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Spectral description of geometry: distance
Noncommutative geometry (Alain Connes)

▶ Distance d(x , y) between two points is usually defined as

the smallest of the arclengths (computed using the metric) of curves connect-
ing x and y.

▶ But it can also be defined as
the largest of differences |f (x)− f (y)| for functions f with gradient |∇f | ≤ 1.

d(x , y) = sup
∥[DM ,f ]∥≤1

|δx(f )− δy (f )|

x y x y

f

Combination (C∞(M), L2(SM),DM)
allows for reconstruction of geometry



Spectral triples

More generally, we consider a triple (A,H,D)

▶ a unital ∗-algebra A
▶ a self-adjoint operator D with compact resolvent and bounded commutators [D, a]

for a ∈ A
▶ both acting (boundedly, resp. unboundedly) on Hilbert space H

Generalized distance function:

▶ States are positive linear functionals ϕ : A → C of norm 1

▶ Distance function on state space S(A) of A:

dD(ϕ, ψ) = sup
a∈A

{|ϕ(a)− ψ(a)| : ∥[D, a]∥ ≤ 1}

These notions continue to make sense when we replace A by any self-adjoint vector
space E of bounded operators on H that contains the unit, a so-called operator system.



Spectral data: (A,H,D)

▶ The mathematical reformulation of geometry in terms of spectral data (global
analysis) requires the knowledge of the full Dirac operator.

▶ From a physical standpoint this is not very realistic: detectors have limited energy
ranges and resolution.

▶ We aim for the underlying mathematical formalism for doing (noncommutative)
geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D’Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based
on [Connes–vS] (CMP, Szeged)



Operator systems

(I) Given (A,H,D) we project onto part of the spectrum of D:
▶ H 7→ PH, projection onto closed Hilbert subspace
▶ D 7→ PDP, still a self-adjoint operator
▶ A 7→ PAP, this is not an algebra any more (unless P ∈ A)

Instead, PAP is an operator system: (PaP)∗ = Pa∗P.

(II) Another approach would be to consider metric spaces up to a finite resolution :
▶ Consider integral operators associated to the tolerance relation Rϵ given by

d(x , y) < ϵ



Abstract operator systems

Definition
We say that a ∗-vector space is matrix ordered if

1. for each n we are given a cone of positive elements Mn(E )+ in Mn(E )h,

2. Mn(E )+ ∩ (−Mn(E )+) = {0} for all n,

3. for every m, n and A ∈ Mmn(C) we have that AMn(E )+A
∗ ⊆ Mm(E )+.

We call e ∈ Eh an order unit for E if for each x ∈ Eh there is a t > 0 such that
−te ≤ x ≤ te. It is called an Archimedean order unit if −te ≤ x for all t > 0 implies
that x ≥ 0.

Definition
An (abstract) operator system is given by a matrix-ordered ∗-vector space E with an
order unit e such that for all n e⊕n is an Archimedean order unit for Mn(E ).

Maps between operator systems E ,F are completely positive maps in the sense that
their extensions Mn(E ) → Mn(F ) are positive for all n.

Isomorphisms are complete order isomorphisms



C ∗-envelope of a unital operator system
[Arveson, 1969]

Hamana: existence and uniqueness in 1979; realized á la Arveson as direct sum of all
boundary representations [Dritschel–McCullough 2005, Arveson 2008,
Davidson–Kennedy 2015]

A C ∗-extension κ : E → A of a unital operator system E is given by a complete order
isomorphism onto κ(E ) ⊆ A such that C ∗(κ(E )) = A.

A C ∗-envelope of a unital operator system is a C ∗-extension κ : E → A with the
following universal property:

E
κ //

λ ��

A
OOOO

∃!ρ

B

Example: operator system Charm(D) of continuous harmonic
functions with C ∗-envelope C (S1).



K-theory for operator systems
[arXiv:2409.02773]

A key invariant of C ∗-algebras is K-theory. Is there an analogue for operator systems?

▶ Need notion of projection (cf. Araiza–Russell) or invertible selfadjoint elements

▶ It should capture the spectral localizer of Loring, Schulz-Baldes, and others

▶ It should be invariant under Morita equivalence [EKT]

Definition
A hermitian form x in a unital operator system E is a selfadjoint element x ∈ Mn(E )
which is non-degenerate in the sense that there exists g > 0 such that for all pure and
maximal ucp maps ϕ : E → B(H) we have

|ϕ(n)(x)| ≥ g · id⊕n
H

In other words, x should have a gap g in each boundary representation



We will write H(E , n) for all hermitian forms in Mn(E ).

Proposition

An element x ∈ Mn(E ) is non-degenerate if and only if ı
(n)
E (x) is an invertible element

in the C ∗-envelope C ∗
env(E ).

This is a consequence of the realization of the C ∗-envelope in [Davidson–Kennedy]

Examples:

1. Hermitian forms (à la Witt) on a fgp right module pAn over a C ∗-algebra A:
described by invertible elements x = h + (1− p) ∈ Mn(A) with h ∈ pMn(A)p.

2. Projections p in operator systems à la Araiza–Russell are precisely projections in
the C ∗-envelope: x = e − 2p is a hermitian form.

3. Similarly, ϵ-projections in quantitative K-theory define hermitian forms.

4. Spectral compressions of projections in C ∗-algebra: x = PYP with Y = 1− 2p
provided ∥[P, p]∥ sufficiently small.



The invariants and K-theory

V(E , n) = H(E , n)/∼n

Example:
V(C, n) ∼= {−n,−n + 2, . . . , n}

and with the map ınm([x ] = x ⊕ em−n we have

V(C, n)

ρn
##

ınm // V(C,m)

ρm
{{

Z

In general, we consider
V(E ) = lim−→V(E , n)

and K0(E ) is the corresponding Grothendieck group (with identity [e] and addition ′⊕′)



Properties of K0

▶ For C ∗-algebras we obtain usual K-theory via the map [x ] 7→ [p = 1
2(1− x |x |−1)].

▶ Stability: we define a map ın : Mn(E ) → Mn(M2(E )) by

ın(x) =



x11 0
0 e

x12 0
0 0

· · · x1n 0
0 0

x21 0
0 0

x22 0
0 e

· · ·
...

...
...

. . .
...

xn1 0
0 0

· · · · · · xnn 0
0 e


so that ın(x) ∼ x (Whitehead). This allows to show K0(E ) ∼= K0(M2(E )).



Non-unital operator systems and stability

The unitization [Werner, 2002] of a non-unital operator system E is given by the
∗-vector space E+ = E ⊕ C with matrix order structure:

(x ,A) ≥ 0 iff A ≥ 0 and ϕ(A−1/2
ϵ xA−1/2

ϵ ) ≥ −1

for all ϵ > 0 and noncommutative states ϕ ∈ Sn(E ), and where Aϵ = ϵIn + A.

Ṽ(E , n) :=
{
(x ,A) ∈ H(E+, n) : A ∼n In

}
/∼n

In the unital case, the isomorphism E+ ∼= E ⊕ C given by (x ,A) 7→ (x + Ae,A) yields
that in this case

Ṽ(E , n) ∼= V(E , n).

Theorem
For a unital operator system E we have K0(K ⊗ E ) ∼= K0(E ).



Stability

Theorem
For a unital operator system E we have K0(K ⊗ E ) ∼= K0(E ).

Proof.

1. Realize stabilization by maps κNM : MN(E ) → MM(E ), x 7→
(
x 0
0 0M−N

)
2. Commuting diagram:

Ṽ (E , n)

∼=
��

κ1N // Ṽ(MN(E ), n)

∼=
��

V(E , n) ın
∼=

// V(MN(E ), n)

3. The map κ1∞ : K0(E ) → K0(K ⊗ E ) is an isomorphism:
▶ injective: homotopy in H((K ⊗ E )+, n) compressed to homotopy in H((MN(E )

+, n).
▶ surjective: approximation by finite-rank operators in norm is still hermitian form.



Example: Toeplitz matrices
▶ Consider the operator system C (S1)(2) of 2× 2 Toeplitz matrices.

▶ Hermitian forms in H(C (S1)(2), 1) are matrices of the form

T =

(
a z
z a

)
; a2 − |z | ≠ 0.

▶ V(C (S1)(2), 1) ∼= {[−e], [σ1], [e]}
▶ However, σ1 ⊕ σ1 ∼ e ⊕ (−e) in H(C (S1)(2), 2):

h(t) =

(
(1− t)σ1 + te it(t − 1)σ2
−it(t − 1)σ2 (1− t)σ1 − te

)
with det h(t) > 0.



Example: spectral localizer on the 2-torus
Loring considered (in his thesis!) analogues of the Powers–Rieffel projections:

p =

(
f g + hU

g + hU∗ 1− f

)
∈ M2(C

∞(T2))

with U a unitary in the second variable, and f , g , h real-valued smooth functions in the
first variable, satisfying

gh = 0, g2 + h2 = f − f 2.



Spectral truncations on T2

▶ We now consider spectral truncations P = Pρ onto
ℓ2{n⃗ ∈ Z2 : ∥n⃗∥ ≤ ρ} ⊆ l2(Z2).

▶ We obtain a compression PYP of the hermitian form Y = 1− 2p on T2

corresponding to p:

PYP =

(
P − 2PfP −2PgP − 2PhUP

−2PgP − 2PhU∗P −P + 2PfP

)
∈ M2(PC

∞(T2)P)

For suitable P these are hermitian forms ⇝ [PYP] ∈ K0(PC (T2)P).
▶ The spectral localizer of Loring and Schulz-Baldes is given by the following matrix:

Lκ,ρ =

(
−PYP κPD+P
κPD−P PYP

)
In general they show that for suitable κ and ρ the index pairing can be computed
as the signature of this matrix:

Index pD+p =
1

2
Sig Lκ,ρ



Simulations: eigenvalues of PYP for U(t2) = e it2



Simulations: eigenvalues of Lκ,ρ for U(t2) = e it2



Simulations: eigenvalues of Lκ,ρ for U(t2) = e2it2



Summary

▶ Functoriality (ucp, cpc, order-zero,...)?

▶ Definition of higher K-groups [Trans. AMS]:

Vδ
1(E , n) =

{
x ∈ Mn(E ) :

(
0 x
x∗ 0

)
has spectral gap δ

}
/∼n

and, more generally, Vδ
p(E , n) := Hδ(E ⊗ Cl (1)p , n)/∼n .

▶ Formal periodicity: K2m(E ) = K0(E ) and K2m+1(E ) = K1(E ).

▶ Bott periodicity?


