A generalization of K-theory to operator systems

Walter van Suijlekom

Radboud Universiteit

Spectral description of geometry: distance

Noncommutative geometry (Alain Connes)

- ▶ Distance d(x, y) between two points is usually defined as the **smallest** of the arclengths (computed using the metric) of curves connecting x and y.
- ▶ But it can also be defined as the largest of differences |f(x) f(y)| for functions f with gradient $|\nabla f| \le 1$.

$$d(x,y) = \sup_{\|[D_M,f]\| \le 1} |\delta_x(f) - \delta_y(f)|$$

$$f$$

Combination $(C^{\infty}(M), L^2(S_M), D_M)$ allows for reconstruction of geometry

Spectral triples

More generally, we consider a triple (A, \mathcal{H}, D)

- ightharpoonup a unital *-algebra ${\cal A}$
- ▶ a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for $a \in A$
- lacktriangle both acting (boundedly, resp. unboundedly) on Hilbert space ${\cal H}$

Generalized distance function:

- lacktriangle States are positive linear functionals $\phi: \mathcal{A} \to \mathbb{C}$ of norm 1
- ▶ Distance function on state space S(A) of A:

$$d_D(\phi,\psi) = \sup_{\mathbf{a} \in \mathcal{A}} \left\{ |\phi(\mathbf{a}) - \psi(\mathbf{a})| : \|[D,\mathbf{a}]\| \le 1 \right\}$$

These notions continue to make sense when we replace \mathcal{A} by any self-adjoint vector space \mathcal{E} of bounded operators on \mathcal{H} that contains the unit, a so-called *operator system*.

Spectral data: (A, \mathcal{H}, D)

- ► The mathematical reformulation of geometry in terms of spectral data (global analysis) requires the knowledge of the full Dirac operator.
- ► From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.
- ▶ We aim for the underlying mathematical formalism for doing (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based on [Connes–vS] (CMP, Szeged)

Operator systems

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $ightharpoonup \mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $ightharpoonup D \mapsto PDP$, still a self-adjoint operator
 - ▶ $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, PAP is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - ► Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x, y) < \epsilon$

Abstract operator systems

Definition

We say that a *-vector space is matrix ordered if

- 1. for each n we are given a cone of positive elements $M_n(E)_+$ in $M_n(E)_h$,
- 2. $M_n(E)_+ \cap (-M_n(E)_+) = \{0\}$ for all n,
- 3. for every m,n and $A\in M_{mn}(\mathbb{C})$ we have that $AM_n(E)_+A^*\subseteq M_m(E)_+$.

We call $e \in E_h$ an order unit for E if for each $x \in E_h$ there is a t > 0 such that $-te \le x \le te$. It is called an Archimedean order unit if $-te \le x$ for all t > 0 implies that $x \ge 0$.

Definition

An (abstract) operator system is given by a matrix-ordered *-vector space E with an order unit e such that for all n $e^{\oplus n}$ is an Archimedean order unit for $M_n(E)$.

Maps between operator systems E, F are completely positive maps in the sense that their extensions $M_n(E) \to M_n(F)$ are positive for all n.

Isomorphisms are complete order isomorphisms

C^* -envelope of a unital operator system

[Arveson, 1969]

Hamana: existence and uniqueness in 1979; realized á la Arveson as direct sum of all boundary representations [Dritschel-McCullough 2005, Arveson 2008, Davidson-Kennedy 2015]

A C^* -extension $\kappa: E \to A$ of a unital operator system E is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$.

A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$ with the following universal property:

Example: operator system $C_{\text{harm}}(\overline{\mathbb{D}})$ of continuous harmonic functions with C^* -envelope $C(S^1)$.

K-theory for operator systems

[arXiv:2409.02773]

A key invariant of C^* -algebras is K-theory. Is there an analogue for operator systems?

- ▶ Need notion of projection (cf. Araiza-Russell) or invertible selfadjoint elements
- ► It should capture the spectral localizer of Loring, Schulz-Baldes, and others
- It should be invariant under Morita equivalence [EKT]

Definition

A hermitian form x in a unital operator system E is a selfadjoint element $x \in M_n(E)$ which is non-degenerate in the sense that there exists g > 0 such that for all pure and maximal ucp maps $\phi : E \to B(\mathcal{H})$ we have

$$|\phi^{(n)}(x)| \ge g \cdot \mathrm{id}_{\mathcal{H}}^{\oplus n}$$

In other words, x should have a gap g in each boundary representation

We will write H(E, n) for all hermitian forms in $M_n(E)$.

Proposition

An element $x \in M_n(E)$ is non-degenerate if and only if $i_E^{(n)}(x)$ is an invertible element in the C^* -envelope $C^*_{env}(E)$.

This is a consequence of the realization of the C^* -envelope in [Davidson–Kennedy]

Examples:

- 1. Hermitian forms (à la Witt) on a fgp right module pA^n over a C^* -algebra A: described by invertible elements $x = h + (1 p) \in M_n(A)$ with $h \in pM_n(A)p$.
- 2. Projections p in operator systems à la Araiza-Russell are precisely projections in the C^* -envelope: x = e 2p is a hermitian form.
- 3. Similarly, ϵ -projections in quantitative K-theory define hermitian forms.
- 4. Spectral compressions of projections in C^* -algebra: x = PYP with Y = 1 2p provided ||[P, p]|| sufficiently small.

The invariants and K-theory

$$\mathcal{V}(E,n) = H(E,n)/_{\sim_n}$$

Example:

$$\mathcal{V}(\mathbb{C},n)\cong\{-n,-n+2,\ldots,n\}$$

and with the map $\imath_{nm}([x]=x\oplus \overline{e_{m-n}}$ we have

$$\mathcal{V}(\mathbb{C},n) \xrightarrow{\imath_{nm}} \mathcal{V}(\mathbb{C},m)$$

In general, we consider

$$\mathcal{V}(E) = \varinjlim \mathcal{V}(E, n)$$

and $K_0(E)$ is the corresponding Grothendieck group (with identity [e] and addition $'\oplus'$)

Properties of K_0

- For C^* -algebras we obtain usual K-theory via the map $[x]\mapsto [p=rac{1}{2}(1-x|x|^{-1})].$
- ▶ Stability: we define a map $i_n: M_n(E) \to M_n(M_2(E))$ by

$$i_n(x) = \begin{pmatrix} x_{11} & 0 & x_{12} & 0 & \dots & x_{1n} & 0 \\ 0 & e & 0 & 0 & \dots & 0 & 0 \\ x_{21} & 0 & x_{22} & 0 & \dots & \vdots & \vdots \\ 0 & 0 & 0 & e & \dots & \vdots & \vdots \\ x_{n1} & 0 & \dots & \dots & x_{nn} & 0 \\ 0 & 0 & \dots & \dots & 0 & e \end{pmatrix}$$

so that $i_n(x) \sim x$ (Whitehead). This allows to show $K_0(E) \cong K_0(M_2(E))$.

Non-unital operator systems and stability

The unitization [Werner, 2002] of a non-unital operator system E is given by the *-vector space $E^+ = E \oplus \mathbb{C}$ with matrix order structure:

$$(x,A) \geq 0$$
 iff $A \geq 0$ and $\phi(A_{\epsilon}^{-1/2}xA_{\epsilon}^{-1/2}) \geq -1$

for all $\epsilon > 0$ and noncommutative states $\phi \in \mathcal{S}_n(E)$, and where $A_{\epsilon} = \epsilon \mathbb{I}_n + A$.

$$\widetilde{\mathcal{V}}(E,n) := \left\{ (x,A) \in H(E^+,n) : A \sim_n \mathbb{I}_n \right\} /_{\sim_n}$$

In the unital case, the isomorphism $E^+ \cong E \oplus \mathbb{C}$ given by $(x,A) \mapsto (x+Ae,A)$ yields that in this case

$$\widetilde{\mathcal{V}}(E,n)\cong\mathcal{V}(E,n).$$

 $\mathsf{Theorem}$

For a unital operator system E we have $K_0(\mathcal{K} \otimes E) \cong K_0(E)$.

Stability

Theorem

For a unital operator system E we have $K_0(\mathcal{K} \otimes E) \cong K_0(E)$.

Proof.

- 1. Realize stabilization by maps $\kappa_{NM}: M_N(E) \to M_M(E), \quad x \mapsto \begin{pmatrix} x & 0 \\ 0 & 0_{M-N} \end{pmatrix}$
- 2. Commuting diagram:

$$\widetilde{V}(E,n) \xrightarrow{\kappa_{1N}} \widetilde{V}(M_N(E),n)$$

$$\cong \downarrow \qquad \qquad \cong \downarrow$$

$$V(E,n) \xrightarrow{\iota_n} V(M_N(E),n)$$

- 3. The map $\kappa_{1\infty}: K_0(E) \to K_0(\mathcal{K} \otimes E)$ is an isomorphism:
 - ▶ injective: homotopy in $H((\mathcal{K} \otimes E)^+, n)$ compressed to homotopy in $H((M_N(E)^+, n)$.
 - surjective: approximation by finite-rank operators in norm is still hermitian form.

Example: Toeplitz matrices

- ▶ Consider the operator system $C(S^1)^{(2)}$ of 2 × 2 Toeplitz matrices.
- ▶ Hermitian forms in $H(C(S^1)^{(2)}, 1)$ are matrices of the form

$$T = \begin{pmatrix} a & z \\ \overline{z} & a \end{pmatrix}; \qquad a^2 - |z| \neq 0.$$

$$ightharpoonup \mathcal{V}(C(S^1)^{(2)},1) \cong \{[-e],[\sigma_1],[e]\}$$

▶ However, $\sigma_1 \oplus \sigma_1 \sim e \oplus (-e)$ in $H(C(S^1)^{(2)}, 2)$:

$$h(t) = egin{pmatrix} (1-t)\sigma_1 + te & it(t-1)\sigma_2 \ -it(t-1)\sigma_2 & (1-t)\sigma_1 - te \end{pmatrix}$$

with $\det h(t) > 0$.

Example: spectral localizer on the 2-torus

Loring considered (in his thesis!) analogues of the Powers–Rieffel projections:

$$p = egin{pmatrix} f & g + hU \ g + hU^* & 1 - f \end{pmatrix} \in M_2(C^\infty(\mathbb{T}^2))$$

with U a unitary in the second variable, and f, g, h real-valued smooth functions in the first variable, satisfying

$$gh = 0, g^2 + h^2 = f - f^2.$$

Spectral truncations on \mathbb{T}^2

- ▶ We now consider spectral truncations $P = P_{\rho}$ onto $\ell^2\{\vec{n} \in \mathbb{Z}^2 : \|\vec{n}\| < \rho\} \subset \ell^2(\mathbb{Z}^2)$.
- ▶ We obtain a compression *PYP* of the hermitian form Y = 1 2p on \mathbb{T}^2 corresponding to p:

$$PYP = egin{pmatrix} P - 2PfP & -2PgP - 2PhUP \ -2PgP - 2PhU^*P & -P + 2PfP \end{pmatrix} \in M_2(PC^\infty(\mathbb{T}^2)P)$$

For suitable P these are hermitian forms $\rightsquigarrow [PYP] \in K_0(PC(\mathbb{T}^2)P)$.

► The *spectral localizer* of Loring and Schulz-Baldes is given by the following matrix:

$$L_{\kappa,\rho} = \begin{pmatrix} -PYP & \kappa PD^+P \\ \kappa PD^-P & PYP \end{pmatrix}$$

In general they show that for suitable κ and ρ the index pairing can be computed as the signature of this matrix:

$$\boxed{\mathsf{Index}\; pD^+p = \frac{1}{2}\mathsf{Sig}\; L_{\kappa,\rho}}$$

Simulations: eigenvalues of *PYP* for $U(t_2) = e^{it_2}$

Simulations: eigenvalues of $\overline{L}_{\kappa, ho}$ for $\overline{U(t_2)}=e^{it_2}$

Simulations: eigenvalues of $L_{\kappa,\rho}$ for $U(t_2)=e^{2it_2}$

Summary

- ► Functoriality (ucp, cpc, order-zero,...)?
- ▶ Definition of higher K-groups [Trans. AMS]:

$$\mathcal{V}_1^{\delta}(E,n) = \left\{ x \in M_n(E) : \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix} \text{ has spectral gap } \delta
ight\} /_{\sim_n}$$

- and, more generally, $\mathcal{V}^\delta_{p}(E,n):=H^\delta(E\otimes \mathbb{C}l^{(1)}_p,n)/_{\sim_n}.$
- ▶ Formal periodicity: $K_{2m}(E) = K_0(E)$ and $K_{2m+1}(E) = K_1(E)$.
- Bott periodicity?