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Lorentz in October 1910

H.A. Lorentz by Jan Veth

Origins of spectral geometry:

“Hierbei entseht das mathematische Problem, zu be-
weisen, dass die Anzahl der gentigend hohen Obertone
zwischen n und n + dn unabhangig von der Gestalt der

Hiille und nur ihrem Volumen proportional ist.”



Weyl in February 1911

N(A) = #wave numbers < A
N QdVoI(I\/I)Ad
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Evidence by the parabolic shapes (v/A):
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Mark Kac in 1966

“Can one hear the shape of a drum?”

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave
numbers k in the Helmholtz equation

AMU = k2u

determine the geometry of M?



Isospectral drums!
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. so the answer to Kac's question is no
and more information is needed...



Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

» The Dirac operator is a ‘square-root’ of the Laplacian, so that its spectrum give
the wave numbers k.

» First found by Paul Dirac in flat space, but exists on any Riemannian spin
manifold M.




The circle
» The Laplacian on the circle St is given by

p)
ASI = —E, (t € [0,271'))
» The Dirac operator on the circle is
d
Dgl = —Ia

with square Agi.
» The eigenfunctions of Dgi in L2(S!) are the complex exponential functions

e'™ = cos nt + isin nt; (neZ)

and [Ds:, f] = % a bounded operator on L?(S?) for smooth f.



The 2-dimensional torus

» Consider the two-dimensional torus T2 parametrized by two angles t1, t € [0, 27).

» The Laplacian reads
0? 0?
Ap=———7F— —.
otz 0t3

» Dirac suggested to consider operators of the form Dy = aait1 + b% with
complex matrices as coefficients:

() )

then a2 = b2 =—1and ab+ ba=0



» The Dirac operator on the torus is
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2 92
which satisfies (D2)2 = — 95 — 97
(Dr2) o2~ a2

» The spectrum of the Dirac operator Dy2 is

{i\/nf—kng:nl,anZ};

and ||[Drz, f[| = [[fluip-

More generally, a Dirac operator exists on spin manifolds as a differential operator
acting in L2(Sy) and square D3, = Ay + 3£ for which furthermore

IDwm; F1Il = 1 luip



Spectral description of geometry: distance

Noncommutative geometry (Alain Connes)

» Distance d(x,y) between two points is usually defined as

the smallest of the arclengths (computed using the metric) of curves connect-
ing x and y.

» But it can also be defined as

the largest of differences |f(x) — f(y)| for functions f with gradient |Vf| < 1.

d(x,y) = sup |0.(f)—d,(f)
1[Dm,FllI<1

Combination (C>®(M), L?(Spm), D)
allows for reconstruction of geometry



Spectral triples

More generally, we consider a triple (A, #, D)
» a unital x-algebra A

» a self-adjoint operator D with compact resolvent and bounded commutators [D, a]
foraec A

» both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:
» States are positive linear functionals ¢ : A — C of norm 1
» Distance function on state space S(A) of A:

dp(¢,v) = jgz{lqﬁ(a) —¢(a)l: [I[D,alll <1}

These notions continue to make sense when we replace A by any self-adjoint vector
space £ of bounded operators on H that contains the unit, a so-called operator system.



Spectral data: (A, #H, D)

» The mathematical reformulation of geometry in terms of spectral data (global
analysis) requires the knowledge of the full Dirac operator.

» From a physical standpoint this is not very realistic: detectors have limited energy
ranges and resolution.

» We aim for the underlying mathematical formalism for doing (noncommutative)
geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea—Lizzi-Martinetti 2014], [Glaser-Stern 2019] and based
on [Connes—vS] (CMP, Szeged)



Operator systems

(I) Given (A, H, D) we project onto part of the spectrum of D:

» H +— PH, projection onto closed Hilbert subspace
» D — PDP, still a self-adjoint operator
» A PAP, this is not an algebra any more (unless P € A)

Instead, PAP is an operator system: (PaP)* = Pa*P.

(I1) Another approach would be to consider metric spaces up to a finite resolution :

» Consider integral operators associated to the tolerance relation R. given by
d(x,y) <e



Abstract operator systems
Definition
We say that a x-vector space is matrix ordered if
1. for each n we are given a cone of positive elements Mp(E)+ in Mu(E)p,
2. Mp(E)+ N (—M,(E)+) = {0} for all n,
3. for every m,n and A € Mp,,(C) we have that AMp(E)+A* C Mpn(E)+.

We call e € Ej, an order unit for E if for each x € Ej, there is a t > 0 such that
—te < x < te. It is called an Archimedean order unit if —te < x for all t > 0 implies
that x > 0.

Definition
An (abstract) operator system is given by a matrix-ordered x-vector space E with an
order unit e such that for all n €®" is an Archimedean order unit for M, (E).

Maps between operator systems E, F are completely positive maps in the sense that
their extensions M,(E) — M,(F) are positive for all n.

Isomorphisms are complete order isomorphisms



C*-envelope of a unital operator system

[Arveson, 1969]
Hamana: existence and uniqueness in 1979; realized 4 la Arveson as direct sum of all

boundary representations [Dritschel-McCullough 2005, Arveson 2008,
Davidson—Kennedy 2015]

A C*-extension k : E — A of a unital operator system E is given by a complete order
isomorphism onto k(E) C A such that C*(k(E)) = A.

A C*-envelope of a unital operator system is a C*-extension x : E — A with the
following universal property:

Example: operator system Cpam(DD) of continuous harmonic
functions with C*-envelope C(S?).




Example: spectral truncation of the circle [Connes-vS, 2020]

» Eigenvectors of Dg1 are Fourier modes ey (t) = et for k € Z
» Orthogonal projection P = P, onto spanc{ei, e,...,en}

» The space C(S')(" := PC(S')P is an operator system

» Any T = PfP in C(5%)(" can be written as a Toeplitz matrix

to t-1 - topp2toppr

t1 to t—1 t_ny2
PfP ~ (tk_l)kl = : t1 to

th—2 L, |

th—1 th—2 - t1 to

» States are defined as unital positive linear functionals.
We have: CZ (C(SH)(M) = M,(C)

env



Fourier truncations: the Fejér—Riesz operator system

We introduce the Fejér-Riesz operator system C*(Z)(p):

» functions on S! with a finite number of non-zero Fourier coefficients:

a= ( oc 307 a—pt1,d—p42,.-.,4-1,4d0,81,.-.,dp-2,dn-1, Oa .- )
» an element a is positive iff ), axe™ is a positive function on S*.
» The C*-envelope of C*(Z)(p is given by C*(Z) = C(Sh)

Proposition

1. The extreme rays in (C*(Z)(n))+ are given by the elements a = (ax) for which the
Laurent series Y, axz* has all its zeroes on S*.

2. The pure states of C*(Z)(n) are given by a+ >, a\< (A e S).



Pure states on the Toeplitz matrices
Duality of C(S)(") and C*(Z),) [Connes—vS 2020] and [Farenick 2021]:
C(SH™M x C*(Z)(ny = C

(T = (tki)i,na = (ak)) — Z axt_j

k
Proposition
1. The extreme rays in C(Sl)gf’) are y(\) = |A\)(f| for any X € S*.
2. The pure state space P(C(S)("+1)) = T"/S, .




Curiosities on Toeplitz matrices

Theorem (Carathéodory)
Let T be an n x n Toeplitz matrix. Then T > 0 iff T = VAV* with

dy 11
e d> , Ve L )\.1 A2
V|
dn AT AT

for some di,...,d, >0 and \1,..., \, € SL.
o

—

)\,,., 1

n



Gromov—Hausdorff convergence

Recall Gromov—Hausdorff distance between two metric spaces:
deu(X, Y) = inf{dy(f(X),g(Y)) | f: X — Z,g: Y — Z isometric}
and
du(X,Y)=inf{e>0; X C Y, Y C X}

Rieffel extends this to quantum metric spaces (essentially operator systems equipped
with a Lip-norm).



General results on GH-convergence

Definition

Let {(&En, Hn, Dn)}n be a sequence of operator system spectral triples and let (€, H, D)
be an operator system spectral triple. An Cl-approximate order isomorphism for this
set of data is given by linear maps R, : E — E, and S,, : E, — E for any n such that
the following three condition hold:

1. R,, S, are positive, unital, contractive and Lipschitz-contractive

2. there exist sequences vy, both converging to zero such that

[[Sn 0 Rn(a) — all < 7ll[D; alll;
[IRn © Sn(h) = Al < ¥4l [Dn; Alll-

Theorem (vS21)

If (Rn, Sp) is a C-approximate order isomorphism for (£,, Hn, D,) and (€,H, D), then
the state spaces (S(Ey), dg,) converge to (S(E), dg) in Gromov—Hausdorff distance.



Spectral truncations and convergence to the circle
» The map R, : C(S') — C(S)(" given by compression with P, allows to
pull-back states from C(S)(") to the circle
» There is a Cl-approximate order inverse S, : C(S1)(") — C(S%):

Ra(Sn(T))=Too T; Sn(Rn(f)) = Fnxf

in terms of a Schur product with a matrix T, and the Fejér kernel F,.

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces {(S(C(S')("), d,)} converges to (S(C(S')), ds1) in
Gromov—Hausdorff distance.

Other examples: cubic truncations of T¢ [Berendschot 2019], fuzzy spheres [Rieffel
2000], quantum spheres [Aguilar—Kaad—Kyed 2021], Fourier truncations [Rieffel 2022],
spectral truncations of T9 [Leimbach 2023], Peter—Weyl truncations [Gaudillot—Estrada
2024, Leimbach 2024],...

[



Distance function for spectral truncations of the circle

Proposition (vS21, Hekkelman 2021)
The sequence of state spaces {(S(P,C(S*)P,), d,)} converges to (S(C(S')),ds1) in
Gromov—Hausdorff distance.

Other examples: cubic truncations of T9 [Berendschot 2019], fuzzy spheres [Rieffel
2000], quantum spheres [Aguilar—-Kaad—Kyed 2021], Fourier truncations [Rieffel 2022],
spectral truncations of T¢ [Leimbach 2023], Peter-Wey! truncations [Gaudillot-Estrada
2024, Leimbach 2024],...



Operator systems associated to tolerance relations

» Suppose that X is a set and consider a relation R C X x X on X that is reflexive,
symmetric but not necessarily transitive.

» Key motivating example: a metric space (X, d) with the relation

’Re ::{(x,y)eXxX:d(x,y)<e}‘

» If (X, ) is a measure space and R C X x X an open subset we obtain the
operator system E(R) as the closure of integral operator with support in R. Note
that E(R) C K(L2(X))



Tolerance relations on finite sets [Gielen—vS, 2022]

Let X be a finite set and R C X x X a symmetric reflexive relation on X and suppose

that R generates the full equivalence class X x X (i.e. the graph corresponding to R
is connected). Then

1. the C*-envelope of E(R) is K(£?(X)) = Mx|(C) and prop(E(R)) = diam(R).

2. If R is a chordal graph, then E(R)9 = E(R) as a vector space, but with order
structure given by being partially positive.

3. the pure states of E(R) are given by vector states |v)(v| for which the support of
v € £2(X) is R-connected.
Example
The operator systems of p X p band matrices with band width N.

» The dual operator system consists of band matrices (with order given by partially
positive).



Spaces at finite resolution [Connes-vS, 2021]

Consider now a path metric measure space X with a measure of full support, and the
following tolerance relation:

’R€ ::{(x,y)eXxX:d(x,y)<e}‘

It gives rise to the operator system E(R.) C (L2(X)).
Proposition
If X is a complete and locally compact path metric measure space X with a measure
of full support, then
L. ColE(Re)) = K(L*(X)).
2. The pure states of E(R.) are given by vector states |1)(1)| where the essential
support of 1 € L2(X) is e-connected.



Summary

» Noncommutative geometry: metric aspect
» Operator systems: from (spectral) truncations and tolerance relations

» Duality of operator systems: state spaces
» New invariants: propagation number, K-theory (Thursday, S9)
» K-group invariants [arXiv:2409.02773]:

Vo(E,n) = {x = x* € M,(E) : x is invertible } /.,

» Grothendieck group Ko(E) of Ii_}mVo(E, n) is invariant under Morita equivalence.
» Higher K-groups and formal periodicity [arXiv:2411.02981]:

Kom(E) = Ko (E)  Kimia(E) = KL (E)



