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Lorentz in October 1910

H.A. Lorentz by Jan Veth

Origins of spectral geometry:

“Hierbei entseht das mathematische Problem, zu be-
weisen, dass die Anzahl der genügend hohen Obertöne
zwischen n und n + dn unabhängig von der Gestalt der
Hülle und nur ihrem Volumen proportional ist.”



Weyl in February 1911

N(Λ) = #wave numbers ≤ Λ

∼ ΩdVol(M)

d(2π)d
Λd

Evidence by the parabolic shapes (
√
Λ):



Mark Kac in 1966

“Can one hear the shape of a drum?”

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave
numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



Isospectral drums!

... so the answer to Kac’s question is no
and more information is needed...



Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

▶ The Dirac operator is a ‘square-root’ of the Laplacian, so that its spectrum give
the wave numbers k .

▶ First found by Paul Dirac in flat space, but exists on any Riemannian spin
manifold M.



The circle
▶ The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

▶ The Dirac operator on the circle is

DS1 = −i
d

dt

with square ∆S1 .
▶ The eigenfunctions of DS1 in L2(S1) are the complex exponential functions

e int = cos nt + i sin nt; (n ∈ Z)

and [DS1 , f ] = df
dt , a bounded operator on L2(S1) for smooth f .



The 2-dimensional torus

▶ Consider the two-dimensional torus T2 parametrized by two angles t1, t2 ∈ [0, 2π).

▶ The Laplacian reads

∆T2 = − ∂2

∂t21
− ∂2

∂t22
.

▶ Dirac suggested to consider operators of the form DT2 = a ∂
∂t1

+ b ∂
∂t2

with
complex matrices as coefficients:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0



▶ The Dirac operator on the torus is

DT2 =

(
0 ∂

∂t1
+ i ∂

∂t2
− ∂

∂t1
+ i ∂

∂t2
0

)
,

which satisfies (DT2)2 = − ∂2

∂t21
− ∂2

∂t22
.

▶ The spectrum of the Dirac operator DT2 is

{
±
√

n21 + n22 : n1, n2 ∈ Z
}
;

and ∥[DT2 , f ]∥ = ∥f ∥Lip.

More generally, a Dirac operator exists on spin manifolds as a differential operator
acting in L2(SM) and square D2

M = ∆M + 1
4κ for which furthermore

∥[DM , f ]∥ = ∥f ∥Lip



Spectral description of geometry: distance
Noncommutative geometry (Alain Connes)

▶ Distance d(x , y) between two points is usually defined as

the smallest of the arclengths (computed using the metric) of curves connect-
ing x and y.

▶ But it can also be defined as
the largest of differences |f (x)− f (y)| for functions f with gradient |∇f | ≤ 1.

d(x , y) = sup
∥[DM ,f ]∥≤1

|δx(f )− δy (f )|

x y x y

f

Combination (C∞(M), L2(SM),DM)
allows for reconstruction of geometry



Spectral triples

More generally, we consider a triple (A,H,D)

▶ a unital ∗-algebra A
▶ a self-adjoint operator D with compact resolvent and bounded commutators [D, a]

for a ∈ A
▶ both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:

▶ States are positive linear functionals ϕ : A → C of norm 1

▶ Distance function on state space S(A) of A:

dD(ϕ, ψ) = sup
a∈A

{|ϕ(a)− ψ(a)| : ∥[D, a]∥ ≤ 1}

These notions continue to make sense when we replace A by any self-adjoint vector
space E of bounded operators on H that contains the unit, a so-called operator system.



Spectral data: (A,H,D)

▶ The mathematical reformulation of geometry in terms of spectral data (global
analysis) requires the knowledge of the full Dirac operator.

▶ From a physical standpoint this is not very realistic: detectors have limited energy
ranges and resolution.

▶ We aim for the underlying mathematical formalism for doing (noncommutative)
geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D’Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based
on [Connes–vS] (CMP, Szeged)



Operator systems

(I) Given (A,H,D) we project onto part of the spectrum of D:
▶ H 7→ PH, projection onto closed Hilbert subspace
▶ D 7→ PDP, still a self-adjoint operator
▶ A 7→ PAP, this is not an algebra any more (unless P ∈ A)

Instead, PAP is an operator system: (PaP)∗ = Pa∗P.

(II) Another approach would be to consider metric spaces up to a finite resolution :
▶ Consider integral operators associated to the tolerance relation Rϵ given by

d(x , y) < ϵ



Abstract operator systems

Definition
We say that a ∗-vector space is matrix ordered if

1. for each n we are given a cone of positive elements Mn(E )+ in Mn(E )h,

2. Mn(E )+ ∩ (−Mn(E )+) = {0} for all n,

3. for every m, n and A ∈ Mmn(C) we have that AMn(E )+A
∗ ⊆ Mm(E )+.

We call e ∈ Eh an order unit for E if for each x ∈ Eh there is a t > 0 such that
−te ≤ x ≤ te. It is called an Archimedean order unit if −te ≤ x for all t > 0 implies
that x ≥ 0.

Definition
An (abstract) operator system is given by a matrix-ordered ∗-vector space E with an
order unit e such that for all n e⊕n is an Archimedean order unit for Mn(E ).

Maps between operator systems E ,F are completely positive maps in the sense that
their extensions Mn(E ) → Mn(F ) are positive for all n.

Isomorphisms are complete order isomorphisms



C ∗-envelope of a unital operator system
[Arveson, 1969]

Hamana: existence and uniqueness in 1979; realized á la Arveson as direct sum of all
boundary representations [Dritschel–McCullough 2005, Arveson 2008,
Davidson–Kennedy 2015]

A C ∗-extension κ : E → A of a unital operator system E is given by a complete order
isomorphism onto κ(E ) ⊆ A such that C ∗(κ(E )) = A.

A C ∗-envelope of a unital operator system is a C ∗-extension κ : E → A with the
following universal property:

E
κ //

λ ��

A
OOOO

∃!ρ

B

Example: operator system Charm(D) of continuous harmonic
functions with C ∗-envelope C (S1).



Example: spectral truncation of the circle [Connes-vS, 2020]

▶ Eigenvectors of DS1 are Fourier modes ek(t) = e ikt for k ∈ Z
▶ Orthogonal projection P = Pn onto spanC{e1, e2, . . . , en}
▶ The space C (S1)(n) := PC (S1)P is an operator system

▶ Any T = PfP in C (S1)(n) can be written as a Toeplitz matrix

PfP ∼
(
tk−l

)
kl
=


t0 t−1 ··· t−n+2 t−n+1
t1 t0 t−1 t−n+2

... t1 t0
. . .

...

tn−2

. . .
. . . t−1

tn−1 tn−2 ··· t1 t0


▶ States are defined as unital positive linear functionals.

We have: C ∗
env(C (S1)(n)) ∼= Mn(C)



Fourier truncations: the Fejér–Riesz operator system

We introduce the Fejér–Riesz operator system C ∗(Z)(n):
▶ functions on S1 with a finite number of non-zero Fourier coefficients:

a = (. . . , 0, a−n+1, a−n+2, . . . , a−1, a0, a1, . . . , an−2, an−1, 0, . . .)

▶ an element a is positive iff
∑

k ake
ikx is a positive function on S1.

▶ The C ∗-envelope of C ∗(Z)(n) is given by C ∗(Z) ∼= C (S1)

Proposition

1. The extreme rays in (C ∗(Z)(n))+ are given by the elements a = (ak) for which the

Laurent series
∑

k akz
k has all its zeroes on S1.

2. The pure states of C ∗(Z)(n) are given by a 7→
∑

k akλ
k (λ ∈ S1).



Pure states on the Toeplitz matrices
Duality of C (S1)(n) and C ∗(Z)(n) [Connes–vS 2020] and [Farenick 2021]:

C (S1)(n) × C ∗(Z)(n) → C

(T = (tk−l)k,l , a = (ak)) 7→
∑
k

akt−k

Proposition

1. The extreme rays in C (S1)
(n)
+ are γ(λ) = |fλ⟩⟨fλ| for any λ ∈ S1.

2. The pure state space P(C (S1)(n+1)) ∼= Tn/Sn.



Curiosities on Toeplitz matrices

Theorem (Carathéodory)

Let T be an n × n Toeplitz matrix. Then T ≥ 0 iff T = V∆V ∗ with

∆ =


d1

d2
. . .

dn

 ; V =
1√
n


1 1 · · · 1
λ1 λ2 · · · λn
...

...

λn−1
1 λn−1

2 · · · λn−1
n

 ,

for some d1, . . . , dn ≥ 0 and λ1, . . . , λn ∈ S1.



Gromov–Hausdorff convergence

Recall Gromov–Hausdorff distance between two metric spaces:

dGH(X ,Y ) = inf{dH(f (X ), g(Y )) | f : X → Z , g : Y → Z isometric}

and

dH(X ,Y ) = inf{ϵ ≥ 0;X ⊆ Yϵ,Y ⊆ Xϵ}

Rieffel extends this to quantum metric spaces (essentially operator systems equipped
with a Lip-norm).



General results on GH-convergence

Definition
Let {(En,Hn,Dn)}n be a sequence of operator system spectral triples and let (E ,H,D)
be an operator system spectral triple. An C 1-approximate order isomorphism for this
set of data is given by linear maps Rn : E → En and Sn : En → E for any n such that
the following three condition hold:

1. Rn,Sn are positive, unital, contractive and Lipschitz-contractive

2. there exist sequences γn, γ
′
n both converging to zero such that

∥Sn ◦ Rn(a)− a∥ ≤ γn∥[D, a]∥,
∥Rn ◦ Sn(h)− h∥ ≤ γ′n∥[Dn, h]∥.

Theorem (vS21)

If (Rn, Sn) is a C 1-approximate order isomorphism for (En,Hn,Dn) and (E ,H,D), then
the state spaces (S(En), dEn) converge to (S(E ), dE ) in Gromov–Hausdorff distance.



Spectral truncations and convergence to the circle
▶ The map Rn : C (S1) → C (S1)(n) given by compression with Pn allows to

pull-back states from C (S1)(n) to the circle

▶ There is a C 1-approximate order inverse Sn : C (S1)(n) → C (S1):

Rn(Sn(T )) = Tn ⊙ T ; Sn(Rn(f )) = Fn ∗ f

in terms of a Schur product with a matrix Tn and the Fejér kernel Fn.

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces {(S(C (S1)(n)), dn)} converges to (S(C (S1)), dS1) in
Gromov–Hausdorff distance.

Other examples: cubic truncations of Td [Berendschot 2019], fuzzy spheres [Rieffel
2000], quantum spheres [Aguilar–Kaad–Kyed 2021], Fourier truncations [Rieffel 2022],
spectral truncations of Td [Leimbach 2023], Peter–Weyl truncations [Gaudillot–Estrada
2024, Leimbach 2024],...



Distance function for spectral truncations of the circle

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces {(S(PnC (S1)Pn), dn)} converges to (S(C (S1)), dS1) in
Gromov–Hausdorff distance.

Other examples: cubic truncations of Td [Berendschot 2019], fuzzy spheres [Rieffel
2000], quantum spheres [Aguilar–Kaad–Kyed 2021], Fourier truncations [Rieffel 2022],
spectral truncations of Td [Leimbach 2023], Peter–Weyl truncations [Gaudillot–Estrada
2024, Leimbach 2024],...



Operator systems associated to tolerance relations

▶ Suppose that X is a set and consider a relation R ⊆ X × X on X that is reflexive,
symmetric but not necessarily transitive.

▶ Key motivating example: a metric space (X , d) with the relation

Rϵ := {(x , y) ∈ X × X : d(x , y) < ϵ}

▶ If (X , µ) is a measure space and R ⊆ X × X an open subset we obtain the
operator system E (R) as the closure of integral operator with support in R. Note
that E (R) ⊆ K(L2(X ))



Tolerance relations on finite sets [Gielen–vS, 2022]

Let X be a finite set and R ⊆ X × X a symmetric reflexive relation on X and suppose
that R generates the full equivalence class X × X (i.e. the graph corresponding to R
is connected). Then

1. the C ∗-envelope of E (R) is K(ℓ2(X )) ∼= M|X |(C) and prop(E (R)) = diam(R).

2. If R is a chordal graph, then E (R)d ∼= E (R) as a vector space, but with order
structure given by being partially positive.

3. the pure states of E (R) are given by vector states |v⟩⟨v | for which the support of
v ∈ ℓ2(X ) is R-connected.

Example

The operator systems of p × p band matrices with band width N.

▶ The dual operator system consists of band matrices (with order given by partially
positive).



Spaces at finite resolution [Connes-vS, 2021]

Consider now a path metric measure space X with a measure of full support, and the
following tolerance relation:

Rϵ := {(x , y) ∈ X × X : d(x , y) < ϵ}

It gives rise to the operator system E (Rϵ) ⊆ (L2(X )).

Proposition

If X is a complete and locally compact path metric measure space X with a measure
of full support, then

1. C ∗
env(E (Rϵ)) = K(L2(X )).

2. The pure states of E (Rϵ) are given by vector states |ψ⟩⟨ψ| where the essential
support of ψ ∈ L2(X ) is ϵ-connected.



Summary

▶ Noncommutative geometry: metric aspect

▶ Operator systems: from (spectral) truncations and tolerance relations

▶ Duality of operator systems: state spaces
▶ New invariants: propagation number, K-theory (Thursday, S9)

▶ K-group invariants [arXiv:2409.02773]:

V0(E , n) = {x = x∗ ∈ Mn(E ) : x is invertible } /∼n

▶ Grothendieck group K0(E ) of lim−→V0(E , n) is invariant under Morita equivalence.
▶ Higher K -groups and formal periodicity [arXiv:2411.02981]:

K δ
2m(E ) = K δ

0 (E ) K δ
2m+1(E ) = K δ

1 (E )


