Inner fluctuations of geometry: Morita equivalence and connections

Walter van Suijlekom

Recap: noncommutative manifolds

Basic device: a *spectral triple* $(\mathcal{A}, \mathcal{H}, D)$:

- \blacktriangleright algebra ${\cal A}$ of bounded operators on
- \blacktriangleright a Hilbert space ${\mathcal H}$,
- ▶ a self-adjoint operator D in \mathcal{H} with compact resolvent and such that the commutator [D, a] is bounded for all $a \in \mathcal{A}$.

Relation to K-homology and K-theory

Let A be a C^* -algebra.

Definition

A Fredholm module for A is given by a *-representation π of A on a (graded) Hilbert space H and an (odd) operator F in H such that the operators

$$[F, a], \qquad a(F^2 - 1), \qquad a(F - F^*)$$

are compact for all $a \in A$.

The K-homology groups $K^1(A)$ (and $K^0(A)$ in the graded case) are given by homotopy equivalence classes of Fredholm modules for A.

Index pairings

A spectral triple (A, H, D) defines a class $[D] \equiv [F_D] \in K^{\bullet}(A)$ with $A = \overline{A}$, given by $F_D = D(1 + D^2)^{-1/2}$

Pairings between K-homology and K-theory become index pairings of the form :

$$\begin{split} &\langle [D], [u] \rangle = \operatorname{index} PuP; \qquad P = \chi(D \ge 0); \qquad \qquad (\text{odd case}) \\ &\langle [D], [p] \rangle = \operatorname{index} pD^+p; \qquad D = \begin{pmatrix} 0 & D^+ \\ D^- & 0 \end{pmatrix}; \qquad \qquad (\text{even case}). \end{split}$$

Real spectral triples

$$(\mathcal{A},\mathcal{H},D)$$

► Extend to a *real* spectral triple:

 $J:\mathcal{H}
ightarrow\mathcal{H}$ real structure (anti-unitary)

such that

$$J^2 = \pm 1;$$
 $JD = \pm DJ$

• Right action of $\mathcal{A}^{\mathrm{op}}$ on \mathcal{H} via $a^{\mathrm{op}} = Ja^*J^{-1}$ and we demand

$$[a^{\mathrm{op}},b]=0;$$
 $a,b\in\mathcal{A}$

► *D* is said to satisfy the *first-order condition* if

$$[[D,a],b^{\mathrm{op}}]=0$$

Key example: Riemannian spin geometry

Let M be an compact m-dimensional Riemannian spin manifold.

- $\blacktriangleright \mathcal{A} = C^{\infty}(M)$
- $\mathcal{H} = L^2(S_M)$, square integrable spinors
- ► $D = D_M$, Dirac operator
- J = C (charge conjugation)

Gauge theory

▶ Action of unitaries $u \in U(A)$ on self-adjoint operators D by

 $D \mapsto U D U^*; \qquad U = u J u J^{-1}$

► Gauge group:
$$\mathcal{G}(\mathcal{A}) := \{uJuJ^{-1} : u \in \mathcal{U}(\mathcal{A})\}$$

Compute *rhs*:

$$UDU^* = D + u[D, u^*] + \hat{u}[D, \hat{u}^*] + \hat{u}[u[D, u^*], \hat{u}^*]$$

with $\hat{u} = JuJ^{-1}$ and last term on rhs vanishes if D satisfies first-order condition

Morita equivalence

Suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$. Can we construct a *spectral triple* on \mathcal{B} from $(\mathcal{A}, \mathcal{H}, D)$?

▶ Let $\mathcal{B} \simeq \mathsf{End}_{\mathcal{A}}(\mathcal{E})$ with \mathcal{E} finitely generated projective. Define

$$\mathcal{H}' = \mathcal{E} \otimes_\mathcal{A} \mathcal{H}$$

Then $\mathcal B$ acts as bounded operators on $\mathcal H'$.

The self-adjoint operator (1 ⊗_∇ D)(η ⊗ ψ) := ∇_D(η)ψ + η ⊗ Dψ requires a universal connection on E:

$$abla : \mathcal{E}
ightarrow \mathcal{E} \otimes_{\mathcal{A}} \Omega^1(\mathcal{A})$$

where ∇_D indicates that $a\delta(b) \in \Omega^1(\mathcal{A})$ is represented as $a[D, b] \in \Omega^1_D(\mathcal{A})$. Then $(\mathcal{B}, \mathcal{H}', 1 \otimes_{\nabla} D)$ is a spectral triple [Connes, 1996].

Morita equivalence

with real structure

Again, suppose $\mathcal{A} \sim_{\mathcal{M}} \mathcal{B}$.

▶ If there is a *real structure* J on $(\mathcal{A}, \mathcal{H}, D)$, then we define

 $\mathcal{H}' := (\mathcal{E} \otimes_\mathcal{A} \mathcal{H}) \otimes_\mathcal{A} \overline{\mathcal{E}}$

with the *conjugate* (left A-) module $\overline{\mathcal{E}}$

• Define analogously the operator $(1 \otimes_{\nabla} D) \otimes_{\overline{\nabla}} 1$ on \mathcal{H}' , where

 $\overline{
abla}:\overline{\mathcal{E}}
ightarrow\Omega^1(\mathcal{A})\otimes_{\mathcal{A}}\overline{\mathcal{E}},$

and we also define

$$J': \mathcal{H}' o \mathcal{H}', \qquad \eta \otimes \psi \otimes \overline{
ho} \mapsto
ho \otimes J\psi \otimes \overline{
ho}$$

Proposition (Chamseddine–Connes–vS, 2013) We have $(1 \otimes_{\nabla} D) \otimes_{\overline{\nabla}} 1 = 1 \otimes_{\nabla} (D \otimes_{\overline{\nabla}} 1)$ and the tuple $(\mathcal{B}, \mathcal{H}', (1 \otimes_{\nabla} D) \otimes_{\overline{\nabla}} 1; J')$ is a real spectral triple.

Morita self-equivalence

without real structure

▶ If $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have $\mathcal{H}' = \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H} \simeq \mathcal{H}$. ▶ The operator *D* is perturbed to $D' \equiv D + A_{(1)}$ where

$$egin{aligned} & \mathcal{A}_{(1)} :=
abla(1) = \sum_j egin{aligned} & \mathcal{A}_j[D, b_j] \ & \mathcal{A}_j[D, b_j] \end{aligned}$$

• Gauge transformations $D' \mapsto uD'u^*$ implemented by

 $\overline{A_{(1)} \mapsto uA_{(1)}u^* + u}[D, u^*]$

Morita self-equivalence

with real structure

- ▶ If $\mathcal{B} = \mathcal{A}$ (i.e. $\mathcal{E} = \mathcal{A}$) we have $\mathcal{H}' = \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H} \otimes_{\mathcal{A}} \overline{\mathcal{E}} \simeq \mathcal{H}$ and $J' \equiv J$.
- The operator D is perturbed to $D' \equiv D + A_{(1)} + \widetilde{A}_{(1)} + A_{(2)}$ where

$$egin{aligned} &\mathcal{A}_{(1)} := \sum_{j} a_{j}[D, b_{j}], & \widetilde{\mathcal{A}}_{(1)} := \sum_{j} \hat{a}_{j}[D, \hat{b}_{j}] = \pm J \mathcal{A}_{(1)} J^{-1}; \ &\mathcal{A}_{(2)} := \sum_{j} \hat{a}_{j}[\mathcal{A}_{(1)}, \hat{b}_{j}] = \sum_{j,k} \hat{a}_{j} a_{k}[[D, b_{k}], \hat{b}_{j}] \end{aligned}$$

and $A_{(2)}$ vanishes if D satisfies first-order condition • Gauge transformations $D' \mapsto UD'U^*$ implemented by

$$\begin{aligned} & A_{(1)} \mapsto u A_{(1)} u^* + u[D, u^*] \\ & A_{(2)} \mapsto J u J^{-1} A_{(2)} J u^* J^{-1} + J u J^{-1}[u[D, u^*], J u^* J^{-1}] \end{aligned}$$

Semi-group of inner perturbations

$$\mathsf{Pert}(\mathcal{A}) := \left\{ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^{\mathrm{op}} \in \mathcal{A} \otimes \mathcal{A}^{\mathrm{op}} \ \Big| \ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^{\mathrm{op}} = 1 \ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^{\mathrm{op}} = \sum_j \mathsf{b}_j^* \otimes \mathsf{a}_j^{*\mathrm{op}} \
ight\}$$

with semi-group law inherited from product in $\mathcal{A}\otimes\mathcal{A}^{\mathrm{op}}.$

- ▶ $\mathcal{U}(\mathcal{A})$ maps to $Pert(\mathcal{A})$ by sending $u \mapsto u \otimes u^{*op}$.
- Pert(\mathcal{A}) acts on D:

$$D\mapsto \sum_j a_j Db_j$$

For *real* spectral triples we use the map $Pert(A) \rightarrow Pert(A \otimes \hat{A})$ sending $T \mapsto T \otimes \hat{T}$ so that

$$D\mapsto \sum_{i,j} a_i \hat{a}_j D b_i \hat{b}_j$$

and this extends the action of the gauge group $\mathcal{G}(\mathcal{A})$.

Perturbation semi-group and Morita self-equivalences

Proposition (Chamseddine–Connes–vS, 2013)

• The linear map η : $Pert(A) \rightarrow \Omega^1(A)$, $\eta(a \otimes b^{op}) = a\delta(b)$ is surjective.

• If $\sum_{j} a_{j} \otimes b_{j}^{op} \in Pert(\mathcal{A})$ then the perturbed operator

$$\sum_j a_j D b_j = D + \sum_j a_j [D, b_j] \equiv D + A_{(1)}$$

and, for real spectral triples:

$$\sum_{i,j} a_i \hat{a}_j D b_i \hat{b}_j = D + A_{(1)} + \widetilde{A}_{(1)} + A_{(2)}$$

• The gauge transformations are implemented via the map $\mathcal{U}(A) \to \mathsf{Pert}(\mathcal{A})$.

Perturbation semigroup for matrix algebras

Proposition

Let A_F be the algebra of block diagonal matrices (fixed size). Then the perturbation semigroup of A_F is

$$\mathsf{Pert}(\mathcal{A}_{\mathcal{F}}) \simeq \left\{ \sum_{j} A_{j} \otimes B_{j} \in \mathcal{A}_{\mathcal{F}} \otimes \mathcal{A}_{\mathcal{F}} \ \Big| \ \sum_{j} A_{j} (B_{j})^{t} = \mathbb{I} \ \sum_{j} A_{j} \otimes B_{j} = \sum_{j} \overline{B_{j}} \otimes \overline{A_{j}} \
ight\}$$

The semigroup law in $Pert(A_F)$ is given by the matrix product in $A_F \otimes A_F$:

 $(A \otimes B)(A' \otimes B') = (AA') \otimes (BB').$

► The two conditions in the above definition,

$$\sum_j A_j (B_j)^t = \mathbb{I} \qquad \sum_j A_j \otimes B_j = \sum_j \overline{B_j} \otimes \overline{A_j}$$

are the normalization and self-adjointness condition, respectively.

▶ Let us check that the normalization condition carries over to products,

$$\left(\sum_j A_j\otimes B_j
ight)\left(\sum_k A_k'\otimes B_k'
ight)=\sum_{j,k}(A_jA_k')\otimes (B_jB_k')$$

for which indeed

$$\sum_{j,k} A_j A_k' (B_j B_k')^t = \sum_{j,k} A_j A_k' (B_k')^t (B_j)^t = \mathbb{I}$$

Example: perturbation semigroup of two-point space

▶ Now $A_F = \mathbb{C}^2$, the algebra of diagonal 2 × 2 matrices.

In terms of the standard basis of such matrices

$$e_{11}=egin{pmatrix} 1&0\0&0\end{pmatrix},\qquad e_{22}=egin{pmatrix} 0&0\0&1\end{pmatrix}$$

we can write an arbitrary element of $\mathsf{Pert}(\mathbb{C}^2)$ as

 $z_1e_{11} \otimes e_{11} + z_2e_{11} \otimes e_{22} + z_3e_{22} \otimes e_{11} + z_4e_{22} \otimes e_{22}$

► Matrix multiplying *e*₁₁ and *e*₂₂ yields for the normalization condition:

$$z_1 = 1 = z_4.$$

The self-adjointness condition reads

$$z_2 = \overline{z_3}$$

leaving only one free complex parameter so that $Pert(\mathbb{C}^2) \simeq \mathbb{C}$.

Example: perturbations for two-point space

▶ An element
$$\phi \in \mathbb{C} \cong \operatorname{Pert}(\mathbb{C}^2)$$
 acts on D_F as:

$$D_{m{F}} = egin{pmatrix} 0 & \overline{c} \ c & 0 \end{pmatrix} \mapsto egin{pmatrix} 0 & \overline{c} \overline{\phi} \ c \phi & 0 \end{pmatrix}$$

The group of unitary matrices is now U(1) × U(1) and an element (λ, μ) therein acts as

$$\phi \mapsto \overline{\lambda} \mu \cdot \phi$$

Example: perturbations for noncommutative two-point space

- Consider noncommutative two-point space described by $\mathbb{C} \oplus M_2(\mathbb{C})$
- It turns out that

 $\operatorname{Pert}(\mathbb{C}\oplus M_2(\mathbb{C}))\simeq M_2(\mathbb{C}) imes\operatorname{Pert}(M_2(\mathbb{C}))$

• Only $M_2(\mathbb{C}) \subset \operatorname{Pert}(\mathbb{C} \oplus M_2(\mathbb{C}))$ acts non-trivially on D_F :

$$D_{\mathcal{F}}=egin{pmatrix} 0&\overline{c}&0\c&0&0\c&0&0\end{pmatrix}\mapstoegin{pmatrix} 0&\overline{c}\overline{\phi_1}&\overline{c}\overline{\phi_2}\c\phi_1&0&0\c\phi_2&0&0\end{pmatrix}$$

▶ Physicists call ϕ_1 and ϕ_2 the *Higgs field*.

The group of unitary block diagonal matrices is now U(1) × U(2) and an element (λ, u) therein acts as

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \mapsto \overline{\lambda} u \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$

Example: perturbations for $M_N(\mathbb{C})$

Consider $(M_N(\mathbb{C}), \mathbb{C}^N, D)$ with D a hermitian matrix, not proportional to the identity.

- ▶ Inner perturbation are of the form $D \mapsto \sum_j a_j Db_j = D + \sum_j a_j [D, b_j]$
- Note that

$$e_{kl} = rac{1}{\lambda_j - \lambda_l} e_{kj} [D, e_{jl}] \in \Omega^1_D(\mathcal{A}) \, ,$$

for some j (so that $\lambda_j \neq \lambda_l$).

- ► Thus $\Omega^1_D(\mathcal{A}) \cong M_N(\mathbb{C})$, in particular, we may take $-D \in \Omega^1_D(\mathcal{A})$ and perturb $D \mapsto 0$.
- Since $\Omega_0^1(\mathcal{A}) = 0$ all subsequent inner perturbations vanish...

In general, Morita equivalence of C^* -algebras does not lift to equivalence between spectral triples

Examples: Pert(A) for function algebras

$$\mathsf{Pert}(\mathcal{A}) := \left\{ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^{\mathrm{op}} \in \mathcal{A} \otimes \mathcal{A}^{\mathrm{op}} \ \Big| \ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^{\mathrm{op}} = 1 \ \sum_j \mathsf{a}_j \otimes \mathsf{b}_j^{\mathrm{op}} = \sum_j \mathsf{b}_j^* \otimes \mathsf{a}_j^{*\mathrm{op}} \end{array}
ight\}$$

• If $\mathcal{A} = C^{\infty}(M)$ then

$$\mathsf{Pert}(C^\infty(M)) \simeq \left\{ f \in C^\infty(M \times M) \left| \begin{array}{c} f(x,x) = \frac{1}{f(x,x)} = \frac{1}{f(y,x)} & \forall x,y \in M \end{array} \right\} \right.$$

• Action of Pert($C^{\infty}(M)$) on $D = D_M = i\gamma^{\mu} \nabla_{\mu}$ is given by

$$\sum_{j} a_{j} D_{M} b_{j} = D_{M} + i \gamma^{\mu} \nabla_{\frac{\partial}{\partial y^{\mu}}} f(x, y)|_{x=y} =: D_{M} + i \gamma^{\mu} A_{\mu}$$

with $A_{\mu} \in C^{\infty}(M, \mathfrak{u}(1))$

Non-abelian Yang-Mills theory

On a 4-dimensional background:

- $\blacktriangleright \mathcal{A} = C^{\infty}(M) \otimes M_n(\mathbb{C})$
- $\blacktriangleright \mathcal{H} = L^2(S) \otimes M_n(\mathbb{C})$
- ► $D = D_M \otimes 1$
- ► $J = C \otimes (.)^*$.

Proposition (Chamseddine-Connes, 1996)

- The perturbations A₍₁₎ + A₍₁₎ with A₍₁₎ = γ^µA_µ describes an su(n)-gauge field on M.
- Gauge group $\mathcal{G}(\mathcal{A}) \simeq C^{\infty}(M, SU(n))$

The spectral Standard Model

Describe geometry of $M \times F_{SM}$ by $(C^{\infty}(M) \otimes A_F, L^2(S_M) \otimes \mathcal{H}_F, D_{M \times F})$ [CCM 2007]

- ► Coordinates in $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$ (with gauge group $U(1)_Y \times SU(2)_L \times SU(3)$).
- ► Dirac operator $D_{M \times F} = D_M \otimes 1 + \gamma_M \otimes D_F$ where

$$D_F = egin{pmatrix} S & T^* \ T & \overline{S} \end{pmatrix}$$

is a 96 \times 96-dimensional hermitian matrix where 96 is:

 $3 \times 2 \times (\underline{2} \otimes \underline{1} + \underline{1} \otimes \underline{1} + \underline{1} \otimes \underline{1} + \underline{2} \otimes \underline{3} + \underline{1} \otimes \underline{3} + \underline{1} \otimes \underline{3})$

The Dirac operator on F_{SM}

$$D_F = \begin{pmatrix} S & T^* \\ T & \overline{S} \end{pmatrix}$$

• The operator S is given by

$$S_{I} := egin{pmatrix} 0 & 0 & Y_{
u} & 0 \ 0 & 0 & 0 & Y_{e} \ Y_{
u}^{*} & 0 & 0 & 0 \ 0 & Y_{e}^{*} & 0 & 0 \ \end{pmatrix}, \qquad S_{q} \otimes 1_{3} = egin{pmatrix} 0 & 0 & Y_{u} & 0 \ 0 & 0 & 0 & Y_{d} \ Y_{u}^{*} & 0 & 0 & 0 \ 0 & Y_{d}^{*} & 0 & 0 \ \end{pmatrix} \otimes 1_{3},$$

where Y_{ν} , Y_e , Y_u and Y_d are 3 × 3 mass matrices acting on the three generations.

► The symmetric operator T only acts on the right-handed (anti)neutrinos, $T\nu_R = Y_R \overline{\nu_R}$ for a 3 × 3 symmetric Majorana mass matrix Y_R , and Tf = 0 for all other fermions $f \neq \nu_R$.

Inner perturbations

• Inner perturbations of D_M give a matrix

$$egin{aligned} \mathcal{A}_{\mu} &= egin{pmatrix} \mathcal{B}_{\mu} & 0 & 0 & 0 \ 0 & \mathcal{W}_{\mu}^3 & \mathcal{W}_{\mu}^+ & 0 \ 0 & \mathcal{W}_{\mu}^- & -\mathcal{W}_{\mu}^3 & 0 \ 0 & 0 & 0 & (G_{\mu}^a) \end{pmatrix} \end{aligned}$$

corresponding to hypercharge, weak and strong interaction.

• Inner perturbations of D_F give

$$\begin{pmatrix} Y_{\nu} & 0\\ 0 & Y_{e} \end{pmatrix} \rightsquigarrow \begin{pmatrix} Y_{\nu}\phi_{1} & -Y_{e}\overline{\phi}_{2} \\ Y_{\nu}\phi_{2} & Y_{e}\overline{\phi}_{1} \end{pmatrix}$$

corresponding to SM-Higgs field. Similarly for Y_u, Y_d .

Beyond the Standard Model: Grand algebra unification, Pati-Salam, etc.