree-level) masses of the W-boson and Z-boson are evidently given b
Y& y

1 1 gz
13.3.14 = -
(13.3.14) My 5082/ My = 2V

13.4. The fermionic action

In order to obtain the full Lagrangian for the Standard Model, we also
need to calculate the fermionic action Sy of Definition First, let us have
a closer look at the fermionic particle fields and their interactions.

. . —Ac
By an abuse of notation, let us write vA 7 er e ute whe dhe, d for

a set of independent Dirac spinors. We then write a generic Grassmann
vector ¢ € H as follows:

= o} +1he+Th v} +7t @)

tel el fep@ey+er@el +2 @ek

+ 1 @ Ul + U @ Uy + U @ u + W @ uf

+d) @di +df @ dY +dy ©d +d) @ dY,
where in each tensor product it should be clear that the first component is
a Weyl spinor, and the second component is a basis element of Hr. Here
A = 1,2,3 labels the generation of the fermions, and ¢ = r, g, b labels the
color index of the quarks.

Let us have a closer look at the gauge fields of the electroweak sector.
For the physical gauge fields of (13.3.12) we can write

Qy + le \ng 1224 Q - ZQZ \/*gZW*/
ol 1 , 1sy gz
Q- = 20, 2 Ay = sugaly = 5= = 2w

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom



203 13.4. THE FERMIONIC ACTION

— Q% Ay = —su@AlL + 22 (1-20,7)Z,,

2Cy
13.4.1 QP+ 1A, = ZoumAl — 82 (1-4c,2)z
(13.4.1) p gt T gted2 g Cw™) ops
1 1
3 A A/ 82 2y
Qy g K gsng 14 6Cw(1 zcw) M

Here we have rescaled the Higgs field in (13.3.3), so we can write H =

7Vanf(o) (¢1 + 1, ¢2). We parametrize the Higgs field as
H=(v+h+i¢%ivV2p~),

where ¢° is real and ¢~ is complex. We write ¢ for the complex conjugate
of ¢~. Thus, we can write

7T

af(0)

(13.4.2) (pr41,¢2) = (04 h+i¢°,ivV2¢7).

As in Remark we will need to impose a further restriction on
the mass matrices in D, in order to obtain physical mass terms in the
fermionic action. From here on, we will require that the matrices Y, are
anti-hermitian, for x = v, ¢, u,d. We then define the hermitian mass matri-
ces m, by writing

(13.4.3) Y, =: —i@mx.

a
T

Similarly, we also take Yg to be anti-hermitian, and we introduce a hermit-
ian (and symmetric) Majorana mass matrix mg by writing

(13.4.4) YR = —imR.

THEOREM 13.11. The fermionic action of the almost-commutative manifold
M x Fs) is given by

Se= [ (Lint Loy + Lug + Lr) V3,

where, suppressing all generation and color indices, the kinetic terms of the fermions
are given by
Liin := —1{Jm¥, v*Viv) — i{Jme, 7' Vye)
— i{Jmit, V) — i{ud, v Vi),
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the minimal coupling of the gauge fields to the fermions is given by

Loy = suga Ay, ( = (nE 7e) + 3, 7"u) — §(Jmd, 7d) )
&2

+ 4cy

Z, (a7 (U vaa)v) + g, 7 (s = 1= ya)e)
+ (Imitt, Y (=850 + 1+ yum)u)
+ (Imd, v (350" — 1 — 'YM)d>>

+ W (42,70 o)) + (L i)

n ;;EW;(UMV/'YVO +yme) + (Jmi, (1 +’)’M)d>>

83 i o i
+5 Gy ((]Mu, YAiu) + (Jmd, WV/\id>),
the Yukawa couplings of the Higgs field to the fermions are given by
, h _ _
Lyp =i <1 + v) (<]M1/, myv) + (Jme, mee)

+ (Jmit, myu) + (Jud, mdd>>
(PO
+ ?(UMV, Ymmyv) — (e, ypmmee)

+ <]Mﬁ/ ’)’Mmuu> - <]Ma, 'medd>)

+ \qbfz_ (a2 me (1 + 7a0)v) = (agemy (1= yaa)v) )

J’_

+ N (<]Mv, my (1 4+ ym)e) — (Jmv, me(1 — 7M)€>)
I \4’[20 (<]ME, ma(1+ym)u) — (Jmd, my (1 — m)u>)
i 4’;} ((]Mﬁ, my (14 ya)d) — (Jmit, ma(1 — 'YM)d>>f

and, finally, the Majorana masses of the right-handed neutrinos (and left-handed
anti-neutrinos) are given by

ER = i<]M1/R, mRVR> + l<]MVL/ mRiL>‘

PROOE. The proof is similar to Proposition[I1.7} though the calculations
are now a little more complicated. From Definition [9.3) we know that the

fermionic action is given by Sp = %(](’f, Dwg ), where the fluctuated Dirac
operator is given by

DWIDM®1+’YV®BH+’)/M®(D.

We rewrite the inner product on # as (&, ) = [,,(Z, ¥),/gd*x. As in Propo-

sition the expressions for J& = (Jy1 ® Jr)& and (Dy ® 1)¢ are obtained
straightforwardly. Using the symmetry of the form (Jy X, Dmy), and then
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we obtain the kinetic terms as
1, = = _ _
7(]6/ (DM 02y 1)§> = <]MVA/ DMV/\> + <]M€A, DM6A>
2

+ (JpI, Dygt™€) + (Jud <, Dpd™€).

The other two terms in the fluctuated Dirac operator yield more compli-

cated expressions. For the calculation of (y# ® By)g, we use (13.2.1) for the
gauge field B, and insert the expressions of (13.4). As in Proposition [11.7,

we then use the antisymmetry of the form (Jarx, 7#¢). For the coupling of
the fermions to the gauge fields, a direct calculation then yields

1 ~ ~
SUE (1 @ B)E) =
swg2 Ay, ( — (Jme*, y'et) + 5 (e, yrutc) — %UMEAC, ’Y”dM>)
- sz Zu (M7 7" (1) + (e, 7" (5% =1 = ya)e?)
w
+ (i, (= Bs0® + 1+ yu)u')
+ (Jud 7 (3507 = 1 = an)d™))
82 SA A H A FAC u Ac
+ 5 (2 (L )+ e 91+ )
82y (1w At A TTiAa Ac
+ W (U 2 (L)) O (1 ™) )
+ B G ((nat™, A1u) + (Jaad  71d)),

where in the weak interactions the projection operator (1 + ) is used to
select only the left-handed spinors.

Next, we need to calculate 1(J&, (v ® ®)¢). The Higgs field is given

by ® = Dr + ¢ + JrpJf, where ¢ is given by (13.2.2). Let us first focus
on the four terms involving only the Yukawa couplings for the neutrinos.

Using the symmetry of the form (JyX, Ym$), we obtain

1 _ 1 _
5 Mk, Y (1 + Dvg) + 5 mvi, TMY (@1 4+ 1)V%)
1 _ —AK ,— 1 —KA — _
+ QUMV'Z: Yy (@ + 1)) + Q(IMVfﬂMY: (¢, + 1)17)

= TV, Y Y (1 + VVR) + (s, v Yy (B + 1)v).

Using (13.4.2) and (13.4.3), and dropping the generation labels, we can now
rewrite

(JmVR, YMYo (@1 + 1)VR) 4+ (JmVL, Ym Yo (P + 1)vr)
0
=1 (1 + Z) (Jmv, myv) — %(]MU, YMMyV).

For e, u,d we obtain similar terms, the only difference being that for e and
d the sign for ¢° is changed. We also find terms that mix neutrino’s and

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




CHAPTER 13. THE NONCOMMUTATIVE GEOMETRY OF THE
206 STANDARD MODEL

electrons; by the symmetry of the form (JuX, Ym), these are given by the
four terms

\f (4’7 (Jmer, meve) + ¢ (Jmvr, myer)

— ¢ (Jmer, myvr) — " (JmVr, me€R>>.
There are four similar terms with v and e replaced by u and d, respectively.
We can use the projection operators 1 (1 = ) to select left- or right-handed
spinors. Lastly, the off-diagonal part T in the finite Dirac operator Dr yields

the Majorana mass terms for the right-handed neutrinos (and left-handed
anti-neutrinos). Using (13.4.4), these Majorana mass terms are given by

(JMmVR, YMYRVR) + (JMVL, YMYRVL) = i(JmVR, MRVR) + i{JMVL, MRVL).

Thus, we find that the mass terms of the fermions and their couplings to
the Higgs field are given by

(JE (vm @ @)E) =

< > MV/ ml/v> + <]ME/ m€e> + <]MH/ muu> + <]MEI 7’}’1dd>)

+ % <<]Mv Ymmyv) — (Jme, ymmee) + (i, yamun) — (Imd, ’)’Mmdd>)
T (U2 e )v) = i (1= a)v))
+ j;v ((]MV, my(1+ym)e) — (Jmv, me(1 — 'YM)€>>

D (a1 a0)0) — (T, (1= )

5o

<<]MM my (14 ym)d) — (Jmtt, mg(1 — ’YM)d>)

+ l<]M1/R, mRVR) + i(JMVL, MRVL),

where we have suppressed all indices. O

In Theorem [13.10] and Theorem [13.11] we have calculated the action
functional of Definitions [9.1] and 9.3] for the almost-commutative manifold
M x Fs) defined in this Chapter. To summarize, we have geometrically
derived:

(1) The full particle contents of the Standard Model, to wit,

e the W, Z bosons, photons, and gluons, corresponding to the

U(1) x SU(2) x SU(3) Standard Model gauge group.

e the Higgs boson.

e three generations of left and right-handed leptons and quarks.
(2) The dynamics and all interactions of the Standard Model, includ-

ing
e self-interactions of the gauge bosons, and coupling to fermions

NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




207 13.4. NOTES

e masses for the fermions, including masses for the neutrinos,
and coupling to the Higgs field
e Higgs spontaneous symmetry breaking mechanism, giving masses
to the W and Z boson, and also to the Higgs boson itself.
(3) Minimal coupling to gravity.
In addition to the usual Standard Model, there are relations between
the coupling constants in the Lagrangian of Theorem In the next
Chapter, we will analyze this in more detail and derive physical predictions
from these relations.

Notes
1. For an exposition of the Standard Model of particle physics, we refer to [93,[157].

Section 13.1. The finite space

2. The first description of the finite space Fsy, yielding the Standard Model (without right-
handed neutrinos though) was given by Connes in [82], based on [78, [92] (see also the
review [185]). As already mentioned in the Notes to Chapter[J] the spectral action principle
was formulated in [59} [60] where it was also applied to the Standard Model. Extensive
computations on this model can be found in [217].

In [65] the noncommutative geometric formulation of the Standard Model got in good
shape, mainly because of the choice for the finite space to be of KO-dimension 6 [23, [89].
This solved the problem of fermion doubling pointed out in [177] (see also the discussion
in [86, Ch. 1, Sect. 16.3]), and at the same time allowed for the introduction of Majorana
masses for right-handed neutrinos, along with the seesaw mechanism. Here, we follow
[L07].

The derivation of the Standard Model algebra Ar from the list of finite irreducible
geometries of Sectionwas first obtained in [62], This includes Propositionof which
we here give an alternative, diagrammatic proof.

The moduli space of Dirac operators Dr of the form was analyzed in [65] Sec-
tion 2.7] (cf. [86) Section 1.13.5]) and in [50].

Section 13.2. The gauge theory

3. The condition of unimodularity was imposed in the context of the Standard Model in
[65, Sect. 2.5] (see also [86, Ch. 1, Sect. 13.3]). The derivation of the hypercharges from
the unimodularity condition is closely related to the equivalence between unimodularity in
the almost-commutative Standard Model and anomaly cancellation for the usual Standard
Model [3].

4. Propositionagrees with [65, Prop. 2.16] (see also [86] Prop. 1.185]). For the derivation
of the Standard Model gauge group &g, we refer to [21].

Section 13.3. The spectral action

5. The coefficients a, b, ¢, d and e in Lemma([I3.7 agree with those appearing in [65] (see also
[86) Ch. 1, Sect. 15.2]).

6. The Higgs mechanism is attributed to Englert, Brout and Higgs [112}[137].

7. The form of the Higgs field in that is obtained after a suitable change of basis is
called unitary gauge and was introduced by Weinberg in [245} 246] (see also [247, Chapter
21]).
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CHAPTER 14

Phenomenology of the noncommutative Standard
Model

In Theorem [13.10| and Theorem [13.11, we have derived the full La-
grangian for the Standard Model from the almost-commutative manifold
M x Fsy. The coefficients in this Lagrangian are given in terms of:

e the value f(0) and the moments f, and f; of the function f in the
spectral action;

e the cut-off scale A in the spectral action;

e the vacuum expectation value v of the Higgs field;

e the coefficients a, b, ¢, d, e of that are determined by the mass
matrices in the finite Dirac operator Dr.

One can find several relations among these coefficients in the Lagrangian,
which we shall derive in the following section. Inspired by the relation
93> = g% = 3¢1% obtained from (13.34), we will assume that these re-
lations hold at the unification scale. Subsequently, we use the renormal-
ization group equations to obtain predictions for the Standard Model at
‘lower’ (i.e. particle accelerator) energies.

14.1. Mass relations

14.1.1. Fermion masses. Recall from (13.4.3) that we defined the mass
matrices m, of the fermions by rewriting the matrices Y, in the finite Dirac
operator Dr. Inserting the formula (13.4.3) for Y, into the expression for a

given by (13.3.2), we obtain
f(0)

a
7202

Tr (mymy, + myme + 3mymy, + 3mymg),

which yields

20?

£0)°
From (13.3.14) we know that the mass of the W-boson is given by My =

3vg,. Using the normalization (I3.34), expressing g» in terms of f(0), we
can then write
2,2

(14.1.1) £(0) = 87;4;2.

Inserting this into the expression above, we obtain a relation between the
fermion mass matrices m, and the W-boson mass My, viz.

Tr (mjmy, + mime + 3mymy, + 3mimg) =

(14.1.2) Tr (mjmy, + mime + 3mim, + 3mimy) = 2g,*0* = 8Mp?.

209



CHAPTER 14. PHENOMENOLOGY OF THE NONCOMMUTATIVE
210 STANDARD MODEL

If we assume that the mass of the top quark is much larger than all other
fermion masses, we may neglect the other fermion masses. In that case, the
above relation would yield the constraint

8
(14.1.3) My S ng-

14.1.2. The Higgs mass. We obtain a mass m;, for the Higgs boson / by
writing the term proportional to h? in (I3.3.11) in the form

br? 1
40212 — — i, 212
242 (0) v°h thh
Thus, the Higgs mass is given by

my, — 271/ bo .
a+/f(0)

Inserting (14.1.1) into this expression for the Higgs mass, we see that My
and my, are related by

(14.1.4)

b
my? = 32;MW2.

Next, we introduce the quartic Higgs coupling constant A by writing

b, 1.4
mh —. ﬂA—h .
From (13.3.4) we then find
b
(14.1.5) A= 24a—2g22,

so that the (tree-level) Higgs mass can be expressed in terms of the mass
My of the W-boson, the coupling constant g, and the quartic Higgs cou-
pling A as

AAMp?
14.1. 2 — .
( 6) my 3g22

14.1.3. The seesaw mechanism. Let us consider the mass terms for
the neutrinos. The matrix Dr described in Section provides the Dirac
masses as well as the Majorana masses of the fermions. After a rescaling
as in (13.4.3), the mass matrix restricted to the subspace of Hr with basis
{vL, VR, VL, VR } is given by

Suppose we consider only one generation, so that m, and mp are just scalars.
The eigenvalues of the above mass matrix are then given by

1 1
iEmR + E\/mRZ + 4m,2.
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If we assume that m, < mp, then these eigenvalues are approximated by

+mpg and :I:";;R2 This means that there is a heavy neutrino, for which the
Dirac mass m, may be neglected, so that its mass is given by the Majorana

mass mg. However, there is also a light neutrino, for which the Dirac and
Majorana terms conspire to yield a mass ’Z—VRZ, which is in fact much smaller
than the Dirac mass m,. This is called the seesaw mechanism. Thus, even
though the observed masses for these neutrinos may be very small, they
might still have large Dirac masses (or Yukawa couplings).

From we obtained a relation between the masses of the top
quark and the W-boson by neglecting all other fermion masses. However,
because of the seesaw mechanism it might be that one of the neutrinos has
a Dirac mass of the same order of magnitude as the top quark. In that case,
it would not be justified to neglect all other fermion masses, but instead we
need to correct for such massive neutrinos.

Let us introduce a new parameter p (typically taken to be of order 1)
for the ratio between the Dirac mass m, for the tau-neutrino and the mass
my,, of the top quark at unification scale, so we write m, = pm,,,. Instead of
(14.1.3), we then obtain the restriction

8
3+p?

(14.1.7) Moy < M.

14.2. Renormalization group flow

In this section we evaluate the renormalization group equations (RGEs)
for the Standard Model from ordinary energies up to the unification scale.
For the validity of these RGEs we need to assume the existence of a ‘big
desert’ up to the grand unification scale. This means that one assumes that:

o there exist no new particles (besides the known Standard Model
particles) with a mass below the unification scale;

e perturbative quantum field theory remains valid throughout the
big desert.

Furthermore, we also ignore any gravitational contributions to the renor-
malization group flow.

14.2.1. Coupling constants. In we introduced the coupling con-
stants for the gauge fields, and we obtained the relation ¢3> = ¢,> = % g12.
This is precisely the relation between the coupling constants at (grand) uni-
fication, common to grand unified theories (GUT). Thus, it would be nat-
ural to assume that our model is defined at the scale Ag;r. However, it
turns out that there is no scale at which the relation g3 = g2 = % ¢1% holds
exactly, as we show below.

The renormalization group B-functions of the (minimal) standard model

read
dgi 1 s B _41 19
E—_16 zblgil (bl/b2/b3) ( 6’ 6’7>’

where t = logu. At first order, these equations are uncoupled from all
other parameters of the Standard Model, and the solutions for the running
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coupling constants g;(y) at the energy scale y are easily seen to satisfy

e

My’

where My is the experimental mass of the Z-boson:
Mz = 91.1876 + 0.0021 GeV.

For later convenience, we also recall that the experimental mass of the W-
boson is

(14.2.2) My = 80.399 & 0.023 GeV.

The experimental values of the coupling constants at the energy scale Mz
are known too, and are given by

_ _ b;
(14.2.1) 8i(m) 7 =gi(Mz)* + 82 108

(14.2.3) g1(Mz) = 0.3575 £ 0.0001,
(14.2.4) 92(Mz) = 0.6519 + 0.0002,
(14.2.5) ¢3(Myz) = 1.220 + 0.004.

Using these experimental values, we obtain the running of the coupling
constants in Figure[I4.1] As can be seen in this figure, the running coupling
constants do not meet at any single point, and hence they do not determine
a unique unification scale A¢yr. In other words, the relation g32 = g22 =
% €12 cannot hold exactly at any energy scale, unless we drop the big desert
hypothesis. Nevertheless, in the remainder of this section we assume that
this relation holds at least approximately and we will come back to this
point in the next section. We consider the range for A¢,r determined by
the triangle of the running coupling constants in Figure The scale A1

at the intersection of \/g g1 and g» determines the lowest value for Acyr,
given by
(14.2.6)
261(Mz) % — g2(Mz)?)
581\ Mz $2(Mz

by — 2by
The highest value A3 is given by the solution of g» = g3, which yields
(14.2.7)

A23 = MZ exp (

8 2
A1z = Mz exp ( Gl ) = 1.03 x 1013 GeV.

87 (83(Mz) % — g2(Mz)?)
by — b3

We assume that the Lagrangian we have derived from the almost-commutative

manifold M x E, is valid at some scale A7, which we take to be between

A1 and Ajz. All relations obtained in Figure are assumed to hold ap-

proximately at this scale, and all predictions that will follow from these

relations are therefore also only approximate.

) =9.92 x 10'® GeV.

14.2.2. Renormalization group equations. The running of the neutrino
masses has been studied in a general setting for non-degenerate seesaw
scales. In what follows we consider the case where only the tau-neutrino
has a large Dirac mass m,, which cannot be neglected with respect to the
mass of the top-quark. In the remainder of this section we calculate the
running of the Yukawa couplings for the top-quark and the tau-neutrino,
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— 53 a1 |]

gauge couplings

5 10 15
logy, (1/GeV)

FIGURE 14.1. The running of the gauge coupling constants.

as well as the running of the quartic Higgs coupling. Let us write y,,, and
yv for the Yukawa couplings of the top quark and the tau-neutrino, defined

by
1 N 1 V2
(14.2.8) Mygp = 5 2Y0p0, my, = 5 2y,0,

where v is the vacuum expectation value of the Higgs field.

Let mg be the Majorana mass for the right-handed tau-neutrino. By the
Appelquist-Carazzone decoupling theorem (cf. Note[5|on Page[219) we can
distinguish two energy domains: > mg and y < mg. We again neglect
all fermion masses except for the top quark and the tau neutrino. For high
energies y > mg, the renormalization group equations are given by

dy,, 1 /9 17 , 9
= T <2yip Y~ 81 482 - 8g§) Yoo

d 1 5 3 9
(14.2.9) sl/tl/ ~ 1672 <3yip + Eyg - Zg% - 4g§> Yv,

A1 [ R S
dt — 16m? <4A — (381° + 952 )/\+;l(g1 +281°82" +3%2%)

+4(3yZ, +y)A — 12(3y,, + yv4)> )

Below the threshold p = mpg, the Yukawa coupling of the tau-neutrino
drops out of the RG equations and is replaced by an effective coupling

2
K= 2yL,
mpg
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which provides an effective mass m; = }xv? for the light tau-neutrino. The
renormalization group equations of y,,, and A for 4 < mp are then given by

By 1 (9, 17, 9
= T2 <2yip — 81 18 8g§> Yioes

1
dt 1612

9
(14.2.10) (4)8 — (3812 +99%)A + 1 (1* + 291222 +390%)

+ 1224 — 36yﬁ)p> :

Finally, the equation for vy, is replaced by an equation for the effective cou-
pling x given by

de 1 2 A
E = 16772 <6ymp_382 +6> K.

14.2.3. Running masses. The numerical solutions to the coupled dif-
ferential equations of (14.2.9) (14.2.10) and (14.2.11) for v, yv and A de-
pend on the choice of three input parameters:

(14.2.11)

e the scale Ag,r at which our model is defined;

e the ratio p between the masses m, and m,,;

e the Majorana mass mpg that produces the threshold in the renor-
malization group flow.

The scale Agyr is taken to be either Aj, = 1.03 x 10" GeV or Ay =
9.92 x 10' GeV, as given by ([14.2.6) and (142.7), respectively. We now
determine the numerical solution to (14.2.9), (14.2.10) and for a
range of values for p and mp. First, we need to start with the initial condi-
tions of the running parameters at the scale A¢yr. Inserting the top-quark
mass My, = %\/Eympv, the tau-neutrino mass m, = pm,,,, and the W-boson

mass My = % gov into (14.1.7), we obtain the constraints

2 2
ytop<AGUT) 5 ﬁé’z(/\cur); ]/v(Acur) 5 \/3:)—7[02(?2(/\(;“)’
where (14.2.1)) yields the values g2(A12) = 0.5444 and g2(A»3) = 0.5170.
Furthermore, from (14.1.5) we obtain an expression for the quartic cou-
pling A at Agyr. Approximating the coefficients a and b from (13.3.2) by
a~ (34 p*)m, and b~ (3 + p*)m;, we obtain the boundary condition

top”/

3+p*

(3_|_52)28 2 (AGUT)2~

Using these boundary conditions, we can now numerically solve the RG
equations of (14.2.9) from A¢,r down to mg, which provides us with values
for ¥, (mR), yv(mg) and A(mg). At this point, the Yukawa coupling y, is
replaced by the effective coupling x with boundary condition

A(Acur) ~ 24

(mg) = 2%’<mm]f)2.

Next, we numerically solve the RG equations of (14.2.10) and (14.2.11) down
to Mz to obtain the values for y,,,, x and A at ‘low” energy scales.
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Agyr (108 GeV) | 1.03 1.03 1.03 103 1.03 103 1.03
0 0 090 090 100 100 1.10 1.10
mg (1013 GeV) — 025 103 030 103 035 1.03
Mygp (GeV) 183.2 1739 1741 1719 1721 1699 170.1
my (eV) 0 2.084 05037 2.076 0.6030 2.080 0.7058
my, (GeV) 188.3 1755 175.7 1734 173.7 1715 171.8
Acur (101 GeV) | 992 992 992 9.92 9.92
Y 0 1.10 1.10 1.20 1.20
mpg (1013 GeV) — 0.30 2.0 0.35 9900
Moy (GeV) 186.0 1739 1742 171.9 173.5
m; (eV) 0 1939 02917 1.897 6.889 x 1073
my, (GeV) 188.1 171.3 171.6 169.1 171.2
Acur (101 GeV) | 9.92 9.92 9.92 9.92
0 1.30 1.30 1.35 1.35
mg (1013 GeV) 0.40 9900 100 9900
Moy (GeV) 169.9 171.6 169.8 170.6
m; (eV) 1.866 7.818 x 107> 8.056 x 1072 8.286 x 10>
my, (GeV) 167.1 169.3 167.4 168.4

TABLE 14.1. Numerical results for the masses m,,, of the

top-quark, m; of the light tau-neutrino, and my, of the Higgs
boson, as a function of A¢yr, p, and mg.

The running mass of the top quark at these energies is given by (14.2.8).
We find the running Higgs mass by inserting A into (14.1.6). We shall eval-
uate these running masses at their own energy scale. For instance, our
predicted mass for the Higgs boson is the solution for u of the equation
i = /A(u)/3v, in which we ignore the running of the vacuum expecta-
tion value v.

The effective mass of the light neutrino is determined by the effective
coupling x, and we choose to evaluate this mass at scale Mz. Thus, we
calculate the masses by

1
mtop(mtop) - E\/Eytop(mtop)v,

my (M) = EK(MZ)UZ,
() =\ 2,

where, from the W-boson mass we can insert the value v = 246.66 +
0.15. The results of this procedure for m,,,, m; and mj, are given in Table
In this table, we have chosen the range of values for p and mpg such
that the mass of the top-quark and the light tau-neutrino are in agreement
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FIGURE 14.2. The running of the quartic Higgs coupling
A for Agur = 9.92 x 10 GeV, p = 1.2, and mg = 3 X
102 GeV.

with their experimental values
My = 172.0+£0.9 £ 1.3 GeV, m; < 2eV.

For comparison, we have also included the simple case where we ignore
the Yukawa coupling of the tau-neutrino (by setting p = 0), in which case
there is no threshold at the Majorana mass scale either. As an example, we
have plotted the running of A, y..,, ¥ and « for the values of Agyr = Aoz =
9.92 x 10'° GeV, p = 1.2, and mg = 3 x 10'2 GeV in Figures[14.2}[14.3] [14.4]
and [14.5

For the allowed range of values for p and mp that yield plausible results
for m,, and m,;, we see that the mass m), of the Higgs boson takes its value
within the range

167 GeV < my <176 GeV.

The errors in this prediction, which result from the initial conditions (other
than m,,, and m;) taken from experiment, as well as from ignoring higher-
loop corrections to the RGEs, are smaller than this range of possible values
for the Higgs mass, and therefore we may ignore these errors.

14.2.4. Higgs mass: comparison to experimental results. Since the dis-
covery of the Higgs boson at the ATLAS and CMS experiments at the Large
Hadron Collider at CERN in 2012 we also know with increasing accuracy
that the experimental value for the Higgs mass is around m;, ~ 125.5GeV.
Strictly speaking, this is a falsification of the noncommutative Standard
Model since it evidently lies outside of the above predicted range. In fact,
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FIGURE 14.3. The running of the top-quark Yukawa cou-
pling Y, for Agur = 9.92 x 10'® GeV, p = 1.2, and mg =
3 x 102 GeV.
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FIGURE 14.4. The running of the tau-neutrino Yukawa cou-
pling v, for Acyr = 9.92 x 10 GeV, p = 1.2, and mg =
3 x 102 GeV.
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FIGURE 14.5. The running of the effective coupling x for
Acur = 9.92 x 10'° GeV, p = 1.2, and mp = 3 x 10'2 GeV.
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FIGURE 14.6. Observed and expected exclusion limits for a
Standard Model Higgs boson at the 95-percent confidence
level for the combined CDF and DZero analyses. (Fermilab)
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ironically enough, the above range was among the first to be excluded by
Fermilab’s DO experiment (see Figure [14.6).

As usual, in the derivation of the model and the renormalization group
equation several assumptions were made and simplifications were applied,
so that it is important to look back at them. And indeed, lifting the cur-
tain slightly for what is to come, in the next Chapter we will see that the
reduction in Proposition from the irreducible finite geometry of KO-
dimension 6 based on M,(H) & M4(C) to the Standard Model based on
C & H & M3(C) may not be necessary nor desired. As we will see, the ir-
reducible geometry describes a Pati-Salam gauge model that goes Beyond
the Standard Model and allows for a Higgs mass that is compatible with the
observed value. Moreover, this will solve the incompatibility between the
grand unification of the gauge couplings suggested by the spectral model
in Equation and the existence of a GUT-triangle in Figure

Notes

1. In the first part of this Chapter, we mainly follow [65 Section 5] (see also [86, Ch. 1,
Section 17]). In Section we have also incorporated the running of the neutrino masses
as in [150] (see also [107]).

Section 14.1. Mass relations

2. Further details on the see-saw mechanism can be found in e.g. [194].

Section 14.2. Renormalization group flow

3. The renormalization group B-functions of the (minimal) standard model are taken from
[181) 182} 183] and [118]. We simplify the expressions by ignoring the 2-loop contribu-
tions, and instead consider only the 1-loop approximation. The renormalization group p-
functions are [181} Eq. (B.2)] or [118} Eq. (A.1)]).

4. The experimental masses of the Z and W-boson and the top quark, as well as the experi-
mental values of the coupling constants at the energy scale M  are found in [198].

5.In arriving at we have followed the approach of [150] where two energy domains
are considered: y > mpg and y < mg. The Appelquist-Carazzone decoupling theorem
is found in [6]. For the renormalization group equations, we refer to [182, Eq. (B.4)], [5
Eq. (14) and (15)] and [183} Eq. (B.3)].

6. The discovery of the Higgs boson at the ATLAS and CMS experiments is published in
[ 72].

7. In Chapters [14] and [15| we exploit renormalization group techniques to run couplings
and masses down from the GUT-scale to ordinary energies. The renormalization group
equations were derived in a perturbative approach to quantum field theory, which was
supposed to be valid at all scales. Moreover, we have adopted the one-loop beta-functions,
something which can definitely be improved. Even though this might lead to more accurate
predictions, it is not expected to resolve the incompatibility between the predicted range for
my, and the experimentally measured value.

In our analysis we have discarded all possible gravitational effects on the running of
the couplings constants. It might very well be that gravitational correction terms alter the
predicted values to a more realistic value. A possible approach to incorporate gravitational
effects in the running of the coupling constants is discussed in [115].
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CHAPTER 15

Beyond the Standard Model: Pati—-Salam unification

One of the pressing questions at this point is whether noncommuta-
tive geometry may point to new physics beyond the Standard Model. The
success of the spectral construction of the Standard Model, predicting its
particle content, including gauge fields, Higgs fields as well as a singlet
whose vev gives Majorana mass to the right handed neutrino, is a strong
signal that we are on the right track. However, the mismatch between the
predicted range of the Higgs mass and the experimentally observed value
suggests that we should reconsider the path we took.

15.1. The finite noncommutative space of the Pati-Salam model

Recall from Section that the route that led to the above conclusion
starts with the simplest irreducible geometry that allows for a symplectic
constraint (condition[I|on Page[l). It was based on the algebra

(15.1.1) A := My(H) & My(C).

The existence of the chirality operator  that commutes with the algebra
breaks the quaternionic matrices M;(IH) to the diagonal subalgebra and
leads us to consider the finite algebra

(15.1.2) Aps :=Hr ®H & M4(C).

In view of this structure, a convenient tensorial representation of our
Hilbert space vectors ¥ in Hr (cf. Equation (13.1.1)) is given by

(15.1.3) ¥ = ( :/Ijj > Ya =P

where ¢S is the conjugate vector to 4. Thus all primed indices A’ corre-
spond to the Hilbert space of conjugate vectors. It is acted on by both the
left algebra M, (H) and the right algebra My (C). Therefore the index A
can take 16 values and is represented by

(15.1.4) A=al

where the index « is acted on by quaternionic matrices and the index I by
M, (C) matrices. Moreover, when the grading breaks M, (IH) into Hg &
H| the index a is decomposed to & = a,a where a = 1,2 (dotted index) is
acted on by the first quaternionic algebra IHgr and a = 1,2 is acted on by
the second quaternionic algebra Hy. When My (C) breaks into C & M3 (C)
(due to symmetry breaking or through the use of the order one condition
as in Proposition the index I is decomposed into I = 1,i and thus
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distinguishing leptons and quarks, where the 1 is acted on by the C and the
i by M3 (C) . Therefore the various components of the spinor 14 are

VR UjR VL UL :
15.1.5 = , i=1,2,3
( ) Yal ( er dir eL dir >

- (wgp 1705'11'/ walz wai) 7 a = 1/ 21 (/'l - 1/2

The (finite) Dirac operator can be written in matrix form

B B
(15.1.6) Dr = ( Dé“ Dg‘, )
D% DF,

and must satisfy the properties

(15.1.7) YrDr = —Dryr JeDr = DrJr

where ]1% = 1. A matrix realization of yr and Jr are given by
(15.1.8)

_( Gr 0 (1, 0 04 14
,)/F_<O _GF)/ GF_<O _12>I ]F_<14 04 o cC

where cc stands for complex conjugation.
PROPOSITION 15.1. (1) The data
Fps := (Aps, Hr, DF; Jr, YF)

as defined above is a finite real even spectral triple of KO-dimension 6
that fulfills the first-order condition on a subalgebra Agpyy = C ® Hy @
Mg(C) C Aps.

(2) The unimodular gauge group S&(Fpg) is isomorphic to the Pati—Salam
gauge group SU(2)g x SU(2)p x SU(4).

PROOF. (1) follows from Proposition while (2) is a straightforward
computation, using that U/ (H) = SU(2) (see the proof of Proposition (13.3).
U

15.2. The gauge and scalar field contents

Since we are dealing with a real spectral triple that does not fulfill the
tirst-order condition, we have to apply the general framework of inner fluc-
tuations developed in Section More precisely, the initial operator for
the almost-commutative manifold M x Fpg is given by

D=Dy®1+ym® Dr
for which the inner fluctuations are given by

D, =D+ wpy + Jwa)] ' + wp)

W(l) = Za [D, b], w(z) = Za |:]C¢J(1)]_1,b1| .

The computation is rather involved due to the second-order term, see
Note[3|on Page[232] One finds that the different components of the operator
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particle | SU(2)g  SU(2). SU(4)
o 2 2 1
AV 2 1 4
Z} 1 1 15

TABLE 15.1. Pati-Salam scalar particle content and their
representations for a first-order Dirac operator. The field Z}
in the last row is decoupled if there is quark-lepton coupling
unification.

D,, are given by

; i ; e b
(D)) =7 (V50k0] = Seamtc (@150l = 8 (v vy + 54l ) )

b i b i J i
(Da)ap = 7" (viésé{ — 58 Wy (0%)501 = 4 (zgvg" (A");+ ngw{))
where the fifteen 4 x 4 matrices ( Am)]I are traceless and generate the group
SU (4) and Wy, Wy, V)" are the gauge fields of SU (2)g, SU(2),, and
Su(4).
In addition we have
b 7 'y _ b
(D)) = 1 ((Yugl +Yef?) 2]+ (Yugh + Yag?) (6] - 2]) ) = vz
by x —
(D“’)ﬂ] = TmYRB; A = ’)/MHdIb]
where the Higgs field 4)5 is in the (2g,21,1) of the product gauge group

SU (2)g x SU (2); x SU (4),and A, isin the (2g,, 11, 4) representation while

Z{ is in the (1g, 17,1+ 15) representation. The field &2 is not an indepen-
dent field and is given by

~ —b

;= 024,02.
Note that the field Z; decouples (and set to 6! (5{ ) in the special case when
there is lepton and quark unification of the couplings

Y, =Y., Y. =Y,
This is summarized in Table[15.1]

PROPOSITION 15.2. The spectral action (ignoring topological and boundary
terms) of the almost-commutative manifold M x Fpg is given by

48fy 4 2fN 1 cKal Kyl
S5 = /M AN = 2 (R4 g (Hype B 4225wl )

+ ];(732) [310 (1820 + 1IR'RY) + g7 (Wi )+ g3 (W) +82 (Vi)
a

. 1 - 1 . .
+ DEDISY + SDuH,; DUHI + R (Hpo H 425558 )

5 ‘Hz'zIéKHCK ]‘ + 2H, o S H LZdIL + Z‘fz[fz‘d](Zb]LZgIL Vgd*x.
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PROOF. We proceed using the same notation and formulas as in Section
The first Seeley-de Witt coefficient is

1
ap = WT}T (1)

= @) 6) [ Vel

24
=22 [, vads

where the numerical factors come, respectively, from the traces on the Clif-
ford algebra, the dimensions of the Hilbert space and number of genera-
tions. The second coefficient is

1 7 1
=_— [ Tr(E+ =R 4
ap 167T2/M r( +6>\/§dx
where E is a 384 x 384 matrix over Hilbert space of three generations of

spinors, whose components are derived and listed in the appendix. Taking
the various traces we get

1 . .
= /M ((R(~96 + 64) — 8 ((Hyyo H™ 4+ 25K ) ) y/ga*

2 1 cKal Ky al 4
-5/ (R+4 (e B+ 25Kk ) ) y/gat.

az

It should be understood in the above formula and in what follows, that
whenever the matrices Yy, Yy, Y, Y; and Yr appear in an action, one must
take the trace over generation space. The mass terms can be expressed in
terms of the fundamental Higgs field to give

HaIéKHtKM = |YR’2 (AaKAaK>2
and
2N =2 (Y = Ya) 9 + (Yo — Ya) §5) ZF + (Yal + Yagt) f )
(O = Ya) g+ (Yo = Yoa) §8) Tk + (Yol + Yol ) 0k ) -

The next coefficient is

_ 1 1 2 2 2 1 1 L2 4
“ =1 /M Tr (360 (5R? — 2R, + 2R, ) 1+ 5 <E +SRE+ 20, ) ) VRd's
where (), is the 384 x 384 curvature matrix of the connection w;. Using

the expressions for the matrices E and (), derived in the appendix, and
taking the traces, we get

o= gt [ [k B (412)" 4 () ()
a

. 1 " 1 . ,
+ VEVIEG + SV H, ) VEHIY 4+ SR (Hyp B 4+ 258K )

1 kb | cK pyaldLsb (Kb] sdLsal 4
+§}H1116KHC ]‘ + 2H, g X H Zd]L+ZZIZéII<Zb]ZgL V8d'x
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where C;,, is the Weyl tensor. The stated result now follows from Equa-
tion (10.4.1). O

The physical content of this action is a cosmological constant term, the
Einstein Hilbert term R, a Weyl tensor square term Cf“,pg, kinetic terms for
the SU (2) x SU (2); x SU (4) gauge fields, kinetic terms for the compos-
ite Higgs fields H_ ]
the Higgs fields. We also notice that this action gives the gauge coupling
unification

and Zilf as well as mass terms and quartic terms for

(15.2.1) SR = 8L =g

Having determined the full Dirac operators, including fluctuations, we can
write all the fermionic interactions including the ones with the gauge vec-
tors and Higgs scalars. We write the fermionic action using our tensorial
notation:
* D B 4 * D B 4 * D B/ + * D B’
YaDa " +9Ya Dy "5+ aDa = Yy +PaDa ™ ¢p
= ¢4D, By +paCDPypp + hoc

where C is the charge conjugation matrix, and we have denoted D, =
D#B. We then find

. L ; /i ;i
/M [%ﬂ” (V,‘iéﬁé{ - EgRW::R ()i o] - K (28‘/;” (A™); + 28Vu‘5{>> ¥y
* U VS(de]_i WY abéf_éb 1Vm /\ml 1V(5]
+ ¥ary % ZgL yL(U )u I a Zgy( )1+2g141 Puy
s ( (Yool + Yefl) 2]+ (Yol +Yadt) (o] = 21) )
+yis ((Yeb+vodh) =t + (vigh +vidt) (o] =) v,

—a]—blI
+Ch.15YRAV A Py, +h.c] Vedix

15.3. Truncation to the Standard Model

In this section we show that the above grand unified Pati-Salam type
model can break to the U (1) x SU (2) x SU (3) symmetry of the SM.

First of all, the scalar field 4)2 = (2g,2r,1) must be truncated to the
Higgs doublet H by writing

(PZ - 5;€bCHc.

The other scalar field A;; = (2g,1,4) is truncated to a real singlet scalar
field

Ny = 81814/
NCG and Particle Physics (version December 28, 2023), W.D. van Suijlekom




CHAPTER 15. BEYOND THE STANDARD MODEL: PATI-SALAM
226 UNIFICATION

These then imply the relations
= = (5;'1@&%16 + 5§HbYE) s1ol + (53yuebCHc n 5§Ydﬁb> 51610]
Halb]
grkWyg = 1By, Wi =0

3 i
Vv =B (W)=

where Vﬁf’ is the SU(4) gauge field corresponding to the generator

= 8161 YrS]6)0

1
AP = —diag(3,—1,-1,-1
a8 )
which could be identified with the B — L generator. In particular the com-
ponents (DA)ﬁ and (DA)i

of the Dirac operator simplify to

- i o a1 L om (ymy!
(DA>ﬁ =" (vfl - EgRW;lR (‘T )1 - <2gVy (/\ )1))

_ s_ L un RTEN
=¥ (Vy — 58rRWyr — <2gVy 2))

_ S
= ryﬂvy
; i ; i 1
O =7+ (5 - gerwitn (@~ (58 1))

_ S i 3 i 15 3
- ’)/H (Vy + EgRWyR - <2gVy 2))

= (V5 +igiBy)

which are identified with the Dirac operators acting on the right-handed
neutrino and right-handed electron. Similar substitutions give the action
of the Dirac operators on the remaining fermions and give the expected
results. We now compute the various terms in the spectral action. First for
the mass terms we have

1 brar _ 1 (1 15] 1 b ol sy %
EHalb]H al 1 <5ﬂ5bYR51510> <5T515151YR0,>
1 1
= 1tr |YR|2 o’ = ZCO'Z
SEiwl = o | (oveteHe + 2H'Y. ) 816] + (61¥ue"He + 2Y,H') 616]5]
1 —
— —aHH
50

where
a=tr (Y, Y, +Y., Y. +3(Y,;Yu+Y;Yy))
c=1tr (YEYR)
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Next for the a4 term, starting with the gauge kinetic energies we have
2 2 2 2 5 2
gt (Wioe) +k (Wie) +&% (Vi) = & (Wie) + 28882, +3 (V1)

where m = 1,---,8 for Vj; restricted to the SU(3) gauge group. Next for
the scalar kinetic and quartic terms we have

V,Zor VIES — aV,HV'H
1 g1
- N v/ 2 (LT N Iz
2VVH[.1MV H*"" — 208V(78 o4
1 L. . 1 —
R (Hirex H™ + 25K ) — R (2aHH + co?)
1 xirl2 1
5 }HﬂéKHC f‘ — do*
2H, i 2! — 2¢HHo?
cKyb] sdLsal T 2
TR EES — b (HH).

Collecting all terms we end up with the bosonic action for the Standard
Model:

48F, A* 2 1 — 1
Sp = / 8" 20 o (oo Vg Lo
M 772 2 4

T2

0) [1 o) 4 D 2
+ J;nz =5 (180 + 1IRRY) + 2a1BE, + g3 (Wi ) + 3 (Vi

1 _ _
+¢aRHH +b (HH)" +a |V, H,|* + 2HH o>
(15.3.1)
—i—ld o+ iCR(T2 + 1c (a 0)2 \/§d4x
2 12 2 VK
where

b=tr ((Y,j‘YU)2 + (YY) +3 ((y;;yu)z + (Y;Yd)2)>

d=tr ((YI’QYR)Z)
e=tr (Y Y,YiYR).

This action completely agrees with the Standard Model Lagrangian ob-
tained in Theorem [13.10} under the replacement Yg — Yro.

15.4. Phenomenology of the noncommutative Pati-Salam model

An important test of the above Pati-Salam model is to check whether
the gauge coupling unification when run using RG equations would
give values consistent with the values in Equation of the gauge cou-
plings for electromagnetic, weak and strong interactions at the scale of the
Z-boson mass. Moreover, in view of the observations at the end of Chap-
ter [14] it is important to make sure that the model is compatible with the
relatively low observed mass of the Higgs boson.
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| u@)y su@), su(@)
CORIE] IR
G- - = o
o 0 1 1
7 -3 1 3

TABLE 15.2. Scalar particle content induced by the Pati—
Salam model with SM-representations

15.4.1. Grand unification of the gauge couplings. We have already
computed the inner perturbations of the finite Dirac operator for the Pati-
Salam model in Section Recall in particular the scalar content from
Table We will assume that there is lepton quark unification, so that

the Z{ is decoupled.
The boundary conditions between the couplings are taken at the inter-
mediate mass scale u = mp to be the usual

1 21 n 1 1 1 1 1
g 3¢ s & 8
in terms of the Standard Model gauge couplings g1, 2, 3. At the mass scale
mp the Pati-Salam symmetry is broken to that of the Standard Model, and
we take it to be the same scale that is present in the see-saw mechanism. It
should thus be of the order 10! — 103GeV.

Before turning to the computation of the g-functions of the Pati-Salam
gauge couplings for the composite model, let us discuss the scalar sector
that remains after spontaneous symmetry breaking to the Standard Model
gauge group. A quick analysis leads to the scalar fields listed in Table[15.2]
Note that this includes the SM Higgs and a real scalar singlet.

The presence of the above scalar fields of course also have an influence
on the running of the Standard Model gauge couplings (at one loop). We
compute that instead of the usual B-functions (by, by, b3) = (—%, %, 7) (cf.
Section [14.2.1) we have

(15.4.1)

27 2 27
L 83 &

64 _ 41
(b1/b2/b3) - <_9/3/ 6> .

One observes that this difference is relatively small (less than 5%). In fact,
the scalar fields that appear in addition to the SM Higgs have a negligible
effect in our study of the running of the gauge couplings below.

Next, we compute the S-functions for the Pati-Salam couplings gr, $1., ¢
in the presence of the above composite particle content (cf. Table[I5.1):

7 31
15.4.2 br,b,b)=1{=,3,—|.
( 5 ) ( R,/ YL, ) <3/3/ 3 >
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FIGURE 15.1. Running of coupling constants for the spec-
tral Pati-Salam model with composite Higgs fields: g1, $2, $3
for y < mg and gr, g1, g for y > mpg with unification scale
A~ 25 x 10'°GeV for mp = 4.25 x 103GeV.

The solutions of the RG-equations are easily found to be

2 _ 2, 17
(15.4.3) gr(p) ™" = gr(mr) ™"+ g 53 log.

2 _ -2 H
(15.4.4) Qr(u) " =gr(mp)™"+ 8n2310g Py

2 _ 2, 131, n
(15.4.5) g(u) ™" =glmr) "+ g5 log -,

We impose the boundary conditions at the mass scale yt = mg.

Our approach for finding a unification scale is as follows. We search for
an energy scale where the couplings gr, g1 and g are equal by varying the
scale mg at which the boundary conditions are imposed. With the
running of the Pati-Salam couplings governed by the coefficients
there is a unique value of mg for which the three lines meet. The unification
scale is A &~ 2.5 x 10°GeV and the value found for the intermediate scale
is mg = 4.25 x 10°3GeV (Figure[15.1).

If the scalar field Z{ is not decoupled —in other words, if there is no
lepton-quark coupling unification— then there is an additional scalar (1g, 11, 15)
irreducible representation contributing to the p-function, giving a slightly
different (bg,br,b) = (%,3,9). This in turn gives a unification scale A =~
6.3 x 10"°GeV for mg = 4.1 x 103GeV.

15.4.2. Running of the Higgs mass. Let us analyze the additional terms
in the spectral action displayed in Equation (15.3.1), focusing on the scalar
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part:
2

Ly (s Ay, Qu H, 0) 1= bf( )’H‘4 Zasz |H|* + J:r( ) o?|H|?

—Cf2A202—|— di(rz) af( )

7T2

|DVH’2 = zf( )e (8;,0)2,

where we ignored the coupling to the scalar curvature.

Asin Chapter we exploit the approximation that m,,,, m, and mpg are
the dominant mass terms. Moreover, as before we write m, = pm,,,. That
is, the expressions for a, b, c,d and e in (13.3.2) now become

a xm; (0> +3),
b~ my, (0" +3),
¢ ok,
d ~ m¥,

2

1272
e~ P mym,,.

In a unitary gauge, where H = <g> , we arrive at the following potential:

L(h, o) = iAhh‘* + 1Ah h2o? + 1Agg4 - ﬁfy\?(hz +0?)
P 24 27 4 us ’
where we have defined coupling constants
15.4.6 A—24p PPN S W
(15.4.6) pig ha—mgz, o = 083-

This potential can be minimized, and if we replace h by v + h and ¢ by
w + o, respectively, expanding around a minimum for the terms quadratic
in the fields, we obtain:

1
ﬁpat(v + h/ w + U) |quadrahc = 6 2/\h'U + Z'U'C(J/\hagh =+ w /\U(T
1

=5 (h o) M? (g) ,

where we have defined the mass matrix M by
1y .2
ZARU° Apgow
2 _ 6/\h ho
M" =2 (Ahng A w? ) '

This mass matrix can be easily diagonalized, and if we make the natural
assumption that w is of the order of mg, while v is of the order of My, so
that v < w, we find that the two eigenvalues are

)\2
mi ~ 2\ W + 2ﬂ02,
Ag

1 A2

2 2 ho
m? ~ 2002 [ = — Lhe ||
- no (6 AhAa>
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We can now determine the value of these two masses by running the scalar
coupling constants Aj, Ay, and A, down to ordinary energy scalar. The
renormalization group equations for these couplings are given by

% - 16% <4Ai +1277, — (3g1° +9g2°) Ay + 2(814 +2g1°g2" + 3g2")
+4(3y2, + v®) Ay — 12(3ye, + yv4)>'

djl‘?v _ 1617 <8/\,2w + 6 iAo + 240
- % (81 +383) Anr +2(3y5, + yVZ)A,W),

Ay 1

e _ 2 2
= e (8/\;10 + 18AU>.

As before, at lower energy the coupling y, drops out of the RG equations
and is replaced by an effective coupling.

At one-loop, the other couplings obey the renormalization group equa-
tions of the Standard Model, that is, they satisfy and (14.2.10). As
before, we can solve these differential equations, with boundary conditions
at A¢yr given for the scalar couplings by (15.4.6). The result varies with the
chosen value for A¢,r and the parameter p. The mass of ¢ is essentially
given by the largest eigenvalue m which is of the order 10'2 GeV for all
values of Agyr and the parameter p. The allowed mass range for the Higgs,
i.e. for m_, is depicted in Figure The expected value m;, = 125.5 GeV
is therefore compatible with the above noncommutative model, while the
scalar field o stabilizes the Higgs vacuum at higher energies. Furthermore,
this calculation implies that there is a relation (given by the red line in the
Figure) between the ratio m, /m,,, and the unification scale Agyr.

We conclude that with noncommutative geometry we can proceed be-
yond the Standard Model, enlarging the field content of the Standard Model
by a real scalar field with a mass of the order of 10!> GeV. At the time of
writing of the second edition of this book (Summer 2021), this is completely
compatible with experiment and also guarantees stability of the Higgs vac-
uum at higher energy scales. Of course, the final word is to experiment in
the years to come. What we can say at this point is that noncommutative
geometry provides a fascinating dialogue between abstract mathematics
and concrete measurements in experimental high-energy physics.

Notes

Section 15.1. The finite noncommutative space of the Pati-Salam model

1. The Pati-Salam model was introduced in [205]. The particle content that we find is very
similar to the one considered by Marshak and Mohapatra [192].

2. Coincidentally the algebra M, (H) & M4 (C) comes out as a solution of the two-sided
Heisenberg quantization relation between the Dirac operator D and the two maps from the
four spin-manifold and the two four spheres $* x S* [66,67]. This removes the arbitrary
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FIGURE 15.2. A contour plot of the Higgs mass my as a
function of p2 and t = log(Acur/Mz). The red line corre-
sponds to mj = 125.5 GeV.

symplectic constraint and replaces it with a relation that quantize the four-volume in terms
of two quanta of geometry.

Section 15.2. The gauge and scalar field contents

3. We refer to [68, Appendix A] for all details on the derivation of the inner fluctuations for
the Pati-Salam model; see also [61].

4. The important point to notice in the derivation of the inner fluctuations for the Pati-
Salam model is the novel phenomena of the appearance of composite Higgs field as is

apparent in the above formulas where the Higgs field ZZ is formed out of the products

of the fields (PZ and Z{ while the Higgs field H, 1) o
This composite structure is a result of the quadratic dependence of the gauge fields w ) on
those appearing in w ;). The importance of this point should not be underestimated. The
reason is that the main disadvantage of grand unified theories is the need for complicated
Higgs representations with arbitrary potentials. In the noncommutative geometric setting,
this problem is now solved by having minimal representations of the Higgs fields allowing
for (quadratic) products of these representations. We also note that a very close model to
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the one deduced here is the one considered by Marshak and Mohapatra where the U (1) of
the left-right model is identified with the B — L symmetry. They proposed the same Higgs
fields (2g,21,1), (2r,1,4) and (1,1,15) we have, but also in addition the field (1,2r,4).
However, they assumed that this Higgs fields does not get a vev, and thus does not effect
the symmetry breaking. Although the broken generators of the SU (4) gauge fields can me-
diate lepto-quark interactions leading to proton decay, it was shown that in all such types
of models with partial unification, the proton is stable. In addition this type of model arises
in the first phase of breaking of SO (10) to SU (2); x SU (2); x SU (4) and these have been
extensively studied [20]. The recent work in [97] considers noncommutative grand unifica-
tion based on the k = 8 algebra M, (IH) & Mg (C) keeping the first order condition.

5. The obstruction to allow for lower mj, (see Section[15.4.2) in the spectral Standard Model
was overcome in [64] simply by taking into account the scalar field ¢ which was already
present in the full model that was computed previously in [63].

Section 15.4. Phenomenology of the noncommutative Pati-Salam model

6. This section is based on [68, [70]. For a recent overview, we also refer to [61].

7. The boundary condition can be found in [193] Eq. (5.8.3)].

8. The field ¢ played a key role in [63] in lowering the Higgs mass prediction to a realistic
value [64]. A qualitative study of the form of the scalar potential that we have done for
the present Pati-Salam composite model indicates that this result continues to hold here.
However, being interested mainly in the running of the gauge couplings, we leave a full
study of the potential and its physical implications for future work.

9. Note that in our analysis we have disregarded the non-renormalizable, order eight terms
that appear in the expansion of the spectral action for the composite model [68, Sect. 8], so
let us argue why they can be ignored. In fact, since we consider only the running of the
gauge couplings at the one loop level, we can safely ignore these non-renormalizable terms.
Moreover, their contribution to the running of other (scalar) couplings will be suppressed
by negative powers of mg, at least at the one loop level.

10. In view of the assumptions made in our analysis, we trust the values for m, only as
indicative of the corresponding orders of magnitudes. Other possible Pati-Salam models
(for different initial Dy were considered in [70].

11. The renormalization group equations for the couplings Ay, Ay, Ay have been derived in
[i27].

12. For stability bounds on the Higgs mass, we refer to [220].

13. The small correction to the space M x Fs, was realized in [64] (and already tacitly
present in [63]) and the results of Section confirm their conclusions.

14. Other noncommutative geometric models that go beyond the Standard Model include
[222]223]225,1224,1226], adopting a slightly different approach to almost-commutative man-
ifolds as we do (cf. Note [jon Page [118). The intersection between supersymmetry and
almost-commutative manifolds is analyzed in [45} 146, 24} 25| 26].
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CHAPTER 16

Towards a quantum theory

In the final Chapter of this book we present an overview of recent
and ongoing work, taking the first steps towards a quantum theory for
noncommutative geometry. Indeed, in the applications to particle physics
phenomenology one applies the usual, physicist” textbook renormalization
group methods to the spectral action, in order to arrive at couplings and
mass parameters at lower energy. And even though the appearance of
such experimentally testable results from a geometrical framework valid
at high-energies is very intriguing, this step remains a weak point of the
noncommutative approach to particle physics. In other words, it means
that in the passage to the quantum theory one looses the elegant spectral
and unifying picture that one started with.

We indicate two paths that could lead to a quantum theory for noncom-
mutative manifolds. Working in the general context of spectral triples, the
tirst approach quantizes the fermionic content by applying the procedure
of second quantization to (A, H, D), while the second computes one-loop
corrections to the perturbative expansion of the spectral action, given in its
general form as in Section[9.3}

16.1. Second quantization of spectral triples

We use the operator algebra formalism of C*-dynamical systems and
KMS condition to pass from the first-quantized or “one-particle” level of
spectral triples (A, H, D) to the second-quantized level. The Hilbert space
M is used to construct the complexified Clifford algebra C := Cliffc(HR)
of its underlying real Hilbert space Hr when considered as a Euclidean
space. The operator D is used as the generator of a one-parameter group
0 € Aut(C) of automorphisms of the Clifford algebra. The algebra .A man-
ifests itself through the inner fluctuations (c¢f. Equation (7.2.5)) deforming
the operator D to D'. These inner fluctuations continue to make sense at
the second-quantized level and give rise to deformations o/ € Aut(C) of
the above one-parameter group of automorphisms. We concentrate here on
the meaning of the spectral action, and thus take the C*-dynamical system
(C, 0%) as our starting point, keeping in mind that the results will automat-
ically apply to the deformations (C, 07).

16.1.1. KMS and a dynamical system. We first briefly recall the KMS
condition for C*-dynamical systems, that is, a C*-algebra C together with a
one-parameter group of automorphisms oy € Aut(C), t € R.

DEFINITION 16.1. Let (C,0:) be a C*-dynamical system. For a given 0 <
B < oo, a state ¢ on the unital C*-algebra C satisfies the KMS condition at in-
verse temperature B if for all a,b € C, there exists a function F,(z) which is
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holomorphic on the strip

(16.1.1) Ig ={zcC|0<S(z) <B},

continuous on the boundary dlg and bounded, with the property that for all t € R
(16.1.2) Fup(t) = @lacy(b)) and Foy(t+if) = g(ci(b)a).

In short the KMS condition at inverse temperature § means that one
has the formal equality

(16.1.3) ¢(aci(b))|i=ip = @(ba), Va,b € C.

What matters in the context of the present paper is the existence and unique-
ness of KMS states on a matrix algebra M, (C) and we give the short proof
for convenience. A one-parameter group of automorphisms o; € Aut(M,(C))
is always associated to a self-adjoint H = H* € M,,(C) by

or(A) = e"HAe ™ Wt e R, A € M,(C).

Given a state ¢ on the matrix algebra M,,(C) there exists a unique density
matrix p > 0 such that

Y(T) = Tr(pT), VT € M,(C).
By uniqueness of the trace it follows that
$(AB) = p(BA), VA, B = p — %id.
A state which is KMSg for 0; € Aut(M,,(C)) is invariant. In fact
(e PHBePH) = (B), VB = ePHpe PH = p = pePH = oPHp,
It follows using that if i is KMSg then, with B’ = ¢ FHB
W(BA) = p(Ae PHBeP) = Tr(pePHB'A) = Tr(pAB'ePH)

so that pePt = ¢PHp defines a trace and hence is a scalar multiple of id. This
shows that p = Ze PH for Z = 1/ Tr(e P") and gives the uniqueness of the
KMSg state. The same formula gives the existence. For completeness, we
include a proof of the following result on KMS-states on Clifford algebras

PROPOSITION 16.2. Let ‘H be a complex Hilbert space, D a self-adjoint op-
erator in ‘H with compact resolvent. Let C := Cliffc(HR) be the complexified
Clifford algebra of the underlying real Hilbert space Hr and v € Aut(C) be
the one-parameter group of automorphisms associated to exp(itD) € Aut(HR).
Then for any B > O there exists a unique KMSg state g on the C*-dynamical
system (C, o).

PROOF. One applies the existence and uniqueness of KMS states on a
matrix algebra to the subalgebra of C = Cliffc(HR) associated to the sub-
space corresponding to a finite dimensional spectral projection of D. This
is enough to prove the uniqueness of the KMSy state. The existence also
follows since the existence part for matrix algebras gives a coherent system
of states which define a state on the inductive limit of the C*-algebras. [J
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PROPOSITION 16.3. Let H, D, C := Cliffc (HR), 0r € Aut(C) and g be as
in Proposition[16.2] Then if the operator exp(—B|D|) is of trace class, the state g
is of type I and the associated irreducible representation is given by the fermionic
second quantization associated to the complex structure I := i sign D on HR.

The proof of this proposition will be given in Section|16.1.2} Proposition
after recalling some terminology.

16.1.2. Fermionic second quantization. In this section we recall the
procedure of (fermionic) second quantization.

Consider the real Euclidean vector space V := Hp that underlies the
complex Hilbert space H. Our first goal is to find irreducible representa-
tions of the Clifford algebra associated to the real Euclidean vector space
HR underlying H and for this it turns out that a crucial role is played by
complex structures. We let I be an orthogonal complex structure on V,
which is not necessarily the one coming from H. Then we may regard V as
a complex vector space when we define i to act as I. The resulting complex
Hilbert space will be denoted by V7.

A representation of the complexified Clifford algebra Cliffc (V) is given
on the Fock space AV that is built on V; by the usual formula

YI - Cllffc(V) — ,C(/\ V])
v aj(v) +ar(v); (veV).
Here the creation operators aj(v) depend C-linearly on v € V; and are given
by exterior multiplication by v while the annihilation operator ar(v) is its

adjoint. We choose a unit vector )y € /\0 V and call it the vacuum vector. It
is annihilated by a;(v) for all v € V. The following is well-known.

LEMMA 16.4. The above representation <y of the complexified Clifford algebra
Cliffe (V') on Fock space \ V7 is irreducible.

PROOF. We may assume that V is a inductive limit of finite-dimensional
Hilbert spaces, and, accordingly, that Cliffc(V) is the C*-algebraic induc-
tive limit of finite-dimensional Clifford algebras. Without loss of generality
we may thus assume that dim V' < oo so that Cliffc (V) are simple matrix
algebras. We invoke Schur’s Lemma to conclude that «; is irreducible if
and only if every operator T : V — V commuting with all y;(v) (v € V)
is a scalar.

For any v, one has, using the C-linearity of a7 (v) and C-anti-linearity of
ar(v)

() = 3 (n(©) ~in(12)), ar(o) = 3 (1(©) +im(1o)).

Hence any T that commutes with «(v) for all v commutes with a}(v) and
ar(v). From this it follows that
a[(U)(TQ[) = T(ﬂ[(U)Q]) =0

so that TQ); € A%(V;). In other words, TQ); = tQ); for some t € C. More-
over,

T(oiA---Nop) =T (a7 (1) - --a7(0)Q) = (a7 (1) - - a7 (vr)) (TQ) = £ (01 A~ Avy),
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sothat T =t -id. O

Any orthogonal operator T : V — V induces an automorphism of
Cliffc (V) by sending y;(v) — 71(Tv). In some cases this automorphism
can be lifted to the Fock space A V7, for instance, if U is a unitary operator
on V. Then, if AU is the unitary operator in the Fock space such that on
simple tensors

NU@1 A Avy) = U(v) A= AU(y),
one has the covariance

AUoaj(v)o AU" = aj(Uv).
We thus get the equality

(AU (0)(AU*) = 7i(Uv).

Suppose now that we are given a (complex) Hilbert space H and a self-
adjoint operator D in ‘H with compact resolvent. Again, let V = HR denote
the underlying real vector space. Suppose that we take the natural com-
plex structure on V so that Vi = H. Then the above construction gives us
an irreducible representation -y of the canonical anti-commutation relations
(CAR) algebra on AH but, from a physical point of view this representa-
tion is not the right one to consider. In fact, one needs to choose another
irreducible representation, corresponding to a different complex structure
on H. Let us describe it in some detail.

If E4 are the spectral projections of D corresponding to the positive
and negative eigenspaces of D in H, let us define the following complex
structure:

I=i(E, —E_).

In other words, I = iF where F = D|D|! is the sigrﬂ of D. In view of
the previous section, this gives rise to another irreducible representation
71 of Cliffc (V) in Fock space, where the key difference with respect to the
original Fock space representation vy is that i acts as —i on E_(#). In other
words, the operator D can be considered to act as | D| which now only has
positive eigenvalues. More precisely,

PROPOSITION 16.5. (i) The one-parameter group oy € Aut(C) is imple-
mented in the (physical) Fock representation by the one-parameter unitary group
W(t) = Nexp(it|D]), i.e. one has

(16.1.4)  vi(ei(A) = A"P)yi(A) A(eP)), VA € Cliffc(V).
(ii) If exp(—PB|D|) is of trace class the state g is of type I and is given by

(1615)  yp(A) = %Tr (Aexp(~BIDI)1(A)) , YA € Cliffe (V)

where the normalization factor Z is finite.

IWe take the convention that the sign of 0is 1
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PROOF. The associated KMSg state is obtained after normalization from
the density matrix W(if) obtained by analytic continuation. Thus it coin-
cides here with the operator

p = \exp(—B|DJ).

Since T = exp(—p|D]) is positive and of trace class we get that p = AT
is also positive and of trace class (with trace given by the determinant of
1+ T). Thus Z < co. The state 1 is implemented by a density matrix in an
irreducible representation and is thus of type I. O

16.1.3. von Neumann information theoretic entropy. We start by briefly
recalling von Neumann'’s notion of entropy. Consider a density matrix p on
a Hilbert space H, i.e. a positive trace-class operator with normalized trace.
It induces a state ¢ on any C*-subalgebra of L(#) by setting ¢(-) = Tr(p-).
The entropy of this state ¢ is then defined to be

S(¢) := —Tr(plogp).
For composite systems ¢ ® ¢» on H1 @ H one finds the following impor-
tant additivity property for entropy
S(p1 @ ¢2) = S(¢1) + S(¢2).
Let us start with a basic example of entropy that will play a crucial role

in what follows.

LEMMA 16.6. Let x > 0, the entropy of the partition of the unit interval in
two intervals with ratio of size x, is given by

E(x):=log(x+1) — xiof(f).

PROOF. The sizes of the intervals are x%rl and x%l One has

g () xlog()  x+41

xlog(x)
= 1 1) — = .
x+1 x+1 x+1 og(x +1) x+1 £(x)
O
COROLLARY 16.7. One has £(x) = E£(1/x) for any x > 0.
PROOF. The obtained partitions are isomorphic. O

The following result gives an expression for the entropy of density ma-
trices that arise as a second-quantized operator.

LEMMA 16.8. Let T € LY(H)" be a positive trace class operator and ¢ the
state associated to \ T then

(16.1.6) S(¢) = Te(E(T)).

PROOF. Let first T = T; @ T be an orthogonal decomposition. Let us
show that the associated states fulfill ¢ = ¢ ® ¢». One has with p; = AT}
the equality p = p1 ® p2 by the compatibility of the wedge functor with
direct sums. Then

Tr(p1 © pa) = Tr(p1) Tr(p2) = ¢ = ¢1 © ¢o.
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Next the entropy functional fulfills
$(¢1 ® ¢2) = S(¢1) + S(¢2).

This shows that the functional S(¢) is additive for direct sum decomposi-
tions. It also applies to infinite sums and one can thus consider only the
one dimensional case. In this case the state associated to the operator T of
multiplication by x corresponds to A T whose spectrum is {1, x} and hence
has entropy given by the function €(x) of Lemmal(16.6] O

THEOREM 16.9. Let H, D, C := Cliffc(Hr), 0r € Aut(C) and g be as in
Proposition Then if the operator exp(—B|D|) is of trace class, the state (g is
of type I and its von Neumann entropy is equal to the spectral action Tr(h(BD))
for the spectral function h(x) := E(e™™).

PROOF. The first statement follows from Proposition The state-
ment about the entropy follows from Lemma together with the fact
that x — £(e™¥) is an even function (cf. Corollary [16.7). O

16.2. One-loop corrections to the spectral action

We start with the expansion of the spectral action derived in Equation
9.3.2
1
Sb[CU] — Sb[O] = EE«& . ’(’5>f
n N~
n

We thus work under the same assumptions as those stated in Section[9.3]
The bracket will be represented as the following Feynman diagram:

(16.2.1) (wWi,...,wy) =

The loop diagram nicely reflects the ncyclicity of the bracket: (wy, ..., wn)f =
(wWn,w1,...,wy—1)f. The second crucial property is that

(16.2.2) (acwr, ..., wn)f — (w1,...,wa)f = ([D,a], w1, ..., wn)f

In fact, this identity boils down to a Ward identity, represented diagrammat-
ically as

—>—| l—b—
(16.2.3) P = %

a a D, a]
In order to analyze the quantum theory corresponding to the above
classical action functional Sj{w] we adopt the background field method.
We take the background fields to be the usual gauge fields of the form w =
Y ai[D, bj] € Op (A) but allow the path integral to integrate over all finite-
size hermitian complex-valued matrices Q. We consider the dimension, say
N, of these matrices as a regularizing cutoff of our model, which should
eventually be sent to co.
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(A) An example of a positive (B) The divided difference
function: f(x) = (1+ax?)®(bx)  f'[A, A] for this function f.
with ® a bump function and a =

1/900,b = 1/100.

FIGURE 16.1. The inverse gauge propagator f'[Ag, A;] for
the N = 61 smallest eigenvalues of the Dirac operator on
the circle (i.e. Ay, A; = —30,-29,...,30.

For such matrices Q = (Qy), the brackets can be conveniently ex-
pressed in terms of divided differences of f’. Indeed, as in Equation (9.3.3)
we have:

N[ =

(Q.Q) = 5 Y- QuQuf [Ai A
k1

(QQ Q) = % Y QuQim Quif' M Aty A

k,1,m

[SS AN

et cetera, where Ay are the eigenvalues of D.

We now make the assumption that the first divided difference of f’ is
strictly positive on the N relevant eigenvalues of D (see Figure for an
example of such an f). We may then perform the Gaussian integration to
get for the propagator:

01O = | QuQume 21QQ)rdQ
kl'mn ef%<Q,Q>fdQ

= Okn01mGur

in terms of Gy := m Notice that the inverse propagator is bounded,
which is in stark contrast to the usual unbounded nature of inverse propa-
gators in ordinary local quantum field theory.

In any case, we are now in a position to consider higher-loop contribu-
tions to the spectral action, and, in particular, all one-particle irreducible
n-point Feynman graphs. Their (possibly divergent) amplitudes form the

starting point of the renormalization process of the spectral action.

16.2.1. Ward identity for the gauge propagator. In addition to the Ward
identity (16.2.3) for the fermion propagator, we claim that we also have the
following Ward identity for the gauge propagator:
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B

TABLE 16.1. The two-point graphs at one-loop.

a a D, a
(16.2.4) >‘l< >1‘< >/<S\<

where every fermion loop adds a minus sign. Indeed, the left-hand side is

Qilemamn - aiQOlen
= Gix0imO1amn — GinOmnOx1im
= (Gik — Guk) O tin

while for the right-hand side we use the defining property of the divided
differences to find:

- Qierp”pq(Ap - /\q)quanf/ [Apl )\q,/\r]
= _Gikfsipfskqur(Sqn(Srlapq(/\p - )\q)f/ [)\‘p/ )\q/ )\r]
= GiGur (f'[Ak An] = f'[Ai, Ak]) Srattin.

The two expressions coincide because of the very fact that the free propa-
gator is the inverse of the divided difference.

16.2.2. Two-point functions at one-loop. The two-point graphs at one-
loop are given in Table The external fields w1, w> should be assigned
to the external legs in all different cyclical manners.

The amplitude for the first graph is given by

r—{:w
Ao = Y (@01)ij Qi Qui(w2)im Quun Qut X f'[Ais Ay Akl f' TAL Ay A
ik
ILmn

(16.2.5) = Z(wl )ii(WZ)kkGizkf, [/\,', )\i/ )\k]fl [)\i, )\k, )\k] .
ik

In particular, there is no running loop index in this expression and so this
diagram remains finite even when the size N of the matrices is sent to co.
We conclude that the amplitude of this graph is not relevant for renormal-
ization purposes.

We then turn to the second graph in Table[16.1] and compute
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_________

I -20 -10 o 0 20 3

(A) Summands in (16.2.6) for (B) Summands in (16.2.6) for
()\i/ Aj) = (Oro) ()\1‘, )\]‘) = (10,0)

----------------

,,,,,

wwwwwwwwwww

(¢) Summands in (16.2.7) for (D) Summands in (16.2.7) for
()\i/ )\j) = (O/O) ()\i, )\]') = (10,0)

FIGURE 16.2. The behaviour of the summands (indexed by
Ak running from —30 to 30) for the vertex contribution in

(16.2.6) and (16.2.7) for the Dirac operator on the circle and
function f as in Figure

2O = Y (@01)5Q ik Qui (@2) 1 Quin Qut £ [Ais Ay Akl f (M, Ay A
=
ltril,n
(16.2.6) = Y (w1)ij(@2)iGuGrif' [Mi, Ajy M)
ik
We find that this amplitude has a potential divergence in the limit that N —
oo (see Figure for the behaviour of the summands). As such it should
be subtracted from the effective action in order to render the theory finite
after removal of the regulator.
For the final diagram with two external lines we compute its amplitude

to be:
w2 [ —
-”erlr’@\“‘ = Y (w1)ijQuQui(w2)iif [Ais Ajy A, A
ikl
(16.2.7) =Y (w1)ij(@2)iGiif" [Ai, Aj, Al
ik

Again, this graph amplitude is potentially divergent in the limit N — oo
and should thus be subtracted. The same applies to the same graph but
with w; and w; exchanged.

16.2.3. One-loop counterterms to the spectral action. The computa-
tions of the graph amplitudes in the previous section show that the second
two graphs in Table are the relevant ones to consider as counterterms
for the spectral action. However, since the spectral action is in particular a
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TABLE 16.2. Skeletons for divergent one-loop. #-point func-
tions with increasing number of vertices. The fermion loops
that define the vertices are all oriented as clockwise.

gauge theory, it is crucial that such counterterms are of the same form as
the terms appearing in the spectral action.

As may be expected, a crucial role will be played by so-called guan-
tum Ward identities. They form the analogue of for the divergent
component of the 1PI n-point functions at one loop. Let us denote by

(w1, ..., w,)'" all one-loop n-point graphs whose amplitudes involve a
sum over a loop index. The skeletons for such graphs are depicted in Table
for which all external lines are written outside the graph diagram, and
labelled in cyclical order. Indeed, if an external line would be in the interior
of the diagram, it is surrounded by the loop in the diagram, and will thus
prevent the loop index from running (as in Equation [16.2.5).

The quantum Ward identities are now given by

<(w1,...,awj,...,wn>)1L — ((wl,...,wj,la,...,wn»u

= (w1,..., wjq, [D,a],wj,...,wn»lL.
It is this identity, in combination with cyclicity of the bracket (w1, ..., w,)) =

{(wn, w1, ..., wy_1)), which allows us to follow line-by-line the derivation of
the Chern-Simons and Yang-Mills terms in Theorem

THEOREM 16.10. The divergent part of the one-loop quantum effective spec-
tral action can be expanded as

Z%((w,...,w»if = i (/N cspr—1(A) +217k 55").

n k=1 \J¥2u-1

Here ¢ and ¢ are the analogues of ¢ and  as defined in (9.3.4) and (©3.5) but

now using the double bracket.

PROOF. All divergent one-loop diagrams have skeletons as depicted in
Table with the external lines labelled cyclically from 1 to n. The deco-
ration of the external legs of our graphs with the external fields wy, . .., w,
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then proceeds according to this labelling 1, ..., n and, upon summing over
all such decorated graphs G, we get

(wi, ey =Y Geon,ocon-
G

The left-hand side of the quantum Ward identity essentially comes down
to connecting external edges to the graphs G. We will write G; for the graph
G with an insertion of an external gauge edge at a point i in between n
and 1: this insertion point i can be either an outer fermion line in G (as in
(16.2.3)) or, if 1 and n are not attached to the same vertex in G, a gauge

propagator (as in (16.2.4)). We then find

(awr, .., n)'" = (wr, .. wpa) 't = ;(Gi)[D,uwaww

where the decoration [D, a] is attached to the external gauge edge inserted
at the point i of G;.

It is clear that the sum over G and i yield all decorated n + 1-point
graphs, and, moreover, that any #n + 1-point graph with labels [D, a|, wy, . . ., wy,

is obtained in a unique manner from an insertion of an external edge in an

n-point graph, as described above. We are thus left with ([D, ], wy, . .., wn»lL,
O

as desired.

We conclude that the passage to the one-loop renormalized spectral ac-
tion can be realized by a transformation in the space of noncommutative
integrals, sending ¢ — ¢ + ¢ and ¥ — ¢ + ¢, thus rendering the theory
(one-loop) renormalizable as a gauge theory. Of course, a general “power-
counting” procedure and diagrammatics beyond the one-loop order is of
great importance, but at the moment of writing still waiting to be devel-
oped.

Notes

Section 16.1. Second quantization of spectral triples

1. Section[16.1]is based on [71].

2. A proof of Proposition[I6.2]can be found in [43, Prop. 5.2.23].

3. We refer to [[7,/53] and [128] Sect. 5.3 and 6.1] for excellent expositions on fermionic second
quantization.

4. The lift of the unitary operator U to the Fock space is a special case of the Shale—
Stinespring Theorem [219]. It states that the automorphism on Cliff¢ (V) defined by an or-
thogonal operator T : V — V is implementable by a unitary operator on Fock space A Vj if
and only if T + IT1I is Hilbert-Schmidkt.

5. The discussion of the representation <y for the different complex structure I on ‘H derives
from the work of Dirac who realized in [98] that in order to avoid unwanted negative energy
solutions to his Dirac equation, one has to fill up (what is now called) the Dirac sea.

6. There is an intriguing relation between the function / that appears in Theorem and
the Riemann zeta function. All details can be found in [7I]. See also the more general
treatment in [100], including the chemical potential for both the bosonic and fermionic case.

Section 16.2. One-loop corrections to the spectral action

7. Section [16.2]is based on [202].
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8. The boundesness of the inverse propagator is another manifestation of the regularizing
properties of the spectral action, in line with [228} 142} 167, 2]. It is an interesting problem
to analyze the form of the propagator for more general f, including a possible gauge fixing,
for instance along the lines of [147,[146] or by means of orthogonal polynomials as in [33]].
9. Note that due to the the cyclic symmetry of the vertices, an equivalent representation of
the Feynman diagrams may be given by ribbon graphs as in [130], identifying

We however stick with the original fermion cycle vertices, as they are especially convenient
to capture the Ward identities and (16.2.4).

10. The type of one-loop graphs derived from the spectral action are familiar in the context
of matrix models. In fact, it is interesting to confront this to the proof of renormalizability
for noncommutative scalar field theories [130]. One of the main differences is that they
consider so-called non-local matrix models [129] with a quartic vertex, while instead we
have a local matrix model but with vertices of arbitrary valence.
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