Noncommutative geometry and operator systems

Radboud Universiteit

Walter van Suijlekom

Lorentz in October 1910

H.A. Lorentz by Jan Veth

Origins of spectral geometry:

"Hierbei entseht das mathematische Problem, zu beweisen, dass die Anzahl der genügend hohen Obertöne zwischen n und n+dn unabhängig von der Gestalt der Hülle und nur ihrem Volumen proportional ist."

Weyl in February 1911

$$N(\Lambda) = \# ext{wave numbers } \leq \Lambda \ \sim rac{\Omega_d ext{Vol}(M)}{d(2\pi)^d} \Lambda^d$$

Evidence by the parabolic shapes $(\sqrt{\Lambda})$:

Mark Kac in 1966

"Can one hear the shape of a drum?"

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

$$\Delta_M u = k^2 u$$

determine the geometry of *M*?

Isospectral drums!

... so the answer to Kac's question is **no** and more information is needed...

Analysis: Dirac operator

Recall that k^2 is an eigenvalue of the Laplacian in the Helmholtz equation.

- ightharpoonup The Dirac operator is a 'square-root' of the Laplacian, so that its spectrum give the wave numbers k.
- ► First found by Paul Dirac in flat space, but exists on any Riemannian spin manifold *M*.

The circle

ightharpoonup The Laplacian on the circle \mathbb{S}^1 is given by

$$\Delta_{\mathbb{S}^1} = -rac{d^2}{dt^2}; \qquad (t \in [0,2\pi))$$

The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -i\frac{d}{dt}$$

with square $\Delta_{\mathbb{S}^1}$.

▶ The eigenfunctions of D_{S1} in $L^2(S^1)$ are the complex exponential functions

$$e^{int}=\cos nt+i\sin nt; \qquad (n\in\mathbb{Z})$$

and $[D_{S^1}, f] = \frac{df}{dt}$, a bounded operator on $L^2(S^1)$ for smooth f.

The 2-dimensional torus

- ▶ Consider the two-dimensional torus \mathbb{T}^2 parametrized by two angles $t_1, t_2 \in [0, 2\pi)$.
- ► The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -rac{\partial^2}{\partial t_1^2} - rac{\partial^2}{\partial t_2^2}.$$

▶ Dirac suggested to consider operators of the form $D_{\mathbb{T}^2} = a \frac{\partial}{\partial t_1} + b \frac{\partial}{\partial t_2}$ with complex *matrices* as coefficients:

$$a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

then $a^2 = b^2 = -1$ and ab + ba = 0

► The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = egin{pmatrix} 0 & rac{\partial}{\partial t_1} + i rac{\partial}{\partial t_2} \ -rac{\partial}{\partial t_1} + i rac{\partial}{\partial t_2} & 0 \end{pmatrix},$$

which satisfies $(D_{\mathbb{T}^2})^2 = -rac{\partial^2}{\partial t_1^2} - rac{\partial^2}{\partial t_2^2}.$

▶ The spectrum of the Dirac operator $D_{\mathbb{T}^2}$ is

$$\left\{\pm\sqrt{n_1^2+n_2^2}: n_1, n_2 \in \mathbb{Z}
ight\};$$

and $||[D_{\mathbb{T}^2}, f]|| = ||f||_{\text{Lip.}}$

More generally, a Dirac operator exists on spin manifolds as a differential operator acting in $L^2(S_M)$ and square $D_M^2 = \Delta_M + \frac{1}{4}\kappa$ for which furthermore

$$||[D_M, f]|| = ||f||_{Lip}$$

Spectral description of geometry: distance

Noncommutative geometry (Alain Connes)

- ▶ Distance d(x, y) between two points is usually defined as the **smallest** of the arclengths (computed using the metric) of curves connecting x and y.
- ▶ But it can also be defined as the largest of differences |f(x) f(y)| for functions f with gradient $|\nabla f| \le 1$.

$$d(x,y) = \sup_{\|[D_M,f]\| \le 1} |\delta_x(f) - \delta_y(f)|$$

$$f$$

Combination $(C^{\infty}(M), L^2(S_M), D_M)$ allows for reconstruction of geometry

Spectral triples

More generally, we consider a triple (A, \mathcal{H}, D)

- ightharpoonup a unital *-algebra ${\cal A}$
- ▶ a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for $a \in A$
- lacktriangle both acting (boundedly, resp. unboundedly) on Hilbert space ${\cal H}$

Generalized distance function:

- lacktriangle States are positive linear functionals $\phi: \mathcal{A} \to \mathbb{C}$ of norm 1
- ▶ Distance function on state space S(A) of A:

$$d_D(\phi,\psi) = \sup_{\mathbf{a} \in \mathcal{A}} \left\{ |\phi(\mathbf{a}) - \psi(\mathbf{a})| : \|[D,\mathbf{a}]\| \le 1 \right\}$$

These notions continue to make sense when we replace \mathcal{A} by any self-adjoint vector space \mathcal{E} of bounded operators on \mathcal{H} that contains the unit, a so-called *operator system*.

Spectral data: (A, \mathcal{H}, D)

- ► The mathematical reformulation of geometry in terms of spectral data (global analysis) requires the knowledge of the full Dirac operator.
- ► From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.
- ▶ We aim for the underlying mathematical formalism for doing (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based on [Connes–vS] (CMP, Szeged)

Operator systems

- (1) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $ightharpoonup \mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $ightharpoonup D \mapsto PDP$, still a self-adjoint operator
 - ▶ $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, PAP is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - ▶ Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x,y) < \epsilon$

Abstract operator systems

Definition

We say that a *-vector space is matrix ordered if

- 1. for each n we are given a cone of positive elements $M_n(E)_+$ in $M_n(E)_h$,
- 2. $M_n(E)_+ \cap (-M_n(E)_+) = \{0\}$ for all n,
- 3. for every m,n and $A\in M_{mn}(\mathbb{C})$ we have that $AM_n(E)_+A^*\subseteq M_m(E)_+$.

We call $e \in E_h$ an order unit for E if for each $x \in E_h$ there is a t > 0 such that $-te \le x \le te$. It is called an Archimedean order unit if $-te \le x$ for all t > 0 implies that $x \ge 0$.

Definition

An (abstract) operator system is given by a matrix-ordered *-vector space E with an order unit e such that for all n $e^{\oplus n}$ is an Archimedean order unit for $M_n(E)$.

Maps between operator systems E, F are completely positive maps in the sense that their extensions $M_n(E) \to M_n(F)$ are positive for all n.

Isomorphisms are complete order isomorphisms

C^* -envelope of a unital operator system

[Arveson, 1969]

Hamana: existence and uniqueness in 1979; realized á la Arveson as direct sum of all boundary representations [Dritschel-McCullough 2005, Arveson 2008, Davidson-Kennedy 2015]

A C^* -extension $\kappa: E \to A$ of a unital operator system E is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$.

A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$ with the following universal property:

Example: operator system $C_{\text{harm}}(\overline{\mathbb{D}})$ of continuous harmonic functions with C^* -envelope $C(S^1)$.

Example: spectral truncation of the circle [Connes-vS, 2020]

- ▶ Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$
- ightharpoonup Orthogonal projection $P = P_n$ onto $\operatorname{span}_{\mathbb{C}}\{e_1, e_2, \dots, e_n\}$
- ► The space $C(S^1)^{(n)} := PC(S^1)P$ is an operator system
- ▶ Any T = PfP in $C(S^1)^{(n)}$ can be written as a Toeplitz matrix

$$PfP \sim (t_{k-l})_{kl} = \left(egin{array}{cccc} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_1 & t_0 & t_{-1} & t_{-n+2} \\ dots & t_1 & t_0 & \ddots & dots \\ t_{n-2} & \ddots & \ddots & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{array}
ight)$$

States are defined as unital positive linear functionals.

We have: $C^*_{\operatorname{env}}(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$

Fourier truncations: the Fejér-Riesz operator system

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

 \triangleright functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

- ▶ an element a is positive iff $\sum_k a_k e^{ikx}$ is a positive function on S^1 .
- ▶ The C^* -envelope of $C^*(\mathbb{Z})_{(n)}$ is given by $C^*(\mathbb{Z}) \cong C(S^1)$

Proposition

- 1. The extreme rays in $(C^*(\mathbb{Z})_{(n)})_+$ are given by the elements $a=(a_k)$ for which the Laurent series $\sum_k a_k z^k$ has all its zeroes on S^1 .
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k$ $(\lambda \in S^1)$.

Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes–vS 2020] and [Farenick 2021]:

$$C(S^1)^{(n)} imes C^*(\mathbb{Z})_{(n)} o \mathbb{C} \ (T=(t_{k-l})_{k,l},a=(a_k))\mapsto \sum_k a_k t_{-k}$$

Proposition

- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_{\lambda}\rangle\langle f_{\lambda}|$ for any $\lambda \in S^1$.
- 2. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/S_n$.

Curiosities on Toeplitz matrices

Theorem (Carathéodory)

Let T be an $n \times n$ Toeplitz matrix. Then T > 0 iff $T = V\Delta V^*$ with

$$\Delta = egin{pmatrix} d_1 & & & & & \ & d_2 & & & \ & & \ddots & & \ & & & d_n \end{pmatrix}; \qquad V = rac{1}{\sqrt{n}} egin{pmatrix} 1 & 1 & \cdots & 1 \ \lambda_1 & \lambda_2 & \cdots & \lambda_n \ dots & & dots \ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix},$$

for some $d_1, \ldots, d_n \geq 0$ and $\lambda_1, \ldots, \lambda_n \in S^1$.

Gromov–Hausdorff convergence

Recall Gromov-Hausdorff distance between two metric spaces:

$$d_{\mathrm{GH}}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f: X \to Z, g: Y \to Z \text{ isometric}\}$$

and

$$d_H(X, Y) = \inf\{\epsilon \geq 0; X \subseteq Y_{\epsilon}, Y \subseteq X_{\epsilon}\}$$

Rieffel extends this to quantum metric spaces (essentially operator systems equipped with a Lip-norm).

General results on GH-convergence

Definition

Let $\{(\mathcal{E}_n, \mathcal{H}_n, D_n)\}_n$ be a sequence of operator system spectral triples and let $(\mathcal{E}, \mathcal{H}, D)$ be an operator system spectral triple. An C^1 -approximate order isomorphism for this set of data is given by linear maps $R_n : E \to E_n$ and $S_n : E_n \to E$ for any n such that the following three condition hold:

- 1. R_n , S_n are positive, unital, contractive and Lipschitz-contractive
- 2. there exist sequences γ_n, γ'_n both converging to zero such that

$$||S_n \circ R_n(a) - a|| \le \gamma_n ||[D, a]||,$$

 $||R_n \circ S_n(h) - h|| \le \gamma'_n ||[D_n, h]||.$

Theorem (vS21)

If (R_n, S_n) is a C^1 -approximate order isomorphism for $(\mathcal{E}_n, \mathcal{H}_n, D_n)$ and $(\mathcal{E}, \mathcal{H}, D)$, then the state spaces $(\mathcal{S}(E_n), d_{E_n})$ converge to $(\mathcal{S}(E), d_E)$ in Gromov–Hausdorff distance.

Spectral truncations and convergence to the circle

- ▶ The map $R_n: C(S^1) \to C(S^1)^{(n)}$ given by compression with P_n allows to pull-back states from $C(S^1)^{(n)}$ to the circle
- ▶ There is a C^1 -approximate order inverse $S_n : C(S^1)^{(n)} \to C(S^1)$:

$$R_n(S_n(T)) = T_n \odot T;$$
 $S_n(R_n(f)) = F_n * f$

in terms of a Schur product with a matrix T_n and the Fejér kernel F_n .

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces $\{(S(C(S^1)^{(n)}), d_n)\}$ converges to $(S(C(S^1)), d_{S^1})$ in Gromov–Hausdorff distance.

Other examples: cubic truncations of \mathbb{T}^d [Berendschot 2019], fuzzy spheres [Rieffel 2000], quantum spheres [Aguilar–Kaad–Kyed 2021], Fourier truncations [Rieffel 2022], spectral truncations of \mathbb{T}^d [Leimbach 2023], Peter–Weyl truncations [Gaudillot–Estrada 2024, Leimbach 2024],...

Distance function for spectral truncations of the circle

Proposition (vS21, Hekkelman 2021) The sequence of state spaces $\{(S(P_nC(S^1)P_n), d_n)\}$ converges to $(S(C(S^1)), d_{S^1})$ in Gromov–Hausdorff distance.

Other examples: cubic truncations of \mathbb{T}^d [Berendschot 2019], fuzzy spheres [Rieffel 2000], quantum spheres [Aguilar–Kaad–Kyed 2021], Fourier truncations [Rieffel 2022], spectral truncations of \mathbb{T}^d [Leimbach 2023], Peter–Weyl truncations [Gaudillot–Estrada 2024, Leimbach 2024],...

Operator systems associated to tolerance relations

- ▶ Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.
- \blacktriangleright Key motivating example: a metric space (X, d) with the relation

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

▶ If (X, μ) is a measure space and $\mathcal{R} \subseteq X \times X$ an open subset we obtain the operator system $E(\mathcal{R})$ as the closure of integral operator with support in \mathcal{R} . Note that $E(\mathcal{R}) \subseteq \mathcal{K}(L^2(X))$

Tolerance relations on finite sets [Gielen–vS, 2022]

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X and suppose that \mathcal{R} generates the full equivalence class $X \times X$ (*i.e.* the graph corresponding to \mathcal{R} is connected). Then

- 1. the C^* -envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X)) \cong M_{|X|}(\mathbb{C})$ and $prop(E(\mathcal{R})) = diam(\mathcal{R})$.
- 2. If \mathcal{R} is a chordal graph, then $E(\mathcal{R})^d \cong E(\mathcal{R})$ as a vector space, but with order structure given by being partially positive.
- 3. the pure states of $E(\mathcal{R})$ are given by vector states $|v\rangle\langle v|$ for which the support of $v\in\ell^2(X)$ is \mathcal{R} -connected.

Example

The operator systems of $p \times p$ band matrices with band width N.

► The dual operator system consists of band matrices (with order given by partially positive).

Spaces at finite resolution [Connes-vS, 2021]

Consider now a path metric measure space X with a measure of full support, and the following tolerance relation:

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

It gives rise to the operator system $E(\mathcal{R}_{\epsilon}) \subseteq (L^2(X))$.

Proposition

If X is a complete and locally compact path metric measure space X with a measure of full support, then

- 1. $C_{env}^*(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X)).$
- 2. The pure states of $E(\mathcal{R}_{\epsilon})$ are given by vector states $|\psi\rangle\langle\psi|$ where the essential support of $\psi \in L^2(X)$ is ϵ -connected.

Summary

- ► Noncommutative geometry: metric aspect
- ▶ Operator systems: from (spectral) truncations and tolerance relations
- ► Duality of operator systems: state spaces
- ▶ New invariants: propagation number, K-theory (Thursday, S9)
 - ► K-group invariants [arXiv:2409.02773]:

$$\mathcal{V}_0(E,n) = \{x = x^* \in M_n(E) : x \text{ is invertible } \} /_{\sim_n}$$

- ▶ Grothendieck group $K_0(E)$ of $\lim_{n \to \infty} V_0(E, n)$ is invariant under Morita equivalence.
- ► Higher K-groups and formal periodicity [arXiv:2411.02981]:

$$\mathsf{K}_{2m}^\delta(\mathsf{E}) = \mathsf{K}_0^\delta(\mathsf{E}) \qquad \mathsf{K}_{2m+1}^\delta(\mathsf{E}) = \mathsf{K}_1^\delta(\mathsf{E})$$