A generalization of K-theory to operator systems

Walter van Suijlekom

Radboud Universiteit

<u>Chapter One.</u>

Motivation

Spectral description of geometry: distance

Noncommutative geometry (Alain Connes)

- ▶ Distance d(x, y) between two points is usually defined as the **smallest** of the arclengths (computed using the metric) of curves connecting x and y.
- ▶ But it can also be defined as the largest of differences |f(x) f(y)| for functions f with gradient $|\nabla f| \le 1$.

$$d(x,y) = \sup_{\|[D_M,f]\| \le 1} |\delta_x(f) - \delta_y(f)|$$

Combination $(C^{\infty}(M), L^2(S_M), D_M)$ allows for reconstruction of geometry

Spectral triples

More generally, we consider a triple (A, \mathcal{H}, D)

- ightharpoonup a unital *-algebra \mathcal{A}
- ▶ a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for $a \in A$
- ightharpoonup both acting (boundedly, resp. unboundedly) on Hilbert space ${\cal H}$

Generalized distance function:

- lacktriangle States are positive linear functionals $\phi:\mathcal{A}\to\mathbb{C}$ of norm 1
- ▶ Distance function on state space S(A) of A:

$$d_D(\phi, \psi) = \sup_{a \in A} \{ |\phi(a) - \psi(a)| : \|[D, a]\| \le 1 \}$$

These notions continue to make sense when we replace \mathcal{A} by any self-adjoint vector space \mathcal{E} of bounded operators on \mathcal{H} that contains the unit, a so-called *operator system*.

Spectral data: (A, \mathcal{H}, D)

- ► The mathematical reformulation of geometry in terms of spectral data (global analysis) requires the knowledge of the full Dirac operator.
- ► From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.
- ► Also computer simulations are inevitably finite-dimensional, but still index computations can be done (spectral localizer).
- ► We develop the mathematical formalism for doing (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea-Lizzi-Martinetti 2014], [Glaser-Stern 2019] and based on [Connes-vS, 2021] [vS, 2024]

Operator systems

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $ightharpoonup \mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $ightharpoonup D \mapsto PDP$, still a self-adjoint operator
 - ▶ $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, \overrightarrow{PAP} is an operator system: $(\overrightarrow{PaP})^* = \overrightarrow{Pa^*P}$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - ► Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x,y) < \epsilon$

Chapter Two.

Operator

Systems

Abstract operator systems

Definition

We say that a *-vector space is matrix ordered if

- 1. for each n we are given a cone of positive elements $M_n(E)_+$ in $M_n(E)_h$,
- 2. $M_n(E)_+ \cap (-M_n(E)_+) = \{0\}$ for all n,
- 3. for every m, n and $A \in M_{mn}(\mathbb{C})$ we have that $AM_n(E)_+A^* \subseteq M_m(E)_+$.

We call $e \in E_h$ an order unit for E if for each $x \in E_h$ there is a t > 0 such that $-te \le x \le te$. It is called an Archimedean order unit if $-te \le x$ for all t > 0 implies that $x \ge 0$.

Definition

An (abstract) operator system is given by a matrix-ordered *-vector space E with an order unit e such that for all $n e^{\oplus n}$ is an Archimedean order unit for $M_n(E)$.

Maps between operator systems E, F are completely positive maps in the sense that their extensions $M_n(E) \to M_n(F)$ are positive for all n.

Isomorphisms are complete order isomorphisms

C^* -envelope of a unital operator system

[Arveson, 1969]

Hamana: existence and uniqueness in 1979; realized á la Arveson as direct sum of all boundary representations [Dritschel-McCullough 2005, Arveson 2008, Davidson-Kennedy 2015]

A C^* -extension $\kappa: E \to A$ of a unital operator system E is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$.

A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$ with the following universal property:

Example: operator system $C_{\text{harm}}(\overline{\mathbb{D}})$ of continuous harmonic functions with C^* -envelope $C(S^1)$.

C^* -envelope via boundary representations (à la Arveson)

Dritschel-McCullough 2005, Arveson 2008, Davidson-Kennedy 2015

View E as a concrete operator system in the C^* -algebra $C^*(E)$ it generates.

- ▶ A ucp map $\phi: E \to B(\mathcal{H})$ has the *unique extension property* if is has a unique ucp extension to $C^*(E)$ which is a *-representation
- ► If, in addition, the *-representation is irreducible, it is called a *boundary* representation

Theorem

A unital operator system E is completely normed by its boundary representations, that is, for every $x \in M_n(E)$ there is a boundary representation π of E such that $\|x\| = \|\pi^{(n)}(x)\|$.

Corollary

The direct sum of all boundary representations of E yield a completely isometric map $i: E \to B(\mathcal{H})$ such that $(C^*(i(E)), i)$ is the C^* -envelope of E.

How far is an operator system from a C^* -algebra?

One lets $E^{\circ n}$ be the norm closure of the linear span of products of $\leq n$ elements of E.

Definition

The propagation number prop(E) of E is defined as the smallest integer n such that $(\iota_E(E))^{\circ n} \subseteq C^*_{env}(E)$ is a C^* -algebra.

Returning to the harmonic functions in the disk we have $\operatorname{prop}(C_{\operatorname{harm}}(\overline{\mathbb{D}})) = 1$.

Proposition (Connes-vS, 2020; Pawlowska, 2024)

The propagation number is invariant under complete order isomorphisms, as well as under stable=Morita equivalence [EKT, 2019]:

$$prop(E) = prop(E \otimes_{min} \mathcal{K})$$

More generally [Koot, 2021], we have

$$prop(E \otimes_{min} F) = max\{prop(E), prop(F)\}$$

Chapter Three.

Example: spectral truncation of the circle [Connes-vS, 2020]

- ▶ Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$
- ightharpoonup Orthogonal projection $P=P_n$ onto $\operatorname{span}_{\mathbb{C}}\{e_1,e_2,\ldots,e_n\}$
- ▶ The space $C(S^1)^{(n)} := PC(S^1)P$ is the operator system of Toeplitz matrices:

$$PfP \sim (t_{k-l})_{kl} = \left(egin{array}{cccc} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \ t_1 & t_0 & t_{-1} & & t_{-n+2} \ dots & t_1 & t_0 & \ddots & dots \ t_{n-2} & \ddots & \ddots & t_{-1} \ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{array}
ight)$$

States are defined as unital positive linear functionals.

We have: $C_{\text{env}}^*(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$ and $\text{prop}(C(S^1)^{(n)}) = 2$ (for any n).

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

 \triangleright functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

- ▶ an element a is positive iff $\sum_{k} a_k e^{ikx}$ is a positive function on S^1 .
- ▶ The C^* -envelope of $C^*(\mathbb{Z})_{(n)}$ is given by $C^*(\mathbb{Z}) \cong C(S^1)$; propagation number ∞

Proposition

- 1. The extreme rays in $(C^*(\mathbb{Z})_{(n)})_+$ are given by the elements $a=(a_k)$ for which the Laurent series $\sum_k a_k z^k$ has all its zeroes on S^1 .
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k$ $(\lambda \in S^1)$.

Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes–vS 2020] and [Farenick 2021]:

$$C(S^1)^{(n)} imes C^*(\mathbb{Z})_{(n)} o \mathbb{C} \ (T=(t_{k-l})_{k,l},a=(a_k))\mapsto \sum_l a_k t_{-k}$$

Proposition

- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_{\lambda}\rangle\langle f_{\lambda}|$ for any $\lambda \in S^1$.
- 2. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/S_n$.

Curiosities on Toeplitz matrices

Theorem (Carathéodory)

Let T be an $n \times n$ Toeplitz matrix. Then T > 0 iff $T = V\Delta V^*$ with

$$\Delta = egin{pmatrix} d_1 & & & & & \ & d_2 & & & \ & & \ddots & & \ & & & d_n \end{pmatrix}; \qquad V = rac{1}{\sqrt{n}} egin{pmatrix} 1 & 1 & \cdots & 1 \ \lambda_1 & \lambda_2 & \cdots & \lambda_n \ dots & & dots \ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix},$$

for some $d_1, \ldots, d_n \geq 0$ and $\lambda_1, \ldots, \lambda_n \in S^1$.

General results on GH-convergence

Definition

Let $\{(\mathcal{E}_n, \mathcal{H}_n, D_n)\}_n$ be a sequence of operator system spectral triples and let $(\mathcal{E}, \mathcal{H}, D)$ be an operator system spectral triple. An C^1 -approximate order isomorphism for this set of data is given by linear maps $R_n : E \to E_n$ and $S_n : E_n \to E$ for any n such that the following three condition hold:

- 1. R_n , S_n are positive, unital, contractive and Lipschitz-contractive
- 2. there exist sequences γ_n, γ'_n both converging to zero such that

$$||S_n \circ R_n(a) - a|| \le \gamma_n ||[D, a]||,$$

 $||R_n \circ S_n(h) - h|| \le \gamma'_n ||[D_n, h]||.$

$\mathsf{Theorem}$

If (R_n, S_n) is a C^1 -approximate order isomorphism for $(\mathcal{E}_n, \mathcal{H}_n, D_n)$ and $(\mathcal{E}, \mathcal{H}, D)$, then the state spaces $(\mathcal{S}(E_n), d_{E_n})$ converge to $(\mathcal{S}(E), d_E)$ in Gromov–Hausdorff distance.

Spectral truncations and convergence to the circle

- The map $R_n: C(S^1) \to C(S^1)^{(n)}$ given by compression with P_n allows to pull-back states from $C(S^1)^{(n)}$ to the circle
- ▶ There is a C^1 -approximate order inverse $S_n : C(S^1)^{(n)} \to C(S^1)$:

$$R_n(S_n(T)) = T_n \odot T;$$
 $S_n(R_n(f)) = F_n * f$

in terms of a Schur product with a matrix T_n and the convolution with the Fejér kernel F_n :

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces $\{(S(C(S^1)^{(n)}), d_n)\}$ converges to $(S(C(S^1)), d_{S^1})$ in Gromov–Hausdorff distance.

Other examples: cubic truncations of \mathbb{T}^d [Berendschot 2019], fuzzy spheres [Rieffel 2000], quantum spheres [Aguilar–Kaad–Kyed 2021], Fourier truncations [Rieffel 2022], spectral truncations of \mathbb{T}^d [Leimbach 2023], Peter–Weyl truncations [Gaudillot–Estrada 2024, Leimbach 2024]....

<u>Chapter Four.</u> Bonds Operator systems, groupoids and bonds (aka a positivity domain)

Definition (Connes-vS, 2021)

A bond is a triple (G, ν, Ω) consisting of a locally compact groupoid G, a Haar system $\nu = \{\nu_x\}$ and an open symmetric subset $\Omega \subseteq G$ containing the units $G^{(0)}$.

Proposition

Let (Ω, G, ν) be a bond. The closure of the subspace $C_c(\Omega) \subseteq C_c(G)$ in the C^* -algebra $C^*(G)$ is a (possibly non-unital) operator system.

Example

- 1. Consider Ω in a l.c. Lie group $G \rightsquigarrow$ Fourier truncations (á la Rieffel) in $C^*(G)$
- $\overline{(2.\ Consider\ \Omega_n=(-n,n)\subset \mathbb{Z}} \leadsto Fejér–Riesz system\ C^*(\overline{\mathbb{Z}})_{(n)}\cong (C(S^1)^{(n)})^d$.
- 3. Consider $\Omega_n = (-n, n) \subseteq C_m$ (so modulo m). The operator system consists of banded $m \times m$ circulant matrices of band width n.

Tolerance relations on finite sets [Gielen-vS, 2022]

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X

- 1. The C^* -envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X))\cong M_{|X|}(\mathbb{C})$ and $\mathsf{prop}(E(\mathcal{R}))=\mathsf{diam}(\mathcal{R})$.
- 2. If \mathcal{R} is a chordal graph, then $E(\mathcal{R})^d \cong E(\mathcal{R})$ as a vector space, but with order structure given by being partially positive.
- 3. Concrete realization of $E(\mathcal{R})^d$ in terms of cliques \overline{C} in $\overline{\mathcal{R}}$:

$$\Phi: E(\mathcal{R})^d \to \bigoplus_{C \in \mathcal{C}} M_{|C|}(\mathbb{C}); \qquad (x_{ij}) \mapsto ((x_{ij})_{i,j \in C})_{C \in \mathcal{C}}$$

4. the pure states of $E(\mathcal{R})$ are given by vector states $|v\rangle\langle v|$ for which the support of $v\in\ell^2(X)$ is \mathcal{R} -connected.

Example

The operator systems of $p \times p$ band matrices with band width N. The dual operator system consists of partially defined band matrices.

Operator systems associated to tolerance relations

 \blacktriangleright Key motivating example: a metric space (X, d) with the relation

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

▶ If (X, μ) is a measure space and $\mathcal{R}_{\epsilon} \subseteq X \times X$ an open subset we obtain the operator system $E(\mathcal{R}_{\epsilon})$ as the closure of integral operators with support in \mathcal{R}_{ϵ} . Note that $E(\mathcal{R}_{\epsilon}) \subseteq \mathcal{K}(L^2(X))$

Proposition

Let X be a complete, locally compact path metric measure space with a measure of full support. Then $C^*_{env}(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X))$ and

$$\operatorname{prop}(E(\mathcal{R}_{\epsilon})) = \lceil \operatorname{\textit{diam}}(X)/\epsilon \rceil$$

The pure states of $E(\mathcal{R}_{\epsilon})$ are given by vector states $|\psi\rangle\langle\psi|$ where the essential support of $\psi \in L^2(X)$ is ϵ -connected.

<u>Chapter Five.</u> K-theory

K-theory for operator systems

[arXiv:2409.02773]

A key invariant of C^* -algebras is K-theory. Is there an analogue for operator systems?

- ▶ Need notion of projection (cf. Araiza—Russell) or invertible selfadjoint elements
- ▶ It should capture the spectral localizer of Loring, Schulz-Baldes, and others
- It should be invariant under Morita equivalence [EKT]

Definition

A hermitian form x in a unital operator system E is a selfadjoint element $x \in M_n(E)$ which is non-degenerate in the sense that there exists g > 0 such that for all pure and maximal ucp maps $\phi : E \to B(\mathcal{H})$ we have

$$|\phi^{(n)}(x)| \ge g \cdot \mathrm{id}_{\mathcal{H}}^{\oplus n}$$

In other words, x should have a gap g in each boundary representation

We will write H(E, n) for all hermitian forms in $M_n(E)$.

Proposition

An element $x \in M_n(E)$ is non-degenerate if and only if $i_E^{(n)}(x)$ is an invertible element in the C^* -envelope $C^*_{anv}(E)$.

This is a consequence of the realization of the C^* -envelope in [Davidson–Kennedy]

Examples:

- 1. Hermitian forms (à la Witt) on a fgp right module pA^n over a C^* -algebra A: described by invertible elements $x = h + (1 p) \in M_n(A)$ with $h \in pM_n(A)p$.
- 2. Projections p in operator systems à la Araiza-Russell are precisely projections in the C^* -envelope: x = e 2p is a hermitian form.
- 3. Similarly, ϵ -projections in quantitative K-theory [Oyono-Oyono-Yu] define hermitian forms.
- 4. Spectral compressions of projections in C^* -algebra: x = PYP with Y = 1 2p provided ||[P, p]|| sufficiently small.

The invariants and K-theory

$$\mathcal{V}(E,n) = H(E,n)/_{\sim_n}$$

Example:

$$\mathcal{V}(\mathbb{C},n)\cong\{-n,-n+2,\ldots,n\}$$

and with the map $\imath_{nm}([x]=x\oplus e_{m-n}$ we have

$$\mathcal{V}(\mathbb{C},n) \xrightarrow{\imath_{nm}} \mathcal{V}(\mathbb{C},m)$$

In general, we consider

$$\mathcal{V}(E) = \varinjlim \mathcal{V}(E, n)$$

and $K_0(E)$ is the corresponding Grothendieck group (with identity [e] and addition $'\oplus'$)

Properties of K_0

→

- For C^* -algebras we obtain usual K-theory via the map $[x] \mapsto [p = \frac{1}{2}(1 x|x|^{-1})]$.
- ▶ Stability: we define a map $i_n: M_n(E) \to M_n(M_2(E))$ by

$$i_n(x) = \begin{pmatrix} x_{11} & 0 & x_{12} & 0 & \dots & x_{1n} & 0 \\ 0 & e & 0 & 0 & \dots & 0 & 0 \\ x_{21} & 0 & x_{22} & 0 & \dots & \vdots \\ 0 & 0 & 0 & e & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n1} & 0 & \dots & \dots & x_{nn} & 0 \\ 0 & 0 & & \dots & \dots & 0 & e \end{pmatrix}$$

so that $i_n(x) \sim x$ (Whitehead). This allows to show $K_0(E) \cong K_0(M_2(E))$.

Non-unital operator systems and stability

The unitization [Werner, 2002] of a non-unital operator system E is given by the *-vector space $E^+ = E \oplus \mathbb{C}$ with matrix order structure:

$$(x,A) \geq 0$$
 iff $A \geq 0$ and $\phi(A_{\epsilon}^{-1/2}xA_{\epsilon}^{-1/2}) \geq -1$

for all $\epsilon > 0$ and noncommutative states $\phi \in \mathcal{S}_n(E)$, and where $A_{\epsilon} = \epsilon \mathbb{I}_n + A$.

$$\widetilde{\mathcal{V}}(E,n) := \left\{ (x,A) \in H(E^+,n) : A \sim_n \mathbb{I}_n \right\} /_{\sim_n}$$

In the unital case, the isomorphism $E^+ \cong E \oplus \mathbb{C}$ given by $(x,A) \mapsto (x+Ae,A)$ yields that in this case

$$\widetilde{\mathcal{V}}(E,n)\cong\mathcal{V}(E,n).$$

Theorem

For a unital operator system E we have $K_0(\mathcal{K} \otimes E) \cong K_0(E)$.

Stability

Theorem

For a unital operator system E we have $K_0(K \otimes E) \cong K_0(E)$.

Proof.

- 1. Realize stabilization by maps $\kappa_{NM}: M_N(E) \to M_M(E), \quad x \mapsto \overline{\begin{pmatrix} x & 0 \\ 0 & 0_{M-N} \end{pmatrix}}$
- 2. Commuting diagram:

$$\widetilde{V}(E, n) \xrightarrow{\kappa_{1N}} \widetilde{V}(M_N(E), n)$$
 $\cong \downarrow \qquad \qquad \cong \downarrow$
 $V(E, n) \xrightarrow{\iota_n} V(M_N(E), n)$

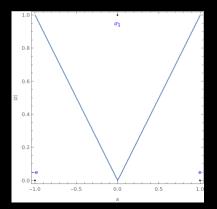
- 3. The map $\kappa_{1\infty}: K_0(E) \to K_0(\mathcal{K} \otimes E)$ is an isomorphism:
 - ▶ injective: homotopy in $H((\mathcal{K} \otimes E)^+, n)$ compressed to homotopy in $H((M_N(E)^+, n)$.
 - surjective: approximation by finite-rank operators in norm is still hermitian form.

<u>Chapter Six.</u> Applications

Example: Toeplitz matrices

- ▶ Consider the operator system $C(S^1)^{(2)}$ of 2 × 2 Toeplitz matrices.
- ▶ Hermitian forms in $H(C(S^1)^{(2)}, 1)$ are matrices of the form

$$T = \begin{pmatrix} a & z \\ \overline{z} & a \end{pmatrix}; \qquad a^2 - |z| \neq 0.$$



$$ightharpoonup \mathcal{V}(C(S^1)^{(2)},1)\cong\{[-e],[\sigma_1],[e]\}$$

▶ However, $\sigma_1 \oplus \sigma_1 \sim e \oplus (-e)$ in $H(C(S^1)^{(2)}, 2)$:

$$h(t) = egin{pmatrix} (1-t)\sigma_1 + te & it(t-1)\sigma_2 \ -it(t-1)\sigma_2 & (1-t)\sigma_1 - te \end{pmatrix}$$

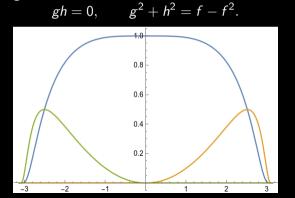
with $\det h(t) > 0$.

Example: spectral localizer on the 2-torus

Loring considered (in his thesis!) analogues of the Powers–Rieffel projections:

$$p = egin{pmatrix} f & g + hU \ g + hU^* & 1 - f \end{pmatrix} \in M_2(C^\infty(\mathbb{T}^2))$$

with U a unitary in the second variable, and f, g, h real-valued smooth functions in the first variable, satisfying



Spectral truncations on \mathbb{T}^2

- ▶ We now consider spectral truncations $P = P_{\rho}$ onto $\ell^2\{\vec{n} \in \mathbb{Z}^2 : ||\vec{n}|| < \rho\} \subset \ell^2(\mathbb{Z}^2)$.
- ▶ We obtain a compression *PYP* of the hermitian form Y = 1 2p on \mathbb{T}^2 corresponding to p:

$$PYP = egin{pmatrix} P - 2PfP & -2PgP - 2PhUP \ -2PgP - 2PhU^*P & -P + 2PfP \end{pmatrix} \in M_2(PC^\infty(\mathbb{T}^2)P)$$

For suitable P these are hermitian forms $\leadsto [PYP] \in K_0(PC(\overline{\mathbb{T}}^2)P)$.

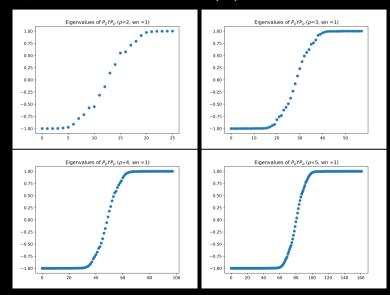
► The *spectral localizer* of Loring and Schulz-Baldes is given by the following matrix:

$$\mathcal{L}_{\kappa,
ho} = egin{pmatrix} -PYP & \kappa PD^+P \ \kappa PD^-P & PYP \end{pmatrix}$$

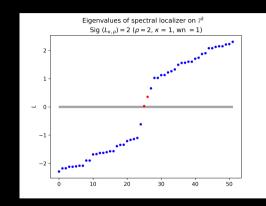
In general they show that for suitable κ and ρ the index pairing can be computed as the signature of this matrix:

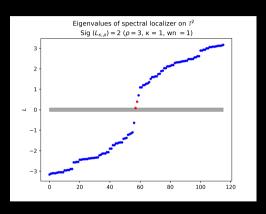
Index
$$pD^+p = \frac{1}{2} \text{Sig } L_{\kappa,\rho}$$

Simulations: eigenvalues of PYP for $U(t_2) = e^{it_2}$

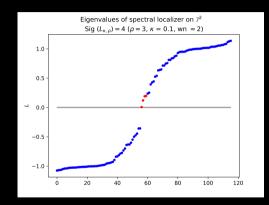


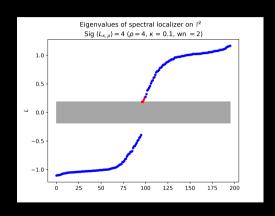
Simulations: eigenvalues of $L_{\kappa,\rho}$ for $U(t_2)=e^{it_2}$





Simulations: eigenvalues of $L_{\kappa,\rho}$ for $U(t_2)=e^{2it_2}$





Summary and outlook

- ► Noncommutative geometry: metric aspect
- ▶ Operator systems: from (spectral) truncations and tolerance relations
- ► Duality of operator systems: state spaces
- ► New invariants: propagation number, K-theory
 - ► Higher K-group invariants [arXiv:2411.02981]:

$$\mathcal{V}_1^\delta(E,n) = \left\{x \in M_n(E) : egin{pmatrix} 0 & x \ x^* & 0 \end{pmatrix} ext{ has spectral gap } \delta
ight\}/_{\sim_n}$$

- and, more generally, $\mathcal{V}^\delta_p(E,n):=H^\delta(E\otimes \mathbb{C} l^{(1)}_p,n)/_{\sim_n}$.
- ▶ Formal periodicity: $K_{2m}(E) = K_0(E)$ and $K_{2m+1}(E) = K_1(E)$.

► Persistence for projective systems:

$$A \rightarrow \cdots \rightarrow E_k \rightarrow E_{k+1} \rightarrow \cdots$$

- ▶ When does $[H] \in K_0(A)$ induce a (non-trivial) class in $K_0(E_k)$ for some k?
- ► Can use spectral localizer (cf. 2-torus) to check non-triviality.
- ► Persistence for inductive systems:

$$\cdots \rightarrow E_{k-1} \rightarrow E_k \rightarrow \cdots \rightarrow A$$

- \blacktriangleright When do we have that $[x] \in K_0(E_k)$ persists to induce a (non-trivial) class in $K_0(A)$?
- ► Can we extract invariants of A from the invariants $\{V(E_k, k)\}_k$?
- ► Relation to quantitative K-theory [Oyono-Oyono-Yu] and NF/CPC*-systems [Blackadar-Kirchberg, Courtney-Winter]